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Abstract

An analytic method is presented for estimating all the added mass terms of a deeply submerged,
submatrine like, rigid body. This body may consist of any number of components (hull, sail, fins,
etc.). Each component is represented by an ellipsoid with three independently sized principal
axes; this allows the added masses to Le calculated analytically. Ellipsoid geometry, orientation,
and relative location are chosen 8o that both added masses and added moments of inertia are
optimally modelled. Interference effects between the main bull component and an appendage
are approximately accounted for by using the flow field around a replacement ellipsoid for
- the huli to modify the flow at the appendage; interference effects between appendages are
‘neglected. The analysis uses incompressible potential flow theory. It does not account for any
circulation in the flow.

Calculations carried out using this method are very fast. They show that both appendage
thickness and hull interference can appreciably affect those added mass coefficients which
contribute to coupling.

Résumé

On présente une méthode analytique pour estimer tous les termes de masse ajoutée dans
un corps rigide, ressemblant & un sous-marin, immergé en profondeur. Ce corps peut comporter
un nombre quelconque de composantes (coque, riosque, ailerons, etc.). Chaque composante
est représentée par une ellipsoide possédant trois axes principaux de longueurs indépendantes,
ce qui permet de calculer les masses ajoutées de fagon analytique. La forme, l'orientation et
la position relative des ellipsoides sont choisies de fagon que les masses et inoments d’inertie
ajoutés sont modélisés de fagon optimale. L’interférence entre la composante principale, la
coque, et un ajout est approchée par 1’application d’un champ d’écoulement autour d’une
ellipsoide de remplacement de la coque qui modifie I’écoulement autour de I’ajout; I’interférence
entre des ajouts n’est pas pris en compte. L’analyse s’appuie sur la théorie de ’écoulement de
potentie] incompressible qui n’admet aucune circulation dans 1’écoulement.

Les calculs effectués par cette méthode sont trés rapides. Ils révélent que I’épaisseur de
’jout et 'interférence de la coque peuvent influer beaucoup sur les coefficients de masse ajoutée
qui contribuent au couplage.
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a,b,c

B(=)

€4,Cqy...,Cs

E,E'
E(u)

H(=)

H(2)
Lik
k, k'

K, K'=

— Lvaes

K;,K;, K,

K, Ki, K
K,ﬁ, Kq',K".

K}, K!, K!

K,K'

M, M=

%pU’F

Nomenclature

half the lengths of an ellipsoid’s principal axes oriented along the z/,y/, 2’
axes, respectively.

the matcix transforming a vector description given relative to inertial
Zo, Yo, 2o aXes to its description in body fixed z,y, 2 axex.

the breadth of a hull component as a function of longitudinal position;
this profile is assumed to be symmetrical about its centerline.

the matrix transforming a vector description given relative to body fixed
z,y,z axes to its description relative to the ellipsoidal principal axes,
'y, 2.

appendage chord lengths measured paralle! to the z/ axis; see Figure 2.
complete elliptic integrals of the second kind.
incomplete elliptic integral of the second kind.

interference matrix containing the interference velocities at a secondary
compuonent.

the height of a hull compunent as a function of longitudinal position; this
component is not assumed to be symmetrical about its centerline.

the 2 coordinate of the midpoint of the local height.

unit vectors associated with the z,y,z body fixed axes.

modulus and complementary modulus of elliptic functions.

rolling moment and dimensionless rolling moment on vehicle; moment is
about body fixed z axis.

added mass coefficients giving the linear variation of rolling moment with
4,0,u.

added mass coefficients nondimensionlized by 1pf4; eg, K. = K /3pet.
added mass coefficients giving the linear variation of rolling moment with
BT

added mass coefficients nondimensionalized by §p£°; eg, K\ = K,/1pt".
complete elliptic integrals of the first kind.

length of the vehicle.

pitching moment and dimensionless pitching moment on vehicle; moment
is about body fixed y axis.
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added mass coefficients giving the linear variation of pitching moment
with 4,v,w.
added mass coefficients nondimensionlized by 3p24; eg, M} = M,/1pt*.
added mass coefficients giving the linear variation of pitching moment
with p,q,r.
added mass coefficients nondimensionlized by 1p¢%; eg, M} = M,/1pt".

matrix transforming velocities and angular velocities specified relative
to body axes to a representation relative to ellipsoid principal axes, see
equation 17.

yawing moment and dimensionless yawing moment, on vehicle; mo.nent
is about body fixed z axis.

added mass cocfficients giving the linear variation of yawing moment with
0,0, .

added mass coefficients nondimensionlized by 3p£!; eg, N} = N,/3pt.
added mass coefficients giving the linear variation of yawing moment with
Prg, 7.

added mass coefficients nondimensionlized by 1p£%; eg, N} = N,/1p£".

vehicle angular velocities resolved about the b~dy fixed z,y,z axes,
respectively.

body component angular velocities resolved about its replacement ellip-
soid’s z’,y', 2’ axes, respectively.

theta function parameters; purely functions of k and k',

a generalized coordinate in the Lagrangian equations of motion.

the force associated with the generalized coordinate g¢; in the Lagrangian
equations of motion.

displacement vector, using a body axes representation, giving the location
of the centroid of a component’s replacement ellipsoid: Zi + §j + £k.

thickness to chord ratio for an appendage.

inertia coefficients determining the kinetic energy of an ellipsoid moving
through an ideal fluid with six degrees of freedom; ¢,, is associated with
translation along the z’ axis, ty4 with translation along the y' axis, ...,
tes With rotation about the 2’ axis.

inertia coefficients as above, except that t|. is associated with translation
along the longest of the ellipsoid principal axes, t;, with translation along
the second longest principal axis, ..., tgq With rotation about the shortest
principal axis.
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u,v,w
o, v, v
u
u
Vo, ¥, ¥/
v
zos!lo:'o
z)yﬁz
%42
2.y,
%,9,2
X
X, X' = ———
3oU2
X Xy, Xy
X4, X}, X,
XP"XQ',X,:
pr X X}
Y
1
v
Y‘.‘,Y‘-,,Y'.)
3 Yo, Yy

the kinetic energy in an ideal fluid.

translational velocities of the vehic.e resolved along the body fixed z,y, s
axes, respectively.

translational velocities of the centroid of a body component’s replacement
ellipsoid resolved along its z’,y', 2’ axes, respectively.

argument of the Jacobian elliptic functions.

speed of the vehicle: /u¥ +v? + w?,

translational velocity vectors using inertial, body fixed, and ellipsoid prin-
cipal axes representations, respectiveiy.

volume of an ellipsoid: $xabc.
set of inertial axes, fixed in space.

axes fixed in the body of the vehicle: the z axis points forward, the
y axis points to starboard, and the z axis points through the keel; the
orientation of these axcs relative to the inertial axes is given by the angles
¥, 0,and ¢.

body fixed cc .rdinates locating the centroid of a replacement ellipsoid.

axes aligned with the principal axes of a body component’s replacement
ellipsoid, such that their origins coincide with the centroid of the ellipsoid;
their orientation relative the body fixed axes is defined by the angles &
and 0.

an intermediate set of axes between the z,y,z and z/,y’,z' axes used
for describing the geometry of an appendage, as shown in Figure 2; their
orientation relative to the body fixed axes is defined by the angle ®.

axial force and dimensionless axial force on the vahicie; force is in the
z direction.

added mass coefficients giving the linear variation of axial force with
U,0,w.

added mass coefficients nondimensionlized by 1p£3; eg, X} = X, /305
added mass coefficients giving the linear variation of axial force with
P47

added mass coefficients nondimensionlized by }p£¢; eg, X} = X, /1ptt.
lateral force and dimensionless lateral force on the vehicle; force is in the
y direction.

added mass coefficients giving the linear variation of lateral force with
G,0,Ww.

added mass coefficients nondimensionlized bv 3p£3; eg, Y. =Y, /3pt".
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Y,, Y‘, Y'\

Y, Y,.Y!
Z

-
2.2'= Crg

z\hzlhzdo

z.,2,,2,
2,,2,2,

z.,2.,2!
ao,ﬂos Yo

A, B,V

mv

P1,P2s: -1 Ps
X1: Xz Xe
¥.0,¢

Wo,w, w'

added mass coefficients giving the linear variation of lateral force with
Bs¥.

added mass coefficients nondimensionlised by 1p£; eg, Y, =Y,/iptt.
normal force and dimensionless normal force on the vehicle; force is in
the z direction.

added mass coefficients giving the linear variation of normal force with
U0, w,

added mass coefficients nondimensionlised by 35¢%; eg, Z} = 2, /308"
added mass coefficients giving the linear variation of normal force with
P47

added mass coefficient: nondimensionlised by 1p£; eg, 2, = Z,/30tt.

constants used in t! - velocity potentials for flow around an ellipsoia.

confocal ellipsoidal coordinates; A = constant defines the surface of an
ellipsoid.

an intermediate set of axes between the z,y,z and z',y’,z' axes used
in calculating the replacement ellipsoid geometry for an appendage; see
Figure 2.

coordinates giving the centroid of a replacement ellipsoid using the u,v
axes of Figure 2.

the largest, second largest, and smallest, respectively, of a,b,c.
fluid density.

the roll and sweepback angles, respectively, of the z’,y’, =’ axes relative
to the body fixed z,y, z axes.

velocity potential in the inertial reference frame: vy = -V,

velocity potentials giving the potential flow around an ellipsoid in each
of the six degrees of freedom.

those parts of the above velocity potentials which are purely functions
of A.

the yaw, pitch, and roll angles, respectively, of the body fixed z,y, z axes
relative to the inertial z;,yq,z, axes.

angular velocity vectors using inertial, body fixed, and ellipsoid pri- :ipal
axes representations, respectively.
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1 Introduction

DREA is currently devaloping the ability to model the maneuvering characteristics of sub-
marines. This will enable the evaluation of proposed candidates for the Canadian Submarine
Acquisition Program aad, in the longer term, provide the basis for a more detailed analysis
of the dynamic performance of the new boats. The initial analysis package will be based on a
numerical integration of the six nonlinear ordinary differential equations describing the motion
in six aegrees of freedom of a maneuvering vehicle. These equations are formulated using either
theoretically or experimentally determined hydrodynamic coefficients.

This memorandum presents a method for theoretically estimating one class of hydrody-
namic coefficient, the acceleration coefficients — otherwise known as the added masses. It is
the background report to Reference 1 and gives the complete details of the theory. For the
convenience of the reader, it includes everything prescnted in Reference 1.

Added mass coefficients (added mass is taken to include added moments of inertia) re-
ceive their name beczuse they can be linearly combined with the true submarine masses in the
equations of motion to form one coefficient. Mathematically, added mass is just the propo:-
tionality constant relating the kinetic energy in the fluid surrounding the vehicle to the aquare
of the vehicle’s speed, in the same way that vehicle mass relates vehicle kinetic snergy to speed
squared. During vehicle accelerations, both the kinetic energy of the vehicle and the fluid are
changed, their ratio remaining constant in an ideal fluid. Therefore, an accelerating vehicle
must overcome the effective inertia of both vehicle mass and ‘edded mass’. The added masses
for a submarine can be equivalent in magnitude to the actual submarine masses, ar.d so must
be accounted for properly.

It is generally acknowledged that submarine added mass coefficients, insofar as they are
important in the equations of motion, are not strongly dependent on viscous effects (such
s circulation and boundary layer growth). Indeed, many of the experimental techniques
currently in use for determining the coefficients make this assumption since they ignore the
dependence of added mass on both orientation of the vehicle to the oncoming flow, and time in
an unsteady flow (stationary model oscillations assume this, for example). The assumption is
also consistent with most modern formulations of the equations of motion in which each added
mass coefficient is assumed to be a constant. Theoretically, these assumptions are false given
the vortex structures known to exist and the lifting surface Kutta conditions that must be met
in the flow; however, while these low phenomena frequently dominate the steady state flow
field resulting from a sudden or violent maneuver, they are often not present at the beginning
of the maneuver when vehicle accelerations are larges¢. Al things considered, a potential
flow analysis, neglecting circulation, is an appropriate method for estimating the added mass
coefficienta. If it is found necessary to account for flow structures and circulation effects in a
particular application, then the equations of motion will need to be reformulated to allow the
addcd mass coefficients to vary with the state variables.

There are varicus potential flow methods available for predicting the added masses, inciud-
ing exact-numcrical solutions of the flow about the complete vehicle configuration. However,
a simple approach resulting in quick calculation times is most appropriate in view of the ap-
proximations discussed above.

A submarine’s hull is generally responsible for the greatest contribution to the added mass
coefficients. Hull coefficients are often obtained by representing the hull with an ellipsoid.
This is convenient because of the availability of exact analytical potentials, derived by Lamb?,
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deecribing the flows and giving the added masses for ellipeoids moving in six degrees of freedom.
Imlay® has interpreted Lamb’s work in terms of a symmetrically finaed prolate spheriod (ie,
an axisymmetric submarine without a sail); he summarises the added mass expressions and
discusees their use in the gencral ideal expressions for the equations of motion.

Kumphreys and Watkinson* give a comprehensive summary of the usual formulae used
for estimating the added masses of a multi-component vehicls; they include a good dir~ussion
of how important each term is to the equations of motion (sensitivity studies). To simplify the
analysis, submarine configurations are brokern cown to their constitueat components, such as
hull, sail, and fins. The added masses of each component are calculated separately and then
summed with those of the other components to give the configuration added masses. Hull added
masses are obtained by replacing the hull with an axisymmetric ellipsoid. Appendage added
masses ire calculated semi-empirically using flat plate models. The Humphreys and Watkinson
sensitivity studies show these procedures give adequate accuracy. However, Humphreys and
Watkinion do not, deal at length with asymmetrical hull shapes or configurations with sails, and
the sail, in particular, can have large effects on those coefficients which contribute to coupling
between mctions in different degrees of freedom. Aucher® estimates added masses in a similar
fashion. Neither of these methods account for any hull asymmetry. Instead, they model the
hull with an axisymmetric ellipsoid whose geometry is determined by an average hull diamster.

Another approach® uses strip theory to estimate hull coefficients. Here, two-dimensional,
potential, cross-flcw predictions estimate the local added mass per unit length at a longitudinal
location; these local contributions are then integrated over the length of the hull to give
its added masses. Although able to accourt for hull asymmetries, strip theory leads to an
overprediction of the principal added mass coefficients (relative to an exact 3-D potential flow
solution) of from 5 to 15 percent, depending on the coefficient and hull geometry. Empirica!
correcticns can be applied, but they are data base dependent.

The approach taken in the present theory is \» combine and extend the above procedures
and, as far ar is poasible, apply the idsal equations of motion in a manner that estimates all
the added mass coefficients of the vehicle as accurately as possible. For maximum flexibility,
each body component is represented by an ellipsoid with three independently sised principal
axes. The eilipsoid is positinned and oriented so that both added masses and added moments
of inertia are modelled properly. As with previous theories, the total added masses of the
vehicle are taken to be the sum of the added masses of each of the component ellipsoids,
except that interference effects between the hull and appendages are accounted for first. These
effects can be appreciable, changing an appendage’s added mass contribution by as much as
50 to 100 percent relative to a calculation which assumed the appendage was isolated in the
flow. The present theory approximately accounts for this by using the flow field around a
replacement ellipsoid for the huli to modify the flow at the appendage. Interference effects
between appendazes are neglected.

Special attention is given to choosing the geometry of the hull replacement ellipsoid. This
is done by

1) calculaiing strip theory added mass predictions from specified hull coordinates, and

then

2) choosing ellipsoid geometry in such a way that strip theory predictions generated
from the ellipsoid coordinates agree as well as possible with the kull strip theory
predictions.
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Thus, the hull replacement ellipsoid models those geometrical characteristics of the hull which
are most important in determining added mass. The added masses for the hull are obtained
by applying Lamb's theory to this ellipsoid; they can be thought of as strip theory predictions
automatically (though approximately) accounting for 3-D effects .

Appendages have ¢nly a small effect on the principal added masses associated with trans-
lation and rotation in the transverse directions, but can appreciably affect and even dominate
those coefficients associated with surge and roll. Appendages are also important to the so-called
‘off-diagonal’ added mass coafficients which, though smaller in magnitude than the diagonal
tarms, are potentially important as coupling mechanisms. Representing an appendage with
an ellipsoid, while less satisfactory than the hull reprasentation, is considered an appropriate
approximation given the small contribution the appendage will make to the vehicle’s dominant
coefficients. Duing 80 also allows appendage thickness to be accounted for, and this is shown
to have appreciable effects on some of the zoefficients.

Significantly, ellipsoid potential flow solutions, and the added mass expressions they gen-
erate, require the evaluation of elliptic functions if the ellipsoids have three independently sized
principal axes. This explains the a; roximation usually made to avoid these calculations: by
replacing the hull with an axisymmetric ellipsoid, only elementary functions need be evaluated.
For the present theory, fast, accurate, analyticully oriented routines ar: derived for evaluating
the requisite elliptic functions.

A computer program has been written to calculate the predictions of the theory developed
in this report; its use is described in Appendix B. In Section 10, the theory is applied to a
generic submarine configuravion and results are presented.

2 The Equations of Motion of an Ideal Fluid

Although some of the relationships developel in this section have been presented by other
authors (Lamb?, Imlay®, Abkowits'), it is felt that a thorough and complete presentation
collated in one place is desirable. This also allows the reader to more easily follow the extensions
that are made to the above theories.

By deriving tke equations of motion of the fluid around ihe vehicle, expressions for the
ideal fluid forces exerted on the vehicle can be obtained. One begins by eatablishing coordinate
systems and a set of variables describing the motion.

Consider the unsteady motion of a vehicle in six degrees of freedom having arbitrary
translational and rotational velocities. In order to des:ribe the motion, it is conventional® to
use a set of body fixed axes, z,y, 2, which move with velocities u,v,w in the r,y, 2 directions
relative to a set of inertial axes z,,y,,3,. The angular velocity components of the body about
the z,y,x axes are p,q,r. Take the z,,y, axes to be in the horisontal plane and the z, axis
to point downwards. For a submarine, the z axis points forward, the y axis to starboard, and
the z axis through the keel.

To describe the crientation of the body axes relative to the irertial axes, angles of yaw (v),
pitch (@), and roll (@) are defined in the following way?. Since finite rotatior of yaw, pitch,
and roll in any order do mot result in the same relative body axes orientaion, the order of
the rotations is an integral part of the definitions of the angles. Assuming the body axes are
initially aligned with the inertial axes (however much the origins are displaced), an arbitrary
reorientation relative to the inertial axes is obtained by
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1) yawing about the 2z axis through an angle ¢,
2) pitching about the y axis through an angle ¢, and
3) rolling about the = axis through an angle ¢.

All rotations are in the pcsitive sense as defined by the Right Hand Rule. Thus, the matrix A
transforming a vector description using =,,yq, 2, axes to one using body axes is:

1 c 0 cosd O —ginf cosy siny 0
A=A AMA,=]|0 cosd sing 0o 1 0 )(—.in\b cosy O

0 —sing cos¢ sind 0 cosfd | 0 0o 1
cosfcosy cosfsiny ~sin@
= | —sinycosd--singsinfcosy cospcosy +sin¢gsinfsiny sin¢gcosd |. (1)
singdsiny + cos ¢cos ysinl —sin ¢cosy + cos ¢sinfsiny cos ¢ cos §

Therefore, if v and v, are the vectors specifying the velocity of the vehicle using body axes
and inertial axes coordinate systems, respectively:

u) %,
vE(v), VOE(?O) (2)
w %

v=Av, and vo=Alv, (3)

then:

Since A is an orthogonal matrix, A~! = AT (where AT is the transpose of A).
Similarly, if w and w, are the angular velocity vectors giving the vehicle’s rotation, then:

w=Aw, and w,=ATw. (4)

However, because of their definitions, da , §, and ¢ do not form the orthogona! components for
either of these vectors. The expression for w is obtained by summing the contributions from
V¥, 0, and ¢ after properly transforming their associated angular velocity vectors to a body
axes representation:

P 0 0 ¢
r ¥ 0 0
Thus: .,
p=-sinfy+¢
q=sin$coc0¢;+coa¢5 (6)

r=cos¢cosdy —sn¢h.

Now, since our interest is only in the overall forces on the vehicle, which are equal and
opposite to those on the fluid surrounding it, Lagrange’s equations of motion in terms of the
total energy in the flow field can be used. This description uses generalized coordinates (one
for each degree of freedom), all of which must be independent. The generalised coordinates
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used in this problem will be taken to be z,,y,, 29, ¥,0, ¢; so that u,v, w,p,q,r are dependent
variables related to the generalized coordinates via equations 3 and 6. If g, is a generalized
-nordinate, thea the six equations of motion are®:

d [ 3T ar
dt (é—qj) Eq, =9 ™

where T is the total kinetic en2rgy of the fluid, t is time, and the Q; are forces on the fluid
associated with the g;. Note that Q. &g, always has units of energy, so that when g, is an
angle, Q, is a moment.

Since it is most convenient to describe the vehicle motion using body axis velocities
and forces, it is desirable to write the equations of motion in terms of u,v,w,»,q,r and
X,Y,Z,K,M,N (the latter are, respectively, standard notation® for the forces and moments
on the vehicle and are associated with the z,y,z axes). This is most easily done by taking the
inertial and body axes to be precisely coincident at the instant in time of interest. Then the
Q; will he the negative of the vehicle forces and moments.

The terms on the LHS of equation 7 are expanded as follows:
OT 90T 8u A 3T dv  aT dw 98T 3p A oT 8q AT dr

—— —t e bt 8
aq,. du 8q_, dv dg; £ dq;, 0Opdg; ¢ c""qJ dr dg; (8)

Equations 3 and 6 are used to evaluate the paitial ¢ -ivatives with respect to the g, at the
instant the axes are coincident, when zo,yo,zo,cﬁ,ﬂ 'l) @V, W. P, q,r

opnmmnn o, o (0N a(950)
Aznvorn) 1 A&0Y)  \_, ) o) 9@8%) \_. oo

u,

The first term of equation 7 becomes:

4(37‘) d(arau 8T 3v 8T 3w 3T 8p _ AT 3q BTBr) ©)

dt\3q;) ~dt\oudg; * vdq;  dwaq, T dpdy; = Oq g, | or By
with:
d(9en)_(4o1)om o1 (dom 10)
dt \andg; ] ~ \dt an/ 3¢; " on \ dt 3¢,
and, again at the instant of interest, one gets:
d(u,v,w)  3(p,q,r) s ov __ Ow (l)’g’g
a(&;é) 'p) a(iO’y.O’z.O) ’ a(z‘f)' V.O, z.'0) a(éié’ '[') 0:0: 1

dt 3(¢,0,9) dt 3(E.v0,%0)

a_ov (D oTh) 4 _aw (0 07
dt 8(zo, Yo, %o) q:—p: o] 9t a(¢,6,9) 0:-p: 0
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Thus, the equations of motion given in Lamb are rederived:

MO ELA

doT 9T  OT

! Ea—fsg'i'q-a—w:—x
dtav Pow "ou "
; d 8T 8T aT
I ataw 9u TPa, =2
ddT 8T AT 8T aT (11)

2w
&9 “ov ' Vsw "ag T%r
daT aT aT 8T oT

— e g gl el » |
it 9 “aw Ve Par - M ;
dor _ o1 oT T T _ . ;
atar "ou “av T5p TP T T

Since the orientation of the inertial axes is arbitrary, these equations are in fac: true at any _
instant in time. An alternative way to write them is: i

i .
I 0 -r g O 0 0\] f‘?_T/a"\ () ?
0 -p 0 0 0 ('T/av Y ',
_ aT/d z ;
d |-« 2 0 0 0 0 [dw | _ _ _ (12)
dt 0O -w v 0 -r ¢ aT/3p K
- v LR 4\ ar/or / \ N/ |

Equations 11 are linear in T, so that if T is written as a linear combination of the :
contributions from each body compopent, then the right and left hand sides of the equations can :
also be separated into component contributions. This is equivalent to indepevdextly applying
the equations to separate body components and then sumining the resulting component force '
predictions to give the total force on the body. However, finding the component contributions
to T is no easy matter since they must account for the presence of the other components
(interference effects).

vehicle body, with interference effects to be determined later. First, though, the position and
orientation of the replacement ellipsoid for each component needs to be specified relative to
the vehicle body axes. We begin by considering orientation.

Equations 11 will be separately applied to each of the many components comprising the i

Hydrodynamic considerations will result in one of the ellipsoid’s principle axes always
being perpendicular to the body z axis, control surface deflections aside. This eliminates one
degree of freedom, allowing the ellipsoid to achieve its desired orientation relative to the body q
axes with only two independent rotations. ‘

Let the z’,y,2' axes be the ellipsoid principle axes. Assuming these axes are initially
aligned with the body axes, their desired reorientation is achieved by

1) rotating about the z’ axis .hrough an angle @, and then i
2) rotating about the 2’ axis through an angle f1.




As before, all rotations are in the positive sense as defined by the Right Hand Rule. This choice
of transformation means that the 2z’ axis will always be p.. pendicular io the body z axis. The
matrix B transforming vectors using a body axes representation to ones using ellipsoidal axes
is:

cosfl sinfl O 1 0 0 cosl sinflcos® sin{lsind"
B=| ~sinfl cosfl 0O 0 cos® 8in® | =] —sin{l cosfllcos®d cosﬂsinQ).

0 0 1 0 —-sin® cos® 0 ~sin® cos®d
(18)

Besides these rotations, the ellipsoid will have its centroid displaced a distance ¥ = zi +
§3 + zk relative to the origin of the body axes (using body axis coordinates), so that the
velocity of the ellipsoidal axes’ origin is:

ut+gz—ry
V=v+wxfF=| v+rz—pz|. (14)
w+py—q%

In the z’,y', 2/ coordinate system one gets:

ul
vi= (v’):BV (15)
wl

as the translational velocity of the origin. Since the vehicle and its components are undergoing
solid body rotation, all of their angular velocities are equal (i.e., @ = w) and so:

pl
W= (q') =Bw. (16)
rl

Equations 14 through 16 can be summarized in the following matrix equation:

!

u u’
v/ v
w' w
=M 17
. . a7
q k q
r/ r
where:
0 2z -y
B B{ -z 0O =
M= g -2 O
0 B
7
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With the various coordinate systems and their associated variables now established, all
that is reqnired are expressions for the kinetic energy of the flow. These are derived in Section 4,
where the general expression for the kinetic energy in the flow around an ellipsoid is shown to
be:

T =1V (tuu” 330" + 2350 + 40" + 0" + toor'?) (18)

where p is flvid density, V' is the volume of the ellipsoid, and the ¢,; are the inertia coefficients,
determined by the ellipsoid’s geometry. Using this expression, the column matrix on the LHS
of equation 12 becomes:

(8T/8u\ ( aT /3w’ ,
’ aT/a” au'/au av'/au cee ar'/a'u aT/avl ::'
aT /3w ou'/dv '/dv ... dr'/dv 8T /dw' r o
= . . . , | =rwvMiT| (19)
T /dp k : ; L 3T /dp p
!
9T /dq du'/dr ov'/dr ... ar'/or aT/dy¢' 3,
\ aT/ar J aT/arr
where:
t, O 0 0 0 0
0 85, G 0 0 O
r=| 0 0 ts 0O 0 O
={o o o0 ¢t 0 0
0 0 0 0 tg O
0 0 0 0 0 ¢ty

(Note that MT 2 M~1.) Thus, the equations of motion for one ellipsoidal component of the
multi-component bedy are:

[ f 0 -r g 0 0 O u X

r O -p 0 0 O v Y

d -q p O O O O T w|_-112
dt + 0 -w v 0 —r ¢ M"TM p|l oW | K| (20)

w 0O -u r 0 —-p q M

L —v u 0 —¢ P 0/ T N

Since T is a diagonal matrix, MT TM is symmetric. Actually, this equation is true for any
arbitrarily shaped body providing T is allowed to be a fully populated matrix; however, even
for this general case, Lamb shows that T is symmetric and, therefore, that M7 T M is always
symmetric in an ideal flow.

Multiplying through the differential in equation 20 one gets:

—MTTM =MTTM

7 (21)
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since MT T M is constant for a body with fixed, immovable components. Therefore, it can be
identified as the added mass matrix:

Y, Y, Y, Y, Y, Y,
K K K K K K |=VMTM (22)
M, M, My, M, M; M,
N, N, N, N, N, N,

Since this matrix is symmetric, X, = Y, X, = Z,, Y, = Z,, etc. Future calculations may
replace a term from below the diagonal of this matrix with its above the diagonal equivalent.

Equations 23 give the expressions for the components of the matrix, obtained by evaiuat-
ing MTTM.

X, =—pV [cos’ Qt,, + sin® ﬂt,,]

X; = —pV [cosNsincos D (t;, — t5,)]

X, = —pV [cosNsin Nsin ® (¢, — t5,)]

X, = §X, - X,

¥ = 2X, - 2X,

X; = 2X, - §X,

Y, = —pV [sin? Qlcos® t), + cos® Ncos® Bt,, + sin® Py, ]
Y, = —pV [cos @ ain @ (sin® ¢, + cos? Nty, — ty)]

Y'g = gY") - ,Yé
Y, =2Y, - §X,
’ ? (23)
Z, = —pV [sin® Qsin’ ®t,, + cos? Qsin® By, + cos? Diy,]
Z,=2zY, - X,
K; = —pV [cos® O, + sin® Nty ] + §2; - 2Y;
K;j=-pV [cosﬂsinﬂcos@(t“ - tu)] +§Z; — zY;

K, =—pV [cosQsinQsin ® (t,, — tgs)] + §2; — 2Y;

q9
M; = —pV [cos ®sin ® (sin’ R, + cos® Qtgs — tee)] + 2X; — 22;

r

M; = —pV [sin® Qcos? ®t,, + cos? N cos® B iy, + sin® Bigy] + 2X; - 22

N; = —pV [sin® 2sin? B, + cos? Qsin® gy + cos? Bige] + 2Y; — §X;

The ‘off-diagonal’ coefficients mentioned in the Introduction refer to elements of M7 T M.
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Equatioas 23 ere only as simple as they are because of the special geometric symmetries
of the ellipsoid used to represent a body componeunt. It is obvious that a more fully populated
T matrix, representing a more general shape, would lead to many additional terms in all
of equations 23. In view of this, equations 23 should achieve their greatest accuracy if a
body component is replaced with its best represertative ellipsoid and the geometry of this
replacement ellipeoid is used to calculate the inertia coefficients. This aliows errors resulting
from ‘fitting’ the component to be directly monitored and, in fact, to be used in determining
the best fit. On the other hand, calculating the t;; for a single component from different
ellipsoids, or fro.n non-ellipsoidal geometries, in general invalidates ejuation 18 and wili lead
to errors of unknown magnitude. These errors, though small relative to the diagonal added
mass coefficients, might appreciably affect the smaller off-diagonal terms which contribute to
coupling.

particularly important as, in many cases, the second order effects alluded to in the previous
paragraph are roughly the same size as the effects of the appendages. Fitting replacement
ellipsoids to appendages is obviously less important.

; Care in fitting the large hull component of a submarine with its replacement ellipsoid is ' i

! Equation 21 is the unsteady part of the equations of moticn. Using the notation defined in -
equacion 22, and upon breaking equation 20 intn its component parts, one obtains equations 24 o
(on the next page), which are the complete set of expressions® for the fluid forces and moments
on a vehicle (or one of its components) moving through an ideal fluid.

In addition to the added mass contributions to the forces ( X, u, X0, ..., N;#), which are
only impnrtant during unsteady maneuvers, equations 24 also give the ideal forces associated
with steady state motions (the reader may recognize the M equation term (X, — Z,;)uw, for
example, as a ‘Munk moment’!°). However, many of these ideal steady state terms are known
to be strongly subject to viscous effects and, where possible, should be replaced with estimates
based on experiment.

o

For the complete body, equations 24 can be simplified if the vehicle is symmetric abcut
a longitudinal vertical plane, as most submarines are. Then, 9 of the 15 ‘above the diagonal’
summed added mass terms are zero, namely:

k.._...,.., .
. g oy . .

; ";'wh’ .
S 3 ¢ .,

Xoo X X3, Y Y, 25, 2, K o M

Of course, their ‘below the diagonal’ counterparts are also zero and, in fact, it is by considering
some of these latter terms that one can most easily see that a term must be zero. Thus, for
conventional submarine shapes, equationt 24 reduce to equations 25.

B
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X = X0+ X, (0 — ur) + X, (w2 ug) + Xpp + Xy + X,f
=Yur +Y,(vg —wr) - Yyrp+ (2, — Yy)gr — Y,r® + Z,wg+ Z,,q,v2 + Z,pq
+ X ur + X, (wr - up) + (X, - Z,)rp+ Xyqr + Xyr* - Z,wp - Z,0° - Z,pg
— Xguq + X, (up - vg) + (Y - X;)pa — X40° = X,qr + Yy0p+ Yip? + Yerp
- Xyuw + 2 juv — Xur + Xoug + (2, - Y, )vw+ Y, (v’ - w’) (24)
- (Yq - Z'-.)(U"'*" wq) + (Yf + Zq)(vq - wr) - (Mq - N,'.)qr + A{,‘.(q2 - "2)

M =X, (4 + wq) + Y0 + Z,(w - uq) + Ky(p + gqr) -+ Mg + M, (r — pg) 8
+(Xg = Zg)uw + Xgow + Xy (w? - w?) + (X; - Z;)(wp + ur) -#

- (X + Z;)(up — wr) - Y uv + Yyor — Youp-! (K, — N)pr — Ky(p? — r?) :

N =X, (46— vr) + Y,(9 +ur) + Z;0 + Ky (b — qr) + My(¢ +pr) + Ny# N
— (Xy = Yo)uo+ X, (u? ~ 07) - Xgow - (X, = Y,)(ug + vp) X

+ (X + Y3)(up — vq) + Y uw — Z,wg + Z,wp — (K; — M)pg + K;(p® - ¢%)

X =Xgo+ Xy (0 + ug) + Xyd — Yyor - Yyrp - Yur® + Z,wg + Z.¢°

Y =Y, 04+ Y;p+ Yir + Xgur + X, (wr — up) + Xyqr — Z,wp — Z;pq

+(Zy, - Yy)vw + (Y; + Z5)(vg — wr) — (M; — N;)gr (25)

+ Xy (w? - u?) + Yor — Yuup + (K; — NJpr - K, (p* - r?)

N=Y:(0+ur)+ K;(p— qrj+ Ni# — (Xy - Y )uv - X vw )
+(Xg + Y;)(up — vq) + Zywp — (K; — My)pg ¥

11
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3 Interference Effects: Primary and Secondary Components

The equations of motion, as summarized in equation 20, a~nly only to an isolated body.
Thus, equations 23 do not account for any modification of the flow about the ellipsoid due
to the presence of another body. In this section, these interference effects will be modelled
approximately by superimposing & uniform velocity over a relatively small ellipsoid which finds
itself in the presence of a larger one; this snterference velocsty will be the velocity field around
the large ellipsoid evaluated at the location of the centroid of the smaller one, without the
smaller ellipsoid being present.

Formally, a body component will be assigned one of two possible orders: either primary
or secondary. In general, one would call the hull a primary component and a hull appendage
a secondary component. Primary component added masses are not corrected for interference
effects. Secondary component added masses are only corrected for the presence of the primary
component; all other components are ignored.

Thus, equations 20 and 23 are correct for all primary body components. For secondary
components, a modification must be made in the development of equation 20, at the level of
equation 17. In this latter equation, the interference velocity must be subtracted from u,v,w
to give the effective velocity of the secondary ellipsoid through the fluid. There is no correction
to p,q,r since the potential flow about the primary ellipsoid can have no rotation in the field;
however, as primary component body angular velocities, p, q,r will certainly contribute to the
corrections applied to u,v,w.

Now, denote the interference velocity due to a primary component moving with velocity u
as G, ul + U, uj + @, uk, velocity v as @, ,vi+ §,v]j + W, vk, ..., and angular velocity r as
@,r1+6,rj+ @, rk. Here, the bar over a variable indicates the velocity is that at the location
of the centroid of the secondary ellipsoid. These variables are dimensionless if their subscripts
arc u, v, or w, they have dimensions of length if their subscripts are p, ¢, or r. The velocity
vector on the right hand side of equation 17 can now be rewritten:

u 1-¢, -8, -&, -8, -4, -4, u u
v -9, 1-9, -9, -9, -9, -9, v v
w -w, -w, 1-w, -w, -¥, -, w| _ w
p | — 0 0 0 1 0 0 p | =¥ p (26)
q 0 0 0 0 1 0 q q
r 0 0 0 0 0 1 r r

where F is the tnterference matriz. This multiplication by F is ¢quivalent to subtracting the
interference velocities from V, equation 14. Equation 17 becomes:

u u
v! v
w' w

=MF 27
. . (2)
q q
r r

Equation 20 will then be applicable to secondary components if MT T'M is replaced with
FTMTTMF, which is the new added mass matrix.

12
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If, for a secondary component, the elements of the matrix —pVV MT T M are denoted X,
X3, ..., N? (the valves of these eilements are given by equations 23 and they would be the
true added masses if there were no interference), then the secondery component added masses
are:

Xd = (1 = nu) [XS(I - “u) - ngl“ - X&.Wu]
-0, [X'O'(l - au) - Yo’oau - ngu] - W, [Xz(l - ﬁu) - Ygﬁu - ZgIT)“]
xé = (l - ﬂ“) [—xgﬁ” + Xe(l - 0u) . Xgﬁ,]
-9, [_x\'vouv + Yq’ro(l - 0‘,) - Yu‘?wv] =, [—xtobau + Y\B(l - 0u) - Zgawu] (28)

N;= N} -a,[2X] - X8, - XJv, - X%w,]
-9, [2Y) - X08, - Y00, - Y{w,] - ®,{220 — X2u, - YJv, - 285,]

(The complete set of added masses are easily obtained by matrix multiplication.) Note that the
corrections for interference effects are proportional to second order products in the interference
velocities. This is because added mass is a measure of fluid kinetic energy, which variec as the
square of the fluid velocity. Thus, these corrections are potentially very important.

As with the elements of the matrix MT T M, the elemnents of the inteference matrix F
are purely a function of vehicle geometry, as will be shown in following sections.

It is noteworthy that interference effects change some of the relationships between the
added mass coefficients presented in equations 23. Corsider the simple example of an axisym-
metric hull ellipsoid with a sail positioned directly over its center of buovancy. For roll and
sway motions, write the fluid kinetic energy due to the sail as T' = 1/ (t5,0" + t,p'?) with
p' = p and v/ = v—Zp-— ¥, v, the last term in the latter equation being the interference velocity
at the sail due to the presence of the hull; ¥ locates the sail’s centroid. (For this example, it
is convenient to take the sail’s y' axis to be parallel to the body y axis, unlike the general
notation presented in Section 8.) If k =1 - 9,, v/ = kv ~ 2p; U, will be negative,so x > 1.
Then, the time dependent parts of the second and fourth of equations 1 result in:

Y, =rY); Y, K, =-x¥?;

K,=KJ=—pViy +2'Yy (29)
As expected, Y, is proportiona! to x?, and K ;» is unaffected by interference effects since the
axisymmetric hull can rotate without generating an interference velocity. However, note that
K, # —2Y,; and that the ‘Y,’ contribution to K is not ~2Y; as in equations 23. Symmetry
of the added mass matrix requires ¥; = K,,, and this prevents the usual inter-relationships
among the coefficients from occuring.

In the above example, x will be less than 2 (a value corresponding to an infinitely small
sail with its centroid located right on the hull surface). For an asymmetric hull, with its majo:
transverse axis aligned with the sail, x will be larger than it would be for an axisymmeric
hull.

13
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4 The Kinetic Energy in the Ideal Flow Around an Ellipsoid

In Section 2, expressions for the added mess of an ellipgoid in an ideal flow are obtained in terms
of the flow’s kinetic energy. In this section, expressions for the kinetic energy are presanted.
Their complete derivation is preseated in Lamb?, beginning in article 111. This derivation is
most conveniently carried out using confocal ellipsoidal coordinates. Both Lamb and Whittaker
and Watson!!, chapter 23, present the necessary details for use of this coordinate system.

The kinetic energy T of the flow can be obtainad if the velocity potential ¢ is krown in
the inertial reference frame of Section 2. (2, Yo, ;) must satisfy Laplace’s equation Vip =0
subject to boundary conditions at infinity and the cllipsoid surface. The flow velocity at any
point is then v, = -V, and the kinetic energy of the flow wiil be given by:

2T=~p//pg—:ds. (30)

The integration is over the surface of the ellipsoid; n is the direction normal to the surface
into the fluid.

In the inertial reference frame, the equation for an ellipsoid with principal axes of length

2a, 2b, and 2c is:

2 3 8

In Y z _
I+ 3-1=0. (31)

The equation of any confocal quadric to this ellipsoid is:

=

a’+ 40

3
%o

2+0

v
b24- 6

where 9 is the parameter of the quadric. This last expression caa be solved for § for any
point (z,,¥,,3,). Since the solution is thau of a cubic polynomial iz #, there are, in gen-
erzl, three quadrics passing through (zy,y,,%;). The confocal ellipsoidal coordinates, de-
noted A, u,v, are the three roots of this cubic. If £,0,r are the largest, second largest, and
smallest, respectively, of a,bd.c, then —¢? < v < —0? < u < —r? < A < 00. The quadric
surfaces A, u,» = conctant are ellipsoids, hyperboloids of one sheet, and hyperboloids of two
sheets respectively. These sarfaces are always mutually orthogonal.

+ + 1=0 (32)

Consider, now, the potential flow around an ellipsoid translating through a stationary fluid
with velocity u in the direction of one of its principal axes. At thc instant in time of interest,
the centroid uf the «llipsoid is precisely coincident with the origin of the inertial z,, y,, 2, 8xes
such thst its surface is given by equation 31 and u is directed along the the z, axic. Lamb
shows that a solution to Laplace’s equstion of the form:

#1 = Zox1(A)u (33)

is capable of satisfying the boundary conditions for this instant in time. He gets:

abe [* dA
1) = 3= g /; @@ +NA (34)
where: oo
ay = abc/o Gz—d'f\'\)_A’ A=+(a?+A)(B3+A)(c3+ ). (35)
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A simple cyclic permutation of variables:
a—b—c and zy—y,— 2 B u—-v—ow

in equations 33 through 35 gives the expressions for o, and ¢, , fur translation in the directions
of the othar two principal axes:

Ps =¥Xa(A)y  xa(A) = 2?20 :‘ ® :i\) x (36)
Py = oxs(A)w, xs(2) = a&c / (@ + X)A (37)

where: o ™
ﬂ°=abc/ (b’-l-A)A’ 705050:/0 m (38)

a, b, and c, then, are the semi-axis lengths of the ellipsoid principal axes parallel to the
directions of u, v, and w respectively.

Consider, also, an ellipsoid rotating in a stationary ideal fluid with angular velocity p
about one of its principal axes. At the instant in time of interest, its surface is given by
equation 31 and the aforementicned principal axis voincides with the z, axis. Again, Lamb
shows that:

Po = YoZoXe(A)P (39)
satisfies these boundary conditions, where:

) < abe(d? - ¢?)? o d)
= ) s G B . B ANE@FNA

(40)

A cyclic permutation in these last two equations of a,d,c and z4,y,,2, with p,q,r gives
@y and g4, the potentials for rotation about the y, and z, axes with velocities ¢ and r,
respectively.

Thus, at the instant in time of interest, the linearity of Laplace’s equation allows the
potential flow around an ellipsoid moving in 6 degrees of freedom to be written as:

P=p1tPrtestotestes. (41)
Equation 30 shen gives the kinetic energy in the flow:
= ‘Pzszw. 5lds.
s=1 =1

Because of the geometrical symmetry of an ellipsoid, only the ¢ = 5 terms of this summation
are nonzero. One gets:

T = 3oV (ty,u® +tg,v® + t3aW? + t P! + tg5a® + tger?) (42)

15
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where V = $xabe is the volume of the ellipsoid =nd the ¢,; are the inertia cocflicients:
o
2 - ',o !

Lol -8 1 (-a")ag~)
“TBAP -+ (B - ) T B —ah) + (T +aN) (- o)

p o1 (@ -84 - ay)
™ 5 32(a? - 1) + (a® + 8") (2 - Bo)

%, - b

‘u"“'z_“o’ n=2"5" tyy =

(43)

Although equation 42 was derived for one instant in time, when the ellipsoid is aligned with

1 a purely arbitrary set of inertial axes, the equation applies generally since at any other time

. there will be another *ct of iner.ial a~es for which an identical derivation could be performed.

. Note that, although the notation is different, equation 42 is identical to equation 18 (in each
case the velocities are relative to the ellipsoid principal axes).

The integrals in equations 34 through 38 and equation 40 are, in gaaeral, elliptic integrals.
Their general solutions are presented in Section 6, along with simplifications that can be made
in special cases.

5 The Interference Velocity Field Around a Primary Ellipsoid

: : The elements of the interference matrix of equation 27 can be found by differentiating the
- velocity potentials of the previous section. At the instant in time of interest, the velocity at
any point in the fiow field around a primary ellipsoid is v = vy = -V (cf, eq. 2), where
t is given by equation 41 and the ellipsoid’s boundary by equation 31. The differentiation is
aided by the following expression which follows from relationships between the ellipsoidal and
cartesian coordinates?:

h2dxy [ = v x
v N 0 o )
x() 2 dA (a'+.\i+b’+,\j+c’+xk)' (44)

Here, x()) is any function of A; (Z4,yo,2;) is any point in the flew field; A, is a scale factor
relating lengths between the ellipsoidal and cartesian coordinate systems:

4 -1
2 3 3
Al =4 ( %oy Y 4R ) : (45)

@ +x)?  (B2+2)?  (a2+2)

If x(A) is identified with the x,(A) definad in the previous section, then equation 44 can be
rewritten as:

_ h{abc zo vO lo ) 1
Vxi) = -7 (a=+,\’+b'+,\j+c’+xk & (46) |
with:
3 _ 3\
R - R, (<) (47)

1T @)@+ N T R -+ (B +c)(Bo— 1) (B F A (SE + A)

R,,R, and Ry, R4 are obtained by cyclically permutating the variables in R, and R,, re-
spectively.
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Now, if (2o, §io, &) is the location of the centroid of a secondary ellipsoid (coincident with
(2,9, %) at the instant in time of interest), and if these coordinates determine X through a
solution of equation 32, then the interference velocities for the secnndary ellipsoid are:

-V, /u= a1+ 0.5+ B k= —x,(A)1-2,Vx,(A)
-Vey/v=a,1+ 0,J+ B, k= —xy(A)] - §oVxy(})
-Vey/w=108,1+0,3+ G k= —x35(A)k - £,Vxy(%)
~Ved/p= 8,1+ 0,5+ @ k= -Ix, ()] - Jox((A)k - o2, Vx4(X)
-Ves/g= 8,3+ 8,3+ Bk = —Eoxs (A)1 = 2oxs (M) k — 202, Vg (X)
~Vie/r= 8,1+ 8]+ B,k = -fxe(X)1 - 2oxe(2)] ~ 2090 Vxe(R) .

(48)

The Vx,(1) on the right hand sides of thase equations are easily evaluated ir. terms of
elementary functions of a,d,¢,2,,§,,%,, a8 per equation 46. However, the x,(A) are elliptic
integrals. These constants are evaluated in the next section. Elliptic function theory must be
used if the primary component is asymmetric; this is not a difficult problem if the routines
necessary for calculating the inertia coefficients for this geometry are already in place. An
alternative approach would be to use the 2-D potential low field around an ellipee to estimate
the transverse components of the interference velocities, which are really the only ones of
interest. The advantage of the 3-D calculation is that end effccis are properly modelled, for
example, in the region of a submarine's tail. As will be sesn, if the primary component is
axisymmetric, then the general 3-D calculations can be carried out using only elementary
functions.

6 Ewvaluating the Inertia Coefficients and Interference Velocities

The inertia coefficients {equations 43) are funciions of a, b, and ¢ through the elliptic integrals
a., By, and 7, (equations 35 and 38). These same integrals, but with different limits, need
to be evaluated when calculating the x,()\) which are present in the expressions for the inter-
ference velocities. In evaluating the integrals, extensive use is made of the theory of elliptic
functions. A brief introduction to these functions is given in Appendix A.

There are basically three integrals to be solved:

°  di ®  dA ® d
’*=‘”'A GERIS ”=‘"A EESY "=€”'A rna 4

with:

A=/(E+A)(e?+N)(r? + ).

Here, £,0,r are the largest, second largest, and smallest, respectively, of the semi-axes a, b, ¢
of the ellipsoid principal axes. Before obtaining the g-neral solutions to these integrals, some
special cases are examined.
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Asphere: E=e¢=T7r
In this cuse: - 0 . o
- - = g3 — =2
"“”“"'efa @+0" 3 @+ (%0
Th“.,ao=po=',°=2/a so that ‘ll="’=t'3=l/2 and t“=‘.‘=t00 =0,
A prolate spherold: ¢ =r

In this case;

= £o? dA
I, =§ /; (@® + A)(E +A)'/'

a-ot \/gr;— Taan X+ e ol )

Using the eccentricity e = /€ — 02/€, one can duplicate the expression Fiven by Lamb?

for A=0: .
I,=2!l—°!(%lnl+e _ e)-

e3 1-e

(81)

e [” dA _ Eo? 1
L=Iy=¢§o /; (¢’+4\)1\/€’+A- EFSIW/C = 211. (52)
An oblate spherold: = ¢
Here:

di 2 r .y [ -1
Iy=¢'r / (€’+,\)(’+a\)3/'—€ Y (\/;r_'*_" \/——_—"iaxn‘ €:+A) (53)
2(1-' ) as A —~0,

el

y

where e = /€2 — r3/€. Also:

heer [ % LA ¥,
17T E+ AV Tr @+t 2

(54)

The only other special condition that needs to be considered is when r = 0, which is of
practical importance if one wishes to model flat plate control surfaces (as is sometimes done).
Unfortunately, this apparent simplification complicates matters (in ellipsoidal coordinates, at
least). Not only must elliptic functions still be evaluated, in general, but somne of the inertia
coefficients of equations 43 become singular — a condition that can be remedied by considering
the expansion of the t;; for small r and multiplying the result by V. This process will be
presented following the general solutions of equations 49.
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The general case

It is convenient to make the following variable transformation in equations 49, as per Munk?!?
(it is conventional to use the veriable u as argument in the Jacobian elliptic functions; u has
nothing to do with the velocity defined in previous sections):

6’—"’
sn?u

A= ¢ (55)

where, as is usual, the Jacobian elliptic function sn(u, k) is written as snu. k is the modulus
of the elliptic function. If:

3
k= g, sothat O<k<1, (56)
then: .y
.r,=c:/0 sn® udu, I,_cf = du, Is—Cf :2,“ (57)
where: 9
C= _fL_ .
(& - )"
Rearranging equation 55 and using equations A2, one gets:
2_ .3 2 2
2,287 T A g 22
sn’ u = TN nu—£2+'\, dn u—£2+A. (58)

It is convenient to rewrite the integrals of equations 57 in terms of incomplete elliptic
integrals of the first and second kinds, u and E(u) respectively. Thus:

v 1 1
/o sn® udu = k_’[u— E(u)] ~ E[uo -~ E(uy)] 88X —0,u— ug;

“sniy —snucnu 1
o dnlu du = k?dnu T [ k? E(u)]
(59)
-ry/€3-13 1 1
N hiee B |%T k,zE(uO)} as A — 0;

" sn?u 1 [snudnu o\/€2 — 12
= | 2227 > = A—=0.

./o cnzud“ £ [ pr— E(u )] P [ TE E(u,)] asi—
Here, k' = 1 — k? is the complementary modulus. The first of equations 52 is obtuined
by using equations A2 and AS5; the last tvo by using the periodic properties of the elliptic
functions.

Numerical values for the elliptic integrals are calculated using the procedures given in
the appendix: k and k' are known; equations A1l through A13 give the theta function
parameters ¢ and ¢’ (these parameters have nothing to do with the angular velocity defined
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in previous sections); equations Al4 and A15 give the complete elliptic integrals; u and E(u)
are then obtained using one of the following sets of equations, depending on the value of q.

If <009,
¢ = 1 dou-—- V¥ vk (60)
2¢ dnu + V'
and u is obtained from equations A8 and A19; equations A24 and A25 give:
E  k¥snucnu x  g¢'sin 3%4u 16
E(u)=u +dnu+\/_, 2K1+2q4m§l;?4u+o(1oooq ). (61)
If ¢> 0.09,
. ¢ = 1 dnu—vkenu (62)

-2—4—' dnu+ vVkcnu
and u is obtained from equation A23; equation A28 gives:

E'\ snu(k?cnu+vkdnu) x ¢'4 sinh 5% 4u 8 16
Bw=ul1-E d L 0 (1000¢"¢’
(v) u( )" dnu+vkenu 2K’ 1+2q"cosh;}’—(74u+ (1000¢ ):

(63)

Equations A19 and 61 are good as k — O since ¢ — O at the same time. When k — 1,
g — 1, which gives rise to the requirement for the ¢’ series of equations A23 and 63. The
cross-over point occurs when the maximum error in these last two equations equals that in the
previous two. In equations A23 and 63, the maximum error occurs as ¢’ — 1/2¢'. As can be
seen by replacing ¢ with 0.09 (and, therefore, ¢' with 0.016) in the error terms of the above
equations, the maximnum error for this worst case situation will only be 0 (10~!4). Although
this kind of accuracy is obviously not required in the final estimates of this report, it is useful
for the calculation of equations 43 and 59 very close to the previously mentioned special case
exiremes, where the equations become indeterminate.

An elliptic disk: r=0, §> o

Only A = 0 will be considered here since, realistically, only control surfaces (ie, secondary
components) will ever need to be assigned zero thickness, and the flow field around secondary
components need not be evaluated.

For the elliptic disk, some of the inertia coefficients of equations 43 become singular. As
one might expect, they are O(1/r), so that T (eq. 42) is finite when the singular t;; are
multiplied by the volume, V. The indeterminancy in the expressions for V't,; can be removed
by expanding them in powers of r. For this, the small 7 expansions of the I's, eqs. 57 and 59
with A = 0, must also be found. As r — 0, one gets:

C~=Z%+0(r%), k2~ L o(r?), kK~ £ o(r?) (64)
2 ! €3 — g3 ’ o3 )

Then, making use of the fact that u —» K and E(u) — E when A,7 — 0:

20t

L~ 5——(K-E)

Fog

2
I,~—E%(52E K) (65)
~2-2E.
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Thus, with reference to ecuations 43, if:

t' = I_l t' = —-{z—-— t' = _l; (0" - r’)z(Ia — IZ) (66)
WZ2-q5 M7 22— U7 MU 5202 -1+ (02 + 1) (- 1)’
then, as r — 0, the V't/; reduce to:
r 4xéo?
Ve, =0, Vi, =0, Viiy= 3€E ,
4xfot(€? — o?) 4x 303 (€2 - o) (67)

V_t'“ = Vigs = Vige =0.

15[(2¢6? — 0?)E - 03X]’ 15[(£? - 20%)E + 02K’

When £ — o, the last of these expressions become indeterminate since then k — 0O and
K — E. This case must be considered separately.
A circular disk: v=0, { =7

Agaia, A = 0 only. Here it is simplest to go back to the case of the oblate spheroid (eqs. 53
and 54 with A = 0) and let r — 0, whence:

I, ~ [z + 0(#)] [1 - (% + 0(#)) (% + O(r))] ~2- "—t’- +0(r?)

(68)
L=1I,~ 12%+O(1").

Thus:
Vt,ll = Vt'zz =0 ) Vt'ss = %fs ] Vt'44 = Vt'ss = '}%Es ] Vt,ee =0. (69)

Equations 69 are also derived by Lamb, but using a different method.

21

r
4

e | S




TN - PG et B TS, mdemm Baw SO AR m—

|
:
!
#
4
Al
A
¢
3
h
,’I
b
!

7  Analytical Expressions for the Added Masses of a Long Slender Ellipsoid

A submurine’s hull length tends to be large relative to its transverse dimensions. This allows
the expressions for the inertia coeflicients of the previous section to be expanded in inverse
powers of the largest principal axis length. One begins by expanding equation 56:

2_ .2 2?2 _ 2
o 62‘r _r(ae‘ r)+”.

Since k — 1 as £ — 0o, ¢’ will be close to zero and the general case procedures for ¢ > 0.09
should be followed (see equations 62 and 63). The next step is to obtain the expansion for vk
from-equation 70, followed by that for 2¢;, ¢’, etc. (egs. A1l and A12). Eventually, one can
show that, if A = In(4a/(c+1)), then:

K=1-

(70)

b b
£y, ~ ;;(A ~1)+ 4—; [A(4bcA +3c? — 8cb+ 3b?) — 4¢? + Teb — 4b=] +oee

c cfc+bd
t!z ~ z - -_(4azb ) [2(C+ b)A _—C - 3b]
c(c+1d) o .
* “6dath {4(°+")A[40(6+5)A 7c? — 12¢cb — 9b%)

+17¢® + 25¢b + 51¢b? + 5153} 4uen

tys = ty5(a,¢,b), where ty5 = t3,(a,d,c¢).
. (71)
U Gt W PO ) N R )
" 10be 4a? 64at

[12(c + B)*A — 15¢% — 26¢b — 15b%] + }

t. ba’ - b [S(c b)’A - 303 — 20¢b - 552]
%" 5¢  20c '
b , . ;
T 3204% {12(" +8)"A[12b(c + b)A + ¢? — 60ch — 25b7]

+ 3c* + 598¢3b + 1465¢3b% + T94cb® + 17754} doen
tee = t55(a,¢,d), where tgg = ty5(a,b,c)

Equations 71 are particularly useful in showing how hull added masses are analytically
related to hull geometry. For rumerical calculations, one can expect the error in the expansions
to be of the order of the first neglected term. Although extensive calculations have not been
performed, the equations appear to give satisfactory engineering accuracy for £/d > 6; good
accuracy is obtained for £/d > 8.

Since the present theory evaluates the t;; exactly, it does not make direct use of equa-
tions 71.
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8 Replacing @ Component with its Best Fit Ellipsoid

This step is as important as any so far. Benefits from the analysis of the previous sections
will be maximised if a submarine component is replaced by an ellipsoid whose geometry and
position are optimally chosen (due consideration being given to the approximate nature of
these estimations). The following analyses show the important characteristics this replacement
should model.

A hull component

A hull component replacement ellipsoid will have its largest principal axis (length 2a) parallel
to ihe z axis of the conventional submarine body fixed axes. Its width and height are dete:-
mined by the lengths of its other two principal axes, 2b and 2c, which are parallel to the body
y and z axes, respectively. All hull components are assumed to be symmetric about a vertical
plane through their centerlines. This plane will be parallel to the z-z plane formed by the
submarine body axes, but may be displaced from it by ai amount §. Although § will n :ally
be sero for the main hull component, in general it will not be for, say, an outboard p--' for
which the ‘hull component’ representation is appropriate.

With 2 = @ = 0, equations 23 simplify to:

X.=zX. '

Xq = —.guX, KP = _thli + gzzu', + izY‘-,
¢ [ Kq- - —i:gZu,’

Y, = —pVi,, K, = -22Y,

V.= —-3Y. 1o
4 ) M;=—pVig + 22X, +2'Z, (72)

Y,; = 5}’6 o

Zy = —PVigg i )

z,; = §Z, Ny = "PVtgg + z’Yd + y’Xd

Z;=-%2,

Fquations 71 show how sensitive these added mass terms are to variations in a, b, and c.
When multiplied by V = 4xabc, the lowest order terms in the expressions for t,5, tss, t5s,
and tgq are independent of the dimension in the directior of motion asscciated with the
coefficients Y;, Z,, M;, and N, respectively; this dimensicn has only a small affect on these
added mass coefficients. In other worde, modelling the characteristics of the maximum cross-
sectional area perpendicular to the direction of motion is of primary importance to these four
terms; modelling the volume is not important.

Tkis is consistent with the expression for the added mass per unit length of an elliptic
cylinder moving in a direction perpendicular to its longitudinal axis?:

xph?, (73)

where 2b is the length of the principal axis (of the cross-sectional ellipse) oriented perpendicular
to the motion. The d’mension parallel to the motion has absolutely no effect on this result.
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One can use this 2-D result in a strip theory formulation of the added masses. If B(z) is the
local breadth of the hull component, H(z) the local height as seen in a sheer profile, H(x) the
z coordinate (in conventional body fixed axes) giving the midpoint of the local height line,
and £ the length of the component, then strip theory formulations of the following added mass
terms make use of the indicated integrals:

Dl tais LA
PRI

st

Yo: L= /H’(z)dzé lsﬁac2
L

Z,: L= /t B*(z)dz = -légab’

Y, N;: I,= /zH’(z) dr = E?ac’
¢
= 2 . 216 1o
ZyMy: Iy= ‘zB (z)dz = E—S-ab (74)

7 . 16
Y;, Kt I,E/;H(:r:)}[’(:l:)d:l:=E—éfac2

Vigg: Iy = /;(z - 2)?B¥(z)dz = -:—ga’b’

Vigg: Iy = /;(:: ~ £)2H?(z)dz = :—ga’c’.

These I integrals are easily calculated from hull coordinates. The RHS’s of the equations give
the values of the integrals for an ellipsoid with its centroid located at (Z,§, 2). Thus, the best
fit hull replacement ellipsoid will be one that best satisfies equations 74. Note that X and K
derivative characteristics do not contribute to this decision making process. This is because
X derivatives are less important to submarine maneuvering characteristics than the cross-flow

terms, and because Vt,, for the hull component is invariably dominated by the other terms
and/or the sail’s contribution to K.

In the calculations that follow, § is assumed to be a known constant, determined by the
location of the hull component. a, b, ¢, Z and Z are all unknown and are calculated from
the information provided about the hull component, as summarized in the I integrals. The
problem, of course, is that there are seven equations in five unknowns. This is resolved as
follows.

£ can be calculated directly:
i=1/1,. (75)

% is taken to be the average of its horizontal and vertical plane predictions:
2= (Is/Is + I3/ 15)/2 (76)
and the errors associated with this approximation are monitored with:

€, = (8- I,/L)/t=—(z - I 3/I)/¢L. (77)
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Ellipsoid semi-axis lengths a, b, and ¢ are determined by the remaining four of equations 74,
by minimizing the sum of the squares of the errors with which the equations are satisfied. Let:

_16 , 16 _ 16 4, _ 16 44 _
c,_u.’ac 1, _3I,ab 1, cs._—ISIBab 1, ¢ ——15Iac 1. (78)

Then, if £ = €3 + €3 + € + €3, the three equations determining a, b, and c are:

az X ax

-5-;:0, '53‘:0’ —a—c—=0. (79)
There results:
©=¢, €=¢, ¢e(l+e)=—¢€x(1+¢5) (80)
so that:
- (?5_%&)”‘ et (ifg)”‘ 2 3L 1+ VLL/(GT) (&)
T\ LI YT T\ L) T 16a 1+ LI /(II5)

Equations 75, 76, and 81 define the best fit hull replacement ellipsoid.

Now, consider the added moment of inertia per unit length for a rolling elliptic cylinder,
which is?:

xp(c? - b2)2/8. (82)

Strip theory makes use of this equation in formulating the following integral, which is used for

calculating K ;:

256 ]

Vi I,= / [H(z) - B} )] de = B - 1) (83)

Here, again, the RHS of this -—ation is the value of the integral for the hull replacement

ellipsoid. The degree to which equation 83 is satisfied is monitored by:

_ 256

= 35, a(c? - b?)* - 1. (34)

What one really wants to do is monitor the errors in equations 72 compared to the total
added masses (written as ( )'r) for the complete vehicle configuration. This can be done by
monitoring the following relative errors:

ey =Y, /(YVo)r

€z = 62,/(Z4)r

exE(1+ Vi + e 2, +2e,Y)/( (85)
e = (—egVigg + e, 2, - 2£cth¢)/(Mq-)T

en = (—€gVigs + 7'€3Y; + 2%€, LY, ) /(N;) 1 .
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b) Asymupetric hull with straight vertical stem.

Figure 1  Sheer plang for two standard hulls and sail with their replacement ellipsoids. The
hulls have jdepticsl breadth plans.

Here, it is understood that the ydded masses in the numerators of these expressions are those
f-.- the hull component; also, eXeept for €4, the ¢; are assumed to be small. These expressions
cstimate the relative errors ip the overall added masses resulting from fitting an asymmetric
hull zomponent with a single ellipsoid. For axisymmetric hull components, the ¢; are all zero
since then equations 74 reduce to four equations in four unknowns, and these can be satisfied
xactly.

Figure 1 shows the 8heey Plans of two different submarine hulls, along with their best fit
ellipsoids. The asymmetry in the hull of Figure 1b is confined to the nose section, the front 20
percent of the hull length,

For the asymmetric hull, € values are:
63 = 0-019) E’ = ‘0-020’ C‘ == ~0-6’7’ 63 = —0.009
and for the hull and sajl compitation shown:

ey =0.016, ¢; = —0.020,
€ = 0003, ¢,=0019, ¢y =-0.019.
Note the extremely smsll effect the very large €, value has on €, ; this is because of the large
contribution to K from the %jl. This asymmetric hull gave the lurgest €,,¢y,€, values of

any hull tested. This i most Jike]y due to the hull’s asymmetry being all at one end, while the
ellipsoid modelling it i evenly Asymmetric over its entire length.

Equations 81 are respongible for these low ¢ values. A= initial attempt at reducing equa-
tions 74 to five equations ip five ynknowns was made by assuming B(z)/H(z) = b/c for all z,
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and using I, to determine the difference between b and c; however, this resulted in ¢ values
as large as 0.05, even though ¢, was very small.

Section 10 gives an example of another hullform.

An appendage

Three types of appendages will be considered, as shown in Figure 2. Most appendages, and
certainly the sail, will need to be represented by a type I or II appendage. The type III
appendage could be usefu! for modelling sailplanes or, perhaps, endplates. It should not be
‘ used to model a pair of appendages separated by the hull if interference effects are also being
' modelled, since the centroid of the replacement ellipsoid would then lie within the hull and the
interference velocity at this centroid would have no meaning.

The specifications required to completely determine the geometry and location of each
type of control surface are:

|

|

l Types I1&10 (=1$Vla'1): Q’ (imﬁz)a (53»!73): (ih 94): t

‘ Type II: (zla yx’zl)s Q) €1 (iu g{)» €4 (55: 95): Cg» t.
|
|
|

e ‘ afndtis .,

For each type, (z,,¥,,2,) ave the body axis coordinates of the trailing edge at the root of the
appandage. This point is also the origin of the local £, §j,# axes. The £ axis is always aligned
with, though usually displaced from, the body z axis. ® is the angle the § axis must roll
away from the body fixed y axis to bring itself into the plane of the appendage. (%;,9;,0),
| 1 =2,3,4,5, are the corner coordinates of the appendages in the local £, §j, £ coordinate system;
they determine Q2. (For the type III appendage, root and tip cord lengths are specified instead
of leading edge coordinates.) Together, ® and Q give the orientation of the u,v axes, and of
the z'/,y', z’ axes. As discussed in Section 2, ¥ and (1 are zero when the y’ and z’ axes are
aligned with the body fixed y and z axes, respectively; positive rotations are determined by
the Right Hand Rule, with a rotation in ® being applied before that in 2. The thickness to
chord ratio of the appendage is designated by t.

The centroids of the ellipsoids repiacing these configurations are located at (f,p), as
discussed below. These points locate the origins of the z’,y’ axes, which are aligned with,
though displaced from, the u,r axes. |

L,
y e

P A

N

Note that the u,r axes defined in this section have nothing to do with the confocal
ellipsoidal coordinates presented in Section 4.

For type I, Q is determined by taking the v axis to be parallel to the bisector of the angle

formed by the leading and trailing edges of the appendage. The y’ axis, also parallel to this s

. bisector, is allowed to be displaced from it to partially account for asymmetric end geometries. %

i This type I cepresentation can also be used for triangular fins in which the points (£4,J5) and .
(£4,9,) are coincident. : R

For type II, the u axis is simply taken to be the line joinirg the leading and trailing edge
root coordinates; that is, 3 = tan~1(g,/%,). Everything else is the same as type I. Since this :
type II representation does not require leading and trailing edges in order to calculate Q, it g |
can accomodate all kinds of triangular fins, including those in which the points (£,,9,) and .
(24, 93) or (£,,9) and (0,0) are coincident.

For type III, the simplification of setting {3 = O is made. This type partially accounts
for asymmetries in the appendages about the u axis and the line u = ¢,/2 by strategically _
locating the ellipsoid’s centroid. !
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Type I: Q1 determined by bisector. Type II: O = tsn—(§2/4,) .

Y,V [}

(%5,5)

L—-Cs—"'

Type III: £1=0.
Figure 2 Appendage profiles in the plane 5’2~ 0.
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To choose the optimum dimensions and position of a replacement ellipsoid, one identifies
those characteristics which are most desirable to model. Unlike the hull, where simultaneously
motitoring motions in four or all of the degrees of freedom is appropriate, an appendage pri-
matily affects forces perpendicular to its planform area. This suggests three degrees of freedom
are important: translation along the x’ axis and rotations about the 2’ and y’ axes. However,
aply the first two of these are of primary importence because of the very important role ap-
pendages play in vehicle rolling motions (this assumes {1 is not large). Properly modelling the
thickness of the appendage is not important when modelling these motions. Of course, having
determined ellipeoid geometry, the added maases for all degrees of freedom will be calculated.

If ¢(v) is the local chord length (perpendicular to the » axis) of a type I, II, or III
appendage and &{»’) is the u coordinate of the midpoint of the local chord length, then the
forte and moment characteristics that a replacement ellipsoid should model are:

Jo s/ *(v)dv = a3b, Jo1 E/ ve*(v)dv = pilalb,
s ; (86)

Ju1 = / 2v)ci(v)dv = piadd, J,,= / vic*(v) dv = 18a2® + p? alb.
s s

These integrals model the distribution of the square of the chord length along the span (S)
of the appendage, which equation 78 indicates to be an important two-dimensional added
maas characteristic of the cross-flows resulting from the translation and rotation of primary
tmportance, The righthand sides of the equations give the results of the integrals for an ellipsoid
with its priucipal axes aligned with the z',y’, s’ axes and its centroid at (3, ).

The following equations give the expressions that are used for c(v) and Z(v) in the above
integrals:

f . v-v ¢ v-up, ¢
)= p—a, e(v)=—21+—y—z—i§. Ve SV <y,
v—v ¢
Types I& 11 { c(¥)=¢, - ” _;‘(cb-cc)’ &v) = ‘21. wvsy,
e
U‘—v cl ”e'—u Cd
e(v)= ¢, )= =+ =, v, Sv<vy
\ (v) Ve-v, 2 2 vy 2 ) “(87)
f Cl ca C‘ 235+cs c N
ce(v)= ¢, e tv)= =+ ————12 gs <v<0
Type I ’ 2t.s
—-c g, +e,—¢
c(v)=c1—°‘9“v. 2w)= 2+ =, 0svsi,
\

where, for types I and II: v, and v, are the minimum and maximum of v, and v, , respectively,
v, and v, sre the minimum and maximum of vy and v,, respectively, and ¢, is the chord
length perpendicular to the 1+ axis at ¥ = v;. Thus, the type I and II representation allows
b, to be greater than or less than zero, and v, to be greater than or less than vy. The type I
representation cannot be used if it results in v, being less than v,; type II must be used
instead.
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For a type I or II appendage, the limits of integration in equations 86 are from »_ to v,.
One geta:

"0 = [c:(.’d-yﬁ) + ccct(”e-vb) + c:(‘ - l)] /3

¢
Ja= _2110 - [cacd(ve—vy) + ¢=°.Va] /3.

- TR A S L L el

Al
3

Jvl = [e:("d—yb)(vd'.'z”c"'yb) + 20.%(1'.’—&0:) + c:(”e-"o)(ve+2pb+v-)]/12
Jus = [Awa—n) Wi+ v, +rvav, + 302+ 20,0, +0]) + c 0y (v - 1,) (S + v, 4 307)

+ (v —v )W+, +y v, +30) + 200, +1]0)] /%0,

(88)

M A

For a type III appendage, the limits of integration are from g to §,:
Jo = [(e}+e,eq+cQ)y — (e} +erc5+¢})ds] /3
Ju = 5110 + [(c{+2clc.+8c:)(2£4+c‘—c,)ﬁ‘ - (c:+2c,c5+3c:)(2£5+c;~cl)95]/24

17 2
fl: Ty = [(e3+2¢,¢,+3¢Q)97 — (c]+2¢,c5+3¢3) 3] /12
i s = [(el+3c1¢4+86L)3{ — (] +3c,eq+86c5}55)/30.
- (89)
. Finally, for each type of control surface:
3 J J J 3J,
e = s =2 (e _p2 » . 3o
P=73, P=7 } 5(J° p)’ TS (30)
! The ellipsoid principal semi-axis length along the 1’ axis, ¢, can be chosen without com-

- promising the above more important calculations. If ¢ is the thickness to chcrd ratio of the
= control surface, then the following equation models the distribution of the square of the thick-
ness perpendicular to the u-v plane.

/ [te(v)])? av = Le2p.

Here, again, the right hand side is the value of the integral for an ellipsoid. Howaver, this
integral is just equal to t*J,. Thus, for types I, II, and IIL:

c=ta. (1)
Figure 3 shows the replacement ellipsoids for two of the appendages shown in Figure 2.

Figure 1 shows the replacement ellipsoid for a sail.

To locate the appendages (ie, obtain F) one requires the inverse (which equals the trans-
pose) of the B matrix, eq. 13:

-()-6)+10)

2=z, + fcos{l — Dsin{]
§=y, +AsinQcosP + pcoscos P (92)
EF=2z +jsin{lsin® + pcosQlsin ®.

Thus:
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Type I Type IlI
Figure 3  Replacement ellipsoids for two of the appendages of Figure 2.

Unlike some methods®, the present theory does not account for asymmettic epd effects
on an appendage. These effects are due to the flow around the tip being different from that
around the root. The proper way of accounting for this is by analysing the flow aroupd the
appendage plus its image in the hull, and calculating the forces only on that bortion of the
‘extended’ appendage which protrudes into the uid. However, this would pave required a
major alteration to the present theory, which is as simple as it is only becauvte the added mass
coefficients can be related to the total energy in the flow. If it were neceassry to calculate the
force on only a portion of an ellipsoid, then the complexity of the appendage Anslysia would
increase substantially.

This criticism is moderated by the present method’s de-emphasis of end effects. The inte
grals of cquations 86 are only concerned with 2-D aspects of the flow normal to the appendage.
This results in a replacement ellipsoid with a larger geometric aspect ratio than the original
appendage. For example, the replacement ellipsoid for an appendage with A squsre planform
has b/a=1.2.
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9 Optimizing Hull Ellipsold Geometry for Interference Velocity Calculations

The interference velocity at an appendage is determined by the geometry of the hull replace-
ment ellipscid. In the previous section, this geometry was chosen as the best fit to the overall
hul. georetry. However, the interference velocity is largely dependent on the local hull geom-
otry opposite the appendage. This section describes the way in which the hull replacement
ellipsoid geometry is modified to best represent the local geometry opposite the centroid of an
sppandage’s replacernent ellipeoid prior to calculating the interference velocity at that centroid.

A result of slender body theory is that axial disturbance velocities over a slender hull are of
» smaller order of magnitude than transverse disturbance velocities. The transverse velocitiea
sre primarily determined by the local cross-sectional hull profile, while the axial velocities are
related to the local slopes of the longitudinal profiles. Ideally, the optimised hull ellipsoid
would model all of these local characteristics, but compromises must be made. Since axial
intetference velocities are amall, no attempt is made to match the local longitudinal profile
slopes; such matching also often results in a dramatic reduction in the length of the original
bull replacement ellipsoid, so that end effects may then adversely affect the more important
tranverse velocity predictions. The usual compromise that the cross-sectional profile of the
bull ellipscid will be elliptical, regardiess of the true bull profile, is also made.

The optimisation procedure proceeds as follows. To improve the prediction of local trans-
vars velocities, the transverse dimensions of the original hull replacement ellipsoid are adjusted
so that the local breadth and sheer profile coordinates of the hull (obtained by linear interpo-
lation between the specified profile coordinates) are exactly matched. In general, this requires
sqjustments to the hull ellipsoid parameters b, ¢, and ¥. For the longitudinal direction, a is
ouly adjusted in thoee inatances when the appendage is too close to the stern of the hull
ellipaoid, ag described below; 2 is never changed.

In some cases, the aft end of the original hull replacement ellipsoid may be too far forward
to allow the local bull geometry opposite the tail appendages to be satisfactorily represented
with the above modification. Where this occurs, a is usually increased in order to make the
modified hull ellipsoid terminate aft of the appendage. Then the transverse dimensions of
the ellipsoid are adjusted to match the hull profile coordinates opposite the appendage (see
Figure 5 in the next section). This usually provides a good local fit at the tail but results in a
somewhat narrower overall ellipsoid, which is not a problem since this modified hull ellipsoid
is only used to calculate interference velocities at the tail.

If there are cases where an aft appendage is very close to or even aft of the end of the
sctual hull, a is only lengthened until the end of the hull ellipsoid is within a distance d of the
sctua]l hull end; a is loft unchanged if it is already within this distance. Trial and error has
shown that a good value for d is 2 percent of the hull length. The newly lengthened (or not)
hull ellipsoid is then matched to the local hull profile coordinates at least a distance d ahead
of its end, further forward if the appendage is forward of this location.

If the end of the original hull replacement ellipsoid is aft of the end of the actual hull (a
very ynusual situation), and if the appendage is very close to or aft of the end of the actual
bull, no change is made to the original hull ellipsoid.

At the bow, the original hull replacement ellipsoid will usually extend out beyond the
sctua] hull, as Figure 1 shows. As the presence of appendages very close to the bow is unnsual,
po attempt has been made to optimise the hull ellipsoid for such a case. If an appendage is
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within a distance d of or off the forward end of either the actual hull or the original hull replace-
ment ellipsoid, no modifications are made; otherwise, the transverse hull ellipsoid geometry is
optimized as for any appendage well within the ends.

i0 An Example

A computer program (called ESAM: Estimate Submarine Added Masses) has been developed
which applies the calculations described in this report to submarine configurations. Appendix B
describes its use and gives example input and output data files for the generic submarine
configuration shown in Figure 4. Input data must contain the hull sheer and breadth plan
coordinates, appendage geometry, and basic information about reference axes. The program
automatically calculates replacement ellipsoid geometry and outputs this information together
with a complete set of added mass predictions. For a complete submarine configuration,

consisting of a hull and 7 appendages, the program takes about 2 seconds of CPU time on a
VAX 11/750.

As well as sketching the submarine’s longitudinal profiles, Figure 4 shows the size and
location of the best fit hull replacemsnt ellipsoid. Figure 5 shows how this ellipsoid is modified
by ESAM for the purpose of calculating interference velocities at the rudder. These replacement
ellipsoid geometries, along with those of all the other components, are listed in the output file
of Appendix B.

The ¢ values for this hullform are:
¢ =—0013, € =0013, ¢, =-035, ¢, =0.005
and for the entire configuration:

EY = —-0.012 » €z = 0.013 s
€ = 0022, €,=-0.012, ey=0012.

Values of ¢ as large as 0.04 were obtained when the assumption B(z)/H(z) = b/c was used
insiead of equations 81. The asymmetry in this hull is more evenly distributed over its length,
and this results in generally lower ¢ values than for the previous hullform; however, the asym-
metry is also quite large, so that ¢, has a relatively large affect on ¢y .

Table 1 summarizes the added masses for the complete submarine. For comparison pur-
poses, the table also shows the predictions when hull interference velocities are not considered
and appendage thicknesses are set to zero. These conditions are all easily modelled by mak-
ing simple parameter changes in the ESAM input file (interference effects are eliminated by
assigning all appendages neutral orders). The prime over a coefficient indicates nondimension-
alization.

The following discussion deals with the added mass terms on an individual basis. Note that
alternating coefficients in Table 1 must be zero because of the submarine’s symmetry about a
longitudinal vertical plane, and since §,,;, = 0. ESAM does not assume such symmetry exists.

For this submarine, over 20 percent of the magnitude of X,, is due to appendage thickness.
The sail is most responsible for this; although its section profile is rather thick (30 percent),
its span is not large compared to some configurations.
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Figure 4 Generic submarine and hull replacement ellipsoid.
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Figure 5 Elevation view of original and optimized hull replacement ellipsoids opposite the
rudder; the optimized ellipsoid is only used for calculating interference velocites
at the centroids of the rudder replacement ellipsoids.
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1 2 3 4
Condition Complete No No Appendage Both
Theory Interference Thickness (2) <nd (3)
— —
X —0.000305 —0.000303 ~0.000236 -0.000236
x!,Y! 0.0 0.0 0.0 0.0
X,, 2, —0.00000331 0.00000278 ~0.00000138 0.0
x4, K}, 0.0 0.0 0.0 0.0
X 5, M 0.00000504 0.00000539 0.00000087 0.00000062
X!, N! 0.0 0.0 0.0 0.0
Y! —0.0125 ~0.0120 -0.0126 ~0.0121
Y,, Z; 0.0 0.0 0.0 0.0
Yp-' , K}, —0.0000929 —0.0000753 -~0.0000989 —0.0000796
Y}, M} 0.0 0.0 0.0 0.0
Y!, N} —0.0000805 —0.0000314 —0.0000935 ~—0.0000395
z, —0.00907 —0.00910 —0.00904 —0.00901
Z, K} 0.0 0.0 0.0 0.0
Zé M, —0.0001021 —-0.0000583 -0.0001130 —0.0000764
Z!, N, 0.0 0.0 0.0 0.0
K ;5 —0.00000463 —0.00000451 —0.00000507 -—0.00000493
K}, M} 0.0 0.0 0.0 0.0
K, N :5 —0.00000917 —0.00000680 -0.00001004 —0.00000744
Mé —0.000434 —0.000423 —0.000435 —0.000422
M}, N} 0.0 0.0 0.0 0.0
N —0.000541 -0.000525 —0.000543 -0.000526

Table 1 Added mass predictions for the submarine of Figure 4. Column 1 presents the
predictions of the complete theory (component contributions to these values are
shown in the output file of Appendix B); column 2 neglects interference effects;
column 3 sets all appendage thicknesses to zero; column 4 neglects both interference
effects and appendage thicknesses. Coefficients are with respect to an origin located
on the hull centerline opposite the centroid of the hull replacement ellipsoid.
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Table 1 shows how X is entirely dependent on the modelling of both interference effects
and appendage thickness. The present theory models the hull with an ellipsoid, which has
horizontal and vertical-transverse planes of symmetry not matched by the actual hull. It
predicts that the hull makes no contribution to X, when, in fact, one would expect a small
contribution to be present. The size of such a contribution is unknown. However, the sensitivity
of X to small asymmetries, such as the negative sweepback of the sail (Q2,,; = —3.3°), can
be determined: when (2,,;, is set to zero, the magnitude of X, changes by 57 percent. For this
submarine configuration, then, the curreat X prediction may only be an order of magnitude
estimate. For configurations with hullforms more closely exhibiting the symmetries of an
ellipsoid, the prediction of X, might be better.

X is essentially determined by sail thickness, with interference effects being of secondary
importance. The contribution to X; from the hull (which is nonzero because the hull centroid
is displaced upw- s from the hull centerline) is an order of magnitude less than that from the
sail.

Note that 4 percent of the value of Y, is due to interference effects. These effects increase
the sail’s contribution to Y; by 85 percent. Table 2 compares the present theory’s predictions
of the sail’s contribution to Y, to the theories mentioned in the Introduction (which account
for neither hull interference velocities nor appendage thickness; Aucher models the sail’s image
in the hull while Humphreys and Watkinson do not).

Present 7 heory Humphreys
complete without neither thickness and Aucher®
P interference | nor interference Watkinson*
9.7 5.2 5.8 5.2 6.0

Table 2 The contribution to 104Y] of the sail of Figure 4.

Y, N, and Z4M,, are difficult to predict accurately if they are referenced to a point
close to the center of buoyancy (CB). This is because they are being estimated ii: the region of
their zeros (which, incidently, are only approximately at the CB). Of more importance is the
prediction of Y,/Y, N,/Y;, -2;/Z,, and —M,,/Z,, the longitudinal locations of the zeros
of the coefficients.

Although Table 1 shows very little change in Z,; for the various conditions, somewbat
larger, partially compensating changes are occuring in the component contributions to it. For
example, properly accounting for interference effects (ie, going from column 2 to column 1)
roughly cuts in half the contributions from the sail (due to its thickness) and the sailplanes,
while at the same time increasing by a third the contributions from the sternplanes. The effects
of accounting for thickness and interference are more easily appreciated in the changes that
result in M, , since M, is sensitive to the longitudinal location at which these changes take
place.

The K derivatives are dominated by the presence of the sail. Although the hull accounts
for a third of the value of K, it accounts for less than 10 percent of K; and makes no con-
tribution to K. The cross-flow velocities associated with v and ¢ result in large interference
velocity effects in the sail’s contribution to K, and K, but not as large as one might expect
(cf, equations 29).
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11 Conclusions

A theory for predicting all the added mass coefficients for a multi-component, deeply submerged
vehicle has been presented. A program applying this theory to conventional submarine shapes
gives very rapid numerical predictions of the coefficients. In keeping with the way most current
experimental investigations of these characteristics are carried out, the theory ignores both the
incidence of the vehicle to the oncoming flow and time in an unsteady flow.

Added masses are calculated by summing up the contributions from replacement ellipsoids
optimally sized and pcsitioned to best represent each body component. The bull replacement
ellipsoid is given special attention; it is sized in such a way that errors associated with the
replacement are minimized.

The theory accounts for both appendage thickness and hull interference velocities at ap-
pendages. Modelling these characteristics is shown to be necessary if reasonable predictions
of the ‘off-diagonal’ added mass coefficients, responsible for at least some degree of coupling
between motions in different degrees of freedom, are to be made. In addition, these character-
istics are responsible for changes to five of the principal (ie, ‘diagonal’) added mass coefficients
of from 1 to 6 percent; modelling appendage thickness may increase the prediction of X, by
as much as 30 percent. '

If more accuracy than the present theory provides is required, the theory should progress
on at least two fronts simultaneously: circulation should be properly accounted for in the flow,
so that the added masses become a function of the state variables; and, a better geometri-
cal representation of the multi-component vehicle should be developed. Since added mass is
merely a measure of the kinetic energy in the flow, properly accounting for boundary layer
growth, separation, and the flow structures they generate, all of which effectively use up or
re-distribute kinetic energy, may also be necessary. The effect of the propeller may also need
to be considered. Accounting for any of these features would require a major extension of the
present theory.

Future work should consider the effect of a free surface on the added masses. As well,
sensitivity studies should be carried out in order to estallish the accuracy with which the
added mass coefficients should be known.
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APPENDIX A

Elliptic Functions

This appendix describes methods for evaluating elliptic integrals of the first and second kinds.
Extensive use is made of the theory of theta functions and Jacobian elliptic functions, as
presented by Whittaker and Watson!!, Chapters 21 and 22, and Watt!3, Appendix B. The
serious reader is advised to at least look over Reference 11.

The fundamental elliptic integral of the first kind is:

z ¢
o V{(1-13)(1-k3t3) o V1-k?sin®9
where k is the modulus of the integral: 0 < k < 1. These integrals are related through the
variable transformation ¢t = sinf. If z = 1, so that ¢ = x/2, the integral is called a complete
elliptic integral of the first kind and is represented by the symbol K. The complementary mod-

ulus, k' = +/1 - k3, determines the only other complete elliptic integral of the first kind, X',
which is the same function of k' as K is of k.

The Jacobian elliptic functions sn(u, k), cn(u, k), and dn(u, k) (usually written simply as
snu, cny, and dn u if the value of the modulus to be used is k) are related to each other via:

sn’u+cn’u=1, dn’u+k*sn’u=1. (A2)
Also: d 4 4
—_— = — = - — = —k?
7o 504 cnudnu, Jucnu snudnu, 7u dnu k‘snucnu. (A3)

Substituting ¢ = snu in the integrand of equation Al gives:
u=sn"lz = z=snu (A4)

so that the inverse sn function can be defined as an incomplete elliptic integral of the first kind.
Whereas the trigonometric functions sin 4 and cos u are singly periodic in the complex u plane
(they are periodic along the real axis but not along the imaginary axis), the Jacobian elliptic
functions are doubly periodic. For example, snu = sn(u+4mK +2niK') for m,n=0,1,2,...,
leading to cells of periodicity in the complex u plane.

The fundamental elliptic integral of the second kind is:
u
E(u,k) = / dn?(u, k) du (A5)
0
or, making the substitution ¢ = snu, followed by t =sinf:

z — k312 ¢
E(u) =/ 1———k—t—dt =/ vi- k3sin? 6 df. (A6)
0 0
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When z = 1, the integral is designated E (ie, £ = E(K)) and is called a complete elliptic
integral of the second kind. E’ is the only other complete elliptic integral of the secor.d kind
and it is the same function of k' as E is of k.

When numerical work must be done, the use of theta functions is advised. The Jacobian
elliptic functions can be constructed from the four gquast-doubly periodic theta functions:

1 9,(x,9) k' 95(2,9) 95(2,9)
sa(u, k) = —===20  en(u,k k' 9y(2,q) dn(u, k) = Vi -3 A7
Wh =20, ma’ Ve g 2P =V G AT
where the theta functions are more naturally defined in terms of:

x
z= ﬁu R (A8)

The parameter ¢ is purely a function of k, and is to the theta functions what k is to the
Jacobian elliptic functions:

qg= e~ KK, (A9)

Whittaker and Watson give:
9,(2) = 2¢* sin z — 2¢¢ sin8z + 2¢¢ sin5z — - -
9,(z) = 2q% cos z + 2¢% cos 3z + 29 cosbz + -

(A10)
9g(2) = 1 + 2gcos 2z + 2¢* cos 4z + 29°cos 6z + - - -
9,(z) =1 - 2gcos2z + 2¢* cos 4z — 2¢°cosbz +-- .
Now, if:
Vi 2
2¢, = 1-VE _ k (A11)

1+ VR i+ k) (1+vE)
(the latter form of this equation being the most accurate for numerical calculations when k is
very small) then Whittaker and Watson show that:

q = €o + 2€) + 15€3 + 150¢3 + O(1000¢37). (A12)

g, — 0 as k — 0 and ¢,2¢; — 1 as k — 1. Nevertheless, this equation is accurate for
surprisingly large values of k. For complete coverage of the range of k values right throughto 1,
however, one replaces k' with k in equation A1l and then calculates ¢’ from equation A12.
q and ¢’ are related via:

ql - c—a‘K/K' = er’/lnq‘ (A13)

With ¢ determined, equations A14 and A15 give the complete elliptic integrals of the first and

second kinds:
2K

== (142420t + 200+ 20"+ oy

2K' -1(2K

= () me (A14)
E 5/2
==k +8 (21() (g +4q* +9¢° + 164" +--.).

Legendre’s relation gives E': x
EK'+E'K - KK'= 2. (A15)
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Of course, if ¢’ < g, it would make more sense to calculate K’ from the first of equations Al4
(replacing ¢ with ¢'), K from the second, £’ from the third, and then E from equation A15.
Since ¢ = ¢’ when k= k' and K = K', g or ¢’ need never be larger than e~* = 0.043 in the
above calculations. These procedures, then, give very good accuracy. For greater accuracy,
the procedures presented by Watt using series in powers of ¢'® can be used.

The Incomplete Elliptic Integral of the First Kind

The integral of equation Al can be accurately evaluated using Landen’s transformation, a
change of variables in the integrand which, when repeated several times, results in an integral
which is closely approximated by an elementary function. Although the technique is simple
and easy to apply, a different approach will be used here —one which is in keeping with
the use of theta functions. This is because Landen’s transformation is not readily extended
to i» zomplete elliptic integrals of the second kind, whereas theta functions can handle them
easily. The technique presented is at least as accurate and fast as Landen’s transformation and
becomes more efficient when the other procedures of this appendix must also be calculated.

An important property of the theta functions is that:

Oy(2,q) + 9,(2,9) = 29,(22, 74)
dy(z,9) - '94(:: q) = 29,(22, q‘) .
This allows the procedure that produced equations A1l and Al2 to be generalized when the

Jacobian elliptic functions of u are known. Using the last of equations A7, Watt shows that
if:

(A16)

_dnu—vE _ 9,(22,¢*)
*Tdnu+VE  95(22,¢4)
2gcos2z + 2¢°cos 6z + 2¢%% cos 10z + - -+
= 1+ 2¢*cosdz + 2¢1%cos8z + - --

2¢
(A17)

then: c
082z ~ ;'[1+2q‘(2cos’ 2z — 1) — ¢*(4cos? 22 - 8) — ]

By continually ~-substituting this equation into itself, an asymtotic expansion for cos 2z in

powers of ¢* . . in terms of:
: €

2 (A18)

¢ 2
q

is obtained. As ¢ — O:

cos2z ~ ¢ [1 -g*(2-4¢%) +4°(3-20¢% +32¢*) — ¢'% (6 — 76¢% + 272¢* — 320¢°) +o(1oooq‘°)].

(A19)
0<2:<xif 0<u< K (ie, when 0 < z < 1). Note that z can be real or imaginary. For
z real, [¢| < 1 and the coefficients of powers of ¢* in equation A19 are no worse then the
coefficients of .. sz ¢i | 1 the expression for ¢/¢,, from equation A12.

Equation A19 wc_«s well when ¢ <« 1. If not, let:
, _ dn(iv,K) - vE _ 9,(27,¢"*)
s = dn(iu,k') + \/; 193(22',q")
_dnu-— Vkcnu
“ dnu + \/E cnu
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where use has been made of a manifestation of Jacobi’s imaginary transformation:

]

.o _ t8n(y,k) coan_ 1 .o _ dn(u, k) :

sn(iu, k') = a(u k) ’ en(iu, k') = k)’ dn(fu, k') = (s k) (A21) '

Then, with: |
=iy, ¢'= & (A22) ,

2K - q ‘

it follows that, as ¢’ — 0: i

cosh (772u) ~¢'[1 - ¢ (2 - 46™) + 4" (3 - 20 + 32¢"")

- "' (6 - 76¢™ + 2726™ - 320¢"°) + O(1000¢¢™)].  (A23)

In the range 0 < u < K, ¢’ varies from a minimum of approximately 1 at u = 0 to a i
maximum of 1/2¢' at u = K. Thus, equation A23 will not be as accurate as its counterpart,

equation A19; however, between the two of them, the complete range of k values can be
accurately covered.

The Incomplete Elliptic Integral of the Second Kind

Whittaker and Watson show that the incomplete elliptic integral of the second kind can be i
written: B 9 (2) :
—g 2 T Vel2)
E(u)=u % Tk 3.(2) (A24)
where ¥/(z) is the derivative of J,(z) with respect to z. This expression can now be evaluated ‘
using equations A10. However, there is a more efficient and accurate method available. '

By taking the derivative f the logarithm of the first of equations A16 and the last of
equations A7, Watt shows that:

94(z) _ 2K kisnucnu  _04(2z,¢%) .
U(2) * dnu+VE T 94(22,¢%)
Thus, if the Jacobian elliptic functions of u are known, the number of terms that need to be

evaluated in a calculation of E(u) can be substantially reduced. This is particularly true if u
is imaginary, as in the next paragraph.

Equation A25 works well if ¢ « 1. If it is not, another form of Jacobi’s imaginary g
transformation can be exploited: i

(A25)

_ snudnu ., .. ., !
E(u)=u+ i u +$E(su,k') . (A26) ;

E(su,k') is then expanded in a manner analogous to equation A24:

E' Lol (zl’ql)

. N a o

E(iu, k') = W + 2K'9,(z',¢") (A27) !

Hence, for ¢’ « 1:
E' snu(k? cn u + vk dn u) . x 94(2¢,¢'Y)

= - = 2 . A28 -

Blu) = (l K') dnut Vicaw 2K 9, (22, ¢) (A28) i
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APPENDIX B

2 Program ESAM User Instructions

This appendix gives the user instructions and describes the data input and output formats for
ESAM (Estimate Submarine Added Masses), a FORTRAN 77 program which performs the
calculations required by the theory developed in the main body of this report. After compiling,
linking, and run. ing the program, the user is asked to give the name of the input file which
must contain all the data for a complete run. The user sirply enters this file name; except for
possible error messages being written to the designated output unit (the terminal cn a VAX),
there is no other interaction with the user. Output is sent to a newly created file, ESAM.OUT.
If for some reason the program terminates, ESAM.OUT vill show how many components were
successfully processed before termination occurred. If an error message is written to the screen
by ESAM, it will also be written to ESAM.OUT.

B.1 Input Format

This section describes the data (and the order in which they must occur) that the input file
must contain. In general, data thould appear exactly as specified in the input format summary;
spaces should not be left between lines. However, since READ statements in ESAM are free
format (except for those reading character .onstants), numerical data can be split between
different lines if desired. ESAM does its best to test the input data to make rrre the rules
described below are being followed; if they are not, an appropriate error message is given.

Input format summary

NC

IDIR

XOFF

ZOFF

ELL

TYPE COMMENT )

XSHIFT.YSHIFT,ZSHIFT ~ } DPhions’ ey
: .

XO.B(XO) .H(XO) .HBAR(XO) Only need to > muming gype is H.
X1,B(X1) ,H(X1) ,HBAR(X1) | enter Xi,B(Xi)

if profile is

: designated
XN,B(XN) ,H(XN) ,HBAR(XN) ] axiSymmetric.
TYPE CONMENT . o
X1,Y1,Z1,PHI,XH2,YH2,XHS, YHS  XH4,YH4, T } assuming type is 1 or 2.
TYPE CO T } assuming type is 3.
X1,Y1,Z1,PHI,C1,XH4,YH4,C4,XH6,YHE,C5,T
TYPE COMMENT

A.B,C,XBAR,YBAR, ZBAR,PHI , OMEGA } assuming type 18 E.

Various TYPEs of components are added to this list, as required.
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Definition of variables

NC

IDIR

XOFF
ZOFF

ELL

An integer specifying the number of components which make up the submarine and
for which data is about to be specified. Array dimensicning limits NC to, at most, 20.

The added mass coefficients output from this program are always calculated rela-
tive to the conventional body fixed system of axes used by the DTNSRDC standard
submarine equations of motion®. Although, in general, this will also be the coor-
dinate system used to input submarine geometry, provision is made for input data
z coordinates that increase opposite to the standard sense. Note that all data input
during a run of the program must be referenced t an identical set of input axes,
whatever they may be.

IDIR is a character specifying the direction of increasing z for all iuput data: if
XDIR is P (for positive), the coordinate system for the input data will be the standard
body fixed system of axes, with z coordinates increasing from stern to bow; if XDIR
is N (for negative), the input coordinate system will still be the standard body axes
except that the z direction will be reversed so that z coordinates increase from
bow to stern (y and z coordinates always increase going to starboard and going
downwards, respectively, regardless of XDIR being P or N).

The summary of geometrical information written to ESAM.OUT is also con-
verted to the standard axes used by the added mass coefficients. The next paragraph
specifies how the origin of this system is determined.

All data must be input relative to the same origin, which can be located anywhere
that is convenient. XOFF and ZOFF ( z-offset and z-offset) are real constants that are
subtracted from the input z and z coordinates to give a new origin for the body
fixed axes to which all output is referenced. Note that the input and output data
have identical y axis origins.

Sometimes it is desirable to locate the output axes origin at the center of
bouyancy, even though knowledge of its location is unknown beforehand. Although
ESAM does not accurately calculate this point, the location of the centroid of the
replacement hull ellipsoid closely approximates it. If the user wishes to use either
or both of the z and z coordinates of this location for specifying his output origin,
he nee1 only input C (for centroid) for either or both of XOFF and ZOFF. If this is
done, the centroid of the first component entered locates the new origin, so this first
component must represent the hull.

A real constant equal to the hull length; its magnitude is used to nondimensionalize
the added mass coefficients. If ELL = C, nondimensionalization does not take place;
in this case, the added masses need only be multiplied by the fluid density (in units
consistent with those of the input data) to obtain the actual added masses.

ELL is also used to determine the format in which the added mass coefficients are
written to ESAM.OUT: if ELL is greater than sero, the coefficients are written via
the edit descriptor F15. 10; if ELL is less than or equal to sero, the descriptor 1PE15.8
is used. Thus, the user chooses either F or E formatted output for nondimensionalized
coefficients by making ELL positive or negative. Dimensional coefficients are always
output in E format.
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Subsequent records contain component information. The rules given below will determine the
order ir which some components should be entered.

TYPE

COMMENT

This is a character constant of length 2 and it precedes the input format for all
TYPEs of components. The first character apecifies the component type. Component
types are:

B (for Hull),

1 (for type I appendage),

2 (for type Il appendage),

3 (for type III appendage), and

E (for Ellipsoid).

The second character specifying the TYPE is the order. It is used to determine if
interference effects are to be accounted for on this component. There are 3 orders:

P (for Primary),
§ (for Secondary), and
N (for Neutral).

A primary component can only be of type H or E; it determines the interference
velocity field at all secondary components entered between it and the next primary
component; its added masses are not corrected for interference effects from any
other component. Although ESAM does not prevent the user from entering more
than one primary component, to do so makes little sense since it implies more than
one independent configuration is being processed at once, and ESAM sums all the
component added masses into one total added mass.

A secondary component can be associated with any type; it must be preceded
by a primary component.

A neutral component can also b associated with any type; it has no effect on
any other component; it is not corrected for interference effects; it can be entered
anywhere amongst the other components.

There can be any number of primary, secondary, and neutral order components
during a run, up to a total of 20 (limited only by array dimensioning). Of course,
primary and secondary components must be ordered in a meaningful way.

Examples of various TYPEs are: HP, HS, HN, 18, SN, and EP. The first 3 compo-
nent designations, here, indicate hull components which are of primary, secondary,
and neutral orders, respectively. The fourth component is a type 1 appendage of
secondary order. The fifth is a type 3 appendage of neutral order. The last one
specifies an ellipsoid of primary order.

A character constant of length 12; it must be on the same line as TYPE and

separated from it by 2 characters. CONNENT is any phrase the user wants to use
to describe the associated component; it is only used for descriptive purposes in
ESAM.OUT, and may be left blank. Actually, ESAM reads in ‘TYPE COMNENT' as a
single constant of length 16.
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If the TYPE designation specifies type H, then ® and 1 are set to zero and the following input
format must follow TYPE, regardless of the o-der:

XSHIFT,YSRIFT,ZSHIFT Real constants specifying, in the usual input coordinate system,

a shift to be applied to the hull component coordinates. XSHIFT
and ZSHIFT are effectively added to the values of Xi and HBAR(Xi) defined below.
§ is equated to YSHIFT. Although these data are unnecessary for a primary hull
component, which can make use of the XOFF and ZOFF inputs and for which § is
invariably sero, they are convenient for secondary components which are not hulls
but instead are pods or some other cylindrical type of body mounted out from
the hull. If the shift coordinates are used with a primary component, one should
ensure that subsequent secondary components are properly positioned relative to
the shifted primary component; unlike XOFF and ZOFF, the shift coordinates are
only applied to the hull component they are associated with.

Since use of the shift coordinates will usually be unnecessary, this record may be
bypassed, in the usual way for list directed input, by replacing it with a /. Bypassing
the record is equivalent to setting the shift coordinates to sero.

An integer specifying the number of sections the component is divided into for the
purposes of numerically specifying its profile. Note that N sections are delineated
by N+ 1 stations and that profile coordinates must be given at each station. Array
dimensioning restricts N to being less than or equal to 100.

X0,B(X0) ,A(X0) ,HBAR(X0) Here, Xi is the z coordinate of the i*® axial station; it must
X1,B(X1) . R(X1) ,HBAR(X1) not decrease as its index increases. Xi will increase from stern

to bow if XDIR is positive and from bow to stern if XDIR is

XN.B(IN) .H(XN) .HBAR(XN)  Degstive.

B(X1) is the hull component’s local breadth; it is assumed
to be symmetrical about y = §.

H(X1) is the local height as seen in a sheer plan; it is not assumed to be
symmetrical in any sense.

HBAR(Xi) is the x coordinate of the mid-point of the local height, H(Xi).
HBAR(Xi) can be used to describe two things: 1) the “camber® of the elevation
profile and 2) the height of the component above or below the input z axis. Al-
though this latter capability allows the component to be raised or lowered relative
to the input z axis, the simplest way to do this is to use ZSHIFT.

Note that the N + 1 stations need not be evenly distributed over the huil com-
ponent. Profile coordinates can be concentrated in areas of high curvature, such as
the nose, and eliminated from regions of sero curvature (ie, where the breadth and
sheer profiles are straight lines). This is because the only approximation made in the
numerical integration of the integrals of equations 74 and 883 is that the input profile
coordinates are all joined by straight lines; if in fact they are, then the integrals are
evaluated exactly. Thus, a hull component with a long cylindrical mid-body section,
for example, only needs to have the mid-section profile specified at its endpoiuts.

For axisymmetric profiles, only Xi,B(Xi) need be entered. However, ESAM
must first be told that this will be the case; this is done by appending an § (for
axiSymmetric) to the TYPE. For an axisymmetric hull component of primary order,

45

L
L e

Lol

-



e T YTENEFERS T TS Y. e T e 2 b T TR R RTT Oy o

‘TYPE COMMENT’ might look like 'HPS HULL ', with only 1 character sepa-
rating HPS and HULL. For the axisymmetric case, ESAM always looks for X1 ,B(X4)
at the beginning of a new racord. Thus, if a user wants to specify an axisymmet-
ric hullform using an asymmetric data file, deletion of the H(Xi) ,HBAR(X1) data is
unnecessary if it is on the same lines as the Xi,B(Xi) data. Designating the hull
component as axisymmetric has two other minor consequences: 1) ESAM’s calcula-
tions will be a little quicker, since certain simplifications can be made; 2) the errors
specifying the accuracy with which the replacement ellipsoid is able to model the
true hull component are not written to ESAM.OUT, since they are always sero for
an axisymmetric profile.

It is permissible to input axisymmetric hull components using the asymmetric
format.

This completss the hull component input data. Now, the input file will either terminate or the
next entry will be another TYPE variable, followed by its associated component information.

If the TYPE designation specifies a type 1 or 2 appendage, then the following input format
must follow TYPE. The user is reminded that the only difference between a type 1 and 2
appendage is in how the sweepback angle, {1, is calculated: for type 1, 1 equals the aweepback
angle of the bisector of the angle formed by the leading and trailing edges; for type 2, (1 is
the angle between the line joining the leading and trailing edge root coordinates and the body

X1,Y1,21,PHI, XH2,YH2,XHS,YHS,XH4,YH4.T These are all real constants. Because of the

free format READ statement, they can be
entered on different lines if the user wishes.

X1,Y1,21 are the coordinates of the appendage trailing edge at the root, using
the usual input coordinate system.

PHI is the angle ® (in degrees) the y axis must rotate about the z axis to
bring it into the plane of the contro! surface; for a sail, for example, PHI could be
input as -90 or 270.

XH2,YH2 are the coordinates (£,,y;) of the leading edge at the root, using an
unswept local coordinate system with its origin at (X1,Y1,21), the XH axis point-
ing towards the bow (parallel to the body z axis), the YH axis pointing outwards
towards the appendage tip, and with the ZH axis perpendicular to the planform of
the appendage (see the text, Figure 2).

XHS, YH3 are the local coordinates (£,ys) of the leading edge at the tip.

XH4,YH4 are the local coordinates (£,,y,) of the trailing edge at the tip.

T is the thickness to chord ratio, t, of the section profile.

Note that triangles can be input in this format. If (XH3,YH3) is coincident
with (XH4,YH4Q), processing continues normally. If (XH2,YH2) is coincident with
(XH3,YHS) or if (XH4 ,YH4) is coincident with (0,0), then the appendage is automat-
ically converted to a type 2 appendage, if it isn’t already, so that {1 is taken to be
the argument of the (XH2, YH2) vector.

This completes the type 1 and 2 appendage component input data. Now, the input file will
either terminate or the next entry will be another TYPE variable, followed by its associated
component information.
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If the TYPE designation specifies a type 3 appendage, then the following input format must
follow TYPE. The user is reminded that the sweepback angle, (1, is taken to be zero for this
appendage. As noted in the text, a pair of appendages separated by the hull should not be
represented with a type 3 appendage if one wishes to account for interference effects.

X1,Y1,21 ,PHI,C1,XH4,YH4,C4,XHE,YH6,C6,T  These are all real constants; they can be
entered on different lines if the user wishes.

X1,Y1,Z1 are the coordinates of the appendage trailing edge at the root, using
the usual input coordinate system.

PHI is the angle ® (in degrees) the y axis must rotate about the z axis to
bring it into the plane of the control surface; for a sail, for example, PHI could be
input as -90 or 270.

C1 is the root chord length ¢, , assumed parallel to the body z axis.

XH4,YH4 are the coordinates (£,,§,) of the trailing edge at the upper tip,
using an "mswept local coordinate system with its origin at (X1,Y1,21), the XH axis
pointing towards the bow (parallel to the body z axis), the YH axis pointing towards
the apper tip, and with the ZH axis perpendicular to the planform of the appendage.

C4 is the upper tip chord length ¢, parallel to the body z axis.

XH5 , YH5 are the local coordinates (ig,{s) of the trailing edge at the lower tip
(so YHE will be negative).

Cb is the lower tip chord lergth cg, parallel to the body z axis.

T is the thickness to chord ratio, t, of the section profile.

In this discussion, the terms ‘upper’ and ‘lower’ tip were used to orient the
reader. These are really misnomers, however, since PHI can be used to rotate the
planform to any desired angle.

This completes the type 3 appendage component input data. Now, the input file will either
terminate or the next entry will be another TYPE variable, followed by its associated component
information.

If the TYPE desigaation specifies a type E component, then the following input format must
follow TYPE. This component is an ellipsoid which the user can place anywhere he likes. Since
it is already an exact ellipsoidal representation of itself, ESAM does not replace it with any
other geometry. If this component is of primary order, then PHI and OMEGA must be zero.

A,B,C ,XBAR,YBAR, ZBAR ,PHI,OMEGA These are all real constants; they can be entered on

different lines if the user wishes.

A,B,C are the ellipsoid principal semi-axis lengths a,b,c: A is associated with
the z' axis (the z axis if OMEGA = 0), B with the y’ axis (the y axis if PHI =
OMEGA = 0), and C with the 2’ axis (the z axis if PHI = OMEGA = 0).

XBAR,YBAR,ZBAR are the coordinates, using the usual input data coordinate
system, of the ellipsoid’s centroid.

PHI,,OMEGA are the angles ® and £ (in degrees) defining the orientation of the
ellipsoid principal axes relative to the body fixed axes: PHI is the angle the y’ axis
has rolled away from the y axis; after applying this roll, OMEGA is the angle the
z' axis pitches up from the z axis; positive angular deflections are defined using the
Right Hand Rule. These angles are thoroughly discussed in Section 2 of the text.

47

PRI At ] :v_;_:y‘_;,-'wr—w, Pyt




S il ot A R Y RS L R e T A L RO I T 0 R T N o

Example input format

8 # of components making up the submarine.
n Input data x-coordinate increases going from bow to stern.
c Output data x-axis origin is opposite centroid of ellipsoid 1.
0.0 Output data z-axis origin is coincident with input origin.
| 4563, Hull length used for nondimensionalization.
- hp HULL Component 1 ie a hull component of primary ‘order’.
o / shift coordinates are set to zero.
ii, 23 # sections => 24 stations.
i 0. 0. 0. 0.
!' 1. 6.7 8. 0.02
2 2. 9. 11.2 .04
. 4. 12. 16.1 .08
8.5 17.4  21.5 .17
Xy 17. 22.7 27.4 .35
e 256. 26.2 81.2 .B1
A 3.  80.7 33.7 .72
e 73. 38.1 89.7 1.5
: 97. 39.6 41.4 1.26
5 102. 40. 42.1 .9
- 108. 40.4 44.2 0.
'. 168. 42.6 49.9 -2.5
' 267. 40. 49.6 -2.7
; 200. 38.4 49.4 -2.8
o 299. 37.7 46.9 -2,
o 310. 36.4 42.9 -.B
i 313. 36. 40.6 .2
317. 35.6 37.4 1.7
353. 20.9 32.9 .76
388. 21.2 24.9 .6
410. 14.9 18.2 0.
440. 6.6 6.8 0.
453. 0. 0. 0.
1s BSAIL COMPONENT 2
168.,0.,-27.6 -90. 60.,-5.4 60.,28.1 3..268.1 .3
is STBD SAILPLN 3
1209.,7.73,-40.1 0. 20.6,-2.02 16.5,1b. 6.0,15. .16
1s PORT SAILPLN 4
129.,-7.73,-40.1 180. 20.6,-2.02 15.5,15, .16
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6.0,15.

This completes the type E component input data. Now, the input file will either terminate or
the next entry will be another TYPE variable, followed by its associated component information.

The data shown below is a listing of the input file for the generic submarine described in
Section 10 of the text. The input data origin is implicitly defined as the nose of the submarine
by XDIR, the setting of the hull shift coordinates to zero, and the first line of the hull profile
data. Note that commenting text in the data file, other than the COMMENT input, is not read
since ESAM will have finished reading the record before getting to it.
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is TOP RUDDER 5 .
440.,0.,-3.4 -90. 17.66,4.02 14.36,18. 0.,18. .16 -
1s BOT RUDDER 6 i
440.,0.,3.4 90. 17.66,4.02 14.35,18. 0.,18. .16 |
is STBD STRNPLN 7
443.,3.,0. 0. 29.,4.1 19.,22.3 8.,22.3 .16 &
1s PORT STRNPLN 8 -
443.,-8.,0. 180. 20..4.1 19.,22.3 8.,22.3 .16 ,_J

o

B.2 Output Format

The output file (ESAM.OUT) containing the output from a run using the above input is shown
on the next page. It uses a full 132 character line.

Interpreting this output file is, for the most part, straightforward. Except for the listing
of XOFF and ZOFF in line 5, all output is specified relative to the standard body fixed system
of axes. The section giving the ‘EQUIVALENT ELLIPSOID REPLACEMENT GEOMETRY’ may need
some explanation. Ignoring the last line and the lines beginning with ‘Optmzd comp...’,
this section is simply listing the characteristics of the replacement ellipsoids for the specified
components. These characteristics determine the added masses of a component, neglecting
interference effects. The last line of the section gives the errors associated with fitting the
asymmetyric hull with a single ellipsoid, as defined in Section 8 of the text by equations 85
and, for EXbar, equation 77; this line is not printed for a hull component which is designated
axisymmetric, nor for one of secondary order.

If a component is of secondary order, then interference effects are determined by the
velocity field around the replacement ellipsoid of its associated primary component. However,
if the primary component is of type H, this replacement ellipsoid geometry is first optimized
to reflect more accurately the local hull component geometry opposite the z location of the
secondary ellipsoid’s centroid. It is this primary ellipsoid optimized geometry that the lines
beginning ‘Optmzed comp ...’ are listing; only changes to the original replacement ellipsoid
geometry are noted in this row. This optimized geometry is only used for calculating the
interference velocities for the secondary component of the previous line; it has no effect on the
added masses of any other component, including the primary component itself. If the primary
component is of type E, no optimization takes place.
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