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ABRACT

This paper, which is the first in a two/part study, addresses certain
issues concerning the smallrstrain theory of nonlinear elasticity. It con-
siders isotropic materials which possess a linear response in shear and a
nonlinear response in dilatation, and (i) establishes an explicit necessary
and sufficient condition for the existence of piecewise homogeneous defor-
mations, (ii) obtains a characterization of the set of all such deforma-
tions, (iii) derives an expression for the fdriving traction- on a surface
of discontinuity in the strain, and finally (iv) discusses the notion of a
kinetic law. While the analysis is carried out within a three-dimensional
setting, the results are shown to have a particularly simple form when
expressed in terms of a certain constitutive function ie. In Part II of
this study we examine a specific boundaryYvalue probe .
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1. Introduction

In this paper, which is the first in a two-part study, we show that

certain features of the finite theory of elasticity are also present in the

small-strain nonlinear theory; the particular class of constitutive laws

that we consider here is one that has been used to model the mechanical

response of ceramic composites undergoing supercritical phase transforma-

tions. In Part II we will examine a specific boundary-value problem.

U A number of recent studies in finite deformation elasticity theory have

been concerned with "nonelliptic materials", see for example [1-10]. Such

materials are capable of sustaining deformations whose gradient is discon-

tinuous across certain surfaces in the body; this leads to a tremendous

lack of uniqueness of solution to boundary-value problems, since the class

of functions from among which a solution is sought has to be greatly

enlarged to allow for such deformations. Moreover, quasi-static motions of

a body composed of such a nominally elastic material can involve a dissipa-

tion of mechanical energy at particles located on a moving surface of dis-

* continuity, [9].

Continuum mechanical treatments of stress-induced phase transforma-

tions in solids involve such deformations, e.g. [6,7]. In the context of

3 phase transformations, a surface of displacement gradient discontinuity

corresponds to a phase boundary separating two different phases of the

material, and the aforementioned non-uniqueness might be thought of as

arising due to the fact that the classical equations of the continuum

theory do not account for the kinetics of the transformation.
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In the present study we examine the corresponding issues within the

infinitesimal strain theory of nonlinear elasticity. We show that the

aforementioned phenomena (of discontinuous, dissipative, non-unique defor-

mations) persist in the infinitesimal strain theory too, suggesting that

(in some sense) it is the constitutive nonlinearity rather than the kine-

matical one that is the principal source of these features.

In this study we restrict attention to the particular class of consti-

tutive laws that were proposed by Budiansky, Hutchinson and Lambropou-

los[14] for modeling the mechanical response of certain transforming ceram-

ics. The fracture toughness of these ceramic composites (which contain

I second phase particles that undergo a phase transformation) was known

to be higher than that of the brittle ceramic matrix [11,12,13]. In order

to model this phenomenon at the continuum level, Budiansky, Hutchinson and

Lambropoulos [14] derived a homogenized constitutive law for such compos-

ites using arguments based on the self-consistent method. They argued that

I since the transformation leads to particles twinned into layers of alter-

nating shear, the average shear associated with the transformation, from a

continuum point of view, is essentially zero. Accordingly, they proposed

(and studied) a constitutive law with a linear response in shear and a tri-

linear response in dilatation; see also Silling [15]. It is this class of

I materials that we will study here (modified to allow the dilatational

response to be arbitrary).

3 Chen and Reyes Moral [16] have experimentally examined the relative

importance of shear and dilatation in transforming ceramics, and Lambrou-

I polos [17] has proposed a more general constitutive law that accounts for

both of these effects. We do not consider such generalizations here.



In this paper, we first recall the ellipticity conditions for the

three-dimensional displacement equations of equilibrium; they are shown to

have a particularly simple interpretation in terms of the stress response

function of the material in uni-axial deformation, Z(e). Next, in Section

3, we examine conditions under which a three-dimensional piecewise homoge-

neous deformation can be sustained by the material, and derive a single

necessary and sufficient condition for the existence of piecewise homoge-

neous deformations. This condition too is expressed in a particularly

simple form in terms of Z(c); in addition to providing information on

existence, it also allows us to characterize the set of all possible piece-

wise homogeneous equilibrium states.

As shown by Knowles[9], when the theory of finite elasticity is broad-

5 ened to allow for equilibrium fields with discontinuous displacement gra-

dients, the usual balance between the rate of external work and the rate of

storage of elastic energy during a quasi-static motion no longer holds.

Instead, one finds that mechanical energy may be dissipated at points on

the surfaces of discontinuity. This in turn permits one to introduce the

3 notion of a "driving traction" which may be viewed as a normal traction

that the body applies to the surface of discontinuity at each of its

points. In Section 4 we observe that a dissipation of mechanical energy

can also occur in the small-strain theory of elasticity, and we derive an

explicit expression for the driving traction in the case of the

aforementioned materials; this too may be simply expressed in terms of

The stress response function in uni-axial deformation E(e) plays such-a
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visible role in all of these results because (as shown in Section 3) the

I local deformations on the two sides of a surface of discontinuity differ

from each other by precisely a uni-axial stretch in the direction normal to

that surface.

I
In Section 5 we briefly discuss the need for additional constitutive

i information in order to complete the theory. As discussed there, this

might, for example, take the form of a "kinetic law" which relates the

driving traction on the surface of discontinuity to its velocity of propa-

gation. The "flow rule" utilized by Budiansky et all14] is equivalent to a

particular kinetic law as will be discussed more fully in Part II.I
i The results in this paper pertaining to the existence of piecewise

homogeneous deformations (in three-dimensions) have a similar form to

analogous results for isotropic, incompressible elastic materials

undergoing finite plane deformations, [20]. Likewise, the

(three-dimensional) driving traction formula here is similar to the

corresponding formulae for finite Rlane and anti..lane deformations

[20,21]. A discussion of kinetic relations in the particular setting of

the one-dimensional theory of bars was given in [22].

Finally, in Section 6 we observe that the driving force on the tip of a

crack is generally affected by the presence of a surface of strain discon-

tinuity, even if the crack is stationary; see (14]. A relationship between

3 the far field value of the J-integral, the near-tip value of J and the

resultant driving force on the surface of discontinuity is derived.i
i
i
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2. Preliminaries.

Consider an elastic body occupying a region R of three-dimensional

space. Let 4 be the position vector of a particle in R and let u(x) be its

displacement. Suppose that there is a smooth surface S which lies in R,

such that the displacement field is continuous on R and twice continuously

differentiable on R-S; Vu may suffer a finite jump discontinuity across S.

Let H, e and e, denote the displacement gradient tensor, the infinitesimal

* strain tensor and the strain deviator respectively:

IHij - uj , I
eij - 1/2( uij + uj,i), for xe R-S. (2.1)

eij - eij - 1/3 ekk 6ij,

3 Displacement continuity across S requires

[[ui,j]]Ij - 0 for x e S (2.2)

for all vectors Lthat are tangential to S at , [E.]] indicates the jump

I across the surface S. Finally, let A(.6) and k(x) denote the respective

3 strain invariants which represent the dilatation and shear at a particle x:

- tr e,,1

Ik - (2tr(e2)jl/2, for ,R-S. (2.3)

I
Next, let £(x) be the stress tensor field on R and suppose that (x) is

3 continuously differentiable on R-S;e gmay suffer a finite jump discontinu-

ity across S. Equilibrium in the absence of body forces requires

aiJ,j - 0, aij - Uji for X e R-S, (2.4)

I [[ij]]nj -0 for L e S, (2.5)

I
I
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where n Is a unit normal vector on S. A surface S which carries jump dis-

U continuities in A and a while maintaining displacement and traction

continuity is called an eouilibrium shock or phase boundary.

Turning to the constitutive law of the material at hand, suppose that

it is homogeneous, isotropic and hyperelastic. The elastic potential W

then depends on the deformation only through the three principal invariants

of strain. A particular case of special interest is that in which W

I depends only on the shear and dilatational invariants k and A:

I W() - W(k,A). (2.6)

3 The stress-strain relation - 8W/8j at a particle x e R-S then specializes

to

olj - (2/k)W/ak eij + (8W/8A - (2A/3k)aW/ak) 6ij. (2.7)

If the material is such that the mean stress aii/ 3 depends on the deforma-

3 tion only through the dilatation elii, one can show using (2.7) that it is

necessary and sufficient that (2.6) have the separable form W(k,A) - f(k) +

I g(A) which can be more conveniently written as

Ik A
W~kA) -J(e)dx +J 09d for kT,-<&. (O) o(0)-O. (2.8)

0J o 0

I (Alternatively, one can show that the components of deviatoric stress

3 depend on the deformation solely through the components of deviatoric

strain if and only if W has the form (2.8).) The constitutive functions

AA
r(k) and a(A) may be readily interpreted as follows: in a simple shear

deformation uI - kX2, u2 - 0, u3 - 0, the shear stress component a12 is
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found from (2.8), (2.7) to be 012 - r(k); in a pure dilatational deforma-

A
tion ui - (A/3)xi, one finds that aij/ 3 - a(&). Thus the function r(k) is

the shear stress response function of the material in simDle shear, while

the function a(&) is the mean stress response function of the material in

Dure dilatation.

Finally, we further specialize (2.8) to the case in which the shear

stress response in simple shear is linear: r(k) - pk. This is motivated by

the fact that such constitutive relations appear to be of interest in the

continuum mechanical modeling of certain ceramic composites containing par-

ticles which undergo stress induced phase transformations, (see Budiansky

3 et al[14]). Thus, in this study we consider materials characterized by an

elastic potential

W(kA) - (m/2)k2  + J a()df for kO, --<A<-, (2.9)

0

where A (>0) is the infinitesimal shear modulus of the material. The

stress-strain relation (2.7) now specializes to

aij - 2,u eiJ + (a(A) - 2A&/3)6ij. (2.10)

The bulk modulus of the material (2.9) is

A
B(A) - o(&)/& for -w<A<-. (2.11)

It is useful for later purposes to consider the response of this body

in a uni-axial deformation ul - cxl, u2 - u3 - 0. From (2.10) one gets

ll - E(e) where
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I E(e) - ac() + 4pe/3 for --<e<-; (2.12)

Z(e) is the stress response function of the material in uni-axial deforma-

tion.

-- The displacement equations of equilibrium for the class of materials

under discussion here are, by (2.10), (2.4), (2.1), (2.3)

cijkl(!)uk,jl - 0 for x e R-S, (2.13)

where

Cijkl() - u(6ik6lj + 6kj6li) + (A'(&) - 2p/3 )6ij 6kl. (2.14)

The system of partial differential equations (2.13) is said to be

I (strongly) 11ptic at a solution u and at a point xeR-S if

Cijkl(e( )) minjmknl > 0 (2.15)

I for all unit vectors a and n. It is not difficult to show from (2.14),

(2.15) and p > 0 that (strong) ellipticity prevails if and only if

AI'(A(x) > -4p/3 (2.16)

where (E) - ekk(x) is the dilatation associated with the given deformation

at the point under consideration. Observe from (2.12) that this elliptic-

ity condition can be expressed simply in terms of the stress response func-

tion in uni-axial deformations as
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E'(A(x)) > 0. (2.17)

Thus the ellipticity of the governing equations is directly related to the

invertibility of the stress response function in uni-axial deformations.

If Z fails to be monotonically increasing on -c < c < c, ellipticity will

be lost at some deformation. If Z'(e) > 0 for all e, we say that the

m3 material is elliptic. We assume throughout that Z'(0) > 0 so that ellip-

ticity prevails at the undeformed state; since Z'(0) - ,+4p/3 where x is

I the infinitesimal bulk modulus, this, together with p > 0, are the usual

3 ellipticity conditions of linear elasticity.

3. Piecewise homogeneous displacement fields.

Not all homogenous, isotropic elastic materials characterized by the

constitutive relation (2.10) can sustain deformations with discontinuous

strains. In this section, we determine a simple necessary and sufficient

condition on the material which determines whether or not it can sustain

piecewise homogeneous deformations of this type. In addition, for materi-

als that can sustain such deformations, we obtain a characterization (in a

certain sense) of the entire collection of possible piecewise homogeneous

deformations.

We now consider the special case in which R coincides with all of

(xl,x 2 ,x3)-space, S is a plane through the origin, and the displacement

gradient is constant on each side of S. Let nbe a unit vector normal to

the plane S, and let R, R be the two open half-spaces into which S divides

R with the normal npointing into R. The field equations (2.13) will then

be trivially satisfied in R -S, and all that remains to be fulfilled are
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the jump conditions (2.2) and (2.5).U

Consider the piecewise homogeneous displacement field

F~ for je.R,
- (3.1)

SH x for ZeR

+

where the displacement gradient tensors H and H are constant and distinct:

+
H o H. (3.2)

- +

Define I, e, A and A by

I+ + +

eij - 1/2 (Hij + Hji), eij " 1/2 (Hij + Hji), (3.3)+ +
S- kkA- ekk. (3.4)

The displacement field (3.1) will be continuous across S if and only if

+

Hij Ij - Hij Ij for all unit vectors A normal to n, (3.5)

while by (2.5), (2.10) the tractions will be continuous across S if and

only if

I A + + A2M, eijnj + (a(A) - 2pA/3)ni - 2p eijnj + (a(A) - 2pA/3)ni. (3.6)

| +
Given a tensor J the shock problem consists of finding a tensor H and a

5 unit vector n such that (3.5) and (3.6) (with (3.3),(3.4)) hold.

We first establish a necessary condition which must hold if the shock
+problem is to have a solution. To this end, suppose that given H, there is

I
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I
a tensor H and a unit vector n such that (3.3)-(3.6) hold. It can be

readily shown that (3.5) holds if and only if there exists a vector a such

* that
- +

Hij - Hij + ainj . (3.7)

Thus (3.3), (3.4), (3.7) yield

- +
cij - cij + l/2(ainj + ajni), (3.8)

I - +
- A + aini. (3.9)I

Turning next to the requirement (3.6) and multiplying it by the components

I 1i of any unit vector normal to n gives

I +
eijlinj - eijinj, (3.10)

U which in view of (3.8) simplifies to

I aili - 0. (3.11)

Since this must hold for all unit vectors I in the plane S, it follows

I that a is parallel to n:

a - an. (3.12)

By (3.12), (3.9),

I - +
a -A - A. (3.13)

Moreover (3.8) can be written, in view of (3.12), as

I - + (3.14)
iJ " ilj + aninJ" 3.4

I
I
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I
Finally, multiply the traction continuity condition (3.6) by n i and use

(3.14), (3.13) to obtain

S+ +-

a(A) + 4pA/3 - a(A) + 4A/3, (3.15)

which, in terms of the uni-axial deformation response function Z(A), reads
+

E(A) - Z(A). (3.16)

Next we will show that if the (necessary) condition (3.16) holds, then

this in fact guarantees the existence of a solution to the shock problem.
|+ +

In order to show this, suppose that H is a given tensor. Define A by
- +

(3.4)1, (3.3) 1 . If there exists a number A (, A) such that (3.16) holds,

then (for each arbitrary unit vector 2) we can define a by (3.13), a by- +

(3.12) and H by (3.7). It may be readily verified that these tensors H and

H automatically satisfy the requirements (3.5), (3.6) of displacement and

traction continuity across the plane with unit normal n. Thus we have the

following result:

Pr 2osit'Mo: Given a tensor H, there exists an associated piecewise

homogeneous equilibrium shock if and only if there is a

number (o - Hkk) such that (3.16) holds.

When the constitutive law is such that the stress response function

Z(e) is monotonically increasing (in which case the material is elliptic)

we see from the preceding proposition that the material cannot sustain a

piecewise homogeneous deformation. On the other hand, if the material is

such that Z'(&) : 0 on some interval, then since E'(0) > 0, it follows that

piecewise homogeneous deformations will exist for suitably chosen values of

H.I
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I.

In addition to providing information concerning the existence of a

piecewise homogeneous deformation associated with the given displacement

gradient H, the preceding result also permits us to characterize the set of

all such deformations which can be associatd with that H: it states that

for every number 2 for which (3.16) holds, and for AU choices of the unit

3 normal vector n, one can construct an accep:able H. Let - denote the

following set in the (A, A)-plane:

I + - + - + -

S(A,A) I Z(A) - Z(A),A A ). (3.17)

U According to the preceding proposition, given a displacement gradient ten-

sor H, the associated shock problem has a solution if and only if there is_ - +u - + +
a number A such that (A, A) 6 H where a - Hk; moreover, all tensors H

I that can be connected to H by a shock are generated by all numbers A for.. -

which (A, A) e E. The set 3 characterizes the collection of all possible

shocks. A sketch of the curve H in the (A, A)-plane, corresponding to a

particular class of materialswill be given in Section 5.

I Finally, we note that according to (3.7), (3.12), (3.13) the displace-

ment gradient tensors J and H are related by

Hij -Hij + (A -A) ninj; (3.18)

I
this implies that the deformation on R is equivalent to the deformation on

R together with a uni-axial stretch in the direction normal to the shock

surface. This is presumably the reason why the stress response function in

uni-axial deformation M(e) plays such a central role in the preceding (and

ssubsequent) results.

I
I
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4. Driving Traction

We now consider a quasi-static motion of the body and let %(.,t), to :

t < t1 , be a one-parameter family of solutions of the displacement equa-

tions of equilibrium (2.13) of the type described in Section 2. Let St c R

be the family of shocks associated with this motion, and assume that the

particle velocity Z(x,t) - a3(E,t)/at exists and is continuous in (x,t) for

x e R-St, to : t : tl, and that v is piecewise continuous on R x [tO,tl].

I Let d(t) denote the difference between the rate of external work (on

3 any fixed regular region n c R) and the rate at which elastic energy is

being stored (in II):I

Id(t) Joijnjvi dA -dJ W(L) dV, to :5 t < tl; (4.1)

d(t) is the rate of dissipation of mechanical energy in the region 11. By

adapting to the present small-strain theory the analysis given

by Knowles [9], one can show that d(t) may be written as

I d(t)inJ f noV dA, (4.2)

I Strui

where f(x,t) is defined by

+

f" n[[n, for x eS t , t0  t tl, (4.3)

Z(E,t) is the energy-momentum tensor

I
I
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Pij - W(1)6ij - Okj Hki for x e R-St, to  t 5 tl, (4.4)

and V.(1xt) is the velocity of a point on the moving surface St . If the

motion happens to be smooth, P(.,t) will be continuous across St and so

(4.2), (4.3) gives d(t) - 0 for to : t < tI . In general however the

dissipation rate d(t) o 0 whenever H intersects St .

Combining (4.1) with (4.2) yields

I
on-v dA +J (-fn).V dA - d , V, to_<t <t1, (4.5)

which may be viewed as a work-energy identity. It states that the sum of

the rates at which work is being done on II by the external forces and the

phase boundary St balances the rate at which energy is being stored in 11.

Accordingly, -f, may be thought of as the traction applied by the surface

St on the body, or equivalently, +fn can be viewed as a "driving traction"

exerted on the phase boundary St by the surrounding material; the scalar f

determines the magnitude of this traction. The expression (4.3) (with

(4.4)) is a special case of a formula given by Eshelby[23]; see also

Eshelby[24], Rice[25].

If we postulate that at each instant, the rate of storage of energy in

H cannot exceed the rate of external work on H, then we must require the

dissipation rate d(t) to be non-negative for all sub-regions H and all

instants t. Thus, by (4.2),

f Vn 2 0 for xeSt, t0 t~tl, (4.6)

where Vn is the normal velocity of a point on the surface StI
U
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Vn - V.n for xESt, to<t tI . (4.7)

Alternatively, the dissiDation ineaualitv (4.6) can be shown to be a

consequence of the second law of thermodynamics under isothermal condi-

tions; see [9]. In general, given an equilibrium state, the inequality

(4.6) restricts the direction in which the surface St may move in a quasi-

static motion commencing from this state.

A particularly simple expression for the driving traction can be

derived in the case of materials characterized by the special elastic

I potential (2.9). First, from (3.7), (3.12) one has

[[Hki]- - anink. (4.8)

Next, in view of (2.10), (2.12), (4.8) and the continuity of traction,
+ + + +

t(okjHkininj]] - ( 21sqjninj - 2pA + E(A) 1. (4.9)

However from (2.3), (2.1) and (3.14) one obtains
+ + +

[[k 2 ]] - -4aeijninj - 2a2 + 2a(A + A)/3, (4.10)

+

which can be used to eliminate the term ijninj from (4.9) to give

S+ + - +

[okjHkininj]] -(k 2 - k2)/2 + 2(,A2 - A2)/3 - aE(A). (4.11)

Finally, since (2.9) and (2.12) provide

A
W(Q =pk2/2 - 2pA2/3+J Z( ) d, (4.12)

0
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I
equations (4.3), (4.4), (4.11), (4.12) and (3.13) yield the desired expres-

I sion

I A
r + + -

f JZ(A) dA - E(A) (A - A) for xeSt, tomtitI , (4.13)

I
for the driving traction. In the finite theory, formulae of this general

I form have been derived in the special case of "normal shocks" in plane andu anti-plane finite deformations of isotropic, incompressible elastic solids,

[19,20].

I
It is useful to write (4.13) as

I +-
f - F(A, A) for BS t , tOt5ttl , (4.14)

where F is the function defined on the set E by

F(A, A) - C A) dA - (A)(A- ) for (A, A)e 3. (4.15)IJ
By (4.14), the driving traction f at a point on the phase boundary St

I- -
depends only on the local dilatations A, A on the two sides of St; f does

not depend on the amounts of shear k, k, nor on the orientation of St .

Moreover, in view of (4.15) and (3.16), the value of f may be interpreted

I geometrically as the difference between the area under the uni-axial

deformation stress-strain curve between A and A, and the area of the

Irectangle on the same base with height X(A).

I
I
I
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5. Kinetic Law. An example.

In Part II, we will present an example which shows that boundary-value

problems formulated in the conventional manner, for materials characterized

I by (2.9), may suffer from a tremendous lack of uniqueness. This is known

to be the case in the finite theory as well (e.g. [18,19]). This non-uni-

queness suggests that the theory, as formulated, is deficient, and that it

ought to be supplemented with additional constitutive information. One, way

in which to implement this is to postulate a constitutive relation, or

I "kinetic law", which applies to particles on St, and relates the driving

traction f to the normal velocity of propagation Vn of the phase boundary.

In order to formalize this, let fM and fm be the supremum and infemum
*1*-

of the function F(A, A) on the set E. Then, one might suppose that there

3 is a constitutive function V(.) defined on [fm, fM] such that

Vn - V(f) on St , to St S t. (5.1)I
In order to conform to the dissipativity inequality (4.7), V must be such

I that

fV(f) 0 0 for fe (fa, fM]. (5.2)

3 The form (5.1) is, of course, merely an example of a class of kinetic laws

that might be imposed; it could be generalized to include dependence on

3 other local variables as well so that, for example, a kinetic law might
-

read Vn - V(A, A), where the constitutive function V is defined on E.

3 In order to illustrate this (and some of the preceding results) we now

choose the dilatational stress response function in the constitutive lawI
I
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1 (2.10) to be as follows:

A for 0 < A

3 - 1 SA + oT(&-AM)/(Am-AM) for AM _< A :_ Am, (5.3)

I6 + °T for A >A m;

U, Am, AM and °T are material constants such that

I 6>0, Am>AM>O, T<O,

Am + oT > 0, (5.4)
<m J(Am-A M) (f+4,/3) < "°T-

I AThe second condition in (5.4) implies that ao(Am) > 0, while (5.4)3 ensures

that the system of equations (2.13) is non-elliptic when m < A(x) < AM.

In this example we will confine attention to the range A > 0 and

consequently we have left u(A) undefined for negative values of its

argument. The specific constitutive law (5.3), (5.4) is the one considered

by Budiansky, Hutchinson and Lambropoulos [14] in the case of super-

3 critical transformations. As shown in Figure 1, as the dilatation

increases, the mean stress first rises linearly to a maximum value °M -

I #AM, it then declines linearly to the value Om - SAm + aT, and finally

rises again with the initial slope f.

3 -The response function of this material in uni-axial deformations is

given by (5.3), (2.12) as

O for 0 S e < AM ,

E(C) Ofa + aT(e-AM)/(Am-AM) for AM :51: An. (5.5)

I + o T  for e > Am,

I
where we have set

I
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I - -+4p/3. (5.6)

Finally, we introduce the following additional notation which pertains

to certain special points on the stress-strain curve shown in Figure 1:I
Aml " + T/a, S3 " AM3 - T/1, ! (5.7)
Aol - (Am+AM)/2 + aT/2a, Ao3 - (Am+M)/2 - aT/2a-

A
Note that the straight lines which Join (AM,OM) to (AM3,a(AM3)),

A A
(Aol,a(Aol)) to (Ao3,O(Ao3)), and (A3 I, (Aml)) to (Am,am), each have the

same slope -4p/3; see (3.15) for the significance of this. Moreover, Aol

and Ao3 are seen to obey the conditions

(A o1 ) - Z(Ao3 ) - (m+ E)/2, (5.8)

where E - (M), Z " (AM)- JU
The set Z for this material, which characterizes the complete set of

possible shocks in the (A, !)-plane, may be readily found from (3.17),

I (5.5). It consists of the points on the polygon ABCDEFA shown in Figure 2,1*-

except for the vertices A and D which lie on the line A -A.

We turn next to equation (4.15) which defines the driving traction

function F on this set E. Explicit formulae for F may be readily derived

Ifrom (4.15), (5.5). For example, when (A,A) E EF , one finds

F(A, A) - (-oT/a)( aA - (La+LM)/ 2). (5.9)

3 We do not display the remaining formulae here. It is particularly useful

to know the sign of the driving traction, since then the direction of pro-I
I
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pagation of the phase boundary is known through the dissipativity

3 inequality (4.6). The sign of F may be read off from (5.9) (and the

analogous formulae appropriate to the other points on T); one finds that+
r> 0 for (a, A) e (ABJ+CBP)+(DEJ+(EQ),

F(A, A) - 0 for (A, A) (PC]+[CD)+(QF]+[FA), (5.10)

1 0 for (A, ) P or Q.

(The symbol (AB] in (5.10) denotes the set of all points on the line AB

I excluding the end point A but including the point B.) The points P and Q

which are associated with zero driving traction are sometimes refered to as

"Maxwell states". They are given by

! --
(A, A) - (Ao3, Aol) and (Ao1 , Ao3), (5.11)

where Aol and A0 3 were defined in (5.7); see also (5.8). Also, one finds

that the driving traction achieves its largest value fM at B (and also at

E) and its smallest value fm at C (and also at F). These values are

fM - "OT(M - Zm)/2a (>0), (5.12)

I fm- T(EM" Zm)/2a (<0). (5.13)

I
Finally, Figure 3 shows an example of a kinetic function V that might

I be used in the kinetic law (5.1). It is consistent with the admissibility

requirement (5.2). In the example which will be discussed in Part II, we

will see how in a specific problem, the kinetic relation, together with an

3 initiation criterion, can be used to resolve the non-uniqueness referred to

earlier. In that example we will find that the kinetic relation of Figure

I 3 generally leads to rate-dependent "viscoplasticity-like" response. Two

I!
I
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special cases which lead to reversible, dissipation-free response and to

rate-independent plasticity-like respone will also be discussed there.

6. ConcludinZ remark: driving force on a crack-tiD

In this section we briefly comment on the driving force on a crack-tip

when the crack is contained in a body composed of the material (2.10). For

simplicity, suppose that the body is a slab containing a traction-free

through-crack (Figure 4) and that the loading is such that the deformation

is planar. Suppose further that the body is composed of the material

3 (2.10) with the constitutive function E(e) defined by (2.12) being non-

monotone. By the analysis in Section 3, deformations of this body can

involve shocks. Suppose for definiteness that there is a single (cylindri-

cal) phase boundary S as shown in Figure 4; C is the curve along which S

intersects the (xl,x 2)-plane. The deformation is smooth at all points of

the body inside C (excluding points on the crack itself) as well as at all

points outside C.

Let ro and r. be two closed curves as shown in Figure 4 with ro being

entirely within C and r, entirely outside. The values of the J-integral

associated with these two curves are respectively,

I tip f Plp np 45, ja f Plp np 45, (6.1)

re  r.

where ds denotes arc length, n is the unit outward normal vector on the

appropriate curve, and pop are the components of the energy-momentum



-- 24--

I
tensor:

pop " W 6ap o7 Ha. (6.2)

I(Greek subscripts take the values 1 and 2 only.)

The J-integral is path-independent Drovided the Daths of integration

do not insect the shock curve C; this, together with the traction-free

nature of the crack surface yields the alternate expressionI
Jtip " f lp np ds, (6.3)

C

where p are the limiting values of Pop as a point on C is approached from

within. Similarly

Ijm- f P np ds. (6.4)

I C

Combining (6.3) and (6.4) givesI
Jtip b J- " [[Pl]] np ds. (6.5)

C

I
Next, in view of (6.2), (2.1), displacement continuity (2.2), and

traction continuity (2.5), one sees that

[[Pp Jnp I.a 0 on C, (6.6)

where . is a unit tangent vector on C. Thus the vector [[Pop]n is normal
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to the curve C, and by (4.3),

[ [[P,61]np f n on C; (6.7)

f is the driving traction on the shock. Finally, combining (6.5) with

(6.7) provides the desired expression

Itip - J0 ff nl ds. (6.8)

CI
Equation (6.8) states that the driving force Jtip on the crack-tip

equals the difference between J. (the "applied value of J") and the

3 resultant driving force on the shock. Thus in general, Jtip o J.. (This

was also noted by Silling[15].) In certain exceptional cases, for example

3 if the deformation is such that f - constant on C, the integral in (6.8)

will vanish and then Jtip - J," The value of the shock driving traction f

depends on (and is determined by) the particular kinetic relation governing

3 the evolution of the shock. If the resultant driving force on the shock is

in the positive xl-direction then, by (6.8), Jtip < J..U
I
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