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Preface

I am convinced that the Air Force can do a better job of scheduling

aircraft subsystems for base-level inspections. The discussions I had on

this subject with personnel at Headquarters Air Force Logistics Command

and the Air Logistics Centers echoed this conclusion. Furthermore, the

absence of any complete, systematic methoi of setting inspection

intervals for base-level inspections confirmed in my mind the need for a

decision-making aid in this area.

What I intended to do in this thesis was to draw attention to this

deficiency and provide a strategy for correcting it. The general model I

developed can serve as a starting point for System Program Managers and

their staffs who are charged with making inspection interval decisions.

It is designed to deal with the subjective factors (e.g. failure

consequences, prcbabilities, opportunity costs) inherent in theaircraft

maint !nance world. The decision model I have proposed defines how these

subjective factors affect inspection intervd] choice. I think this

decision analysis approach is an improvement over the current "that looks

about right" methnd. I hope those people in the Air Force who are

responsible for making inspection interval decisions find my work useful.

Before I close, I want to thank my wife, and son W for

their patience and personal sacrifice during the research: it was a team

effort. Also, I want to thank the Lord above, who'was not only above me,

but with me when I needed additional energy and creativity. Finally, I

want to thank my faculty advisor, Captain Joe Tatman, for his reasoning,

availability, and technical competence which motivated me and helped me

drdw upon my own potential in performing this research.

Kermit L. Stearns II
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Abstract

U
Using decision analysis techniques, a general model was developed

for base-level aircraft inspection interval decisions. This model

differs from current methods such as actuarial analysis and the Computer

Monitored Inspection Program in that it is designed to define and measure

the significance of the subjective uncertainties and risks inherent in

inspection interval decisions. Failure data, cost data, expert opinion,

and decision maker preferences are brought together in a single, unified

decision-making framework. Decision alternatives are evaluated based on

the entire "cost" picture (i.e. repair costs, opportunity costs, and

inspection costs). The general model developed in this thesis can serve

as a starting point for the analysis, but it must be tailored for the

actual subsystems to which it is applied. Once the specific model for a

given subsystem is built, it can be analyzed using existing software

packages. An example of how the tailoring and analysis may be

* accomplished is provided in a detailed study of the B-1B Anti-Skid

subsystem. The decision analysis approach will be most advantageous when

used on subsystems which have potentially serious failure consequences or

economical concerns.

vii
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DECISION ANALYSIS APPLIED TO INSPECTION INTERVAL DECISIONS

I. Tntroduction

Backarouua4

Scheduled inspections are a significant part of the United States

Air Force's (USAF) preventive maintenance program. An effective, well-

- timed inspection program allows aircraft components to attain the

inherent reliability designed into them. Conversely, an inspection

interval with poor timing can lead to too many operational failures, high

r maintenance costs, loss of aircraft, and even loss of human life. In

short, the effectiveness of a preventive maintenance inspection program

is evaluated in terms of the failure consequences it prevents (9:36).

* Understandably, choosing the best inspection interval for a given

component is not an easy task. The decision must take into account the

many uncertainties associated with modern aircraft hardware failures.

- What is the likelihood of failure? How does one catch a failure before

it actually happens? What are the consequences when a given component

fails? These are some of the questions that must be answered in order to

make the best inspection interval decision. To compound the problem,

some of the failure data collected as the system matures may be missing

or inaccurate.

The USAF recognized the importance of effective preventive

maintenance many years ago, but has been slow developing an effective

decision process for the inspection interval part of preventive

maintenance. In the early 1970s the USAF followed the lead of the

commercial airlines and implemented a new maintenance program called

I



Reliability Centered Maintenance (RCH). A key part of the program was to

adjust base-level inspection intervals for various aircraft components as

operational failure data became available. According to AFLC/AFSC

Regulation 66-35, Reliability Centerd Maintenance Program, inspection

intervals should be assessed every two years. This interval adjustment

process is the responsibility of the System Program Managers (SPM) at Air

Force Logistics Command (AFLC) Air Logistics Centers (ALC) (4:5,7).

Unfortunately, today there is still no standard USAF procedure for

choosing inspection intervals. As a result, individual ALCs within AFLC

have devised their own means of carrying out the inspection interval

r- adjustment process. Few of these programs are documented and their

success is ambiguous. Nozer Singpurwalla and Major Carlos Talbott

assessed the benefits of the RCM program as a whole for one test case,

i i the C-141, and found no clear improvements in logistics or operations

measures (11:15).

Justification

AFLC is currently searching for a standardized procedure for

determining optimal inspection intervals which could be organically (non-

contractor) supported. AFLC/MMTQA recently proposed the problem to the

AFIT Graduate Operations Research program as a student thesis.

Research Obiectives

There are two objectives for this research project: 1) propose a

general decision-making methodology which can be used by AFLC System

Program Managers (SP~s) and their staffs to help in the selection of

intervals for base-level inspections and, 2) demonstrate how this

methodology can be applied to a specific aircraft subsystem, the B-18

2



Anti-Skid subsystem. The end product of the research will be a decision-

making framework, not a production software package or mathematical

algorithm. The intent of this thesis research is concept exploration and

development of a decision-making tool that AFLC SPMs can use to make

inspection interval decisions.

Oruanization of the Thesis

This paper is organized to show a logical flow of ideas from

establishing the need for an inspection interval methodology to

demonstrating its use. The Introduction and Literature Review chapters

help establish the need. The Model Development chapter explains how the

general and specific decision models were built and defines the variables

involved. The Model Analysis chapter identifies the best decision for

the B-1B Anti-Skid subsystem's baseline model and presents sensitivity

analyses, value of information calculations, and value of control

calculations for selected variables. The Recommendations chapter

addresses the insights, applicability, and limitations of the decision

analysis approach.

3
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The purpose of this literature review is to summarize information

pertaining to the following decision: how often should scheduled

preventive maintenance inspections be performed on United States Air

Force (USAF) aircraft subsystems? The review addresses the following

subtopics: 1) the manner in which the USAF currently determines

inspection interval length, and 2) the attributes of decision analysis

which make it applicable to the inspection interval decision.

Scope of The Research Topic and Data Base Search

This review is intended to give the reader a general understanding

of how the USAF currently determines base-level inspection intervals and

how decision analysis could be used to improve the decision process. It -

K is not a tutorial on the step-by-step analysis of each approach; rather,

it focuses on the shortcomings of the current process and investigates

how decision analysis may be able to cover them.

The on-line retrieval systems and manual indices available from the

kFIT library provided information on relevant literature. Most of the

literature on the current USAF approach to inspection interval analysis

came from the DTIC and DIALOG on-line systems. The Operations

Research/Manaaement Science Service index provided sources of current

decision analysis literature.

Method of Treatment and Organization

The following discussion of the literature is arranged by topic.

The first section is a summary of the USAF's current decision

4
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methodology. The second deals with the topic of decision analysis. At

the end are concluding remarks which summarize the findings.

U
Dc~v_q1tj~gJ_fhe__jLjeatue

Current Approaches. The process of determining inspection interval

length is not an established science in the USAF. Mathematical theory

occupies part of the decision-making process, but it falls short when

objectives are ill-defined and data is lacking. There are no regulations

or standards that prescribe the process in its entirety. AFLC/AFSC

Regulation 66-35, Reliability Centered Maintenance Proaram, directs AFLC

System Program Managers (SPMs) to periodically (every two years) assess

inspection intervals; however, it does not establish procedures for

adjusting the intervals (4:5,7). It suggests two analytical tools that

the SPM offices can take advantage of in the identification and

*justification of intervals; actuarial analysis and the Computer Monitored

Inspection Program (CHIP).

Actuarial analysis is a broad term that refers to statistical

m analysis of failure data for the purpose of characterizing the

reliability of aircraft components (9:453). There are many different

statistical procedures available to inspection interval analysis. Nowlan

and Heap documented a few of the most common in their RCM textbook

(9:390-419). They all have the same limitations: 1) they must have

detailed age-failure data (9:390) and 2) they present only reliability

information to the decision maker and do not recommend a decision.

Actuarial analysis is used extensively on aircraft engines to help

determine when engine parts should be replaced (1:6). In Brill's thesis

on preventive maintenance intervals for the F-100 engine, he stated that

actuarial data is reviewed annually by an Engine Life Planning Board to

5
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set maximum operating hours (NOR) limits for the engines (1:6-7). Then

he stated that according to Air Force Manual 400-1, Lelective Manage ent

q -_rop_ sion- s,_Vglume__/ Po icyand Guidance, "NOR determination is

based on judgment, considering safety, readiness, cost, inventory, and

other logistics objectives" (1:7). This account illustrates a limitation

of actuarial analysis. Actuarial analysis does not address the

subjective information and values decision makers must consider while

making decisions.

In contrast to actuarial analysis, CHIP is a specialized, well-

documented, contractor-owned tool for setting inspection intervals. It

is used at the Warner-Robins and San Antonio ALCs. The proprietor of

CHIP, Dan Hall (Lockheed) stated that,

CHIP was specifically designed to assist maintenance
managers in evaluating the effectiveness of their scheduled
maintenance program by identifying those inspection
requirements which do not maintain the aircraft's inherent
design levels of safety and reliability with a minimum
expenditure of logistics resources. (3:1,2)

CHIP recommends an optimum inspection interval for functional components

based on the goal of having no malfunctions between inspections (3:3,4).

It does this by analyzing current maintenance data from the field and

comparing it to the current inspection program. If the current program

cannot provide at least a 70% confidence of no malfunctions in the

interval between inspections, then CHIP recommends an alternative

interval length (3:4).

The main limitation of CHIP is that it only addresses part of the

inspection interval decision process. It identifies what intervals may

need adjusting, but its recommended alternative is based on the goal of

having no malfunctions. CHIP does not take into account situations where

failures may be tolerated in the interest of cost effectiveness. As

6



noted in Nowlan and Heap's RCH textbook, if the cost of repairing failed

units plus the costs of operational consequences is less than the costs

of finding and correcting failures before they occur, then failures

should not be avoided (9:52). Like actuarial analysis, CHIP supplies the

decision maker with statistical analyses of existing maintenance data;

however, for any other aspect of the decision, the decision maker must

find other sources of information with which to make the decision.

Decision Analysis Anproach. Decision analysis is a strategy for

making decisions. It is a mix of systems analysis and statistical

decision theory (6:21) that addresses all aspects of a decision problem:

decision alternatives, outcomes of influential variables, probabilitiesK
of outcomes, and decision outcome values. Since the term "Decision

Analysis" was first coined in 1966 by Ronald A. Howard, decision analysis

theory and practice have been advanced by various members of the

operations research community (6:vii). Unfortunately, the term decision

analysis is now common enough that it has lost specific meaning, so

Howard gives a more precise and descriptive definition:

By decision analysis we mean a discipline comprising the
philosophy, theory, methodology, and professional practice
necessary to formalize the analysis of important decisions.
Decision analysis includes procedures and methodology for
assessing the real nature of a situation in which a decision
might be made, for capturing the essence of that situation in a
formal but transparent manner, for formally solving the
decision problem, and for providing insight and motivation to
the decision makers and implementers. (6:viii)

A decision analysis type approach seems necessary for today's "real

world" problems. Any decision analysis must have the ability to deal

with the subjective nature of uncertainties and values of outcomes which

do not easily lend themselves to quantification. In a recent workshop on

decision research directions sponsored by the National Science

7FE-



Foundation, several experts in the decision analysis field agreed that

"in the case of decision processes, what matters are human goals,

U perceptions, and emotions that do not lend themselves to quantitative

analysis in the spirit of classical mathematics" (2:766).

The USAT problem of determining inspection intervals certainly fits

into this category of "fuzzy" problems. Nowlan and Heap, United Airlines

employees who write the RCH textbooks for the Air Force, addressed the

problem of quantifying the real costs of failures by stating "we have no

precise means of assessing either the inherent level of risk or the

increased risks that do result from failures" (9:337). The consequences

of component failures are further complicated by the human element.

Nowlan and Heap stated, "results of the failures must be modified by the

degree to which each function affects safety and by the ability of the

pilot to compensate for many types of system failures" (9:337). A

decision analysis approach could address these types of "fuzzy"

consequences, risks, and probabilities inherent in the inspection

interval decision process.

The strength of decision analysis lies in its ability to deal with

probabilities and decision maker value preferences. Decision analysis

treatment of probability is described by Howard below,

Decision analysis treats probability as a state of mind
rather than things [nature]. The operational justification for
this interpretation can be as simple as noting the changing
odds on a sporting contest posted by gamblers as information
about the event changes. As new information arrives, a new

A. probability assignment is made. (6:24,163)

Decision analysis does this by supplementing results from statistical

analysis with other information available to the decision maker, such as

expert judgment. Peter Morris introduced a new framework for use of

8
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experts in decision making in his article "Decision Analysis Expert Use"

(8:1233). In it he stated,

The potential applications of a rich theory on expert use
are many and varied.... In general the theory to be developed
is especially pertinent to decisions affecting systems whose
characteristics include significant uncertainty, complexity, or
both -- precisely the practical domain of decision analysis.

- (8:1234)

The other area of the inspection interval problem where decision

analysis may be helpful is in allowing the decision maker to clearly see

the value (desirability) of each possible outcome of the decision.

Computing the value for each possible outcome of each decision

alternative is a major part of the decision analysis process.

For the inspection interval problem, the decision maker must place

values on outcomes that affect human safety, aircraft availability, and

maintenance costs. Decision analysis explicitly reveals to the decision-

maker the preferences he/she is currently placing on these factors and

allows re-evaluation of them if desired. Theodor Stewart described this

step of the decision analysis process when he wrote, "the analyst

interacts with the decision maker, and allows him/her to reveal

preferences gradually by means of choices or value judgments expressed

through comparison of actual decision alternatives" (12:1067).

An important part of this value modeling step is the sensitive

subject of human life valuation. Aircraft are crewed by human beings who

sometimes lose their lives in aircraft crashes caused by component

failures. This is despite the fact that precaution is taken to design

and maintain components with acceptably low safety risks. As Howard and

others found in their study on nuclear reactor safety, setting an

acceptably low probability for an outcome involving death implies that

9



the decision maker has made a value of life assessment (6:518). The same

article by Howard and others proposes a value of life computation that

could be used by USAF decision makers in cases where human life is

involved (6:518).

Conclusions

Inspection interval analysis is an important yet neglected part of

the USAF's 1CM program. There is no official procedure that precisely

addresses the complete decision process. Actuarial analysis and the

Computer Monitored Inspection Program are established tools used in the

current decision process, but they are of limited value. The main

r drawback of both is that they do not address the subjective aspects of

the decision-making process such as failure consequences, unreliable

failure data, risk assessment, and value of decision outcomes.

UConversely, decision analysis is a decision-making strategy that is
designed to treat the very aspects of decision-making the current

approach fails to address. Decision analysis combines statistical

m analysis, expert opinion, and decision maker preferences in a single

decision-making framework. The result is a complete decision-making aid

that recommends an optimum decision alternative to the decision maker.

Thus, decision analysis can be applied to the inspection interval

decision process to help AFLC SPM organizations select effective

inspection intervals.

10



III. Kodel Development

Decision analysis as applied in this research is based on the

methods described in The Principles and Applications of Decision Analysis

by Ronald A. Howard (6) and as taught in the AlIT Graduate Operations

Research Program. It is an iterative process which is repeated until the

decision maker is comfortable enough with his/her understanding of the

problem to make the decision. The initial part of the analysis requires

that all variables thought to exert an influence on the decision be

identified. The next step is to define the range of outcomes for each

r" variable, how the variables mathematically affect each other, and what

value the particular combinations of outcomes have to the decision maker.

With this information, the first systematic screening of variables is

* done by performing deterministic sensitivity analysis. Once this is

accomplished, stochastic (probabilistic) information is gathered on the

remaining variables deemed significant to the decision. Then the

* expected value for each decision alternative is calculated and the

alternative with the most attractive value (min in this case) is

identified. Finally, various postsolution analyses are performed to

reveal how sensitive the baseline solution is to changes in key

variables.

For most real-world decisions like the inspection interval decision,

there are a great number of variables influencing the decision. This

number can be reduced initially with help from the decision maker and

experts who are familiar with the problem. Normally, these key people

can make an early screening of the variables based on significance to the

decision. Later, the remaining variables may be screened further during

11



formal sensitivity analysis (e.g. deterministic sensitivity analysis).

The criteria for this screening process is always whether or not the

variable creates significant differences between decision alternatives.

In this manner, the decision analysis moves from the general to the

specific as information is screened and evaluated for significance.

WP At any given time in the analysis, all variables included in the

model and their influence on each other and the decision are represented

using an influence diagram (ID). An ID provides a graphical framework

for both illustrating and solving a decision model (10).

The following sections present the general decision model first and

then explain how it was tailored for the B-lB Anti-Skid subsystem

inspection interval decision. The first section gives a general

description of each variable in the general model. The second section

explains in detail how the general model was simplified in building the

Anti-Skid subsystem decision model. The last section in this chapter

presents the deterministic sensitivity analysis performed on the

variables in the model which remained after the initial screening.
U

The General Decision Model

The general ID developed to serve as a starting point for the

analysis of any specific aircraft component is shown in Figure 1.

Depending on the aircraft component being analyzed, certain variables can

be simplified or deleted from this model if the analysis shows they are

insignificant to the decision value.

The following paragraphs give a variable by variable description of

the general model. Possible simplifications and sources of information

for some variables are included.

12!
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" I $PIMT. INSPECT is the only decision variable in the model. The

values it can take on are the alternative inspection intervals from which

1 the decision maker must choose. The goal of the entire decision analysis

is to indicate to the decision maker which alternative is the best. In

the USAF, proposed alternative inspection intervals normally coincide

with existing aircraft inspections. Inspections of individual subsystems

are grouped or "packaged" with others so that the aircraft does not have

to undergo thousands of minor inspections (9:109). For example, an

aircraft may currently have inspection packages of every 50, 100, and 200

flying hours. If this was the case, an alternative different from these

may not even be considered since no current maintenance "package" could

incorporate it. An advantage of this limitation is that the new interval

can be readily implemented by inspection personnel since it only requires

moving a subsystem from one existing inspection package to another.U
Tff. KTBF is a continuous random variable which represents

the mean tine between failure for the aircraft subsystem being analyzed.

Most other types of analyses dealing with reliability treat MTDF as a

constant, ignoring the uncertainty surrounding its true value. In this

model, treating it as a random variable allows consideration of a range

of other possible values for NTBF. Actuarial analysis of historical

failure data may provide a good estimate of the probability distribution

for MTBF. Expert opinion could also be used to supplement actual data.

This is especially advantageous if the decision maker questions the

accuracy of the maintenance data.

IQ. IQ stands for Inspection Quality. This random variable

measures, in time units (e.g. flying hours), the ability of inspectors to

"capture" potential failures during inspections by detecting near-failure

14



or failure conditions. This variable is random in nature, but may be

controlled somewhat by the inspection procedures developed for the

U component in question. For components with graceful degradation, IQ can

be influenced according to how far the component is allowed to degrade

before it is replaced. In a case where it was allowed to degrade within

20 hours of failure before correction, IQ would be equal to 20. However,

for components which do not degrade gracefully (e.g. pure electronics),

inspections are unable to catch failures before they happen during

aircraft operation and IQ will be near zero. The front-end Reliability

Centered Maintenance Analysis (RCNA) (4) performed by the aircraft

manufacturer and delivered to the System Program Office is supposed to

address the degradation of each aircraft component. The RCNA is the

first clue as to what the IQ is for a given component.

OPFAIL. OPFAIL is a random variable representing the number of

operational failures the subsystem experiences during the time frame the

decision covers (referred to in this paper as "decision duration").

These are inherent or induced failures as defined in maintenance manuals

and interpreted by the crew and maintenance personnel working with the

aircraft. OPFAIL is a random variable with a wide range of discrete

outcomes, but in the analysis its range can be truncated because after a

certain point, further possible values will have extremely low chance of

occurrence. The variables INSPECT, MTBF, and IQ influence the

probability distribution for OPFAIL outcomes. If time between failures

is assumed to be one of certain named distributions, such as the

exponential, the different distributions OPFAIL takes on can be

calculated analytically given values for INSPECT, NTBF, and IQ. This

method is demonstrated in the 3-1B Anti-Skid decision model.

15



FOJrAi. POTFAIL stands for potential failures. It is a random

variable representing the number of times near-failure or failure

conditions are found during inspections and subsequently corrected.

Like OPFAIL, the variables INSPECT, MTBF, and IQ influence the

probability distribution for POTFAIL, which may be derived analytically

in a similar manner to OPFAIL.

SECDT. SECDT stands for Secondary Downtime. It is a random

variable which, when given that a failure in the primary subsystem has

occurred, represents the total time the aircraft is unavailable to the

comander during correction of a failure in some other (secondary)

subsystem whose failure was caused by the primary subsystem failure.

Some aircraft subsystems have little or no potential for causing

secondary downtime, while others, safety related items for example, may

have great potential. SECDT is a continuous variable whose probability

distribution must usually be derived from expert opinion. The rare event

nature of this variable leaves little or no historical data from which to

derive it. Information on this variable can be used to derive discrete

values for AVGSECDT.

SZCRC. SECRC stands for Secondary Repair Costs. It is a continuous

random variable which, given that a failure in the primary subsystem has

occurred, represents the total cost to the government for repairing other

(secondary) aircraft subsystems whose failure was caused by the primary

subsystem failure. Like SECDT, the potential here varies greatly from

one subsystem to the next, but its actual occurrence may be relatively

rare and historical data non-existent. Information 'on this variable can

be used to derive discrete values for AVGSECRC.

16



&UZCP. AVGSECDT stands for Average Secondary Downtime. It is

the average of SICDT over the decision duration time period. It is a

continuous random variable which can be approximated using discrete

values derived analytically from the SECDT probability distribution. An

example of this derivation is described in the section on the Anti-Skid

subsystem decision model.

LVGSECRC. AVGSECRC stands for Average Secondary Repair Costs. It

is the average of SECRC over the decision duration time period. It is a

continuous random variable which can be approximated using discrete

values derived analytically from the SECRC probability distribution. An

example of this derivation is described in the section on the Anti-Skid

subsystem decision model.

AVAILVALUE. AVAILVALUE represents the dollar value the decision-

maker places on a given time unit of aircraft availability. This

Hvariable should be set to a value which reflects the preferences of the

decision maker. Ideally, this value should come directly from the

decision maker since it is a subjective, indirect measure of the worth to

n national defense he/she places on the aircraft. Personnel at Oklahoma

City ALC commented that one way to approximate this value is to divide

aircraft flyaway cost by the life time of the aircraft.

AVGSECOPPCOST. AVGSECOPPCOST stands for Average Secondary

Opportunity Cost. It is a deterministic variable made up of a function

which multiplies AVAILVALUE by AVGSECDT. It is a measure of the

opportunity or availability costs to the Air Force when secondary damage

occurs.

AVGOPDT. AVGOPDT stands for Average Operational failure Downtime.

AVGOPDT represents the average amount of downtime the aircraft

17



experiences while an operational failure of the primary subsystem is

being corrected. It is a continuov's random variable, but in specific

U1 analyses it may be set to a constant if it varies relatively little over

time. Most subsystem failures on aircraft are resolved by a remove and

replace procedure. For many components the time it takes to do this will

be fairly standard. In addition, if this variable exhibits similar

values to AVGPOTDT, both variables will be insignificant to the

inspection interval decision. This relationship is explained in detail

in the section on the Anti-Skid subsystem decision model.

AVGOPRC. AVGOPRC stands for Average Operational failure Repair

Costs. AVGOPRC is the average total cost to the government the aircraft

experiences when an operational failure of the primary subsystem is

corrected. It is a continuous random variable, but in specific analyses

may be set to a constant if it varies relatively little over time. As

1 described in the section below on the Anti-Skid subsystem decision model,

if this variable takes on similar values to AVGPOTRC, both variables will

be insignificant to the decision.

AVGPOTDT. AVGPOTDT stands for Average Potential failure Downtime.

It is similar to AVGOPDT, explained above, except that it only applies to

primary subsystem potential failures, not operational failures.

AVGPOTRC. AVGPOTRC stands for Average Potential failure Repair

Costs. It is similar to AVGOPRC, explained above, except that it only

applies to primary system potential failures, not operational failures.

PRINECONSO. PRIMECONSQ stands for Primary Consequences. It is a

deterministic variable made up of a function'which sums up all repair and

opportunity costs (as a result of downtime) associated with both

18



operational and potential failures of the primer subsystem. It is

computed by the equation

PRIMECONSQ - OPFAIL (AVGOPRC + (AVGOPDT x AVAILVALUE))
+ POTFAIL (AVGPOTRC + (AVGPOTDT x AVAILVALUE)) (1)

SECCONS . SECCONSQ stands for Secondary Consequences. It is a

deterministic variable made up of a function which sums up all

opportunity costs (as a result of downtime) and repair costs associated

with operational failure secondary consequences. It is computed by the

equation

SECCONSQ = OPFAIL (AVGSECOPPCOST + AVGSECRC) (2)

INPERCOIT. INPERCOST stands for Inspection Personnel Cost. It is a

random variable made up of a function which multiplies the average number

of manhours it takes to perform an inspection by a standard wage rate for

Air Force personnel. For most subsystems this variable may be treated

deterministically by using a single nominal value. Maintenance manuals

normally indicate the number of persons required to perform an inspection

for a given subsystem. Maintenance personnel can provide expert opinion

- on how long the inspection normally takes to perform. Air Force

Regulation 173-13 can be used to obtain Air Force personnel wage rates.

INDT. INDT represents the average amount of downtime the aircraft

experiences while undergoing a single inspection of the subsystem. If

this time varies little, it may be set to a nominal value. Maintenance

personnel can normally provide information on this variable.

INENCOST. INEMCOST stands for Inspection Equipment and Material

Costs. It represents the average cost the Air Force incurs while

performing a single inspection in terms of expendable materials and test

equipment. Maintenance personnel can normally provide information on

this variable.
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DE W. DZCVALUE stands for Decision Value. It is a

deterministic variable made up of a function which measures the value

K (costs) to the decision maker of each possible decision outcome (all

possible combinations of outcomes of the other variables in the model).

It reflects all inspection consequences and operational consequences

which differentiate one decision alternative from the another. Its value

is computed by the equation

DECVALUE x [(Decision duration/INSPECT) (INPERCOST + (INDT x AVAILVALUE)
+ INEMCOST)] + PRIMECONSQ + SECCONSQ (3)

The decision alternative with the lowest expected value (cost) is the

optimal inspection interval. A simplifying assumption made here is that

r- the decision maker chooses based on expected value. This means, for

example, that to the decision maker costs of $100,000 are twice as bad as

costs of $50,000. If the decision maker does not exhibit this type of

* behavior, a unique utility function must be derived which transforms the

dollar value of each decision outcome into utility (6:627). In this case

the decision would be based on lowest expected utility instead of lowest

m expected value.

The Anti-Skid Subsystem Decision Model

The B-lB Anti-Skid subsystem is made up of five subcomponents:

control box, speed sensor, manifold, control valves, and filter element.

A rough schematic of the system breakdown/function description is shown

in Appendix A. Currently, this subsystem is inspected only on an

exception basis: it has no scheduled inspections. It is only inspected

in the case of brake overheating, hard landings, suspected failure, etc.

It was chosen as the test case for this thesis because it is a relatively

simple subsystem, degradation is detectable, and its operational failure
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has the potential for causing serious damage to other subsystems on the

aircraft.

* mThe ID model developed specifically for the Anti-Skid subsystem is

shown in Figure 2. As a result of initial screening, many of the random

variables in the general model were modified in this model. The reasons

for these modifications are discussed below.

IQ was set equal to a constant in the model because it is so heavily

influenced by how rigorous the inspections are performed. Captain Scott

Dayton, ASD/B-lBEF, provided approximate maximum values for the

individual components comprising the Anti-Skid subsystem. The average of

these values was 5 flying hours, with a low of 0 and a high of 20.

Consequently, in the baseline model, IQ was set equal to 5. The extreme

values in the range were investigated during sensitivity analysis to

allow the decision maker to see how inspection quality affects the

inspection interval decision.

The variables AVGOPDT, AVGOPRC, AVGPOTDT, and AVGPOTRC were set

equal to constants after discussions with Capt Dayton confirmed the

author's own opinion that the decision choice would be insensitive to

these variables. Nominal values for these variables were 4 hours, $500,

4 hours, and $500 respectively. These values reflect the assumption that

average repair costs and average downtime for the Anti-Skid subsystem

components will be the same for both operational failures and potential

failures. That is, it will take about as long and cost about as much to

correct a near-failure during an inspection as it will to correct an

operational failure of the B-1B Ahti-Skid subsystem.

The inspection cost variables INPERCOST, INDT, and INEMCOST were set

equal to constants because of their relatively small magnitudes compared
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to the decision value (DECVALUE) and because their invariance over time

would not significantly affect the decision. Examination of maintenance

i manuals revealed that inspections of the Anti-Skid subsystem can be

performed relatively quickly (within one hour) by two Airmen with no need

for special equipment or materials. The resulting inspection costs were

small compared to the overall decision value (DECVALUE) which measured in

the hundreds of thousands of dollars. INPERCOST, INDT and INEXCOST were

set to nominal values of $30, 1 hour, and $0 respectively. INPERCOST was

calculated using a $15 per manhour composite wage rate from AFR 173-13,

Table 3-4, Change 1, 15 May 1987.

POTFAIL was deleted from the Anti-Skid subsystem decision model

because of its relatively small effect on the decision value (DECVALUE).

In the general model, the impact of potential failures is wholly

contained in the primary consequences (PRINECONSQ) part of the DECVALUE

function Eq (3). In the PRIMECONSQ function Eq (1), the number of

potential failures (POTFAIL) is multiplied by the average repair costs

(AVGPOTRC) and average opportunity costs per potential failure (AVGPOTDT

* AVAILVALUE). As discussed above, these repair cost and downtime

factors were set to the constants $500 and 4 hours respectively.

AVAILVALUE was set to a constant of $1182. Now, for the worst NTBF of

285 flying hours, the expected number of total failures (i.e. all

failures, no matter when discovered) is 2 over the two-year period.

Therefore, the expected number of potential failures could be no greaterLJ

than 2 and the greatest contribution to PRINECONSQ would be 2(500 + (4 X

1182)) = $10,456. This means that the largest expected difference

POTFAIL could cause between two alternatives is $10,456. This is

insignificant compared to the impact operational failures (OPFAIL) had on

23
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DECVALUE and therefore POTFAIL was not included in the final model for

the Anti-Skid subsystem. In addition, since the variables AVGPOTRC, and

AVGPOTDT only play a role when POTFAIL is non-zero, these two variables

were also deleted from the PRIMECONSQ function and the model.

The following paragraphs explain how decision alternatives, random

variable probabilities, availability value, and primary consequences were

determined for the corresponding variables remaining in the model.

INSPECT. The decision duration in this model was a two-year time

period since this is the Air Force goal for the time between reassessment

of inspectibn intervals (4:5). In this model, three alternative

intervals were considered for the decision variable INSPECT: 5, 100, or

600 flying hours. The 5 hour alternative equates to inspecting every

sortie. (Operations historical data obtained from the AFOTEC Test Team

at Dyess Air Force Base indicated that the average sortie was 4.5 hours

! long.) The 100 hour alternative correlates to an already existing

inspection interval for the aircraft. The 600 hour alternative equates

to not inspecting the Anti-Skid subsystem at all during the decision

duration (two years). According to AFR 173-13, Change 2, 9 March 1988, a

B-lB would average about 600 flying hours over a two-year time period.

MTBF. The probability distribution for MTBF was constructed based

on failure data and expert opinion obtained from the AFOTEC Follow-On

Test and Evaluation Team at Dyess AFB, Texas. An inherent assumption

here was that B-1B operations at Dyess were representative of the B-lB

fleet as a whole. Discussions with individuals in the B-lB SPM

organization at Oklahoma City ALC and the AFOTEC Test Team revealed that

there was a lack of confidence in the failure data reported by AFLC's

Maintenance and Operational Data Access System (MODAS). The AFOTEC team
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uses an in-house system, called OMNIVORE, to report failure data. This

data base was used instead of MODAS because the SPM organization had more

confidence in it than they did in MODAS data. The AFOTEC reports on the

Anti-Skid subsystem indicated a MTBF of 437 flying hours (based on

counting inherent and induced failures over a three year period). This

point estimate was incorporated into a probability distribution derived

by combining the point estimate and expert opinion. AFOTEC Test Team

engineer, Captain John Vilder, was interviewed and he provided

information on the likelihood that the true MTBF would take on a range of

values around the 437 hour point estimate. Probability wheel and

interval techniques (6:614-624) were used for this interview. Raw data

rfrom this interview is included in Appendix F. A manually fitted

probability distribution curve for MTBF is shown in Figure 3.

PROB Discrete Values
.4 .25 ...

\ -2 5 285
0

250 300 350 400 450 500 550 600
FLYING HOURS

&OWUM 6 /MM

Figure 3. MTBF Probability Distribution
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In order for the ID model to be solvable, MTBF (and all other

continuous random variables) had to be reduced to a certain number of

*R discrete outcome values. For simplification, the probability

distribution was sectioned graphically (13) into three discrete values:

285, 410 and 555. These values represent the 1/4, 1/2, and 3/4 fractiles

for this distribution and as such have probabilities of .25, .50, and .25

respectively. Appendix B shows how the NTBF distribution was sectioned.

The distributions for SECDT and SECRC were sectioned in a similar manner.

OPFAIL. The probability distribution for OPFAIL was analytically

derived based on the assumption that the time between failures for the

Anti-Skid subsystem is distributed exponentially. This assumption was
r made because the exponential distribution is commonly used to model time

between failure for electronic components (7:147) and OMNIVORE data

revealed that the bulk of Anti-Skid failures are attributed to its

electronic components. Also, this assumption is made in an existing

interval analysis model, CMIP (3:3), used at the Warner-Robins and San

Antonio ALC's.

-m If the time between failures is distributed exponentially with a

mean of 1/A, then the failures themselves are distributed as Poisson

with mean X (5:536). In general, the Poisson Probability function is

P(X=x )  e [ • (At) ]/xo0  (4)

where x. = a given outcome for the random variable X
= the mean value (rate) of X over time t

t = the total time period of interest

Since failures are assumed to occur by Poisson, this equation can be used

to calculate'the different probability distributions for OPFAIL given

parameters INSPECT, NTBF, and IQ. For our particular case, Xt is

computed by multiplying 1/NTBF by the sum of all time between inspections
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not covered by IQ,

At a (l/NTBF) ((decision duration/INSPECT) (INSPECT - IQ)] (5)

U IQ time is not included since operational failures cannot occur during

that time period.

The probability distributions for OPFAIL were computed on a LOTUS

- " srreadsheet and are shown in Appendix C. The range of possible outcomes

for OPFAIL is 0 through 5, 5 being the maximum number because

probabilities beyond 5 are infinitesimal for any of the~t values.

SECDT. The probability distribution for SECDT was constructed from

an interview with Capt Dayton, ASD/B-1BEF. Capt Dayton is the B-lB SPO's

expert on landing gear systems. The entire distribution was derived from

his expert opinion, since no such historical data on the B-1B exists.

Probability wheel and interval techniques (6:614-624) were used to obtain

Capt Dayton's best engineering judgment about the likelihood of secondary

1 downtime given that an operational failure in the Anti-Skid subsystem had

occurred. Raw data from this interview is included in Appendix F. A

manually fitted probability distribution curve is shown in Figure 4.

In order to obtain a set of discrete outcomes for this variable, the

distribution was graphically sectioned (13) into three discrete values:

8, 100, and 325. Probabilities for these values are .25, .50, and .25

respectively. The sectioning of the NTBF distribution shown in Appendix

B serves as an example of how it was done for SECDT.

AVGSECDT. Three discrete values for AVGSECDT were derived

analytically from the SECDT probability distribution using a series of

standard statistical calculations. These calculations are presented in

detail in Appendix D. The three discrete values produced from the

calculations were 5.954, 133.25, and 260.546 with probabilities of .25,
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.50, and .25 respvctively.
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Figure 4. SECDT Probability Distribution

- SECRC. The probability distribution for SECRC was constructed from

an interview with Mr. Floyd Minnich, 4950th Test Wing, Wright-Patterson

AFB, Ohio. Although not specifically assigned to the B-IB, Mr. Minnich

is an expert on heavy aircraft landing gear and their failure

consequences. He is a retired Air Force member with over 20 years

experience in the heavy aircraft maintenance world. The probability

distribution was derived from his expert opinion. Probability wheel and

interval techniques (6:614-624) were used to obtain his best judgment

about the likelihood of secondary repair costs given that an operational

failure in the Anti-Skid subsystem had occurred. Raw data from this
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intervirw is included in Appendix F. A manually fitted probability

distribution curve is shown in Figure 5.

1 0

8

CUM 6
PROB DISCRETE VALUES
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THOUSANDS OF DOLLARS

Figure 5. SECRC Probability Distribution

The probability distribution for SECRC was graphically sectioned

(13) in the same manner as were MTBF and SECDT. The sectioning of the

MTBF distribution shown in Appendix B serves as an example of how it was

done for SECRC. The three discrete values for SECRC are 500, 2500, and

45000 with probabilities of .25, .50, and .25 respectively.

A. Three discrete values for AVGSECRC were derived

analytically from the SECRC probability distribution in the same manner

AVCSECDT was derived from SECDT. (Appendix D presents the calculations
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that were performed for AVGSECDT which serve as an example.) The three

values calculated for AVGSECRC were SO, $12625, and $32998 with

3 probabilities of .25, .50, and .25 respectively.

AVAILVALUE. AVAILVALUE was set equal to $1182 in the baseline

model. Ideally, this value should come directly from the decision maker,

but in this study the value was approximated by dividing aircraft flyaway

costs ($207 Nillion) by a 20 year lifetime. The flyaway cost was taken

from AFR 173-13, Table 2-6, Change 2, 9 March 1988. The 20 year lifetime

was used since it is commonly used for bomber aircraft Operating and

Support cost estimates at ASD. The impact on the decision of setting

this variable to different values was explored during preference

sensitivity analysis.

PRIMECONSO. The Anti-Skid subsystem model's equation for PRIMECONSQ

is the same as for the general model except that the influence of POTFAIL

U was removed since, as explained earlier, that variable was not

significant to the decision value. The new equation for PRIMECONSQ is

PRIMECONSQ = OPFAIL (AVGOPRC + (AVGOPDT x AVAILVALUE)) (6)

Deterministic Sensitivity Analysis

The purpose of deterministic sensitivity analysis is to identify

which variables are deterministically significant to the decision. It is

the first systematic screening of the variables in the model. It is

performed in the model development phase of the decision analysis so that,

the analyst's time and energy can be efficiently focused on the key

variables during the rest of the analysis. One excursion taken in this

phase of the research was to explore two different ways of performing the

deterministic sensitivity analysis: the common method and the response
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surface method. Both methods are introduced here briefly then discussed

in detail later.

The common method performs deterministic sensitivity analysis on a

variable by setting all other variables to their nominal values and then

observing the deterministic change in the decision value (DECVALUE) as

the variable being studied is set in turn to the high and low values in

its range. One major weakness of this approach is that it only measures

the "main effect" of each variable. It does not systematically measure

the effect on DECVALUE of two or more variables interacting together

simultaneously (an "interaction effect"). In instances where a variable

had no significant main effect of its own, but had a significant

interaction effect with some other variable, the common method would

overlook the interaction effect, screen out the variable, and an error

may be introduced into the decision analysis at that point. Another

weakness is that since it only measures the magnitude of change in

DECVALUE, it is left up to the ad hoc judgment of the analyst to

determine if the magnitude is significant. It does not systematically

"draw the line" between significance and insignificance.

The response surface method overcomes the weaknesses of the common

method by considering all possible interaction effects as well as main

effects and ranking them according to statistical significance. The

response surface method performs the analysis by making experimental runs

using a factorial design matrix of the high and low settings of all

variables. Each run corresponds to a unique combination of the high and

low settings. The value for DECVALUE is then recorded for each run.

Next, using all main effects and possible interaction effects as the

independent variables and the DECVALUE response as the dependent
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variable, a polynomial approximation is derived using multiple regression

("PROC REG" on SAS, for example). Standard analysis-of-variance (ANOVA)

Ut-statistics provide a measure of the significance for each term in the

polynomial, and thus a measure of each effect's significance to the

decision value.

- Common Method Analysis. The variables chosen for analysis by the

common method were those variables remaining from the initial screening

of the model which have a detErministic path to DECVALUE in the influence

diagram: INSPECT, OPFAIL, AVGSECRC, and AVGSECDT. Each variable was

analyzed separately by setting it to its high and low values in turn

while the other values were temporarily set to their nominal (middle)

values. The case of all variables equal to their nominal values was used

as a reference line ($533,000). The graph in Figure 6 shows the relative

deterministic effect of each variable on DECVALUE. From this analysis,

it is clear that OPFAIL and AVGSECDT are significant to the decision

value. INSPECT, the decision variable, looks only marginally

significant. However, this analysis only reflects the deterministic

effect of INSPECT on DECVALUE. INSPECT also has a stochastic effect on

DECVALUE since it influences the OPFAIL probability distribution.

Therefore, the significance of INSPECT cannot be judged solely on the

results of this deterministic sensitivity analysis alone. On the other

hand, AVGSECRC seems insignificant compared to the other variables.

Based on this method of evaluation, it could probably be set to a

constant nominal value for the rest of the decision analysis.

Response Surface Method Analysis. In order to obtain a comparison

between methods, the same variables analyzed by the common method were

analyzed by the response surface method. (A major limitation of the
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response surface method is that the variables analyzed must be

independent of each other, which is true for the deterministic effects of
4

these four variables.) The full 2 factorial design matrix used is shown

in Appendix E. For simplification, only two-way interaction effects were

considered. SAS was used to perform the regression on the data. PROC

REG was used first to fit a regression model and then PROC STEPWISE was

used as a follow-up to reveal the order in which the independent

variables entered the regression model. The SAS Program File used to

accomplish this is shown in Appendix E.

The t-statistics for each effect are the key statistics of interest
2

here. The F and R statistics for the model are very high, as expected,

since the only error in the model is lack of fit, not random error. A

standard ANOVA t-test was performed by SAS on each effect, testing the

null hypothesis that the effect had a coefficient of zero (i.e. the

effect was insignificant). In the t-test, a critical value of t, with

some chosen confidence level, is taken from a table for the t

distribution and compared to a calculated value of t from the data. If
L

Iti ( t the null hypothesis cannot be rejected, the
data critical

coefficient of the effect will be assumed to equal zero, and the effect

will be considered insignificant. However, if the probability of Iti

data
t is small, then the effect will be assumed to have a non-zero
crit

coefficient and the effect will be considered significant. Table 1 lists

for each effect the probability that Iti is less than t based on
data crit

a confidence level of 90%.
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Table 1. Response Surface Method t-Statistics for Effects

U data crit
INSPECT .0001

OPFAIL .0001

AVGSECRC .0001

AVGSECDT .0001

OPFAIL*AVGSECRC .0001

OPFAIL*AVGSECDT .0001

INSPECT*OPFAIL .3079

INSPECT*AVGSECRC .3079

rINSPECT*AVGSECDT .3079

AVGSECRC*AVGSECDT .3079

Based on these statistics, all four main effects are significant as well

as OPFAIL's interaction with AVGSECRC and AVGSECDT.

The summary of the stepwise regression procedure is shown in the

table below.

Table 2. Response Surface Method Stepwise Regression Summary

Step Effect

1 OPFAIL

2 AVGSECDT

3 OPFAIL*AVGSECDT

4 INSPECT

5 AVGSECRC

6 OPFAIL*AVGSECRC

(Effects not shown in the summary were not significant enough at the .10

level for entry into the regression model.) This stepwise regression
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summary indicates the relative rank of the effects in terms of

statistical significance on the decision value. Notice that an

interaction effect, OPFAIL'*AVGSECDT is more significant than the main

effects for INSPECT and AVGSECRC.

Co arina Results. For this decision model, the two different

methods of performing deterministic sensitivity analysis yielded slightly

different indications of what variables were significant to the decision

value. The common method showed the following ranking based on magnitude

of DECVALUE change:

1) AVGSECDT

2) OPFAIL

3) INSPECT

4) AVGSECRC

It also indicated that AVGSECRC may be relatively insignificant because

of its small effect compared to the other variables. Conversely, the

response surface method yielded the following ranking based on ANOVA

statistics:

1) OPFAIL

2) AVGSECDT

3) INSPECT

4) AVGSECRC

Using the common method, the analyst may choose to simplify the AVGSECRC

variable by setting it to a constant nominal value. In contrast, using

the response surface method, the analyst would probably keep all four

variables intact since they all have statistically significant effects on

DECVALUE by that method of evaluation.
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The differences between these two methods would be even more

dramatic if a decision model was evaluated in which the response surface

* method brought a two-way interaction effect into the regression model

before it brought in one or both of the component main effects. If this

was the case, the common method would screen out a component main effect

because of its stand-alone insignificance. In contrast, the response

surface method would indicate to the analyst that the component variable

should be left intact because of its significant interaction effect.

Summary of Assumptions

The previous section explained how the Anti-Skid subsystem model was

V developed. In the process, several important assumptions were made.

These assumptions are summarized below:

1) The decision maker chooses the best alternative based on expected

value.

2) The interval chosen will remain in effect for two years (i.e. decision

duration equals 2 years)

M 3) Operational activity for aircraft in the B-1B fleet evens out from

aircraft to aircraft over a two-year time period.

4) Operational B-1B aircraft activity at Dyess AFB is representative of

the other B-lB bases.

5) Time between failures of the Anti-Skid subsystem can be modeled as an

exponential distribution.

L 6) Repair costs and downtime resulting from failures of Anti-Skid

subsystem components are the same for operational and potential failures.

7) Anytime an inspection is performed, all potential failures will be

correctly identified within the inspection quality (IQ) limits.

8) Once identified, all potential failures will be fixed correctly.
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9) Inspections will not induce failures.

10) LossO Of human life is not a possible consequence of a B-lB Anti-Skid

subsystem failure.
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IV. oel Analsi-t

This chapter presents the solution and follow on sensitivity

analyses for the B-lb Anti-Skid subsystem decision model, all of which is

intended to serve as an example for analyses of other aircraft

subsystems. The follow-on analyses performed were stochastic sensitivity

analysis, preference sensitivity analysis, expected value of perfect

information, and expected value of control. These analyses are an

important, integral part of the overall decision analysis process because

they systematically measure the importance of key variables in the

decision. Also, they can provide answers to "what if" questions on the

initial solution which will inevitably occur in the mind of the decision

maker.

Stochastic sensitivity analysis is different from the deterministic

sensitivity analysis performed in the model development phase of the

decision analysis in that instead of merely measuring the change in

decision value (DECVALUE) when other variables change, it measures the

change in the expected value of the optimal decision alternative (called

the "certain equivalent") as the variable under study changes from high

to low. Also, the other random variables in the model are not

temporarily set at nominal values, but are allowed to vary stochastically

through their ranges. Preference sensitivity analysis is similar to

stochastic sensitivity analysis except that it examines changes in the

certain equivalent caused by changes in constants which the decision

maker will set (i.e. they are subject to his preference).

* The first section in this chapter identifies the best decision

alternative for the baseline model. (The baseline model is the decision
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model for the Anti-Skid subsystem in which the variables have been set as

explained in the Model Development chapter.) Once the baseline solution

U is established, the various analyses are presented in the order in which

they were performed.

Solution for the Baseline Model

The influence diagram for the B-IB Anti-Skid subsystem was solved

using the microcomputer-based INDIA software package. With INDIA, once

the influence diagram is input, the "Analyze" command solves for the

decision alternative having the minimum expected value (cost). Of the

three alternative inspection intervals (5, 100, and 600), 5 had the

lowest expected value, equal to a certain equivalent of $144,240. (In

the current B-1B flying program, 5 flying hours roughly equates to one

sortie.) A comparison of the expected value for each of the three

decision alternatives is shown in Figure 7.

An interesting attribute of this alternative is that, since in the

baseline model inspection quality (IQ) also equals 5 flying hours, no

operational failures will be experienced. In other words, the best

decision is to perform inspections every 5 flying hours so that

operational failures cr A be avoided between inspections. The reason this

alternative has the lowest expected value (costs) is because without

operational failures occurring, there is no risk of incurring any costly

secondary consequences. The relationship here between the inspection

*interval and IQ is similar to what exists for items placed on preflight

inspection checklists. The consequences of failures for these items are

serious enough that inspections are done every flight with the assumption

that operational failures will be avoided. The inspection quality is

assumed to be at least as long as the average sortie, so that failures
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which would otherwise occur between inspections are detected during the

inspections.

E 300 -

e 250
C
t 200
e

- d 150

V
a 100

u so
e 

0

(O00s) 5 100 600

Inspection Interval

Figure 7. Comparison of Expected Value for
Decision Alternatives

How does this solution change with changes in IQ, NTBF, etc?

Answering this question is the objective of the following sections.

Stochastic Sensitivity Analysis

The variables normally included in a stochastic sensitivity analysis

are the decision variable and all random variables in the model. For the

B-13 Anti-Skid subsystem influence diagram these variables are the

decision alternatives (INSPECT), NTBF, number of operational failures

(OPFAIL), average secondary repair costs (AVGSECRC), and average

secondary downtime (AVGSECDT). As an exception, this analysis also
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investigated the model's stochastic sensitivity to different values of IQ

even though it is treated as a constant in the model.

U The graph shown in Figure 8 shows the relative stochastic

sensitivity of the model's certain equivalent to each variable. Judging

by magnitude of change, all variables except NTBF and AVGSECRC have

significant stochastic effects on the certain equivalent. The nil

effects of these two variables mean that no matter what outcome in their

ranges these two variables take on, the certain equivalent of the

decision will not change from the optimal value of $144,240, nor will the

optimal decision alternative of inspecting every 5 flying hours change.

The reason NTBF has no effect on the baseline solution is that no matter

what MTBF is, the decision to inspect every 5 flying hours will avoid all

*operational failures and the costly secondary consequences. The reason

AVGSECRC has no effect is that even at its low value, the model will

still want to avoid secondary consequences because AVGSECDT is so

substantial. If AVGSECRC is at its high value, secondary consequences

are even more costly, and the model will certainly stay with the decision

to avoid all operational failures.

All the foregoing results apply to the baseline model which has IQ =

5. Next, a separate analysis was performed on IQ to investigate how the

decision might change with IQ set at other values in its range. The

results of this analysis are shown in Figure 8 with the original

sensitivity analysis on the other variables.L

The analysis on IQ reveals that the certain equivalent and decision

do change when IQ moves from 5 hours to an extreme value of 1 hour.

However, when IQ is set to the other extreme of 20 hours, the certain

equivalent and decision are unchanged. Consequently, an additional

42

iI/ IiII



0

- 0I

UcU)
L)a

Lr) 00

CrU)

4

r4

LLJ)
V~) 

44'

0

- LA-
LWrd

WW

43.



stochastic sensitivity analysis was performed with IQ set equal to 1 hour

to see if MTBF would become a significant factor in the decision. The

only random variable included was MTBF because its nil effect in the

baseline model was caused by the INSPECT = 5, IQ = 5 combination.

The graph in Figure 9 shows the stochastic sensitivity analysis

performed with IQ = 1.

o-500

E 450-

x MTBF INSPECT
e (285/555) (5/600)
c 350-

t

d
UII. V 250- -

V

1 200-

U
' e 150-j

($O00s) 100-

50-

01

Figure 9. Results of Stochastic Sensitivity Analysis
with IQ = 1

In this second analysis, the certain equivalent is now $270,020 and

the optimal decision is to inspect every 600 flying hours. Now, the

certain equivalent is sensitive to a change in MTBF, but the optimal
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decision is not. Vith IQ * 1, no matter what value NTBF takes on in its

defined range, the optimal decision will be to inspect every 600 flying

hours. The reason for this is because with IQ - 1, inspections are

ineffective; they have little chance of preventing operational failures,

so inspections might as well not be performed during the two-year time

period.

Since stochastic sensitivity analysis revealed that the best

" decision alternative changes from 5 to 600 when IQ changes from 5 to 1,

this range of IQ was investigated further. The impact of changes in IQ

on the expected value of each alternative is shown in Figure 10. This

r analysis reveals that the optimal decision alternative changes from 5 to

100 hours when IQ drops below 3 hours and then it quickly changes to 600

hours.

Also, as a general result, this analysis verifies intuition by

showing that having inspection quality (IQ) greater than the inspection

interval (INSPECT) is overkill. Notice how the expected value for

INSPECT = 5 levels off past IQ = 5. Improving IQ past 5 adds no benefit

to the 5 hour inspection interval, but it does lower the costs of the

other alternative intervals. Clearly, if the curves of INSPECT equal to

100 and 600 were projected further for very high values of IQ, they would

eventually drop below the curve for INSPECT = 5 and become better

alternatives. They also would level off when IQ equaled 100 and 600

L respectively.,
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The purpose of preference sensitivity analysis is to investigate

Pother values or ranges of values which key "controllable" variables may

take on. The only variable included in this analysis was the value of

one hour of aircraft availability (AVAILVALUE).

AVAILVALUE represents the deterministic value which the decision

maker places on an hour of aircraft availability. It is a measure of the

subjective value he/she places on the B-1B's contribution to national

defense. The value used in this decision model was $1182, an

approximation derived from acquisition costs. The decision maker may

want to adjust this value. How would the certain equivalent and decision

change from the baseline solution if AVAILVALUE was changed? Figure 11

shows how the expected value of each alternative changes with + and -

100% changes in AVAILVALUE. This graph shows that with all other

Svariables set as determined for the baseline case, changes in AVAILVALUE

do not change the optimal decision. For any value of AVAILVALUE, the

best decision is still to inspect every 5 flying hours. (Actually, this

conclusion is probably not valid for large changes in AVAILVALUE, since

variables simplified or deleted in the model, such as POTFAIL, may

suddenly become significant when AVAILVALUE is small. A reappraisal of

the model should be undertaken if AVAILVALUE is set significantly lower

than $1182.) The reason for this insensitivity is that inspecting every

5 flying hours avoids all operational failures, thus avoiding costly

secondary consequences. A small value would have to be placed on

availability before avoiding operational failures would no longer be an

attractive alternative.
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ZVPI provides ai upper limit for the value of additional information

on a given random variable in the model. For example, suppose a

contractor offered to do an actuarial analysis on MTBF (at 95% confidence

level) for $25,000 in order to help the decision maker decide on the best

inspection interval. By computing the value of knowing WTBF perfectly

(100% confidence level), an EVPI analysis would indicate whether this

offer was reasonable or not.

EVPI is obtained by first measuring the certain equivalent of the

model when the decision maker is assumed to know (i.e. have perfect

information on) the value of the random variable being analyzed. This

expected value with perfect information is then compared to the original

certain equivalent of the decision. The absolute difference between the

two is the EVPI for the given variable. In the influence diagram, this

1 is performed by adding an arc from the random variable to the INSPECT

node. This symbolizes that information about the random variable is

known before the inspection interval decision is made.

EVPI calculations were performed on the baseline model (IQ = 5) and

for an additional situation where IQ - 1. For the baseline model, the

variables analyzed were the random variables NTBF, AVGSECRC, and

AVGSECDT. For the IQ = 1 case, only ETBF was analyzed.

The EVPI calculations for the baseline model are shown in Table 3.

Table 3. EYPI, Baseline Model

Variable EVPI Calculation EVPI

MTBF I $144,240 - 144,240 I a SO

AVGSECRC I $144,240 - 144,240 I = SO

AVGSECDT I $118,570 - 144,240 I - $25,670
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The fact that KVPI for KTBF and AVGSECRC equals $0 is not surprising

since the stochastic sensitivity analysis on the baseline model revealed

that the certain equivalent and optimal decision were not sensitive to

changes in these variables. These calculations confirm the common sense

notion that the decision maker would not want to pay any money for

information on variables that had no effect on his decision. Conversely,

KVPI for AVGSECDT has value to the decision maker, and such information

would change the certain equivalent to a lower value (cost). However,

$25,670 is the most the decision maker would want to invest to gain more

information about AVGSECDT.

The EVPI calculation for NTBF in the case of IQ 1 is shown below:

ZVPI for NTBF = 1 270,020 - 270,020 1 = S0 (7)

The reason why KVPI for HTBF is $0 in this case is because knowing the

value of NTBF ahead of time does not allow the decision maker to avoid

any costs and the optimal decision would stay the same (as shown in the

stochastic sensitivity analysis, Figure 9.) However, as described next,

controllin WrTBF would have value.

Expected Value of Control (EVC)

The EVC represents the value to the decision maker of being able to

control, by design, the outcome of MTBF. The calculation for EVC in the

case of IQ=1 is shown below:

EVC = 1 192,145 - 270,020 1 = $77,875 (8)

hi This means that $77,875 would be saved if the decision maker could set

MTBF to the best value in its range (555). If this was possible, the

best decision would be to not inspect during the two-year time period.
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The general model presented in this thesis is a meaningful

representation of the base-level inspection interval decision. Using

this model can help the SPM and his staff breakdown this inherently

complex and subjective decision into the individual issues that must be

quantified. Through the decision analysis process, a qualified analyst

must modify the general model into a model tailored for the particular

subsystem being studied. The specific model developed in this thesis for

the B-1B Anti-Skid subsystem serves as an example of how this process

could be carried out.

However, performing a decision analysis of this caliber is no small

task, and the analyst doing it must have formal training in decision

analysis techniques. This training is necessary to develop expertise at

conducting expert opinion interviews, statistical analysis, etc. More

often than not, statistical data for the random variables will be non-

existent or highly suspect. Consequently, considerable expertise is

required to obtain the necessary information. Also, as is true for any

evaluation, it is preferable that the analyst have first-hand exposure to

the aircraft subsystem being evaluated. This knowledge is especially

helpful in modifying the general decision model to represent the decision

for a specific aircraft subsystem.

Due to the considerable investment of time and energy required to

perform a thorough decision analysis, not every aircraft subsystems

should be analyzed in this manner. The best candidates for a decision

analysis are those subsystems on the aircraft which are considered either

costly to inspect or costly to not inspect (in terms of possible

operational consequences.) The type of decision analysis presented here
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would provide a thorough treatment of these "strategic" decisions, but it

is too pain-staking for subsystems of lesser consequences.

Since the general model is intended to serve as a shell to be

uniquely modified for specific subsystems, specific recommendations about

which variables to modify are not appropriate. However, the function of

one important variable, inspection quality (IQ), could be modified and

investigated in a follow-on decision analysis thesis.

Currently, IQ is treated as a random variable in the general model,

but it may be possible to model it as a decision variable. As was

explained earlier, this variable is influenced by how rigorous of an

inspection the SPH wants his/her maintenance personnel to perform.

Therefore, it is arguable that IQ could be modeled as a decision

variable, like INSPECT, rather than a random variable. In this case the

model would be representing two decisions: how often to inspect and how

U thorough to inspect.

Another area that may prove fertile for further research is

deterministic sensitivity analysis. Of the two methods compared in this

thesis, the response surface method seemed superior. It allowed for a

more systematic screening of variables for significance because it

formally considered interaction (multi-variable) effects as well as main

(single variable) effects and judged significance on proven statistical

tests. The comparison between the two methods should be carried further

by applying them to other decision analysis problems.

Even though it is primarily intended to serve as an example, the

decision model presented here specifically for the B-1B Anti-Skid

subsystem should prove very useful to the B-1B SPE and his staff. It

identifies the issues they should consider when making the inspection
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interval decision for the Anti-Skid subsystem. Clearly, the range of

outcomes, probability distributions, and value functions for these

variables should be completely reviewed and verified by the SPM staff

before the decision recommended in this thesis is adopted. Stochastic

sensitivity analysis has shown that those variables deserving special

- attention during verification are number of operational failures

(OPFTAIL), secondary downtime (SECDT), average secondary downtime

(AVGSECDT), and inspection quality (IQ).

Interestingly, NTBF was not a significant variable in the B-1D Anti-

Skid subsystem analysis. The analysis showed that for a NTBF varying

stochastically over a range of 285 to 555 flying hours, the effect on the

decision was minimal. However, if the MTBF could be designed with no

uncertainty to a value of 555 flying hours, the decision would change and

inspections during the two-year time period would not be necessary.

If inspection quality (IQ) is found to actually be greater than 5

for the Anti-Skid subsystem, another decision alternative, equal to the

actual IQ should be considered. In the model presented here, IQ was

equal to 5 flying hours which allowed the 5 hour inspection interval to

result in preventing all operational failures. However, if IQ is greater

than 5, 10 for example, then an inspection interval of 10 hours would

become the best interval. It would result in less inspection costs

because of fewer inspections and yet still prevent all operational

failures. It is important to keep in mind that the alternatives

considered should be ones which could be practically implemented by base-

level maintenance. No alternative should be considered which the SPN or

base-level maintenance personnel would not consider implementing.
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Another value which must be coordinated with the SPH is the value of

availability (AVAILVALUR). The research presented here used an

approximation for AVAILVALUS that may not be acceptable to the current

SPH. Although this analysis revealed that for the B-lB Anti-Skid

subsystem AVAILVALUE did not impact the decision, in general it is a

significant factor and with stochastic sensitivity analysis the decision

maker can easily explore other ranges of value.

The SPN may also want to relax some of the assumptions made in this

thesis. In particular, the SPH may not be an expected value decision-

maker. If this is the case, a unique utility function must be derived

and applied to DECVALUE, transforming DECVALUE (dollars) into utility

(unitless). This would more accurately model the decision maker's

attitude toward the true value of the decision outcomes. Another

assumption which say need to be relaxed is the homogeneous fleet

assumption. In many cases, the flying activity varies greatly from base

to base even for the same aircraft type. In these cases, a specific

model would have to be built for each base if the SPN wanted to treat

each base independently because of the different flying programs.

Lastly, although loss of human life was not included as a possible

consequence in either of the models in this thesis, it is a possibility

for some aircraft subsystems and should not be ignored in the analysis.

In these cases the loss of human life should be addressed in a value of

life variable and an average number of lives lost variable. Then these

two variables could be multiplied together and added into the secondary

consequences function (SECCONSQ). As with the value of availability,

through sensitivity analysis the decision maker could vary the value

he/she places on life and see the impact on the optimal alternative.
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VI. onclulion

Inspection interval decisions often must take into account complex

operational failure consequences which can only be measured subjectively.

Current methods of analysis, CHIP for example, ignore subjective aspects

of the decision such as risks of failure consequences, value preferences

of availability and decision outcomes, and the reliability of failure

data. These types of issues are the realm of decision analysis.

The decision analysis presented in this thesis identified the most

important issues bearing on the decision and modeled them in an influence

diagram. The diagram can be solved by existing software packages which

identify the best decision alternative for a given state of information.

These programs also can assist in performing the different types of

postsolution analyses which reveal to the decision maker the key variables

and the degree to which they affect the decision.

Two influence diagram models were created for use by AFLC SP

organizations. First, a general decision model was constructed that is

able to accommodate the decision structure for most aircraft subsystem

inspections. In most cases, modificatioL of the general model's

structure will be both necessary and prudent when applying it to a

specific subsystem.

An example of how a decision analysis would be performed for a

specific subsystem decision was accomplished using the B-lB Anti-Skid

subsystem. This relatively simple subsystem was analyzed in order to

serve as a learning tool for USAF analysts wishing to learn about and

adopt the decision analysis approach to inspection interval analysis.

Finally, many important recommendations were given, emphasizing the

limitations and applicability of the decision analysis approach. It is
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self-evident that decision analysis is not simple enough to be used on

every aircraft subsystem requiring periodic inspection. However, it is a

P thorough way to decide how often to inspect subsystems where the risks,

costs, and other consequences of operational failures are high and

difficult to quantify.

I7
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Appondix A: fl-IB Anti-Skid Subsystva Breakdown/Function Description
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Appendix B: Graphjical Sectioning of the KTBF
Probability Distribution
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Explanat ion, The vertical lIInes were drawn at the
- points corresponding to 555, 410, and 285 because

at these points the areas of like shading are equal to
each other. These values can be used as approximations
for the 75th, 50th, ana 25th) fractiles
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Appendix C: OPFAIL ProbabilityDistribtions
(Baseline Model)

Number of OFFAIL
INS MTBF 01 2 1 4

5 285 1 0 0 0 0 0

100 285 0.135335 0 270670 0.270670 0180447 0.090223 0.052653

600 285 0.123969 0.258813 0.270155 0.188009 0.098127 0.060914

5 410 1 0 0 0 0 0

100 410 0.249014 0.346190 0.240644 0.111518 0.038759 0.013871

6n0 410 0 .34284 0.339998 0.246705 0.119341 0.043297 0.016372

5 555 1 0 0 0 0 0

10) 555 0.358069 0.367747 0.188843 0.064649 0.016599 0.004091

600 555 0.342298 0.366968 0.196708 0.070295 0.018840 0.004888
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Appendix D: Drjvttqon Qt Pj V-et.*Yaj eorAVGSLTtr!g! SECDT

1. Assume AVGSECDT probabilities are distributed as a Normal probability
distribution.

2. E(SECDT) - 325(.25) + 100(.50) + 8(.25) - 133.25
2 2

3. VAR(SECDT) a E( SECDT ) - [E(SECDT)]
2

- 31422.25 - (133.25)
- 13666.69

4. Use £(OPFAIL) for n:
With MTBF a 410, INSPECT - 100, and IQ = 5, E(OPFAIL) 1.37

n
5. E(AVGSECDT) = 1 1/n E(SECDT)

i=l
= n(1/n) (133.25)
= 133.25

a 2
6. VAR(AVGSECDT) a _ (1/n) VAR(SECDT)

i=1

2 n
(1/ VARSECDT)

i-1

2
- (1/n) (n) VAR(SECDT)
SVAR(SECDT)/n = 13666.69/1.37 = 9975.69

1/2
7. Std Dev(AVGSECDT) = (VAR(AVGSECDT)] = 99.84

8. For a Standard Normal probability distribution:

Z = (X - mean)/std dev

For the 75th fractile (x), Z = 1.275 so,

1.275 = (x - mean)/std dev
x = mean + 1.275(std dev)
= 133.25 + 1.275(99.84)
= 260.546

For the 25th fractile (y), Z = -1.275 so,

-1.275 = (y - mean)/std dev
y = mean - 1.275(std dev)

= 133.25 - 1.275(99.84)
= 5.954
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Appendix E: $AS Input Matrix and Programo File

2 4 Design Input Matrix

S I NI UPF a *L T IG c I Q I A 0 L Ak( OCG ARCOTC OV AL

2 1 -1 1 ~ - -) -1 1 1 1 20 ;

3 1 1 - . 1 3 -1 -1 1 20!S6P
'6 12 -1 - I1 - l1b'30
5 - -1 1 44 j4.0- -

m6 1 1 11 - 11 - 1I - 202
7 -1 1 -1 -1 -1 1 1 -l 3

11 -1 1 - z 1 - 11 -1 171C,106
Id 1 1 1 1 -11 - 1 1 567168
13 -1 -1 1 1 1 -1 -1 -1 -1 1 14 4

1. 4 11 1 - 1 - 1202

16 1 1 1 1 1 1 1 1 1 1 1732 158

Program File

OP I CNS L NIZ.1 2 d8;
FILE~KME RSM 'SA!1.DATI;
DATA ASPI;
INFILE RSm;
INPUT INT OPF AS9C, ASOT EVAi.:

10 s juTt OFF ;
IARC a IN1 * ASR(;
1*01 a INT * ASO I:
0*00, a OFF *A £50;
OACT a OFF ~'AS01;
ARCO? a ASRC * A5OT;
PROC. PRINiT OATAafiSM;
VAR INT CPF ASOC ASDI 10 IARC IAC? 0*00 CADT *0CC? OVAL;

PROCC AEG D)ATA=RSP; 0P*~ 51I O *?DR A?~D P

OUTPUT CUT-L P-9tSICUAL:
PROC, PLOT DATAsZ;

PLOT RESIDUAL t OVAL a t*
PROL STEFudISE DATA-OSM;

MOCtI CVAL a INd OFF ASRC, A50? 10 IAPC, IADT UARC, DAD? ARCDT/STEPWISE
SLENTRY a .10:

iRr = IMsP=r ASBC -= SEY

OWPF - OPFAIL ASI~r - AWSq=
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Appendix F: Continued
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U Using decision analysis techniques, a general model was developed
for base-level aircraft inspection interval decisions. This model
differs from current methods such as actuarial analysis and the Computer
Konitored Inspection Program in that it is designed to define and measure
the significance of the subjective uncertainties and risks inherent in
inspection interval decisions. Failure data, cost data, expert opinion,
and decision maker preferences are brought together in a single, unified
decision*making framework. Decision alternatives are evaluated based on
the entire "cost" picture (i.e. repair costs, opportunity costs, and
inspection costs). The general model developed in this thesis can serve
as a starting point for the analysis, but it must be tailored for the

- actual subsystems to which it is applied. Once the specific model for a
given subsystem is built, it can be analyzed using existing software
packages. An example of how the tailoring end analysis may be
accomplished is provided in a detailed study of the B-1B Anti-Skid
subsystem. The decision analysis approach will be most advantageous when
used on subsystems which have potentially serious failure consequences or
economical concerns. [6,6
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