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SUMMARY

During the last year significant progress has been made in the primary objective of estimating the
acoustic characteristics of speech from the visual speech signals. Neural networks have been trained on
a database of vowels. The raw images of faces, aligned and preprocessed, were used as input to these
network which were trained to estimate the corresponding envelope of the acoustic spectrum. The per-
formance of the networks was better than trained humans and was comparable with optimized pattern
classifiers. Our approach avoids the problems of information loss through early categorizaton. The
acoustic information that the network extracts from the visual signal can be used to supplement the
acoustic signal in noisy environments, such as cockpits. During the next year we plan to extend these
results to diphthongs using recurrent ncural networks and temporal sequences of input images.
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INTRODUCTION

Speaking produces acoustic and visual signals. When the acoustic speech signal is degraded by
noise, the visual signal can provide supplemental speech information that improves speech perception
(Sumby and Pollack, 1954; Ewersten and Nielsen, 1971; Erber, 1975). When the acoustic signal is
totally unavailable, as with the profoundly deaf, then the visual signal can be used through lip reading.
(Montgomery, 1983; Summerficld, 1979; Demorest, Bernstein and Eberhardt, 1987).

In this project, neural networks are being used to process visual speech signals in order to study
the feasibility of obtaining acoustic constraints directly from the raw visual image. At present,
automatic speech recognition systems rely almost exclusively on the acoustic speech signal. This contri-
butes to the poor perform of these systems often demonstrated in noisy environments (Allen, 1985).
While some effort bas been made at cleaning up the acoustic input to these systems, few have
attempted to use the visual information to supplement the acoustic signal.

The only speech recognition system that has extensively used the visual signals was developed by
Eric Petajan of Bell Labs (Petajan, 1984, 1987). This system uses stored templates to identify
sequences of lip images. On a limited vocabulary, Petajan was able to demonstrate that using the visual
speech signals can significantly improve speech recognition over acoustic recognition alone.

The computational constraints imposed by serial, digital computers often makes it necessary to
encode stored templates. The von Neumann bottleneck between the memory and the processors
requires that the incoming images and the stored templates have a reduced dimensionality that minim-
izes the necessary computation. In this system, Petajan uses vector-quantization to construct a code-
book that is used to translate incoming image sequences into symbol strings. The question is whether
the encoding process preserves the relevant information. Petajan found that encoding the images
resulted in a poorer performance, suggesting that there was a loss of information.

The neural networks is an alternative architecture characterized by many interconnected pro-
cessors that perform their computation in parallel. This architecture offers new approaches to signal
processing by eliminating the need to immediately encode signals into a lower dimension,

THE VISUAL AND ACOUSTIC SIGNALS OF SPEECH

In linguistics, the continuous speech signals are traditionally treated as a sequence of discrete
components. Phonemes are the shortest acoustically distinguishing unit of a given language. For exam-
ple, the words beat and neat are distinguished by the to the phonemes [b] and [n]. Similarly, boot and
beat are distinguished by the phonemes [u] and [i], which are abstractions corresponding to the ‘00’ and
‘ea’ sounds in the two words. The sounds themselves are identified phonetically as /u/ and /i/ to dis-
tinguish them from the linguistic abstractions [u] and [i].

The visual correlate of the phoneme is the viseme, The viseme is the smallest visibly distinguish-
ing unit of a given language (Fisher, 1968). The mapping between the phonemes and visemes is gen-
erally many to one; for example, the phonemes [p],[b] and [m] are usually visibly indistinguishable and
treated as a single viseme.

Speech recognition research has been largely preoccupied with trying to find a reliable method
of translating the continuous acoustic signal into a corresponding phonemic sequence (Reddy, 1966,
1967). This effort has been plagued by problems in segmenting the continuous signals and also at the
level of identifying those segments. Recently, however, the most successful speech recognition systems
avoid this procedure all together (Jelinek, 1985). These results suggest that alternative approaches of
using the visual signal should also be explored.

The acoustic speech signal that is emitted from the mouth has long been modeled as the
response of the vocal tract filter to a sound source (Fant, 1960; Flanagan, 1972). In this first-order
model, it is the configuration of the articulators that define the vocal tract filter’s shape, and its
corresponding resonance characteristics. These resonance characteristics are represented in the acous-
tic waves ghort-term power spectrum’s amplitude eavelope.

While some of the articulators are visible on the face of the speaker (e.g., the lips, teeth and
sometimes the tongue), others are not. The visible articulators’ contribution to the acoustic signal
result in speech sounds that are much more susceptible to acoustic noise distortion than are those
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contributions of the hidden articulators (Petajan, 1987). As a result, the visual speech signal tends to
complement the acoustic signal. Thus, those speech sounds that are the most visibly distinct, such as
/b/ and /k/, are among the first pairs to be confused when presented acoustically in the presence of
noise. Similarly, those phonetic segments that are visibly indistinguishable, such as /p/,/b/ and /m/
are among the most resistant to confusion when presented acoustically (Miller and Nicely, 1955; Wal-
den, et.al, 1977). This complementary structure serves as the basis on which the two signals can
interact to improve the perception of speech in noise.

RESEARCH OBJECTIVES

The focus of this research is to study the feasibility of using the visual speech signal to define
acoustic constraints. The approach has been to try and estimate the short-term power spectral
envelope of the acoustic signal from the corresponding visual signals on the face of the speaker. The
transfer function of the vocal tract can then be described from this spectral envelope.

Estimates of the transfer function are obtained using a variety of neural networks architectures.
These estimates are then evaluated and compared with results from other estimation techniques.

The neural network architectures that we are working with are simulated on an ANALOGIC
AP5000 array-processor. These architectures are in being implemented in special parallel hardware,
and eventually should be readily available.

NEURAL NETWORK BACKGROUND

Neural networks compute using many interconnected processors that individually perform a
simple transformation of their summed inputs. The connections between processors have weights asso-
ciated with them and signals traveling along those connections are multiplied by those weights. The
network’s response to a particular input is based on the exchange of signals between processors across
these weighted connections. A particular response can be programmed by specifying the connections
and their associated weights. An introduction to neural networks can be found in April 1987’s IEEE
ASSP Magazine (Lippman, 1987; Rumethart, McClelland, and the PDP Research Group, 1986).

By defining the correct weights, these networks can be constructed to solve a variety of prob-
lems (Hopfield and Tank, 1986; Marr and Poggio, 1976). However, until recently defining these
weights was an arduous task that required an @ priori solution to the underlying problem. Now algo-
rithms exists that iteratively adjust these weights given a set examples (Pineda, 1987; Rumelhart,
et.al.,1985), The ability to automatically program these networks has resulted in a flurry of experimen-
tal work aimed at demonstrating the computational power of this architecture. Using these algorithms,
networks have already demonstrated their ability to find solutions to a variety of problems (Lippman,
1987,Sejnowski and Gorman, 1988; Sejnowski and Rosenberg, 1987; Pragar et.al., 1986;).

One of the areas neural networks is strongest is in solving ill-posed problems, where a solution
may not exist or may not be unique (Poggio, et al., 1985). Estimating acoustic structure from visual
speech signals is such an ill-posed problems. The visual signals provide only a partial description of the
vocal tract transfer function, and that which is described is ambiguous. For a given visual signal there
are many possible corresponding acoustic structures. What we want is a good estimate based upon
known examples.

THE APPROACH

A variety neural network architectures werc trained to approximate the acoustic signal’s power
spectrum envelope given the corresponding visual signal as input. Since the system was given single
isolated video images, which cor:cspond to 33ms of speech, it was necessary to choose data from
vowels and diphthongs, which are relatively steady state over periods of 50 to 80 ms,

The input signal structure was chosen to exploit the distributed representations that neural net-
works allow. The video input signals are extracted from recordings of full-faced, well-illuminated
speakers preserved on laser disc (Bernstein and Eberhardt, 1987). Software was written to automati-
cally define a box centered about the mouth and extract that portion of the image. The computational
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load of simulating a neural network on a serial machine made it necessary to further sub-sample these
images, reducing the input to 500 pixels. It is important to emphasize that the particular encoding we
have chosen is an artifact of our simulation. Once these networks are implemented in hardware, visual
images can be received in parallel across arrays of sensors and then processed in parallel without sam-
pling.

Corresponding to each video frame is 33ms of acoustic speech. When the visual signal is
presented to the network, the network is asked to produce the amplitude envelope of the 256 point
short-term power spectrum (STPS) of the corresponding acoustic signal. During the training process,
the network is presented with both the input and output structures. To obtain the spectral envelope,
the cepstrum was taken of the STPS and the low-pass lifted below T/4, where T is the original length
of the input signal. Taking the inverse cepstrum of the resulting data provided a smooth envelope of
the original power spectrum that could be sampled down to 32 points.

The networks were trained on 119 images of vowels and diphthongs. The training period usu-
ally involved 450 presentations of each image in the training set. The weights were updated after all
images were presented. For a given network architecture, the particular weights to be evaluated will be
those that give the network its best performance for data not in the training set.

EVALUATION

The performance of the network is evaluated on two criteria. The first criterion is the weighted
squared error between the spectral envelope produced by the network and the true envelope. The
weighting places greater emphasis on the peaks of the spectral envelope than on the valleys. This is
accomplished by multiplying the squared difference of two points by the amplitude of the greater value
of those two points. For a given input image, I, a 32 point approximation of the associated acoustic
spectral envelope is produced. Then if the desired value for the i th component of the spectrum is £,
and the approximated value is 0,,, we can define an error measure for that approxinate envelope to be,

2
E P = E(tl'? - o"?)z max (‘ip:oip)
1

This weighting scheme reflects the relative importance of the the height of spectral envelope as demon-
strated by speech recognition tasks (Miller, 1953). This is also the error measure used by many speech
recognition systems to compare an unknown acoustic spectra to a set of stored templates (Klatt, 1976;
Jelinek, 1985).

The second criterion used to evaluate the network is a forced choice test. In this test, the spec-
tral estimate obtained from a given image is compared to a set of known spectral envelopes. Based on
the prior error measure, the closest envelope is identified and selected. A selection is considered suc-
cessful if it is the actual spectrum associated with that original image or if it is spectrum associated with
another example of the same vowel. In addition to the number of correct matches, the confusions are
also of interest since they reveal whether the network is processing the images in a manner similar to
humans lip readers. As part of this research, the networks confusions will be compared to those confu-
sions made by other estimation methods, and by humans lip readers.

RESULTS AND EVALUATION

Over the last year, we have constructed and trained numerous ncural networks. These networks
have allowed us to explore the effects of the connectivity structure, the number of hidden units, and the
type of transfer function used by the processors. In addition to the comparisons amongst the different
networks, the best network estimates were then compared to a variety of other estimation methods.

While it was difficult to assess these estimates from the value of the error function alone, the
forced choice test has provided a tangible measure of performance. When compared to the perfor-
mance of humans on the similar task of classifying vowels from the visual signal alone, the networks
performed better. The acoustic envelope estimated by the networks was correctly matched to the same
vowel from 62% to 68% of the time. In comparison, human lipreaders have demonstrated in previous
research performance levels of between 49% and 54% (Jackson, et.al, 1986; Berger, 1970;
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Montgomery and Jackson, 1983; Erber, 1979).

The networks’ estimations were also compared with estimates obtained from a template match-
ing approach used extensively for pattern matcking. Those images used to train the network were now
used as the stored templates. Given a new image, the closest match or matches were found among the
stored images and the corresponding spectral envelopes were averaged together. This is then used as
the estimate of the spectrum envelope associated with that image.

The quality of the estimate depended heavily on how many spectral envelopes were averaged. It
was found that finding the five closest images provided the best estimates. Using five envelopes, the
template matching method performed on par with the neural networks.

This alone would not be remarkable, unless one considers the problems involved in implemen-
tating the template method. As the number of templates increases, the computation needed to do the
comparison and ranking increases as O(N2), where N is the number of pixels in the images. The only
solution is to create a smaller set of templates. However, Petajan’s work (1988) showed that encoding
the images resulted in poorer performance for a similar lip reading tasks,

WORK IN PROGRESS

In addition to the template matching method, the networks are being compared to other estima-
tion techniques. Most estimation procedures are designed to work with input and output data of small
dimensionality. As a result of this, it is often necessary to encode the input and output data before
some type of regression is attempted. The problem is choosing the correct encoding. If the parame-
ters in the input that are necessary to predict the output are not clearly identified, then one has two
choices.

First, one can select some parameters a priori, and test to see how well the parameters correlate
with the output, and account for the variance. Towards this end, we will review those parametric stu-
dies of buman lip reading that have been performed (Montgomery and Jackson, 1983). The goal of
these studies was to determine those parameters available in the visual signal that could determine the
vowel being spoken. The comparison will allow us to evaluate how well the network is selecting its
parameters as compared to experts.

The second method is to choose some encoding based upon some known criteria, such as linear
least-square-error (LLSE) encoding (Gonzales and Wintz, 1977). The optimal LLSE encoding can be
obtained using principal component analysis. Using this encoding the images and their associated
acoustic spectra will be represented in terms of their principal components. Next, an attempt will be
made to fit a linear mapping from the input data set to the output data set using linear regression.
Once a fit is defined, a new image could be encoded and used to construct an estimate of the associ-
ated spectra. This estimate will be in terms of the principal components used to describe the acoustic
envelopes in the training set. This method will reveal whether or not an optimal LLSE encoding will
collapse the data along dimensions which are vital to the problem under study. There is no reason to
believe that it won’t.

One of the benefits of using neural networks is the ease with which additional constraints can be
introduced. In the coming year, we hope to improve the performance of the networks by using the
dynamical constraints inherent in the speech production process. As part of this effort, we intend to
use networks with recurrent links that will allow us to work with sequences of images.

LONG TERM IMPLICATIONS

The approach taken by this research may provide a basis for a new generation of speech recog-
nition systems that use two sensory channels. In designing such a system, the engineer can benefit by
looking at the best speech recognition system around, the human being. The parts of this system that
are the most fully studied and best understood are the human acoustic and visual preprocessing sys-
tems. Already, acoustic speech recognition systems are benefitting from what is known about the
human auditory system by using models of the human ear as a front end (Jelinek, F., 1985).

At Caltech, Carver Mead has already successfully designed and fabricated a variety of synthetic
retinas and cochleas in analog VLSI. These peripheral systems process massive amounts of sensory
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data in real time, and output a distilled, parallel and analog representation. Given these parallel output
{ from two channels, the question is how to combine them.

The traditional approach would be to encode their outputs symbolically and to try and define
constraints between these two symbol strings. One of the problems with encoding these signals from
these two channels is that the symbolic encoding can obscure constraints that might otherwise be use-
ful, or quite simply might throw the information away.

The alternative approach is to maintain the distributive representation that comes out of these
f channels and attempt to combine them at a sub-symbolic level. This research looks at the feasibility of
this second approach.
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