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ABSTRACT

A real-time digita simulator of a Pratt and Whitney FiO0 engine is dis-
cussed'. This self~contained unit can operate in an opentloop stand-alone
mode or as part of a closed--loop control system. It can also be used in con-
trol system design and development. It accepts five analog control inputs
and its sixteen outputs are returned as analog signals.

INTRODUCTION

Background

The simulator [l] is based upon a HYTESS-like model [2 and 3] of the F100
engine without augmentation (without afterburning). HYTESS is a simplified
simulation written in FORTRAN of a generalized turbofan engine. To create
the simulator, the original HYTESS program was revised to incorporate F100
specific parameters. Additionally, other code was adapted from the Advanced
Detection Isolation and Accommodation (ADIA) program [4] running in the Con-
trol Interface and Monitoring (CIM) Unit [5].

The F100 engine is a high performance, twin-spool, low by-pass ratio, turbo-
fan engine. Figure 1 shows the locations of the engine inputs defined in
Appendix C. Figure 2 shows the locations of the engine sensors defined in
Appendix D.

Purpose

The FI00 engine simulator was designed to support the ADIA F100 engine test.
The ADIA engine test was the culmination of a research project aimed at show-
ing that, using a computer model of the engine, the control system can con-
tinue to control an engine (even during transients) with one or more of the
engine sensors giving false readings. The objective of this engine test was
also to demonstrate that the ADIA software works on a real engine and is,
therefore, reliable and useful in a real environment. This software had
already been successfully tested on a Hybrid Computer Simulation [6]. Due to
anticipated uncertainties in the set-up in the test cell, it was determined
well in advance of the test run that changes to the CIM Unit's software would
be necessary. To facilitate these changes the simulator was connected in
parallel with the real engine in the Propulsion Systems Laboratory (PSL) as
shown in figure 3. The simulator is a portable box which could be taken into
PSL to verify any changes in the CIM Unit's software before they were tried
out on the engine. This technique prevents damage to the system being con-
trolled which might otherwise occur if the controller's software contains a
serious error.

Order of the report

This report will discuss the simplified engine model which was used. It
will also briefly go over the actuator and sensor models employed. It will
describe the actual implementation including some hardware issues and dis-
cuss the individual subroutines used. A user's manual is included with step
by step instructions of how to use the system. Finally performance compari-
sons with the real engine will be presented.
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MODEL

The original full nonlinear model for the FI00 engine is a 13 000 line
FORTRAN program. This model accurately reproduces the true engine dynamics
over the full flight envelope but is so numerically intensive that it cannot
be run in real-time on a standard computer.

Since the main objective of the simulator was that it had to run in real-
time, a HYTESS-like design was developed. The HYTESS model is a much more
efficient representation of the engine dynamics than the full nonlinear model
but the penalty for this is that the relationship between physical elements
of the engine is lost.

The HYTESS model is set up in state space form using the vector differential
equations

x f(xu,,P)
(1)

y = g(x,u, P)

where x is the vector of intermediate engine variables or states, x is the
derivative of x with respect to time, u is the vector of control inputs, P
is the vector of environmental conditions, and y is the vector of engine
outputs. Clearly, at steady-state points,

x = f(xt,ub,Db) = 0
(2)

Yb = g(xbubDb)

where the subscript b denotes a steady-state point on the operating line
known as a base point. In other words, selecting Yb and *b vectors
determines steady-state xb and ub vectors such that the quadruple
(xb,yb,ub,(b) satisfies (2). The base points from the HYTESS model represen-
tative of the entire flight envelope are shown in figure 4.

Generally, state-space equations of a system linearized about the operating
point (xb,ub,Yb) are of the form

x = F(x - xb) + G(u - ub)
(3)

Y = Yb + H(x - xb) + D(u - ub)

where F, G, H, and D are matrices of appropriate dimension. The FlOO
model was linearized at each base point using perturbation techniques. Thus,
the state-space model is accurate in the neighborhood of a base point and the
model behaves in a similar manner to a linear system about the base point.
The actual equations used in the model are of the form

x = F(y,¢)[x - xSS]
(4)

Y = Yb(YI) + H(y,D)[x - xb(Y,4))] + D(y,l)[u - ub(Y,I))]

where xss is given by

Xss = xb(YA') - F-IG(y(P)[u - ub(y,')J

where the subscript ss denotes a steady-state point near a base point. It is
clear that the Equations for y in (3) and (4) are equivalent. To show that
the equations for x are also the same, the equation for xss must be sub-
stituted into the equation for x in (4) as follows:

x = F(yA)[x - xss]

= F(yA)[x - fxb(Y,V) - F-lG(yA)[u - ub(Y,A)]}]

= F(yA)x - F(y,4)(xb(y, ) - F-IG(yA)[u - ub(Y,D)])

= F(y0A)x - F(yA)xb(Y,?) + FF-IG(y,D)[u - ub(YJ)]

= F(y,@)[x - xb(y,4 )] + G(yA)[u - ub(Y,4')]



Therefcre the systems of Equations in (3) and (4) are equivalent.

In the F100 model as in HYTESS, the elements of the matrices F, G, H, and
D are nonlinear polynomials. These polynomials were determined by a curve-
fitting algorithm used to regress each matrix element upon elements of y
and ( or upon elementary functions of y and D. Thus the polynomial
matrices approximate the data points, i.e., they approximate the system
matri:es determined using perturbational techniques at each base point.
Therefore, at each point in the envelope, the polynomials need only be evalu-
ated -: determine the system matrices.

The actuators and sensors are, for the most part, modeled as first-order lags
with a small dead zone or other small nonlinearity included. The time con-
stants .used are similar to those used on the hvbrid simulation and are very
close tD those of the real instrumentation being modeled.

IMP~!LEMETATION

The simulator itself fits into a single rack-mountable Zendex ZX-660(A) chas-
sis. This chassis contains nine Multibus/IEEE 796 compatible expansion
slots and power supply. In addition, an Intel MDS 730 rack-mountable dual
8 in. floppy disk drive unit and a terminal device are required to run the
program. The chassis contains the five boards shown in figure 5. The sin-
gle board computer on which the simulation runs is an INTEL 86/30 with an
8086 chip, an 8087 floating point coprocessor, and 256Kb of memory. (This
is an expansion from the original 64Kb and is required to load the FORTRAN
code even though the operating system limits the program size to not more
than 64Kb.) A Zendex ZX-200A single board disk controller is included to
communicate with the disk drives. A Data Translation DT 1742-32 DI is the
third board. It contains 32 differential input channels, a multiplexer, and
an A/D converter. Its purpose is to accept the analog control signals from
the CIM Unit and digitize them. There are also two Data Translation DT
1842-8-V 8 channel D/A boards which convert all of the simulated outputs to
analog form for output.

The software consists of 21 routines - 11 in FORTRAN and 10 in 8086 and 8087
assembler. In addition there are four libraries required by the program.

There are several modes in which the simulation can rundepending upon the
application. They are: initialization/run, PSL/hybrid, calibration, open-
loop/closed-loop, and actuator (Appendix B).

Description of Modes

Initialization/run

The initialization/run mode is a consequence of the fact that the similation
is not fast enough to accurately model the whole flight envelope dynamically
in real time. The ADIA control interval was 40 ms. It was determined that
for proper stability and accuracy a good rule of thumb is that a numerical
(Euler) integration time of not more than one quarter the control interval
should be used in the simulation. This constraint came about from a desire
to reduce the interaction between the simulation and the control by reducing
any phase shift due to time delays in the simulation as much as possible.
As a full envelope simulation, the minimum achievable update time (integra-
tion time) was approximately 40 ms or four times the desired interval. To
overcome this problem, a drastic reduction in the cycle time of the algo-
rithm was required. It was possible to determine the length of time each
subroutine took to run. The FORTRAN code had already been optimized [7j so
the length of time each routine took was essentially the minimum possible.
Therefore, short of putting the simulation on multiple computers (parallel
processing) or using a faster processor which was not feasible at the time,
the most reasonable solution to the time problem was to change the simula-
tion to a steady-state model. This consisted of calculating the base points
and the matrix elements in non-real time (these were the longest routines)
and then, in the real time loop, evolving the system as a linear system to
the new operating condition. The result is a linear model valid within a
small region about a given operating point. This model gives excellent
steady-state results and good transient results for small perturbations,
such as small movements of the Power Lever Angle (PLA). However, the model
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wll n~t peLform accurately for larae perturbations such as large PLA

movements

Propulsion Systems Lab Mode (PSL)

The next mode is PSL mode. It allows the scaling of the control signals and
the simulator outputs to correspond to those of the engine in PSL. Initially
the inputs and outputs of the simulator were scaled identically to the inputs
and outputs of the Fl00 Hybrid Simulation. These were all ±I0 V, straight
line representations of the engine inputs and outputs. However, the actual
engine inputs and outputs consist of linear pots, resolvers, thermocouples,
flowmeters, and electro-hydraulic actuators. These devices typically do not
accept or produce ±10 V, linear signals. Thus, while the system was in PSL,
the scaling for the control inputs from the CIM Unit to the engine simulator
had to be mapped to the equivalent scaling for the hybrid simulation. Like-
wise, the scaling for the outputs of the simulator's sensors had to be mapped
to the equivalent scaling values for the actual engine sensors so the CIM
Unit received the same values the engine sensors would produce.

Calibration

The calibration mode is used to test the mappings. Once a map has been
determined and implemented, it must be tried out with the simulation. The
calibration switch allows the user to bypass the system evolution subroutines
so he can set an intermediate value and examine the corresponding value which
is used as output. In the same way, the simulator can receive analog input
values and the user can examine the commanded values once they have gone
through the conversion. Using these two methods, the user can tell if the
values are being mapped correctly from the PSL values to the hybrid values
and vice versa.

Closed loop/open loop

There is also a closed-loop and corresponding open-loop mode which allow the
simulator to receive the control signals from either an outside source such
as the CIM Unit or from stored in its own memory, respectively.

Actuator

The last switch is used to simulate only the actuator models. To ensure that
the real actuators are all working correctly and since they are quite simple
to model accurately, the simulator can be run in parallel with the engine and
the actuator feedback values compazed. The only difference between this and
the standard run loop of the simulation is that TT2, the only independent
variable which the actuators require beside the control signals, is read in
from the CIM Unit rather than calculated. Since no other information is
required and the actuator calculations are fairly simple, this can be used
as a full envelope real-time simulator for the actuators. Of course the
engine model outputs are meaningless in this mode because the base points are
not being calculated.

The modes are all set by software switches which can be toggled using MINDS
[83. MINDS is a program used to examine and to set values of memory loca-
tions. To the user, MINDS looks like an interpreter. The user types in
commands and MINDS carries them out. MINDS runs in the background; it is
interrupted by every other program but even though it runs for only about
17 percent of the time in the run-time loop, to the user it seems as if it
is running continuously. The user just types in commands and MINDS picks
them up as the program cycles. It carries out the commands and returns the
response and the MINDS prompt almost immediately.

The system runs under CP/M V2.2 and has a limitation that the total space for
code and data be not more than 64Kb. With a reduced capability version of
MINDS included, the total memory required for the program is about 50Kb,
approximately two-thirds of which is code and one-third is data.

OPERATING PROCEDURE

After the system is booted, the program can be run by typing the name of the
disk drive where the program disk is located followed by a colon and the
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name of the program. When the RETURN key is pressed, the executable code is
brought in from disk and run.

The program starts running in the executive (figure 6). It initializes the
update intervals, sets up the memory appropriately and takes care of the
administrative details. Then it executes a subroutine which initializes all
of the constants such as time constants and calculates the exponents associ-
ated with each one. Once through this section, the program never returns to
iL, the assumption being that the set up information will never change. Then
the program enters the initialization loop by setting the interrupt timer
(figure 7). This loop is not running in real-time (it has no time depend-
ency) but it repeats every 50 ms. The purpose of this loop is to calculate
the base points for the operating point which is entered using MINDS. These
base ;c*ints are also stored as the set points for that operating condition in
the open loop mode. The initialization loop consists of the inlet routine
and the routine which calculates the system matrices. The program is ready
to be used interactively once the MINDS prompt (>) comes up.

Setting the appropriate software switch puts the program into the real-time
mode. Now the numerical integration occurs which brings the simulation from
its previous steady-state point up to the new steady-state point with . lin-
ear, non-realistic transient. The new steady-state point is, however, accu-
rate and realistic. This loop has an update interval of 12 ms and during
that time the control input routine, actuator routine, the system evolution
routine (numerical integration), and the output signal routine all run. Any
spire time is used up by the message generation routine or MINDS. The mes-
sage generation routine takes priority over MINDS if it needs to run but it
is only used to print out error messages. A more in-depth description of the
simulator's operation is given in Appendix A.

Major Subroutines

At the beginning two routines are executed, each once only per run. They
are called MSET and MTRXST and are simply routines for initialization of con-
stants. After these are run, the program goes into the initialization loop.
Here it executes INLET which calculates the ambient conditions based on the
altitude and Mach number. Then it goes to EMODEL which determines the matrix
elements by evaluating polynomials whose coefficients are functions of the
ambient conditions. The scheduled values of engine variables are calculated
in the subroutines RPFAND and RPLIMD which are called from EMODEL. Any extra
time in this loop is used by MINDS to accept inputs from the user. He can
change altitude and Mach number and the next time through the loop, every-
thing is recalculated for the new conditions. Since everything in the
initialization loop is calculated directly, the loop need only be executed
once after a change is made for the values to be correct. The user can also
set the switch to go from the initialization loop to the run loop while in
MINDS. The update interval is short enough to essentially guarantee that
the loop will be executed at least once after the conditions are changed to
obtain the correct values before the switch can be set.

The run loop consists of the dynamic routines. The first section reads in
the control signals from the CIM Unit and converts the scaled integers to
real numbers. ACTUAT takes the real commanded values and evolves the actua-
tor models to their value at the current time step. This output is used by
EVOLVE to integrate the differential equations describing the engine itself.
The engine outputs, actuator feedbacks, PLA, and the ambient conditions are
then converted to scaled integers and sent via D/A converters to the CIM
Unit. The I/0 sections are part of the multiplexer interrupt service rou-
tine section of the executive.

Many of the routines listed above call their own subroutines which do table
look-ups or some type of calculation. The relationships are shown in
figure 8.

Error Handling

Most types of errors that occur produce an interrupt and are handled by
interrupt service routines. In general, one of the results of these routines
is to give the user an indication that the error took place. If a non-
catastrophic error occurs the interrupt service routine signals a message to
be printed. This printing is done in the remaining time at the end of the
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run loop. Printing out a message is a slow process and may take several
cycles of the run loop to complete. Because more than one error might occur
in one cycle and each takes so long to print, a data structure is used to
store the starting addresses of each error's corresponding message. Up to
15 addresses can be held in this circular queue.

At the end of the simulation time in the run loop, the program checks if
the queue is empty and, if not, whether there is a message already being
printed. If no printing is in progress and a message is waiting to be
printed, the program will initiate printing the one at the head of the queue.
In all other cases it returns to what it was doing before the interrupt came
in which started the current cycle of the run loop - either MINDS or print-
ing a message.

SIMULATION RESULTS

The steady-state accuracy of the model is excellent. This is because the
HYTESS model was based on the steady-state performance of a turbofan engine
and the base point calculations which define steady state performance in
HYTESS were derived from steady-state data. The actuator only simulation is
highly accurate in the real-time loop, both in steady-state and transient
behavior. The full engine transient performance for small perturbations
about a given operating point is also quite good. The full engine large per-
turbation transient performance leaves much to be desired since the engine
model behaves like a linear system in the run loop.

CONCLUSIONS

Tests conducted in conjunction with the F100 Hybrid Simulation evaluation of
the ADIA algorithm showed that the simulator works well as a real-time,
steady-state and small perturbation substitute for the full Hybrid, nonlin-
ear simulation. The full-scale engine demonstration of the ADIA proved the
capabilities of the simulator as a real-time code verifier and as a full
envelope, real-time actuator simulator for actuator fault detection. This
real-time, portable simulator capability will be valuable in future engine
tests. With the rapid increases in microprocessor capabilities that have
occurred since the F100 simulator was built, it is conceivable that full
envelope, full engine simulation can now be achieved in real-time.
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APPENDIX A

User's Manual for F100 Engine Simulator

1. Turn on all of the equipment, i.e. the chassis, the disk drive, and the
terminal.
2. Insert the system disk into drive a: and the program disk into drive b:.
3. Boot the system by pressing the RESET button on the chassis.
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-. When the system has booted, load and start the program by typing
b: program-name><RETURN>.
5 This causes the program to start executing. It goes through the one-time
initialization routines, MSET and MTRXST, and enters the initialization loop
:..ntaining INLET and EMODEL. In the spare time in this loop, MINDS runs,
allowing the values of variables and flags to be changed. The MINDS varia-
ble definitions must either be entered by hand or loaded from a disk. Choose
the mode in which the program is to be run. This can be changed at any time
very simply. The default mode is initialization/hybrid/open-loop. Each
switch (flag) can be changed independently.
6. Altitade and Mach number, ALT and XMO respectively, can be changed through
MINDS. The ambient conditions, which are all calculated in INLET, depend on
them. For changes of these two variables to have any effect, the program
must go through the initialization loop one time. The base points are calcu-
lated here and their values are stored for the additional purpose of being
the set points in the open-loop mode.
7. Setting the value of RLOOP to I puts the simulation into the real-time run
loop. The routines take about 10 ms to run leaving approximately 2 ms for
MINDS provided there are no error messages to be printed. In this mode,
MINDS can be used to check the value of variables and to switch modes.
8. Setting RLOOP to 0 again returns the program to the initialization loop
but leaves the value of every variable unchanged. Thus a transient can be
stopped and restarted (if the program is in open-loop mode) or the ambient
conditions can be altered to move the system to another operating point.
9. To stop the simulation, reboot the system by pressing the RESET button on
the chassis with the system disk in drive a:.

APPENDIX B

Software Switch Comments

RLOOP = 0, (default) program runs in initialization loop

1 1, program runs in real-time run loop

PSL - 0, (default) scaling of inputs and outputs corresponds to
that of Hybrid simulation
1 1, scaling of inputs and outputs corresponds to that of
the Propulsion Systems Laboratory hardware

CALIB = 0, (default) each routine in run loop is executed fully
1 1, only the A/D converter and D/A converter routines are
executed in the run loop, ACTUAT and EVOLVE are not. Thus
the effect of scale factors for both input and output can
be checked directly using MINDS

CLLOOP = 0, (default) program runs in open-loop mode, command
signals are taken from memory (the values can be changed
using MINDS)
1 1, program runs in closed-loop mode, analog command
signals are read in through A/D converters

ACTSIM = 0, (default) scheduled AJ (nozzle area) is proportional to
the steady-state scheduled value calculated in RPLIMD
1 1, scheduled AJ is calculated as a function of TT2 read in
by the simulation at each control interval. This should
only be used in the actuator simulation mode.

APPENDIX C

Input Channel Variable Comment

8 WFCOM commanded main combustor fuel flow
9 AJCOM commanded exhaust nozzle area

10 CIVVCM commanded fan inlet variable vane angle
11 RCVVCM commanded rear compressor variable vane angle
12 BLCCM commanded compressor bleed (bleed is used

open-loop)
13 TT2ACT fan inlet temperature (used only in actuator mode)
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APPENDIX D

Output Channel N Variable Comment

Timing DAC
2 WFFBS sensed main combustor fuel flow
3 AJS sensed exhaust nozzle area

CiVIS sensed fan inlet variable vane angle
5 RCVVS sensed rear compressor variable vane angle
6 BLFBS sensed compressor bleed (not used)
7 POS ambient (static) pressure
8 PT2 fan inlet (total) pressure
9 TT2 fan inlet temperature

10 TT25 compressor inlet temperature
11 N1 sensed fan speed
12 N2 sensed compressor speed
13 PT4 sensed combustor pressure
14 PT6 sensed exhaust nozzle pressure
15 FTIT sensed fan turbine inlet temperature
16 PLA power lever angle
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FIGURE 5. - ENGINE SIMULATOR HARDWARE.
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