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Summal.

The problem of a semi-infinite mode III crack that suddenly begins to

propagate at a constant speed is considered for a general linear viscoelastic body.

Simple closed form expressions are derived for the Laplace transform of the stress,

displacement, and stress intensity factor. A Barenblatt type failure zone is assumed

to exist at the crack tip and an expression for the total energy flux into the failure

zone per unit crack advance, G(t), is derived. The short time asymptotic form of G

is constructed and the rate at which it converges to its steady-state limit is studied.

It is shown that the rate of convergence to steady-state is dependent upon crack

speed and material properties. Moreover, it is found that whether or not a failure

zone is incorporated into the model significantly influences both quantitatively and

qualitatively the short and long time behavior of G. This difference is important to

predictions of stable vs unstable crack speeds based upon a critical work input to

the failure zone fracture criterion.

IL
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1. Introduction.

Several analytical studies of dynamically propagating cracks in linear

viscoelastic material have appeared in the literature since Willis(1967) presented an

analysis of the dynamic, steady--state propagation of a semi-infinite, mode III

(anti-plane shear) crack in an infinite viscoelastic body. Employing transform

methods and the Wiener-Hopf technique, Willis constructed the dynamic stress

intensity factor (SIP) for a standard linear solid material model and general crack

face loadings. Subsequently, Atkinson and List(1972) introduced transient effects

into the problem by assuming that the crack, initially at rest, begins to propagate at

a constant speed under the action of suddenly applied loads on the crack faces. Also

utilizing the Wiener-Hopf method, they derived an expression for the Laplace

transform of the time dependent SIF from which long and short time asymptotic

approximations and numerical Laplace inversion calculations were obtained.

However, their analysis was limited to consideration of constant applied load along

the crack faces and the required Wiener-Hopf factorization was effected only for a

Maxwell material model and the Achenbach-Chao(1962) three parameter

approximation to the standard linear solid.

Somewhat later, Atkinson and Coleman(1977) used a matched asymptotic

expansion technique to develop an approximate analysis of the steady-state -

propagation of a semi-infinite mode I (plane strain or plane stress) crack

propagating in a clamped viscoelastic strip. Shortly thereafter, Atkinson(1979)

presented an approximate analysis of the mode I counterpart to the mode III

problem considered by Atkinson and List(1972). Their argument, ostensibly valid

for fairly general material models, involved slightly modifying the exact elastic

iL result of Baker(1962) in order to approximate the Laplace transform of the actual
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dynamic viscoelastic SIP. The dominant term for each of the short and long time

asymptotic expansions of this approximate SIP was derived for each of three

different applied crack face loads: a constant, a delta function point force and an

exponentially decreasing form. Also in that paper, Atkinson reconsidered the mode

III problem and extended the Atkinson and List analysis to handle the above three

types of crack face loadings. However, consideration was limited again to the

Achenbach-Chao material model. Atkinson also constructed an expression for the

energy release rate (ERR) based upon a local (i.e. at the crack tip) work argument

and the singular stress field.

Also in that same year, Atkinson and Popelar(1979) presented an analysis of

the transient constant crack speed mode III problem for a viscoelastic strip.

Constitutive relations in terms of differential operators were assumed and the

3 external load consisted either of constant displacement of the upper and lower layer

boundaries or constant tractions on them. The crack faces were assumed to be

stress free. Again the Wiener-Hopf method was used to construct an exact

3 expression for the Laplace transform of the SIF. The required Wiener-Hopf

factorization was carried out modulo a term involving a Cauchy type integral.

Atkinson and Popelar then restricted attention to numerically approximating the

Cauchy integral for the steady-state limit case and assumed a standard linear solid

material model.

A year later, Atkinson and Popelar(1980) addressed the more difficult mode I

problem for a viscoelastic strip. Again by use of the Wiener-Hopf method, a formal

expression for the Laplace transform of the SIF was constructed containing a

complicated Cauchy integral. As with the corresponding mode III case, the integral

I. was studied numerically in the limiting special case of steady-state crack
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propagation in a standard linear solid.

Somewhat later, Walton(1982) examined further the steady-state mode III

problem considered by Willis(1967). Utilizing the Riemann-Hilbert rather than the

Wiener-Hopf methodology, he constructed a simple ciosed form expression for the

SIF valid for general crack face loadings and very general material models. More

specifically, constitutive equations expressed in terms of convolution integrals rather

than differential operators were adopted and the results were shown to be valid

irrespective of any assumed time rate of decay of the viscoelastic shear modulus. In

contrast, constitutive relations in terms of constant coefficient differential operators,

necessarily force an exponentially decaying modulus thereby preventing

consideration of the important class of power-law models which more effectively

represent the mechanical response of many real viscoelastic materials, such as

rubber, than do exponentially decaying functions.

Subsequently, Walton(1983) extended the above analysis to determine the

angular dependence of the stress field in a neighborhood of the crack tip. In

particular, it was shown that the asymptotic stress field at the crack tip has the

same angular dependence as the corresponding dynamic elastic problem. Only the

SIP differs between the elastic and viscoelastic fields.

Walton(1985) next considered the steady-state mode III problem for a

viscoelastic strip. Again utilizing the Riemann-Hilbert method, a closed form

expression for the SIP was constructed for general loadings and shear modulus. The

form of the solution exhibits clearly the combined effects of material properties,

crack speed and layer thickness upon the SIP.

More recently, Walton(1987a) reconsidered steady-state mode III crack

propagation in an infinite viscoelastic body in order to investigate the implications
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ft of including a failure zone model of Barenblatt(1962) type into the determination of

the ERR from a global energy balance calculation. A simple closed form expression

for the ERR, which in this case is just the work done by the tractions in the failure

3 zone, was derived under the same mild conditions on the shear modulus assumed in

Walton(1982) and for a fairly broad class of crack face and failure zone loadings. It

was then observed that whether or not a failure zone is incorporated into the model

greatly influences both qualitatively and quantitatively the dependence of the ERR

upon crack speed and material properties. In particular, calculations based upon a

failure zone seem to reflect more closely experimental observations of cracks rapidly

propagating in real viscoelastic material.'

The methods of Walton(1987a) can be applied to the calculation of the ERR

for a wide variety of dynamic viscoelastic crack problems. Schovanec and

5 Walton(1987c) recently completed the analysis of the dynamic steady-state

propagation of two parallel mode III cracks in an infinite viscoelastic body. Also,

Walton(1987b) has recently completed a study of the mode I analog of

i Walton(1987a). In both of these investigations a Barenblatt failure zone model was

adopted. Of related interest are two additional papers by Schovanec and

Walton(1987a,1987b) in which these same methods were applied to quasi-static

mode I crack propagation in non-homogeneous viscoelastic material. It should also

be noted that Knauss(1973) and Schapery(1975) applied the Barenblatt model to

quasi-otatic viscoelastic crack growth in viscoelastic material and observed that

whether or not a failure zone is incorporated into the model greatly affects the

behavior of the ERR.

I Private communication with Prof. W.G. Knauss and Prof. K. Kuo.



The present paper applies the above Barenblatt failure zone/

Riemann-Hilbert program to the transient mode III problem of a semi-infinite

crack in an infinite, linear viscoelastic body that begins to propagate at a constant

speed, v, due to the sudden application of tractions to the crack faces which then

propagate with the moving crack tip. Thus the crack speed is constant for times

t>O and the crack face tractions are spatially constant, though time varying,

relative to the moving crack tip. Clearly it would be desirable to allow nonsteady

crack growth in order to study the initial crack acceleration phase. However, for

dynamic crack propagation in viscoelastic material such an analysis seems quite

difficult to carry out. Moreover, the primary issue addressed here is the

determination of the influence that crack speed and viscoelastic constitutive

properties have upon the rate of convergence to steady state of the work input to

5the failure zone. Consequently, it is felt that valuable insight into the asymptotic

behavior of the more realistic model with unsteady crack growth can be obtained by

studying the admittedly artificial transient problem in which the crack speed is kept

U constant. For the sake of mathematical completeness, a short time asymptotic

analysis is also presented here.

The next section contains a derivation of the asymptotic singular stress field

in front of the advancing crack tip in the absence of a Barenblatt failure zone. More

specifically, a closed form expression for the Laplace transform of the stress

intensity factor is constructed. The analysis is valid for a very general class of shear

moduli, /t), and a very general class of time and spatially varying crack face

tractions, thereby generalizing the results of Atkinson and List(1972).

In section 3, a Barenblatt failure zone is introduced and an expression for the

L work input to the failure zone is derived for general shear modulus g(t) but for
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m special crack face applied tractions and failure zone constitutive model. The failure

zone constitutive model adopted here is certainly open to criticism on physical

grounds. But again, for reasons discussed in section 3, it is felt that consideration of

UP this admittedly artificial model provides valuable insight into the longtime

asymptotic behavior of more realistic models under the assumption of small scale

yielding. The final section contains the long and short time asymptotic analyses.

The results are then illustrated through special cases and examples.

5

3



A 2. Problem Formulation and Stress Analysis.

The problem to be considered is that of a semi-infinite mode III crack that

begins to propagate at a constant speed v in an infinite viscoelastic body due to the

IL tsudden application of crack face tractions that then travel with the crack. The

governing field equations for the motion of a linear viscoelastic solid are
pu~i=oij =ij '/2(uij+uj,i), ij=2i*d.ij+6 ijA*d'kk, (2.1)

where oij, fij, and u. denote the stress, strain, and displacement fields respectively.
1t

In (2.1), p*df denotes the Riemann-Stieltjes convolution *dc= t-r) d(7).

Since the deformation is assumed to be antiplane strain, ul=0, u2=0, and the

only equation of motion not identically satisfied is p*dAU3=pi 3, where A denotes

the Laplacian operator.

A semi-infinite crack lying along the negative x1--axis is assumed to begin to

propagate at time t=0 with a constant speed v driven by loads

23(x,,t)=LeAe(xav-,t) which follow it, where Ae( ) is dimensionless while ae and
e

Le have the dimensions of length and stress, respectively. Thus, while the crack

speed 's assumed to be constant, the driving load is allowed to be time varying. The

corresponding initial-boundary value problem is

pj 3.=y.*dAu 3=k 1i0)u(x,,x2,t)+J u3(xI,x 2,r) P'(t-r) d (2.2)

with initial conditions u3=0, 113=0 at t=0

and boundary conditions 23(x,0,t)=LeAe(JI!!,t) xt<vt (2.3)
e

us(x1 ,0,t)=O x1>vt

r23(XbX2,)-0 asx, +X2 2-.00.

From (2.1) it can be seen that
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o23xa~2 ,)~jLdu3 =~[P(0)u3(XI,X2,t)+JxjO x2 r),u(t.-r) d T1]. (2.4)

It is convenient to change from the fixed coordinates (xtx 2,t) to the moving

coordinate system (x,y,t) given by x=xl-vt, y=x2 and to define w(x,y,t) by

w(x,y,t)-w(xI-vt,x2,t)=u3 (xj,x 2,t). In the moving coordinates, equation (2.2)

becomes

=A [v-0)w(xy t)+ w(x+vt-V ry, r)P'(t-r) dT]. (2.5)

Application of the Fourier transform, defined by f(pyt)=F fePXf(x,y,t) dx,

to equation (2.5) results in

p X +ivp w(p,y,t)= [(-ip)2 +(. 2 ] [O(0)w(P,y,t)+f w(p,y, r)eV p't),'(t-r) d r. (2.6)

Subsequent application of the Laplace transform g(p,y,s)=FOg(p,y, r)e- s '" d T

to (2.6) yields the equation

p(s+ivp) 2 w(p,Y, s) f 02_P2] [ ( s+ivp)W(PYS)] (2.7)

in which A4s) is the Carson transform of the shear modulus given by

As)=s (s)=jO)+FO e - dy.

Equation (2.7) can be rewritten as - jp +1 (s+ivp ) W=O

which has the solution w(p,y,s)=A(p,s)e - ' p y l, where
As,p)=p2+~ P (+ivp)2]1 / 2 must be chosen so that Re $>0.

L. s+ivp) j

In a similar manner, the Fourier and Laplace transforms may be applied to

the constitutive equation (2.4) to produce o2 3(p,y,s)-=(s+ivp)-.w(p,y,s). If one



defines 1+(p) and -(p) by ?+(p)=rePxf(x) dx and e(p)=rePxf(x) dx, then

the boundary condition (2.3) transforms to

02+PS+ -p~oss~iP p),F(O=-SPsiW(POS (2.8)

From (2.3) it can be seen that o2j(p,0,s)=LeaeAe(aep,s)zg(p,s) and

w(p,0,s)=w-(p,O,s). It is assumed a priori (and is easily verified a posteriori) that

,-(p,0,s) and 0'2t(p,0,s) have analytic extensions w-(z,0,s) and -;2t(z,0,s) for

Im(z)<0 and Im(z)>0, respectively, which vanish as Iz 1--. Thus the transformed

boundary condition (2.8) can be recast as the Riemann-Hilbert problem: find

F+(z) analytic for Im(z)>0 and F-(z) analytic for Im(z)<O such that

I im F+(z)= I im F-(z)=0 and on Im(z)=0,
Ira( z )-+00 Ira( z)---

F+(p)=T(p)F7(p)-.g(p,s) for pc(---,c) (2.9

where F+(z)=o'2+(z,0,s), F-(z)=w-(z,,s), and

L~i)sAi ) 2 • . For convenience, explicit reference to! (s+ivp)

the s dependence of T(p) and Fk(z) is being suppressed. It suffices to note that all

of the following analysis is valid for any complex s with Re(s)_0.

It is well known that the solution of (2.9) is

F*(z)=X Wz1 [' -g(r,s) dr (2.10)
"M- X+ ( ) r---z,

where X*(z) solves the homogeneous Riemann-Hilbert problem

X+(p)=T(p)X-(p) for pe(--m,m). (2.11)

To solve (2.11), it is convenient to factor T(p) into the product

T(p)=T(p)T2(p)Ts(p) in which T,(p)=-(s+ivp), T 2(p)= [(p i)2]'/2,and
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22 1 2 /2
T(p)= - - ~ps2. ]11' . X (z) may now be constructed as the product

(Z)=Xi*(z)X2 (z)X3 (z) with each Xi *(z) satisfying the Riemann-Hilbert

* problem Xi+(p)=Ti(p)Xi7(p).

What will ultimately be required is to solve the homogeneous

Riemann-Hilbert problem (2.11) for each fixed s on a Bromwich path with Re(s)>O.

This will be accomplished by first assuming s real and positive and then invoking an

analytic continuation argument. Additionally, for the subsequent analysis the shear

modulus will be assumed to be positive, continuously differentiable, non-increasing,

or convex and such that gw)=lim 14t)>O. Convexity is sufficient but certainly not

necessary to insure the validity of the following calculations and though

theoretically overly restrictive, it holds for most of the customary models such as a

5 standard linear solid or a power-law material. Moreover, it is worth noting that no

explicit time decay rate for the shear modulus needs to be specified for the results to

be valid. From the fact that gt)=O for t<O, it easily follows that RTt(s+ivz)] - 1 is

3analytic for Im(z)<O. Therefore one may choose

X,+(z)=l and Xi-(z)=-fRs+ivp)] 1 . (2.12)

Since the product T2(p)T3(p)=A(s,p), the branches of T2(p) and Tj p) must be

* chosen so that their product satisfies the requirement that Re O(s,p)O. This

condition can be met by choosing the branch of a1/2 with branch cut along the

negative real axis for both T2(p) and T3(p). (See Fig. 2.1.) Therefore T 2(p) can be

expressed as T2(p)=sgn(p)(p- v) and X2 (z) may be chosen to be

X2+(z)=w+(z) and X2-(z)=-(z)(z-i- (2.13)

in which w+(z)=z1/2 with branch cut along the negative imaginary axis and

4'-(z)=z1/2 with branch cut along the positive imaginary axis. Finally, one may

1_1
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construct X3 (z) by

XS (z)=exp(l' (z)) where r (z)= 7 ,,.f''dr 2.4

To find a closed form expzession for X3 *(z), it is necessary to determine the
U mapping properties of T3(z) for z in the half-plane Im(z)5O. If one first considers

A(s+ivz)=A~s-vq+ivp) on the horizontal lines z=p+iq, q5O, pf(--M,o), then it

follows easily from the stated assumptions on i4t) that

(iv) I im (s-vq+ivp)=/4O) with (s-vq) converging monotonically to 1(0).

Therefore A(s+ivz) maps these lines to the curves shown in Fig. 2.2a.

The linear fractional transformation S(z)=Z iz/ maps the lines z=p+iq,

q 0, pf(-m,ac) to the circles shown in Fig. 2.2b and S(p+iq) exhibits the following

properties:

* (v) 0=S(0)5S(O+iq) Re S(p+iq) S(*w+iq)=1;

(vi) Im S(p+iq)=-Im S(-p+iq);

(vii) arg S(p+ic){ >0P>

(viii) IJim S(p+iq)=l with S(iq) converging monotonically to 1.
q-4 - a

If the elastic shear wave speeds corresponding to infinite and zero time are

defined by c* 2 =14o)/p and c 2 =to)lp then from (i)-(viii), it follows that [T3 (z)] 2

has the following properties:

(ix) Im T3 2(p+iq)=-Im T3 2 (-p+iq);

(x) arg T3 2(p+iq){~ >0 g;O
2 2

(xi) I im T3 (p+iq)=1-(v/c)
q-4 -
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(xii) -( v/c*) <e!.-=T3 ()T3 (iq)T3 (-4w)=14(v c)2 where T3 (i)i

monotonically increasing to 1-(v/c)2 as q-4-o.

Thus it can be seen that T3 2(z) maps the horizontal lines z=p+iq, q O, pf(--m,m) to

the curves shown in Fig. 2.2c. Furthermore, it can be seen from (xii) that T3(z) 2

has a unique root z*=iq* in the half-plane lm(z) O for any positive real value of s.

If the branch cut for the square root defining Ts~z) is chosen along the

negative real axis then T3(Z) is analytic for lm(z)<O except for the branch cut on a

segment of the negative imaginary axis across which it has a jump discontinuity

22 1/2
given by T3*~q=* 2 P for q*<q<O. It follows that log T3(z)

is analytic for Im(z)<O away from this line segment and has the jump discontinuity

log(TJ(+O+iq))-4og(T 3(--+iq))=ir across z=iq, q*<q5O. One can then evaluate

r &(z= 1f'lo(T3 '))dras in Walton(1982) and conclude that

P(z)=(1/2)flog(q*i-z)-4og(-z)+og(T 3 (m)) + JO for lm~z 11
-log(Ts(z)) for Im z) <Of

* Therefore (2.14) reduces to

X3 +(z)={ w+(z-jq* )[T3(m)J'/2}/W+(Z) (2.5

From equations (2.12)-(2.15) it then follows that

F+(z)=; 2̂ t(z,0,s), F-(z)= v(z,0,s) from equations (2.10) and (2.16). The Laplace

transform of the stress intensity factor (SIF) K(s) can now be calculated as in

IL Walton(1982). In particular, it is straightforward to show that



as~v x-0 hr ,T/4 ;T,s) d, (2.17)
O'2,S)K~) -/2 s -O" whrek(s)=-[Tso)1 2 2 j X +( T)

and OI(rs)=Leae Ie(aeTrs). Again, as in Walton(1982,), (2.17) may be simplified

to K(s):= 'rrL eAe(x's) lxi 1/2 e(xq*ae) dx, in which it should be emphasized

that q* is a function of s determined implicitly by Tsiiq*)=0.

Equations (2.10) and (2.16) can be shown to hold for each fixed complex s

such that the Re(s)>0. Therefore these expressions (with slight modification) are

valid on a Bromwich path and numerical Laplace inversion may be performed.

These details are found in Herrmann and Walton(1988).
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3. Calculation of the Energy Release Rate.

The Energy Release Rate (ERR) will now be calculated based upon the

assumption that a Barenblatt type failure zone exists at the crack-tip. Specifically,

it is assumed that two loads are acting on the crack-faces: the applied (external)

tractions denoted ae(x,t)=Le A e(!t) and the cohesive (failure) stresses
e

cr(x,t)=-LfAf(w(xt),L,,t) acting in a failure zone of length af immediately behind
f

the crack-tip. Two essential features of the Barenblatt model are that af<<ae and

that Ke+Kf=O where Ke and Kf are the SIF's corresponding to e and f,

respectively. The effect of the failure zone is to cancel the singular stresses ahead of

the crack-tip and thereby produce a cusp shaped crack profile behind the tip. The

resulting mathematical problem is: given o (x,t), find the "response" stress in the

failure zone and crack face displacement w(x,t) that cancel the stress singularity due

to o,(x,t) while maintaining a constant crack speed. The goal is then to compute

the time evolution of the energy release rate as described below.

The ERR, G(t) (defined to be the energy flux into the crack tip per unittv

crack advance) is given by G(t)=t (x,-vt,t)(xj-vtO,t)dxi, which in theVJvt-af

moving coordinates becomes

G(t)= r Fx t)[. -v]w(xO,t)dx. (3.1)

Deriving a closed form expression for (3.1) valid for arbitrary applied tractions

o'e-(x,t) and failure zone constitutive law
fx,t)--Lf fw(x,t),!,t) (32)

Af af

requires solving an exceedingly complicated non-linear boundary value problem.
i" The constitutive law (3.2) models the failure zone response as that of a nonlinear
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elastic spring, accounting for inhomogeneity and aging. In general the failure zone

length, af, is dynamically changing and determined by the equation K e+Kf=O. In

the absence of any generally accepted, physically motivated form for A1(., .,.

various ad hoc, artificial models have been introduced and studied in the literature.

In Schapery (1975), it is argued that taking uf-(x,t) constant for -af<x<O

with af=af(v,t,e-(x,t)) is a reasonable approximation to reality, at least provided

af is very much smaller than all significant physical length scales such as crack

length and the distance from the crack tip to the boundary. More recently,

Goleniewski(1988) studied this same failure zone model for the corresponding

dynamic, steady-state problem for a Maxwell fluid and piecewise constant applied

tractions oe-(X,t). However, the methods of Goleniewski(1988) do not seem to

generalize to the transient problem, even for a Maxwell fluid Due to the

1 complicated non-linear coupling between w(x,t) and af, deriving a convenient

expression for G(t) from which qualitative properties can be inferred when oUf is

assumed constant seems unlikely.

[] In contrast, for the dynamic steady-state problem it was shown in

Walton(1987a) that a simple closed form expression for G is obtained for the special

class of loads

-Oe(x)=Leexp(x/ae) and qf(x)=-Lfexp(x/af) for -u<x<O. (3.3)

It was argued there that for af<<ae, the fact that (xt) does not have compact

support should have a relatively minor effect on the results provided the essential

requirements for the Barenblatt model are still satisfied: af<<ae and Ke+Kf=O.

Furthermore, the two cases (1) Lf constant with af=af(v) and (2) af constant with

Lf=Lf(v) were compared quantitatively. It was found that, except for very high

crack speeds, the two cases produce nearly identical G vs v curves. In light of these

IJ
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considerations it is likely that valuable insight into the combined influence that

crack speed, inertia and viscoelastic properties have upon the rate of convergence to

steady-etate of the transient G(t) can be obtained from generalizing the analysis of

* Walton(1987a) to the transient problem addressed here, the unphysical nature of

the failure zone constitutive law (3.3) notwithstanding.

Henceforth, the forms (3.3) will be assumed for a- and of-. Moreover, time

dependent tractions e-(x,t) will be permitted by taking

or(X,t)=LeI(t)exp(x/a), --M<x<0, (3.4)

where le(t) is a dimensionless function of time. As with the steady-state analysis in

Walton(1987a), consideration of the two models, (1) Lf constant with af=af(v,t)

and (2) af constant with Lf=Lf(v,t), arises naturally. While case (1) is the more

physically compelling, it is mathematically much more complicated owing to the

Unonlinear manner in which the initially unknown function af(v,t) occurs in the

problem. In contrast, case (2) is clearly unphysical in a dynamic analysis (e.g. it

suggests that information travels with an infinite speed of propagation in the failure

U zone) but, as shown below, admits an elegant closed form expression for G(t) with

the aid of which qualitative and quantitative properties can be easily studied. In

light of the steady state results, it is likely that, except for very high crack speeds,

the two cases should exhibit similar long time asymptotic behavior whenever

af<<ae. The analysis of case (2) is presented here and that of case (1) is the

subject of a future paper.

With o-(x,t) given by (3.4) and f -(x,t) by

o.(x,t)=Lflf(t)exp(x/af), --u<x<O, (3.5)

the appropriate definition for G(t) becomes

G(t)=or o(x,)[ V3 ]w(xOt)dx. (3.6)

I".
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*In (3.5) the explicit dependence of lf(t) upon v has been temporarily suppressed. As

shown in Walton (1987a), it is straight forward to extend the analysis to treat more

general loads of the form o'(x,t)=L(t)ferxla dh(r) where h(r) is any signed

measure for which the integral makes sense. However, for the sake of brevity that

development is not included here.

Incorporating (3.5) into (3.6) there results

G(t)-I(t)+W(t) with (3.7)
I(t)=-Lfli(t)IrJ e(x / af )aw(xO,t) dx and (3.8)

W(t)--flf(t)J e(X/af w(x,O,t) dx. (3.9)

I(t) and W(t) in themselves do not have any direct physical significance but the

decomposition (3.7) does provide some insight into the behavior of G(t). In

particular, it is shown below that Jim G(t)=lim l(t) and lIr G(t)=lim W(t)
t-0 t-40 t- 0 t- 0

whereas I i m W(t)=I i m I(t)=0. Thus the short time behavior of G(t) is governed
St-0-

* primarily by 1(t) and the long time behavior by W(t). Moreover, in anticipation of

comparison with future results from the analysis of case (1) lf(t)=1 and af=af(vt),

both G(t) and W(t) are studied in detail here.

Motivation for the separate consideration of W(t) derives from the following

observations. In Schapery(1975), it is argued that it is physically more compelling

to build a viscoelastic fracture criterion upon the work done to the trailing ligament

in the failure zone, r(t), rather than upon G(t), the total energy flux to the failure

zone per unit crack advance. Of course this concept only has meaning for a failure

zone with finite length. For any failure zone constitutive model, one may write
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G(t) as in (3.7) with W(t)=r fOi(~)N~,~~x For the particular
J~f

constitutive model 0f'(xt)=-L, -af<x<O with af=af(v,t), studied by Schapery,

i P(t)=W(t). It then seems reasonable to study W(t) as a suitable generalization of

r(t) to the constitutive model (3.5) for case (1) lf(t)=1, af=af(v,t). Expecting case

(1) and case (2), af constant, lf=lf(v,t), to exhibit similar behavior, at least as t-m, a

separate analysis of W(t) given by (3.9) is included here.

I(t) and W(t) can be constructed by separately evaluating the integral

expressions in (3.8) and (3.9) and multiplying the results by lf(t), which is

r-r determined from the Barenblatt assumption that Ke+Kf=0.

Consider first the integral

g(t)=l_ e(x/af) [9-v1]w(x,0,t)dx. (3.10)

If one notes that the inverse Fourier transform of H(-x)e(Xa is-+iaf)-  and

applies Parseval's relation to (3.10) and then applies the Laplace transform to the

resulting expression, the Laplace transform i(s) is found to be-U1 s w d-- f-

g(s)=--;.1 +ip ](p,0,s, d Since -(p,,s)=F-(p) has an analytic

extension F-(z) for Im(z)<0, the integral can be evaluated by residues, whence it

follows that

(s)= [s + j"] F-(-i/a). (3.11)

It remains to evaluate F-(-i/af). To this end, one begins by first noting that (2.8)

can be rewritten as

F-(p)= (p)/T(p), (3.12)

where ofp)= -(p)++(p). (3.13)

For the Barenblatt model o-(x)=ae(x)+cq(x) and consequently
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Sa--(p)=:(p)+T(p). Also 01+(p) in (3.13) can be determined by application of the

Plemelj formula to (2.10) thereby obtaining
(P)=F+(P)=- 1() +(p)f X ) - .This can be rewritten using

0+(P) =+e(p) +0'(p) (3.14)

wherein o'+(p) and 0"4(p) are given by

I +'Jt' dr
+(p)= 7'(p)+ 1X+(pj X+(r)d. (3.15)

- I (s)
From (3.4) it can be seen that 7(p)-j e and therefore o'(z) ise (p-( i ae)) e

meromorphic with pole z=i/ae. Since X+(z) is analytic for Im(z)>0, (3.15) can be

calculated by residues with the result

e[ (2i-e]. (3.16)

Similarly, (p)--=- p)[l -I (P)I which combined with (3.14) and (3.16)

yields

_____ I)e' LfIf(s ) )(3.17)t('-(i/ae ))X+r(i/ae) (p..i -4 XT i/af)]. H3.17)

Equation (3.17) can now be simplified by the Barenblatt hypothesis K e+Kf=O. For

the special loadings given by (3.4) and (3.5), equation (2.17) yields

Ke(s)=--[T(.)l ' /2 e'i /  LeIe(s) and Ki(s)---Ts(m)'/2 e i 4 -L fIf(s)

X+(i/ae) X+(i/af)

which under the Barenblatt hypothesis results in the identity

Le le( s)  L f if(S)
X+(isae) X+i/af) (3.18)

..... lIilIl/+ -"



n .. .. I I a ol._ !i _

22

a Equations (3.17), (3.18), (3.12) and the observation that T(p)=X+(p)/X-(p)

then yield

_ afLele(s) (ae-af) X-(-i/af) (3.19)an F (-4/af)=- e2e - + a,,+i-- a'

One may now substitute (3.18) and (3.19) into (3.11) thereby obtaining

LeIe(s) [s j af(ae-~af) X7-ilaf)
2LfJ (ae+af)lX+(i/ae)

which when combined with the result (2.16) derived previously for X *(z) produces

-Le I (s) (ae-af) l+afq* I1V1

=ef s+v/af)1(1+safv)2 (s+v/af)

In order to present the results in a nondimensional form, it is necessary to

introduce certain parameters. First, a nondimensional shear modulus is defined by

5 gt)=pm(tr) where i =lim 0t) and thus lim m(t)=1. Also. the nondimensional
t- Do t-Mo

parameters -,Y, f, c,, and #3are defined by -y=v/c*, f=af/ae, a=c*r/ae, and 8=-aeq,

where 0<y<c/c*, fc<<1, a>0, and i3>O.

The Laplace transform i(s) can now be rewritten in nondimensional form as

,-L es) -- 1/2 (12 m -)(3.20)
M(Ts~a-rlf TS+Qy/f)f

Also note that 6=As,y) is the unique root of the equation
M(T5+C-r#)- : (1+(Ts/a )).

Attention will now be turned to If(t). It follows from (2.16) and (3.18) that

lf~s)i (s Le + /2(3.21)

Finally, utilizing (3.7)3.10), (3.20), and (3.21) one may write the ERR as

L 2 a* (t)=-Lfl1 t)g(t)=--=e l(t)g,(t), (3.22)
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N where the Laplace transforms of (t) and g(t) are given by

I(s)= Ie(s) I! I'/2 (3.23)

Ie (s) 1- 1a /2 1 , /)2 1 - /2
+_(+ / ( /) ( / (3.24)

Unfortunately, it is not possible in general to invert (3.23) and (3.24)

analytically. Therefore to obtain a better understanding of G(t) either an

asymptotic analysis based on (3.22)-(3.24) may be performed which is valid for any

shear modulus /4t) or numerical inversion of the Laplace transforms (3.23) and

(3.24) may be obtained for a specific p t). The asymptotic analysis and the

consideration of special cases are addressed in the next section. Numerical inversion

of (3.23) and (3.24) for the standard linear solid and power-law models can be

found in Herrmann and Walton(1988).

I

i

tI
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4. Special Cases and Asymptotic Solutions.

Asymptotic expansions for the ERR, G(t), as t-0 and as t-,o can now be

constructed from (3.22)-(3.24). More specifically, asymptotic expansions for l(t)

and g(t) can be constructed separately and multiplied together. Moreover, it can

be seen that l(t)=le(t)*l,(t)where 1,(s)= II '/ . Unless indicated to the

contrary, henceforth attention will be limited to the special case Ie(t )=1, i.e., the

external tractions driving the crack will be assumed to be time independent. In that

case one clearly sees that 1(s)=s- 11(s). More general time dependence for le(t) is

L17 easily incorporated into l(t) by a simple convolution of Ie(t) and 11(t).

For short time approximation, it is necessary to determine the asymptotic

behavior of 1(s) and gi(s) as s-,. To this end, it is required to study the behavior of

I(s+a-y/f) and 3as s-w. From the definition of the Carson transform '(s), it is

easily seen that x(c)=m()-4 =[]. Furthermore, since I=0(s,y) satisfies

the equation

M i( n+ ay/)=7 2(1+(r/a 7Y,))2  (4.1)

it can be shown (see appendix) that

T(cc)_.l + o(s) as s-,,. (4.2)

Therefore if 1(s) and j,(s) are written as asymptotic series in powers of 1, it

is found that as s-,m

+(1a 1 + 2 (4.3)
Ts

~~ [(1+f) a (c/c*)--71 + TriW3~ os )

Hence, if one assumes that l(t) and gl(t) have Maclaurin expansions in a

neighborhood of t=O then from (4.3) and standard asymptotic results for the

I/
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Laplace transform,

+( (i) =,r, (c/c*)--y1(t/r) + 0(t0]1 (4.4)

g (t)= 4 7 .( j [ W '01i 1( / *) y + o(t) as t-0. (45)

From (4.4) and (4.5) it follows after algebraic simplification that

L 2 ae r aT

e

It should be remembered that (4.4) and (4.5) (and hence (4.6) also) are not

uniformly valid expansions as e-0. The case f=0 is a singular limit treated

separately later. It should also be remarked that near t=O, G(t is governed by the

glassy properties except for the inclusion of the term m'(0) which incorporates the

effect of the initial rate of stress relaxation. Since m(O)>l and m'(0)<0, one sees

that the sign of G'(0) depends upon the crack speed and material properties through

3the relation

GI(O)>O {0'(O)<O}I if and only if aeJ.4 J>[c-v] {ae lp-K I c-vI}

In particular for fast enough crack speeds, G'(O) will be positive, i.e. G(t) will

i initially increase with time. However, for any given crack speed if the combination

ae  Iis small enough, then G(t) will initially decrease with time.

To determine long-time asymptotic solutions as t-,, it is necessary to find
Lae

first lim G(t)=-!e-e lIr sl(s) lim si (s). The expression M' (7+ay/f) has the
t-W® z®s--A 0 s-.O

limit M'(ay/) as s--0 and #, as shown in the appendix, has different asymptotic

limits as s-0 depending on whether (i) O<v<c*, (ii) v=c*, or (iii) c,<v<c, namely

Ts + o(s) for O<v<c*,
/21/2 + o(s/2)

6- a jrm'(r) dr+ for v-c,

+ o(1) for c*<v<c, where 0o is defined implicitly through the equation
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2_[ j=fe-0rmrjoin(r) dr. To avoid separate cases in displaying subsequent

formulas it is convenient to define 90=0 for O<v<c*.

Again from standard asymptotic arguments for the Laplace transform

G t r e  I1-( E (4)2 (71 2 2 /2)

which is precisely the steady-state bolution found in Walton(1987a).

It is interesting to consider separately the asymptotic behavior of Lflf(t) for a

general time dependence Lele(t) in ao(xt). One notes that as t-0,

Lflf(0)=lim sIflf(s)=Lele(0) . Thus initially Lflf(t) and Lele(t) are equal for any
S-4 M

crack speed and E>O. In steady--.tate, however,

L f I)=i m sLffs)LIe(a )+, ./ . For 0<-v<1, /0=0, which implies that

Lfl()=(l/,]' )Lele(D) which is the same as found for quasi-static crack propagation.

For 1<'y<c/c*, P. is a monotone increasing function of I with I i /o()-.
I- c /c.

Lflf(®)

Thus L is a monotone decreasing function of -y with I im Lf(o)=Le(m). ForLeem -c /c,

the special case of Lele(t) constant, one obviously uses Lele(O)=Lele(0m)=Le in the

above formulas.

It is instructive to consider several special cases. Setting c=0 corresponds to

a model with no failure zone. Allowing f-,0 in (3.23) and (3.24) yields

I(s)=ie()/VIT7 and 1 r(s)=ie(S) PM gT+ '[-0/0 1  '. It then follows easily

from (3.18) and (3.22) that Gnft), i.e. G(t) based on the singular stress field

without inclusion of a failure zone, becomes

Gn/(t)=[K(t,-'))J [T2"-o~ 0 , ,l- ol • (4.8)
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Thus, Gnt) is simply the product of the square of the SIF, K(t,-y), with a time

constant function of crack speed and the glassy material properties.

If one assumes that K(t,-y) has an asymptotic expansion in powers of t1/2 as

t-.0, then it can be shown from (2.16), (3.18), and (4.2) that

K(t,7)=-Leaea/r)(c/c)-i/i7* + o(Vrt) as t-0.- Substitution into (4.8) then

produces
L "' e2ae 1cv /2

G C, ,vl (tc/a) + o(t) as t-0. (4.9)

The steady-state limit when t-,® is found to be

Gn Le)=-e- ae 1- i -4 l -( v/ )2 - '1/2 (4.10)

It should be remarked that the right hand side of (4.10) can be shown to vanish as

£I v-.c.

The special case of an elastic material is obtained from the general solution

(3.22)-(3.24) by Jetting r-. There results

Le2ae

U G(t )=----- (t)gi(t), (4.11)

I~s-I 1+ 1~ /2
-(s)= Ie() I - .- I 1,sa

gs)l(s)(1-() Saf/v + +1 where 03=--L

The quasi--static limit is obtained from (3.23) and (3.24) by letting c,-

(p-0). It follows that #=0 and hence that

I(s)=Ie(s), (4.12)

~i(s)Ie(s) (I-( 1 (l+saf/v).
7+7f ='( 7+v'/af)

In particular, one sees that Lflf(t)=Le1e(t)4 7 and thus that Lflt(t) is crack speed

independent. Moreover, consideration of (4.12) reveals that gl(t) in the quasi--static

II
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case has a Dirac delta function singularity at t=0.

Several comments on these asymptotic results are in order. First, it should

be observed that whether or not the model assumes a failure zone dramatically

affects both qualitatively and quantitatively the behavior of the ERR as a function

of time, crack speed, and material properties. For example, from (3.20) it is easily

shown that for any t, if E>O, I im G(t)=w whereas if e=0, Iira G (t) /10'-.0  '3-.0 "= zo i

where (s,0)= eee(s) /s,0)=-L (rs)/2 However, in the
+-,0) and from (4.1) fiowever5

steady-state limit (4.7), G approaches a finite limit as the crack speed vanishes.

both with and without a failure zone. Specifically, it is easily seen that for the

steady-state limit

Le2ae 1-f for>oI im G(= )-' + r >

Le 2aTO for f=0.

Thus G becomes infinite as --0 except for =O (no failure zone) or under

steady-state conditions.

The reason for this behavior is found through consideration of the crack face

particle velocity 3(x,0,t)--t-xt -x,0,t). A consequence of the assumption

that there is an initial jump discontinuity in the applied crack face tractions is that

F&Wtx,0,t) does not vanish as v-.0. Thus, from (3.6) it follows that I im G(t)=. In
v-4 0

contrast, when e=0, one sees from (4.8) that G is merely a product of K(t) 2 and a

simple function of crack speed and glassy material properties that is independent of

the crack face particle velocity and that remains bounded as v-0. Moreover, in

steady-state, G is given by G=-. af-(x)-/x,0) dx and thus remains bounded as
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Other differences between the e=0 and e>0 cases are evident in the short

time behavior of G(t). In particular, from (4.6) it is easily seen that when (>0,

Le2a
lir G(t)=e e 1- - f >0 whereas, for c=0, it follows from (4.9) that
t-0M 1+C v

lir G(t)=0.
t-4 0

The singular behavior for G(t,v) as v-,0 in the dynamic solution and the delta

function contribution at t=0 in the quasi--static solution are both due to the

integral 1(t) in (3.7) which contains the relative crack face particle velocity

V(x,O,t). As shown below, W(t) exhibits none of the singular behavior seen in

G(t).

An expression for W(t) is easily constructed from simple modifications of

(3.10), (3.11), and (3.22). Specifically, one sees that

L 2a
W/t)= e eI

l(t)g2(t) (4.13)

where l(s) is given by (3.20) and

-9 (8)= i e S (1( 1s+ 4f/ € /2s+ T € 1
e ' TS+ay/)

It is trivial to show that the limit of W(t) as e-0 (no failure zone) is Gnft) given in

(4.8). The other special cases considered above are easily constructed for W(t). In

particular, for elastic material 1(s) is still given by (4.11) whereas ji(s) is replaced

by g2(s) given by
S 1 /2-

gW=(,)=e(sI )( p1-(v/c + saf/c) 2 -"/2, with c--' as before. (4.14)

The quasi-static limit of W(t), W s(t), (c*-) yields as before 1(s)=ie(S)1 1
and has gi(s) replaced by j2(s)=1e(s) -- W 1-. In particular, if le(t)=1,

m(Ts+v r/af)
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i.e. the applied tractions are time independent, then le(s)=-j and it follows that

92(t)= [jj/T) e-rv7/afc'(r) drJ where c(t) is the non-dimensional

compliance corresponding to m(t) defined by Mi(s)=1/'(s). Thus,

L a ~~(t/Tr) -
W t eqae (I-e)[ + e o'/af)c'(r) dr] (4.15)Wqs~t=' J.'m--" I

It should be noted that I im W s(t)=Le 2aeD(t/r), where D(t/r) is the creep
v_, 0 qs

compliance corresponding to the shear modulus p(t/7r).

Short time asymptotic expansions for W(t) can be constructed as before for

G(t). In particular from (4.4) and (4.13) it follows (assuming le(t)-i) that

W(t)=(-) + oft) as t-.0+. (4.16)

A similar asymptotic expansion of (4.14) reveals that the short time response for

W(t) in (4.16) is unchanged for an elastic material. Obviously though, the

asymptotic series for elastic and viscoelastic materials differ in their higher order

terms. Moreover, as noted previously for G(t), the asymptotic expansions for l(t)

and g2(t) are not uniformly valid as e-0. Thus, the limit of (4.16) as F-{) does not

yield the small t expansion (4.9) for Gnf(t) . It should also be noted that the first

term in the asymptotic expansion (4.16) is independent of crack speed. Thus, to

leading order as t-,0, W(t) for a moving crack is the same as that for a stationary

crack. However, the higher order terms are crack speed dependent and influence

W(t) for all but asymptotically small times t.

It is interesting to compare the dynamic result (4.16) with the quasi--static

result (4.15). In particular, the dynamic analysis shows that lir W(t)=0, whereas
t-4 0

L 2a
the quasi-static result has lim W (t)= e e-. Thus, for short times the

qs+
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I quasi-static and dynamic analyses yield quite different results for all crack speeds.

This is in marked contrast to the steady-state limits which show good agreement

for all crack speeds up to nearly (and sometimes beyond) the equilibrium shear wave

speed. The short time asymptotic analysis reflects the obvious fact that the initial

transient response for the quasi-static case should differ from that occurring when

the effect of material inertia is included.

Attention will now be directed toward describing the manner in which W(t)

converges to the steady-state limit as t-. It is useful for comparison purposes to

consider the question first for elastic material. Again it is assumed that le(t)=1, or

equivalently 1e(S)=S -1. Thus,

L 2 a
WELt " l(t)g2(t) (4.17)

i with I(s) and g2(s) given by (4.11) and (4.14), respectively. It is instructive to

consider first the elastic case with no failure zone. In that case 1(s)=1 and
dsa

-2(s)=' with 8= -Sae It follows easily that l(t)=Erf(17"/)
jL 2a 2'I '
where b=a /(c-v) and hence that W(t)=--2 e1-(V/c)2 It is

easily seen that

W(t)=W(a) + O(e (t/b)) as t-.. (4.26)

Thus W(t) converges exponentially to its steady-state limit with exponential order

e(t/b). It should be noted that b-u as v--c which implies that the exponential

decay rate vanishes as the crack speed approaches the shear wave speed. The case

of an elastic material with a failure zone is slightly more complicated but can be

treated in a similar fashion. One has I(s)=! -1' and

g2(s)=l: a+(l+a)#+.)-/2j1-V/C)2]- '/2 with a-e A simple

calculation then yields that WEL(t) is given by (4.17) with
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N. l(t)=,qTIo(d 2t)e + -4 o(d2r)e' dr and

1 (-Q~_(vc)2 /2 --~r r werecla+l1 1-a
drt) whr c:=2.~-F, C2=2 , djf 1=,,

d2=M, and I 0(t) is the modified Bessel function of the first kind of order zero

defined by IO(t)=I (./2 Since e<1 and a<1, one can show that l(t) and g2(t)

r -0 ( r )

decay exponentially to their steady-state limits at the order e - (t/b) with

b=ae/(c-v) as in the no failure zone case. Therefore (4.18) is valid also for an

elastic material with a failure zone.

It is readily apparent that for a viscoelastic material the situation is

considerably more complicated due to the combined influence of material inertia and

viscoelastic stress relaxation upon convergence to steady state. A general property

of the Laplace transform F(s) of a function f(t) is that f(t) decays exponentially in

time, say f(t),e - at with a>O, if and only if F(s) is analytic in the halfplane

Re(s)>--a. The expressions (3.23) and (3.24) for 1(s) and 91(s) were derived for real

positive s. Determining the largest value of a, amax, for which sl(s) and s'l(s) are

analytic in the halfplane Re(s)>-a is a difficult task that clearly depends upon the

particular details of the transform M'(rs+ay/,). From the previously stated

properties assumed for m(t) it follows that ['(,rs+cry/)] - 1 is analytic for

Re(s)>-" 2 . If m(t) is a power-law in t, then M(s+a-y/e) has s=-22 as a branch

point and areax can be no larger than that. As a second example, for a standard

linear solid with m(t)=+ge- t, ['( rs+a-!,C)F- is analytic for

Re(s)>A4(9?-s-IF +crv1 / Jr.
The heart of the matter lies in determining the analyticity properties of

I.
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As,y), which is defined implicitly through equation (4.1). Whether or not 0(s,Y) is

analytic in some halfplane Re(s)>-a, a>O, depends upon the particular way m(t)

decays to its equilibrium value as t--m. This necessitates a case by case analysis for

different forms of m(t). We content ourselves here with illustrating the differences

that exist between materials with exponentially decaying modulus, such as a

standard linear solid, and those for which m(t) decays as a power of t to its

-equilibrium value, such as a simple power-law material with m(t)=l+i(l+t) - n,

n>O.

An important observation to be made for power-law material is that G(t)

cannot have exponential decay to its steady-state limit when 7<1, i.e. v<c*. The

reason for this is that P s,-y) is not analytic at s=O as can be seen from the following

argument. It was remarked earlier that gO, 7 )=O whenever y<l, in particular

lim As,-Y)/s= Ij. Moreover, for power-law material M'(s) has s=O as a branch
s-00+

point. If qs,7) were analytic at s=O then the right hand side of equation (4.1)

would also be analytic there. However, the left hand side of (4.1) has s=0 as a

branch point. This contradiction proves the claim.

On the other hand, for 1<y<m(0)'/2 (i.e. c*<v<c), since O,-7)>O, equation

(4.1) defines Pgs,y) as an analytic function in a neighborhood of s=O. In particular,

4(s,-y) is analytic in a halfplane Re(s)>-a, a>O. However, finding the largest such a

is difficult. For elastic material, the rate of exponential convergence of G(t) to its

steady-state limit corresponds to the negative real value of s for which/ s,7)=-l.

For viscoelastic materials, again a case by case analysis will be required to

determine precisely where the singularity of sl(s) or s-i(s) with largest real part will

occur.

The remaining case -=1 (i.e. v=c*) is easily handled. Indeed, for a general

I-I



34

material, not just power-law or a standard linear solid, equation (4.1) admits no

solutions for s<0. Thus 0(s,1) is not analytic in any halfplane Re(s)>--a, a>O and

G(t) cannot converge exponentially to its steady-state limit. Furthermore, it is not

U difficult to see from equation (4.1) that the left endpoint of the largest s-interval

containing zero for which an admissible solution P(s,-y) exists converges to zero as -y

approaches 1 from above.

These observations made for power-law material whenever 1< y<m(O) 1/2

(c*<v<c) are equally valid for a standard linear solid. A departure in behavior

occurs for 0<7<1. If m(t)=1+rt, then MI(s)= I1+4± )s and (4.1) can be

rewritten as

+I.+j)z_ 2r z ] 2 , (4.19)

where z=Ts+a-yfs,'y). When s>O, a root z must be sought that is greater than Ts,

whereas z<Ts is required when s<O is suitably near zero. An examination of the

graphs of the functions on either side of equation (4.19) quickly reveals that

admissible solutions exist for any s>O and s<O suitably near zero. Moreover, no

solution exists for -y=l and the left hand endpoint of the largest s interval

containing zero on which a solution exists tends to zero as s-,O-. One concludes

from this that for a standard linear solid, G(t) converges exponentially to its

steady-state limit for 0<'y<l and 1<-y<m(O)1/ 2 but not for y=l. Moreover, the

rate of exponential convergence, i.e. amax, tends to zero as r-l*. It is also easy to

see from (4.1) that ama x must vanish as .y,-m(O)I2.

L I/
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5. Conclusions

The principal contributions of this paper to the study of transient mode III

crack propagation are the solutions for the displacement, stress, and stress intensity

factor for general loadings and general shear moduli, the inclusion of a failure zone

into the model and the calculation of the total energy flux into the failure zone,

G(t). It was then observed that significant qualitative and quantitative differences

exist in the behavior of G(t) as a function of time, crack speed, and material

properties between a model incorporating a failure zone and one which does not.

The question of the rate of convergence of G(t) to its steady-state limit as

t--,a was also investigated. It was observed that this rate of convergence depends in

a complicated way upon the rate of stress relaxation and crack speed. In particular,

for a standard linear solid in which stresses relax exponentially fast, G(t) converges

5 exponentially fast for all crack speeds except the equilibrium shear wave speed.

Thus for crack speeds near the equilibrium shear wave speed, it is expected that

steady-state conditions would set in more slowly than for crack speeds above or

3below it. Also the exponential rate of convergence is lost at the glassy shear wave

speed. In contrast, for power-law material, an exponential rate of convergence of

G(t) does not occur for any crack speeds less than or equal to the equilibrium shear

wave speed whereas for speeds between the equilibrium and glassy shear wave

speeds G(t) does converge to steady state at an exponential rate.

&_
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U Appendix 4

The behavior of gas s-w is determined by equation (4.1). If one lets

h=#/s>0 then (4.1) becomes

U f(s[r+cth1)=7 2 (1+(r/a-yh))2 • (A.1)

The left-hand side M(s[r+ayh])=m(0)+F e-r+CQ'A)srm '(r) dr has the limit

2
m(0)= JF..] >7 2 as s--m. Therefore (A.1) wil) be satisfied only if b=h +o(1) where

h00>0. As s-,+, (A.1) becomes I*./[] 2= 2(1+(r/a-vhW))2. It is easily seen that

h = and thus + o(s) as s-.x.T ccT--J ]c *'

To determine the behavior of #3as s-,0, one must again consider equation

(4.1). Note that the left-hand side of (4.1) is

5 i( rs+r)//)=m(0)+fe(rs+a7/3)rm'(r) dr>1. (A.2)

22
For 0<v<c*, the limit as s-0 of the right-hand side of (4.1), -Y (1+rs/a-y/), will

satisfy (A.2) only if /-ls+o(s) as s-,0. Therefore as s-,0, (4.1) becomes

1=,2 (1+r/l a-,O) 2. (A.3)

The solution of (A.3) for /1 is easily seen to be 01=

For c*<v<c, the right-hand side of (4.1) satisfies

72 (1+rs /a,) 2 >72 > 1. (A. 4)

If P-0 as s-,0 then it can be seen from (A.2) that the limit of (rs+a/)=l as s-0

which contradicts (A.4). Thus #-/8o+o(1), #o>0 as s-,O where #o satisfies

2Y c/c.)2fe-aYOrm'(r) dr.

For v=c,, it can be shown that to satisfy (4.1), P-0 and s/-.0 as s-,0.

Therefore consider #=Pls' 7+o(s 7 ), O<qi<l, as s--0. If one substitutes this into (4.1)
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I and simplifies the equation, one obtains

-roq rm'(r) dr + o(s)=2s-' + o(s-/) as s-O, assuming that rm'(r) dr

exists. If this integral does not exist ther. one must do the asymptotics for the

particular shear modulus needed. Since the coefficient of each side is non-,zero,

r=1/2 and i= [-Frm'(r) dr, . In summary, O= -s + o(s) for O<v<c*,

=T:[-frm'(r) dr]-/2 s/2 + o(s1/2) for v=c,, and B=.B,+o(1) for c,<v<c.

Ia
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