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Abstract

An analytic method is presented for estimating all the added mass terms of a deeply submerged,
submarine like, rigid body. This body may consist of any number of components (hull, sail, fins,
etc.). Each component is represented by an ellipsoid with three independently sized principal
axes; this allows the added masses to be calculated analytically. Ellipsoid geometry, orientation,
and relative location are chosen so that both added masses and added moments of inertia are
optimally modelled. Interference effects between the main bull component and an appendage
are approximately accounted for by using the flow field around a replacement ellipsoid for
the hull to modify the flow at th.• appendage; interference effects between appendages are
:neglected. The analysis uses incompressible potential flow theory. It does not account for any
circulation in the flow.

Calculations carried out using this method are very fast. They show that both appendage
thickness and hull interference can appreciably affect those added mass coefficients which
contribute to coupling.

Rdsum6

On prisente une m~thode analytique pour estimer tous lea termes de masse ajoutde dans
un corps rigide, ressemblant i un sous-marin, immerg6 en profondeur. Ce corps peut comporter
un nombre 4uelconque de composantes (coque, riosque, ailerons, etc.). Chaque composante
est repr~sent6e par une ellipsoide poss6dant trois axes principaux de longueurs ind6pendantes,
ce qui permet de calculer les masses ajout6es de fagon analytique. La forme, F'or-entation et
la position relative do.s ellipsoides sont choisies de faton que les masses et moments d'inertie
ajoutds sont modilises de fagon optimale. L'interf6rence entre la composante principale, la
coque, et un ajout est approch6e par l'application d'un champ d'6coulement autour d'une
ellipsoide de remplacement de la coque qui modifie l'dcoulement autour de l'ajout; l'interf6rence
entre des ajouts n'est pas pris en compte. L'analyse s'appuie sur la thiorie de l'Pcoulement de
potentiel incompressible qui n'admet aucune circulation dans l'6coulement.

Lea calculs effectuis par cette m~thode sont tris rapides. Us r~vilent que l'6paisseur de
l'jout et l'interfdrence de la coque peuvent influer beaucoup sur lea coefficients de masse ajout~e

qui contribuent au couplage.
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Nomenclature

a, b, c half the lengths of an ellipsoid's principal axes oriented along the z', y', z'
axes, respectively.

A the matrix transforming a vector description given relative to inertial

xo, V0, zo axes to its description in body fixed z, y, z axes.

B(z). the breadth of a hull component as a function of longitudinal position;

this profile is assumed to be symmetrical about its f.enterline.

B the matrix transforming a vector description given relative to body fixed
z,y,z axes to its description relative to the ellipsoidal principal axes,
X:, zz.

c1 , c2 ,". CS appendage chord lengths measured parallel to the z' axis; see Figure 2.

E, E' complete elliptic integrals of the second kind.

E(u) incomplete elliptic integral of the second kind.

F interference matrix containing the interference velocities at a secondary
component.

H(z) the height of a hull compunent as a function of longitudinal position; this

component is not assumed to be symmetrical about its centerline.

H(M) the z coordinate of the midpoint of the local height.

IJ, k unit vectors associated with the z, y, z body fixed axes.

k, k' modulus and complementary modulus of elliptic functions.

K, K' K rolling moment and dimensionless rolling moment on vehicle; moment is
2t about body fixed z axis.

K4, K,), Kb added mass coefficients giving the linear variation of rolling moment with

Ký, Ký, K added mass coefficients nondimensionlized by lpt4 ; eg, Ký = K•/Lpt4.

K#, K4 , KO added mass coefficients giving the linear variation of rolling moment with

K Ký, K÷ added mass coefficients nondimensionalized by 12 pt; eg, KO' KO/1#)1'.

K, K' complete elliptic integrals of tne first kind.

£ length of the vehicle.

Mr M
M, M - 2 pitching moment and dimensionless pitching moment on vehicle; moment

gUSS is about body fixed y axis.
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MMil, M, added mass coefficients giving the linear variation of pitching moment
with i, 6, tb.

M,,,,•1 MI Mf-h added mama coefficients nondimensionlized by CpA4 ; eg, p, - M / pt 4 "

MO MV1,1 MIX added mass coefficients giving the linear variation of pitching moment
with iq,#.

M?,me M1 added mass coefficients nondimensionlized by Lpts; eg, M, = MO/Ipfl.

M matrix transforming velocities and angular velocities specified relative
to body axes to a representation relative to ellipsoid principal axes, see
equation 17.

N
N, N' T-- yawing moment and dimensionless yawing moment on vehicle; moonent

2pU~ts is about body fixed z axis.

Nj, N,, N•, added mass coafficients giving the linear variation of yawing moment with

N,•, Nj'-, N"b added mass coefficients nondimensionlized by 2pe4; eg, Ni, = Na/12P14 .

No3 , Nq, N.; added mass coefficients giving the linear variation of yawing moment with

N' N!, NI added mass coefficients nondimensionlized by 1pt 5 ; eg, No = No/2 pi.

p, q, r vehicle angular velocities resolved about the b-dy fixed z, y, z axes,

respectively.

p , q1, ro body component angular velocities resolved about its replacement ellip-
soid's x', V zO axes, respectively.

9 qt theta function parameters; purely functions of k and k'.

9j a generalized coordinate in the Lagrangi&n equations of motion.

Qj the force associated with the generalized coordinate qj in the Lagrangian

equations of motion.

displacement vector, using a body axes representation, giving the location
of the centroid of a component's replacement ellipsoid: Ml + Vj + 1k.

t thickness to chord ratio for an appendage.

t 1 2, t2 2 ,... tG6  inertia coefficients determining the kinetic energy of an ellipsoid moving
through an ideal fluid with six degrees of freedom; t1 l is associated with

translation along the z' axis, t 21 with translation along the y' axis, ... ,

t6s with rotation about the z' axis.

,t•,.°121 ... It, inertia coefficients as above, except that t',, is associated with translation
along the longest of the ellipsoid principal axes, t•2 with translation along
the second longest principal axis, ... , t', 6 with rotation about the shortest
principal axis.

V



T the kinetic energy in an ideal fluid.

u, v, w translational velocities of the vehic.le resolved along the body fixed z, y, z
axes, respectively.

u V, v' Wi translational velocities of the centroid of a body component's replacement
ellipsoid resolved along its c', y', z' axes, respectively.

U argument of the Jacobian elliptic functions.

U speed of the vehicle: V/u2 + v2 +iw•.

v0 , v,vI translational velocity vectors using inertial, body fixed, and ellipsoid prin-
cipal axes representations, respectively.

V volume of an ellipsoid: frabc.

2o YO, Zo set of inertial axes, fixed in space.

z, y: z axes fixed in the body of the vehicle: the z axis points forward, the
V axis points to starboard, and the z axis points through the keel; the
orientation of these axes relative to the inertial axes is given by the angles
4, and

I, •, I body fixed cL ,rdinates locating the centroid of a replacement ellipsoid.

z Y, z axes aligned with the principal axes of a body component's replacement
ellipsoid, such that their origins coincide with the centroid of the ellipsoid;
their orientation relative the body fixed axes is defined by the angles 0
and 0.

•, •, £ an intermediate set of axes between the z, y, z and z', y', z' axes used
for describing the geometry of an appendage, as shown in Figure 2; their
orientation relative to the body fixed axes is defined by the angle 0.

X, X1 - axial force and dimensionless axial force on the vahicie; force is in the
z direction.

Xi, X6, XID added mass coefficients giving the linear variation of axial force with
ts ;,e w.

X i I ."0 added mass coefficients nondimensionlized by p; eg, X = 1,t.

X•,,Xq, X; added mass coefficients giving the linear variation of axial force with
p,q,r.

Xý,Xý,Xý added mass coefficients nondimensionlized by 1pt'; eg, X0 = X0,/2pt 4 .

Y, Y1 = - lateral for:e and dimensionless lateral force on the vehicle; force is in the
2' y directioa.

Yj, Y., Y¢, added mass coefficients giving the linear variation of lateral force with

y, yC,1pt3
I, Y6, Y•z added mass coefficients nondimensionlized by lpf3 ; eg, Y2 = Y•,!pe 3 .
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YPY4,,Ye added mamn coefficients giving the linear variation of lateral force with

40 added man coefficients nondimensionlised by 12pf 4 ; eg, YF = 1#/1pP.

,' Z z normal force and dimensionleus normal force on the vehicle; force is in
the z direction.

ZIA Zo ZI, added ma coefficients giving the linear variation of normal force with

Z,' , ZI, Zl, added mana coefficients nondimensionlized by -1t1; eg, Zi,' = Zjlpfs.

Zo, 24, Z-0 added maw coefficients giving the linear variation of normal force with

Z• , Z1, Z added mass coefficient-) nondimensionlized by Pptf; eg, Z A =Z'/pf4,

o0, Po "70 constants used in t! - velocity potentials for flow around an ellipsoici.

A, j, ' confocal ellipsoidal coordinates; A = constant defines the surface of an
ellipsoid.

•, ii an intermediate set of axes between the z, y, z and z', y', z' axes used
in calculating the replacement ellipsoid geometry for an appendage; see
Figure 2.

AI, coordinates giving the centroid of a replacement ellipsoid using the p, v
axes of Figure 2.

0, , r the largest, second largest, and smallest, respectively, of a, b, c.

p fluid density.

', fl the roll and sweepback angles, respectively, of the z', y', x1 axes relative
to the body fixed z, y, z axes.

SO velocity potential in the inertial reference frame: v0 = -Vpo.

••, s,... -)e velocity potentials giving the potential flow around an ellipsoid in each
of the six degrees of freedom.

X X. .... ,X those parts of the above velocity potentials which are purely functions
of A.

011, 9,4 tho. yaw, pitch, and roll angles, respectively, of the body fixed x, y, z axes
relative to the inertial z0, yo, z0 axes.

Wo, tW, W1• angular velocity vectors using inertial, body fixed, and ellipsoid priT. -ipal
axes representations, respectively.
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I Introduction

DREA is currently developing the ability to model the maneuvering characteristics of sub-
marines. This will enable the evaluation of proposed candidates for the Canadian Submarine
Acquisition Program aad, in the longer term, provide the basis for a more detailed analysis
of the dynamic performance of the new boats. The initial analysis package will be based on a
numerical integration of the six nonlinear ordinary differential equations describing the motion
in six 6egreus of frmedom of a maneuvering vehicle. Thes equations are formulated using either
theoretically or experimentally determined hydrodynamic coefficients.

This memorandum presents a method for theoretically estimating one class of hydrody-
namic coefficient, the acceleration coefficients -otherwise known as the added masses. It is
the background report to Reference 1 and gives the complete details of the theory. For the
convenience of the reader, it includes everything presented in Reference 1.

Added mass coefficients (added mass is taken to include added moments of inertia) re-
ceive their name because they can be linearly combined with the true submarine masses in the
equations of motion to form one coefficient. Mathematically, added mass is just the propor-
tionality constant relating the kinetic energy in the fluid surrounding the vehicle to the square
of the vehiclers speed, in the same way that vehicle mass relates vehicle kinetic energy to speed
squared. During vehicle accelerations, both the kinetic energy of the vehicle and the fluid are
changed, their ratio remaining con3tant in an ideal fluid. Therefore, an accelerating vehicle
must overcome the effective inertia of both vehicle mass and 'rdded mas'. The added masses
for a submarine can be equivalent in magnitude to the actual submarine masses, ard so must
be accounted for properly.

It is generally acknowledged that submarine added mass coefficients, insofar as they are
important in the equations of motion, are not strongly dependent on viscous effects (such
as circulation and boundary layer growth). Indeed, many of the experimental techniques
currently in use for determining the coefficients make this assumption since they ignore the
dependence of added mass on both orientation of the vehicle to the oncoming flow, and time in
an unsteady flow (stationary model oscillations assume this, for example). The assumption is
also consistent with most modern formulations of the equations of motion in which each added
mass coefficient is assumed to be a constant. Theoretically, these assumptions are false given
the vortex structures known to exist and the lifting surface Kutta conditions that must be met
in the flow; however, while these flow phenomena frequently dominate the steady state flow
field resulting from a sudden or violent maneuver, they are often not present at the beginning
of the maneuver when vehicle accelerations are largt.z. AlI things considered, a potential
flow analysis, neglecting circulation, is an appropriate method for estimating the added mass
coefficients. If it is found necessary to account for flow structures and zirculation effects in a
particular application, then the equations of motion will need to be reformulated to allow the
added mass coefficients to vary with the state variables.

There are various potential flow methods available for predicting the added masses, includ-
ing exact-numcrical solutions of the flow about the complete vehicle configuration. However,
a simple approach resulting in quick calculation times is most appropriate in view of the ap-
proximations discussed above.

A submarine's hull is generally responsible for the greatest contribution to the added mass
coefficients. Hull coefficients are often obtained by representing the hull with an ellipsoid.
This is convenient because of the availability of exact analytical potentials, derived by Lamb2 ,
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describing the flows and giving the added messes for ellipsoids moving in six degrees of freedom.
hnl&YO has interpreted Lamb's work in ternm of a symmetrically finned prolate spheriod (ie,
an xisynmmetric submarine without a sail); he summarizes the added mas expressions and
iscses their use in the general ideal expressions for the equations of motion.

Humphreys and Watkinson 4 give a comprehensive summary of the usual formulae used
for estimating the added masses of a multi-component vehicle; they include a good dir-usion
of how important each term is to the equations of motion (sensitivity studiem). To simplify the
analysis, submarine configurations an brokeln down to their constituent components, such as
hull, sail, and Ans. The added maie of each component are calculated separately and then
summed with those of the other components to give the configuration added masses. Hull added
masa are obta.ued by replacing the hull with an axisymmetric ellipsoid. Appendage added
maess ate calculafed semi-empirically using flat plate models. The Humphreys and Watkinson
sensitivity studise show then procedures give adequate acc•aracy. However, Humphreys and
Watkinson do not, deal at length with 3symmetrical hull shapes or configurations with sits, and
the sail, in parti.ular, can have large effects on those coefficients which contribute to coupling
between m'oions in different degrees of freedom. Auchers estimates added mases in a similar
fashion. Neither of these methods account for any hull asymmetry. Instead, they model the
hull with an axisymmetric ellipsoid whose geometry is determined by an average hull diameter.

Another approachs uses strip theory to estimate hull coefficients. Here, two-dimensional,
potential, croms-flHow predictions estimate the local added mass per unit length at a longitudinal
location; these local contributions are then integrated over the length of the hull to give
its added masses. Although able to account for hull asymmetries, strip theory leads to an
overprediction of the principal added mass coefficients (relative to an exact 3-D potential flow
solution) of from 5 to 15 percent, depending on the coefficient and hull geometry. Empirica!
corrections can be applied, but they are data base dependent.

The approach taken in the present theory is %. combine and extend the above procedures
and, as far as is possible, apply the ideal equations of motion iii a manner that estimates all
the added mass coefficients of the vehicle as accurately as possib)e. For maximum flexibility,
each body component is represented by an ellipsoid with three independently sied principal
axes. The ellipsoid is positinned and oriented so that both added masses and added moments
of inertia are modelled properly. As with previous theories, the total added masses of the
vehicle are taken to be the sum of The added mases of each of the component ellipsoids.
except that interference effects between the hull and appendages are accounted for first. These
effects can be appreciable, changing an appendage's added mass contribution by as much as
50 to 100 percent relative to a calculation which assumed the appendage was isolated in the
flow. The present theory approximrately accounts for this by ,using the flow field aro'und a

replacement ellipsoid for the hulh to modify the flow at the ap!pendage. Interference effects
between appendages are neglected.

Special attention is given to choosing the geometry of the hull replacement ellipsoid. This
is done by

1) calculating strip theory added mass predictions from specified hull coordinates, and
then

2) choosing ellipsoid geometry in stuch a way that strip theory predictions generated
from the ellipsoid coordinates agree as well as possible with the lhu!l strip theory
predictions.
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Thus, the hull replacement ellipsoid models those geometrical characteristics of the hull which
are most important in determining added mass. The added masses for the hull are obtained
by applying Lamb's theory to this ellipsoid; they can be thought of as strip theory predictions
automatically (though approximately) accounting for 3-D effects.

Appendaese have only a small effect on the principal added masses associated with trans-
lation and rotation in the transverse directions, but can appreciably affect and even dominate
those coefficients ansociated with surge and Poll. Appendages are also important to the so-called
'off-diagonal' added mass coefficients which, though smaller in magnitude than the diagonal
terms, ar potentially important as coupling mechanisms. Representing an appendage with
an ellipsoid, while leos satisfactory than the hull repramentation, is considered an appropriate
approximation given the small contribution the appendage will make to the vehicle's dominant
coefficients. Doing so also allows appendage thickness to be accounted for, and this is shown
to have appreciable effects on some of the coefficients.

Significantly, ellipsoid potential flow solutions, and the added mm expressions they gen-
erate, require the evaluation of elliptic functions if the ellipsoids have three independently sited
principal axes. This explains the ai ,roximation usually made to avoid these calculations: by
replacing the hull with an axisymmetric ellipsoid, only elementary functions need be evaluated.
For the present theory, fast, accurate, analytically oriented routines arWj derived for evaluating
the requisite elliptic functions.

A computer program has been written to calculate the predictions of the theory developed
in this report; its use is described in Appendix B. In Section 10, the theory is applied to a
generic submarine configuration and results are presented.

2 The Equations of Motion of an Ideal Fluid

Although some of the relationships developed in this section have been presented by other
authors (Lamb', Wmlay', Abkowitz%), it is felt that a thorough and complete presentation
collated in one place is desirable. This also allows the reader to more easily follow the extensions
that are made to the above theories.

By deriving the equations of motion of the fluid around Lhe vehicle, expressions for the
ideal fluid forces exerted on the vehicle can be obtained. One begins by establishing coordinate
systems and a set of variables describing the motion.

Consider the unsteady motion of a vehicle in six degrees of freedom having arbitrary
translational and rotational velocities. In order to describe the motion, it is conventional' to
use a set of body fixed axes, x, V, x, which move with velocities u, v,w in the z, V, x directions
relative to a set of inertial axes zo, V, so. The angular velocity components of the body about
the :,y,1 axes are p,q,r. Take the zo, yo axes to be in the horizontal plane and the so axis
to point downwards. For a submarine, the z axis points forward, the V axis to starboard, and
the s axis through the keel.

To describe the orientation of the body axes relative to the inertial axes, angles of yaw (
pitch (9), and roll (#) are defined in the following way?. Since finite rotatiopm of yaw, pitch,
and roll in any order do not result in the same relative body axes orientation, the order of
the rotations is an integral part of the definitions of the angles. Assuming the body axes are
initially aligned with the inertial axes (however much the origins are displaced), an arbitrary
reorientation relative to the inertial axes is obtained by

3



1) yawing about the & axis through an angle i,

2) pitching about the y axis through an angle 0, and

3) rolling about the s axis through an angle .

All rotations are in the pluitive sense as defined by the Right Hand Rule. Thus, the matrix A
transforming a vector detcription using so, V, so axes to one using body axes is:

1n 0 1( 0 .#CO 0)

A aA#A$A# a(0 Co0 i 0 co 1 0 . sin ) co o~ 0i~ 0
A A•AA• 0 sin # co #

(c sinG 0 Cos$ 0 0 1

(cos fcoo, co.osin' -sin#
s -sin .coo0+sin ain co.o coo#coo0+sin sin sini sin cos J. (1)

sin sin + c~m#co@o. ine - sin coso +co.•sinssinob cosecosG/

Therefore, if v and v0 are the vectors specifying the velocity of the vehicle using body axes

and inertial axes coordinate systems, repectively:

VO ((o)
v E = , o-- (2 )

(W io
then:

v=Avo and vo=A-Iv. (3)

Since A is an orthogonal matrix, A71 = AT (where AT is the transpose of A).

Similarly, if w and wo are the angular velocity vectors giving the vehicle's rotation, then:

w=Awo0 and w 0o=ATw. (4)

However, because of their definitions, 0, G, and • do not form the orthogonal components for
either of these vectors. The expression for w is obtained by summing the contributions from
•, 9, and 4 after properly transforming their associated angular velocity vectors to a body
axes representation:

() =A,AA, (0) +A*A# (9 +A, . (5)

Thus:
p = - sin 9 ý +

S= sin coo ; + coo 0 (6)

r = co.•cos - afnl0.

Now, since our interest is only in the overall forces on the vehicle, which are equal and
opposite to those on the fluid surrounding it, Lagrange's equations of motion in terms of the
total energy in the flow field can be used. This description uses generalized coordinates (one
for each degree of freedom), all of which must be independent. The generalized coordinates
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0

used in this problem will be taken to be X., Vo, z0 , ,, q; so that u, v, w, p, q, r are dependent
variables related to the generalized coordinates via equations 3 and 6. If qj is a generalized
",•ordinate, thea the six equations of motion are:

d (OT' (7)
dtaic Oq,

where T is the total kinetic enargy of the fluid, t is time, and the Qj are forces on the fluid
associatei with the q,. Note that Qj 6q, always has units of energy, so that when qj is an
angle, Qj is a moment.

Since it is most convenient to describe the vehicle motion using body axis velocities
and forces, it is desirable to write the equations of motion in terms of u, v, w,p, q, r and
X, Y, Z, K, M, N (the latter are, respectively, standard notations for the forces and moments
on the vekicle and are associated with the z, y, z axes). This is most easily done by taking the
inertial and body axes to be precisely coincident at the instant in time of interest. Then the
Q- will ie the negative of the vehicle forces and moments.

The terms on the LHS of equation 7 are expanded as follows:

a8T Tu aTv 89T aw 9T ap aT 8q 9T ar
5U q + + + Op + q-. (8)aqj Tua~ v ýqj Kw .7• .p7• a a• a

Equations 3 and 6 are used to evaluate the pait ial --vatives with respect to the qi at the
instant the axes are coincident, when i0, j0, 0, 0, a v•, Jw; p, q, r:

= 0= ,v, 0,- U 0(,,)= r ~
-( -, (, . -q, 0,0)

The first term of equation 7 becomes:

d 072) d 1(OT au OT t, 0720w aT ap tIT q +OT r ()
d7 8:4YvqI Bw q, +Op 04 q8 87846

with:
d _ a n) a n O---nd a n (1T)

(O n a%) dt an) a4,. n kdt 4q,)(10

and, again at the instant of interest, one gets:
_____ ______ ______ Ow (1,0,0•

a(u, V,W) a (p,q,r) av a- __ 0,1,0 I
a(4,9,,) (Co,l0o,,4) a (io, I o,o) Oa(ý,A,) 0,0,1)

da a(u,v,,w) d a (p,q,r) 0
da O(d,,,t,) ad O(,io, o,i o)

d av r-q d aw (0: 0,-q
d= 0 - , o o(,e,,,) = 0, 0, Pt a (io,•o,,o) 0,-poO,-p, 0
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Thus, the equations of motion given in Lamb are rederived:

d aT aT aTW- T• -r + q5-• -X

d aT aT aT
-Y

d aT aT aTdO q +8 P -Z

d aT aT aT 87 0T (11)
W-T- -T4- v-- r- + q- = K

V v w Z7q aOr
d aT a8T aT aT &T

dtq Ow at U r Op
d aT a87 8 aT aT aT

dOr Ot Ov P q

Since the orientation of the inertial axes is arbitrary, these equations are in face true at any
instant in time. An alternative way to write them is:

0 -r q 0 0o 0 T/au) x
r 0 -p 0 0 0 •TO

d -q p 0 0 O/ = Zp~( :10 0 0_ T(2
+ 0 -- w v 0 -r q aT(p 2K

w 0 -U r 0 -. 9 aT/aq M

L -v u 0 -q p 0

Equations 11 are linear in T, so that if T is written as a linear combination of the
contributions from each body component, then the right and left hand sides of the equations can
also be separated into component contributions. This is equivalent to indepeondently applying
the equations to separate body components and then summing the resulting component force
predictions to give the total force on the body. However, finding the component contributions
to T is no easy matter since they must account for the presence of the other components
(interference effects).

Equations 11 will be separately applied to each of %he many components comprising the
vehicle body, with interference effects to be determined later. First, though, the position and
orientation of the replacement ellipsoid for each component needs to be specified relative to
the vehicle body axes. We begin by considering orientation.

Hydrodynamic considerations will result in one of the ellipsoid's principle axes always
being perpendicular to the body z axis, control surface deflections aside. This eliminates one
degree of freedom, allowing the ellipsoid to achieve its desired orientation relative to the body
axes with only two independent rotations.

Let the z', V', z' axes be the ellipsoid principle axes. Assuming these axes are initially
aligned with the body axes, their desired reorientation is achieved by

1) rotating about the z' axis 4hrough an angle 4P, and then

2) rotating about the z' axis through an angle fl.

6



As before, all rotations are in the positive sense as defined by the Right Hand Rule. This choice
of transformation means that the z' axis will always be pt; pendicular 6o the body z axis. The
matrix B transforming vectors using a body axes representation to ones using ellipsoidal axes
is:

(coMf) sinfO 0) (1 0 0 Z cosf0 sinflcos4 sinflsin•\

B= -sinfl cosf] 0 0 coso sin = - sin f cos fl cos 0 cos f sin .
0 0 1 0 -sint cos J 0 -sinO cos J

(13)

Besides these rotations, the ellipsoid will have its centroid displaced a distance k - •i +
Vj +2k relative to the origin of the body axes (using body axis coordinates), so that the
velocity of the ellipsoidal axes' origin is:

U + q2 - rp

V~~~ +w + p2 - J!(4

In the x', 1, z' coordinate system one gets: ,')
V1- (u,' =B. (15)

as the translational velocity of the origin. Since the vehicle and its components are undergoing
solid body rotation, all of their angular velocities are equal (i.e., U = w) and so:

(' (q) =Bw. (16)
(,)

Equations 14 through 16 can be summarized in the following matrix equation:

(W] = M W] (17)

where:

B B - B 0

0 B

7



With the various coordinate systems and their associated variables now established, all
that is required are expressions for the kinetic energy of the flow. These are derived in Section 4,
where the general expression for the kinetic energy in the flow around an ellipsoid is shown to
be:

:T = pV (tiJiU1 + t2+,)12 + t33W'2 + t 4 4 P' 2 + t 5 sq 2 + t. 6 r'2) (18)

where p is flvd density, V is the volume of the ellipsoid, and the t,, are the inertia coefficients,
determined by the ellipsoid's geometry. Using this expression, the column matrix on the LHS
of equation 12 becomes:

OT/8ta l ,,8,oo, oo, T/O,,, '
Maulw _ a,/aa,/ a,/, TlauI UI'•*c DT8i (U'/ tu av'/O~u ... ar'/au'

aT/aOw au'/4v 8v'/8v I "r'/i aT/Cw' / PV T p, (19)

ZIT/cp : aT/8p' P
lT/~q au,/ar av'/ar ... ,r'/Or J
aT/alr I T/8ar'

where:
(ti 0 0 0 0 0

0 t2 2  C 0 0 0
O 0 t33  0 0 0
0 0 0 t44 0 0
0 0 0 0 tss 0
0 0 0 0 0 tee

(Note that MT j M-'.) Thus, the equations of motion for one ellipsoidal component of the
multi-component body are: 0 _ 0 0 0\

d [ -- p0 0 0 0 M TM ' -1(0

Wt -W V 0 -r q P
w 0 -U r 0 -pq

LV u 0 -q p O N

Since T is a diagonal matrix, M T TM is symmetric. Actually, this equation is true for any
arbitrarily shaped body providing T is allowed to be a fully populated matrix; however, even
for this general case, Lamb shows that T is symmetric and, therefore, that MT T M is always
symmetric in an ideal flow.

Multiplying through the differential 'n equation 20 one gets:

d TTM(w]..MTTM (2]
-M@ (21)S1•r i• -TU

a÷



'I

since Mr T M is constant for a body with fixed, immovable components. Therefore, it can be
identified as the added mass matrix:

xv xO x. xO xd x.
Y4 Yi Y•b Yp Yq YO
73. Zi z• h ZO Zd =_pV M T M. (22)Kf Kj, K, KO K4  KO

M. M. M., M,, M9  Me
N6 Nj Nh No~ N. N

Since this matrix is symmetric, Xj = Yf, X,. = Ze, Y, = Zj,, etc. Future calculations may
replace a term from below the diagonal of this matrix with its above the diagonal equivalent.
Equations 23 give the expressions for the components of the matrix, obtained by evaluat-
ing MT TM.

= -pV [cos2 flt+sin flt 2  ]

X, = -pV[cos l sin 0 cos 0 (t1 1 - t22)]

X,1 = --pV [cos n sin f0sin 0 (t1 1 -t 22 )]
X10 = yXl.ý - 9xi,

. = RC,x - xX.b

xi = ,x, - VXf
Y6 = -pV [sin2 fl cos2 0 t11 + cos 2 ( cos2 0 t22 + sin2 0 t33]

Y,1 = -pV [cosgsin0 (sinl 0t 11 + co 2 1t 22 -t33)]

Y o = fy , - 9x , (23 )

Zb = -pV [sin2 0 sin 0t1 1 + cos 2 0 sin 2'0 t2 2 + cos2 0t3 3]
ZO = PZ - Y,.b
z4 = 2xj, - .lzg
z÷ = W4,• - Yx-h
K, = -pV [cos' f•,,, + sin' fl t•] + gZ, - ,Y•,

K4 = -pV[cosflsin(1co03(t 44 - t66)] + VZ4- -Y4

K÷ = -pV [cosof sin 11 sinib (t 4 4 - t65 )] + 9z4 - lYi

Md = -pV [sin' 2 cos 0t 4 4 + COS 2 fCos 2 ID t5 S + sin 2 j0t 6 ] + X4 -tZ4

M÷ = -pV [coo 0 sin 0 (sin2 " t4 4 +cos flt 5 - t6 )] + CXo -tz

Nj = -pV [sin2 r sin2 0 t44 + cos2 0 sin2 ',tS + cos2 0 tee] + tYi - qX

The 'off-diagonal' coefficients mentioned in the Introduction refer to elements of MT T M.

9
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Equatioas 23 are only as simple as they are because of the special geometric symmetries
of the ellipsoid used to represent a body component. It ij obvious that a rTore fully populated
T matrix, representing a more general shape, would lead to many additional terms in all
of equations 23. In view of this, equations 23 should achieve their greatest accuracy if a
body component is replaced with its best represertative ellipsoid and the gwometry of this
replacement ellipsoid is used to calculate the inertia coefficients. This aliows errors resulting
from 'fitting' the component to be directly monitored and, in fact, to be used in determining
the best fit. On the other hand, calculating the t,, for a single component from different
ellipsoids, or fron non-ellipsoidal geometries, in general invalidates equation 18 and will lead
to errors of unknown magnitude. These errors, though small relative to the diagonal added
mass coefficients, might appreciably affect the smaller off-diagonal terms which contribute to
coupling.

Care in fitting the large hull component of a submarine with its replacement ellipsoid is
particularly important as, in many cases, the second order effects alluded to in the previous
paragraph are roughly the same size as the effects of the appendages. Fitting rep!acement
ellipsoids to appendages is obviously less important.

Equation 21 is the unsteady part of the equations of motion. Ueing the notation defined in
equation 22, and upon breaking equation 20 into its component parts, one obtains equations 24
(on the next page), which are the complete set of expressions' for the fluid forces and moments
on a vehicle (or one of its components) moving through an ideal fluid.

In addition to the added mass contributions to the forces (Xu, X,)6, ... , N,;), which are
only important during unsteady maneuvers, equations 24 also give the ideal forces associated
with steady state motions (the reader may recognize the M equation term (X,6 - ZJ)uw, for
example, as a 'Munk moment' 10 ). However, many of these ideal steady state terms are known
to be strongly subject to viscous effects and, where possible, should be replaced with estimates
based on experiment.

For the complete body, equations 24 can be simplified if the vehicle is symmetric abcut
a longitudinal vertical plane, as most submarines are. Then, 9 of the 15 'above the diagonal'
summed added mass terms are zero, namely:

X,), X0, X0, Y,Y4,u Z0, Z,;, K4, M,;.

Of course, their 'below the diagonal' counterparts are also zero and, in fact, it is by considering
some of these latter terms that one can most easily see that a term must be zero. Thus, for
conventional submarine shapes, equationr 24 reduce to equations 25.

Al
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X =Xjii + Xj(v - r) + X 1.ý(w uq) + X~p + X44 + Xr,,

-Ylvr +Y,.b(vq -wr) - Yrp +(Z - Y 4 )qr - Yor+ Zwq + ZdC"+ Zpq

Y Xi, (it + vr) + YI~ + Y1i, (tv - vp) + yoo + 1,44 + YKr

+ X,ur + X -(tvr - up) + (Xo - Zj)rp + X~qr + Xjr2 - Z,,wp - Zop 2 - Z~pq

Z Xj(t- wq) + Yji+p) +ZZ,,bb ZO+ Z 4q+ Z,;i

-Xuuq + Xj(up -vq) +(Y4 - X)pq - Xqq 2 - X~qr + Yjvp +Y p+ rp

K=2 - 2) (24)
- XUw+. w',tsv -XqtL7+Xftsq+(Zi,-Yj)vw+YW,(v-w 2 )(4

-(Y4 -Z;) (vr +wq) +(Yo +Z 4 ) (vq -wr) - (M4 - Nr)qr + M,;(9 - r2 )

M=X4 (it+wq)+Y4+Z4 (w-uq)+K4 (p+qr)+ýM44+Mý(i-pq)

+ (Xu - Z,)uw + Xvw + Xh~(W2 - u2 ) +(Xo - Zj)(wp +ur)

-(Xj + Zo)(up - ivr) - Yb1 uv +YVvr - Yvp - fKj - NO)pr -K,(p 2 r 2 )

N Xj(i - vr) + Y,(ii +ur) + Ztb + Kj( -qr) + M(4 +pr) + Nj

A. - YJ)uv + X6(u 2 - V) -X,.byw -( - Y9 )(uq +vp)

+ (X 4 + Y)(up -vq) + Yuw - Zwq +Z 4 wp - (K - Mý)pq + K4(p - q 2 )

X = X6 it+ q).~ + Z1q) + X44q - X,ýv - +op YjypY,,2 + ±Yq+ .02

K = Yo w~p) + KOO + Ký L + pq) + Xjutv - X 4tsr

+ (Zj, - Yi,)v-.i + (Yj + Z9)(vq - tot) - (Md - Nj)qr (25)

M = X(i + wq) + Z(tb -uq) + M94+(Xi, - Zj)uw

+ ~(2 - u2) + Yovr - Yr;vp + (Ko - N,;)pr - Kj( 2
-

2

N =Y,#i + tsr) + K,.(j - qr) + N,.i - (Xa - Yi,)uv - Xv

+ (X4 + Yp)(up - vq) + Z~wp - (Ko - M4)pq



3 Interference Effects: Primary and Secondary Components

The equations of motion, as summarized in equation 70, av-:ly only to an isolated body.
Thus, equations 23 do not account for any modification of the flow about the ellipsoid due
to t).e presence of another body. In this section, these interference effects will be modelled
approximately by superimposing a uniform velocity over a relatively small ellipsoid which finds
itself in the presence of a larger one; this interference velocity will be the velocity field around
the large ellipsoid evaluated at the location of the centroid of the smaller one, without the
smaller ellipsoid being present.

Formally, a body component will be assigned one of two possible orders: either primary
or secondary. In general, one would call the hull a primary component and a hull appendage
a secondary component. Primary component added masses are not corrected for interference
effects. Secondary component added masses are only corrected for the presence of the primary
component; all other components are ignored.

Thus, equations 20 and 23 are correct for all primary body components. For secondary
components, a modification must be made in the development of equatioi 20, at the level of
equation 17. In this latter equation, the interference velocity must be subtracted from u, v, w
to give the effective velocity of the secondary ellipsoid through the fluid. There is no correction
to p, q, r since the potential flow about the primary ellipsoid can have no rotation in the field;
however, as primary component body angular velocities, p, q, r will certainly contribute to the
corrections applied to u, v, w.

Now, denote the interference velocity due to a primary component moving with velocity u
As ClAU| + U.uj + iDuuk, velocity v as i.vl + Ouvj + ritk, ... , and angular velocity r as
eGr I + orrj + Wrrk. Here, the bar over a variable indicates the velocity isi that at the location
or the centroid of the secondary ellipsoid. These variables are dimensionless if their subscripts
arx u, v, or w, they have dimensions of length if their subscripts are p, q, or r. The velocity
vector on the right hand side of equation 17 can now be rewritten:

v -0U. I- -. -, OW-0,_V _U -or v v
-W Q - •V 1 - ro -ib - 0q - ru

""F 0 0 0 1 0 0 ( F (26)
q0 0 0 0 1 0 q
r0 0 0 0 0 1

where F is the interference matrix. This multiplication by F is ,quivalent to subtracting the
interference velocities from V, equation 14. Equation 17 becomes:U1 Ui

=MF (27)

q q

Equation 20 will then be applicable to secondary components if MI TM is replaced with

FTMT TMF, which is the new added mass matrix.

12



if, for a secondary component, the elements of the matrix -pV MT TM are denoted XO,
X40, ... , N° (the valves of these elements are given by equations 23 and they would be the
true added maes if there were no interference), then the secondary component added masseG
are:

0 --

x.= (1 -. o.)[x°,( -a.) - X°O, - x.iii,]

# (1 - GJ P[-X! , + X(1 - 09) - X. r]°-- o.[-X~a. +V•'(1 - ,, ) -Y,] - •. -(28) oX! G. +"( -i 1-0 * , v ~ .+yo 0.) Z! Fw.] (28)

N4 = N,?.- G,[2, x - xA, - Xc,. - X•h .
- j O.2•- X,00Q,- Y°O, 4,- Y, °i,.]-U,.L2 Zoo - X•,•,. arY40,._-Z .]o- -,

(The complete set of added masses are easily obtained by matrix multiplication.) Note that the
corrections for interference effects are proportional to second order products in the interference
velocities. This is because added mass is a measure of fluid kinetic energy, which variec as the
square of the fluid velocity. Thus, these corrections are potentially very important.

As with the elements of the matrix MT T M, the elements of the inteference matrix F
are purely a function of vehicle geometry, as will be shown in following sections.

It is noteworthy that interference effects change some of the relationships between the
added mass coefficients presented in equations 23. Consider the simple example of an axisym-
metric hull ellipsoid with a sail positioned directly over its center of buoyancy. For roll and
sway motions, write the fluid kinetic energy due to the sail as T = +I- t03p') with
p' = p and v' = v -Np- 0. v, the last term in the latter equation being the interference velocity
at the sail due to the presence of the hull; I locates the sail's centroi-I. (For this example, it
is convenient to take the sail's y' axis to be parallel to the body y axis, unlike the general
notation presented in Section 8.) If . 1= -I-0, Vu = xv - 2p; 0. will be negative, so c > 1. ,-
Then, the time dependent parts of the second and fourth of equations 1 result in:

Y6 = YO ; Yo, K4 = -aYO (29)

KO = K0 - -pVt 44 + 2 iy

As expected, Yj, is proportional to x 2 , and K1 is unaffected by interference effects since the
axisymmetric hull can rotate without generating an interference velocity. However, note that
K,) -NYj, and that the 'Y,' contribution to Kj is not -2Yj as in equations 23. Symmetry
of the added mass matrix requires YO = K6, and this prevents the usual inter-relationship,
among the coefficients from occuring.

In the above example, it will be less than 2 (a value corresponding to an infinitely small
sail with its centroid located right on the hull surface). For an asymmetric hull, with its majo:
transverse axis aligned with the sail, a; will be larger than it would be for an axisymmrn'nvric
hull.
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4 The Kinetic Energy in the Ideal Flow Around an Ellipsoid

In Section 2, expressions for the added mas of an ellipsoid in an ideal flow are obtained in terms
of the flow's kinetic energy. In this section, e.pressions for the kinetic energy are presented.
Their complete derivation is presented in Lamb', beginning in article 111. This derivation is
most conveniently carried out using confocal ellipsoidal coordinates. Both Lamb and Whittaker
and Watson11 , chapter 23, present the necessary details for use of this coordinate system.

The kinetic energy T of the flow can be obtained if the velocity potential wo is ki.own in
the inertial reference frame of Section 2. p(zo, Vo, zo) must satisfy Laplace's equation Vlp = 0
subject to boundary conditions at infinity and the ellipsoid surface. The flow velocity at any
point is then v0 = -Vie, and the kinetic energy of the flow will be given by:

2T -PJJ 9  dS. (30)

The integration is over the surface of the ellipsoid; n is the direction normal to the surface
into the fluid.

In the inertial reference frame, the equation for an ellipsoid with principal axes of length
2a, 2b, and 2c is:

+ 14, 1-=0. (31)

The equation of any confocal quadric to this ellipsoid is:

+- 0 + -o 1 o (32)
a2++ bV ++ c2 +

where 0 is the parameter of the quadric. This last expression ca be solved for 9 for any
point (zo,oV zo). Since the solution is th'at of a cubic polynomial ir 0, there are, in gen..
eral, three quadrics passing through (0,, yoz). The confocal ellipsoidal coordinates, de-
noted A,p,v, are the three roots of this cubic. If C,ar,r are the largest, second largest, and
smallest, respectiveiy, of a,b.c, then -C2 < x < _0 < 1A < _r2 < A < oo. The quadric
surfaces A, 1, v = con.'tant "re ellipsoids, hyperboloids of one sheet, and hyperboloids of two
sheets respectively. These surfaces are always mutually orthogonal.

Contider, now, the potential flow around an ellipsoid translaking through a stationary fluid
with velocity u in the direction of one of its principal axes. At the instant in time of interest,
the centroid uf the -. lipsoid is precisely coincident with the origin of the inertial , y, 0z axes
such that its surface is given by equation 31 and u is directed along the the z0 axis. Lamb
shows that a solution to Laplace's equrtion of the form:

P1- -,OX1(A)u (33)

is capable of satisfying the boundary conditions for this instant in time. He gets:

abc f0 dAA•A - .- , (a + A)A (34)

where:
ko -abc (, + \)A, A- (a, +\)(b2 + \)(C2+2 ). (35)
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A simple cyclic permutation of variables:

a--b--c and O-".yO-'SO as u--v--w

in equations 33 tirough 35 gives the expressions for to, and 3 , fur translation in the direc.tions

of the othsr two principal axes:

abc f d
=P YOxIP4V. x2(A) =2 - #0 J (b2 +, A)&) (36)

= oXS(A), =A (37)

P3 = ZOX (1\) I X 2 -F _yo J , (C3 + 4
where:

1o-- =abcj(P + AA .Mabc •o (j 2 + (38)

a, b, and c, then, are the semi-axis lengths of the ellipsoid principal axes parallel to the
directions of u, v, and w respectively.

Cons;ider, also, an ellipsoid rotating in a stationary ideal fluid with angular velocity p

about one of its principal axes. At the instant in time of interest, its surface is given by

equation 31 and the aforementioned principal axis coincides with the x0 axis. Again, Lamb
shows that:

P,= I oZoX 4(A)p (39)

satisfies these boundary conditions, where:

X4t, (A ='•f , (40)
x()= 2(b2 - c3) + (P + c3)(0o - -o) (b + \)(c 2 +(40)

A cyclic permutation in these last two equations of a, b, c and w0 , y, z 0 with p, q, r gives

,os and pe, the potentials for rotation about the yo and z0 axes with velocities q and r,

respectively.

Thus, at the instant in time of interest, the linearity of Laplace's equation allows the

potential flow around an ellipsoid moving in 6 degrees of freedom to be written as:

Vo = 9 +P2 + P3 + P4 + 9 + Pe. (41)

Equation 30 then gives the kinetic energy in the flow:

2T= FI f n d

Because of the geometrical symmetry of an ellipsoid, only the i = j terms of this summation

are nonzero. One gets;

T = pV (t1 1 u2 + t2 2 v2 + t3 3 W2 + t 4 p' + t5 5 q + teer) (42)
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where V= Awabe is the volume of the ellipsoid w.nd the ti, are the inertia coefficients:

t-- eta t22 - 0 2t--0

____' - _')'(_o - o ('-2)'(ao-- 0) (4-)

t44 5 2 (6s - 0')+ (bl + c')(Po - -y)' '= 2(c2 - a2) + (-c2 + 0')(-1 - oro)'(3

1 (o' -b')'(0o - 00)
(te2= ('- b) + (a' + b')(ao - Po)

Although equation 42 was derived for one instant in time, when the ellipsoid is aligned with
a purely arbitrary set of inertial axes, the equation applies generally since at any other time
there will be another -et oi inervial a-&es for which an identical derivation could be performed.
Note that, although the notation is different, equation 42 is identical to equation 18 (in each
case the velocities are relative to the ellipeoid principal axes).

The integrals in equations 34 through 38 and equation 40 are, in g~aeral, elliptic integrals.
Their general solutions are presented in Section 6, along with simplifications that can be made
in special caes.

5 The Interference Velocity Field Around a Primary Ellipsoid

The elements of the interference matrix of equation 27 can be found by differentiating the
velocity potentials of the previous section. At the instant in time of interest, the velocity at
any point in the flow field around a primary ellipsoid is v = v0 = -V9 (cf, eq. 2), where
p is given by equation 41 and the ellipsoid's boundary by equation 31. The differentiation is
aided by the following expression which follows from relationships between the ellipsoidal and
cartesian coordinates2 :

V-1)=J Lx zo 1+ 10 "+ o k) (4

2 dA (a2+A b2 +A C2 +A (44

Here, X(\) is any function of \; (zo, yo, z) is any point in the flow field; h1 is a scale factor
relating lengths between the ellipsoidal and cartesian coordinate systems:

, 0+ ) (b4 + \)+ (C § L A)2 (45)

If x(,\) is identified with the Xi(\) defined in the previous section, then equation 44 can be
rewritten as: V~ (A ,I o .o k i(6

(2- (' • =IA2 a(& ++ A)(+ b+J - (47)

with:

R, (R4 - 2)2 (47)
•=(2 - o(a' + •) ,=[2(b2 - c2) + (V• + e2)(fi, - -1)] (V + A)(c2 + •

J%,R3 and RS, Re are obtained by cyclically permutating the variables in R, and R4 , re-
spectively.
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Now, if (to, 90,zo) is the location of the centroid of a secondary ellipsoid (coincident with
(2, 9, i) at the instant in time of interest), and if thes coordinates determine I through a
solution of equation 32, then the interference velocities for the secnndary ellipsoid are:

-Vj/ = 0.1 + POj + rk = -xl(I)1 -

-VP3!,= 0, 1 + Gj + Q.,k = -xj- oVX2()

-Vi 5/w = 0,,1 + ejJ + (P,,k = -Xs(X)k - ioVXs(1) (48)
-ViP 4/p= ,1 + Oj + rk = -Rox 4(,•) - YoX4(A)k - PozeoVX 4 (,)

-Va / q= I + OJ + rgk = -Iox.(X)I - Rox 5 (X)k - EoNoVx.(X)

-Vp 0/r = o,1 + eJ + ruk = -VoXO(I)1 - zoXI(X)J - zoioVx6(,)•

The V•T(X) on the right hand sides of thWse equations are easily evaluated ir. terms of
elementary functions of a, b, c, -o, 0olo, as per equation 46. However, the x1(l) are elliptic
integrals. These constants are evaluated in the next section. Elliptic function theory must be
used if the primary component is asymmetric; this is not a difficult problem if the routines
necessary for calculating the inertia coefficients for this geometry are already in place. An
alternative approach would be to use the 2-D potential flow field around an ellipse to estimate
the transverse components of the interference velocities, which are really the only ones of
interest. The advantage of the 3-D calculation is that end effects are properly modelled, for
example, in the region of a submarine's tail. As will be seen, if the primary component is
axisymmetric, then the general 3-D calculations can be carried out using only elementary
functions.

6 Evaluating the Inertia Coefficients and Interference Velocities

The inertia coefficients (equations 43) are functions of a, b, and c through the elliptic integrals
0"', D0, and -to (equations 35 and 38). These same integrals, but with different limits, need
to be evaluated when calculating the X1(X) which are present in the expressions for the inter-
ference velocities. In evaluating the integrals, extensive use is made of the theory of elliptic
functions. A brief introduction to these functions is given in Appendix A.

There are basically three integrals to be solved:

0 0° d x 0° 0 d A 0 0 d A
1f CarrI_= fo I___ for d (49)

with:
S=- (•'+ •(•'+ A)(rs + A-).

Here, f, o, r are the largest, second largest, and smallest, respectively, of the semi-axes a, b, c
of the ellipsoid principal axes. Before obtaining the g.neral solutions to these integrals, some
special ces are examined.
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In this cum:
'1=4= Ia = Is 2C_______ (50)(Cs, . ),1, 3 (•, + A),1 '

Thus, *o =,Po -to 2/3 so that 91, =i ts ts= 1/2 and t44 =4t6=4 =O.

A proite spherod: r = r

In this cae:

21 ' dA
+ )(C' + )1

_ ( I n +'C/W12)

Using the eccentricity e M _O/C, one can duplicate the expression g,.ven by Lamb'
for A=O: fr A=-0':, ( in - e

C 2 1 :-i) 1

Also:
Is , • 13+)v + •+)•,• • •,v_,, (52) .

An oblate spheroid: e
Here: ,.

1 -d 2C3 ___r__ V 1 (53)f\= ' (C3 + A)(r, + A),1, C2;,x ( -r2 Vfr_ -+. • ) :

4(1 - sin- e ) A -. 0,

where e \(C V - '/ý. Also:

C2dA _____ 1.11=z ' ('+•'T = Is (r + )13 •• (54) i

The only other special condition that needs to be considered is when r = 0, which is of
practical importance if one wishes to model flat plate control surfaces (as is sometimes done).
Unfortunately, this apparent simplification complicates matters (in ellipsoidal coordinates, at
least). Not only must elliptic functions still be evaluated, in general, but some of the inertia
coefficients of equations 43 become singular - a condition that can be remedied by considering
the expansion of the t. for small r and multiplying the result by V. This process will be
presented following the general solutions of equations 49.
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The general case

It is convenient to make the following variable transformation in equations 49, as per Munk1 2

(it is conventional to use the vrxiable u as argument in the Jacobian elliptic functions; u has
nothing to do with the velocity defined in previous sections):

C2 -r2

sn2u (55)

where, as is usual, the Jacobian elliptic function sn(u, k) is written as an u. k is the modulus
of the elliptic function. If:

k2 2  so that 0 < k < 1, (56)

then:
I=C fsn udu, 12 c J sn du, C - du (57)

dn 2 u cn2 (

where:
(2 2or2C-C (C2 _ r2)3/2•

Rearranging equation 55 and using equations A2, one gets:

2 C2 - r2 2 .2 + • 2 + •(8sn u= cn 2 U= +- dn2 U (+---58)

C2 C+A ~ C2 +A'

It is convenient to rewrite the integrals of equations 57 in terms of incomplete elliptic

integrals of the first and second kinds, u and E(u) respectively. Thus:

f m udu=I[u- (u)] ~j[Uo ,E(uo)] as A 0, u uo;

foUSn 2 u -snucnu 1 U-

a;-2 du= - --L[ -- (u)
o d 2 dn u V k12

-\/If' T 1 -- as 1 1 0;9
- - 2  -[ E(Uo)] as ;

cn~u Ic 2 0 c T 2 -E' 1  1Usn~l - 1 [snuvd~nu •u ,,1[0%',\ý2 -7"2

sudu = - -[n -u ) I E(uo) as A -. 0.

Here, k' 2 = 1 -• 2 is the complementary modulus. The first of equations 53 is obtained
by using equations A2 and A5; the last twn by using the periodic properties of the elliptic
functions.

Numerical values for the elliptic integrals are calculated using the procedures given in
the appendix: k and k' are known; equations All through A13 give the theta function
parameters q and q' (these parameters have nothing to do with the angular velocity defined
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in previous sections); equations A14 and A15 give the complete elliptic integrals; u and E(u)
are then obtained using one of the following sets of equations, depending on the value of q.
If q <_ 0 .0 9 , 1 d k -1 dnis-VP/

(60)
- 2q dn u + V(

and u is obtained from equations A8 and A19; equations A24 and A25 give:

E Pagnucn-j q'sin ' 4 U
--8 + 0 (1000qle). (61)+dnu+• 2K 1 + 2q 4 cos -2 f4u

If q> 0.09, 1 dnu-NVkcnu
C' =- - (62)

2q' dn u + Vrcn u
and u is obtained from equation A23; equation A28 gives:

E(Es = '-)+an u(k' cn u + Vfdn u) + 8 q sinh 1+-K,4u + 0 (10O0•,.q" 6 ).

EK)' -+ dnu+v,0cnu eu2K1+2q o r 4u
(63)

Equations A19 and 61 are good as k --* 0 since q -- 0 at the same time. When k --. 1,
q --+ 1, which gives rise to the requirement for the q' series of equations A23 and 63. The
cross-over point occurs when the maximum error in these last two equations equals that in the
previous two. In equations A23 and 63, the maximum error occurs as CI --+ 1/2q'. As can be
seen by replacing q with 0.09 (and, therefore, q' with 0.016) in the error terms of the above
equations, the maximum error for this worst case situation will only be 0(10-14). Although
this kind of accuracy is obviously not required in the final estimates of this report, it is useful
for the calculation of equations 43 and 59 very close to the previously mentioned special case
extremes, where the equations become indeterminate.

An elliptic disk: r = 0, f > a
Only A = 0 will be considered here since, realistically, only control surfaces (ie, secondary
components) will ever need to be assigned zero thickness, and the flow field around secondary
components need not be evaluated.

For the elliptic disk, some of the inertia coefficients of equations 43 become singular. As

one might expect, they are 0(1/r), so that T (eq. 42) is finite when the singular t,, are
multiplied by the volume, V. The indeterminancy in the expressions for Vti, can be removed
by expanding them in powers of r. For this, the small r expansions of the I's, eqs. 57 and 59
with A - 0, must also be found. As r -- 0, one gets:

C 0(r~3 ), -2  +i-Ocr2), k,-2  +0 )(6):, ••, + (r2). (64)

Then, making use of the fact that u -* K and E(u) -. E when A.r -- 0:

2o'r (C2~K (5

2r
1 3 2 2--E.
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Thus, with reference to equations 43, if:

- I, tf 2 - 1 (a2 -rT 2 )2(3 -12) (66)
11- 2-11 2 E 2- 12' 5 (,2-T) O2 2, 3

then, as r -- 0, the Vt'j reduce to:

=, , Vt'
St =0' Vt12 =aO

4rOr4(• -- 0 2 ) - 4•rs(2 - a"2) V't 6 =0. (67)
.t44-= 15 [(2C2 - a2t)E - •:.2.r.] 5 15 [(C2 - 2o,2)E + O:K]'

When C --. o, the last of these expressions become indeterminate since then k -* 0 and
K --+ E. This case must be considered separately.

A circular disk: r= 0, o -

Again, A = 0 only. Here it is simplest to go back to the case of the oblate spheroid (eqs. 53
and 54 with A = 0) and let r -. 0, whence:

I, - [2 (2)] 1- + 070(r)) (+ O(r))] '-2- -- + 0(r2)
(68)w'rx,~ + OWr).

T h u s : 
I 3 t

VtThus: = t;= 0, Vt' 44 =Vt = MA, Vt'6s =0. (69)

Equations 69 are also derived by Lamb, but using a different method.
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7 Analytical Expressions for the Added Masses of a Long Slender Ellipsoid

A submtrrine's hull length tends to be large relative to its transverse dimensions. This allows
the expressions for the inertia coefficients of the previous section to be expanded in inverse
powers of the largest principal axis length. One begins by expanding equation 56:

2 -- (70)

k= 1 ( 74)

Since k -* 1 as -* oo, q' will be close to zero and the general case procedures for q > 0.09
should be followed (see equations 62 and 63). The next step is to obtain the expansion for v'k
fromequation 70, followed by that for 2c', q1, etc. (eqs. All and A12). Eventually, one can
show that, if A = ln (4a/(c + b)), then:

bc(A 1) + bc[ +3C 2 
- +3b 2) -4C2+7cb-4b2] +

c22- c(c+b)[2 (c + b)A - c - 3b]t22 b 4~

c(c + b) {4(c + b)A [4c(c + b)A - 7c2 -- 12cb - 9b2]
34a3

+ 17c + 25c 2b+ 5lcb' + 51bs} +..

t3= t 22 (a,c,b), where t22 t 2 2 (a,b,c).

(c2 - b2) 2  (c+b)2 + (c+b)2 [12(c +b 2 A 15c- 26cb- 1b 2 ]+..-.
t4 lObc I 4aW2  64a 4  [2c+bA- -2c 5 .

ba_ b [6(c+ b)2A 3c2 - 2Ocb- 5b 2 ]t~ •5c 20c

+ 0b {12(c + b)2 A [12b(c + b)A + c2 - 60cb - 25b2]

+ 3c 4 + 598ceb + 146GC b 2 + 794cb 3+ 177b 4 +""-

tee= t5s(a,c,b), where tss_ t55(a,b,c)

Equations 71 are particularly useful in showing how hull added masses are analytically
related to hull geometry. For P-nmerical calculations, one can expect the error in the expansions
to be of the order of the first neglected term. Although extensive calculations have not been
performed, the equatior.s appear to give satisfactory engineering accuracy for f/d > 6; good
accuracy is obtained for l/d > 8.

Since the present theory evaluates the ti exactly, it does not make direct use of equa-
tions 71.
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8 Replacing a Component with its Best Fit Ellipsoid

This step is as important an any so far. Benefits from the analysis of the previous sections
will be maximized if a submarine component is replaced by an ellipsoid whose geometry and
position are optimally chosen (due consideration being given to the approximate nature of
these estimations). The following analyses show the important characteristics this replacement
should model.

A hull component

A hull component replacement ellipsoid will have its largest principal axis (length 2a) parallel
to the z axis of the conventional submarine body fixed axes. Its width and height are dler-
mined by the lengths of its other two principal axes, 2b and 2c, which are parallel to the body
V and x axes, respectively. All hull components are assumed to be symmetric about a vertical
plane through their cente-lines. This plane will be parallel to the z-z plane formed by the
submarine body axes, but may be displaced from it by aa amount g. Although g will ii ).ally
be zero for the main hull component, in general it will not be for, say, an outboard r-' for
which the 'hull component' representation is appropriate.

With f0 = = 0, equations 23 simplify to:

Xi= -pVt 1 1

Kli = -PX,1q - ~~xu = -pVt44 + 92 ,• + J2Y•

Xi = -. KxiK4 = -29Zj

Y = -•Vt22  = -2 ! Y+)

V= -= -+ (72)

z = -pVtss
f= = N=-PVtee + 2 Y + 92x,

z. = -tz.b

Equations 71 show how sensitive these added mass terms are to variations in a, b, and c.
When multiplied by V = brabc, the lowest order terms in the expressions for t2 2 , ts3, t65 ,
and tee are independent of the dimension in the direction of motion ass, ciated with the
coefficients Y,, Zj,, Md , and Nj respectively; this dimension has only a small affect on these
added mass coefficients. In other words, modelling the characteristics of the maximum cross-
sectional area perpendicular to the direction of motion is of primary importance to these four
terms; modelling the volume is not important.

This is consistent wi1h the expression for the added mass per unit length of an elliptic
cylinder moving in a direction perpendicular to its longitudinal axis 2 :

irp•, (73)

where 2b is the length of the principal axis (of the cross-sectional ellipse) oriented perpendicular
to the motion. The d.mension parallel to the motion has absolutely no effect on this result.
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One can use this 2-D result in a strip theory formulation of the added masses. If B(z) is the
local breadth of the hull component, H(z) the local height as seen in a sheer profile, H(z) the
x coordinate (in conventional body fixed axes) giving the midpoint of the local height line,
and I the length of the component, then strip theory formulations of the following added mass
terms make use of the indicated integrals:

Y): I 2  fH'(z)dz =-- ac'

i 2 (Z d

SIf
Z.: I, -ab

3

Yo,K. Ij, 1,2 x)H2(z) dziLaC2

t2 16 1
Z4 seb: 43 - ) (x )dx =-"b. (.Vo, Kj: I, f(zx.) H (z) dz L6_8_

These I integrals are easily calculated from hull coordinates. The RH-S 'a of the equations give
the values of the integrals for an ellipsoid with its centroid located at (•, 9, I). Thus, the best
fit hull replac~ement ellipsoid will be one that best satisfies equations 74. Note that X and K
derivative characteristics do not contribute to this decision making process. This is because
X derivatives are less important to submarine maneuvering characteristics than the cross-flow
terms, and because Vti 4 for the hull component is invariably dominated by the other terms
and/or the sail's contribution to K1,.

In the calculations that follow, • is assumed to be a known constant, determined by the
location of the hull component. a, b, c, • and E are all unknown and are calculated from
the information provided about the hull component, as summarized in the I integrals. The
problem, of course, is that there are seven equations in five unknowns. This is resolved as
follows.

I can be calculated directly:
)2 2/4. (75)

This taken to be the average of its horizontal and vertical plane predictions:

•= (4f/Is + IW2/12)/2 (76•)

and the errors associated with this approximation are monitored with:

deiatv- ca t/Ir)/c = -( ctbut -t)/s. (77)
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Ellipsoid semi-axis lengths a, b, and c are determined by the remaining four of equations 74,
by minimizing the sum of the squares of the errors with which the equations are satisfied. Let:

16 16 18 16 a 3C2C' ac es 16 W- -I 1 e, 2-a-V- 1 , acb_ =_ -!I. T8

31$2 3 IS i 1516

Then, if I t , ] + e + , + e•,the three equations determining a, b, and c are:
clEaE cl, E (9
T O, ' -0, ='. (79)

There results:

2  C, EC=3 , C 6(1 + COs)-C 5 (1 + ) (80)

so that:

1/4 \1/4
(2551r/.I / c3I , - 31 1 + 3/Ir(16(,15) (81)121 ý, A, =b\--S/ , - 16a 1 + Is]'6/(]'2.I')

Equations 75, 76, and 81 define the best fit hull replacement ellipsoid.

Now, consider the added moment of inertia per unit length for a rolling elliptic cylinder,
which is

2 :

I p (c2 - b')'/8. (82)

Strip theory makes use of this equation in formulating the following integral, which is used for
calculating KO,:

Vt 4 4 : 14 f [H2I) B2tVI 2 d 256 - (83)

Here, again, the RHS of this --'ation is the value of the integral for the hull replacement
ellipsoid. The degree to which equation 83 is satisfied is monitored by:

2564 '- b (94)

What one really wants to do is monitor the errors in equations 72 compared to the total
added masses (written as ()T) for the complete vehicle configuration. This cun be done by
monitoring the following relative errors:

eY ,YU/(YU)T

CZ C3s4ZO,(WT

EK _C t4+ 92'E8Z + E'E2CYi,)/(KO)T (85)
+ C4

EM (-E 5Vt 55 + _* EsZb - 2c-ZbIM)

EN (-e6 Vt 6 6 + 3ýe 2 yi, + 22e:1t,)(NI)T.
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A) iaymnretric hull.

b) Ay&ametric bull with straight vertical stem.

Figure 1 Sheer plans for two standard hulls and sail with their replacement ellipsoids. The
hulls have identitol breadth plans.

Here, it is understood tbkt tQe tcided rnaases in the numerators of these expressions are those
f, .-! the hull component; also, eXcept for d4 , the ej are assumed to be small. These expressions
estimate the relative erzror iv the overall added masses resulting from fitting an asymmetric
hull component with a oi~la elliptoid. For axisymmetric hull components, the e, are all zero
ince then equations 74 reduce to four equations in four unknowns, and these can be satisfied
,xactly.

Figure 1 shows the sheeir Plans of two different submarine hulls, along with their best fit
eflipsoids. The asymmetry irk th•e hull of Figure lb is confined to the nose section, the front 20
percent of the hull length.

For the asymmetric hull, C values are:

0.= -019) Ol z= -0.020, C4 -- -0.67, c. =-0.009

and for the hull and sail tonibir.tion shown:

y 0.016, cz = -0.020,

-%0.03, •M 0.019, EN = -0.019.

Note the extremely srr.ll e6f't tbfe very large q value has on eK; this is because of the large

contribution to Ko froin tht skil. This asymmetric hull gave the lurgest C2, s, C4 values of
any hull tested. This it moot likely due to the hull's asymmetry being all at one end, while the
ellipsoid modelling it is evenly %synrnetric over its entire length.

Equations 81 are responlsjble for these low c values. An initial attempt at reducing equa-
tionR 74 to five equationis iia •J4e unknowns was made by assuming B(x)/H(z) = b1/c for all x,
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and using 14 to determine the difference between b and c; however, this resulted in C values
as large as 0.05, even though C4 was very small.

Section 10 givem an example of another hullform.

An appendage

Three types of appendages will be considered, as shown in Figure 2. Most appendages, and
certainly the sail, will need to be represented by a type I or II appendage. The type III
appendage could be useful for modelling sailplanes or, perhaps, endplates. It should not be
used to model a pair of appendages separated by the hull if interference effects are also being
modelled, since the centroid of the replacement ellipsoid would then lie within the hull and the
interference velocity at this centroid would have no meaning.

The specifications required to completely determine the geometry and location of each
type of control surface are:

T ypes I & lI: (zxJ J, XJ), 0 1 ( -421 9 ),s ( 1 3, s), (&4 1 4)' t

Type III: (z1 ,yi,z 1), 0, c), 01 s 4( , 901 cC, t.

For each type, (xJs I, z.) are the body axis coordinates of the trailing edge at the root of the
appendage. This point is also the origin of the local i, g, i axes. The - axis is always aligned
with, though usually displaced from, the body z axis. 0 is the angle the ^ axis must roll
away from the body fixed y axis to bring itself into the plane of the appendage. ( 0,,0),
i = 2,3,4,5, are the corner coordinates of the appendages in the local i, •, i coordinate system;
they determine fl. (For the type III appendage, root and tip cord lengths are specified instead
of leading edge coordinates.) Together. 0 and 01 give the orientation of the p, v axes, and of
the z', Y X1 axes. As discussed in Section 2, ( and 0 are zero when the y' and z' axes are
aligned with the body fixed y and x axes, respectively; positive rotations are determined by
the Right Hand Rule, with a rotation in 0 being applied before that in 0. The thickness to
chord ratio of the appendage is designated by t.

The centroids of the ellipsoids replacing these configurations are located at (fi, P), as
discussed below. These points locate the origins of the x', y' axes, which are aligned with,
though displaced from, the 1, v axes.

Note that the p, Y axes defined in this section have nothing to do with the confocal
ellipsoidal coordinates presented in Section 4.

For type I, 0 is determined by taking the v axis to be parallel to the bisector of the angle
formed by the leading and trailing edges of the appendage. The y' axis, also parallel to this
bisector, is allowed to be displaced from it to partially account for asymmetric end geometries.
This type I representation can also be used for triangular fins in which the points (:3, 9) and

(',004) are coincident.
For type II, the 1 axis is simply taken to be the line joining the leading and trailing edge

root coordinates; that is, 0 = tan-1 (%/& 2 ). Everything else is the same as type I. Since this
type H representation does not require leading and trailing edges in order to calculate fl, it
can accomodate all kinds of triangular fins, including those in which the points (: 2 , Y2) and
('3, PO or (z 4 , 94 ) and (0,0) are coincident.

For type III, the simplification of setting [ = 0 is made. This type partially accounts
for asymmetries in the appendages about the p axis and the line p c,/2 by strategically
locating the ellipsoid's centroid.
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1, ,.. y

Type I: nl determined by bisector. Type IL i) • t&x- 1 (O•/z).

•,C,

r-0,-1

(5195)
' 5I

Type MI. 0 =O.

Figure 2 Appendage profiles in the pl..ne gl, , j 0.
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To choose the optimum dimensions and position of a replacement ellipsoid, one identifies
those characteristics which are most desirable to model. Unlike the hull, where simultaneously
rnouitoring motions in four or all of the degrees of freedom in appropriate, an appendage pri-
tnarily affects f-ces perpendicular to its planform area. This suggests three degrees of freedom
aUe important: translation along the z' axis and rotations about the x' and V' axes. However,
ely the first two of these ae of primary importance because of the very important role ap-
pendages play in vehicle rolling motions (this assumes fl is not large). Properly modelling the
tbickness of the appendage is not important when modelling these motions. Of course, having
determined ellipsoid geometry, the added masses for all degrees of freedom will be calculated.

If c(ui) is the local chord length (perpendicular to the v axis) of a type I, II, or III
%ppendage and E(l) is the u coordinate of the midpoint of the local chord length, then the
force and moment characteristics that a replacement ellipsoid should model are:

Jo sjc'(v) du = JoIb ,is

(86)f E()c 2(v) d& P'?G2 6, J12, j 'M(du = i2'b+3 3b.

fS is is

'These integrals model the distribution of the square of the chord length along the span (S)
of the appendage, which equation 73 indicates to be an important two-dimensional added
rroaf characteristic of the cross-flows resulting from the translation and rotation of primary
imiportance. The righthand sides of the equations give the results of the integrals for an ellipsoid
with its principal axes aligned with the :', y', s' axes and its centroid at (A, •).

The following equations give the expressions that are used for c(P) and E(P) in the above
integrals:

c& -. E(P) ='+
P6 PS 2 P3 2'

Types I& l C(•'.)= - C E(v) = CP2'V1 /V©-P/ Cd

- v 2 u-2 (87)

C(P) =, -C - CS • !-I+ 2i+cs, < 0o

Type III s , 2s ,
C(v) =, - --1  •(a) = + 0 V O 0 9,'4 2j4 '

wbere, for types I and II: vo and Pb are the minimum and maximum of v, and P2, respectively,
L,, and vd are the minimum and maximum of V3 and Pi, respectively, and c, is the chord
length perpendicular to the v axis at v = Y'. Thus, the type I and II representation allows
US1 to be greater than or less than zero, and Y. to be greater than or less than P3. The type I
representation cannot be used if it results in Y. being less than Pb; type 11 must be used
instead.
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For a type I or HI appendage, the limits of integration in equations 86 are froth so to &sk.

One gets:

4O = - ((,-v,) + c.c,(Y.-P,) + c(. -,.)]/3

01 = Ko [c; -. + dc,.I..]/2,

h., = [(,,,-,,,)(,,.+2,,.+,,,) +c.e,(,,;-,,') + (,,-.)(.+2,,,~+,,)]/12

J.2= [c'(,,-,,)(,'+ v,. .+,, +, ,.,,+,) + c.c,(,.-,,)(S,, ..÷+,,, )

+

For a type MI appendage, the limits of integration are from 9S to Q4:

JO = [(C'+C 1C4 +C)94 - (cI+C1c,+C)W6]/S

01 = !1JO + [(c2+2c,,c,+Sc)(2i 4+C4 _-C)0, - (c,2+2ccg+3cf)(2&5 +cs-c 1•)•]/24

J., = [(c + 2c 1C4 +S3c), - (c +2c•cS +3c6)0S]/12

J,= [(c2,+3c~c4+6c2)Q - (c21+3c~c5+Sc6c'3] /30.
(89)

Finally, for each type of control surface:

Jo ' J I = Jo - 'P3 -" 1- (90)

The ellipsoid principal semi-axis length along the z' axis, c, can be chosen without com-
promising the above more important calculations. If t is the thickness to c.hcrd ratio of the
control surface, then the following equation models the distribution of the square of the thick-
ness perpendicular to the p-v plane.

J [tc(,)]2 d, = f0'b.

Here, again, the right hand side is the value of the integral for an ellipsoid. 140w'ver, this
integral is just equal to tNJO. Thus, for types 1, 11, and III:

c = ta. (91)

Figure 3 shows the replacement ellipsoids for two of the appendages shown in lP'igure 2.
Figure I shows the replacement ellipsoid for a sail.

To locate the appendages (ie, obtain r) one requires the inverse (which equals the trans-
pose) of the B matrix, eq. 13:

= (!) BT/ (2

Thus:

S= X, + Pcosn - Vsinrl

9 = V, + Asin cos4 + Pcosl cos$b (92)

I = zX + sin f sin 4 + P cos 0 sin 0.
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Figure 3 Replaea t allipsoids for two of the appendages of Pictit 2,

Unlike some methodas I the present theory does not account for aoyYWettic tod effectsi
on an appendage. Thene effects arn due to the flow around the tip beiog diff'ohnt, ffrtm that

around the root. The proper way of accounting for this is by analysizis tbt Oow a~round the
appendage plus its image in the bull, and calculating the forme only on that Oortioh of the
4extended' appendage which protrudes into the fSuid. However, this vmuld b'Lve t, quired a
major alteration to the present theory, which is as simple as it is only bea~u% thes added mass
coefficients cmn be related to the total energy in the Hlow. If it were noessey to calculate the

force on only a portion of an ellipsoid, then the complexity of the appendate M&lyohs would
increase substantially.

This criticism in moderated by the present method's do-emphasis of end effets. The inte.

grals of equations 86 are only concerned with 2-D aspects of the flow normaj to the appendage,
This results in a replacement ellipsoid with a larger geometric aspect ratio tbM• the original
appendage. For example, the replacement ellipsoid for an appendage with oftqafr planforrn

has b/a =1.2.
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* Optimizing Hull Ellipsoid Geometry for Interference Velocity Calculations

The intoerfrence velocity at an appendage is determined by the geometry of the hull replace-
a t eMlipsoid. In the previous section, this geometry was chosen am the best fit to the overall
lbaIL geonetry. However, the interference velocity is largely dependent on the local hull geom-
etry opposite the appendage. This section describes the way in which the hull replacement
llipooid geo• etry is modified to beet represent the local geometry opposite the centroid of an

aipondage's replacement ellipsoid prior to calculating the interference velocity at that centroid.

A result of slender body theory is that axial disturbance velocities over a slender hull are of
a smaller order of magnitude than transverse disturbance velocities. The transverse velocities
afe Primarily deternined by the local crose-sectional hull profile, while the axial velocities are
relMted to the loea slopes of the longitudinal profiles. Ideally, the optimized hull ellipsoid
would model all of these local characteristics, but compromises must be made. Since axial
interference velocities are small, no attempt is made to match the local longitudinal profile
slopes; such matching also often results in a dramatic reduction in the length of the original
buall replacement ellipsoid, so that end effects may then adversely affect the more important
transverse velocity predictions. The usual compromise that the cross-sectional profile of the
hull ellipsoid will be elliptical, regardless of the true bull profile, is also made.

The optimisation procedure proceeds as follows. To improve the prediction of local trans-
v"rs velocities, the transverse dimensions of the original hull replacement ellipsoid are adjusted
so that the local breadth and sheer profile coordinates of the hull (obtained by linear interpo-
lation between the specified profile coordinates) are exactly matched. In general, this requires
adjustments to the hull ellipsoid parameters b, c, and 1. For the longitudinal direction, a is
oWly adjusted in those instances when the appendage is too close to the stern of the hull
ellipsoid, as described below; a is never changed.

In some cause, the ait end of the original hull replacement ellipsoid may be too far forward
to allow the local bull geometry opposite the tail appendages to be satisfactorily represented
with the above modification. Where this occurs, a is usually increased in order to make the
modified hull ellipsoid terminate aft of the appendage. Then the transverse dimensions of
the ellipsoid are adjusted to match the hull profile coordinates opposite the appendage (see
Figure 5 in the next section). This usually provides a good local fit at the tail but results in a
swonwhat narrower overall ellipsoid, which is not a problem since this modified hull ellipsoid
is only used to calculate interference velocities at the tail.

If there are cases where an aft appendage is very close to or even aft of the end of the
actual hull, a is only lengthened until the end of the hull ellipsoid is within a distance d of the
actual hull end; a is left unchanged if it is already within this distance. Trial and error has
shown that a good value for d is 2 percent of the hull length. The newly lengthened (or not)
hull ellipsoid is then matched to the local hull profile coordinates at least a distance d ahead
of its end, further forward if the appendage is forward of this location.

If the end of the original hull replacement ellipsoid is aft of the end of the actual hull (a
very unusual situation), and if the appendage is very close to or aft of the end of the actual
bull, no change is rrade to the original hull ellipsoid.

At the bow, the original hull replacement ellipsoid will usually extend out beyond the
actual hull, as Figure 1 shows. An the presence of appendages very close to the bow is unlisual,

*o attempt has been made to optimize the hull ellipsoid for such a case. If an appendage is
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within a distance d of or off the forward end of either the actual hull or the original hull replace-
ment ellipsoid, no modifications are made; otherwise, the transverse hull ellipsoid geometry is
optimized as for any appendage well within the ends.

10 An Example

A computer program (called ESAM: Estimate Submarine Added Masses) has been developed
which applies the calculations described in this report to submarine configurations. Appendix B
describes its use and gives example input and output data files for the generic submarine
configuration shown in Figure 4. Input data must contain the hull sheer and breadth plan
coordinates, appendage geometry, and basic information about reference axes. The program
automatically calculates replacement ellipsoid geometry and outputs this information together
with a complete set of added mass predictions. For a complete submarine configuration,
consisting of a hull and 7 appendages, the program takes about 2 seconds of CPU time on a
VAX 11/750.

As well as sketching the submarine's longitudinal profiles, Figure 4 shows the size and
location of the best fit hull replacement ellipsoid. Figure 5 shows how this ellipsoid is modified
by ESAM for the purpose of calculating interference velocit;es at the rudder. These replacement
ellipsoid geometries, along with those of all the other components, are listed in the output file
of Appendix B.

The c values for this hullform are:

C = -0.013, C3 =0.013, 4 =-0.35, c. =0.005

and for the entire configuration:

y= -0.012, c = 0.013,

c= -0.022, eM = -0.012, CN = 0.012.

Values of c as large as 0.04 were obtained when the assumption E(x)/H(z) = b/c was used
instead of equations 81. The asymmetry in this hull is more evenly distributed over its length,
and this results in generally lower c values than for the previous hullform; however, the asym-
metry is also quite large, so that E4 has a relatively large affect on CK.

Table 1 summarizes the added masses for the complete submarine. For cemparison pur-
poses, the table also shows the predictions when hull interference velocities are not considered
and appendage thicknesses are set to zero. These conditions are all easily modelled by mak-
ing simple parameter changes in the ESAM input file (interference effects are eliminated by
assigning all appendages neutral ordera). The prime over a coefficient indicates nondimension-
alization.

The following discussion deals with the added mass terms on an individual basis. Note that
alternating coefficients in Table I must be zero because of the submarine's symmetry about a
longitudinal vertical plane, and since 9hul = 0. ESAM does not assume such symmetry exists.

For this submarine, over 20 percent of the magnitude of Xj is due to appendage thickness.
The sail is most responsible for this; although its section profile is rather thick (30 percent),
its span is not large compared to some configurations.
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a) Breadth plan.

b) Sheer plan.

Figure 4 Generic submarine and hull replacement ellipsoid.

$ORIGINAL HULL

p ... ~ OPTIMIZED HULL REPLACEMENT L.ELLIPSI

- Figure 5 Elevation view of original and optimized hull replacement ellipsoids opposite the
rudder; the optimized ellipsoid is only used for calculating interference velocites
at the centroids of the rudder replacement ellipsoids.
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1 2 3 4
Condition Complete No No Appendage Both

Theory Interference Thickness (2) i nd (3)

Xý -0.000305 -0.000303 -0.000236 -0.000236

xiYi, 0.0 0.0 0.0 0.0

X•,, Zl -0.00000331 0.00000278 -0.00000138 0.0

X1,K" 0.0 0.0 0.0 0.0

X4, M61 0.00000504 0.00000539 0.00000087 0.00000062

X, j 0.0 0.0 0.0 0.0

yi -0.0125 -0.0120 -0.0126 -0.0121

Yi, 1, 0.0 0.0 0.0 0.0

YV, K• -0.0000929 -0.0000753 -0.0000989 -0.0000796

Y4, Mj, 0.0 0.0 0.0 0.0

Y,, N• -0.0000805 -0.0000314 -0.0000935 -0.0000395

Z1 -0.00907 -0.00910 -0.00904 -0.00901

Z01, K~,' 0.0 0.0 0.0 0.0

Z•,•, Mi, -0.0001021 -0.0000583 -0.0001130 -0.0000764

Z0, N;, 0.0 0.0 0.0 0.0

KO -0.00000463 -0.00000451 -0.00000507 -0.00000493

K•, MO 0.0 0.0 0.0 0.0

K!, No' -0.00000917 -0.00000680 -0.00001004 -0.00000744

M! -0.000434 -0.000423 -0.000435 -0.000422

M0, N 0.0 0.0 0.0 0.0

No -0.000541 -0.000525 -0.000543 -0.000526

Table 1 Added mass predictions for the submarine of Figure 4. Column I presents the
predictions of the complete theory (component contributions to these values are
shown in the output file of Appendix B); column 2 neglects interference effects;
column 3 sets all appendage thicknesses to zero; column 4 neglects both interference
effects and appendage thicknesses. Coefficients are with respect to an origin located
on the hull centerline opposite the centroid of the hull replacement ellipsoid.
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Table 1 shows how Xb is entirely dependent on the modelling of both interference effects
and appendage thickness. The present theory models the hull with an ellipsoid, which has
horizontal and vertical-transverse planes of symmetry not matched by the actual hull. It
predicts that the hull makes no contribution to Xj, when, in fact, one would expect a small
contribution to be present. The size of such a contribution is unknown. However, the sensitivity
of X,, to small asymmetries, such as the negative sweepback of the sail (11..j = -,.3o), can
be determined: when (1,, is set to zero, the magnitude of Xb changes by 57 percent. For this
submarine configuration, then, the current XW prediction may only be an order of magnitude
estimate. For configurations with hullforms more closely exhibiting the symmetries of an
ellipsoid, the prediction of Xb might be better.

X4 is essentially determined by sail thickness, with interference effects being of secondary
importance. The contribution to Xq from the hull (which is nonzero because the hull centroid
is displaced upw is from the hull centerline) is an order of magnitude less than that from the
sail.

Note that 4 percent of the value of Y, is due to interference effects. These effects increase
the sail's contribution to Y, by 85 percent. Table 2 compares the present theory's predictions
of the sail's contribution to Yj, to the theories mentioned in the Introduction (which account
for neither hull interference velocities nor appendage thickness; Aucher models the sail's image
in the hull while Humphreys and Wattinson do not).

Present Theory Humphreys

w;thout neither thickness and Auchers
complete interference nor interference Watkinson4

9.7 5.2 5.8 5.2 6.0

Table 2 The contribution to 104 Y• of the sail of Figure 4.

Y÷, Nj, and Z 4 , Mb are difficult to predict accurately if they are referenced to a point
close to the center of buoyancy (CB). This is because they are being estimated i" the region of
their zeros (which, incidently, are only approximately at the CB). Of more importance is the
prediction of Y 7 /YD, N1/Y6, -Zq/Zi&, and -Mb1/Z,, the longitudinal locations of the zeros
of the coefficients.

Although Table 1 shows very little change in Zh for the various conditions, somewhat

larger, partially compensating changes are occuring in the component contributions to it. For
example, properly accounting for interference effects (ie, going from column 2 to column 1)
roughly cuts in half the contributions from the sail (due to its thickness) and the sailplanes,
while at the same time increasing by a third the contributions from the sternplanes. The effects

of accounting for thickness and interference are more easily appreciated in the changes that
result in Mb', since Mb is sensitive to the longitudinal location at which these changes take
place.

The K derivatives are dominated by the presence of the sail. Although the hull accounts
for a third of the value of K 0 , it accounts for less than 10 percent of KA and makes no con-
tribution to Kr. The cross-flow velocities associated with 6 and i result in large interference
velocity effects in the sail's contribution to K0 and Kf, but not as large as one might expect

- (cf, equations 29).
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11 Conclusions

A theory for predicting all the added mass coefficients for a multi-component, deeply submerged
vehicle has been presented. A program applying this theory to conventional submarine shapes
gives very rapid numerical predictions of the coefficients. In keeping with the way most current
experimental investigations of these characteristics are carried out, the theory ignores both the
incidence of the vehicle to the oncoming flow and time in an unsteady flow.

Added masses are calculated by summing up the contributions from replacement ellipsoids
optimally sized and positioned to best represent each body component. The hull replacement
ellipsoid is given special attention; it is sized in such a way that errors associated with the
replacement are minimized.

The theory accounts for both appendage thickness and hull interference velocities at ap-
pendages. Modelling these characteristics is shown to be necessary if reasonable predictions
of the 'off-diagonal' added mass coefficients, responsible for at least some degree of coupling
between motions in different degrees of freedom, are to be made. In addition, these character-
istics are responsible for changes to five of the principal (ie, 'diagonal') added mass coefficients
of from Ito 6percent; modelling appendage thickness may increase the prediction of Xa by
as much as 30 percent.

If more accuracy than the present theory provides is required, the theory should progress
on at least two fronts simultaneously: circulation should be properly accounted for in the flow,
so that the added masses become a function of the state variables; and, a better geometri-
cal representation of the multi-component vehicle should be developed. Since added mass is
merely a measure of the kinetic energy in the flow, properly accounting for boundary layer
growth, separation, and the flow structures they generate, all of which effectively use up or
re-distribute kinetic energy, may also be necessary. The effect of the propeller may also need
to be considered. Accounting for any of these features would require a major extension of the
present theory.

Future work should consider the effect of a free surface on the added masses. As well,
sensitivity studies should be carried out in order to establish the accuracy with which the
added mass coefficients should be known.
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APPENDIX A

Elliptic Functions

This appendix describes methods for evaluating elliptic integrals of the first and second kinds.
Extensive use is made of the theory of theta functions and Jacobian elliptic functions, as
presented by Whittaker and Watson11, Chapters 21 and 22, and WattIs, Appendix B. The
serious reader is advised to at least look over Reference 11.

The fundamental elliptic integral of the first kind is:

f dt 1ot dO (Al)u = •V(1 - t3)(1 - k~t2) = /1-- sin2 0

where k is the modulus of the integral: 0 < k < 1. These integrals are related through the
variable transformation t = sin#. If z = 1, ao that 2 = r/2, the integral is called a complete
elliptic integral of the first kind and is represented by the symbol K. The complementary mod-
ulus, k' -VfW - V, determines the only other complete elliptic integral of the first kind, K',
which is the same function of k' as K is of k.

The Jacobian elliptic functions sn(u, k), cn(u, k), and dn(u, k) (usually written simply as
an u, cn u, and dn u if the value of the modulus to be used is k) are related to each other via:

sn u+cn2 u-= 1, dn 2 u+k 2 snnu= 2 . (A2)

Also:
d d d

d-snu= cnudnu, cnu= -sn udnuu, -dnu= -ksnucnu. (A3)

Substituting t = sn u in the integrand of equation Al gives:

u =s z x z = sn u (A4)

so that the inverse sn function can be defined as an incomplete elliptic integral of the first kind.
Whereas the trigonometric functions sin u and cos u are singly periodic in the complex u plane
(they are periodic along the real axis but not along the imaginary axis), the Jacobian elliptic
functions are doubly periodic. For example, sn u = sn(ud-4mK±2niK') for m, n = 0, 1, 2,...,
leading to cells of periodicity in the complex u plane.

The fundamental elliptic integral of the second kind is:

E(u,,k) f dn'(u,,k) du (A)

or, making the substitution t sn u, followed by t = sin 0:

E(u)= V - -dt2 = f/1 - kVsin 2 dO. (A6)
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When z x 1, the integral is designated E (ie, E E(K)) and is called a complete elliptic
integral of the second kind. E' is the only other complete elliptic integral of the second kind

and it is the same function of k' as E is of k.
When numeri% work must be done, the use of theta functions is advised. The Jacobian

elliptic functions can be constructed from the four quai-doubly periodic theta functions:

sn(u,k) -- 1.* 1 (x~~�_ q I nz) - $-- dn(u,k) = -/rj•(z'q) (A7)
cnk ' 4k) V 'c t94(zq)' 0)4 (z'q

where the theta functions are more naturally defined in terms of:

Z . (A8)
2K-

The parameter q is purely a function of k, and is to the theta functions what, k is to the
Jacobian elliptic functions:

_ = ewK'/K. (A9)

Whittaker and Watson give:

t(z)-- 2q4 sinz - 2q4 sin3z + 2q2 sin5z. -

6 2 (z) = 2q cosz + 2q cos3z,+2q cos5z+ ...
03 (z) = I ,- 2q cos 2z + 2q4 cos4z+ 2q9 cos6z +....

tl(Z) = 1- 2qcos2z + 2qg cos4z - 2q' cos6z +...

Now, if:

2c0 =----V-- k (A 11)

(the latter form of this equation being the most accurate for numerical calculations when k is
very small) then Whittaker and Watson show that:

q = co + 2eo + 15eo9 + 150Eo13 + O (1000o17). (A12)

q, o --+ 0 as k --* 0 and q,2c0 --* 1 as k --* 1. Nevertheless, this equation is accurate for
surprisingly large values of k. For complete coverage of the range of k values right through to 1,
however, one replaces k' with k in equation All and then calculates q' from equation A12.

q and q' are related via:
q= e--rKIK' = ff-Ing. (A13)

With q determined, equations A14 and A15 give the complete elliptic integrals of the first and
second kinds:

2K (l+2q+2q4+2q9+2q16+...) 2

jr

2K' -1 (- y )lnq (A14)

E k,2 + 8 (q + 4q 4 +9qg9 + 16qe +...)

Legendre's relation gives E':
EK'+ E'K -KK'= •" (A15)2"
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Of course, if q' < q, it would make more sense to calculate K' from the first of equations A14
(replacing q with q1), K from the second, R' from the third, and then E from equation A15.
Since q = q1 when k = k' and K = K', q or q' need never be larger than e-" = 0.043 in the
above calculations. These procedures, then, give very good accuracy. For greater accuracy,the procedures presented by Watt using series in powers of qle can be used.

The Incomplete Elliptic Integral of the First Kind

The integral of equation Al can be accurately evaluated using Landen's transformation, a
change of variables in the integrand which, when repeated several times, results in an integral
which is closely approximated by an elementary function. Although the technique is simple
and easy to apply, a different approach will be used here- one which is in keeping with
the use of theta functions. This is because Landen's transformation is not readily extended
to •,:omplete elliptic integrals of the second kind, whereas theta functions can handle them
easily. The technique presented is at least as accurate and fast as Landen's transformation andbecomes more efficient when the other procedures of this appendix must also be calculated.

An important property of the theta functions is that:

t93(z,q) + t94(z,q) = 203(2z, q')

t9 3 (z,q) - 0 4(z,q) = 20 2(2z,q')" (A16)
This allows the procedure that produced equations All and A12 to be generalized when the

Jacobian elliptic functions of u are known. Using the last of equations A7, Watt shows that
if:

dnu- _l 0,(2z, q4 )

dn u + VV- t93 (2z, q 2 (A17)
2q cos 2z + 2q9 cos 6z + 2q25 Cos 10z + ...

1+2q'cos4z+2q•6 cos8z+...
then: 2z -1 + 2q (2cos 2z- 1)- q8 (4cos 2z-3) ... ].

q

By continually -'iubstituting this equation into itself, an asymtotic expansion for cos 2z in
powers of q '. in terms of:

Ex (A18)
q

is obtained. As q -• 0:

cos2z - C -q4'(2-4 2 ) +q 8 (3- 20C2 + 32C') - q12 (6- 76C2 + 272C4-320ý6) +O (1000qle)].

(A19)
0 < 2z < w if 0 < u < K (ie, when 0 < x < 1). Note that z can be real or imaginary. For
z real, Isi < 1 and the cnefficients of powers of q4 in equation A19 are no worse then the
coefficients of 6 .. ,i the expression for q/lo, from equation A12.

Equation A19 wr--.ts well when q -C 1. If not, let:

dn(iu,k') - -1 02 (2z',q"4 )

dn(iu, k') +7ki~ t(2'q' 4  A(A20)

dn u - cn u
dn u + kcn u
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I

where use has been made of a manifestation of Jacobi's imaginary transformation:

s sn(u, k) 1, dn(u, k)
n n(iu, k n )cn(u,k)' cn(iu,k')- cn(u,k), dn(iu, k') = cn(u, k) (A21)

Then, with:

z1 . 'L • (A22)
2K1 q

it follows that, as q' 0:

cosh (j2u4 J I - q14 (2 - 4#)+ q Is (3 - 2OC" + 32C")

- q"' (6- 76r" + 272C" - 320C"') + O(1OOO ISq"1)]. (A23)

In the range 0 < u < K, C' varies from a minimum of approximately 1 at u = 0 to a
maximum of 1/2q' at u = K. Thus, equation A23 will not be as accurate as its counterpart,
equation A19; however, between the two of them, the complete range of k values can be
accurately covered.

The Incomplete Elliptic Integral of the Second Kind

Whittaker and Watson show that the incomplete elliptic integral of the second kind can be
written:

E(u) = u - +
~UK+ 2K t94(z)

where t0'(z) is the derivative of t94 (z) with respect to z. This expression can now be evaluated
using equations A10. However, there is a more efficient and accurate method available.

By taking the derivative -)f the logarithm of the first of equations A16 and the last of
equations A7, Watt shows that:

t_)_ 2K klsnucnu (2z,q4)(A25)

t94 (z) 7 dnu + t9 8 + (2z, q4 )

Thus, if the Jacobian elliptic functions of u are known, the number of terms that need to be
evaluated in a calculation of E(u) can be substantially reduced. This is particularly true if u
is imaginary, as in the next paragraph.

Equation A25 works well if q < 1. If it is not, another form of Jacobi's imaginary
transformation can be exploited:

E(u) = u + snudnu + iE(iu, k'). (A26)

cn U

E(iu, k') is then expanded in a manner analogous to equation A24:

E(iu,k') = T-, + -(A27)_

KV' 2K 2 4 (z"q') (A27) q

Hence, for q' -C 1:

u ( E' snu(k2cnu+ +/-dnu) +2 r Of (2z',q'4 ) ("- -) + 2i•g • ,•o 3 •4 (A28)

u)nK'u+ dnu+v-cnu 2K1t3 (2z',q )
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APPENDIX B

Program ESAM User Instructions

This appendix gives the user instructions and describes the data input and output formats for
ESAM (Estimate Submarine Added Masses), a FORTRAN 77 program which performs the
calculations required by the theory developed in the main body of this report. After compiling,
linking, and run. ing the program, the user is asked to give the name of the input file which
must contain all the data for a complete run. The user sirr.ply enters this file name; except for
possible error messages being written to the designated output unit (the terminal on a VAX),
there is no other interaction with the user. Output is sent to a newly created file, ESAM.OUT.
If for some reason the program terminates, ESAM.OUT vill show how many components were
successfully processed before termination occurred. If an error message is written to the screen
by ESAM, it will also be written to ESAM.OUT.

B.1 Input Format

This section describes the data (and the order in which they must occur) that the input file
must contain. In general, data Eihould appear exactly as specified in the input format summary;
spaces should not be left between lines. However, since READ statements in ESAM are free
format (except for those reading character .onstants), numerical data can be split between
different lines if desired. ESAM does its best to test the input data to make ri're the rules
described below are being followed; if they are not, an appropriate error message is given.

Input format summary

NC
"•DIR
XOFF
ZOFF
ELL
TYPE COMMENT optional; may
XSHIFT.YSHIFT.ZSHIFT } with/.
N
XOB(IO) ,H(XO) ,HBAR(X0) Only need to assuming type is H.
X1,B(X1) .H(X1) .HBAR(X1) enter Xi ,B(Xi)

if profile isJ designated
NBC(XN) ,H(IN) ,HBAR(XN) axiSyrimetric.

TYPE COMMENT
TYPE C0?4ENT }assuming type is I or 2.
II ,YI,ZI ,PHI ,XH2 4,YH4,C4,XH,4YH4C.T
TYPE COMMENT}
X1.YI.Zl.PHI.C1.XH4.YHI4.C4.XH5.YH5.CS.T asmn tp sI

TYPE COMMIENT • assuming type is E.
A.B.C.XBARYBARIZBAR,PHI. OMEGA J

Various TYPEs of components are added to this list, as required.
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Definitlon of wrlebes

NC An integer specifying the number of components which make up the submarine and

for which data is about to be specified. Array dimensioning limits NC to, at most, 20.

IDIR The added mass coefficients output from this program are always calculated rela-
tive to the conventional body fixed system of axes used by the DTNSRDC standard
submarine equations of motion$. Although, in general, this will also be the coor-
dinate system used to input submarine geometry, provision is made for input data
x coordinates that increase opposite to the standard sense. Note that all data input
during a run of the program must be referenced to, an identical set of input axes,
whatever they may be.

IDIR is a character specifying the direction of increasing z for all iuput data: if
XDIR is P (for positive), the coordinate system for the input data will be the standard
body fixed system of axes, with z coordinates increasing fromn stern to bow; if XDIR
is N (for negative), the input coordinate system will still be the standard body axes
except that the x direm.tion will be reversed so that z coordinates increase from
bow to stern (V and x coordinates always increase going to starboard and going
downwards, respectively, regardless of IDIR being P or N).

The summary of geometrical information written to ESAM.OUT is also con-
verted to the standard axes used by the added mass coefficients. The next paragraph
specifies how the origin of this system is determined.

XOFF All data must be input relative to the same origin, which can be located anywhere
ZOFF that is convenient. XOFF and ZOFF (z-offset and a-offset) are real constants that are

subtracted from the input : and z coordinates to give a new origin for the body
fixed axes to which all output is referenced. Note that the input and output data
have identical V axis origins.

Sometimes it is desirable to locate the output ixes origin at the center of
bouyancy, even though knowledge of its location is unknown beforehand. Although
ESAM does not accurately calculate this point, the location of the centroid of the
replacement hull ellipsoid closely approximates it. If the user wishes to use either
or both of the x and z coordinates of this location for specifying his output origin,
he nes-i only input C (for centroid) for either or both of X0FF and ZOFF If this is
done, the centroid of the first component entered locates the new origin, so this first
component must represent the hull.

ELL A real constant equal to the hull length; its magnitude is used to nondimensionalize
the added mass coefficients. If ELL = 0, nondimensionalization does not take place;
in this case, the added masses need only be multiplied by the fluid density (in units
consistent with those of the input data) to obtain the actual added masses.

ELL is also used to determine the format in which the added mass coefficients are
written to ESAM.OUT: if ELL is greater than zero, the coefficients are written via
the edit descriptor F15.10; if ELL is less than or equal to zero, the descriptor 1PE15. 8
is used. Thus, the user chooses either F or E formatted output for nondimensionalized
coefficients by making ELL positive or negative. Dimensional coefficients are always
output in E format.
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Subsequent records contain component information. The rules given below will determine the

order in. which some components should be entered.

TYPE This is a character constant of length 2 and it precedes the input format for al
MYE@ of components. The first character specifies the component type. Component

typ. are:

H (for Hull),
I (for type I appendage),
2 (for type 11 appendage),
3 (for type Ml appendage), and
E (for Ellipsoid).

The second character speciying the TYPE is the order. It is used to determine if
interference effects are to be accounted for on this component. There are 3 ordera:

P (for Primary),
8 (for Secondary), and
N (for Neutral).

A primary component can only be of type H or E; it determines the interference
velocity field at all secondary components entered between it and the next primary
component; its added masses are not corrected for interference effects from any
other component. Although ESA.M does not prevent the user from entering more
than one primary component, to do so makes little sense since it implies more than
one independent configuration is being processed at once, and ESAM sumns all the
component added masses into one total added mass.

A secondary component can be associated with any type; it must be preceded
by a primary component.

A neutral component can also be associated with any type; it has no effect on
any other component; it is not corrected for interference effects; it can be entered
anywhere amongst the other components.

There can be any number of primary, secondary, and neutral order components
during a run, up to a total of 20 (limited only by array dimensioning). Of course,
primary and secondary components must be ordered in a meaningful way.

Examples of various TYPEs are: HP, HS, HN, IS, 3N, and EP. The first 3 compo-I
nent designations, here, indicate hull components which are of primary, secondary,
and neutral order., respectively. The fourth component is a type 1 appendage of

secondary order. The fifth is a type 3 appendage of neutral order. The last one
U specifies an ellipsoid of primary order.

COMMENT A character constant of length 12; it must be on the same line as TYPE and

separated from it by 2 characters. COMMNT is any phrase the user wants to use
to describe the associated component; it is only used for descriptive purposes in
ESAM.OUT, and may be left blank. Actually, ESAM reads in 'TYPE COO(ET' asa
single constant of length 16.



If the TYPE designation specifies type H, then 9 and (1 are set to zero and the following input
format must follow TYPE, regardless of the order:

XSHIFT.YSHIFT.ZHIFT Real constants specifying, in the usual input coordinate system,
a shift to be applied to the hull component coordinates. ISHIFT

and ZSHIFT are effectively added to the values of Xi and BDARt(X) defined below.
9 is equated to TSIUFT. Although these data are unnecessary for a primary hull
component, which can make uns of the [OFF and ZOFF inputs and for which 9 is
invariably sero, they are convenient for secondary components which are not hulls
but instead are pods or some other cylindrical type of body mounted out from
the hull. If the shift coordinates are used with a primary component, one should
ensure that subsequent secondary components are properly positioned relative to
the shifted primary component; unlike 10FF and ZOFF, the shift coordinates are
only applied to the hull component they are associated with.

Since use of the shift coordinates will usually be unnecessary, this record may be
bypassed, in the usual way for list directed input, by replacing it with a /. Bypassing
the record is equivalent to setting the shift coordinates to zero.

N An integer specifying the number of sections the component is divided into for the
purposes of numerically specifying its profile. Note that N sections are delineated
by N + I stations and that profile coordinates must be given at each station. Array
dimensioning restricts N to being less than or equal to 100.

XO.B(10) .H(IO) .fBAR(IO) Here, Ii is the r coordinate of the ijh axial station; it must
M1.3(II) .1(11) .HBAR(I1) not decrease as its index increases. Ii will increase from stern

to bow if MDIR is positive and from bow to stern if IDIR is
IN.B(IN).H(XN),BAR(XN) negative.

B(Xi) is the hull component's local breadth; it is assumed
to be symmetrical about y = 9.

H(RI) is the local height as seen in a sheer plan; it is not assumed to be
symmetrical in any sense.

HBAR(xi) is the x coordinatte of the mid-point of the local height, H(Xi).
MUMR ((i) can be used to describe two things: 1) the "camber* of the elevation
profile and 2) the height of the component above or below the input z axis. Al-
though this latter capability allows the component to be raised or lowered relative
to the input x axis, the simplest way to do this is to use ZSHIFT.

Note that the N + 1 stations need not be evenly distributed over the hull com-
ponent. Profile coordinates can be concentrated in areas of high curvature, such as
the nose, and eliminated from regions of zero curvature (ie, where the breadth and
sheer profiles are straight lines). This is because the only approximation made in the
numerical integration of the integrals of equations 74 and 83 is that the input profile
coordinates are all joined by straight lines; if in fact they are, then the integrals are
evaluated exactly. Thus, a hull component with a long cylindrical mid-body section,
for example, only needs to have the mid-section profile specified at its endpoibts.

For axisymmetric profiles, only X1.B(X1) need be entered. However, ESAM
must first be told that this will be the case; this ii done by appending an S (for -

axiSynmmetric) to the TYPE. For an axisymmetric hull component of primary order,
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'TYPE COUMW r' might look like 'HPS HULL ',with only 1 character sepo-
rating BPS and HULL. For the axisymmetric case, ESAM aiways looks for Ii .B(X)
at the beginning of a new record. Thus, if a user wants to specify an axisymmet-
ric huiiform using an asymmetric data file, deletion of the W1(0) llHlBA ) data is
unnecessary if it is on the same lines as the Ii .B(X) data. Designating the hull
component as axisymmetric has two other minor consequences: 1) ESAM's calcula-.
tions will be a little quicker, since certain simplifications can be made; 2) the errors
specifying the accuracy with which the replacement ellipsoid is able to model the
true hull component are not written to ESAMOUT, since they are always zero for
an axisymmetric profile.

It is permissible to input axisymmetric hull components using the asymmetric
format.

This complet-a the hull component input data. Now, the input file will either terminate or the
next entry will be another TYPE variable, followed by its associated component information.

If the TYPE designation specifies a tpe 1 or 2 appendage, then the following input format
must follow TYPE. The user is reminded that the only difference between a type 1 and 2
appendage is in how the sweepback angle, 0, is calculated: for tpe 1, f) equals the sweepback
angle of the bisector of the angle formed by the leading and trailing edges; for type 2, fl is
the angle between the line joining the leading and trailing edge root coordinates and the body
X axis.

XI.YI.ZI.PHI.XH2.YH2,XH3.YH3.XH4.YH4.T These are all real constants. Because of the
free format READ statement, they can be
entered on different lines if the user wishes.

X .Y1 .Z1 are the coordinates of the appendage trailing edge at the root, using
the usual input coordinate system.

PHI is the angle 4 (in degrees) the V axis must rotate about the : axis to
bring it into the plane of the control surface; for a sail, for example, PHI could be
input as -90 or 270.

112,YH2 are the coordinates (%s,92,) of the leading edge at the root, using an
unswept local coordinate system with its origin at (Xl .Y1 ,Zi), the XH axis point-
ing towards the bow (parallel to the body x axis), the YH axis pointing outwards
towards the appendage tip, and with the ZH axis perpendicular to the planform of
the appendage (see the text, Figure 2).

XH3 ,H13 are the local coordinates (*s, s) of the leading edge at the tip.
114. H4 are the local coordinates (&4, 94) of the trailing edge at the tip.
T is the thickness to chord ratio, t, of the section profile.
Note that triangles can be input in this format. If (XH3,YH3) is coincident

with (XH4.YH4), processing continues normally. If (X12.IT2) is coincident with
(Ills . YE) or if (XH4. YH4) is coincident with (0.0), then the appendage is automat-
ically converted to a type 2 appendage, if it isn't already, so that tl is taken to be
the argument of the (IR2.1Y12) vector.

This completes the type I and 2 appendage component input data. Now, the input file will
either terminate or the next entry will be another TYPE variable, followed by its associated
component information.
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If the TYPE designation specifies a type 3 appendage, then the following input format must
follow TYPE. The user is reminded that the sweepback angle, 11, is taken to be zero for this
appendage. As noted in the text, a pair of appendages separated by the hull should not be
represented with a type 3 appendage if one wishes to account for interference effects.

X1,Y1,Z1,PHI.C1.XH4,YH4,C4,XHSYHS.C5.T These are all real constants; they can be
entered on different lines if the user wishes.

X1 ,Y1 .Zi are the coordinates of the appendage trailing edge at the root, using
the usual input coordinate system.

PHI is the angle 0 (in degrees) the y axis must rotate about the x axis to
bring it into the plane of the control surface; for a sail, for example, PHI could be
input as -90 or 270.

C1 is the root chord length c,, assumed parallel to the body x axis.
XH4,YH4 are the coordinates (-4,94) of the trailing edge at the upper tip,

using an -'nswept local cooidinate system with its origin at (Xl ,Y1. Zi), the XH axis
pointing towards the bow (parallel to the body x axis), the YH axis pointing towards
the upper tip, and with the ZH axis perpendicular to the planform of the appendage.

C4 is the upper tip chord length c4 , parallel to the body x axis.
XH5 .YH5 are the local coordinates (&5, Or,) of the trailing edge at the lower tip

(so YH5 will be negative).

C5 is the lower tip chord length c5 , parallel to the body x axis.
T is the thickness to chord ratio, t, of the section profile.
In this discussion, the terms 'upper' and 'lower' tip were used to orient the

reader. These are really misnomers, however, since PHI can be used to rotate the
planform to any desired angle.

This completes the type 3 appendage component input data. Now, the input file will either
terminate or the next entry will be another TYPE variable, followed by its associated component
information.

If the TYPE designation specifies a type E component, then the following input format must
follow TYPE. This component is an ellipsoid which the user can place anywhere he likes. Since
it is already an exact ellipsoidal representation of itself, ESAM does not replace it with any
other geometry. If this component is of primary order, then PHI and OMEGA must be zero.

A,B.C,XBAR.YBAR.ZBARPHIOMEGA These are all real constants; they can be entered on
different lines if the user wishes.

A. B, C are the ellipsoid principal semi-axis lengths a, b, c: A is associated with
the z' axis (the z axis if OMEGA = 0), B with the y' axis (the y axis if PHI =
OMEGA = 0), and C with the z' axis (the z axis if PHI = OMEGA = 0).

XBARYBARSZBAR are the coordinates, using the usual input data coordinate
system, of the ellipsoid's centroid.

PHI.OMEGA are the angles 0, and 0 (in degrees) defining the orientation of the
ellipsoid principal axes relative to the body fixed axes: PHI is the angle the y' axis
has rolled away from the y axis; after applying this roll, OMEGA is the angle the
X/ axis pitches up from the x axis; positive angular deflections are defined using the
Right Hand Rule. These angles are thoroughly discussed in Section 2 of the text.
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This completes the type E component iuput data. Now, the input file will either terminate or
the next entry will be another TYPE variable, followed by its associated component information.
Example Input format

The data shown below is a listing of the input file for the generic submarine described in

Section 10 of the text. The input data origin is implicitly defined as the nose of the submarine
by XDIR, the setting of the hull shift coordinates to zero, and the first line of the hull profile
data. Note that commenting text in the data file, other than the COMMENT input, is not read
since ESAM will have finished reading the record before getting to it.

8 # of components making up the submarine.
n Input data x-coordinate increases going from bow to stern.
c Output data x-axis origin is opposite centroid of ellipsoid 1.
0.0 Output data z-axis origin is coincident with input origin.
453. Hull length used for nondimensionalization.
hp HULL Component 1 is a hull component of primary 'order'
/ shift coordinates are set to zero.
23 # sections -> 24 stations.
0. 0. 0. 0.
1. 6.7 8. 0.02
2. 9. 11.2 .04
4. 12. 16.1 .08
8.5 17.4 21.5 .17
17. 22.7 27.4 .35
25. 26.2 31.2 .51
35. 30.7 33.7 .72
73. 38.1 39.7 1.5
97. 39.6 41.4 1.26
102. 40. 42.1 .9
108. 40.4 44.2 0.
168. 42.6 49.9 -2.5
267. 40. 49.6 -2.7
290. 38.4 49.4 -2.8
299. 37.7 46.9 -2.
310. 36.4 42.9 -. 5
313. 36. 40.6 .2
317. 35.6 37.4 1.7
353. 29.9 32.9 .75
388. 21.2 24.9 .6
410. 14.9 18.2 0.
440. 6.5 6.8 0.
453. 0. 0. 0.
Is SAIL COMPONENT 2
168. ,0. ,-27.5 -90. 50. ,-5.4 50.,26.1I, 3..,28.1 .3
is STBD SAILPLN 3
129. ,7.73,-40.1 0. 20.5.-2.02 15.5,15. 6.0.15. .15
Is PORT SAILPLN 4
129.,-7.73.-40.1 180. 20.5,-2.02 15.5,15. 6.0,15. .15
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Is TOP RUDDER 5
440.,0..-3.4 -90. 17.65.4.02 14.35.18. 0.,18. .15
Is BOT RUDDER 6
440.,0..3.4 90. 17.65.4.02 14.35,18. 0.,18. .15
In STBD STRNPLN 7
443.,3.,0. 0. 29.,4.1 19.,22.3 8.,22.3 .15
Is PORT STRNPLN 8
443.,-S.,0. 180. 29..4.1 19..22.3 8.,22.3 .15

B.2 Output Format

The output file (ESAM.OUT) containing the output from a run using the above input is shown
on the next page. It uses a full 132 character line.

Interpreting this output file is, for the most part, straightforward. Except for the listing
of XOFF and ZOFF in line 5, all output is specified relative to the standard body fixed system
of axes. The section giving the 'EQUIVALENT ELLIPSOID REPLACEMENT GEOMETRY' may need
some explanation. Ignoring the last line and the lines beginning with 'Optmzd comp. .

this section is simply listing the characteristics of the replacement ellipsoids for the specified
components. These characteristics determine the added masses of a component, neglecting
interference effects. The last line of the section gives the errors associated with fitting the
asymmetyric hull with a single ellipsoid, as defined in Section 8 of the text by equations 85
and, for EXbar, equation 77; this line is not printed for a hull component which is designated
axisymmetric, nor for one of secondary order.

If a component is of secondary order, then interference effects are determined by the
velocity field around the replacement ellipsoid of its associated primary component. However,
if the primary component is of type H, this replacement ellipsoid geometry is first optimized
to reflect more accurately the local hull component geometry opposite the x location of the
secondary ellipsoid's centroid. It is this primary ellipsoid optimized geometry that the lines
beginning 'Optmzed comp ... ' are listing; only changes to the original replacement ellipsoid
geometry are noted in this row. This optimized geometry is only used for calculating the
interference velocities for the secondary component of the previous line; it has no effect on the
added masses of any other component, including the primary component itself. If the primary
component is of type E, no optimization takes place.
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