
I

co.

a00

" ' DTI C
En 7 JAN 1989

_,) DEPARTMENT OF THE AIR FORCE Fm !
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio '

TM& -.mmes 2m $n Ipi I wni

a< ia b m w

AFIT/GCS/ENG/88D-14

0]

Distributed Discrete-Event Simulation
Using Variants of the Chandy-Misra Algorithm

on the Intel Hypercube

THESIS

David Louis Mannix
Captain, USAF

* AFIT/GCS/ENG/88D-14

OTIC

1 7 JAN 1989

Appove .

Approved for public release; distribution unlimited

0"

* AFIT/GCS/ENG/88D-14

DISTRIBUTED DISCRETE-EVENT SIMULATION

USING VARIANTS OF THE CHANDY-MISRA ALGORITHM

ON THE INTEL HYPERCUBE

* THESIS

Presented to the Faculty of the School of Engineering

0 of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of Accession For
Master of Science in Information Systems NTIS GRA&I

DTIC TABUnannounced [J
Justif ication

David Louis Mannix, B.S. BYs u .Distri~butiofn /Captain, USAF Availability Codes

A an l'l /or.
Dist Special

December, 1988

Approved for public release; distribution unlimited

0

Acknowledgments

I'd like to express sincere thanks to my thesis advisor, Captain Nathaniel J.

Davis, USA for his guidance, understanding, and insightful commentary, and to the

other members of my thesis committee, Dr. Thomas C. Hartrum and Captain Wade

H. Shaw, USA, for their expert advice and support. I'd also like to thank Captain

Brian J. Donlan, USAF for his help and advice. Thanks are also in order for Messrs.

Bruce Clay and Rick Norris for their superb operational support. Most of all, though,

I'd like to thank my wifei for being my support system while at the same time

enduring the separation of a "grad school widow" without complaint. I can only

hope that she knows the extent of my gratitude for her encouragement, support, and

confidence, which could never be fully expressed in words.

David Louis Mannix

L$

Table of Contents

Page

Acknowledgments ii

Table of Contents i

List of Figures vi

List of Tables vi'

* Abstract viii

I. Introduction 1-1

1.1 Simulation Overview 1-2

1.2 Distributed Processing Overview 1-4

1.3 Problem Statement 1-6

1.4 Scope 1-8

11. Literature Review 2-1

2.1 Parallelism in the Simulation Process 2-1

* 2.1.1 Application Level Parallelism 2-1

2.1.2 Support Function Distrib-ition 2-3

2.1.3 Model Function Distribution 2-4

2.2 Distributed Simulation Algorithms 2-5

2.2.1 Chandy-Misra Null Message Algorithm 2-6

2.2.2 Bryant's Infinite Buffers Algorithm 2-8

2.2.3 Peacock et al - Link Time/Blocking Table Algo-

rithms 2-12

• ~iilo.

Page

0 2.2.4 Chandy-Misra Deadlock Detection and Recov-

ery Algorithm 2-1:3

2.2.5 SRADS Algorithm 2-17

2.2.6 Optimistic Algorithms - Time Warp".. 2-18

2.3 Performance Studies of Distributed Simulation 2-21

2.3.1 Performance Measurement -22

2.3.2 Factors Affecting Performance 2-23

2.3.3 Chronology of Performance Studies 2 25

2.4 Summary 2-29

* III. Description of Algorithms 3-I

3.1 The Physical System 3-2

3.1.1 Definitions 3-3

* 3.1.2 The Physical Process 3-4

3.1.3 Event-Oriented View of the Physical Process. 3-6

3.1.4 Message-Passing 3-10

* 3.1.5 Predictability 3-11

3.2 The Logical System 3-12

3.2.1 The Logical Process 3-13

3.2.2 Logical Process I/O 3-20

3.2.3 Properties of LP Communication 3-23

3.2.4 Summary of Algorithm 3-24

3.2.5 Deadlock in the Logical System :3-2.5

3.2.6 Null Message Variants :3-35

3.2.7 Bounds on Required Memory 3-39

Nl\-. Performance Analysis 4-1

4.1 Performance Characteri-tics of the Event List -1-1

iv

Page

* 4.1.1 The Linear List Implementation 4-1

4.1.2 Theoretical Bounds on Speed-Up A-2

4.2 Empirical Studies 4-7

* 4.2.1 Methodology 4-8

4.2.2 Empirical Results 4-13

4.3 Summary 4-33

V. Conclusions 5-1

5.1 Summary 5-1

5.1.1 Null Message Strategies 5-2

0 5.1.2 Assignment Heuristics 5-2

5.2 Assessment of the Distributed Event List Algorithm . 5-3

5.2.1 Advantages of the Distributed Event List Algo-

* rithm 5-3

5.2.2 Disadvantages of the Distributed Event List Al-

gorithm 5-4

5.3 Recommendations for Further Research 5-5

Bibliography BIB-1

Vita VITA-I

0 v

List of Figures

Figure Page

3.1. Non-Cyclic System of PP's with Cyclic Mapping 3-19

3.2. Set of Logical Processes Subject to Cyclic Deadlock 3-27

3.3. Set of Logical Processes Subject to Acyclic Deadlock 3-30

4.1. Balanced Flow Queueing Sub-model 4-1)

4.2. Network of Sub-models in Tandem Topology 4-14

-4.3. Speed-Up for Tandem Topology 4-15

4.4. Network of Sub-models in Feed-Forward Topology 4-17

4.5. Speed-Up for Feed-Forward Topology 4-18

4.6. Tandem Logical System with Pseudo-Feedback 4-20

4.7. Speed-Up Effect of Spin Loop 4-22

4.8. Tandem Speed-Up, Time-out Nulls, 0 Spin Loop 4-2.5

4,9. Balanced Feed-Forward Speed-Up, Time-out Nulls, 0 Spin Loop . 4-26

4.10. Balanced Feed-Forward Speed-Up, Stimulus Nulls, 1000 Spin Loop 4-28

4.11. Unbalanced Feed-Forward Speed-Up, Stimulus Nulls, 0 Spin Loop 4-29

4.12. Tandem Topology with Single Loop 4-32

0

0

* vi

List of Tables

Table Page

4.1. Insertion into Linear List with Exponential Inter-Event Times 4-3

4.2. Effect of Pseudo-Feedback Loops on Tandem Model 4-20

4.3. Summary of Factors for Null Message Strategy 4-23

4.4. Assignment Strategies for Feed-Forward Topology 4-31

4.5. Effect of Assignment, Balanced Feed-Forward, 8 Processors . . . 4-31

4.6. Effect of Assignment, Unbalanced Feed-Forward, 8 Processors . . 4-32

4.7. Assignment Strategies for Tandem Topology w/ Single Loop . . . 4-32

4.8. Effect of Assignment, Tandem with Single Feedback, 8 Processors 4-33

v

• i

"0•• a

* .AFIT/GCS/ENG/88D-14

A bstract

* The goal of distributed simulation is to speed up simulation by distributing

a simulation model's execution over multiple processors. This thesis reviews exist-

ing methods for distributed simulation, and introduces an algorithm for distributed

discrete-event simulation, the distributed event list algorithm, based on the Chaldy-

Misra algorithm, with an event list, similar to that used in sequential simulation, at

0 each logical process. Null messages are used for deadlock avoidance. The algorithl

is described, and is shown to require a bounded amount of memory at each logical

process.

A performance analysis of the distributed event list algorithm is performed. In

the analytical portion, a linear event list implementation is shown to be of super-

linear time complexity in relation to events simulated. This time complexity implies

theoretical speed-up of greater than N for a simulation distributed over N processors.

This result contradicts a commonly-held view of the existence of a bound of N oil

attainable speed-tip.

Empirical studies evaluate the performance of the distributed event list al-

gc,'rithm tinder a variety of conditions. Speed-up greater than N are shown to be

achievable for certain topologies of simulation models, confirming the time complex-

* it,v analysis. The topology of the simulation model is shown to greatly affect Ilhc

att;ined speed-,ip. Simulation networks with directed cycles exhibit extremely poor

* viii

* performance, in agreement with previous performance studies of the Chandy-MNisra

algorithm.

* Alternate strategies for sending the Null messages used for deadlock avoidance

are compared. Results show that for tandem and feed-forward topologies, a certainl

level of Null messages are beneficial to speed-up.

The problem of assigning a given simulation model to a set of logical processes

is addressed. It is seen that topology of the logical system plays a critical role in the

* effectiveness of an assignment strategy.

0 ix

DISTRIBUTED DISCRETE-EVENT SIMULATION

USING VARIANTS OF THE CHANDY-MISRA ALGORITHI

* ON THE INTEL HYPERCUBE

0

I. Introduction

Distributed discrete event simulation has been a topic of intense research inter-

est since the late 1970's. The principal goal of distributed simulation is to reduce the

time needed to perform a simulation by spreading its execution over multiple pro-

cessors. This is accomplished by exploiting the parallelism inherent to discrete-event

simulation.

The time required to execute large simulation models on even the fastest se-

quential computers has limited the use of simulation in several application domains,

* such as large-scale digital logic systems, simulation of weather patterns, and inil-

itary applications such as strategic defense and conventional battle management.

Distributed simulation is one possible way of extending the usefulness of simulation

into these and other areas.

While algorithms for distributed discrete-event simulation have existed for a

number of years, !ittle had been accomplished until very recently in the task of

evaluating and refining these algorithms, perhaps due to the non-availability of cost-

1-1

* effective distributed computing systems. Early performance studies of distributed

simulation algorithms were accomplished by using uniprocessor computers to simu-

late distributed computing systems [CM79].

The widespread availability of relatively cheap microprocessors has enabled

the development of less costly multiprocessor computing systems for the research

community and for general use, resulting in new opportunities and incentives for the

development of distributed simulation methods [Hei86]. Recent research has focused

on performance evaluation of the existing algorithms, based on empirical studies

performed on various distributed architectures [Fuj88, RM88, RMM88].

1.1 Simulation Overview

Simulation is a mathematical tool that allows the user to modify and experi-

ment with a system when it would otherwise be impractical to do so. Simulation has

been defined by Banks and Carson as "the imitation of the operation of a real-world

process or system over time" [BC84] and by Shannon as "the process of designing a

model of a real system and conducting experiments with this model for the purpose

either of understanding the behavior of the system or of evaluating various strategies

for the operation of the system" [Sha751.

In a defining a simulation model, the modeler seeks to capture the essential

behavior of some physical system to a certain level of abstraction. The modeler im-

* plements the model by constructing a simulation computer program. In doing so. the

model must be defined in terms of functions that are computable, necessitating the

* 1-2

* adoption of a particular paradigm or view of the physical systems to be simulated.

The modeler can implement the model in a general-purpose programming language

such as FORTRAN or Ada, or by using a specialized simulation language such as

GASP [Pri74], SLAM II [Pri86], and many others. Simulation languages save a large

amount of programming effort by providing pre-defined, standard functions for con-

0 trolling a simulation, calculating statistics, etc., allowing the modeler to concentrate

on the abstraction of the simulated system [LK82].

* Discrete-event simulation refers to simulation of a system whose state changes

only at a countable number of points in time. The majority of discrete-event simula-

tion models are stochastic in nature, having one or more random variables as inputs.

The outputs of such models are also random variables, and statistical methods must

be used in their analysis [Sha75].

* Most discrete-event simulation is characterized as being event-driven, where an

event is an instantaneous occurrence which may change the state of a system [BC84].

The event-driven method of discrete-event simulation advances simulated time in

irregular intervals defined by the time of occurrence of each simulated event. An

alternate discrete-event simulation method, time-driven discrete-event simulation,

advances simulated time in regular intervals and simulates each event when the time

of its occurrence has been reached [LK82].

In a typical sequential implementation of the event-driven approach to simu-

lation, an "event list" is maintained of events that have been scheduled to occur.

0 1-3

The simulation advances by simulating the imminent event in the event list; i.e., the

event with the earliest simulation time associated with it. This event is removed

from the event list and the simulation clock is advanced to the time of the event.

Simulating an event may change the values of variables that describe the state of

the system, and, in addition, may cause new events to be added to the event list

• [BC84]. Discrete-event simulations are generally designed to terminate when the

simulation clock reaches a certain value, or when the number of occurrences of some

event reaches a pre-defined limit [LK82].

1.2 Distributed Processing Overview

There is no consensus concerning the exact definition of a distributed process-

ing system. Is the "distribution" necessarily geographic in nature, or does it simply

ref-,r to the logical distribution of processing? J.P. Verjus prefers a strict definition

based on geographic distribution of processing resources, characterizing a distributed

system as "a set of separate sites ... interconnected by communications channels"

* [PV83J. While some definitions classify distributed processing as a form of parallel

processing, Hwang and Briggs maintain a distinction. They assert that "parallel

processing and distributed processing are closely related," although as data con-

munications technology advances, "the distinction between parallel and distributed

processing becomes smaller and smaller" [HB84].

* 1-4

* One distinctive feature of distributed systems seems to be that no shared nien-

orv is allowed [Sch82]. A distributed system has been defined by D. Herman as "a set

of co-operating processes installed on a multiprocessor architecture without a cotn-

mon memory [PV83]." The preceding definition of a distributed system shall be used

for the remainder of this paper, since it appears to describe the essential features of

*• a distributed system without the arbitrary constraint of geographic separation.

A distributed program, then, is a collection of cooperating (or communicat-

ing) processes. Because one of the goals of a distributed system is to increase the

throughput over that available in a non-distributed system, it is desirable to ex-

ploit the maximum amount of concurrency. This is accomplished by allowing the

processes to run asynchronously, communicating only as required (Sch82l. Hence.

synchronization of communicating processes is a major part of distributed computing

* algorithms.

C.A.R Hoare has introduced a notation and paradigm for the specification and

operation of communicating sequential processes [Hoa78]. His paradigm is designed

to allow proofs of correctness, to limit memory requirements, and to eliminate non-

determinism to the maximum extent possible [Hoa85]. Many others, most notably

municating processes [Lam78, DS80. Sch82].

• In partitioning a task into a system of communicating sequential processes. sev-

eral design criteria are relevant. Defining the processes in such a way as to balance

* 1-5

* the processing load will maximize throughput, assuming homogeneous processors and

excluding interprocessor communications. On the other hand, interprocess commu-

nication carries with it an overhead cost. While we would expect linearly-increasing

throughput with additional processors, communication overhead eventually leads to

the saturation effect. This effect, similar to "thrashing" in early memory paging

* systems, can cause throughput to decrease with each additional processor applied to

a problem [CH*80].

The throughput advantage of a parallel computation is often quantified by

the Speed-up factor, which is the ratio of the time taken to execute a computation

on a single processor to the time taken to execute the same computation in the

parallel system [Fuj88]. The efficiency of a distributed implementation is described

by the ratio of Speed-up to N, where N is the number of concurrent processes in the

distributed system. If the same algorithm is used in both the single and multiple

processor computations, perfect efficiency is considered to be 1.0, corresponding to

a Speed-up factor of N [Hei86].

1.3 Problem Statement

In a simulation of sufficient size and complexity to merit the use of distributed

computing techniques, it is likely that the system to be modelled will consist of a

larger number of components, or physical processes, than there are processors avail-

able in the distributed computing system. Even when this is not the case. it, is

1-6

* preferable in some instances to distribute a simulation over a subset of available

processors, as in Heidelberger's method of concurrently performing simulation repli-

cations, achieving speed-up equal to the number of processors [Hei86].

In cases such as these, it is desirable to have an efficient algorithm for simu-

lating multiple physical processes on a single processing node. A natural candidate

0 algorithm is the future events list method used in sequential discrete-event simula-

tion. The concept of combining a conservative distributed simulation algorithm with

* an event list at each logical process is not a new one. Bryant's algorithm for dis-

tributed simulation included such a fusion of distributed and sequential simulation

concepts [Bry79]. Authors of subsequently published algorithms, however, gener-

ally have chosen either to extend the message-passing paradigm within each logical

process, or not to address the issue.

* In addition, many algorithms for distributed discrete-event simulation require

the assumption of a particular "world-view" or paradigm of the physical system be-

ing simulated. However, we may not wish to modify our abstraction of the physical

system in order to accommodate the implementation of our simulation model on a

particular computing system. A desirable method for distributed simulation will al-

* low distributed simulation with a physical system paradigm based on the widely-used

event-oriented view, easing the problems associated with parallelizing a simulation

model that has been developed for sequential simulation.

0 1-7

* It is the goal of this thesis to present such a method for distributed discrete-

event simulation, the distributed event list algorithm, and to describe the conditions

under which the algorithm can be expected to efficiently provide significant speed-

up of a discrete-event simulation.

An event list structure at each logical process ensures chronological execution of

events. It will be shown that under certain conditions with a simulation distributed

over N processors, the distributed event list algorithm can yield speed-tip greater

than N. Speed-up equal to the number of processors has often been asserted in

the literature to be the maximum achievable speed-up for a distributed simulation

[Hei86., RMM88].

The distributed event list algorithm uses a method of interprocess commu-

nication and synchronization based on the Null message algorithm for distributed

* simulation proposed by Chandy and Misra [CM79]. Several variants on the ba-

sic communications method are presented. The effects of the topology of physical

process interconnection and the computational intensity of event processing on the

resultant speed-up are explored.

1.4 Scope

This thesis includes a review of methods for performing distributed discrete-

event simulation in Chapter 2, and develops a particular method, the distributed

event list algorithm with several variants, based on the conservative synchronization

1-8

* protocol proposed by Chandy and Misra, in Chapter 3. An analytical performance

analysis of this algorithm is presented and supported with empirical studies in Chap-

ter 4. Chapter 5 summarizes the results of the analysis and studies to provide insight

into the conditions under which the algorithm can be expected to provide significant

Speed-up, including comparisons among the variants.

• 1-9

. . ."S'l I

IT Literature Review

S 2.1 Parallelism in the Simulation Process

Kaudel identifies three kinds of parallelism in the simulation process. each of

which can, at least theoretically, be exploited to speed up simulation. Applicatiolt

level parallelism consists of executing multiple simulation trials concurrently. Support

function distribution utilizes parallel processing in the computations required by

* simulation overhead functions, while retaining the overall sequential nature of the

simulation. Model function distribution consists of the spatial decomposition and

parallelization of a single simulation model. Of the three, model function distribution

has by far received the most attention in distributed simulation research. Kaudel

asserts that these three approaches could be applied simultaneously to a discrete-

event simulation [Kau87].

2.1.1 Application Level Parallelism Application level parallelism takes ad-

0 vantage of the multiple trials that are generally performed in simulation experiments.

Execution of a stochastic simulation model is normally replicated in order to obtain

0 reasonable confidence interval estimates of output parameters [LK82]. In addition.

simulation experiments are usually conducted for the purpose of comparing two or

more alternatives for a system's operation. A model is constructed for each alterna-

tive and run (with each model execution replicated as above) [Sha75]. Application

level parallelism achieves speed-up by concurrently executing the individual trials on

* 2-1

0

* separate processors. Running N replications concurrently, the theoretical speed-up

factor is N, achieving what is considered "perfect" efficiency, excluding the negligible

overhead of the control functions [Hei86].

Biles et al discuss distributing simulation at the application level using a hi-

erarchical network of microcomputers, combining application level parallelism and

support function distribution [BDO851. In Biles' method, a "tree" configured net-

work of microcomputers is used, with the individual simulation trials performed at

the lower levels of the tree and statistical analysis, optimization, and control func-

tions performed at successively higher levels.

Heidelberger provides a theoretical basis for computing the relative efficiency

of distributing each simulation trial over multiple processors versus executing par-

allel independent replications, given a stochastic simulation [Hei86]. Heidelberger's

* analysis shows that certain statistical considerations, such as initialization bias, are

important in determining the optimal combination of model function distribution

and application parallelism for achieving the desired accuracy in the minimum time.

The uncomplicated approach of concurrently executing independent simula-

tion trials has received scant attention in distributed simulation literature, possibly

0 because it is so straightforward, and a product of statistical considerations rather

than computer science. Kaudel comments as late as 1987 that the use of applica-

tion level parallelism is untested [Kau87]. Application level parallelism appears to

0 2-2

* offer a significant source of concurrency for simulation, although its utility naturally

depends on the specific application involved.

* 2.1.- Support Function Distribution Support function distribution exploits

the parallelism available by functionally distributing a simulation. Model- indepen-

dent support functions, such as accumulating statistics, managing the event set,

generating pseudorandom numbers, etc., often comprise a large portion of the re-

quired computation in a simulation, up to 80% in one simulation analyzed by J.

*0 Comfort [Com82]. Comfort achieved a maximum speed-up factor of 1.4 for one

benchmark using a PDP-11 host with three Motorola MC68000 microprocessor sys-

tems serving as a pipelined event set processor. The addition of more processors to

the pipeline had negligible effect [Com82]. In additional studies, Comfort achieved

speed-ups from 1.5 to 1.8 on a system consisting of a PDP-11 host processor and three

5 MC68000 systems added to provide priority queue manipulation, state accounting,

and event set processing [Com83]. A method of pipelined event list processing for

a shared memory multiprocessor has been proposed by D. Jones, but hasn't been

implemented [Jon86a].

Support function distribution is certainly limited by the inherent lack of paral-

lelism in traditional simulation algorithms. Comfort's results indicate that nothing

resembling an N-fold speed- up can be expected through support function distribu-

* tion [Com83j. Jones comments that, hypothetically, support function distribution

could be used in conjunction with other forms of parallelism to increase speed-up

• 2-3

* [Jon86a]. Kaudel notes that the modest speed-ups achieved with support function

distribution might prove it to be a less efficient alternative to the other distributed

simulation methods [Kau87].

2.1.3 Model Function Distribution The vast majority of distributed simula-

tion literature deals with methods of distributing the event routines of a simulation

model over multiple processors. Indeed, most authors do not address any other

possibilities for distributed simulation. Model function distribution exploits the par-

• allelism of the simulated system to determine which events in the system can be

simulated concurrently. Kaudel notes that distribution of model functions gener-

ally implies the homogeneous distribution of simulation support functions as well

[Kau87]. For the remainder of this paper, distributed simulation is synonymous with

the model function distribution of simulation.

The traditional sequential approach to simulation does not lend itself well to

parallelization because of its frequent manipulation of a single data structure, the

i future events list [CM81, RMM88]. The future events list (or simply event list)

provides an ordering of all events in a simulation, enforcing a totally sequential

view of the behavior of a physical system that typically exhibits some degree of

concurrency.

To achieve the maximum parallelization of a simulation, the ordering of events

* is restricted to that dictated by event dependencies within the simulated system. If

an event B depends on event A, then event A must be simulated before event. B.

* 2-4

However, if the two events are independent, they may be simulated in any order, or

concurrently. The dependency relation formalizes our intuitive understanding of the

order in which events have to occur in a simulated system. Over an entire simulation.
0 the dependency relationship forms an irreflexive partial order of the simulation's

events [Mis86]. This was recognized by Lamport, who devised a synchronization

* protocol that preserves event dependencies within systems of distributed processes

[Lam78].

Algorithms for distributing a simulation model over multiple processors typi-
0

cally partition the simulation among several communicating processes, in which each

process models a portion of the overall system and communicates with other pro-

* cesses by passing messages. These processes are most often referred to as logical pro-

cesses [CM79] or objects [BJ85]. It is interesting to note that an object-oriented view

of sequential simulation using message-passing has previously been implemented, due0I
to software engineering considerations, by several simulation languages, most notably

Simula-67 (DN661.

2.2 Distidkuted Simulation Algorithms

Distributed simulation algorithms differ as to their methods of interprocess

synchronization and degree of centralized control. Most distributed simulation al-

gorithms use some method of blocking and unblocking the execution of the logical

0 processes for inter- process synchronization [CM79, Bry79, Rey83], although an a[-

2-5

* ternate method, to be discussed later, has been proposed [Jef85]. When process

blocking is used to enforce e-ent ordering, there is the potential problem of dead-

lock occurring among logical processes, unless provisions have been built into the

algorithm to preclude deadlock.

2.2.1 Chandy-Misra Null Message Algorithm K. Chandy and J. Misra pro-

posed one of the original algorithms for distributed discrete-event simulation in

[CM79]. In their Null Message algorithm, processes communicate exclusively through

0 messages to other processes; there is no shared memory or central controlling process.

The individual processes run asynchronously, each executing the same algorithm to

ensure inter-process synchronization. The algorithm uses "Null" messages to avoid

process deadlock, a problem inherent to this algorithm.

In describing their Null Message algorithm, Chandy and Misra define a model

of physical systems based on the concept of communicating Physical Processes (or

PP's) [CM791. A simulated system consists of a finite number of physical processes,

* which represent components of the system and communicate exclusively through

messages, each message associated with a point in time.

Messages in the physical system are of the form (t, m), where t is the time of

message transmission and receipt, and rn is the message content. Messages are sent

between any two PP's in order of increasing t value.

2-6

Chandy and Misra discuss two important properties of physical systems: re-

alizability and predictability. All physical systems have the property of realizability.

which states that "A message sent by a PP at time t is a function of its iritial "tate.
S

t. and the messages it has received up to and including t." In addition, physical

systems have the property of predictability. Predictability ensures that "the output

0 of any PP up to any time t can be computed given the initial state of the system"

[NfisS6].

• A physical system of N PP's can be simulated by constructing a simulator

consisting of N asynchronous Logical Processes (LP's), in which LPi simulates PPi.

In the logical system, there is a communications channel from LPi to LPj if and only

if PPi sends messages to PPj in the physical system. Messages are assumed to be

transmitted correctly using an unspecified communications protocol [CM 791.

* Process synchronization is accomplished by permitting a process to advance

its simulation clock only when it is certain that the process will receive no messages

with a timestamp value less than the new time on the process simulation clock. The
S

t value of the last message transmitted over a channel is its channel clock value. An

LP may advance its simulation clock to the minimum of all its incoming channel

• clocks. This ensures that no message will arrive to cause an incorrect sequence of

events at any LP.

The basic algorithm as described is subject to the problem of process deadlock

(CM79. CM8II. In a cyclic network, a cycle of LP's with the same simulation time

* 2-7

* may occur, so that in effect each LP waits for a message that only it can provide.

This deadlock may be avoided by requiring at least one LP in each cycle to have some

positive delay time between receiving a message and sending a message [CM79].

Another type of deadlock [CM79], may occur even in acyclic networks using

this algorithm. In order to advance its simulation clock, a LP must wait for messages

0 on all incoming channels whose channel clock values are equal to the value of the LP

simulation clock. If no messages ever arrive on one or more of these channels, the

LP is blocked, and can not progress in its simulation.

Null messages are the mechanism used to avoid this possibility of deadlock. A

Null message notifies an LP not to expect a "real" message over a channel up to a

0
given point in time.

Its effect is to advance the channel clock of the channel on which it is sent,

* allowing the recipient LP to advance its clock. The Null message has no other effect

on the state of the system, as the message content is "Null."

* Chandy and Misra offer proof of correctness of their Null message algorithm by

proving "1) chronology of the (message) tuple sequence, 2) correctness of every tuple

sequence at any point in simulation, 3) absence of deadlock, and 4) termination of

simulation" [CM791.

2.2.2 Bryant's Infinite Buffers Algorithm R. E. Bryant developed a conserva-

tive algorithm for distributed simulation, concurrently with, but independent of, the

* 2-8

* early work of Chandy and Misra [Bry79I. Bryant's algorithm is similar to the Null

Message algorithm in many respects. There are, however, significant differences in

the communications protocols and time advance mechanisms. The appellation 'in-
0

finite Buffers" [Rey83] was given to Bryant's algorithm because there is no way of

knowing a priori the amount of memory that a process in the simulation may re-

0 quire. This is due to the absence of flow control in the inter-process communications

protocol (Kau87j.

* Bryant's algorithm is based on a paradigm of autonomous processes, which.

as in the Null Message algorithm, communicate through timestamped messages.

Messages between two processes are assumed to arrive in the order that they were

sent, but not necessarily in the order that the corresponding messages would be

sent in the physical system. Process interactions are represented by timestamped

* "stimulus" messages sent between processes.

Bryant's algorithm, unlike the Null Message algorithm, queues up the incoming

stimulus messages in a future events list within each logical process. This feature

potentially allows complex physical processes to be encapsulated within a single

logical process. An event in Bryant's algorithm consists of three steps:

0

1. A stimulus message is received (or dequeued);

2. a new state of the process is computed based on the old state and the nature

0
and simulation time of the stimulus; and

* 2-9

* 3. some number (possibly zero) of stimulus messages are sent to other processes

and possibly to the sending process itself [Bry79].

0• Stimulus messages are the method by which the simulation changes its state,

but they do not serve as a time advance mechanism. Each process in the simulation

i0 maintains its own simulation clock, and can simulate, in time order, any stimulus

messages with timestamp value less than or equal to the value of the process clock.

Bryant's algorithm utilizes two mechanisms for advancing the process simulation

0 clocks - "time incrementation" and "time acceleration" [Bry79].

Time incrementation uses a special type of message called an increment mes-

0 sage that does not simulate a message sent in the physical system, but instead

conveys synchronization information, similar to the operation of a null message in

Chandy and Misra's algorithm (CM79]. Because stimulus messages might not be

sent in chronological order, they can't be used for synchronization. When a process

receives an increment message over some channel, the process "knows" it will receive

* no earlier stimulus messages over that channel, and can increment its channel clock

to the time of the increment message. The logical process updates its own clock

in a manner similar to that used in the Null Message algorithm, simulates pending

events, and sends its own increment message over all of its output channels.

Thus, increment messages avoid acyclic deadlock in a manner similar to the

way null message. perform in the Chandy-Misra algorithm [CM79]. Cyclic deadlocks

are avoided by requiring that for every set of processes in a cycle, at least one has a

0 2-10

delay > 0, where delay is the minimum possible simulated time difference between

receipt of a stimulus and the resulting output stimulus.

Time acceleration is an additional synchronization mechanism that expedites

time advance within cyclic portions of the simulation. Peacock et al noted that signif-

icantly high message overhead and inefficiency may result when cycles of processes

in a distributed simulation network are left to iteratively increment their sinuila-

tion clocks by the minimum values, characterized as the "pseudo-time-driven effect"

* [PWM79a].

Time acceleration requires an analysis of the system's interconnections a priori,

in order to identify the cyclic portions. The simulation is partitioned into a set
0

of equivalence classes, where the members of each class form a cycle within the

simulation network, or the class consists of an individual process which belongs to

no cycles. For each cycle in the simulation network, time acceleration identifies the

earliest possible time of the next event in the cycle, and advances the clocks of all

processes in the cycle to that time.

Time acceleration is implemented by arbitrarily selecting a process in each

cyclic class to send out periodic test messages to all processes in its class to which it

has a channel. The test messages circulate through the communications channels of

the class. Each process that the test message passes through updates it, if necessary,

* so that the test message always contains the time of the earliest potential event of

any of the processes in its class that it has encountered. When all test messages have

* 2-11

* returned to tile sending process, the sending process takes the minimum of the times

contained in the messages. The test process then sends a wave of "set" messages to

the processes in its class, ordering them to advance their clocks to the new time.

Certain processes in a simulation are identified as source processes, which send

stimulus messages but do not receive any. Termination of a simulation is accom-

Splished by causing each .source process to send an increment message with timestamp

of infinity once it has sent all of its stimulus messages. When a process has received

such a message over each of its incoming channels, it will receive no more stimulus

messages. The process simulates all pending events, sends out infinity increment

messages of its own, and finally terminates.

0

2.2.3 Peacock et al - Link Time/Blocking Table Algorithms J.K. Peacock, J.

Wong, and E. Manning, after collaboration with Chandy and Misra, published a

version of the Null Message algorithm called the Link Time algorithm [PWM79b].

Peacock et al don't address required memory in their algorithm; however, there is

* no mention of processes blocking due to send operations 'PWM79b]. The Link Time

algorithm can then be considered almost equivalent to the Null Message algorithm,

without the flow control provisions of the latter.

Peacock et al outline several other conservative algorithms in [PWM79b], in-

cluding their Blocking 'Table algorithm. In this algorithm, every process maintains a

• list of other processes that can reach it by a path of empty links, and could there-

fore cause its next event to be preempted. No detailed version of the algorithm

* 2-12

* was provided. However, updating the blocking tables for each node appears to be a

complicated and arduous task.

A method for "tight" event-driven simulation, in which a global simulation

time is enforced and the next event over all processes is found and simulated, as well

as several methods for time-driven discrete-event simulation were also addressed by

Peacock et al [PWM79b].

2.2.4 Chandy-Misra Deadlock Detection and Recovery Algorithm In [CM81],

Chandy and Misra published a distributed simulation algorithm based on deadlock

detection and recovery, developed as an alternative to their Null Message algorithm,

* which had been shown to incur a large message overhead in simulations with feed-

back. The simulation detects deadlock in a distributed manner [MC82], and a central

process, the controller, issues instructions to the appropriate processes to initiate

deadlock recovery. The new algorithm was constructed using the same simulation

paradigm of message-passing physical processes as used in the Null Message algo-

* rithm [CM79, Mis86:described above].

Chandy and Misra characterize simulation as being one of a cla-s of problems

in which phases of the problem may be solved in parallel, but the phases them-

selves must be performed in sequence, yielding "a sequence of parallel computations

[CMS 1]." In this structure, synchronization is required only at phase interfaces. The

termination of a phase manifests itself as a deadlock in the simulation problem, so

that the algorithm for each logical process consists of the iteration of the following

0 2-13

* sequence: 1) Parallel Phase - Simulate until deadlock occurs; 2) Phase Interface

- Initiate computation to break the deadlock [CM81J.

In the parallel phase, logical processes (or LP's) behave similarly to the asyn-

chronous logical processes defined in the Null Message algorithm [CM79], except of

course that they only transmit non-null messages. The communication protocol as-

sumes bounded buffers of an arbitrary size, and a LP attempting to send a message

will be blocked if the recipient process's input buffer is full. Chandy and Misra note

that this protocol can be used to ensure that the sum of the memory used by the all

of the LP's is equivalent to that used by a conventional sequential simulation [CNI81]

(at some cost. to speed-up, naturally).

Deadlock detection is performed in a distributed manner using an algorithm

based on the work of Dijkstra and Scholten in "TerminaLion Detection for Diffusing

• Computations" [DS80]. Dijkstra and Scholten's algorithm deals with a generalized

"diffusing" computation, in which computation in the distributed system is started

by an outside process, the environment, sending a single message to an initiating

process. When a process receives its first message, it is then free to send messages to

other processes. When a process terminates, it sends signals back along the channels

* from which it has received messages, constrained by the number of signals it has

received from processes to which it has sent messages. The protocol guarantees

that termination will be detected by a signal sent from the initiating process to

* 2-14

* the environment, within a finite number of steps after all processes have terminated

[DS80].

Misra and Chandy's termination detection scheme [MC82] modifies Dijkstra

and Scholten's algorithm to work under the constraints of C.A.R. Hoare's protocol for

communicating sequential processes [Hoa78, Hoa85]. Dijkstra and Scholten assume

that processes may freely send messages [DS80]; Hoare's protocol adapted by Misra

and Chandy assumes that a process must wait to send if the receiving process is not

* waiting to receive [MC82]. As a result, an idle process can not determine the cause

of its own idleness unless it first queries its neighbors. The implementation of the

termination detection scheme uses two types of signals: A signals, corresponding to

signals defined in [DS801, and B signals, used by a process to determine the waiting

status of its connected processes, and thus its own status [MC82].

* When the controller process (the environment) has received a deadlock detec-

tion notice, it sends a signal to each LPi to compute and output the best lower bound

vi, for the time of next message transmission over each of its output channels (ij).

This is accomplished in n iterations (n being the number of LP's), as described in

(CM81]. For each LP, the iterative computation allows the values Wkj for all input

* channels (k, i) computed in iteration m to be used in computing W, during iteration

m. + 1, where 1 <m < n.

* After computing IV for all output channels, each LP must report its resumable

status to the controller. A LP is defined to be resurnable if the set of channels it is

* 2-15

* waiting on is different from the set that it was waiting on when deadlock occurred.

After reporting to the controller, each LP is free to continue Phase 1 computations

The authors of this algorithm have since proposed alternative methods for

deadlock detection. In [CM83], Chandy and Misra, a!ong with L. Haas, describe a

communications deadlock detection protocol based on the concept of the dependent

set.

*O The dependent set of a process is the set of processes such that a message

from a member of the dependent set will cause the process to resume execution.

Any process, upon finding itself idle relative to its computational work, initiates a
0

query to all members of its dependent set. If the process receives replies equal to

the number of queries it sent, then it is deadlocked. Only processes that are idle

* take action in response to a query. When an idle process receives a valid query, it

propagates it to each member of its dependent set. When a process not the query

process receives replies from each member of its dependent set, it issues a reply to

the process which queried it. This algorithm is somewhat flexible in that a time-out

may be used to delay a query computation until the process has been idle for some

*• arbitrary time [CM83).

Misra has proposed and proven a deadlock detection scheme based on a marker,

a special message that continuously travels a path that takes it once through every

LP in the simulation network [Mis86]. Additional message channels may be required

* 2-16

0 to create the marker path. In the marker algorithm, any LP that receives the marker

has the obligation to send it on its way when the LP becomes idle. Each LP maintains

a flag to signify whether or not the LP has received or sent any messages since the

last visit by the marker. The marker detects deadlock if, with n LP's in the network.

it visits n consecutive LP's that have not communicated since the marker's last visit.

The marker can also be used in deadlock recovery. For that purpose, the marker

can record the minimum next event time of all the idle LP's it has visited and the

identity of the corresponding LP. Upon detection of deadlock, the marker traverses

to and restarts this LP by advancing the LP clock to the next event time. Markers

can also be tailored for individual networks. By analyzing the simulation network

prior to execution, additional markers can be set up to circulate within subnetworks

that are prone to deadlock [Mis86].

2.2.5 SRADS Algorithm P. Reynolds introduced an algorithm for distributed

simulation called the Shared Resource Algorithm for Distributed Simulation (SRADS)

• based on the concept of active logical processes [Rey82, Rey83]. In most distributed

simulation methods, logical processes are relatively passive, unable to perform unless

driven by messages sent by other processes. In the SRADS algorithm, when a pro-

cess needs to read or write a message, it attempts to access a shared facility, which

is the storage point for messages between a set of two or more LP's. The sequencing

• requirement and associated protocol guarantees that to access the shared facility, an

LP must have the least simulaticn time of any LP connected to that shared facility.

• 2-17

* Each shared facility holds only a single message, so it is possible for a message to be

overwritten without ever being read.

Although it is deadlock-free, the SRADS algorithm is limited in that it assumes

that the processes in the underlying physical system are synchronized [Rey82]. The

assumption is that a reading process "knows" to poll the shared facility for a message

0 at a particular simulation time. If this is not the case, as in many simulations, an

LP may read an outdated message, resulting in an incorrect simulation [NR84].

* Reynolds and D. Nicols subsequently proposed an extension to SRA DS called

the appointment [NR84], which is a message that a writing process sends to a reading

process, providing the largest known lower bound on the time that a message will

be sent to the shared facility. When the reader reaches the appointment time, it is

blocked until the writer gives it a signal to unblock. This does prevent the reader

* from simulating too far and then reading a message from the past, although it isn't

clear what, if any, advantages SRADS plus appointments offers over other blocking

algorithms, given its inherent limitations.

2.2.6 Optimistic Algorithms - Time Warp The distributed simulation algo-

rithms described above have been characterized as "conservative" [Rey83] or "pes-

simistic" algorithms (RMM88]. Conservative algorithms are those which preserve the

proper sequence of events throughout the entire simulation [Rey83]. In other words,

S at any time (luring execuition of the simulation, the order in which events have been

simulated at anv LP is correct and preserves event dependencies, although the logical

* 2-18

* processes have not necessarily simulated the physical system up to the same point in

time. Conservative algorithms can be considered pessimistic. since they imply that if"

LP's were left to run asynchronously, the frequency of event ordering conflicts would
0

be high, and it is therefore more efficient to prevent such conflicts than to correct

them as they occur.

In 1982, D. Jefferson and H. Sowizral introduced an interesting alternative to

conservative distributed simulation algorithms, the Time Warp algorithm [JS85].

based on the concept of virtual time, which Jefferson analogizes to virtual memory

[Jef85]. In contrast to the blocking-advance mechanisms used in conservative algo-

rithms, Time Warp includes a local time rollback mechanism for synchronization.

Processes, called objects, execute asynchronously, sending messages without regard

to potential synchronization conflicts. When an existing synchronization conflict,

comes to light, a rollback occurs and portion of the simulation must be re-executed.

Because the algorithm assumes that synchronization conflicts won't occur often,

Time Warp can be considered an optimistic algorithm.

Each Time Warp process maintains a local virtual clock, set to the timestamp

of the last message read by the process. Messages received are placed in an input

.* queue by increasing order of message timestamp. A process continues to read from its

input queue and calculate output messages until it reads a message with a timestamp

less than its local virtual clock. The process must then roll back its local virtual

clock to the value of the newly- received message timestamp. This implies that all

0 2-19

* messages already sent to other processes during the rolled-back period must somehow

be cancelled, and all events re-simulated with the addition of the new message. Local

virtual time can not, then, be considered a measure of actual progress in a simulation,

as it may be rolled back to a previous point [JS85].

Re-simulating an interval is simple, in that recently input messages and previ-

ous values of the state variables are maintained by each process. Message cancellation

is accomplished through the use of antimessages. When a process outputs a Ines-

sage. it saves a copy for possible later use as an antimessage. If a message must

be cancelled due to rollback, the roll-back process need only send the corresponding

antimessage. If a matching message and antimessage meet in the input queue of a

process, they are mutually annihilated, cancelling the message. If the message has

already been processed, receipt of the antimessage causes the process to roll back

to the time of the message, which is removed from the input queue, and processing

continues. Of course, this rollback may spawn antimessages itself, so that a single

rollback may initiate a "ripple" of rollbacks and antimessages through the simulation

[Jef85].

Processes would be subject to rollback to the beginning of the simulation and

* would therefore have to store their entire message histories, if it were not for Global

Virtual Time. Global Virtual Time is calculated as the mrinimum of all local virtual

clocks and the send timestamps of all messages that have been sent but not processed.

Events that happened prior to Global Virtual Time are irrevocably committed. so

* 2-20

that processes must only maintain their message histories from Global Virtual Time

onward. Note that Global Virtual Time can be used as a measure of a simulation's

progress, as it is non-decreasing [Jef85].

Time Warp has several advantages. As an algorithm it is relatively simple and

quite elk-gant. Time Warp doesn't require that messages be received by a process in

any order to maintain correctness of the simuxlation. Processes may be created and

destroyed in the course of the simulation.

This flexibility does come at a cost, however. The memory requirements of

Time Warp are quite high. All messages generated since Global Virtual Time are

stored twice - once in the sending process and once in the receiving process. This

requirement for memory may be traded-off against the cost of computing Global

Virtual Time more frequently. Finally, there is the computational time wasted by

rolling processes back. Jefferson and Sowizral claim that the amount of processing

time that a process spends on roll-backs in Time Warp would be spent blocked in an

equivalent simulation using conservative algorithms [JS85]. It seems, though, that

the processor hosting a blocked process could still perform useful simulation support

computations. Processing time spent on roll-backed events is simply lost.

2.3 Performance Studies of Distributed Simulation

A decade has elapsed since the first algorithms for distributed simulation were

published, and there is still only a small knowledge base derived from empirical test-

2-21

* ing of these algorithms. This is to a certain extent attributable to the lack of available

multiprocessor computing systems for research use. To partially overcome this hand-

icap, some performance studies of discrete-event simulation have been accomplished

using uniprocessor systems, ironically, to simulate the operation of distributed simu-

lation systems [CM79, Ree851. The large number of factors affecting the performance

* of distributed simulation has also hindered the development of heuristics to guide

the use of distributed algorithms for simulation.

0 2.3.1 Performance Measurement The primary metric used to measure the

effectiveness of distributed simulation is the speed-up factor. Speed-up conveys the

0 throughput advantage of performing a computation over multiple processors. Speed-

up is often expressed as a function of the number of processors, and is said to be

linear if Speed-up increases linearly with the number of processors. The formula

0 for Speed-up factor is T 1/T,, where T,, is the time to execute the simulation over

n processors. There are, however, multiple definitions for T in use in distributed

0 simulation literature.

If one is interested in the absolute speed advantage gained by a distributed

simulation over a sequential algorithm such as the event list, then T, would be defined
0

as the time to execute the simulation using the sequential implementation [Fuj88].

If one wishes to emphasize the marginal effect of each additional processor on the

• performance of a given distributed algorithm, then T can be defined to be the time

0 2-22

* to execute the distributed algorithm on a system of one processor [RM88, RINM8S].

Both of these definitions can be commonly found in the literature.

Although Speed-up is the metric of primary concern, in certain cases, inter-

mediate metrics may be desirable to quantify a certain effect that may impact the

attainable Speed-up. Fujimoto defines the null message ratio to be the number of

• null messages processed in an implementation of the Null Message algorithm divided

by the number of "real" messages processed. The deadlock ratio is the number of

* messages processed divided by the number of deadlocks that occur in a deadlock

detection and recovery algorithm.

2.3.2 Factors Affecting Performance The factors that may affect the perfor-

mance of a distributed simulation algorithm are extremely diverse, arising from the

nature of the system being simulated, the model constructed of the system, and

the hardware and software environment under which the distributed simulation is

performed.

2.3.2.1 Structure of the Simulated System Early distributed simulation

studies recognized that the structure of the simulated system has a significant ef-

* fect on performance [PWM79a]. The topology of interconnections between LP's has

been studied as a variable in almost every study of distributed simulation to date. A

related factor, the routing probability of messages. has been shown to affect perfor-

mance in some algorithms [PWM79a]. The distribution of the message timestamp

0 2-23

increment, which is the difference in the timestamp value of a message input by

a PP and the timestamps of the resulting output messages, has been shown to be

significant. The value of lookahead, the lower bound on timestamp increment, has
0

been shown to be especially significant in the performance of distributed simulation

algorithms [Fuj88.

2.3.2.2 Simulator Workload The amount of computation performed by

a LP between message input and output, also called the CPU grain has been shown

0 to positively correlate to the resulting speed-up, [Fuj88, DR83], although the effect

of varying the grain appears to be interrelated with the effects of topology [RM88].

0 Also of great interest is the workload balance, which seeks to even out the

computational load among the available processors. Workload balancing is a topic

of interest within the distributed processing community because better workload bal-

0
ance implies higher throughput, excluding the costs of interprocessor communication

(IPC). Chu et al describe a saturation effect in which the overhead of IPC increases to

0 the point that throughput decreases with the application of each additional processor

to the problem [CH*80]. Hence, in the decision process of partitioning a task and

allocating the sub-tasks to processors, a trade-off exists between workload balance

0
and IPC. Chu et al note that finding an optimaJ allocation of tasks is computation-

ally complex, and that it is generally more efficient to use a sub-optimal allocation

* guided by heuristics [CH*80].

* 2-24

* .Machine architecture partially determines methods available for task alloca-

tion. In shared-memory systems, either static allocation, where tasks are perma-

nently assigned to processors, or dynamic allocation, where idle processors take work
S

from a queue of processes, can be used (RM88]. In loosely-coupled message-passing

systems, static allocation is used; dynamic allocation is considered impractical due

* to communication overhead.

2.3. 2.3 Implementation Factors The software implementation (e.g. the

*• compiler used, the efficiency of the code) and the machine architecture (e.g. the

amount of memory, the communication overhead, the existence of shared memory)

need to be controlled, and their effects normalized, before direct comparisons can

be made among the results of performance studies of distributed simulation. Failure

to adequately do so may result in comparative judgements made on the basis of

* implementation factors, rather than on the merits of the respective algorithms. The

ability to normalize the results of previous performance studies eliminates the need

to replicate these studies in comparatively evaluating some new method.

2.3.3 Chronology of Performance Studies Early performance studies of dis-

tributed simulation were typically concerned with demonstrating the feasibility of

some particular algorithm. Peacock et al [PWM79a] performed experiments with

their version of the Null Message algorithm on a network of microcomputers. Their

results indicate that the topology of the simulation model is a major factor in the al-

* 2-25

* gorithm's performance, and that topologies with many cycles may suffer from poor

performance. This study was limited in scope; only a few simple topologies were

distributed over different numbers of nodes; no other parameters were varied. Simi-

lar experiments, described in [CM791, were conducted by M. Seethalakshmi using a

uniprocessor simulation of a distributed system. These studies show that the Null

* Message algorithm may not be suitable for simulations of all topologies. In partic-

ular, Seethalakshmi's results appear to have motivated the development of Chandy

0 and Misra'a Deadlock Detection and Correction algorithm [CM81].

D. Reed, in [Ree85], performed a uniprocessor simulation of several topologies

with varying populations of messages, using both the Null Message [CM79] and

Chandy-Misra Deadlock Detection and Recovery [CM81] algorithms. His results

supported the findings of [PWM79a] concerning the effect of feedback cycles on

* the performance of the Null Message algorithm. Low message populations were

also implicated in causing poor performance of the Null Message algorithm. The

conclusion drawn was that deadlock detection and recovery would engender less

40
overhead than deadlock avoidance, especially where there is much feedback and a

small message population.

* In more recent research, R. Fujimoto evaluated the performance of the Null

Message or "Deadlock Avoidance" and Deadlock Detection and Recovery algorithms

on a BBN Butterfly shared memory multiprocessor under a variety of controlled

conditions [Fuj88]. A symmetric toroid topology with 64 and 16 logical processes

* 2-26

* was used for the experiments. The experiments assumed that a good workload

balance could be found, so that in most experiments, symmetric logical processes

were used.

Important performance considerations were shown by Fujimoto to include the

quality of the lookahead function for timestamp incrementation in the deadlock

0 avoidance algorithm, and a sufficiently large message population in the case of the

deadlock detection and recovery algorithm. In the latter, an "avalanche effect" was

found, such that performance dramatically improved when message traffic reached a

certain level. An increase in the message population required to start the avalanche

effect resulted from introducing a process with an asymmetric timestamp distribution

function. Otherwise, asymmetry did not significantly effect performance. Dynamic

process allocation was possible because of the shared memory architecture of the

simulation testbed, but was generally shown to hurt performance compared to the

static allocation, most likely due to the "perfect" load balancing in the simulator

[Fuj881.

D. Reed, A. Malony, and B. McCredie analyzed the performance of both

the Deadlock Avoidance and the Deadlock Detection and Recovery algorithms on

* a Sequent Balance 21000 shared-memory multiprocessor [RMM88]. Their experi-

ments evaluated distributed simulations of several queueing network topologies us-

ing the RESQ paradigm for queueing models, including simple tandem, feed-forward

(forked), cyclic, central server, and cluster (nested feedback) networks. Reed et a-l

* 2-27

* point out that studies of simple topologies do not reflect typical simulation prob-

lems, while complex topologies, though realistic, increase the difficulty in finding the

causes of poor performance in a distributed simulation. In this study, the effects

of dynamic node allocation were studied in combination with a variety of message

workloads.

0
The results of this study were significantly more negative than those of Fuji-

moto [Fuj88]. Speed-up approaching N was not achieved even in the tandem case

*N with more than a few nodes. This is surprising, especially considering that the Speed.

up factor was calculated using the distributed algorithm executed on one processor

(which invariably takes more time than an event list implementation) as baseline,

yielding an artificially high speed-up. A possible explanation given was that some of

the poor performance may be due to machine architecture constraints such as bus

* and memory contention. Performance was said to have improved noticeably when

PP's were dynamically assigned to processors for the cluster topology. Assumptions

that may have affected the results include limited lookahead in conjunction with the

deadlock avoidance algorithm, and no a priori knowledge of the simulation network.

Reed and Malony conducted further studies in which the amount of compu-

* tation at each node, the "spin loop," was varied to observe the effects on central

server and cluster network topologies, considered to be the most representative of

typical simulation models (RM88]. The central server model distributed with dead-

lock recovery showed no effect from increased spin loop, because the presence of

* 2-28

the -bottleneck" central server led to regularly occurring deadlock. In contrast, the

same topology with deadlock avoidance yielded performance improvement when the

spin interval was increased. Simulating the cluster network topology with deadlock

0 •recovery showed, as with the central server, the relative independence of Speed-up

and spin interval. In a surprising result, the cluster model with deadlock avoidance

suffered decreased Speed-up as spin interval was increased, in direct opposition to

the central server model results. This can be explained when one considers the large

number of forks in the cluster network, and that large time intervals between mes-

sage transmissions lead to a "decoupling" of the LP's, and increased Null message

overhead. In this case, supposedly distinct factors, topology and spin interval, were

* actually interrelated in their effects on distributed simulation performance [RM881.

2.4 Summary

The majority of the algorithms for distributed simulation have been in exis-

tence since the late 1970's and are therefore quite mature; most are provably correct

I0 and relatively straightforward. Distributed simulation algorithms have been divided

into two categories: Conservative and optimistic algorithms. Performance studies

have been conducted on both types of algorithms, considering many of the factors

that are expected to significantly affect performance. Some research data is available

to be used in the formation of heuristics for applying these algorithms. Additional

* performance studies are required, attempting to normalize the effects of the imple-

2-29

!

* mentation factors, so that algorithm performance can be estimated and compared

over a wide range of conditions.

•2-30

S' •l a I l

0

III. Description of Algorithms

0 The algorithms under study are distributed simulation algorithms built on a

paradigm of physical systems based on the message-passing paradigm of Chandy

and Misra, while incorporating concepts of traditional event-oriented simulation.

The physical system may be simulated by a distributed logical system using the con-

servative synchronization algorithm proposed by Chandy and Misra [CM79], slightly

modified with a prediction function, and utilizing an event list, similar to that used

in traditional sequential simulation, at each Logical Process (LP).

* These algorithms are of interest because it may often be necessary or desirable

to simulate a system of N components or Physical Processes (PP's) with a distributed

computing system consisting of fewer than N processors. Extending the message-

passing paradigm of Chandy and Misra to create multiple processes within a single

processor introduces the problem of process scheduling, along with complicating

deadlock resolution. The goal is to find an efficient method for simulating multiple

PP's within a single LP.

A natural candidate algorithm for simulating a complex physical process within

a single logical process is the event list method used in sequential simulation. The

linear nature of the event list with respect to time ensures that the events within

each LP are simulated in strictly chronological order. The chronological ordering

provided by a monolithic event list, combined with the interprocessor synchronization

3-1

* method of Chandy and Misra. guarantee that event dependencies are preserved. The

Chandy-Misra Null Message algorithm is easily extensible to accommodate an event

list implementation at each logical process.

This chapter presents the message-passing paradigm of physical systems pro-

posed by Chandy and Misra [CM79], modifies it to conform to an "event-oriented"

view, and applies the resulting paradigm to a logical system for distributed discrete-

event simulation. The problem of deadlock in the logical system and the use of Null

* Messages for deadlock avoidance are discussed. Alternative strategies for sending

Null messages are presented. These variants, which may enhance the speed of the

logical system's execution under certain circumstances, will be evaluated in Chap-

ter 4.

3.1 The Physical System

Chandy and Misra have defined a paradigm of physical systems based on the

concept of message-passing PP's in [CM79]. While this paradigm maps well into a

logical system for distributed simulation, it does not capture all aspects of the time

and state relationships in a physical system that may be of interest. To do so, the

* Chandy-Misra physical system paradigm can be reconciled with some "traditional"

concepts of discrete-event system modelling. While the message-passing model of

physical processes seems to obviate concepts such as events, for example, events can

be defined implicitly in terms of the state changes of individual physical processes.

3-2

* The concept of the message can be re- stated in terms of event dependencics amoig

PP's (Mis86].

* 3.1.1 Definitions It has been observed by R. Nance that the evolution of

simulation has resulted in the existence of many differing paradigms of physical

systems, such as event-oriented and process-oriented views, and "the inability to

generalize the simulation modelling task [Nan8l]." This state of affairs has, in turn,

resulted in considerable imprecision in the terminology of simulation. Nance has

0 proposed a set of basic definitions to clarify the time and state relationships in the

simulation of physical systems [Nan8l]. The following definitions are incorporated

into the description of the physical system:

* An Object is anything that can be characterized by one or more Attributes to

* which values are assigned.

" A System is comprised of objects and relationships among objects.

" The State of an Object is the enumeration of all attribute values of that object

at a particular instant.

" An Event is a change of object state, occurring at an instant, that initiates an

activity precluded prior to that instant.

" An event is Determined if the only condition on event occurrence can be ex-

pressed strictly as a function of system time. Otherwise, the event is Contin-

gent.

* 3-3

* * An Object Activity is the state of an object between two events describing

successive state changes for that object.

* 3.1.2 The Physical Process In describing their Null Message algorithm, Chandy

and Misra define a model of physical systems based on the concept of communicating

physical processes [CM79]. A simulated system consists of some finite number N of

physical processes (or PP's) which represent the components of an actual physical

system. The PP's communicate with each other exclusively through messages. A

message in the physical system can be described as a tuple of the form (t, rn), where

t is the time of transmission and m is the message content. If PPi sends messages

to PP, there exists a message arc [CM79] (i,j) between PPj and PPj. Messages a-e

transmitted instantaneously.

In the physical process paradigm, each PP is described in terms of mes-

sages sent and messages received. The sequence of messages transmitted over arc

(ij) is of the form si = {(ti, 7n1),..., - (I',nMK)} where K is the finite number

* of messages transmitted over (i,j) during the simulation period [0, Z]. Note that

0 < ti < ... < tp < Z, reflecting the chronological order of message trinsmission.

Chandy and Misra define the message history of arc (i,j) at time t, h3 (t), as the

sub-sequence of si denoting the message tuples transmitted over arc (i,j) up to and

including time t. The state of PP at time t is represented by a set of state variables

*',(t,). In the Chandy-Misra paradigm, the existence of some function bi is assumed.

*3-4

such that:

@P(t+) = bi('Pi(t), INFORMki(t) 'Vk) (3.1)

where t+ is the instant in time directly after time t, and INFORMfk(t) is the

information sent across arc (k, i) at time t, possibly NULL (signifying no event), or

an event message (t. m) [CM79]. By applying 3.1 over an interval [t, {), where t < t.

the function B i can be derived /CM79]:

IDi ({) = Bi(i, IV,(t), hki(t, i) Vk) (3.2)

where hki(t, ') is the sequence of messages over (k, i) in the time interval [t, 1). The

existence of Bi means that the state of PPi at time t can be computed by knowing

the state of the PPi at some previous time, and all messages that have been received

in the interval (CM791.

In certain instances it is possible to predict with certainty the messages sent

by a PPi up to some future time t given hki(t) for all k. For example, consider a

single-server, single-queue queueing process with one input arc corresponding to a

service arrival, and one output arc corresponding to a service completion. With a

constant inter-service time of 10 with no pre-emption, the outpvt of the process can

be deduced up to time t+ 10, where t is the time that a job entity begins service. The

value f,'- t, associated with each arc in the physical system, is called the Lookahcad

function at time t for arc (i,j), or Li,(t) [CM79]. Lookahead is computed with the

following function. which is also assumed to be computable [CM79]:

Lij(t) = Fj(Pi(t), INFO RM1k(t) Vk) (3.3)

3-5

• Lookahead value Lj provides the bound on prediction of the future output of PP,

over (i, j), calculated by function Cij:

* hij(t, t + L1j(t)) = Ci,(lpi(t), INFORMki(t) Vk) (3.4)

which is assumed to be computable [CM79].

*• For each PPi, there exists a set of points in time t, in the interval [0, ZI such

that Ti(t,) is different from 'Ii(te+), where t, is the instant in time preceding time

t,+. These points in time are events, in accordance with the above definition. Taking

the set of instants in time at which Ti changes and the values of ' i at those times

yields the state "trajectory" of PPi, the relation between Ti and simulation time t,

STRAJ(L'i(t),t), where 0 < t < Z (Zei76].

By 3.1, the receipt of a message at PPi is an event at PPi. It is apparent

• from 3.4 that a message transmission at PPi also reflects a change in Ti. Instants

in time where changes in qJi occur are not explicitly defined in the message-passing

paradigm unless they are associated with a message transmission or reception.

3.1.3 Event-Oriented View of the Physical Process In the message-oriented

paradigm discussed above, the state of PPi, T'Ii, is a function of its initial value

and the messages received by PPi over the simulation period. While this is a valid

paradigm of physical systems, this view does not emphasize the changes in Ji over

• time. In the event-oriented view, changes in Ti. i.e., events, have primacy. The

physical process can be defined terms of events as follows:

* 3-6

* Physical process i is described as the tuple

PP, = (Mi, Ei, Ti, Ni, Bi, Di

where Mi is the set of incoming message event types
E is the internal event type
Ti is the state variable set for PPi
N, is the internal event generating function
Bi is the set of state transform functions
Di is the message generating function

*• 3.1.3.1 External Events A message received at PPi from PPk is an

event of type Mki associated with message channel (k,i), where Mki E Mi. Such

a message transmitted at time t in the physical system is described by the tuple

(tm ki). abbreviated mki(t). For each Mki E Mi, 3Bki E Bi, providing a mapping

such that: Bki : q i x Mki - Ti. Given a message mki(t) and Ti(t), the values of

* the state variables of PP at time t, then:

'i(t+) = Bki(i&(t), mki(t)) (3.5)

where t+ is the instant in time subsequent to t. Note that Bki is a computable

function from the assumption made previously that 3.1 is computable.

3.1.3.2 Contingency and Time Advance A message event received at

PPi initiates an activity of some duration (possibly infinite), during which j'i is

* invariant. It may be possible to calculate the value t,, where ta is the length of time

that PP, will remain in Ti(t) if no external events occur (the "time advance" value)

• 3-7

* [Zei76]. The value t, is calculated with function Ai where:

'a = Ai(Ti(t)), where t, > 0 (3.6)

If ta is not defined, then Tj is a passive state. Note that Ai is a computable function

if 3.2 is computable, which is assumed, taking hki(tin, Z) = NULL for all k. Time

* t = t + Ai(Ti(t)), the simulation time of the next scheduled internal event at PPi.

can then be computed.

Chandv and Misra do not permit any PP, to send event messages to itself, since

"that effect can be achieved by a process looking at its own computation" [CM79],

presumably by applying 3.4 over all output lines (i,j) to determine the next event

0 message sent by PP, and then using 3.2 to update qi. However, this procedure

hides the true nature of the state change. The time and state relationship is made

explicit by computing, at any simulation time t, an internal event of type Ej, e,(t),

where i = t + A,(Ti(t)), t < i. If 3.2 is indeed computable, as is assumed, then e(i)

is derivable from 'Pi(t). The computable function Ni can be defined such that:

e(i) = Ni(Ti(t),t) (3.7)

If Ti(t) is a passive state, then Ni(T(t), 1) = (Z, NULL) for any t > t.

If %Pi(t) is not passive, then the next internal event NEV(t) = Ni(Ti(t), t) can

be scheduled on a contingent basis. Whether the event actually occurs is dependent

upon event messages received in the interval [t,[). If NEV(t) = ei(i) and message

m.ki(i) arrives at PP,, t < i < i, then 'i(i) = bki(i(t),mki(i)) and the new next

• 3-8

* internal event is NE,(i) - Ni(Ti(t),}) (which may be the same as NE1i(t)). If

NEV9(t) -- ei(t), then 'Pi(t) is calculated by:

0 'Pi(i) = Bj(1Pi(t),ei(i)) (3.8)

3.1.3.3 Simultaneous Events Multiple event messages arriving at PP

* can lead to the occurrence of simultaneous events at PP, as can an event message

arriving at the same instant as a scheduled activity-ending internal event. The

treatment of simultaneous events that affect the same set of state variables has not

received a great deal of attention in simulation literature. In most applications

of discrete-event simulation, simultaneous events are either independent or depen-

* dencies can be safely ignored [Par69]. This is not always the case, however, and

in attempting to formulate a general paradigm for simulation, this issue must be

addressed.

The concept of transitonj states is introduced from [Zei76]. These are states

between two events, such that the activity delineated by those events has zero dura-

tion. A transitory state at time t at PPj is *V(t), where n is the number of events

that have already occurred at PP at time t. With N events E,(t),n = 1,...N

* occurring at time t. where E, E Mi U Et, q'i(t) will take on N transitory states:

* 4'(t)Exlt (t) E2 (t) ENv-I (t) q

•... PN

and i !() E (t+)

* 3-9

Note: while Tj is no longer a function strictly of time, the function argument

notation will be used for consistency to identify the time reference of a Value of I'(t).

%Di(t)+ denotes the state of PP subsequent to a 'i(t), which is either at time t or

time t+.

Events mki(t) and m92(t) are said to be independent if:

•bki(bt(Ti, ln 9,()), rni(t)) = bg,(bki(T, mki(t)), rni).

In other words. the same Ti will result from simulating the two events in arbitrary

0• order. If these events are not independent, an ordering relation at PPi, ORDERi.

is included in the description of PP, such that if (Mki, M9 i) in ORDER, then

rnki(t) must be simulated before m9 i(t) to yield a correct result. Failure to consider

this possibility may result in the equivalent of a "race" condition in digital logic

[Par69]. Unfortunately, it will be seen that the distributed event list algorithm can

not prevent this condition from occurring in many instances.

3.1.4 Message-Passing A message in the physical system at time t can be

* viewed as a manifestation of the dependency relation, d, over the set of all events in

the physical system, such that if d(E,, E,), the occurrence of event E, implies the

occurrence of Ey. This relation can be defined over the subdomain {EI} x Mj for

*
every message arc (i,j) by some function Dij E Di, where:

Mrij(t) = Dij ('D(t), e,(t)), Dij E Di (3.9)

* 3-10

* If a message mi. is determined by event ei as above, then ei is the prompting Crent

of in2 . By convention, a message may only be transmitted at the instant that its

prompting event has occurred. No contingent messages are permitted. For any

message over (i,j), no time elapses between the internal event at PPi that initiates

the message and the corresponding message event at PPj. A message transmis-

* sion of zero duration may seem counter-intuitive, but it is important to remember

that a message reflects the simultaneous change of state of interdependent physical

processes: it is not itself a physical message.

3.1.5 Predictability The dependency relation dover the events in the physical

system forms an irreflexive partial order (irreflexive, so that no event depends upon

itself). Intuitively, the dependency relation d reflects the order in which events must

occur in the system. Pairs of events for which d is not defined may be simulated

• concurrently, or in arbitrary order [Mis86].

Suppose a cycle of PP's exists, such that for PP, i = 1,..-,n, message arcs

0 (i, (i + 1)mod n), i = 1,... , n exist. If every event message mrij(t), j = (i + 1)mod n,

initiates an activity of duration 0, at the conclusion of which an event message

mik(t), k = (j + 1)rnod n is sent, then there exists a circular definition such that

d(nij(t), mjk(t)), i = 1,...,n. = (i + 1)mod n, k = (j + 1)mod n exists,

and hence d(mij(t), mij(t)) exists (due to transitivity). As a result, each message

• in the cycle depends upon itself, creating a situation of non-deterministic inputs to

each PP in the cycle.

* 3-11

* The property of systems which precludes the previous situation is called pre-

dictability. Predictability ensures that for each cycle in the system of PP's, there is

at least one PPi such that Ai('i(t)) > 0, 0 < t < Z. Chandy and Misra claim that

all physical systems have the property of predictability [CM79]. It is assumed in

this paper that all physical systems that may be simulated possess the property of

* predictability.

3.2 The Logical System

A system of N PP's can be simulated by constructing a system of M Logical

Processes (or LP's), with M < N, where each LP simulates a disjoint set of one

* or more PP's. called a sub-model, and each sub-model contains at least one PP.

LPi simulates the events of its sub-model Si in chronological order using an event

list data structure and associated operations, similar to those used in sequential

simulation, to ensure the correct simulation order of events over the simulation time

interval (0, Z).

6 Message events transmitted between physical processes in different sub-models

are simulated by messages sent between LP's. LPi and LP communicate in the

logical system if and only if some PP E Si communicates with some PP, E Sj in

the physical system. In this case a message channel (i,j] exists between LP, and

L Pj.

* 3-12

I

* 3.2.1 The Logical Process The state of sub-model Si as simulated within LP,

is described by the set of variables STATE, which is U{' I VPP, E Si}, whose

structure is simulation dependent and not relevant to the operation of the distributed
S

algorithm. The value of any qI,, within STATE is only changable by the oper-

ation EVENT, declared as EVENT(event, eventlist, state)) state, eventlist.

* EVENT encapsulates the external and internal state transition and message-generating

functions of every PP within Si. The effect of EVENTi(STATE,, e) on the value

of STATE for any event e is assumed to properly simulate the effect of event. e

occurring at its physical process.

The event notice is the primary data item of interest in discrete-event simula-

tion. An event notice contains information that determines a possible change in the

state of the simulation.

0 A data item of type event-notice can be described as follows:

type event-notice is record of
t : time; simulation time of event
e : event-data;

• end record;

where, for event E, E.t is the invariant simulation time of the event, and E.e, of type

event-data, includes the information which determines the manner in which the state

of the simulation will change when some state transition function, also determined

by the event-data e, is applied.

3-13

* 3.2.1.1 The LP Event List Event messages sent to any PP within Si are

placed, in order of t value, in the LP's event list, EVNTLIST. Within the upper

bound on T set by the synchronziation constraint LOOKi, discussed below, the

simulation time at LP, T, is advanced to the time of the first event in EV"NTLST,

and the event is removed from the event list and simulated. The event list, then,

*• is a priority queue ordered by event time. Events may be ordered within time of

occurrence by some secondary ordering function. The simulation of each event may

cause future events to be scheduled on the event list, and the transmission of event

messages to other LP's. Because an event list orders events chronologically, events

may be simulated in proper order by simply removing the first event from the list

and simulating its effects. Contingent events may be pre-empted (cancelled), by

searching the event list sequentially for the event, which is removed from the list if

found.

The event-list is defined as follows:

structure event-list is
INSERT (event,event-list) o eventiist;

* CANCEL(event,event-list)) event.list;
FINDNEXT(event-list) - event;
GETNEXT(event.list) - event, eventlist;
LENGTH(event-list) - integer;

end structure;

where INSERT(E,L) places event E in event-list L in increasing
order of event time and returns the modified event-list L.

CANCEL(E,L) searches event-list L to find event E, and deletes E from L
0 if found

FINDNEXT(L) returns the value of the first event in
event-list L, without modifying L.

* 3-14

* GETNEXT(L) removes the first event from eventlist L and
returns its value, and the modified event-list L.

LENGTH(L) returns the integer value equal to the number
of events in eventJist L.

Methods of implementing the event-list structure are not elaborated upon here.

An ordered linear list is the most common "traditional" implementation, providing

event insertion and cancellation in O(n) time and next event retrieval in constant

time. An overview of some newer methods, with empirical comparisons, is found in

[Jon86b]. A discussion of the performance effects resulting from the choice of event

list implementation is found in Chapter 4.

3.2.1.2 LP Time Advance Mechanism To ensure chronological ordering

of all events within Si, event messages received at LP, from other logical processes

* over every message channel [k, i] need to be considered. It will be shown that it is

possible to calculate a lower bound on the simulation time of the next message that

will be received at LP over any message channel [k, i]. This value, LOOKi, can be

derived from information transmitted from each LPk.

A variable Tk, for each message channel [k, i] is declared, s.uch that Tk., equals

* Eki.t, where Eki is the last message to have been transmitted over [k, i]. Tki is the

channel clock value for [k, i] [CMT9]. Recall that the t values of messages transmitted

over arc (i,j) in the physical system are monotonic increasing and bounded by Z

[CM79]. Because LPk in the logical system may send messages originating from

* 3-15

multiple PP's in Sk to S, at LP, the t values of messages sent over [k, i] in the logical

system are not necessarily monotonic, but are guaranteed to be non-decreasing. by

the chronological ordering of EVNTLISTk. Given this, if Tk, is the t value of the

last tuple transmitted over channel [k, i] at any point during the simulation, then all

messages from LP to LP, have been sent up to time Tk,. LPi "knows" all messages

* it has received up to time LOOKi, where L0OKj = minimum{Tk, I V[k, il}. LP

can then simulate events and calculate output event messages up to and including

LOOKi.

It would be ideal to delay the simulation of events occurring at time LOOKi

until all possible event messages occurring at this time have been read by LP. Doing

so would ascertain the proper order of execution among simultaneous message events

arriving at LP. However, constraining the advance of LOOK, in this way may lead

* to deadlock of the physical system in certain configurations of LP's, as shall be

described. As a result, the order of simulation of simultaneous event messages that

arrive at a LP is determined by their order of arrival in the logical system, and

can not be specified a priori. This property of the logical system may limit the

applicability of the distributed event list algorithm, unless a corrective modification

to the algorithm is found. None is apparent.

3.2.1.3 Predicting Message Transmissions It is possible to calculate a

lower bound on the time of the next message to be transmitted over any outgoing

message channel [i,j] of LP,. As described above, a trivial lower bound may always

.3-16

* be derived from Tij, due to the property of monotonicity. A tighter bound may

be computable from information in STATEi, given Knowledge of S,. \Vhen this

prediction is possible, the lower bound on the time of the next message over any [ij],

NEX TOUT, may be calculated and appended to each outgoing message tuple. By

computing LOOKJ = min{NEXTOUTi IV[i,j)}, LP, may then be able to advance

* Tj sooner, since NEXTOUT > T holds.

In computing NEXTOUT,, two possibilities must be considered: 1) Some

event that is presently pending in EVNTLIST may, when simulated, prompt a

message over [i,j]. Given the time-ordering of EVNTLIST, the time of the first

event in EVNTLISTi provides a lower bound on the time of such an occurrence.

The value of this lower bound, MINEVNT, can be applied to every channel (i,jj.

2) A message event yet to arrive at LP may prompt a message over some [i,j].

To calculate a lower bound MINABSi on the time of this occurrence, information

about Si is required. The earliest that an incoming message can arrive (if the logical

system is correct) is the current simulation time T. To compute MINABS, T is

added to the minimum elapsed simulation time between an incoming message event

Mki over any [k, i] and the time of a resultant message MA3 over any [i,j], given no

other messages received or events pending. This value is denoted as AIINAD1i.

Y!INADI4 is calculable by knowledge of the range of the function Ak for each PP

within Si and the topology of communication of all PP's within Si. The value

3-17

of MI.VADI is invariant throughout the simulation, (lue to the invariance of the

physical system structure, and therefore need only be calculated once. a priori.

Calculation of NEXTOUT, is accomplished by taking the minimum of MIA.VBS,

and MINEVNT,. The algorithm for the calculation of NEXTOUT 0 is then given

as:

Algorithm 3-A:
{ Lower Bound on time of next message over any [ij]}

declare MINABS, : time; {bound on time of the next
* message output over any [i, j] due to

an incoming message}
MI.\TAD Vi : time; {bound on the time until the next

message output, given
message received at time Ti}

MINEVNT : time; {bound on time of next message
output by due to event on
the LP event list}

begin

* MINABSi := T + AIINADV,;
if LENGTH(EVNTLIST) = 0 then

NEXTOUT,:= MINABS;
else

MINEVNTi := FINDNEXT(EVNTLIST).t;
* NEXTOUT := min(MINABSi, MINEVNT);

endif:
end;

3.2.1.4 Logical System Predictability The property of predictability in

physical systems has been discussed previously. Were it not for predictability, sys-

tems of PP's connected in a cyclic topology could not be simulated [BryT9. CM79].

and it was assumed in Section 3.1.5 that all simulated systems are predictable. Un-

• 3-18

0

SS

1

0 Physical Process

S
2

Figure 3.1. Non-Cyclic System of PP's with Cyclic Mapping

fortunately, the physical system's predictability does not guarantee the predictability

of the simulating logical system in the distributed event list algorithm, since a non-

cyclic set of PP's may be mapped into a cyclic set of sub-models (LP's) as depicted

0 in Figure 3.1. In cases such as this, it is necessary to ensure that each cycle of LP's

is predictable. This can be accomplished by placing constraints on the mapping of

PP's onto LP's.

0
Previously, the only constraint on assignment of PP's to LP's has been that

there be at least one PP simulated per LP. To ensure predictability of the logical

system, the following condition is required;

Logical System Predictability Condition: Suppose a cycle of LP's exists, such

that for LPi, I ... n. message channels [i, (i + 1)m.odn], i= 1... n exist. For

3-t9

every such cycle in the logical system, there must exist at least one LP., such that

AJINADVj > 0.

3.2.2 Logical Process I/0 The message-tuple is the data item used to trans-

mit event messages and the value of NEXTOUi over [i, j] in the logical system.

and is defined as follows:

type message-tuple is 1-ecord of

m : message:

next : time: {lower bound on simulation time of next
message over channel}

0 end record;

where
type message is

subtype event-notice;
subtype no-event;

end type;

The subtype no-event contains only a single possible value, NULL, signifying

that no event is being transmitted in the message-tuple.

The utility of a no-event message will become apparent in the following sec-

tions. The value of M.next for a message.tuple M sent over channel [k, i] is NEXTOUTk.

3.2.2.1 Message Input A message is read into LP from an incoming

message channel [k,i] by executing the function READj(k) at LP,. The boolean

function MESSPENDINGi(k) returns TRUE if a message on channel [k, i] is avail-

able to be read by LPj. and FALSE otherwise. An event message read into LP, is

3-20

* inserted immediately, in proper chronological order, into EVNTLISTI (NULL mes-

sages, to be discussed later, are read and disgarded).

If LPi is allowed to read all event messages pending from each incoming channel

at any point in the simuation, the number of messages read into LP at that point can

not be predicted, because of the asynchronous operation of the LP's. The length of

0 EVNTLIST may then grow without any known upper bound, the only upper bound

on the number of incoming messages being the total number of messages received

• by LPi during the entire simulation. To ensure that the amount of memory needed

to store incoming event messages in EVNTLIST is known a priori, a mechanism

for controlling the flow of messages into each LP is required.

The goal is to constrain the reading of messages into LP to a known level

while maintaining the advance of simulation time at LP. This is accomplished by

* permitting LP to read messages only from the set of input channels [k, i] such that

NEXTki = LOOKi for all k. Recall that LOOKi = min{NEXTki Vk}, so that

{[k, i]1 Vk} is the set of channels whose NEXT values are constraining the advance

of LOOKi, and hence the simulation time T. LP reads pending messages, if any

exist, from each channel in [k, i] until NEXTki > LOOKi. This algorithm is shown

0 below in Algorithm 3-B, which is iterated until LOOKi is advanced. The number of

messages read from a single channel is bounded by the number of messages that can

possibly be sent to an LP at any single instant in simulation time, plus one. This

value can be calculated from the interconnection structure of the physical system.

* 3-21

Algorithm 3-B:
declare for all (k, i],

NEXTki : time {lower bound on time of next message on channel [k, i]}
Mki : message-tuple {message retrieved from channel[k, i]}

endfor:

begin

for all [k, i],
while IESSPENDINGi(k) and NEXTk, = LOOKi loop

SAlki := READi(k);
NEXTki := Mlu.next;

if MIki-n # NULL then
INSERT(Mk,.m, EVNTLIST);

endif;
* end loop:

endfor;

end;

3.2.2.2 Message Output A message M is sent from LP over [i,j] by

0 performing the procedure SENDj(M,j). Event messages from LP may be gener-

ated when an event is simulated at LPi. Messages are created and sent within the

EVENT procedure. Note that event messages transmitted from LPi must have

a time value t equal to that of the event that prompted the message - contin-

gent messages are not allowed. This is in accordance with the basic Chandy-Mvisra

* algorithm and the physical system paradigm described above [CM79]. Operation

SENDj(M,j) places the message M in a message tuple for transmission on chan-

nel [i,jj, consisting of the message itself and the value of NEXT,, computed using

Algorithm 3-A above.

3-22

3.2.3 Properties of LP Commuinication A communications protocol for ruessage-

passing isn't explicitly specified in [CM79], but some assumptions are made concern-

ing message transmission in the logical system. Messages are assumed to be trans-

mitted correctly, and messages between any two LP's are assumed to be received in

the order transmitted, within a finite time period. The algorithms discussed in this

* paper also operate under these basic assumptions [CM79].

The above assumptions imply some requirements for the communications pro-

tocol. In anv implementation of the logical system, there is some finite amount of

memory available to buffer incoming messages at each LP. To ensure the correctness

of message transmissions, then, the message communication protocol must ensure

&that a message over channel (i,ij will not be sent until LPj has sufficient buffer

space available to accommodate it. In that case, LPi may queue outgoing messages

into an output buffer of some finite size. If LPI attempts to send a message to LP

whose receive buffer for [ij] is full, and LPj's send buffer for [i,j] is full, LP, can

not proceed and is blocked. The ramifications of this blocking send protocol will be

discussed in the following section on the resolution of process deadlock.

3-23

* .3.2.4 Summary of Algorithm The basic distributed event list algorithm at

each LP consists primarily of a sequence of two phases, executed iteratively until

simulation termination conditions have been reached:

Algorithm 3-C:

declare Ti : integer; {simulation time at LP i}
for all [k,i], NEXTk, : time; {channel clock}

* LOOKi : time; {moving upper bound on time advance}
NEVi : event-notice; {next event to be simulated at LP 1i
EVNTLIST : event-list; {event list for LP i}
STATE, : state; {set of state variables for Si}

begin
* { Initialize}

T, LOOKi := 0: NEV := (Z, NULL);
for all [k, i], NEXTki := 0: endfor;
{Initialize STATE: Schedule initial events, if any}

* loop until {simulation termination condition reached}

{Read Phase: Attempt to read messages to advance LOOKi}
until LOOKi > T, loop

Read messages on input channels [k,i]: {Algorithm 3-B}
* LOOKi := minimum(NEXTki);

end loop;

{Event Phase: Simulate all pending events up to LOOKi}
while LENGTH(EVNTLIST) > 0 and NEV.t < LOOKi loop

* NEV := GETNEXT(EVNTLIST): {Get next event from list}
T := NEV.t;
{Simulate next event}
EVENT(NEV, EV NTLIST, STATE);

end loop;

{if no events scheduled in interval T to LOOKi, advance Ti}
if LOOKi > T, then

Ti := LOOMi;
endif;

end loop;
end:

• 3-24

3.2.5 Deadlock ;n the Logical System The basic logical system as described

above is subject to the problem of logical process deadlock, as described in [CM81].

Deadlocks rnay occur within both cyclic and acyclic networks of LP's. A method for

avoiding deadlock, the Null Message algorithm proposed by Chandy and Misra in

[CM79], has been modified for use within the distributed event list algorithm, and

is presented in this section.

3.2.5.1 Cyclic Deadlock Among LP's A cyclic deadlock may occur within

a set of LP's {LPk I k = 1,-.. , K} such that message channel [k, (k + 1)mod K],

Sk = 1... , K exists in the logical system. Such a deadlock occurs when each LPk

in the set is attempting to read from channel [(k - 1)mod K), k], and no message is

in transit over [(k - 1)rnod K, k], k = 1, -.. , K [CM79]. In Example 3-1 below, the

set of LP's is deadlocked, and will not advance in simulation time. LP's outside of

the deadlocked set that depend on event messages from any LP in this set will then

* eventually become blocked due to message "starvation," and so will their dependent

LP's, and so on, until the entire logical system is halted.

In Example 3-1. we show that the system in Figure 3.2 (b), the set of {LPi, LP 2 }

is deadlocked, and vill not progress in simulation time. A message in the logical sys-

tem is denoted by (t,m.next).

3-25

0

* Example 3-1 In Figure 3.2 (a), LP1 has previously sent event message (1,m12,2) to LP2.
LP2 read this message, inserted (1,m12) into EVNTLIST1, advanced LOOK2 = 2, and then ended
its Read Phase. LP2 simulated (1,m12), causing an internal event (2,ev2), which prompted message
(2,m21). (2,m21,3) was then transmitted to LP1. At this point the next internal event scheduled
at LP2 was (8,ev2). LP2, with LOOK2 = T2 = 2, could simulate ne further, and so entered a
Read Phase. LPI has read message (5,mOl,6) from [0,1] in a previous Read Phase, which caused

* (5,mOl) to be placed as the next event in EVNTLISTI. LPI could not advance its clock to 5, being
constrained by NEXT21 = 1. LP1 then entered another Read Phase, attempting to read from
[2,1]. (2,m21,3) arrived, and (2,m21) was read into EVNTLIST1 as the new next event. LOOKI
was advanced to 3, and LP1 left its Read Phase. This is the status of the set of LP's as shown in
Figure 3.2 (a).

LP1 now enters its Event Phase, and with LOOK1 = 3, is able to remove (2,m21) from
EVNTLISTI and simulate it. As a result, an internal event is scheduled at time 3, which is then
also simulated. The simulation of this internal event prompts event (3,m12), which is sent, over [1,2]
in message tuple (3,m12,4). With its next scheduled event at time 5, LP1 can simulate no more,
and so enters its next Read Phase. LP2, in a Read Phase as we recall, reads (3,m12,4), advances
LOOK2 = 4, and exits its Read Phase. LP2 then simulates (3,m12), causing an internal event, at
time 4, which prompts an event message (4,m23,5) to LP3 (outside of the cycle). With its next
internal event at time 8, LP2 can not simulate further, and enters a Read Phase once again.

The cycle is now in a deadlocked state, as shown in Figure 3.1 (b). LP1 will continue to
attempt to read messages from [2,1] and no other channel, since NEXT21 = 3 is constraining
LOOK and NEXT01 = 6 is not. LP2 is in a Read Phase, attempting to read messages over [1,2]
until LOOK2 is advanced. LP2 will not leave its Read Phase until it receives a message over [1,2],

* and LP1, as we recall, can not send any messages until it reads a message over [2,1].

In the above example, each LP in the cycle is each waiting to receive a message

exclusively from the previous LP. No message from outside the cycle of LP's is

sufficient to change this condition. Therefore, the deadlock condition is permanent.

3.2.5.2 Acyclic Deadlock Among LP's Deadlock may also occur in acyc-

lic networks of LP's under certain conditions. A "blocking send" implementation

with bounded buffers as described in Section 3.2.3 can result in acyclic deadlock

when a set of LP's are connected in a "fork-join" configuration, as in Figure 3.3

below.

• In any implementation of the logical system, each LP has a finite buffer size for

sending and receiving messages on each channel over which it communicates. Buffer

* 3-26

LPO LP P mLP 3

*l T 2 2 m2l T2 2 8 ev2

LOOKi 3 LOOK2 =2

5 mOl

0I

(a) Cyclic Set of LP's Prior to Deadlock

NNEXT23=5

LPO LP P P3

*Tl 3 5 mOl T2 4 8 ev2

LOOK1 3 LOOK2 =4

(b) Cyclic Set of LP's in Deadlock State

* Figure 3.2. Set of Logical Processes Subject to Cyclic Deadlock

* 3-27

* sizes are purely an implementation constraint of the logical system. Acychc deadlock

is a possibility when a LP may receive messages over more than one channel, but

does not receive messages over all channels at equivalent rates. If LP A is waiting

to read over a subset of its input channels, the other channel buffers may become

filled, causing a sending LP B to become blocked. If another LP C sends sufficiently

many messages to B, it will eventually become blocked, because LP B will not read,

being blocked. If the channels on which LP A is waiting are dependent on messages

sent by LP C, then LP A will never receive messages over that channel. since LP C

is blocked, and LP A will continue to attempt to read (CM79].

In Example 3-2 below, we show that the system in Figure 3.3 (b) is deadlocked,

and will not progress in simulation time. We assume that each message channel in

the logical system has buffer size sufficient to hold a single message.

Example 3-2 In Figure 3.3 (a), the set of {LPj, j = 1,. ,4} is not yet in a deadlocked
state. We observe that LP1 had previously sent message (5,m12,6) and has received message
(6,mO,7) from LPO. LP2 had previously sent (4,m23,5) to LP3. In a subsequent Read Phase, LP2
read message (5,m12,6), placed (5,m12) in EVNTLIST2, advanced LOOK2 to 6, and then ended
its Read Phase. LP3, in a Read Phase with NEXT13 = NEXT13 = 3, was attempting to read over

• both [1,3] and [2,3]. LP3 read (4,m23,5), placing (4,m23) in EVNTLIST3. But because NEXTI3
= 3, LOOK3 remained at 3, and LP3 remained in a Read Phase, now only attempting to read from
[1,3], in order to advance LOOK3. This is the status of the set of LP's shown in Figure 3.3 (a).

LP2 has ended its Read Phase, and now enters the subsequent Event Phase. LOOK2 = 6.
and so LP2 simulates (5,m12). As a result, an internal event is scheduled for time 6. This event is

• still within the "safe" simulation period, and so is simulated. The internal event prompts a message
(6,m23), which is sent over [2,3] in message tuple (6,m23.7). With no more pending events before
or at time 6, LP2 then enters a Read Phase. LP3, as we recall, is reading, but only over [1,3],
so that message (6.m23.7) occupies buffer[2,3]. Meanwhile, LP1 has simulated (6,mOl), causing
an internal event at time 7. With LOOKI = 7, this event is simulated, which prompts message
(7,m12,8). LPI then enters another Read Phase.

* LP2, in its Read Phase, reads (7,m12,8). LOOK2 is advanced to 8, and LP2 begins an Event
Phase. Simulating (7,n12) causes internal event (8,ev2), which prompts message (8,m23). LP2
then attempts to send (8.m23,9). but is blocked, because message (6,m23,7) still occupies buffer[2.3].
LP2 will remain blocked until LP3 reads (6,m23,7). LP1, in a Read Phase, reads (8,m01,9). A

* 3-28

* subsequent internal event at time 9 prompts message (9,m12,10) to LP2. But because it is blocked,
LP2 can not read over [1,2], and (9,m12,10) occupies buffer(1,2].

LPI, able to simulate no further, enters a Read Phase. In this phase, LPI reads (9,m01,10),
and consequently exits the Read Phase. Simulating (9,m0l) cuases an internal event at time 10.
This event is simulated, prompting message (10,m12,11), and a new next internal event at time 14.

* Once LP1 tries to send message (10,m12,11) to LP2, the conditions required for deadlock
are complete, as shown in Figure 3.3 (b). LP1 attempts to send the message over channel [1,2],
but buffer[1,2] is full, so LP1 is blocked. Buffer[1,2] may only become unblocked if LP2 reads its
contents, message (9,m12,10). LP2 is blocked sending over [2,3], and will only become unblocked if
buffer[2,3] becomes free. For that to occcur LP3 would have to read over [2,3]. LP3 will not read
over [2,3] unless it first reads over [1,3]. LP3 can not read a message over [1,3] until LP1 sends

* one. LP1 can not send a message over [1,3] because LPI is blocked: hence, the deadlock cycle is
complete.

No message from any LP outside of the deadlocked set can affect the condition

O of the deadlock set. The deadlock condition is then permanent and the set of LP's

described above will not progress in simulation time, leading to non-termination of

the logical system.

3.2.5.3 Null Message Deadlock Avoidance The method of Null mes-

sages is used to avoid the process deadlock that is inherent to the basic system

[CM79]. A Null message is a message transmitted with the singular purpose of ad-

vancing the channel clock of the channel on which it is sent, thus possibly allowing

* the recipient LP to advance its simulation clock. The contents of the message, the

no-event symbol NULL, do not affect the state of simulation at the sending and

receiving LP's.

The following condition is sufficient to prevent cyclic deadlock in the logical

svstem:

* 3-29

LOOK2= 6
T2= 5 5 m12

* LP 0 LP

L1 6OK3
LOOK1=OK 7 [jRADN

(a) Set of LP's Prior to Deadlock

* (8,m23, 9)BLOCKED

LOOK2=~ 8 [7 I
*(10,ml2,11)BLOCKED NEXT12=8 P

(9,l2,0)NEXT23=5 LOOK3= 3

NEXT01=103

LP0 P ET3= ~ P

LOOK1= 10 14elRAIG4 m23

T1= 10 RA N

(b) Set of LP's in Deadlock State

* Figure :3.3. Set of Logical1 Processes Subject to Acyclic Deadlock

* 3-30

* Null Message Condition 1: For every LP, i = 1,... ,N: once LP, exits

a Read Phase, LP sends at least one message, either an event message or a Null

message, over every output channel [i,j] before entering another Read Phase.
0

The validity of the assertion that this condition avoids deadlock can be seen

intuitively from Example 3-1 above. It can be proven inductively for any valid cyclic

0 set of LP's by showing that it avoids the circular read condition of cyclic deadlock.

The following condition is sufficient to prevent acyclic deadlock in the logical

* svstem:

Null Message Condition 2: For every LPi, i = 1,.. , N: once LPI sends an

event message (t, rn, next) over message channel [i,J], then LPI has sent a message,

either an event message or a Null message, such that nexti > LASTij for all m,

over every other output channel [i, m] before attempting to send another message

over [i, j].

The validity of the assertion that this condition avoids deadlock can be seen

0 intuitively from Example 3-2 above. It can be proven inductively for any valid set of

LP's by showing that it avoids the read-write-read condition of acyclic deadlock.

It is not efficient to send a Null message over [i,j] that has no effect on the value

of NEXTOUT at LP. We preclude this by maintaining at each LP a variable for

each outgoing message channel [i, j], LAST, , set to the value of NEXTOUTI of the

0 message, Null or event. that was last transmitted over [i,j]. A Null message is only

* 3-31

0

* transmitted over [i,j] if the computed value of NEXTOUTi to be inserted into the

message is strictly greater than LASTij.

Note that the added constraint of LASTj on the sending of a Null Message over0

[iJ] does not violate the Null Message Conditions. In cases where NEXTOUT, =

LASTi, and the sending of a Null message is inhibited, then, by definition of LAS7,
a message Mii has been sent over [i, such that Mji.next = NEXTOUTi. By

Algorithm 3-A, either the value of Ti and the time of the next event in EVNTLIST i ,

0 .13II.EVNTi, are at present identical to those at the time Mij was sent over [Ij] or

the value of MINEVNTi is the same and equal to LOOKi at the time 3Ilk, was sent.

If a Read Phase had occurred in the intervening time since the last message send,

LOOKi would have advanced (Algorithm 3-C), precluding the latter condition. The

value of Ti would have increased with the value of LOOKi, due to the sending of 3i

*1 (Algorithm 3-C), precluding the former condition. No Read Phase has then occurred

3ince the time of the last message over [i,j. A Null message is not then necessary.

and Null Message Condition 1 is preserved. Null Message Condition 2 is preserved

because a Null message is withheld only if some message has been sent over [i,j]

with next message component nexti = NEXTOUT. NEXTOUT,> LAST,, for

* any [im] due to monotonicity of Ti. Then, if a Null Message is withheld over [i].

it is guaranteed that LASTij >_ LASTi,, for all m, and Null Message Condition 2 is

preserved.

* 3-32

* We can now describe an algorithm for procedure SENDNULLj(j) to send a

Null message over output channel [i,j] such that the Null Message Conditions are

fulfilled:

Algorithm 3-D:

begin
Compute NEX TOUT {Algorithm 3-A}

if NEXTOUT, > LASTij then
SENDi ((.NULL, NEXTOUTi),j);
L,4STij := NEXTOUT;

endif;
endc:

The Null Message Conditions can be implemented at LPi with the following
straightforward algorithm:

Algorithm 3-E (1);

begin

{ Initialize}
T, LOOKi := 0: NEV := (Z, NULL);
for all [k. i], NEXTki := 0: endfor;

{Initialize STATE: Schedule initial events, if any}

loop until {simulation termination condition reached}

for all [i,j] which did not send messages
during previous Event Phase,
SENDNULLj(j): {Algorithm 3-D}

endfor:

Perform Read Phase;
{ Attempt to read messages until advance LOOKi}

Perform Event Phase;
{Simulate pending events up to LOOK,}

3-33

* {if no events scheduled in interval T to LOOKi, advance TJ}

if LOOKi > T, then
Ti := LOOK,;

endif;

* end loop;

end:

It is possible to take advantage of some of the properties of Null messages to

modify the Read Phase of the LP for greater efficiency. Unlike an event message.

0 a Null message received at LP over [k,i1 has no message content to store after

its message time has been used to update NEXTki. It is therefore possible to

read any number of Null messages over an input channel without exceeding storage

bounds. Because the time associated with each successive Null message is guaranteed

to be increasing (by Algorithm 3-D), only the last Null message in a sequence of

0• Null messages in an input buffer is of interest to us. The situation may arise in

which sequences of Null messages in an input buffer cause many small increments of

simulation time advance. Since each time advance at LPi leads to a Null message sent

over every channel [i. j], this "thrashing" from Read Phase to Event Phase intensifies

the thrashing effect in rcipient LP's. increasingly fragmenting the simulation time

advance and clogging system buffers with superfluous Null messages. Thrashing is

alleviated bv modifying Algorithm 3-B so that a Null message received over [k. i]

w ill not cause reading over [k, i] to end unless no more messages are pending over

* :3-34

* 3.2.6 \lti Message Variants Null Messages are overhead in the logical sys-

tem, contributing nothing to the actual execution of the simulation model. In order

to maximize throughput, then, it might seem wise to restrict the conditions for the

transmission of Null messages to the minimum required to avoid deadlock. This, it

shall be seen, is often not the case.

Null messages sent over [i, j] perform their function of deadlock avoidance by

incrementing the value of channel clock NEXTOUT at LP. If NEXTOrTj =

* LOOK, before a Null message is sent over (i,j], then the transmission of the Null

message may allow LP, to advance LOOKj sooner than it ordinarily could. This

may be particularly beneficial if a large percentage of events in the logical system

are internal to some LP, with infrequent messages between LP's.

The following algoithms are variants on the basic algorithm that change the

* conditions under which Null messages are sent, for the purpose of increasing the

throughput of the logical system. A performance analysis and empirical compari-

son of these methods versus the "basic" method described above can be found in

Chapter 4.

3.2.6.1 Null Message Algorithm with Stimulus Nulls Prof B. Donlan at

the Air Force Institute of Technology has devised a method of sending additional

Null messages purely to improve Speed-up. The extraneous Null messages, known

* 3-35

• as stimulus Nulls for their effect on throughput, are transmitted after the execution

of a certain number of events, specified as a ratio of events to stimulus Nulls.

Algorithm 3-E (2):

declare EVNTCNT : integer {Number of events since last transmission of stimulus Nulls}
NULLRATIO : integer {Number of events executed before stimulus Nulls are sent

begin

{Initialize}
EVNTCNT := 0:
loop until {simulation termination condition reached}

{Regular Null send required to fulfill Null Message Condition}
for all [i.j]

which did not send messages during previous Event Phase,
SENDNULLi(j): {Algorithm 3-D}

endfor;

Perform Read Phase;
{Attempt to read messages until able to advance LOOKi}

{Event Phase: Simulate pending events up to LOOKi}
• while LENGTH(EVNTLIST) > 0 and NEV.t < LOOKi loop

NEV := GETNEXT(EVNTLIST): {Get next event from list}
Ti := NEV.t;
{Simulate next event}
EVENT(NEV, EVNTLISTi, STATE);

{Send Stimulus Nulls}
EVNTCNT := EVNTCNT + 1;
if EVNTCNT Z NULLRATIO then

for all [i,j],
SENDNULLj(j);

endfor;
EVNTCNT := O;

endif;
end loop:

{if no events scheduled in interval T to LOO'i, advance Ti}
if LOOh'i > T then

3-36

* Ti := LOOK:;

endif:

end loop;

end;

Preliminary studies have shown that stimulus Nulls can provide significantly

improved Speed-up for some systems of LP's. As the stimulus null ratio is increased

beyond a certain point, the incremental increases in Speed-up diminish rapidly as the

Null message overhead takes its toll. The reasons for this phenomenon are discussed

fully in Chapter 4.

3.2.6.2 Null 1lessage Algorithm with Timed Nulls Another variation

on the basic Null message scheme is that of transmitting Null messages only after

* some amount of processing time has elapsed. This algorithm was proposed by Misra

in [Mis86], and can be incorporated into the distributed event list algorithm.

To employ this algorithm variant it is necessary to modify Null Message Con-

dition 1. Rather than specifying that a message be sent over every output channel

between each Read Phase, the following condition can be specified:

3-37

* Null Message Condition la For every LP, i = 1,., N: once LP begins

a Read Phase, LPi may send at least one message, either an event message or a Null

message, over every output channel [i,j] before entering another Read Phase, and

LPi, will send a message over every output channel [i,jI within a finite amount of

time.

This condition is fulfilled in the following algorithm for transmission of time-

driven Null messages:

* Algorithm 3-E (3): declare clocki: real-time: {processor clock time at LPj}
NULLTIMEj : real-time: {specified elapsed time between

Nulls over all [i, j]}
TIMEOUT : real-time: {time-out value for Null send}

* begin

{Initialize}
TIMEOUT := clocki + NULLTIME;

loop until {simulation termination condition reached}

{Read Phase: Attempt to read messages to advance LOOKj}
until LOOKi > Ti loop

Read messages on input channels [k,i]: {Algorithm 3-B}
LOOKi := minimum(NEXTk);

{Send Nulls over each channel [iJ] if the Time-out for Null send has expired}
if clocki > TIMEOUT then

for all [i,j],
SENDNULLi(j);

endfor;
TIMEOUTj := clocki + NULLTIMEi;

endif;

end loop:

Perform Event Phase: {Simulate pending events}

* 3-38

* {if no events scheduled in interval T to LOOKi,
advance Ti I

if LOOKi > T, then
T/ := LOOKi;

endif;

end loop;

end:

Naturally, the value of NULLTIMEi at each LPi should effect the efficiency

of this algorithm in a given situation. The performance effects of the choice of

NULLTIMEj are discussed in Chapter 4.

3.2.7 Bounds on Required Memory Each LP in the logical system requires

a bounded amount of storage, and the sum of the storage required by all LP's is

comparable to the storage required by an equivalent sequential simulation. This

property of the logical system is one shared by the original Null Message algorithm

[CM79].

* The set of state variables for LPi, STATE, represents the states of all PP's in

Si. In a logical system (,f N LP's, U{STATEi, i = 1,... ,N} represents the state of

the logical system. The number of PP's is bounded, and the amount of information

required to capture the state of any PP must be bounded. Otherwise, the physical

system could not be simulated [CM79]. The storage required to maintain the states

* of all PP's in the distributed system is the same as that required in an equivalent

sequential simulation.

* 3-39

• A method of controlling message input into LP as a way of bounding the

required size of the event list EVNTLIST has been introduced above in Section

3.2.2.1. Given the properties of the logical system, it can be shown that the required
0

size of EVNTLISTi is bounded by a predictable amount. It is assumed that every

PPm E Sm, m = 1,.... .31 may have a pending internal event at any time. Thus the

0 number of events in EVNTLIST is bounded by M plus the maximum number of

event messages that are pending in EVNTLIST at any point during the simulation.

From Algorithm 3-C. we know that in any single Read Phase. messages are

read until LOOKi can be advanced from time Ti, and that messages read over any

channel [k, i] during any Read Phase have the event time component t = T, except

for the last message that is read over [k, i] in any Read Phase, which may have

time component. i, T, > > LOOKi. The maximum number of messages that

• can be sent at an instant in simulation time from a given PP to another is one.

by monotonicity in the physical system. Because each event message represents a

message transmitted in the physical system, the number of messages that can be

0
read into LPj during a Read Phase is bounded by the the sum of the number of PP's

that can send messages to each PP within Si, plus one additional message for each

• input channel [k, i]. This number is known from the configuration of the physical

system, without examining any PP internally.

0

* 3-40

* It follows from Algorithm 3-C that any message read into LP has a simulation

time component t < LOOKi, and thus will be simulated during the subsequent Event

Phase. Given this. the number of event messages in EVNTLIST from outside of

LP is bounded by the the maximum number of event messages that can be read

during a single Read Phase, as described above.

• Event messages can also be sent between two PP's within LP during an Event

Phase of processing. Because each event message has the same time component

as the internal event that prompted it, all event messages internal to LP that are

prompted in a particular Event Phase are also simulated in that same phase, and

before any later event is simulated, due to the chronology of EVNTLIST. The

maximum number of event messages internal to LP pending at any point in time is

then the maximum number that can be prompted in a single instant in simulation

time. As in the case of external event messages, this is equal to the number of PP's

in Si that send messages to each PP, E Si, m = 1,. .. ,M, due to the monotonicity

of messages in the physical system.

* 3-41

* Because the order in which internal events and message events at an instant in

simulated time at LP are simulated can't be predicted in advance, assume that all

event messages at a point in simulated time are prompted before any are simulated

(worst case for bounding EVNTLISTj). The maximum number of event messages

pending is the sum of the maximum number of event messages from within LP,

* and those read in. Combining these two quantities with the maximum number of

pending internal events at LP. gives the upper bound on the number of messages in

EVNTLIST as:

[INmI + K + M

* where IN,,, is the set of PP's that may send messages to PPm E Si.

It is submitted that the size of each event is bounded, as an event reflects a

single change in value over a number of state variables, and the number of state

variables of each PP is bounded, for reasons described previously.

The storage overhead for the operation of each LPI, consisting of the variables

declared in the preceding algorithms, is also bounded. Each declared variable is

either a scalar quantity, such as LOOKi, or a one-dimensional array of scalars over

each input channel [k,i1, such as NEXTki, or over each output channel [i,j], such

as LASTij. Given that the number of LP's is finite, each of these arrays is bounded.

Hence, the storage overhead at each LP is bounded for a given system of LP's.

* 3-42

Given a blocking send communications protocol as described in this chapter.

the amount of storage dedicated to message buffers at each LP may be arbitrarily

chosen without affecting the correctness of the logical system. The chosen buffer

size, however, will generally affect the execution time of the logical system.

3-43

0

IV. Performance Analysis

4.1 Performance Characteristics of the Event List

The event list is the primary data structure of the distributed event list algo-

* rithm. The efficiency of the implementation of the event list at each logical process

will have a major effect on the execution time of the distributed event list simula,-

tion. Similarly, the event list implementation in the sequential simulation used for

comparison will affect the computed speed-up. The distributed event list algorithm

will be shown to take advantage of the time complexity of event list operations to

* provide a speed-up factor that, in some cases, exceeds what had been thought to be

the theoretical bound on achievable speed-up.

The event list is a priority queue of event notices, ordered by event simulation

time. The primary operations on the event list are next event retrieval and event

notice insertion, although others, such as previewing the first event and deletion of

an arbitrary event from the list, may be performed. Next event retrieval removes

and returns the first event notice in the event list. Event notice insertion operates

* on a given event notice to insert it in its proper order in the event list.

4.1.1 The Linear List Implementation Several physical implementations of

* the event list have evolved. The "classical" implementation is an ordered linear

list, which was used in early simulation languages, such as GASP [Pri741, and is

* 4-1

* still in fairly wide use today. Its major advantage is ease of implementation. The

event list used in the implementation of the distributed event list algorithm and

the comparison sequential simulations is a doubly-linked linear list implemented
0

with FORTRAN arrays. Next event retrieval with the linear list involves simply

removing the event notice at the head of the list, and is therefore done in constant

* time. Insertion of an arbitrary event notice into the event list requires that the items

in the list be searched sequentially for the correct point of insertion. In asymptotic

notation, event notice insertion with a linear list is therefore accomplished in O(L)

time, where L is the number of events in the event list [VD75].

The dependence of event list insertion time on the number of event notices in

0 the list at the time of insertion is illustrated by the following timing experiment.

Using a linear list implementation of the event list, event lists of size 10, 100, and

1000 were created, in which the simulation time increments of events in the list were

exponentially distributed. In this experiment, 100 events (with the same distribution

of inter-event times) were inserted into each event list; an event was removed from

the front of the list prior to each insertion to maintain constant list size. The total

time to accomplish the insertions only was measured for each event list size. The

* results of this experiment, shown in Table 4.1, demonstrate the correlation between

event list size and list insertion time.

* 4.1.2 Theoretical Bounds on Speed- Up This dependency of insertion time oil

the number of event notices in the event list has important implications for the

* 4-2

* Length of Event List 10 100 1000

Time to Insert 100 Events (s) 0.90 4.23 37.40

Table 4.1. Insertion into Linear List with Exponential Inter-Event Times

attainable speed-up factor using the distributed event list algorithm. It has been

assumed in previous literature [BJ85, Hei86] that there is a bound on the speed-up

factor of any distributed simulation equal to N, where N is the number of processors

used. This is a theoretical bound, neglecting communications and synchronization

* overhead, and has not been thought to be attainable [BJ851.

The underlying assumption behind a speed-up bound of N is that the execution

time T of a simulation depends upon the number of events, E, occurring in the

simulation model, and processing time TE per event, bounded by some constant.

The execution time T of the sequential simulation is then E TE. The theoretical

* minimum execution time for a distributed execution of the simulation model over

processors P , n = 1,... ,N is then equal to

MAX{E, n = 1,...,N} TE

where E, is the number of events occurring in the simulation sub-model at processor

n. This value is minimized for a given number of processors when

El = E2 = ... = EN = E/N. The absolute minimum execution time for a dis-

tributed simulation over N processors occurs when events are evenly distributed, anIl

* 4-3

* is (E/N)TE. Absolute minimum speed-up can be then computed as (ETE)/((E/N)Tr)

iN

The assumption of a linear relationship between the number of events in a

simulation and its execution time is easily shown to be unjustified by considering

the simulation overhead in a sequential simulation algorithm. Super-linear time

complexity of the sequential algorithm in terms of E will be demonstrated for a linear

list implementation of the event list; similar results can be shown for other event list

*0 implementations, although the super-linearity of the more efficient implementations

is not as dramatic.

A non-preemptive sequential simulation algorithm is considered, such that

scheduled events are never deleted from the event list prior to their removal for

execution. Deletion of an arbitrary event notice from the event list is of the same

* time complexity as an insertion, so that omitting the possibility of the former does

not weaken the argument, as will become evident.

0 In the general sequential event list algorithm, the basic iteration, performed

once for each of E events in the simulation, is as follows: 1) Remove the first event

from the event list. 2) Calculate the effects of the event, including updating the

state variables of the simulation, possibly calculating new events and inserting them

in proper order in the event list. The execution time of the sequential simulation

* can be analyzed by considering the number of events, E, and the following periods

of time

*• 4-4

0

0
T,(e) - time required to calculate a new event e

Tr(e) - time required to remove event e from the event list

0 T,(e) - time required to update state variables due to event e

Ti(e) - time required to insert event e into the event list

0

Due to the nature of the linear list, T,(e) is constant for all e = 1,. , E, and so

has 0(1) time complexity. Assume T,(e) and To(e) are also 0(1) for all e, bounded

by constant values. (Because the goal of the argument is to show super-linearity of

the sequential algorithm to E, this is the worst case for the argument.)

Now consider T(e), which with a linear event list is of O(L,) time complexity,

where Le is the number of events in the event list at the time of insertion of event.

• e. One upper bound on L, is E, but it can be seen intuitively that it is a trivial one

- since each event must be inserted into the list, there is no event that is inserted

when there are already E events in the event list. Similarly, there exists only one

0
possible event e' such that L,, = E - 1 at the time of insertion. Because the value

of L, is bounded by L,_ + 1, a meaningful bound on insertion time can only be

* obtained by considering the set of event insertions in the simulation as a whole.

The total time to insert all of the events of the simulation into the event list is

bounded by a function of e=l L,. This value, the sum of the lengths of the event

list at the time of each event's insertion, is maximized when the maximum number of

* 4-5

events are scheduled before any are removed and simulated. In such a case, L1 = 0,

L2 = 1, and, in general, L, = e - 1. The total insertion time for all events, Tt, can

then be expressed in asymptotic notation as follows:

Tf= 0(E:E-)

= O(((E - 1) E)/2)

= O((E 2 - E)/2)

= O(E 2)

The total execution time of the sequential algorithm, T, is:

*T= =(T(t) + Tr(e) + T (e)) + T which can be expressed in asymptotic no-

tation as:

0i

= 1=(0(1)+01)+0(1)) + TI

= E O(1) + O(E2)

= O(E) + O(E 2)

= O(E)

Theoretical speed-up of the distributed event list algorithm, with sequential

0 and distributed algorithms using a linear list, and with the same idealistic assump-

tions made previously, is then: O(E 2)/0(E2/N 2) = N2

* 4-6

* As before, this value is the theoretical best speed-up, and is not, in general.

attainable, due to overhead and communications costs, and the fact that it is based

upon the "worst case" time complexity of the sequential algorithm. Other event list

implementations of lower time complexity will have correspondingly lower theoretical

speed-ups - although real execution time will decrease in comparison to the linear

* Olist implementation as the average L increases. Attained speed-up will decrease with

increased overhead for the distributed simulation, naturally, and also in those cases

where the linear components of the execution time, such as event calculation time.,

overwhelm the relative advantage in event insertion time gained by distributing the

event list.

4.2 Empirical Studies

Empirical studies were conducted to gauge the performance of the variants of

the distributed event list algorithm under a variety of conditions In these studies, a

family of queueing models with high degrees of inherent parallelism were simulated

* using each variant of the distributed algorithm. The results demonstrate the rela-

tionship between speed-up and certain characteristics of the simulation, and provide

insights into the most effective strategies for transmission of Null messages under

varying conditions, as well as yielding some elementary heuristics for mapping a

given simulation model into a logical system.

* 4-7

* 4.2.1 Methodology Empirical performance studies were conducted on the In-

tel iPSC-d5 hypercube systems at AFIT. Synthetic simulation models were con-

structed, and executed under controlled conditions.

4.2. 1.1 Simulation Workload Model The models used as the simulation

workload in the empirical studies are queueing models consisting of 32 replications

of a homogeneous sub-model, connected in various topologies. The basic sub-model,

proposed by Prof. W. Shaw at AFIT, ensures a model with a high degree of inherent

*0 parallelism, with the additional properties of independent (entity creation) events

at each sub-model and a balanced flow of messages between sub-models. The basic

sub-model consists of two single-server queue PP's in tandem, with entity creation

and termination processes, connected in a feedback loop as shown in Figure 4.1.

A balanced flow of entities between sub-models is achieved by controlling arrival

0
and service rates, and routing probabilities. Exponential inter-arrival times with a

mean of 1000 time units are used for the creation process at each sub-model, except

G where a sub-model is a "source" process with no entities arriving from any other

sub-model. In that case, an exponential inter-arrival time of mean 1111.1 is used.

Service times for all sub-models are biased exponential with a mean of 100 time

units and a bias of I time unit. The bias is introduced to guarantee a non-zero

service time, thus enabling lookahead predictions to be made. Figure 4.1 depicts the

* workload sub-model in queueing symbology.

* 4-8

0 CREATE

* .10

ENTER .L . 2 - .09 EXIT

.81

0 M/M/1 M/M/1

-- TERMINATE

* Figure 4.1. Balanced Flow Queueing Sub-model

Complex simulation models are created by connecting 32 of the basic sub-

models in a topology such that an entity exiting one sub-model either enters a

connected sub-model (in the form of an event message sent between LP's) or is

terminated. A probability is associated with each possible transition of an entity

0 between connected sub-models. In the empirical studies, logical systems of fewer

than 32 LP's were constructed by grouping the basic sub-models to form larger sub-

models in accordance with the assignment criteria in use. Note that it is possible

to assign portions of a basic sub-model to different LP's. This was not done in the

experiments, however, because of the tightly coupled nature of the basic sub-model,

* as well as the convenience of manipulating sub-models instead of individual PP's.

4.2.1.2 Experimental Environment All experiments were conducted on

* the Air Force Institute of Technology's two Intel iPSC-d5 Hypercube multiprocessor

systems. The iPSC hypercube consists of 32 homogeneous processor nodes, each nodc

* 4-9

* based on an Intel 80286 CPU. The nodes communicate exclusively through message-

passing (no shared memory), and are connected to each other in a 5-dimenional

hypercube topology with 10 Mbit/s point-to-point serial communications channels.

Nodes are also connected via global Ethernet channel to the Cube Manager, an Intel

System 286/310 microcomputer [Int86b].

Due to the lack of a blocking send communication protocol in the iPSC node

operating system [Int86a], the performa- ce effects of limited buffer size were not

considered. The existing non-blocking send protocol was used, and can be viewed

as equivalent to a blocking send implementation in which buffer sizes are sufficiently

large to eliminate the need for any LP to block while sending (for those simulations

performed). The distributed algorithm was implemented as if a blocking send was in

use, with Null messages sent under conditions sufficient to avoid the acyclic deadlock

possibility raised by a blocking send protocol. Because unconstrained buffer size is

the most general case of a system of communicating processes and these empiri-

cal studies do not claim that the achieved speed-ups are attainable in every case,

the performance effects of constraining the buffer size (and resulting implications

for assignment heuristics and Null message strategies) are left as topics for future

research.

The implementation of the distributed event list algorithm is a modification

of a package of subroutines for performing distributed discrete-event simulation de-

veloped in Ryan-McFarland (TM) FORTRAN by Prof. B. Donlan at AFIT. This

4-10

* implementation provides an environment for distributed simulation similar to early

FORTRAN-based simulation languages such as GASP [Pri74]. In addition to the

statistics collection and other simulation functions generally provided by such Ian-S

guages, synchronization and message-passing for distributed simulation is provided

in a manner nearly transparent to the user. More information on this implementa-

* tion is available from: AFIT/ENG, Wright-Patterson AFB, Ohio 45433, (Attn: Dr

T. Hartrum).

The exponential random variates used were derived from (0,1)Uniform pseudo-

random numbers using the simplified inverse transform method [BC84]. The gener-

ation of uniform random numbers was accomplished using the portable FORTRAN

multiplicative congruential generator proposed by Schrage, with modulus 231 - 1 and

multiplier 16807. The seed values for random number generation were taken from

pp. 212-3 of Bratley, Fox, and Schrage, and are reported to provide non-overlapping

sequences of length 131,072 [BFS83]. Independent random number streams were

ued for events at each sub-model, so that the simulation results for a particular

model did not vary over different distributed and sequential implementations.

Empirical testing of the (0,1)Uniform random number streams was accom-

plished to verify that the values generated were indeed uniform and independent. A

run length of 5000 numbers was tested for each of the random number streams that

was used. To test the independence of the values within each stream, the up-down

4-11

runs test was performed with a = .05. To test for uniformity, the Chi-Square test

was performed with a = .05 and k = 100.

The sequential simulations used to calculate speed-up factors were each exe-

cuted on a single processing node of one of the iPSC hypercubes, to ensure homoge-

neous processor speed among observations. The algorithm for sequential simulation
0

used the same event-list implementation as the distributed event list algorithm, with

all overhead associated with message-passing and distributed simulation removed.

4.2.1.3 Performance Measurement and Instrumentation All experimen-

tal runs were accomplished on all or some subset of the 32 processor nodes. To initi-

ate a run, an identical process is loaded and started on each node of the hypercube,

and a configuration message is subsequently sent from the Cube Manager to each

node in the executing set of processes to inform it of its assigned sub-model of the

simulation.

When all participating processes have responded with a "configuration re-

0 cciv:d" me- -'gP, a global "start sim~ilation" message is sent. Processes not par-

ticipating in the simulation remain in a loop, waiting for a configuration message

to arrive. As each node completes its simulation, a "simulation complete" mes-

sage is sent to the Cube Manager. When completion messages are received from

all executing nodes, simulation statistics are collected from each node. During the

experimental runs, no other processes were executed on the processing nodes.

* 4-12

* Included in the simulation execution times, in both distributed and sequential

algorithms, is the collection of certain simulation statistics. Population data was

gathered on inter-arrival and service times, and the time-in-system of all entities

in the queueing model. Data was collected on the length of each queue in the

simulation model. including the event list. Time data was also collected for server

utilization. Collection of data to calculate statistics such as these can be considered

an integral part of any simulation, and was therefore included in the execution time

of all simulation models, while the calculation of statistics from the data was not.

In addition, the numbers of Null and event messages received and sent at each LP

were accumulated in the distributed simulation runs. The additional overhead of

• this collection, not reflected in the equivalent sequential simulation, was found to be

negligible, and was therefore ignored.

0 Empirical observations were made for simulation runs of 1000000 time units,

to allow the underlying simulation to reach steady state conditions. All simulation

runs were triple-replicated, and the mean taken as the observed value.

4.2.2 Empirical Results

* 4.2.2.1 Effects of Topology and Spin Loop The topology of connections

among the LP's of a distributed simulation has been identified as a signilicant de-

terminant of performance in performance studies of the Chandy-'Misra algorithm

[PWM79. RNI88]. In response to this, the performance of the distributed event list

* 4-13

S S S S S S
1 2 3 30 31 32

* Figule -1.2. Network of Sub-models in Tandem Topology

-tlgorithm was investigated for simulation networks of several topologies. The most

basic of these is the tandem topology (See Figure 4.2), consisting of a set of M sub-

models S, it = 1.... M with probability 1.0 of entity routing from Sm to Smi.

except for S.11. which routes outgoing entities into a termination process. With no

possibility of deadlock, the tandem model provides little challenge to a distributed

simulation algorithm, and satisfactory performance for tandem networks can be con-

sidered a --feasibility test" for a distributed simulation algorithm [RMM88I.

Tandem topologies are expected to perform well in distributed simulation. so

it is not surprising that significant speed-ups have been realized by applying the

distributed event list algorithm to tandem networks. The attained speed-up factors.

however. were somewhat higher than the number of processors in most cases. This

exceeds what had previously been thought to be the theoretical bound on speed-up

of a ditributed simulation. These super-linear speed-ups are evidence of the super-

linear effects of the event list implementation as described in Section 4.1. Figure 4.3

presents the speed-uip factors achieved for the tandem topology.

A more complex family of topologies is the class of feed-forward topologies.

in wh~ich entities exiting a sub-model can be routed to one of several sub-models.

4-14

Speed-Up of Tandem Model

46

40

•

..

is I5..

10.........i...oj..

*1 . ..

0 I1 1 I 1 1

0 4 8 12 18 20 24 28 32

Pmnrjt

Figure 4.3. Speed-Up for Tandem Topology

4-15

* with the restriction that there exist no directed cycles in the sub-model connec-

tion graph. Feed-forward networks often contain sets of sub-models in the fork-join

configuration that may cause acyclic deadlock to occur. Two versions of a gener-

alized feed-forward topology with a high degree of branching, as shown in Figure

4.4, were investigated. A -balanced" version of the feed-forward topology was eval-

* uated, in which the entities emanating from a sub-model have an equal probability

of branching to a given connected sub-model. In addition, an "unbalanced" version

was investigated, in which an arbitrarily chosen path of each multiple branch was as-

signed a routing probability of .01, with the remaining .99 probability di ided evenly

over the remaining paths.

In performance studies of the Chandy-Misra algorithm, the introduction of

feed-forward branching in the logical system has been shown to have an adverse

impact on speed-up [RMM88]. Those results are contradicted by the performance of

the distributed event list algorithm in feed-forward networks (See Figure 4.5). Both

balanced and unbalanced feed-forward models achieved speed-ups consistently equal

to or better than those observed in the tandem model.

The superior performance achieved for models with feed-forward topologies is

* partially attributable to the nature of the simulation workload model in use. A

high ratio of internal events to outside communications in each sub-model make the

simulation particularly amenable to a two-dimensional decomposition, and causes

0

* 4-16

0

0

Figure 4.4. Network of Sub-models in Feed-Forward Topology

0m

4-17

* eSpeed-Up of Feed-Forward Models

5r "

20 --

0 10 -..

0 4 a 12 is 20 24 2S 3

Figure 4.5. Speed-Up for Feed-Forward Topology

0

04-18

=,.. .=.,. ,n, .. ra.numn ,,u mulnln mn mno II

performance to be relatively insensitive to the fairly large numbers of Null messages

transmitted in these feed-forward networks.

Another common topological class of simulation networks are those in which

directed cycles or "feedback loops" appear in the sub-model connection graph. Feed-

back loops in a simulation topology test the cyclic deadlock avoidance mechanism

0 of the distributed simulator. Performance of the Chandy-Misra Null Message algo-

rithm has been shown to react negatively to the presence of feedback loops in the LP

connection graph [PWM79, CM81]. This property is also present in the distributed

event list algorithm with Null messages. Introducing a feedback path over a set of

LP's appears to cause a time-driven effect as described in Chapter 2, in which each

LP is dependent on another LP for time advance, the net result being that all LP's

are constrained by the slowest LP in the cycle.

* This effect was demonstrated by adding a "pseudo" feedback loop from the

last LP to the first LP in a tandem logical system. The underlying simulation model

was not changed, however, so that the there was no actual probability of entities

feeding back. The tandem model executed as it normally would, but the logical

system synchronized time advance as if a back-to-front feedback loop existed (see

* Figure 4.6). Differences in distributed execution time from the tandem model are

then wholly attributable to the added synchronization and communication overhead

of the pseudo-feedback, and execution times can therefore be directly compared. The

tandem and pseudo-feedback models were executed on 32 processors (with identical

4-19

pseudo-feedback loop

-- --- --- --- ---.-- --- --- --- ---- -D ---- -

0
S S S S S S

1 2 3 30 31 32

Figure 4.6. Tandem Logical System with Pseudo-Feedback

Topology Execution Time (s) # of Null Messages

Tandem 36.0 6422

* Pseudo-feedback (1 Loop) 3601.3 1.9 X 106

Pseudo-feedback (2 Loops) 3729.2 3.0 x 106

Pseudo-feedback (3 Loops) 3963.1 4.4 x 106

Pseudo-feedback (4 Loops) 4361.48 7.0 x 106

Table 4.2. Effect of Pseudo-Feedback Loops on Tandem Model

processor assignment). The introduction of a pseudo-feedback loop in the tandem

model resulted in a hundred-fold increase in execution time and an "explosion" of

Null message traffic. Additional pseudo-feedback loops nested inside of the outermost

G loop resulted in further significant increases in execution time and the number of Null

messages transmitted. These results are shown in Table 4.2.

The effects of a computational workload applied to each event of the simulation

were evaluated. A computational workload, also known as the spin loop [Fuj88], wais

associated with each event in the distributed and sequential simulations. The spin

loop is a totally artificial computational load; in this case each spin loop consisted

* 4-20

of two multiply operations and a divide operation. Experiments were conducted for

spin loops of 0 and 1000, for tandem and feed-forward topologies distributed over

2' , zi = 1,. ,5 processors.

Adding a spin loop to the computation of each event had several effects. In

a simulation with a low ratio of internal events to event messages at each LP,

S• the increased amount of work done in relation to the communications overhead

would tend to increase speed-up. In distributed simulations with a high internal

event/communications ratio as displayed by the models in these empirical studies.

other components of execution time are dominant over communications overhead. In

the distributed event list algorithm, increased spin loop also causes the list insertion

time to be a relatively less-important component of execution time. The constant

load per event can overwhelm the super-linear advantage gained by distributing the

event list.

The latter effect can be expected to be dominant in the models presented

above, since achieved speed-ups have been consistently super-linear. This does turn

out to be the case for both tandem and feed-forward networks, as seen in Figure

4.7 (only balanced feed-forward is shown; unbalanced feed-forward results were very

* similar).

4.2.2.2 Null Message Strategies The relative effectiveness of the variant

strategies for transmitting Null messages was evaluated in a series of experiments.

Two variants, the use of a Null Message Time-out and the addition of Stimulus Nulls,

* 4-21

* Speed-Up Effects of Spin Loop

Tandem Topology

401... *
1000 Spin~

10 ... *.

10

0 4 8 12 is 21) 24 28 32

Figure 4.7. Speed-Up Effect of Spin Loop

* 4-22

0 Topology Spin Loop Number of Nodes Null Messages

tandem standard

feed- forward (balanced) 0 w/ Time-out

feed-forward (unbalanced) 1000 w/ Stimulus Nulls

0 Table 4.3. Summary of Factors for Null Message Strategy

both described iii Chapter 3, were evaluated in comparison with the "standard"

strategy for Null message transmission. Comparisons were made for networks of

0 various topologies, for numbers of processors 2d, d = 1,..- ,5, and with the addition

of spin loop. A summary of the experimental factors is presented in Table 4.3. Note

0 that no feedback topologies were evaluated. Preliminary analyses demonstrated

that both Null message variants caused the number of Null messages generated by

feedback models, already excessive, to further increase. This often led to buffer

0 saturation and thc abnormal termination of the simulation, as a result of necessary

implementation compromises that had been made (discussed in Section 4.2.2). It

* was decided to orient the research toward other, more productive areas.

One variant method for Null message transmiss:on is the Null message with

Time-out algorithm described in Section 3.2.6.2. Recall that this algorithm variant

sends Null messages after a specified amount of real clock time has passed without

a simulation time advance. In the experiments, the standard Null message strategy

* was compared with the Time-out algorithm for time-out values of 25 ms, lOOms.

1000ms, and 106 ms.

• 4-23

* In the case of the tandem model, the Time-out strategy was found to hurt

performance in almost every instance. This is somewhat intuitive, since a tandem

model with a balanced workload sends relatively few Null messages, so there is little

chance of excessive Null message overhead. (In addition, the high internal /external

event ratio of the workload model would appear to benefit from a certain amount of

• Null message traffic.) The negative effect of Time-out was most pronounced for the

case of 0 spin loop,as can be seen in Figure 4.8. In these observations, increasing

the Time-out value always decreased the speed-up. The decrease in speed-up was
0

not proportional to the Time-out value, but roughly proportional to the number

of Null messages eliminated by the Time-out (the limit, of course, being when no

• Null messages are sent). This effect is consistent with the relative insensitivity to

Time-out of the simulations distributed over few nodes, since those highly-utilized

processes send Null messages infrequently in the tandem model.
0

Because of the decreased ratio of the Time-out values to event processing times,

Time-outs had less effect when a spin loop of 1000 was introduced. The effect of the

0
Time-out was still negative in each case, however.

Feed-forward models were evaluated with the time-out algorithm, and also

* suffered decreased performance in comparison to the standard method. As in the

tandem case, the decrease in speed-up was consistent with increased time-out, with

the effect proportional to the number of Null messages eliminated by each Time-
0

out. The negative effect of Time-out on the unbalanced feed-forward model was

* 4-24

0

• Speed-Up with Null Message Time-Out

Tandem Topology, 0 Spin Loop

NONE

40- ----.

25
*

300

20. *--.......... 10 00

0I 'I I I I I I

0 4 B 12 16 20 24- 28 32
* ProcQssu

Figure 4.8. Tandem Speed-Up, Time-out Nulls, 0 Spin Loop

4-25

Speed-Up with Null Message Time-Out

Balanoed Feed-Forward, 0 Spin Loop

50

NONE

* ~~40

30 .. I.......................
100

10 20 L G

0 4- 8 12 16 20 24 28 32

PrnCQS=M

0 Figure 4.9. Balanced Feed-Forward Speed-Up, Time-out Nulls, 0 Spin Loop

noticeably more than that in the balanced case, which was relatively unaffected (See

* Figure 4.9).

The poor performatice of the Time-out algorithm is also partly attributable

to high internal event/communications ratio of the workload model. More positive

results would be expected in applying Time-out to simulations that are "communi-

cations bound," especially those in networks with high degrees of branching.

4-26

,As the sending of extra Stimulus Null messages (as described in Section 32.6. 1)

is. in some sense, the *'complement" of the Time-out, the Stimulus Null met hod

would appear to have potential, given the failure of the Time-out algorithm that has

been observed. Experiments were performed in which Stimulus Nulls were transmit-

ted over the outgoing message channels of each LP in conjunction with 10%, 1%.

* and 0.1% of the events simulated at that LP.

Results of these experiments show that slight increases in speed-up are regularly

achievable with Stimulus Nulls, across all topologies and spin loop values. This was

typified by the performance of the balanced feed-forward case with 1000 spin loop,

shown if Figure 4.10.

An interesting observation is that of feed-forward networks with 0 spin loop.

Here both balanced and unbalanced models showed a decrease in speed-up at 16

• to 32 nodes as 10% Stimulus Nulls were applied. For these models, lower levels

of Stimulus Nulls had negligible effect, as seen in Figure 4.11. Because the feed-

forward models with 0 spin loop have the highest Null message traffic to begin with,

the appearance is that of a "threshold" for Null messages, up to which performance

improves, but after which performance begins to drop off due to the overhead of

• reading and sending extraneous Null messages.

The assignments of simulation models to logical processes in the above exper-

inients were chosen so as to maintain a balanced workload among logical processes.

Idlentical assignmnts were used across all observations. The logical process as-

4-27

Speed-Up with Stimulus Nulls

Bqlan ed Feed-Forward, 1000 Spin Loop

00

25 NONE

20

LA_ 1• t1 '
5 .. *............................. *..........

0 1
0 4 8 12 16 20 24 25 32

Pnx:Qm

Figure 4.10. Balanced Feed-Forward Speed-Up, Stimulus Nulls, 1000 Spin Loop

4-28

Speed-Up with Stimulus Nulls

Unbalanced Feed-Forward, 0 Spin Loop

501 -----

NONE
4 4

30---

3---

20 .. --- 10%

10....................

10

* 0 4- 8 12 16 20 24. 28 32

Prcssr

Figure 4.11. Unbalanced Feed-Forward Speed-Up, Stimulus Nulls, 0 Spin Loop

4-29

signment did not induce feedback loops in any instance. The assignment of logical

processes to processors of the hypercube was done to minimize communications over-

head in the tandem case and variants thereof. The processor assignment was fixed

for all runs of each topology.

4.2.2.3 The Assignment Problem The assignment of processes to pro-

cessors is a classic problem in distributed processing. Two conflicting factors, com-

munications overhead and processing workload balance, must be traded-off in order

S to achieve an assignment that maximizes throughput. Methods for calculating ali

optimal assignment for a distributed application are generally computationally in-

tractable, however [CH*80]. This may be especially applicable in the area of sim-

ulation, where the communications and processing loads of a simulation model are

not, well-known a priori (or else closed form solutions, rather than simulation, could

have been used to solve the application problem). It is then necessary to resort

to heuristic methods for determining a "good," rather than "best" assignment of

* processes to processors.

In the distributed event list algorithm, the way in which the logical process

encapsulates the simulation sub-model at its processor adds a new dimension to the

assignment problem. The monolithic nature of the LP time advance mechanism

makes it possible for non-cyclic topologies of PP's to be mapped into cyclic networks

* of LP's. as shown in Chapter 3. Even simple tandem networks can be assigned in

such a way. Given the poor performance demonstrated by the distributed event list

* 4-30

0 Assignment Characteristics

Balanced Load Vertical format; No feedback introduced; Equal number
of PP's per LP

Pure Vertical No feedback introduced; Load balance not considered:
Logical system reduces to tandem

Table 4.4. Assignment Strategies for Feed-Forward Topology

• Assignment Execution Time (s) # Null Messages # Event Messages

Balanced Load 103.2 4288 2394

Pure Vertical 160.2 4055 3049

Table 4.5. Effect of Assignment, Balanced Feed-Forward, 8 Processors

algorithm in association with feedback loops in the logical system, the topology of

* the logical system must be considered in addition to the "traditional" assignment

factors of workload and communication overhead.

• Experiments were conducted to provide insights into effective strategies for

mapping a simulation onto a given number of logical processes. In one set of these

experiments, models of feed-forward topology, with both balanced and unbalanced

routing, were assigned to a logical system of 8 processors, with the assignment meth-

ods shown in Table 4.4.

• The results of these assignment experiments show that achieving an even work-

load over all logical processes is of greater importance than eliminating branchitig.

for both balanced and unbalanced feed-forward networks. These results mesh with

earlier findings of comparable performance for tandem and feed-forward topologies.

4-31

Assignment Execution Time (s) # Null Messages # Event Messages

Balanced Load 103.5 4456 2307

Pure Vertical 159.6 4124 3023
06

Table 4.6. Effect of Assignment, Unbalanced Feed-Forward, 8 Processors0 1C...
•

iS S S S S S S S

1 2 3 S 4 28 29 30 31 32

* Figure 4.12. Tandem Topology with Single Loop

An experiment was conducted to gauge the effectiveness of containing an ex-

isting feedback loop within a logical process at the expense of load balancing. A new

topology was introduced for this experiment, consisting of a tandem network with

a single feedback loop with .01 routing probability, as shown in Figure 4.12. The

• configuration of this topology yields the worst possible load balance for an 8 node

assignment if the feedback loop is contained within a logical process. The assignment

strategies used are given in Table 4.7.

Assignment Characteristics

Balanced Load Equal number of PP's per LP

Loop Contained Contain feedback loop within a single LP; Load balance
not considered

Table 4.7. Assignment Strategies for Tandem Topology w/ Single Loop

4-32

0 Assignment Execution Time (s) # Null Messages # Event Messages

Balanced Load 2997.44 7.3 x 10' 685

Contain Loop 650.1 1190 655

Table 4.8. Effect of Assignment, Tandem with Single Feedback, 8 Processors

It is apparent from the Single Loop model that the elimination of feedback

0 loops can play a more important role than load balance in the performance of the

distributed event list algorithm. As shown in Table 4.8, containing the feedback loop

at the cost of an unbalanced computational workload can improve execution time

by a large amount.

The preceding assignment experiments suggest the essential relationships be-

tween the factors of topology and workload balance, and so may be used as starting

points for heuristic solutions to the assignment problem. Finding effective heuristics

• for the assignment problem is a major hurdle to be overcome before the distributed

event list algorithm can be considered widely applicable.

0 4.3 Summary

A linear event list implementation for distributed simulation has been shown

* to be O(E), for E events simulated. Time complexity of event list operations of

greater than O(E) has been shown to imply theoretical speed-up factors of greater

than N for a simulation distributed over N processors. This result contradicts a

commonly held view in the literature, which asserts the existence of a bound of N on

* 4-33

attainable speed-up. It has been shown that a speed-up bound of N is unjustified, as

it ignores the time complexity of the event list overhead in the sequential simulations

used for comparison.

Empirical studies have been conducted to evaluate the performance of the

distributed event list algorithm under a variety of conditions. Speed-up greater

0 than N was achieved for certain topologies of simulation models, confirming the

above time complexity analysis. The topology of the simulation model was shown

to greatly affect the attained speed-up. Simulation networks with directed cycles or

"feedback loops" were shown to exhibit extremely poor performance, in agreement

with previous performance studies of the Chandy-Misra algorithm [RMM88]. Feed-

forward branching topologies, which showed poor performance relative to the tandem

model in previous studies (on shared-memory machines), actually performed better

than the tandem case in these experiments. This was attributed to the high inherent

parallelism and low communications ratio in the models studied.

A high computational workload associated with each event was shown to lower

the attained speed-up below N. This contradicted Fujimoto's results, in that the

higher computation/communications ratio induced by the increased workload is ex-

* pected to improve speed-up (Fuj88]. This conflict was explained as a "dampening" of

the super-linear effects of distributing the event list with a constant time component

associated with each event.

* 4-34

* Alternate strategies for sending the Null messages used for deadlock avoidance

were compared. Results showed that for tandem and feed-forward topologies, a

certain level of Null messages were beneficial to speed-up. It was also seen that a

threshold exists, above which additional Null messages are unnecessary overhead.

No strategy that was evaluated was shown to improve the poor performance of

* simulation topologies with feedback.

The problem of assigning a given simulation model to a set of logical processes

was addressed. Again, it was seen that topology played a critical role in the ef-

fectiveness of an assignment strategy. Avoiding feedback loops was shown to be of

(greater imrortance than -traditio, hI1" assignment considerations such as balancing

the processing load of the logical system.

4-35

V. Conclusions

5.1 Summarj

An algorithm for distributed discrete-event simulation, the distributed eventt

* list algorithm, has been described in this thesis. This algorithm uses an event list to

order events at each logical process, and uses a variant of the Chandy-Misra algorithm

for inter-process communication, with a prediction function added. Null messages

are used to avoid process deadlock, as in the original Chandy-Misra algorithm. The

distributed event list algorithm has been shown to require a bounded amount of

* memory at each logical process.

A study of event list implementations shows that the theoretical speed-up

factor for the distributed event list algorithm is in excess of N, for a simulation

distributed over N processors, where both sequential and distributed simulation event

lists are implemented with a linear list. More efficient event list implementations

yield lower theoretical speed-ups, but can still exceed N, which had previously been

thought to be the optimum speed-up.

* Empirical studies show that speed-up values greater than N can be regularly

achieved for simulations with high degrees of parallelism and topologies without

feedback, if the computational workload per event was small in comparison to the
0

list insertion time. Topology is shown to be a prime factor in determining attainable

* 5-1

* speed-up of a given simulation, with the presence of feedback loops playing a critical

role.

5.1.1 Null Message Strategies Several Null message strategies were evaluated

in addition to the basic deadlock avoidance 'trategy. The strategy of sending extra

-stimulus" Nulls was found to be marginally more effective than the basic strategy

in tandem networks, and in cases where there was a large computational load or

..spin loop" associated with each event.

The strategy of sending Null messages during the LP Read Phase with a time-

out between sends did not prove to be effective. Indeed, this strategy, an attempt

to reduce the number of "unnecessary" Null messages, was found to provide worse

performance than the basic algorithm in every case. In networks with feedback

loops, the time-out strategy had the effect opposite to that intended, causing an

"avalanche" of Null messages that virtually paralyzed the logical system, leading to

buffer saturation in most cases.

* The most significant result of studying the variant Null message strategies was

that no strategy was found to improve Lhe poor performance of the distributed event

list algorithm in the presence of feedback loops in the logical system.

5.1.2 Assignment Heuristics Empirical studies have yielded some elemen-

tary heuristics for the assignment of physical to logical processes when using the

distributed event list algorithm. The following basic rules can be used for distribut-

5-2

*A ing a simulation over a given number of logical processes. The rules are listed in

descending order of importance:

*t 1. Avoid introducing feedback loops due to assignment of the simulation model

to the logical system.

2. Contain existing feedback loops within a logical process whenever possible.

3. Achieve a balanced processing load among the logical processes.

4. If possible. reduce the amount of branching in the logical system.

5.2 Assessment of the Distributed Event List Algorithm

The distributed event list algorithm has been shown to provide a significant

source of speed-up for discrete-event simulation in many circumstances. There are.

however, several properties of the algorithm which may limit its applicability. Per-

ceived advantages and disadvantages of the distributed event list algorithm in rela-

tion to other distributed simulation algorithms are enumerated below.

5.2.1 Advantages of the Distributed Event List Algorithm Some advantages

of the distributed event list algorithm for distributed discrete event simulation are

as follows:

* The distributed event list algorithm can provide heretofore unrealized speed-

ups for simulations of certain topologies. The algorithm can be highly efficient.

providing significant speed-up with few processors.

5-3

* * The algorithm is based on the widely-used event-oriented view of sinmlation.

and therefore requires no change in perspective to use, as do some other dis-

tributed simulation algorithms. Parallelization of existing sequential simnlila-

tion models should then be comparatively easy with the distributed event list

algorithm.

e The use of a single logical process at each processor, as in the distributed event,

list algorithm, facilitates checkpointing and the collection of statistics.

5.2.2 Disadvantages of the Distributed Event List Algorithm Some perceived

weaknesses in the distributed event list algorithm are the following:

" Attainable speed-up is highly dependent upon the absence of feedback loops

in the logical system topology, as in the original Chandy-Misra Null message

0 algorithm. A feedback loop in the simulated system can be negated by con-

taining it inside a single logical process. This practice, however, limits the

number of processes in the logical system to the maximum number of disjoint

non-cyclic subgraphs of the physical process connectivity graph.

" The distributed event list algorithm can not. provide a deterministic execution

of simultaneous events in many cases. Because each fogical process can only

predict its future message output if no event is scheduled at the current sinmula-

* tion time, processes are required, in order to avoid cyclic deadlock, to simulate

any events scleduled for the current simulation time, rather than waiting for

* 5-4

* all possible message events at that time to arrive. Event messages with the

same simulation time arriving at a logical process from two different processes

are simulated in the arbitrary order of their arrival.

e The tightly-coupled nature of the logical process complicates the assignment

problem. As demonstrated in Chapter 3, a logical system may have a radically

different topology than the underlying physical system, perhaps introducing

feedback loops where none exist in the simulated system. The aforementioned

* poor performance of cyclic systems and the necessity of maintaining logical

system predictability (Chapter 3) make topology an important assignment con-

sideration.

5.3 Recommendations for Further Research

Recommendations for additional research focus on ameliorating some of per-

ceived weaknesses of the distributed event list algorithm. These weaknesses keep the

distributed event list algorithm from possessing the qualities of robustness required

for a generally-applicable distributed simulation algorithm.

A variant of the distributed event list algorithm was developed that replaco,

* the Null message algorithm for deadlock avoidance with a Marker algorithm for

deadlock detection and recovery, as proposed by Misra [Mis86I. This variant should

be evaluated as a possible remedy for the poor cyclic performance of the present.

algorithm. Improving the performance of the distributed event list algorithm in

* 5-5

* networks with feedback would ease the assignment problem as well. Other possil~l,

algorithms for deadlock detection and recovery are outlined in [CNI.18.

Comprehensive assignment heuristics should be developed, with the eventual

goal of integration into an automated system for physical-to-logical system mapping.

The elementaly heuristics provided above, such as avoiding inducing loops in the

logical svstem. would be relatively straightforward to automate. More challenging

would be the automation of in-depth assignment heuristics, utilizing information

internal to the physical system to estimate a near-optimal assignment based on the

estimated computation and communications load for a given simulation.

A grave weakness in the distributed event list algorithm is its lack of capacity

in dealing with simultaneous events. There is no obvious solution to this problem.

Unless the algorithm can be modified so that the order of execution of simultaneous

• events can be ascertained, the distributed event list algorithm will remain unsuitable

for those applications, such as digital logic simulation, in which the order of execution

of simultaneous events significantly affects the resulting system state.

* 5-6

* Bibliography

B(S4. Jerry Banks and John S. Carson. Discrete Event Simulation. Prentice-
Hall, Englewood Cliffs, NJ, 1984.

D BD085. William E. Biles, Cheryl M. Daniels, and Tamilea J. O'Donnell. Statis-
tical considerations in simulation on a network of microcomputers. In

Proceedings of the 1985 Winter Simulation Conference, pages 388-393.

December 1985.

BFS83. Paul Bratley, Bennett L. Fox, and Linus E. Schrage. A Guide to Sirnu-
* lation. Springer-Verlag, New York, NY, 1983.

BJ8-5. Orna Berry and David Jefferson. Critical pikh analysis of distributed
simulation. In Paul Reynolds, editor, Distributed Simulation 1985. SCS.
La Jolla CA, 198.5.

0 Br'Y1). Randal E. Bryant. Simulation on a distributed system. In Procecdiniqs of
the Ist lnt I Conference on Distributed Computing Systems, pages 51-1-
552, October 1979.

CH*80. W. W. Chu, L.J. Holloway, et al. Task allocation in distributed data
processing. Computer, 13(11):57-69, November 1980.

CX179. K. Mani Chandy and Jayadev Misra. Distributed simulation: a case
study in design and verification of distributed programs. IEEE Trans-
actions on Software Engineering, 5(5):440-452, September 1979.

CM81. X.M. Chandy and J. Misra. Asynchronous distributed simulation via
* a sequence of parallel computations. Communications of the .,C.1t.

24(11):198-206, April 1981.

C.N83. K. Mani Chandy and Jayadev Misra. Distributed deadlock detection.

ACM Transactions on Computer Systems, 1(2):144-156, May 1983.

Com82. John Craig Comfort. The design of a multiprocessor based simulation

computer - i. In Proceedings of the Fifteenth Annual Simulation Sympo-
sium., pages 17-33, March 1982.

Com83. John Craig Comfort. The dcsign of a multiprocessor based simulation

computer - ii. In Proceedings of the Sixteenth Annual Simulation Sym-
• posium, pages 197-209. 1983.

DN66. Ole-Johan Dahl and Kristen Nygaard. Simula - an algol-based simuila-
tion language. Communications of the ACM, 9(9):671-678, September

1966.

0 DR83. David L. Davidson and Paul F. Reynolds Jr. Performance analysis of

a distributed simulation algorithm based on active logical processes. In
Proceedings of the 1983 Winter Simulation Conference, pages 263-26-1.
December 1983.

* BIB-I

[)3S80. Edsger W. Dijkstra and C.S. Scholten. Termination detection for dif-
fusing computations. Information Processing Letters, 11(1):1 -- i.tusl
1980.

Fuj88. Richard NI. Fujimoto. Performance measurements of distributed sinli-
ulation strategies. In Distributed Simulation 1988, SCS, La Jolla CA.
1988.

H1384. Kai Hwang and Faye A. Briggs. Computer Architecture and Parallh
Processing. McGraw-Hill, New York NY, 1984.

lei86. Philip Heidelberger. Statistical analysis of parallel simulation. In Pro-
ceedings of the 1986 Winter Simulation Conference, pages 290-295. 19863.

I loa 78. C.A.R. Hoare. Communicating sequential processes. Commimnicaliol?.,
of the ACM, 21(8):666-677, August 1978.

Iloa85. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Ilall, Eu-
* glewood Cliffs NJ, 1985.

IntS6a. Intel. iPSC Dynamic Loader Manual. Intel Scientific Computers.
Beaverton, Oregon, November 1986. Order Number 310103-002.

lnts6b. Intel. iPSC System Overview Manual. Intel Scientific Computers,
Beaverton, Oregon, November 1986. Order Number 310610-001.

Je[85. David Jefferson. Virtual time. ACM Transactions on Programming La,-

guages and Systems, 7(3):404-425, July 1985.

Jon86a. Douglas W. Jones. Concurrent simulation: an alternative to distributed
simulation. In Proceedings of the 1986 Winter Simulation Conference.
pages 417-423, 1986.

Jon86b. Douglas W. Jones. An empirical comparison of priority-queue and event-
set implementations. Communications of the A CM, 29(4):300-311, April
1986.

JS85. David Jefferson and Henry Sowizral. Fast concurrent simulation using
the time warp mechanism. In Distributed Simulation 1985, SCS. La Jolla
CA. 1985.

I'1, 187. Fred J. Kaudel. A literature survey on distributed discrete event simun-
lation. Simuletter, 18(2):11-21, June 1987.

Lain78. Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-565, July 1978.

LK82. Averill M. Law and W. David Kelton. Simulation Modelling and Anal-
ysis. McGraw-Hill, New York NY, 1982.

BIB-2

* .NIC82. Javadev Misra and K.M. Chandy. Termination detection of diffus-
ing computations in communicating sequential processes..4 CA! Tans-
actions on Programming Languages and Systems, 4(1):37-43. Januarv
1982.

N1is86. Javadev Misra. Distributed discrete-event simulation. ACM Computing
Surveys, 18(1):39-65, March 1986.

Nan81. Richard E. Nance. The time and state relationship in simulation mod-
eling. Communications of the ACM, 24(4):173-179, April 1981.

NP84. David M. Nicol and Paul F. Reynolds, Jr. Problem oriented proto-
col design. In Proceedings of the 1984 Winter Simulation Con.frlrnlcr.
pages 471-474. November 1984.

Par69. David L Parnas. On simulating networks of parallel processes in which si-
multaneous events may occur. Communications of the ACM, 12(9):519-

* 531, September 1969.

Pri74. A. Alan B. Pritsker. The GASP IV Simulation Language. John Wiley'
& Sons, New York NY, 1974.

Pri86. A. Alan B Pritsker. Introduction to Simulation and SLAM I. Systems
* Publishing Corp., West Lafayette IN, 1986.

PV83. Y. Paker and J.P. Verjus, editors. Distributed Computing Systems. Aca-
demic Press, New York NY, 1983.

PWM79a. J. Kent Peacock, J.W. Wong, and Eric G. Manning. A distributed ap-
proach to queueing network simulation. In Proceedings of the 1979 Win-

0 ter Simulation Conference, pages 399-406, December 1979.

P\VM79b. J. Kent Peacock, J.W. Wong, and Eric G. Manning. Distributed simula-
tion using a network of processors. Computer Networks, 3:44-56, 1979.

Ree85. Daniel A. Reed. Parallel discrete event simulation: a case study. In
Proceedings of the Eighteenth Annual Simulation Symposium, pages 95-
107, 1985.

Rev82. Jr. Reynolds, Paul F. A shared resource algorithm for distributed simu-
lation. In Proceedings of the Ninth Annual Int'l Computer Architecturc
Conference, pages 259-266, April 1982.

Rey83. Jr. Reynolds, Paul F. Active logical processes and distributed simula-
tion: an analvis. In Proceedings of the 1983 Winter Simulation Confer-
ence, pages 263-264, December 1983.

R.\188. Daniel A. Reed and Allen D. Malony. Parallel discrete event simulation:
the chandy-misra approach. In Distributed Simulation 1988, SCS. La
Jolla. CA, 1988.

BIB-3

Vita

David L. Mannix was born in He

Rduated in 1980 High School iL He at-

tended Miami University, Oxford, Ohio, graduating in May 1984 with a B.S. in

Systems Analysis, while obtaining his commission as a Second Lieutenant, U.S. Air

Force, through the ROTC program. He was subsequently assigned to Aeronautical

Systems Division, Air Force Systems Command, Wright-Patterson AFB, Ohio, un-

der the Deputy Comander for Strategic Systems. In this assignment, he managed

the development of safety-of-flight-critical flight control software, prior to entering

the Air Force Institute of Technology in June 1987.

1

I- t

I VITA.l

RMM88. Daniel A. Reed, Allen D. Malony, and Bradley D. McCredie. Parallel

discrete event simulation using shared memory. In Distributed Sirniua-

tion 1988, SCS, La Jolla CA, 1988.

Sch82. Fred B. Schneider. Synchronization in distributed programs. In A CAI
Transactions on Programming Languages and Systems, pages 179-195,
April 1982.

Sha75. Robert E. Shannon. Systems Simulation: The Art and Science.
Prentice-Hall, Englewood Cliffs NJ, 1975.

VD75. Jean G. Vaucher and Pierre Duval. A comparison of simulation event set.

algorithms. Communications of the ACM, 18(4):223-230, April 1975.

* Zei76. Bernard P. Zeigler. Theory of Modelling and Simulation. John Wiley
and Sons, New York, NY, 1976.

,0

BIB-4

0i

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
Form Approved

REPORT DOCUMENTATION PAGE OM No. 070-ove

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGSUNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANJIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/88D-14

4 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

School of Engineering (if applicable)
AFIT/EG

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, Stata, and ZIP Code)
Air Force Institute of Technology
Wright-Patterson AFB, Oil 45433

8a. NAME OF FUNDING/SPONSORING I8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

(See Block 8c) IJTFP____
Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Joint Tactical Fusion Program Management PROGRAM PROJECT I TASK 'WORK UNIT

Office 1500 Planning Research Drive ELEMENT NO. NO. NO ACCESSION NO.

McLean, Virginia r
11. TITLE (Include Security Classification)

(See Block 19)

12. PERSONAL AUTHOR(S)i
David L. Mannix, B.S., Capt, USAF

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
MS Thesis FROM TO 1988 DecemberI 140

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Distributed Data Processing, Cmputerized Simulation
12 07 Distributed Simulation, Parallel Simulation
12 05

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: Distributed Discrete-Event Simulation Using Variants of the Chandy-isra
Algorithm on the Intel hypercube

Thesis Advisor: Nathaniel J. Davis IV, CPT, USA
Assistant Professor of Electrical Engineering

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
1 UNCLASSIFIED/UNLIMITED M SAME AS RPT. C DTIC USERS UNClASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Nathaniel J. Davis IV, CPT, USA 513) 255-5533 AFIE

o DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

The goal of distributed simulation is to speed up simulation by distribut-
ing a simulation model's execution over multiple processors. This thesis
reviews existing methods for distributed simulation, and introduces an al-
gorithm for distributed discrete-event simulation, the distributed event list
algorithm, based on the Chandy-Misra algorithm, with an event list, similar
to that used in sequential simulation, at each logical process. Null mes-
sages are used for deadlock avoidance. The algorithm is described, and
is shown to require a bounded amount of memory at each logical process.

A performance analysis of the distributed event list algorithm is per-
formed. In the analytical portion, a linear event list implementation is
shown to be of super-linear time complexity in relation to events simu-
lated. This time complexity implies theoretical speed-up of greater than
N for a simulation distributed over N processors. This result contradicts a
commonly-held view of the existence of a bound of N on attainable speed-up.)

//

Empirical studies evaluate the performance of the distributed event list.
algorithm under a variety of conditions. Speed-up greater than Nare shown
to be achievable for certain topologies of simulation models, confirming the
time complexity analysis. The topology of the simulation model is shown
to greatly affect the attained speed-up. Simulation networks with directed
cycles exhibit extremely poor performance, in agiement with previous per-
formance studies of the Chandy-Misra algorithm.> Alternate strategies for
sending the Null messages used for deadlock avoidance are compared. Re-
slits show that for tandem and feed-forward topologies, a certain level of
Null messages are beneficial to speed-up. The problem of assigning a given
simulation model to a set of logical processes is addressed. It is seen that
lopology of the logical system plays a critical role in the effectiveness of an
assignnmcnt strategv)6 I -'--

