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Summary.

The problem of a semi—infinite mode III crack that suddenly begins to

propagate at a constant speed is considered for a general linear viscoelastic body.
Simple closed form expressions are derived for the Laplace transform of the stress,
displacement, and stress intensity factor. A Barenblatt type failure zone is assumed
to exist at the crack tip and an expression for the total energy flux into the failure
zone per unit crack advance, G(t), is derived. The short time asymptotic form of G
is constructed and the rate at which it converges to its steady—state limit is studied.
It is shown that the rate of convergence to steady—state is dependent upon crack
speed and material properties. Moreover, it is found that whether or not a failure
zone is incorporated into the model significantly influences both quantitatively and
qualitatively the short and long time behavior of G. This difference is important to
predictions of stable vs unstable crack speeds based upon a critical work input to

the failure zone fracture criterion.




1. Introduction.

Several analytical studies of dynamically propagating cracks in linear
viscoelastic material have appeared in the literature since Willis(1967) presented an
analysis of the dynamic, steady—state propagation of a semi—infinite, mode 111
(anti—plane shear) crack in an infinite viscoelastic body. Employing transform
methods and the Wiener—Hopf technique, Willis constructed the dynamic stress
intensity factor (SIF) for a standard linear solid material model and general crack
face loadings. Subsequently, Atkinson and List(1972) introduced transient effects
into the problem by assuming that the crack, initially at rest, begins to propagate at
a constant speed under the action of suddenly applied loads on the crack faces. Also
utilizing the Wiener—Hopf method, they derived an expression for the Laplace
transform of the time dependent SIF from which long and short time asymptotic
approximations and numerical Laplace inversion calculations were obtained.
However, their analysis was limited to consideration of constant applied load along
the crack faces and the required Wiener—Hopf factorization was effected only for a
Maxwell material model and the Achenbach—Chao(1962) three parameter
approximation to the standard linear solid.

Somewhat later, Atkinson and Coleman(1977) used a matched asymptotic
expansion technique to develop an approximate analysis of the steady—state
propagation of a semi—infinite mode I (plane strain or plane stress) crack
propagating in a clamped viscoelastic strip. Shortly thereafter, Atkinson(1979)
presented an approximate analysis of the mode I counterpart to the mode 11
problem considered by Atkinson and List(1972). Their argument, ostensibly valid
for fairly general material models, involved slightly modifying the exact elastic

result of Baker(1962) in order to approximate the Laplace transform of the actual




dynamic viscoelastic SIF. The dominant term for each of the short and long time
asymptotic expansions of this approximate SIF was derived for each of three
different applied crack face loads: a constant, a delta function point force and an
exponentially decreasing form. Also in that paper, Atkinson reconsidered the mode
III problem and extended the Atkinson and List analysis to handle the above three
types of crack face loadings. However, consideration was limited again to the
Achenbach—Chao material model. Atkinson also constructed an expression for the
energy release rate (ERR) based upon a local (i.e. at the crack tip) work argument
and the singular stress field.

Also in that same year, Atkinson and Popelar(1979) presented an analysis of
the transient constant crack speed mode III problem for a viscoelastic strip.
Constitutive relations in terms of differential operators were assumed and the
external load consisted either of constant displacement of the upper and lower layer
boundaries or constant tractions on them. The crack faces were assumed to be
stress {free. Again the Wiener—Hopf method was used to construct an exact
expression for the Laplace transform of the SIF. The required Wiener~Hopf
factorization was carried out modulo a term involving a Cauchy type integral.
Atkinson and Popelar then restricted attention to numerically approximating the
Cauchy integral for the steady—state limit case and assumed a standard linear solid
material model.

A year later, Atkinson and Popelar(1980) addressed the more difficult mode I
problem for a viscoelastic strip. Again by use of the Wiener—Hopf method, a formal
expression for the Laplace transform of the SIF was constructed containing a
complicated Cauchy integral. As with the corresponding mode IlI case, the integral

was studied numerically in the limiting special case of steady—state crack




propagation in a standard linear solid.

Somewhat later, Walton(1982) examined further the steady—state mode III
problem considered by Willis(1967). Utilizing the Riemann—Hilbert rather than the
Wiener—Hopf methodology, he constructed a simple ciosed form expression for the
SIF valid for general crack face loadings and very general material models. More
specifically, constitutive equations expressed in terms of convolution integrals rather
than differential operators were adopted and the results were shown to be vaiid
irrespective of any assumed time rate of decay of the viscoelastic shear modulus. In
contrast, constitutive relations in terms of constant coefficient differential operators,
necessarily force an exponentially decaying modulus thereby preventing
consideration of the important class of power—law models which more effectively
represent the mechanical response of many real viscoelastic materials, such as
rubber, than do exponentially decaying functions.

Subsequently, Walton(1983) extended the above analysis to determine the
angular dependence of the stress field in a neighborhood of the crack tip. In
particular, it was shown that the asymptotic stress field at the crack tip has the
same angular dependence as the corresponding dynamic elastic problem. Only the
SIF differs between the elastic and viscoelastic fields.

Walton(1985) next considered the steady—state mode III problem for a
viscoelastic strip. Again utilizing the Riemann—Hilbert method, a closed form
expression for the SIF was constructed for general loadings and shear modulus. The
form of the solution exhibits clearly the combined effects of material properties,
crack speed and layer thickness upon the SIF.

More recently, Walton(1987a) reconsidered steady—state mode III crack

propagation in an infinite viscoelastic body in order to investigate the implications
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of including a failure zone model of Barenblatt(1962) type into the determination of
the ERR from a global energy balance calculation. A simple closed form expression
for the ERR, which in this case is just the work done by the tractions in the failure

zone, was derived under the same mild conditions on the shear modulus assumed in

Walton(1982) and for a fairly broad class of crack face and failure zone loadings. It
was then observed that whether or not a failure zone is incorporated into the model
greatly influences both qualitatively and quantitatively the dependence of the ERR
upon crack speed and material properties. In particular, calculations based upon a

failure zone seem to reflect more closely experimental observations of cracks rapidly
propagating in real viscoelastic material.!

The methods of Walton(1987a) can be applied to the calculation of the ERR
for a wide variety of dynamic viscoelastic crack problems. Schovanec and
Walton(1987¢) recently completed the analysis of the dynamic steady—state
propagation of two parallel mode 111 cracks in an infinite viscoelastic body. Also,
Walton(1987b) has recently completed a study of the mode I analog of
Walton(1987a). In both of these investigations a Barenblatt failure zone model was
adopted. Of related interest are two additional papers by Schovanec and
Walton(1987a,1987b) in which these same methods were applied to quasi—static
mode I crack propagation in non—homogeneous viscoelastic material. It should also
be noted that Knauss(1973) and Schapery(1975) applied the Barenblatt mode] to
quasi-static viscoelastic crack growth in viscoelastic material and observed that
whether or not a failure zone is incorporated into the model greatly affects the

behavior of the ERR.

! Private communication with Prof. W.G. Knauss and Prof. K. Kuo.
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The present paper applies the above Barenblatt failure zone/
Riemann—Hilbert program to the transient mode 1II problem of a semi~infinite
crack in an infinite, linear viscoelastic body that begins to propagate at a constant
speed, v, due to the sudden application of tractions to the crack faces which then
propagate with the moving crack tip. Thus the crack speed is constant for times
t>0 and the crack face tractions are spatially constant, though time varying,
relative to the moving crack tip. Clearly it would be desirable to allow nonsteady
crack growth in order to study the initial crack acceleration phase. However, for
dynamic crack propagation in viscoelastic material such an analysis seems quite
difficult to carry out. Moreover, the primary issue addressed here is the
determination of the influence that crack speed and viscoelastic constitutive
properties have upon the rate of convergence to steady state of the work input to
the failure zone. Consequently, it is felt that valuable insight into the asymptotic
behavior of the more realistic model with unsteady crack growth can be obtained by
studying the admittedly artificial transient problem in which the crack speed is kept
constant. For the sake of mathematical completeness, a short time asymptotic
analysis is also presented here.

The next section contains a derivation of the asymptotic singular stress field
in front of the advancing crack tip in the absence of a Barenblatt failure zone. More
specifically, a closed form expression for the Laplace transform of the stress
intensity factor is constructed. The analysis is valid for a very general class of shear
moduli, g{t), and a very general class of time and spatially varying crack face
tractions, thereby generalizing the results of Atkinson and List(1972).

In section 3, a Barenblatt failure zone is introduced and an expression for the

work input to the failure zone is derived for general shear modulus g t) but for




special crack face applied tractions and failure zone constitutive model. The failure
zone constitutive model adopted here is certainly open to criticism on physical
grounds. But again, for reasons discussed in section 3, it is felt that consideration of
this admittedly artificial model provides valuable insight into the longtime
asymptotic behavior of more realistic models under the assumption of smali scale
yielding. The final section contains the long and short time asymptotic analyses.

The results are then illustrated through special cases and examples.




2. Problem Formulation and Stress Analysis.
The problem to be considered is that of a semi—infinite mode 111 crack that
begins to propagate at a constant speed v in an infinite viscoelastic body due to the
sudden application of crack face tractions that then travel with the crack. The
governing field equations for the motion of a linear viscoelastic solid are
pﬁi=”ij,j’ Eij=|/2(ui,j+uj,i)’ aij=2y*deij+6ij/\*dekk, (2.1)
where Uij‘ €.., and u; denote the stress, strain, and displacement fields respectively.

1)

{
In (2.1), p*de denotes the Riemann—Stieltjes convolution p*de:J plt—r) de(T).
~0

Since the deformation is assumed to be antiplane strain, uy=0, u3=0, and the
only equation of motion not identically satisfied is y*d Aug=pugs, where A denotes
the Laplacian operator.

A semi—infinite crack lying along the negative x;—axis is assumed to begin to

propagate at time t=0 with a constant speed v driven by loads

023(x,,O,t):LeAe(x‘a-Vt,t) which follow it, where Ae( ) is dimensionless while a, and
e

Le have the dimensions of length and stress, respectively. Thus, while the crack
speed s assumed to be constant, the driving load is allowed to be time varying. The

corresponding initial-boundary value problem is

t
pii3=;t*dAua=A[;(O)us(x.,xg,t)+J0 ug(X1,x9,7) @ (t=7) dr} (2.2)
with initial conditions ug=0, uz=0 at t=0
and boundary conditions aza(xl,O,t):LeAe(x':t,t) x < vt (2.3)
e
U3(X|,0,t)=0 X >vt

023(x1,X2,t)~00 as x |2+X22*m.

From (2.1) it can be seen that
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t
orslxixa )= (wdug)=G [ﬂ(0)113(x|,X2,t)+JOU3(XuX2,T)#’(t—'f) ar).

It is convenient to change from the fixed coordinates (xy,xs,t) to the moving
coordinate system (x,y,t) given by x=x;—vt, y=xy and to define w(x,y,t) by
w(x,y,t)=w(x;—vt,xa,t)=us(xy,x9,t). In the moving coordinates, equation (2.2)

becomes
2 t
Pl ] ey =8 [ormen )+ wirvrxs () d7]
t
=A [;J(O)W(x,y,t)-i—J w(x+vt—v 1y, 7)p (t—7) d‘r}.
0

Application of the Fourier transform, defined by f(p,y,t):Jmeipx{(x,y,t) dx,
-0

to equation (2.5) results in
9

o[G +iv0] #p)= (0124 o] [0 14 pi Py a7]

Subsequent application of the Laplace transform §(p,y,s)=rg(p,y,‘r)e-87 dr
0
to (2.6) yields the equation

s +ivp ) w(p,5.9)= [ Frmp? | [Hs+ivp)u(py.0)

in which g(s) is the Carson transform of the shear modulus given by
T(s):sﬁ(s)::p(O)+J: e T dp.

Equation (2.7) can be rewritten as ‘3;2‘;" [p +—-ﬂ——(s+1vp ]
p(s+1ivp)

which has the solution -\:v.(p y, s)—A(p,s)e_as’p) |y ‘, where

/2
As,p)= [p +—-B——(s+1vp) ] must be chosen so that Re 80.
p(s+ivp)

In a similar manner, the Fourier and Laplace transforms may be applied to

the constitutive equation (2.4) to produce égg(p,y,s)=;"i(s+ivp)%v}(p,y,s). I one

(2.4)

(2.6)
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defines f+(p) and {(p) by f+(p)=JZeipr(x) dx and f—(p)=j0eipr(x) dx, then

w
the boundary condition (2.3) transforms to

73 (3,0,9)+013(p05)=KsHiTpYGw(p.0,5)=—As,P)s +ivp)W(p,09). (28)

From (2.3) it can be seen that Ugs(p,o s)= LeaeAe(a. p,s)=g(p,s) and

@(p,O,s):ﬁr—(p,O,s). It is assumed a priori (and is easily verified a posteriori) that

zn(p,O,s) and ;2?{(p,0,s) have analytic extensions :v:_(z,O,s) and gg'g(z,O,s) for
Im(z)<0 and Im(z)>0, respectively, which vanish as |z|+». Thus the transformed
boundary condition (2.8) can be recast as the Riemann—Hilbert problem: find
F¥(z) analytic for Im(z)>0 and F(z) analytic for Im(z)<0 such that

lim F¥(z)= 1im F(2)=0 and on Im(z)=0,
Im(z)+4x Im(z)+—

F(p)=T(p)F (p)—g(p,s) for pe(—o,c) (2.9)

where F+(z)~;2*3'(z 0,s), F.(z)=;_(z 0,s), and

f2
T(p)=—gs+ivp) [p +—L—(s+lvp) ] For convenience, explicit reference to
s+1vp

the s dependence of T(p) and F (z) is being suppressed. It suffices to note that all
of the following analysis is valid for any complex s with Re(s)>0

It is well known that the solution of (2.9) is

—g(r,s) dr .
F)=X gy 5 ol g (2.10)
where X (z) solves the homogeneous Riemann~Hilbert problem
X*(p)=T(p)X(p) for pe(—m,). (2.11)

To solve (2.11), it is convenient to factor T(p) into the product

i ; ~ i 15,2 '/
T(p)=Ti(p)To(p)Ts(p) in which Ti(p)=—pi(s+ivp), Tao(p)= [(p—7) 1", and
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2 02 U ETN
T3(p)=L E)s = ~P - ] . X™(z) may now be constructed as the product
p-=) #s+ivp)

X*(2)=X*(2)X2"(2)Xs"(z) with each X,*(2) satisfying the Riemann—Hilbert
problem X.¥(p)=T,(p)X.(p).

What will ultimately be required is to solve the homogenecus

Riemann—Hilbert problem (2.11) for each fixed s on a Bromwich path with Re(s)>0.

This will be accomplished by first assuming s real and positive and then invoking an
analytic continuation argument. Additionally, for the subsequent analysis the shear
modulus will be assumed to be positive, continuously differentiable, non—increasing,

convex and such that p(e)=1im p(t)>0. Convexity is sufficient but certainly not
t-o

necessary to insure the validity of the following calculations and though
theoretically overly restrictive, it holds for most of the customary models such as a
standard linear solid or a power—{aw material. Moreover, it is worth noting that no
explicit time decay rate for the shear modulus needs to be specified for the results to
be valid. From the fact that p{t)=0 for t<0, it easily follows that [;"i(s+ivz)]_1 is
analytic for Im(z)<0. Therefore one may choose

X H(z)=1 and X, (2)=—s+ivp)] .

Since the product To(p)T3(p)=As,p), the branches of To(p) and T p) must be
chosen so that their product satisfies the requirement that Re &s,p)>0. This
condition can be met by choosing the branch of 2/ with branch cut along the
negative real axis for both To(p) and Tg(p). (See Fig. 2.1.) Therefore Ty(p) can be
expressed as Ts(p)=sgn(p)(p— i—:) and Xgi(z) may be chosen to be

Xyt (2)=w* (2) and Xy (2)=w ()2~ 2)7

in which u.z+(z)=zl/2 with branch cut along the negative imaginary axis and

- 1 . e . . .
w (z)=2 /2 with branch cut along the positive imaginary axis. Finally, one may

(2.13)
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construct Xa*(z) by
X s¥(2)=exp(T*(z)) where Fﬁz):ﬁ_r log(Ty(1)) .,
-

To find a closed form expression for X3*(Z), it is necessary to determine the
mapping properties of Tg(z) for z in the half—plane Im(z)<0. If one first considers
M(s+ivz)=p(s~vq+ivp) on the horizontal lines z=p+iq, q€0, pe(—m,»), then it
follows easily from the stated assumptions on 4(t) that

(i) M0)=pw)<p(s~vq)$Re @(s—vq+ivp)<p(0)=p s—vqix);

(i) Im #(s—vq+ivp)=—Im Hs—vq—ivp);

(ifi) arg ,7(s-vq+ivP){zg gzg

(iv) lim @(s—vq+ivp)=p(0) with ji(s—vq) converging monotonically to u(0).

q -

Therefore ji(s+ivz) maps these lines to the curves shown in Fig. 2.2a.

The linear fractional transformation S(z)=z—__‘%§7?) maps the lines z=p+iq,

q€0, pe(-m,x) to the circles shown in Fig. 2.2b and S(p+iq) exhibits the following
properties:
(v) 0=S(0)<S(0+iq)<Re S(p+iq)<S(2m+iq)=1;

(vi) Im S(p+iq)=—Im S(—p+iq);

. . [>0 p>0 .
(vii) arg S(p+|q){<0 p<0

(viii) lim S(p+iq)=1 with S(iq) converging monotonically to 1.

- =0

If the ::lastic shear wave speeds corresponding to infinite and zero time are
defined by cs2=p(w)/p and c>=p(0)/p then from (i)=(viii), it follows that [Ts(z)]
has the following properties:

(%) Im Ts(p+iq)=-Im To*(~p+ia);

(x) arg To(p+ia}{ 20 P20

(xi) lim Te(ptia)=1~(v/c)}

q*-w

(2.14)




14

N 2 N
(xii) -(v/c‘)2<‘:‘—%=T32(0)5T32(iq)5T32(—-im)=1—-(v/c)g where Ta~(iq) is
S

monotonically increasing to 1—(v/c)2 as q--w.
Thus it can be seen that Tag(z) maps the horizontal lines z=p+iq, q€0, p&(—w,») to
the curves shown in Fig. 2.2c. Furthermore, it can be seen from (xii) that T3(Z)2
has a unique root z4=iqy in the half—plane Im(z)<0 for any positive real value of s.
If the branch cut for the square root defining Ty(z) is chosen along the
negative real axis then Tj3(z) is analytic for Im(z)<0 except for the branch cut on a

segment of the negative imaginary axis across which it has a jump discontinuity

2 2 !
given by T3(=t0+iq).—.=til_9?.7._~_£';_
(Q‘;) Pl s—vq)

is analytic for Im(z)<0 away from this line segment and has the jump discontinuity

2
for q4<q<0. It follows that log T3(z}

log( T'3(40+1q))og(T3(—0+iq))=ir across z=iq, q4<q€0. One can then evaluate

I”'(z):Q%F -IE%M) d7 as in Walton(1982) and conclude that
—®

r*(2)=(1/2) [log(q,i—z)—log(—z)+log(T3(m)) + {ﬂo ST42) for i$§§§28}
Therefore (2.14) reduces to
Xa*(2)={u (2~ Ts(o)] 2}/ (2)
X5 (2)={w (z-ias)[To(w)] 12}/ (2) T(2).
From equations (2.12)+2.15) it then follows that
X*(2)=u (a-ia))[To(w)] /2
X (2)=—{w(2-ia)[Ts(@)] 12}/ (is+ivaa-i(s/))Ts(2)].
Finally, for a specific load a;g(x,t)=LeAe(x/ae,t) one can determine
F+(z)=;{§(z,0,s), F—(z)=‘;—(z,0,s) from equations (2.10) and (2.16). The Laplace
transform of the stress intensity factor (SIF) K(s) can now be calculated as in

Walton(1982). In particular, it is straightforward to show that

(2.15)

(2.16)
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K - Fifd oo --
323(X,8)~7-£-r§2x 2 a x~0*, where R(s):-[T3(m)]'/2 < ;{r Jm ”X_*_L(Tﬁ;) dr

and o (7;s)=L a_A (a 7). Again, as in Walton(1982), (2.17) may be simplified
e“e"e'%e

=y -1 i t2,-(xqsa,) ; ich i ‘
to K(s)—v;J?mLeﬁeAe(x,s)lxi e \"4*%/ dx, in which it should be emphasized

that q4 is a function of s determined implicitly by Tg(iqy)=0.

Equations (2.10) and (2.16) can be shown to hold for each fixed complex s
such that the Re(s)>0. Therefore these expressions (with slight modification) are
valid on a Bromwich path and numerical Laplace inversion may be performed.

These details are found in Herrmann and Walton(1988).

(2.17)




3. Calculation of the Energy Release Rate.
The Energy Release Rate (ERR) will now be calculated based upon the

assumption that a Barenblatt type failure zone exists at the crack—tip. Specifically,
it is assumed that two loads are acting on the crack—faces: the applied (external)
tractions denoted aE(x,t):LeA e(;—,t) and the cohesive (failure) stresses

e
a{(x,t):-LfAf(w(x,t)%-{-,t) acting in a failure zone of length a, immediately behind
the crack—tip. Two essential features of the Barenblatt model are that a<<a, and
that K, +K=0 where K_ and K, are the SIF's corresponding to o; and UE,
respectively. The effect of the failure zone is to cancel the singular stresses ahead of
the crack—tip and thereby produce a cusp shaped crack profile behind the tip. The
resulting mathematical problem is: given a;(x,t), find the ""response'’ stress in the
failure zone and crack face displacement w(x,t) that cancel the stress singularity due
to a;(x,t) while maintaining a constant crack speed. The goal is then to compute
the time evolution of the energy release rate as described below.

The ERR, G(t) (defined to be the energy flux into the crack tip per unit

vt
crack advance) is given by G(t)=%j a;(xl--vt,t){la(x.—vt,O,t)dx,, which in the
vi—a
{

moving coordinates becomes

ot )=§JO ohx,t )[gt. —v%]w(x,o,e)dx. (3.1)
—a
f

Deriving a closed form expression for (3.1) valid for arbitrary applied tractions

ae_(x,t) and failure zone constitutive law

0;(X,t)=—L{Af(W(X,t),-xa'.—f,t) (32)
requires solving an exceedingly complicated non—linear boundary value problem.

The constitutive law (3.2) models the failure zone response as that of a nonlinear

ln.

a
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elastic spring, accounting for inhomogeneity and aging. In general the failure zone
length, a, is dynamically changing and determined by the equation K +K=0. In
the absence of any generally accepted, physically motivated form for Af( )

various ad hoc, artificial models have been introduced and studied in the literature.

In Schapery (1975), it is argued that taking af—(x,t) constant for —a,<x<0
with af=af(v,t,ae_(x,t)) 1s a reasonable approximation to reality, at least provided
ag is very much smaller than all significant physical length scales such as crack
length and the distance from the crack tip to the boundary. More recently,
Goleniewski(1988) studied this same failure zone model for the corresponding
dynamic, steady—state problem for a Maxwell fluid and piecewise constant applied
tractions ae_(x,t). However, the methods of Goleniewski(1988) do not seem to
generalize to the transient problem, even for a Maxwell fluid Due to the
complicated non—linear coupling between w(x,t) and ag, deriving a convenient
expression for G(t) from which qualitative properties can be inferred when oy is
assumed constant seems unlikely.

In contrast, for the dynamic steady—state problem it was shown in
Walton(1987a) that a simple closed form expression for G is obtained for the special
class of loads
aE(x):Leexp(x/ae) and a}(x):-—Lfexp(x/af) for —w<x<0.

It was argued there that for ag<<a,, the fact that a}(x,t) does not have compact
support should have a relatively minor effect on the results provided the essential
requirements for the Barenblatt model are still satisfied: 3<<a, and Ke+Kf=0'
Furthermore, the two cases (1) L constant with a{=af(v) and (2) a; constant with
Lf=Lf(v) were compared quantitatively. It was found that, except for very high

crack speeds, the two cases produce nearly identical G vs v curves. In light of these

(3.3)

ln.
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considerations it is likely that valuable insight into the combined influence that
crack speed, inertia and viscoelastic properties have upon the rate of convergence to
steady—state of the transient G(t) can be obtained from generalizing the analysis of
Walton(1987a) to the transient problem addressed here, the unphysical nature of
the failure zone constitutive law (3.3) notwithstanding.

Henceforth, the forms (3.3) will be assumed for ae— and Uf_. Moreover, time
dependent tractions ae—(x,t) will be permitted by taking
aE(x,t):Lele(t)exp(x/ae), —0<x<0, (3.4)
where le(t) is a dimensionless function of time. As with the steady—state analysis in
Walton(1987a), consideration of the two models, (1) Ly constant with a.f=a{( v,t)
and (2) a; constant with Lf=L{(v,t), arises naturally. While case (1) is the more
physically compelling, it is mathematically much more complicated owing to the
nonlinear manner in which the initially unknown function af(v,t) occurs in the
problem. In contrast, case (2) is clearly unphysical in a dynamic analysis (e.g. it
suggests that information travels with an infinite speed of propagation in the failure
zone) but, as shown below, admits an elegant closed form expression for G(t) with
the aid of which qualitative and quantitative properties can be easily studied. In
light of the steady state results, it is likely that, except for very high crack speeds,
the two cases should exhibit similar long time asymptotic behavior whenever
a<<a,. The analysis of case (2) is presented here and that of case (1) is the
subject of a future paper.

With ae_(x,t) given by (3.4) and af—(x,t) by
aE(x,t):L{lt(t)exp(x/a.f), —-w<x<0, (3.5)

the appropriate definition for G(t) becomes

G(t)=%JO az(x,t) [% —v%] w(x,0,t)dx. (3.6)
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In (3.5) the explicit dependence of lf(t) upon v has been temporarily suppressed. As

shown in Walton (1987a), it is straight forward to extend the analysis to treat more
general loads of the form cr"'(x,t)=L(t)rerx/a dh(r) where h(r) is any signed
0

measure for which the integral makes sense. However, for the sake of brevity that
development is not included here.

Incorporating (3.5) into (3.6) there results
G(t)=I(t)+W(t) with

I(t)=-Lflf(t)-‘lr—JO e */2)Tw(x,0,t) dx and

W(t)=Ldt) Jie(x/af)%w(x,o,t ) dx.
I(t) and W(t) in themselves do not have any direct physical significance but the

decomposition (3.7) does provide some insight into the behavior of G(t). In

particular, it is shown below that lim G(t)=lim I(t) and lim G(t)=11m W(t)
t-0 t-0 t~ o t~uo

whereas 1im W(t)=lim I(t)=0. Thus the short time behavior of G(t) is governed
t-0 t— o

primarily by I(t) and the long time behavior by W(t). Moreover, in anticipation of
comparison with future results from the analysis of case (1) lf(t).=.1 and af=a{(v,t),
both G(t) and W(t) are studied in detail here.

Motivation for the separate consideration of W(t) derives from the following
observations. In Schapery(1975), it is argued that it is physically more compelling
to build a viscoelastic fracture criterion upon the work done to the trailing ligament
in the failure zone, I'(t), rather than upon G(t), the total energy flux to the failure
zone per unit crack advance. Of course this concept only has meaning for a failure

zone with finite length. For any failure zone constitutive model, one may write

N YW
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G(t) as in (3.7) with W(t):JO a{_(x,t)-g;w(x,o,t )dx. For the particular
—a

constitutive model} a{—(x,t)=—Lf, —af<x<0 with a{=a{(v,t), studied by Schapery,

- [(t)=W(t). It then seems reasonable to study W(t) as a suitable generalization of

I'(t) to the constitutive model (3.5) for case (1) lf(t)zl, af=ai(v,t). Expecting case
(1) and case (2), a constant, lf.—-l{(v,t), to exhibit similar behavior, at least as t-w, a
separate analysis of W(t) given by (3.9) is included here.
I(t) and W(t) can be constructed by separately evaluating the integral
expressions in (3.8) and (3.9) and multiplying the results by lf(t), which is
r determined from the Barenblatt assumption that Ke+Kf=0.

Consider first the integral

1 (x/a;)[d 0

g(t):—J'0 e/ [ v=r=|w(x,0,t )dx. (3.10)
i, * X .

If one notes that the inverse Fourier transform of H(—x)e(x/af) is Q;";(p+i/af)—l and

applies Parseval's relation to (3.10) and then applies the Laplace transform to the

resulting expression, the Laplace transform g(s) is found to be

g@):i-%f_m [% +ip] \;'_(p,O,s)pil % Since w(p,0,5)=F(p) has an analytic

extension F~(z) for Im(z)<0, the integral can be evaluated by residues, whence it

follows that
gs)= [% + éf] F{(-/ay). (3.11)
It remains to evaluate F-(—i/af). To this end, one begins by first noting that (2.8)

can be rewritten as

F(p)=2(p)/T(p), (3.12)

where o(p)=a (p)+o7 (p). (3.13) ‘#
For the Barenblatt model a—(x)=0;(x)+af(x) and consequently R
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&-(p)=£r;(p)+¢};(p). Also c}+(p) in (3.13) can be determined by application of the
Plemelj formula to (2.10) thereby obtaining

T O=F o)==+ X B

r—p This can be rewritten using

v+(p)=6:(p)+0{(p) (3.14)

wherein &’:(p) and &?(p) are given by

—( ) dr
X ¥ T)T‘P

- 1,(s) <
From (3.4) it can be seen that aE(p):ﬁET—D and therefore o;(z) is

i(p-(1/a,

Thp=- e gt o) - (3.15)

meromorphic with pole z=i/ae. Since X+(z) is analytic for Im(z)>0, (3.15) can be

calculated by residues with the result

. el +
THpy=—om 1 - 2ol (316)
X (1/a)
x+
Similarly, 7 (p)-—af(p)[l ——-(P-l—)] which combined with (3.14) and (3.16)
l/a{
yields
< + L1(s) Lds)
a(p)le(p)L See Ll (317)
(/2 )X T(ifa)  (pifag)XF(ifa)
Equation (3.17) can now be simplified by the Barenblatt hypothesis K +K;=0. For

the special loadings given by (3.4) and (3.5), equation (2.17) yields
Leie(s)
x*(ifa,)
which under the Barenblatt hypothesis results in the identity
L 1(s) L, Is)
e - LD (3.18)
XT(ifa)) X7(ifay)

and Ks) —[Ts(m)]% ﬂ/4__i_f(._

K (s)=—Ts(o)]'/2 e/t e~
¢ ] XF(ifag)
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Equations (3.17), (3.18), (3.12) and the observation that T(p)=X+(p)/X_(p)
then yield
_ a,L 1 (s)(a—a,) X (-i/ay)
gt e
e’ /X (i/ae)

One may now substitute (3.18) and (3.19) into (3.11) thereby obtaining

_ Ll(s) afa,~—a X_(i/a.)
fo=——f +a]{(F+af) o
f 7 X7(i/a, )
which when combined with the result (2.16) derived previously for X*(z) produces
!
/2 1 1 __pv 2 "/2.
et /o)

2w
(1+sa.f/v)" ;4(s+v/af)
In order to present the results in a nondimensional form. it is necessary to

Lefe(s) (ae—af)

1+a.q4
= 75 T Ve

I:ae‘h

introduce certain parameters. First, a nondimensional shear modulus is defined by

y(t)-p m(t/r) where By =lim y(t) and thus [im m(t)=1. Also. the nondimensional
t—m t— o

parameters 7, €, a, and § are defined by y=v/cy, e=af/ae, a=cy7/a,, and ,B=—-aeq,.,

where 0<y<c/cy, €<<1, a>0, and $>0.

The Laplace transform g(s) can now be rewritten in nondimensional form as
-1
(afe) __ 1 /2

-Lal s)f /2
-\ ee e
gs)= ,I+EH T+ g’ m(‘rs-i-a"rlf) (‘rs+a'y/e) m(rs+ay/e)

Also note that ﬁ:ﬂs,'r) is the unique root of the equation

R+ ayB)=12(1+(rs/ar)>.
Attention will now be turned to l{(t). It follows from (2.16) and (3.18) that

i} L /2
_i e |1+ ¢
1f(s)_1e(s)r{_\75|_n-§ .
Finally, utilizing (3.7)—3.10), (3.20), and (3.21) one may write the ERR as
2

L
G(t):-—L{l((t)g(t)z-—;-pE I(t)gi(t),

(3.19)

(3.20)

(3.21)

(3.22) q
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where the Laplace transforms of I(t) and g(t) are given by

1
=10 48] (3:23)
1 (s) 1/, 2 -1/
= \_oe 51-——5} 1-¢ 1 (afe)” ___ 1 . 3.24
ais) 7 U+e)] 1+ ‘ m(ms+ay/e) (Ts+a'y/e)2 m( s+ a7/ €) A

Unfortunately, it is not possible in general to invert (3.23) and (3.24)
analytically. Therefore to obtain a better understanding of G(t) either an
asymptotic analysis based on (3.22)~3.24) may be performed which is valid for any
shear modulus y{t) or numerical inversion of the Laplace transforms (3.23) and
(3.24) may be obtained for a specific y(t). The asymptotic analysis and the
consideration of special cases are addressed in the next section. Numerical inversion
of (3.23) and (3.24) for the standard linear solid and power—law models can be

found in Herrmann and Walton(1988).




! 4. Special Cases and Asymptotic Solutions.
Asymptotic expansions for the ERR, G(t), as t-0 and as t-x can now be

constructed from (3.22)—(3.24). More specifically, asymptotic expansions for }(t)

and g(t) can be constructed separately and multiplied together. Moreover, it can

, tf
be seen that l(t)=le(t)"‘h(t) where [(s)= 1—%—51 2. Unless indicated to the

contrary. henceforth attention will be limited to the special case Ie(t)=1, i.e., the
external tractions driving the crack will be assumed to be time independent. In that
case one clearly sees that T(s):s—li,(s). More general time dependence for 1(t) is
easily incorporated into l(t) by a simple convolution of le(t) and li(t).

For short time approximation, it is necessary to determine the asymptotic
behavior of I(s) and gi(s) as s~a. To this end, it is required to study the behavior of

m(7s+a7/¢) and B as s-o. From the definition of the Carson transform m(s), it is
easily seen that m(«)=m(0) —Eﬁ—l—[ ] . Furthermore, since fB={s,~) satisfies

the equation
ol 3+ arB)=1(1+( 13/ arB))? (4.1)

it can be shown (see appendix) that

TS
B:W + O(S) as S—uw. (4..)
Therefore if I(s) and g)(s) are written as asymptotic series in powers of %, it -

is found that as s~

=vet + S Gicc/en-idy + o7, (4.3)

a5 (7 il - (L8 fereot + Bl 2 + 70 k

Hence, if one assumes that }(t) and gi(t) have Maclaurin expansions in a

neighborhood of t=0 then from (4.3) and standard asymptotic results for the




Laplace transform,

i(0=ve[1 + L Sie/eg)alie/n) + o),
si)=tH7d 2on {1 - [A£D Sticsen— + Faggh|(t/n)] + o) ss 10

From (4.4) and (4.5) it follows after algebraic simplification that

2
L a |
Glt)=—5 =g ¢ e[l —a(t/7) + o(t)] as 140, where a=§e(c—v) + 00

It should be remembered that (4.4) and (4.5) (and hence (4.6) also) are not
uniformly valid expansions as e<0. The case ¢=0 is a singular limit treated
separately later. It should also be remarked that near t=0, G(t) is governed by the
glassy properties except for the inclusion of the term m'(0) which incorporates the
effect of the initial rate of stress relaxation. Since m(0)>1 and m'(0)<0. one sees
that the sign of G'(0) depends upon the crack speed and material properties through
the relation

G(0)>0 {G'(0)<o} if and only if ae%}B[c-v] {ae%[c—v]}.

In particular for fast enough crack speeds; GY(0) will be positive, i.e. G(t) will
initially increase with time. However, for any given crack speed if the combination
ael%l is small enough. then G(t) will initially decrease with time.

To determine long—time asymptotic solutions as t-w, it is necessary to find

2
L “a _
first lim G(t)=-73-—e lim sl(s) lim sgi(s). The expression m(7s+av/¢) has the
t- o0 Py 540 s=0

limit m( a7/ €) as s~0 and B, as shown in the appendix, has different asymptotic
limits as s~0 depending on whether (i) 0<v<cy, (ii) v=cy, or (iii) c4<v<c, namely
ﬂ=-5{-ﬁ—7[ + ofs) for ‘(;<v<c*,
2
k%[—rrm'(r) dr] s'/2 + o(sllz) for v=cy,
L0

B=B, + of1) for cp<v<c, where g is defined implicitly through the equation

(4.4)

(4.6)

l.; o




2
72-[2-—*-] r —ayB,r m'(r) dr. To avoid separate cases in displaying subsequent
0

formulas it is convenient to define B =0 for 0<v<cy.

Again from standard asymptotic arguments for the Laplace transform

lim G(t)= 82 e (1—e) 11 €8 )2" 1 - _l/2
im = —-U-—E-j—-
t- +€ o m(av/¢€) m(a'y/f)

which is precisely the steady—state solution found in Walton(1987a).

(4.7)

It is interesting to consider separately the asymptotic behavior of Lfli(t) for a
general time dependence Lele(t) n a;(x,t). One notes that as t-0,

L{]f(0)=sls-i‘2 sllfi{(s)=Lele(0). Thus initially Lfli(t) and Le]e(t) are equal for any

crack speed and €>0. In steady—state, however.

(1/)+8,]'"72
Lfl{(an) llm stl{(s) =L, ) (m)[—-;—’i—} For 0< <1, B,=0, which implies that

]

Lflf( 1/f)L ] ( ) which is the same as found for quasi—static crack propagation.

For 1<y<c/cy, B, is a monotone increasing function of y with lim 8 (y)=«.
> ek
Thus RO)] 1s a monotone decreasing function of y with [1m L((_on)=Le(oo). For
ee P [y
the special case of Lele(t) constant, one obviously uses Lele(0)=Le]e(°°)=Le in the
above formulas.

It is instructive to consider several special cases. Setting e=0 corresponds to

a model with no failure zone. Allowing -0 in (3.23) and (3.24) yields

- - - M -
1(5)=1e(5)/\/1+3 and gl(s)'-’le(s)ﬂ%jﬁzr [1—(v/c)2] ', It then follows easily
from (3.18) and (3.22) that an(t), i.e. G(t) based on the singular stress field

without inclusion of a failure zone, becomes

Gy O=IK( 7 g Jtope T2 us
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Thus, an(t) is simply the product of the square of the SIF, K(t,'y)Q, with a time
constant function of crack speed and the glassy material properties.
. . 1
If one assumes that K(t,7) has an asymptotic expansion in powers of t /2 as

t-0, then it can be shown from (2.16), (3.18), and (4.2) that
K(t,7)=—Le\/(aea]1)[(c7c:)-—‘y]\/t7? + o Vf) as t=0. Substitution into (4.8) then

produces

L2, y
G, )= -m—[g;‘ﬂ (te/a,) + oft) as t-0.

The steady—state limit when t-w» is found to be

,(ao ,iy—u—(v/c) I~
It should be rema.rked that the right hand side of (4.10) can be shown to vanish as
V.
The special case of an elastic material is obtained from the general solution

(3.22)~(3.24) by letting 7+w. There results
2

L “a
G(t)=—Sg7 I(t)a(t),

o y
I(s)=T,()| 28]

B(9)=1 (1T P1toc + 3322 where proe
The quasi—static limit is obtained from (3.23) and (3.24) by letting cy-w

(p=0). It follows that f=0 and hence that

()=1 (s),

=7 alle 1
g;(s):le(s) +: m(l+sa{/v).

In particular, one sees that Lflf(t)=Lele(t)/\/'€ and thus that Lflf(_t) is crack speed

independent. Moreover, consideration of (4.12) reveals that gi(t) in the quasi—static

(4.9)

(4.10)

(4.11)

(4.12)




case has a Dirac delta function singularity at t=0.

Several comments on these asymptotic results are in order. First, it should
be observed that whether or not the model assumes a failure zone dramatically
affects both qualitatively and quantitatively the behavior of the ERR as a function

of time, crack speed, and material properties. For example, from (3.20) it is easily
2
shown that for any t, if €50, 1im G(t)=w whereas if ¢=0, 1im Gn{(t)=5%-;;%)- )

70 70
_ —L Va3 I (s)
where K(s,0)= —eJﬁ_—%&-ﬁjand from (4.1) H_s,O):LE{r?I(‘rs)]l/Q. However, in the

steady—state limit (4.7), G approaches a finite limit as the crack speed vanishes.
both with and without a failure zone. Specifically, it is easily seen that for the

steady—state limit

lim G(m)=L82ae 1= L for >0

0 7 THep
—TLeQael for e=0
= 5. or e=0.

Thus G becomes infinite as 40 except for e=0 (no failure zone) or under
steady—state conditions.

The reason for this behavior is found through consideration of the crack face
particle velocity ﬁg(x,,O,t):%w?(x,o,t)—vgg-(x,o,t). A consequence of the assumption
that there is an initial jump discontinuity in the applied crack face tractions is that

g‘%’(x,o,t) does not vanish as v=0. Thus, from (3.6) it follows that 1im G(t)=w. In

v=0

contrast, when €=0, one sees from (4.8) that G is merely a product of K(t)2 and a
simple function of crack speed and glassy material properties that is independent of

the crack face particle velocity and that remains bounded as v=0. Moreover, in

steady—state, G is given by G=—J0 a{—(x)g%x,O) dx and thus remains bounded as
-m
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# v-0.
time behavior of G(t). In particular, from (4.6) it is easily seen that when ¢>0,

2

a
]ir(r)l G(t)= —2”—%-:—:‘(; e>0 whereas, for =0, it follows from (4.9) that
t-

lim G(t)=0.
t=0

Other differences between the ¢=0 and ¢>0 cases are evident in the short

w

The singular behavior for G(t,v) as v~0 in the dynamic solution and the delta
function contribution at t=0 in the quasi—static solution are both due to the
integral I(t) in (3.7) which contains the relative crack face particle velocity
%w(x,O,t). As shown below, W(t) exhibits none of the singular behavior seen in
G(t).

An expression for W(t) is easily constructed from simple modifications of

(3.10), (3.11), and (3.22). Specifically, one sees that
2

L “a
W(t)=—§-#—e I(t)ga(t) (4.13)

where 1(s) is given by (3.20) and

€ %-iglvz ! ('y+sre/a) /_
+ (rs+ay/e)j m(7s+ay/e)

B(s)=] (s}

It is trivial to show that the limit of W(t) as e-sO (no failure zone) is an(t) given in

(4.8). The other special cases considered above are easily constructed for W(t). In

particular, for elastic material 1(s) is still given by (4.11) whereas g(s) is replaced

by gx(s) given by

Ez(s)=fe(s)g-j% T-§| [14v/c + sagfc)] /2, with B, as before. (4.14)
The quasi—static limit of W(t), W (t), (ca=m) yields as before 1(s)=1 e(s)

1 . .
and has g(s) replaced by ga(s)=1 (SH ——————————. In particular, if 1 (t)=1,
+ (m+v7/af) ¢ __é
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' i.e. the applied tractions are time independent, then 1 (s) = and it follows that

gﬁt):{-}—.—:—g[ﬁ%m + JO e_( o T/a‘f)c'(r) dr], where c(t) is the non—dimensional

compliance corresponding to m(t) defined by m(s)=1/¢(s). Thus,

L, % e (1—e (t/7 )—(rvr/a)
W (t1=— O J et(r) di. (4.15)
It should be noted that lim W (t) =L, 2 cD(t/7), where D(t/ 1) is the creep

v=-0

compliance corresponding to the shear modulus p{t/7).

Short time asymptotic expansions for W(t) can be constructed as before for

- G(t). In particular from (4.4) and (4.13) it follows (assuming 1(t)=1) that
2,
L %e (1—¢) ct
W(t)= ”2_' Te a — + oft) as t=0+. (4.16)

A similar asymptotic expansion of (4.14) reveals that the short time response for
W(t) in (4.16) is unchanged for an elastic material. Obviously though, the
asymptotic series for elastic and viscoelastic materials differ in their higher order
terms. Moreover, as noted previously for G(t), the asymptotic expansions for 1(t)
and go(t) are not uniformly valid as e~+0. Thus, the limit of (4.16) as e~0 does not
yield the small t expansion (4.9) for Gn{(t). It should also be noted that the first
term in the asymptotic expansion (4.16) is independent of crack speed. Thus, to
leading order as t-0, W(t) for a moving crack is the same as that for a stationary
crack. However, the higher order terms are crack speed dependent and influence
W(t) for all but asymptotically small times t.

It is interesting to compare the dynamic result (4.16) with the quasi—static

result (4.15). In particular, the dynamic analysis shows that 1im W(t)=0, whereas
t=0

L
L the quasi—static result has lim W (t)-%ﬁ_e 1—

Thus, for short times the
-0 %

+e
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quasi~static and dynamic analyses yield quite different results for all crack speeds.
This is in marked contrast to the steady—state limits which show good agreement
for all crack speeds up to nearly (and sometimes beyond) the equilibrium shear wave
speed. The short time asymptotic analysis reflects the obvious fact that the initial
transient response for the quasi—static case should differ from that occurring when
the effect of material inertia is included.

Attention will now be directed toward describing the manner in which W(t)
converges to the steady—state limit as t—o. It is useful for comparison purposes to
consider the question first for elastic material. Again it is assumed that le(t)El, or
equivalently Ie(s)=s_1. Thus,

L 2a
WEL(‘)="'§e#—GZ I(t)ga(t) (4.17)
with 1(s) and ga(s) given by (4.11) and (4.14), respectively. It is instructive to

consider first the elastic case with no failure zone. In that case T(s):%m-%—ﬁ and

sa
§2(5)=§- 71—%#1—-(v/c)2]"l/2 with 8= -C_—:-. It follows easily that 1(t)=Er{(Vf/b)

L2
where b=a_/(c~v) and hence that wu)=-§re{1-(v/c)gr‘/z[Erf(mB)]?. It is
easily seen that
W()=W(a) + O(e /%)) a5 t-e. (4.26)
Thus W(t) converges exponentially to its steady—state limit with exponential order
e—(t/ b) . It should be noted that b=m as v~c which implies that the exponential
decay rate vanishes as the crack speed approaches the shear wave speed. The case

of an elastic material with a failure zone is slightly more complicated but can be

1y
and

treated in a similar fashion. One has i(s)=%— |‘r—gl+:.

'g'z(s)=-:- 1:: a/9‘2+(l+a),3-i-1]--‘/2[1—(v/C)2]—J/2 with aze[%%]. A simple

calculation then yields that WEL(t) is given by (4.17) with
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~d¢t . 1 [t —d
1(t)=Val (dot)e '+ng01°(dzr)e T dr and

t
- -
ga(t)= 1 1+§ 1—(v/c)2] /2'[010(czr)e"'clr dr where cl=g-l—'5 2—2—5 d;—H'1

d-z—l"6 and | (t) is the modified Bessel function of the first kind of order zero
m
2

defined by I (t)=) QQ%

r —0
decay exponentially to their steady—state limits at the order e—( /b) with

r
Since e<1 and a<1, one can show that I(t) and g(t)

b=ae/(c—~v) as in the no failure zone case. Therefore (4.18) is valid also for an
elastic material with a failure zone.

It is readily apparent that for a viscoelastic material the situation is
considerably more complicated due to the combined influence of material inertia and
viscoelastic stress relaxation upon convergence to steady state. A general property
of the Laplace transform F(s) of a function {(t) is that f(t) decays exponentially in
time, say f(t)~e'_at with a>0, if and only if F(s) is analytic in the halfplane
Re(s)>—a. The expressions (3.23) and (3.24) for 1(s) and gi(s) were derived for real
positive 8. Determining the largest value of a, N, for which sT(s) and sgy(s) are
analytic in the halfplane Re(s)>—a is a difficult task that clearly depends upon the
particular details of the transform m(7s+av/¢). From the previously stated
properties assumed for m(t) it follows that [m(ms+ay/ e)]_l is analytic for
Re(s)>-=L. If m(t) is a power—law in t, then m(7s+a~v/¢) has ss~--—'Z as a branch
point and a_ ., can beno larger than that. As a second example, for a standard
linear solid with m(t)=1+ r]e-t, [m( 'rs-+-ar7/c)]“1 is analytic for
Re(s)>—{(n+1) " +av/d/.

The heart of the matter lies in determining the analyticity properties of




—

33

A(s,7), which is defined implicitly through equation (4.1). Whether or not As.%) is
analytic in some halfplane Re(s)>—a, a>0, depends upon the particular way m(t)
decays to its equilibrium value as t+w. This necessitates a case by case analysis for
different forms of m(t). We content ourselves here with illustrating the differences
that exist between materials with exponentially decaying modulus, such as a
standard linear solid, and those for which m(t) decays as a power of t to its
equilibrium value, such as a simple power—law material with m(t)=1+n(1+t)"",
n>0.

An important observation to be made for power—law material is that G(t)
cannot have exponential decay to its steady—state limit when 9<1, i.e. v<cy. The
reason for this is that A(s,7) is not analytic at s=0 as can be seen from the following
argument. It was remarked earlier that 40,7)=0 whenever 9<1, in particular

lim A, 'y)/s=a-1—-yr . Moreover, for power—law material m(s) has s=0 as a branch
s~0+ 1

point. If A's,v) were analytic at s=0 then the right hand side of equation (4.1)
would also be analytic there. However, the left hand side of (4.1) has s=0 as a
branch point. This contradiction proves the claim.

On the other hand, for 1<'y<m(0)l/2 (i.e. c4<v<c), since K0,7)>0, equation
(4.1) defines J(s,7) as an analytic function in a neighborhood of s=0. In particular,
A(s,v) is analytic in a halfplane Re(s)>—a, a>0. However, finding the largest such a
is difficult. For elastic material, the rate of exponential convergence of G(t) to its
steady—state limit corresponds to the negative real value of s for which As,7)=-1.
For viscoelastic materials, again a case by case analysis will be required to
determine precisely where the singularity of sI(s) or sg)(s) with largest real part will
occur.

The remaining case y=1 (i.e. v=c,) is easily handled. Indeed, for a general
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material, not just power—law or a standard linear solid, equation (4.1) admits no
solutions for s<0. Thus A(s,1) is not analytic in any halfplane Re(s)>--a, a>0 and
G(t) cannot converge exponentially to its steady—state limit. Furthermore, it is not
difficult to see from equation (4.1) that the left endpoint of the largest s—interval
containing zero for which an admissible solution Xs,v) exists converges to zero as y
approaches 1 from above.

These observations made for power—aw material whenever 1$7<m(0)l/2
(cg<v<c) are equally valid for a standard linear solid. A departure in behavior
occurs for 0<9<1. If m(t)=1+ r)e—t, then fﬁ(s)=l+ 149)s 2nd (4.1) can be

+s
rewritten as

2
1+§i:’1)z=72 [z—-z ] , (4.19)

where z=1s4+ ay4s,7). When s>0, a root z must be sought that is greater than 7s,

whereas z< 7s is required when s<0 is suitably near zero. An examination of the
graphs of the functions on either side of equation (4.19) quickly reveals that
admissible solutions exist for any s>0 and s<0 suitably near zero. Moreover, no
solution exists for y=1 and the left hand endpoint of the largest s interval
containing zero on which a solution exists tends to zero as s#0— One concludes
from this that for a standard linear solid, G(t) converges exponentially to its
steady—state limit for 0<9<1 and 1<'y<m(0)’/2 but not for y=1. Moreover, the
rate of exponential convergence, i.e. C tends to zero as 9~1%. It is also easy to

see from (4.1) that a_ _ must vanish as 'r-'m(O)I/z.
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5. Conclusions

The principal contributions of this paper to the study of transient mode III
crack propagation are the solutions for the displacement, stress, and stress intensity
factor for general loadings and general shear moduli, the inclusion of a failure zone
into the model and the calculation of the total energy flux into the failure zone,
G(t). It was then observed that significant qualitative and quantitative differences
exist in the behavior of G(t) as a function of time, crack speed, and material
properties between a model incorporating a failure zone and one which does not.

The question of the rate of convergence of G(t) to its steady—state limit as
t-o was also investigated. It was observed that this rate of convergence depends in
a complicated way upon the rate of stress relaxation and crack speed. In particular,
for a standard linear solid in which stresses relax exponentially fast, G(t) converges
exponentially fast for all crack speeds except the equilibrium shear wave speed.
Thus for crack speeds near the equilibrium shear wave speed, it is expected that
steady—state conditions would set in more slowly than for crack speeds above or
below it. Also the exponential rate of convergence is lost at the glassy shear wave
speed. In contrast, for power—law material, an exponential rate of convergence of
G(t) does not occur for any crack speeds less than or equal to the equilibrium shear

wave speed whereas for speeds between the equilibrium and glassy shear wave

speeds G(t) does converge to steady state at an exponential rate.
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Appendix
The behavior of B as s+ is determined by equation (4.1). If one lets

h=0/s>0 then (4.1) becomes
(s 7+ arh]) =121+ r/ arh))’.

The left~hand side M(s[r+ ayh])=m(0)+ J¢ XTSI ) dr has the limit
0
2
m(0)= [E—;] >'y2 as s=w. Therefore (A.1) will be satisfied only if h=hm+o(]) where
C 2 2 2
hm>0. As s-o, (A.1) becomes [E:} =5(14( T/a'vhm)) . It 1s easily seen that

T 78 .
hm—m and thus ﬂ—m + O(S) as s—x.

To determine the behavior of §as s=0, one must again consider equation

(4.1). Note that the left—hand side of (4.1) is
( 75+ ayB)=m(0)+ fn e+ ) 4.
0

For 0<v<cs, the limit as s~0 of the right—hand side of (4.1), 7%(14 rs/av8)°, will
satisfy (A.2) only if f=fis+0o(s) as s~0. Therefore as s+0, (4.1) becomes
=12 (14 1/ arB)?.
The solution of (A.3) for B is easily seen to be 6'=3ﬂ{_ﬂ'

For cy<v<c, the right—hand side of (4.1) satisfies
Y(L+ms/arBr0?>1.
If 50 as s=0 then it can be seen from (A.2) that the limit of m( s+ ayB)=1 as s~0
which contradicts (A.4). Thus f=8 +0(1), 8 >0 as s~0 where B satisfies

72-(c/c,.,)2=re‘°7ﬂorm'(r) dr.
0

For v=c, it can be shown that to satisfy (4.1), ~0 and s/ 50 as s=0.
Therefore consider f=pfis+o(s"), 0<n<1, as s+0. If one substitutes this into (4.1)

P

(A.2)

(A.3)
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and simplifies the equation, one obtains
1=
_ 7 h_27s 1~7 :
avfis Erm'(r) dr + ofs )_W + o(s” ') as s=0, assuming that Erm‘(r) dr

exists. If this integra! does not exist then one must do the asymptotics for the

particular shear modulus needed. Since the coefficient of each side is non—zero,

._l/
7=1/2 and ,8,:%{~J;tm'(r) dr] 2. In summary, ﬂ:E{IT%ﬂ + ofs) for 0<v<cy,

y
&E[—rrm'(r) dr] L + o(sllz) for v=cy, and B=5_+o(1) for ce<v<c.
0

ay
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