
Ii R I. \ -M k- 311

IE\IOR ANDUM ]REPORT BRL-TNIR-3724

1938 - Serving the Army for Fifty Years - 1988

AD-A2O3 I-l 49

EFFECTIVE IGNITION INETICS FOR LOVA PROPELLANT

Nl. S. IMILLER
A. J. IKOTLAR

A. COHEN
D. L.. PUCK ETT
H. E. HOLMES

K. TROUNG 

T
s, ELECTEDECEMB3ER 198-, MY.

0 JAN 1989

APPROVED FOR PUBLIC RELEASE. DISTRIBU TION UNIMI\ITED)

'U.S. ARMlY LABORATORX COMMAIXND

BALLISTIC RESEARCH LABORATORY

ABERDEEN PROVING GROUND, MARYLAND

89 1 1301) 050



DESTRUCTION NOTICE

Destroy this report when it is no longer needed. DO NOT return it to the
originator.

Additional copies of this report may be obtained from the National Technical
Information Service, U.S. Department of Camnerce, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department
of the Army position, unless so designated by other authorized docunents.

The use of trade names or maifacturers' namen-s in this report does not con-
stitute indorsement of any carmercial product.



t
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE FormAovdOMB No. 0704-0 IM

Ia. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT
DISTRIBUTION APPROVED FOR PUBLIC RELEASE;

2b. DECLASSiFICATION / DOWNGRADING SCHEDULE UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

BRL-MR-3724
6a. NAME OF PErFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
US Army Ballistic Research (f applicable)

Laboratory [ SLCBR-IB

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Aberdeen Proving Ground, MD 21005-5066

Ba NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c- ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT ITASK WORK UNIT
61102A AH43

11. TITLE (Include Security Classification,

EFFECTIVE IGNITION KINETICS FOE' LOVA PROPELLANT

12. PERSONAL AUTHOR(S) /
M.S. Miller, A.J. Kotlar, A. Cohen, K. Truong, D.L. Puckett, H.E. Holmes
13a. TYPE OF REPORT 13b. TIME COVERED / 14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT

Final FROM Dec 84 TO Sep 8

16. SUPPLEMENTARY NOTATION //
Published in Proceedings, 1986 JANNAF Combustion Meeting.

17.1 COSATI CODES 18. SU JECT TERMS (Continue on reverse if necessary and identify by block number)
I FIELD GROUP SUB-GROUPV
I'j V0 Kinetics, LOVA Propellpnt, Ignition, Spall,

19.1pSTRACT (Continue on reverse if necessary and identify by block number)

Reactions leading to the ignition of nitramine propellants by hot metal fragments have been
idealized as a sequence of two global reactions, the first endothermic and the second
exothermic. The effective kinetics parameters were obtained by a nonlinear least squares
fit of the theoretical expression for heat released (or absorbed) from an overall reaction
to the endotherms and exotherms measured for the propellant in a DSC. Good representations
of the data are found for a wide range in heating rates and inert gas purge flow rates. The!
simplified descriptions of the reactive heat release are proposed for use in a theoretical
conductive ignition model being developed by K.K. Kuo.

_b

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
JUNCLASSIFIED/UNLIMITED Ya SAME AS RPT. C DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
DR. MARTIN S. MILLER 301-278-6156 I R--

DD Form 1473, JUN 86 Previous editions are obsolc'c SECURITY (LASSIFICATION OF THIS PAGE

UNCLASSIFIED



TABLE OF CONTENTS

I . B A C K G R O U N D ............... . . . . . . . . ... . . . . . .. .. . .... . .

I I. EXPERIMENTAL DETAILS ................................ 5 . . 5

III • ANALYSIS ..... L ..... S.. .. .............. ... .. ..... .... .... ...6IV. RESULTS ..... ...... ....... ...o- ...... ..... ...... . . . . . . . . .8

V . CONCLUSIONS. .... . ... . o. .... ..... o .. .... .9

REFERENCES ................. .................. 15

DISTRIBUTION LIST ....... . . ooo ........ ................ 17

Accession For

NTIS GA&I

DTIC TAB
Un2:'n ouflced
Ju-t ifi cat io

Distrilbut i on/-...By

Availability Codes
Avail and/or

Dist Special

3



I. BACKGROUND

The most probable mechanism for initiating on-board ammunition stores in
armored vehicles attacked by shaped charges or kinetic energy penetrators is
thought to be the ignition of propellant by hot spall fragments. Substantial
reduction in the sensitivity to hot fragment ignition has been demonstrated

for certain nitramine formulations known as LOVA propellants. The degree of
sensitivity for a given oxidizer has also been shown to depend strongly on the
type of binder used even though the binder is a relatively minor ingredient.

Simple correlations have not been found, however, between binder properties
and vulnerability characteristics of the corresponding propellant. In fact,

observations of ignition by hot fragments under controlled conditions suggest
that it involves a dynamic mix of processes such as phase changes, exothermic

decomposition, solid phase heat conduction, liquid phase heat conduction and
convection, and radiative heat loss. In order to understand the relative

importance of each of these processes, a comprehensive model of the conductive
ignition event has been developed by Kuo, et al. 1 This model has extensive

input data requirements such as mass densities, emissivities, thermophysical
properties, and reaction rates for each phase. The present study is an
attempt to idealize and quantify the reactions pertinent to hot fragment
conductive ignition.

An effort to identify elementary reactions and measure their reaction
rates was ruled out as probably infeasible from a technical standpoint and
certainly inappropriate to the scope of the modeling effort and the resources
available. Since the principal interest in these reactions is as thermal
source (or sink) terms in heat transfer equations, Differential Scanning

Calorimetry (DSC) was chosen as a suitable technique for measuring reactive
heat exchange of decomposing propellant in contact with a metal surface.
Operated in ramp mode, this instrument will increase the sample temperature
linearly with time at rates up to 100*C/min, measuring the heat absorbed or
liberated to maintain the ramp temperature. Although ignition by hot
fragments involves much higher instantaneous heating rates, these high rates
cannot be sustained for any appreciable time due to conductive and convective
loss mechanisms. Observations of hot fragment ignition under controlled
conditions indicate it takes some 10 s or more to establish ignition, thus the
100*C/min limitation may not be too restrictive.

II. EXPERIMENTAL DETAILS

The propellant used in this study, Lot #1951, has the same formulation as
XM-39 (76% RDX, 12% CAB, 7.6% ATEC, 4% NC, and 0.4% EC) except it has a
unimodal distribution of RDX particle sizes (about 5 micron average). The
test samples were microtomed to a uniform thickness of about 0.4 mm with mass

of about 1 mg (±5%) and placed in covered and crimped pans which were
perforated in four places with a straight pin. The pan perforations allow for
pressure release while retaining the bulk of any decomposition heat resulting
from reactions occurring at or very near the propellant surface. Thus, the

technique does not distinguish between energetic reactions in the solid,
liquid, or gas phase, the goal being only to measure net "localized" energy
release (or absorption). Preliminary tests performed in pans with only two

perforations gave total exothermic heats about 10% higher than the four hole

contiguration. This may be due to retention of heat from gas phase reactions

that otherwise wo,,ld have eacaped or, alternatively, het-erogeneouis ratalysis
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of condensed phase reactions by gaseous products. Increasing the sample mass
by a factor of two similarly increased the exothermic heat by about 10%.

Since the larger mass would release more gas during decomposition, the effect
may be similar to decreasing the ventilation hole area. No differeaces were

observed for samples of different thickness but same mass, so the sample is
probably small enough to achieve adequate thermal equilibration in the

instrument.

Experiments were performed in a Dupont Model 910 DSC with Model 1090
controller with the pressure release valve fully open to insure one atmosphere

operation. A nitrogen purge flow was maintained through the cell at rates of
10, 50, and 150 cc/mmn as measured by a rotameter. The rotameter was

calibrated using a soap-film bubblemeter and stopwatch. Data was taken for

heating rates of 10, 20, 40, and 100 0 C/min.

The absolute heat flow measured in the DSC is calibrated by adjusting the
cell constant, which in turn is measured by using the DSC to determine the
heat of fusion of a standard substance. The temperature range pertinent to
the propellant thermograms is roughly from 180-3000C. Tin was chosen as the

standard in this work as its thermogram spans the range 230-260*C. Thus
calibrated, the DSC was used to measure the exotherm for RDX at 8 *C/min with
a purge gas flow rate of 200 cc/min. A value of 602 cal/g was obtained which
agrees well with the value 613 cal/g reported by P.G. Hall 2 under the same

conditions.

III. ANALYSIS

The DSC thermograms for the LOVA propellant used here typically exhibit
an endotherm of about 20 cal/g starting at about 1850C followed by an exotherm
of about 300 cal/g which peaks at about 2600C. At the outset of this study

the intention was to treat the exotherm as a simple global reaction and the
endotherm as a phase change. Ultimately, both were described as separate
single reactions, each with its own set of kinetic parameters. Thus, the
heart of the analysis is the determination of a set of global kinetics

parameters which best represents a thermogram feature (such as the
exotherm). The energy released in the exotherm is idealized as resulting from

a single hypothetical first-order reaction. It is not essential to assume
first order, but it turns out to be close to optimal and simplifies the
discussion here. If m is the reactant mass at any given time, then

-(dm/dt) = k(T) m(t) , where k(T) = A exp(-E/RT). (1)

A is the Arrhenius preexponential factor, E the activation energy, and R the
universal gas constant. The temperature of the sample in the DSC, operated in
ramp mode, is governed by

T(t) = To + rt (2)

where To is the starting temperature, r the selected heating rate, and t the
time elapsed after commencing the ramp. For this relationship Eq. (1) may be
integrated to give

m = m0 exp T- i exp (-E/RT') dT'] (3)
r T T6



where m0 is the initial reactant mass. A linear relationship is assumed
between the cumulative heat released in this reaction up to any given time, q,
and the mass that has reacted, (mo-m) up to that time, i.e., q =Q (m -m),
where Q is the mass specific total heat release (in cal/g) for an individual
run. Q is determined for a given run by integrating the instantaneous power
measurement over the entire temperature interval. Thus, the instantaneous
power, p = (dq/dt), measured in the DSC is related to the kinetics by

p = Q (-dm/dt)

= Q m A exp (-E/RT) (4)

where m is given by Eq. (3).

In this work the kinetic parameters were fir~t determined by a nonlinear
least squares fit of Eq. (4) to DSC exotherm data. This piocedure was applied
to each exotherm in order to ascertain if the kinetic parameters varied with
heating rate or purge flow rate. The best single set of parameters was
obtained by fitting Eq. (4) to a composite of all 36 exotherm data sets.

Having also determined the best single set of parameters for the
endotherm by the same procedure, the two reactions were coupled by assuming
that the products of the endothermic reaction are the reactants for the
exothermic reaction. Thus, LOVA propellant decomposition is viewed as a two-
step reaction sequence A + B + C, where A is the unreacted propellant, B is
the product of the endothermic reaction, and C is the product of the
exothermic reaction. Observation of the decomposition under a temperature-
ramped hot-stage microscope suggests that one can associate A with the solid
phase, B with a liquid, and C with a gas. One describes this sequence by the
coupled rate equations

(dmA/dt) = - k I mA

(dmB/dt) = - k2 mB + k I mA

where k and k2 are the conversion rates for A + B and B + C, respectively.
For a given temperature ramp these equations have the solutions:

mA = m0 exp f- T [k (T')/r] dT'} (5)

T 1

mB = m0 exp {- T [k (T')/r] dT'} II (6)
T0 2

where

I, = f~ T[kl(T')/r] exp {- fT' [k(T")/r]dT"} exp {T' dT'
T 0 1 0 TO 1k 2(r")/r]d"}

and the power generated by the sample is given by

p = Q, (dmA/dt) - Q2 (dmB/dt) " (7)

7



Eq. (7) describes the complete thermogram in terms of the two-step reaction
kinetics parameters.

Thus, using Eq. (4) as the fitting function, the kinetics parameters for

the exotherm (or endotherm) can be determined by a nonlinear least squares

procedure applied to data from a single DSC run or to a composite data set
consisting of a number of separate runs. The former strategy reveals if the

kinetics are varying with heating rate or purge flow rate, and the latter
gives the best single set of kinetics to represent all of the runs. The best

kinetics sets for the endotherm and exotherm can then be used in Eq. (7) for

comparison of the formal two-step reaction model to the complete DSC

thermograms.

IV. RESULTS

Table 1 summarizes the kinetics parameters obtained for each individual
exotherm as a function of heating rate and purge flow rate. Three runs were
done at each set of conditions. No statistically significant variation of

either specific heat release or activation energy with heating rate or gas
flow is evident. Analyses of some runs were also done with the reaction order

as a fitting parameter. Values ranged from 0.8 to 1.5 and, as the quality of
fit was not greatly improved, it was decided that a uniform value of 1.0 would

be used so that activation energies could be compared directly for different
runs. The average activation energy for all these separate exotherm runs is

45 kcal/mole.

Since the kinetics do not vary significantly with heating or flow rate,
it was decided that the best single set of kinetics parameters to describe all

of the data sets would be obtained by doing the least squares analysis on a
composite data set composed of all the data from the individual runs. To
eliminate biases due to different heating rates and sample masses, the fitting

function was taken to be Eq. (4) divided by m0 with 0 replaced by the average

reaction heat reported in Table 1, and each point weighted by (1/rQ). The
results of the fit for both exotherm and endotherm are given in Table 2.

During this phase of the work a slight trend in preexponential factor with

heating rate was noted for the exotherm. Expressing this dependence as

A = a rb

in the fitting function, the parameters a and b were obtained simultaneously

with the activation energy. These parameterized kinetics decrease the

standard deviation of the fit by almost a factor of 2 at the expense of a
slightly more complex kinetics expression requiring the instantaneous local
heating rate. The same analysis on the endotherm resulted in a negligible
decrease in standard deviation of the fit.

Substituting these kinetics values into Eq. (7) enables one to see how
well the two-step kinetics model describes the entire DSC thermogram. Figures

1-4 show the comparison for both the constant and heating-rate-dependent
preexponential factor (for the exotherm kinetics). The reproducibility of the

DSC thermograms at each heating rate is also evident in these figures. The
double peak structure in the endotherms, which disappears at high heating

rates, is evidence of the oversimplification of the chemistry afforded by the
irreversible two-step idealization. However, the quality of representation,
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from the standpoint of its use in a heat transfer model, is considered to be
quite good. It is also possible to use Eq. (7) directly as the fitting
function in the least squares analysis althcugh the computing time is
increased substantially. No significant changes in the kinetics parameters
resulted from this extended computation, adding increased confidence tu the
values given in Table 2.

Table I. Summary of Effective Kinetics Describing DSC ExnthcriL for LOVA #1951

HEATING RATE (DEG C/MIN)

10 20 40 100

GAS FLOW

(CC/MIN) RUN Q E A RUN Q E A RUN Q E A RUN Q E A

40 272 42.5 1 .72E16 37 350 46.2 6 .19E17 34 356 47.5 1.57E18 69 303 44.2 2.70Ei6

10 41 286 43.0 2.59E16 38 326 48.2 3.64E18 35 329 44.5 8.36E16 70 316 44.8 6.63E16

42 291 42.3 1.26E16 39 284 46.7 8.34E17 36 309 47.2 1.07E18 71 302 45.6 1.38E17

AVG 283 42.6 AVG 320 47.0 AVG 331 46.4 AVG 307 44.9

t 10 .4 t 33 1.0 1 24 1.7 ± 8 0.7

43 285 45.7 4 .19E17 46 259 47.7 2 .52E18 49 325 48.2 2.86E18 66 283 45.9 1 .39E17

50 44 243 39.1 6 .79E14 47 280 48.6 5 .37E18 50 317 46.4 5 .25E17 67 286 44.7 4 .98E16

45 282 43.7 5.68E16 48 258 46.8 9.10E17 51 288 46.7 6.45E17 68 281 45.7 1.30E17

AVG 270 42.8 AVG 266 47.7 AVG 310 47.1 AVG 283 45.4

t 23 3.4 t 12 .9 ± 19 1.0 ± 3 0.6

52 275 40.3 1.89E15 55 290 50.7 4.09E19 58 293 49.4 7.55EI8 63 330 43.9 2.55E16

150 53 265 46.5 9.52E17 56 300 48.i 3.40E18 59 322 48.0 2.36E18 64 311 42.7 7.84EI5

54 276 38.6 3.76E14 57 325 43.8 A.64EI6 61 294 45.6 2.10E17 65 290 44.4 3.84E16

AVG 272 41.8 AVG 305 47.5 AVG 303 47.7 AVG 310 43.7

± 6 4.2 ± 18 3.5 ± 16 1.9 ± 20 0.9

Notes:

Q in cal/g
E in kcal/mole

A in s
1

GLOBAL AVERAGES: Q - 297 ± 26
E - 45.4 ± 2.7

A - 1.89E17 (antilog of the average of In A)
In A - 39.78 t 2.66

V. CONCLUSIONS

A quantitative description for the reactive heat release of nitramine
propellant in contact with a hot metallic surface at atmospheric pressure has
been developed for use in a theoretical model of conductive ignition. The
description consists of a two-step sequence of global reactions in which the
products of an endothermic reaction are the reactants of an exothermic
reaction. Kinetic parameters are determined by a nonlinear least squares
analysis of an extensive set of DSC measurements conducted over a wide range
of heating rates and purge flow rates. The exotherm is best described using a
heating-rate-dependent preexponential factor in the Arrhenius expression.

Since the local heating rate may not be conveniently available in the
conductive ignition model, the best constant preexponential factor is also
given.

9



Table 2. Reaction Scheme and Kinetics Parameters

A (solid) -- -- > B (liquid) -- k2--> C (gas)

ki =A 1 exp (-E 1 /RT)

Ai = constant or A1 (S-1) a1 rbi (r in deg Cis)

REACTION i Qi (cal/g) Ai (s-1) ai b1  E1 (kcal/mole)

1 -21.1 1.31E31 - 69.4

*5.6 ±0.57E31 ±0.4

2 297 1.98E14 ---- 38.2

±26 ±O.80EI4 ±0.4

2 297 7.79E17 -0.516 47.2

±26 ±2.89EI7 ±0.014 ±0.4
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Figure 1. Comparison of Composite DSC Thermograms (Points) to Both Forms
of the Two-Reaction Model (Lines) at 100C/min.

la: Constant exotherm A factor. ib: Heating rate dependent A factor.
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Figure 2. Comparison of Composite DSC Thermograms (Points) to Both Forms
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la: Constant exotherm A factor. 1b: Heating rate dependent A factor.
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