
UNCLASSIFIED - -OJJC FL.E COPY
SECURITY CLASSFtICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE FRE STUCOS
BEFORE COMPLETEING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERE

E & V Guidebook, Version 1.1, 1988 1988

6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBER(s)AD-A202 809
9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Ada Joint Program Office AREA & WORK UNIT NUMBERS

3D139 (1211 S. Fern, C-107)
The Pentagon, Washington DC 20301-3081

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 1988
United States Department of Defense 13. NUgt O PAbt
Washington, DC 20301-3081

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
AJPO UNCLASSIFIED

15a. REE 5JFICATION/DOWNGRADING
N/A

16. DISTRIBUTION STATEMENT (ofthisReport)
Approved for public release; distribution unlimited.

r7

i

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)
Ada Programming Language; APSE Evaluation & Validation Task, APSEs

20 ABSTRAC T (Continue on reverse side if necessary and identify by block number)

The purpose of the E&V Guidebook is to provide information that will help users to assess APSEs and APSE
components by: assisting in the selection E&V procedures, the interpretation of results, an integration of
analyses and results; describing E&V procedures and techniques developed by the E& V task, and assisting in
the location E & V procedures and techniques developed outside the E&V task.

~ , I __,. - , 1 _-!- ,, .j .

IJL : -
- ' ,t '2 . " ' .,-,. . . .

O u 1473 EDITION OF I NOV 65 IS OBSOLETE U AS D
I JAB 13 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

If E&V

I E&V GUIDEBOOK

VERSION 1. 1
15 August 1988

Accession For

N-TIS GRA&iI
DTIC TAB

Unanncunccd 0

By_

1 Distribution/

Approved for public release; distribution is unlimited Aalblt oe

~1 The Task for the Evaluation and Validation (E&V) of Ada Programming Support

Environments (APSEs) is sponsored by the Ada Joint Program Office.

TASO No. TR-5234-4

88 11 10 089

E&V Guidebook, Version 1.1

EXECUTIVE SUMMARY

The Ada community, including government, industry, and academic personnel,

needs the capability to assess APSEs (Ada Programming Support Environments) and their
components, and to determine their conformance to applicable standards (e.g., DoD-

STD-1838, the CAIS standard). The technology required to fully satisfy this need is exten-

sive and largely unavailable; it cannot be acquired by a single government-sponsored,
professional society-sponsored, or private effort. The purpose of the APSE Evaluation and
Validation (E&V) Task is to provide a focal point for addressing the need by:

(1) Identifying and defining specific technology requirements,

(2) Developing selected elements of this technology,

(3) Encouraging others to develop additional elements, and

(4) Collecting information describing elements which already exist.

This information will be made available to DoD components, other government agencies,

industry and academia.

The purpose of the E&V Guidebook (this document) is to provide information
that will help users to assess APSEs and APSE components by:

(1) Assisting in the selection of E&V procedures, the interpretation of
results, and integration of analyses and results,

(2) Describing E&V procedures and techniques developed by the E&V
Task, and

(3) Assisting in the location of E&V procedures and techniques devel-
oped outside the E&V Task.

All E&V procedures and techniques found in the Guidebook are referenced by the indexes

contained in the companion document called the E&V Reference Manual.

ES-1

E&V Guidebook, Version 1.1

Chapters 1 through 4 provide a general introduction to the document and other

background material. Chapter 5 and later chapters are "formal chapters" built around a

standard format and formal grammar. Each of the formal chapters contains all the assess-

ment procedures and techniques associated with a particular group of tools or toolsets to

be assessed, such as Compilation System Assessors or Test System Assessors. The as-

sessment procedures are described and in some instances can be applied directly from

the information given in the Guidebook. In other cases, the user is directed to a primary

reference for more information.

Yearly updates and extensions to this document are planned. Therefore, com-

ments and suggestions are welcome. Please send comments electronically (preferred) to

szymansk@ajpo.sei.cmu.edu, or by regular mail to Mr. Raymond Szymanski, AFWAL/AAAF,

Wright Patterson AFB, OH 45433-6543.

Note:

"E&V Guidebook, Version 1.1" (this document) is best used in conjunction with "E&V
Reference Manual, Version 1.1." The table on the following page is included for the
benefit of readers who have the older manual, "E&V Reference Manual, Version 1.0,"
The organization of the Guidebook was significantly altered after issuance of Version
1.0 of the Reference Manual. (There is no Guidebook, Version 1.0.)

ES-2

E&V Guidebook, Version 1.1

CONVERSION TABLE

Reference Manual, Version 1.0 Actual Guidebook, Version 1.1
Guidebook Reference (RM Section Number) Section Number

6.1 (3.4.1, 6.4.6, 6.4.22, 6.4.31, 7.1.6.7) 5.2
6.2 (3.4.1, 6.4.22, 6.4.31, 7.1.6.7) 5.3
4.12 (3.4.2) 4.9
3. (3.4.4) 3.
8.1 (6.4.9, 7.1.6.7) 5.1
8.2 (6.4.9, 7.2.3.3) 8.1
5.2.3 (6.4.20) deleted
5.3.1 (6.4.20) deleted
5.1.1 (6.4.21, 7.1.1.1) 99.1
5.1.2 (6.4.21, 7.1.6.6) 6.1
5.1.3 (6.4.21, 7.1.6.7) 5.8
5.1.4 (6.4.21, 7.1.6.13) 6.2
5.1.5 (6.4.21, 7.2.1.1) 99.2
5.1.6 (6.4.21, 7.2.1.3) deleted
5.1.7 (6.4.21, 7.2.1.4) 99.3
5.1.8 (6.4.21, 7.2.1.7) 5.9
5.1.9 (6.4.21, 7.2.1.10) 99.5
5.1.10 (6.4.21, 7.2.2.3) deleted
5.1.11 (6.4.21, 7.2.2.6) deleted
5.1.12 (6.4.21, 7.2.2.7) 10.1
5.1.13 (6.4.21, 7.2.3.2) deleted
'5.1.14(6.4.21, 7.2.3.5) 6.3, 5.11
'5.1.15(6.4.21, 7.2.3.6) 99.4, 6.3
'5.1.16(6.4.21, 7.3.2.2) 99.6, 99.4
'5.1.17(6.4.21, 7.3.2.3) 6.5, 99.6
'5.1.18(6.4.21, 7.3.2.5) deleted, 6.5
'5.1.19(6.4.21, 7.3.2.6) deleted, deleted
*5.1.20(6.4.21, 7.3.2.9) 7.1, deleted
*5.1.21 (6.4.21, 7.3.2.10) 6.4, 7.1
* 5.1.22(6.4.21, 7.3.2.13) 6.6, 6.4
*5.1.23(6.4.21, 7.3.2.14) 6.7, 6.6
' 5.1.24(6.4.21, 7.3.2.15) 6.8, 6.7
5.2.1 (6.4.25, 6.4.27) 14.1
5.2.2 (6.4.25, 6.4.27) 14.2
5.1.25 (7.3.2.17) 6.8

NONE 5.4, 5.5, 5.6, 5.7, 5.10, 7.2, 8.2, 9.1,
10.2, 13.1

Note: There is an error in some Guidebook references in Version 1.0 of the Reference
Manual. For the marked Guidebook references ("*"), there are two Guidebook section

- numbers listed in the right hand column. Use the section number in th e right hand
column c to the Reference Manual section number (in parentheses in the
left hand column) in which the Guidebook reference is made.

ES-3

E&V Guidebook, Version 1.1

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY ES-1

LIST OF FIGURES vi

LIST OF TABLES vii

1 INTRODUCTION 1-1
1.1 Purpose of Guidebook 1-1
1.2 The Need For E&V Technology 1-3
1.3 Background 1-4
1.4 Organization of the Guidebook 1-5

2. STRUCTURE AND USE OF THE GUIDEBOOK 2-1
2.1 Structure 2-1
2.2 Example Uses 2-3

3. INTEGRATION OF APSE ASSESSMENTS 3-1
3.1 General Background 3-1
3.2 Early Efforts At Integrated APSE Assessment 3-2
3.3 Towards A Comprehensive Approach 3-3

4. SYNOPSES 4-1
4.1 Stoneman 4-2
4.2 Houghton: A Taxonomy of Tool Features for the Ada

Programming Support Environment (APSE) 4-3
4.3 E&V Report: DoD APSE Analysis 4-4
4.4 Classification Schema/E&V Taxonomy Checklists 4-5
4.5 Requirements For E&V 4-6
4.6 Tools and Aids For E&V 4-7
4.7 STARS-SEE Operational Concept Document 4-8
4.8 Grund, et al.: Key Characteristics of APSES 4-9
4.9 Ada-Europe: Selecting An Ada Environment 4-10
4.10 McDermid and Ripken: Life Cycle Support In The Ada Environment 4-11
4.11 Notkin and Habermann: Software Development Environment

Issues As Related To Ada 4-13
4.12 Stenning, et al.: The Ada Environment: A Perspective 4-14
4.13 Weiderman: Evaluation of Ada Environments 4-15
4.14 Barstow and Shrobe: Observations On Interactive

Programming Environments 4-16
4.15 Houghton and Wallace: Characteristics and Functions

of Software Engineering Environments: An Overview 4-17
4.16 CAIS 4-18
4.17 CAIS-A 4-19
4.18 Hogan And Prud'homme: Definition of a Production Quality Compiler 4-20
4.19 Nissen, et al: Guidelines For Ada Compiler Specification And Selection 4-21
4.20 WIS Compiler Evaluation Guidelines 4-23

iii

E&V Guidebook, Version 1.1

TABLE OF CONTENTS (Continued)

Page

4.21 WIS Tool Evaluation Criteria 4-24

5. COMPILATION SYSTEM ASSESSORS 5-1
5.1 Ada Compiler Validation Capability (ACVC) 5-2
5.2 IDA Benchmarks 5-3
5.3 Ada Compiler Evaluation Capability (ACEC) 5-4
5.4 PIWG Benchmark Tests 5-7
5.5 University of Michigan Benchmark Tests 5-8
5.6 MITRE Benchmark Generator Tool (BGT) 5-9
5.7 UK Ada Evaluation System (AES) 5-10
5.8 Compilation Checklist 5-11
5.9 Program Library Management Checklist 5-13
5.10 ARTEWG Catalogue of Ada Runtime Implementation Dependencies 5-14
5.11 ARTEWG Runtime Environment Taxonomy 5-15

6. TARGET CODE GENERATION AIDS AND ANALYSIS
TOOLSET ASSESSORS 6-1
6.1 Assembling Checklist 6-2
6.2 Linking/Loading Checklist 6-3
6.3 Import/Export Capabilities Checklist 6-4
6.4 Emulation Capabilities Checklist 6-5
6.5 Debugging Capabilities Checklist 6-6
6.6 Timing Analysis Capabilities Checklist 6-8
6.7 Tuning Analysis Capabilities Checklist 6-9
6.8 Real-Time Analysis Capabilities Checklist 6-10

7. TEST SYSTEMS ASSESSORS 7-1
7.1 Testing Capabilities Checklist 7-1
7.2 SEI Unit Testing and Debugging Experiment 7-3

8. TOOL/HOST INTERFACE ASSESSORS 8-1
8.1 CAIS Implementation Validation Capability (CIVC) 8-1
8.2 Tool Support Interface Evaluation 8-2

9. Ada DESIGN SUPPORT ASSESSORS 9-1
9.1 SEI Design Support Experiment 9-1

10. CONFIGURATION MANAGEMENT SUPPORT ASSESSORS 10-1
10.1 Configuration Management Capabilities Checklist 10-1
10.2 SE) Configuration Management Experiment 10-3

11. DISTRIBUTED SYSTEMS DEVELOPMENT AND RUNTIME
SUPPORT ASSESSORS 11-1

12. DISTRIBUTED APSE ASSESSORS 12-1

iv

E&V Guidebook, Version 1.1

TABLE OF CONTENTS (Continued)

Page

13. "WHOLE APSE" ASSESSORS 13-1
13.1 APSE Characterization 13-1

14. ADAPTION ASSESSORS 14-1
14.1 Host and Target Checklist 14-1
14.2 Machine-Specific Characteristics Checklist 14-2

99. OTHER ASSESSORS 99-1
99.1 Text Editing Capabilities Checklist 99-1
99.2 Database Management Checklist 99-3
99.3 Electronic Mail Checklist 99-4
99.4 Requirements Prototyping Capabilities Checklist 99-5
99.5 Performance Monitoring Checklist 99-6
99.6 Simulation and Modeling Capabilities Checklist 99-7

APPENDIX A CITATIONS A-1

, APPENDIX B ACRONYMS AND ABBREVIATIONS B-1

APPENDIX C FORMAL GRAMMAR C-1

APPENDIX D VENDORS AND AGENTS D-1

Vv

V

THE ANALYTIC SCIENCES CORPORATION

LIST OF FIGURES

Figure Page

1.1-1 Relationship Between Reference Manual and Guidebook 1-2

13.1-1 APSE Characterization Form 13-3

vi

THE ANALYTIC SCIENCES CORPORATION

LIST OF TABLES

Table Page

4.8-1 Example Coherent Methodology 4-11

5.8-1 Compilation Capabilities Checklist 5-12
5.9-1 Program Library Management Capabilities Checklist 5-13

5.11-1 Runtime Environment Taxonoment 5-16

6.1-1 Assembling Capabilities Checklist 6-2

6.2-1 Linking/Loading Capabilities Checklist 6-3

6.3-1 Import/Export Capabilities Checklist 6-4

6.4-1 Emulation Capabilities Checklist 6-5

6.5-1 Debugging Capabilities Checklist 6-7

6.6-1 Timing Analysis Capabilities Checklist 6-8

6.7-1 Tuning Analysis Capabilities Checklist 6-9

6.8-1 Real-Time Analysis Capabilities Checklist 6-10

7.1-1 Testing Capabilities Checklist 7-2

10.1-1 Configuration Management Capabilities Checklist 10-2

99.1-1 Test Editing Capabilities Checklist 99-2

99.2-1 Data Base Management Capabilities Checklist 99-3

99.3-1 Electronic Mail Capabilities Checklist 99-4

99.4-1 Requirements Prototyping Capabilities Checklist 99-5

99.5-1 Performance Monitor Capabilities Checklist 99-6

99.6-1 Simulation and Modeling Capabilities Checklist 99-7

vii

E&V Guidebook, Version 1.1

1. INTRODUCTION

1.1 PURPOSE OF GUIDEBOOK

This document is a product of the Ada Programming Support Environment

(APSE) Evaluation and Validation (E&V) Task sponsored by the Ada Joint Program Office.

It is one of a pair of companion documents known as the E&V Reference System, consist-

ing of:

* E&V Reference Manual

* E&V Guidebook.

The subject of both documents is the assessment of APSEs and their components. Spe-

cific assessment techniques typically fall into one of two categories: evaluation (assess-

ment of performance and quality) and validation (assessment of conformance to a

standard).

The purpose of the Guidebook is to provide a collection of information to sup-

port a variety of E&V users in the following ways. It should help them:

* Gain an overall understanding of APSE assessment, in particular,
the selection of appropriate E&V procedures, the interpretation of
test results, and the integration of analyses and results.

* Apply the various E&V procedures and techniques developed un-
der E&V Task sponsorship.

* Find the primary sources for those E&V procedures and tech-
niques not developed by the E&V Task or not fully explained within
the Guidebook (due to space or other constraints).

The Reference Manual includes many "pointers" to sections in the Guidebook and other

- documents which describe E&V techniques in much the same way that a card catalog

does in a library. Figure 1.1-1 illustrates the relationship between the documents.

1-1

E&V Guidebook, Version 1.1

G-10454
6/27/88

Users May Consult Directly Consult
the Reference or the Guidebook...
Manual to Extract:

() Useful or (2) Pointers to

Information A"- , A - Sections in

Directiy from - .' the Guidebook...

the Manual E&V
Reference

Manual

E&V
Guidebook

... Which Provides Information About
E&V Tools and Techniques

Figure 1.1-1 Relationship Between Reference Manual
and Guidebook

1-2

E&V Guidebook, Version 1.1

1.2 THE NEED FOR E&V TECHNOLOGY

Technology for the assessment of APSEs and APSE components (tools) is
needed because of the difficulty in assessing APSEs and because of the importance of the

decisions made based on these assessments. The importance of an APSE selection is
evident when one considers the large, critical, Ada-based systems to be developed in the
coming years. The effectiveness, reliability, and cost of these systems will be strongly in-
fluenced by the environments used to develop and maintain them. From the point of view

of a software developing organization, the decision to select an APSE can be an important
investment decision with long-lasting influence on a number of projects and the organiza-

tion's methods of operation, training, and competitiveness. From the point of view of a
software maintenance organization, the environment used will strongly influence the organi-
zation's effectiveness, as well as the cost of its operations and training.

The difficulty of assessing APSEs and tools exists for several reasons. First,
an APSE represents very complex technology with many elements, which can be assessed
individually or in combination. Second there is a confusing diversity of choice with respect
to individual tools, tool sets, or "whole APSEs"; and there are a number of ways of view-
ing APSEs; see Chapter 3 of the E&V Reference Manual [@RM 3].* Third, the state of the

art of APSE architecture and of some categories of tools (e.g., graphic design tools) is un-
dergoing rapid change. Finally, there is a lack of historical data relevant to APSEs, partly
because of the general pace of technological change and partly because we are dealing
with Ada, a relatively new implementation language. E&V technology provides methods and
techniques to overcome these difficulties and provides a basis for determining performance

and other attributes of APSEs.

In addition to the need for assessment technology itself, there is a need for in-
formation about this technology. Potential buyers and users of APSEs and tools need a
framework for understanding APSEs and their assessment, as well as information about

specific assessment techniques. Similarly, vendors of tools and APSEs need to be aware
of the deficiencies of current products, as well as the criteria to be used in the assessment
of future products. Such awareness on both sides, expressed in a common terminology,
should speed up the evolution of better software development environments.

*The format used for references is associated with the "formal grammar" used beginning
with Chapter 5. See further explanations in Appendix C.

1-3

E&V Guidebook, Version 1.1

1.3 BACKGROUND

In June 1983 the Ada Joint Program Office (AJPO) proposed the formation of

the E&V Task and a tri-service E&V Team, with the Air Force designated as lead service.

In October 1983 the Air Force officially accepted responsibility as lead service and desig-

nated the Air Force Wright Aeronautical Laboratories (AFWAL) at Wright Patterson Air

Force Base as lead organization. In April 1984 an E&V Workshop was held at Airlie, Vir-

ginia. The purpose of the workshop was to solicit participation of industry representatives

in the E&V Task. Many of the participants in the workshop have chosen to remain in-

volved as Distinguished Reviewers, and additional industry participants have subsequently

become involved in E&V Team activities.

The E&V Task publishes an annual public report. The following paragraph is

quoted from the 1987 version [@E&V Report 1987] of the report:

"The Ada community, including government, industry, and academic person-
nel, needs the capability to assess APSEs (Ada Programming Support Environ-
ments) and components and to determine their conformance to applicable
standards (e.g., DoD-STD-1838, the CAIS standard). The technology required
to fully satisfy this need is extensive and largely unavailable: it cannot be ac-
quired by a single government-sponsored, professional society-sponsored, or
private effort. The purpose of the APSE Evaluation and Validation (E&V) Task
is to provide a focal point for addressing the need by (1) identifying and defin-
ing specific technology requirements, (2) developing selected elements of the
required technology, (3) encouraging others to develop some elements, and
(4) collecting information describing existing elements. This information will be
made available to DoD components, other government agencies, industry, and
academia."

The team public reports contain much additional information for the interested reader. See

for example, the "DoD APSE Analysis Report" [@E&V Report 1984], the "Requirements for
the Evaluation and Validation of Ada Programming Support Environments, Version 2.0"

[@E&V Report 1987], and the "Tools and Aids Document, Version 1.0" [@E&V Report

1987], which are synopsized in Chapter 4 [4.3, 4.5, 4.6].

1-4

E&V Guidebook, Version 1.1

Three competitive contracts have been awarded under the E&V Task. These

are:

* Technical Support contract - awarded June 1985

* Ada Compiler Evaluation Capability (ACEC) contract - awarded
February 1987

CAIS Implementation Validation Capability (CIVC) contract -
awarded May 1987.

The major purpose of the first of these contracts is to create and update ele-
ments of the E&V Reference System, including this document. The purpose of the sec-
ond and third contracts is to create two specific elements (ACEC and CIVC) of the
needed E&V technology.

1.4 ORGANIZATION OF THE GUIDEBOOK

Chapter 2 provides a general description of the structure and use of the
Uuidebook.

Chapter 3 provides high-level guidance to users who may need assistance in
selecting instances of the technology and integrating the results of its application.

Chapter 4 provides synopses of other documents or activities that are either
too broad in scope to fit within one of the later chapters or are of historical importance to
E&V activities.

Chapter 5 and subsequent chapters are "formal chapters" that describe or re-
fer to specific instances of E&V technology. Each of the formal chapters contains all of
the procedures and techniques associated with a particular group of tools or toolsets to be
assessed, such as Compilation System Assessors or Test System Assessors. A standard
format based on a "formal grammar" is used in presenting this material. See further ex-
planations in Appendix C.

1-5

E&V Guidebook, Version 1.1

Append, ces A, B, and C contain a list of citations, a list of acronyms and ab-

breviations, and a definition of the formal grammar used in the formal chapters, respec-

tively. Appendix D contains the list of vendors and agents of assessment toots who are

the primary sources of E&V technology.

1-6

E&V Guidebook, Version 1.1

2. STRUCTURE AND USE OF THE GUIDEBOOK

This chapter provides a brief explanation of the structure and uses of the E&V

Guidebook. It is expected that many users have first consulted the E&V Reference Manual

(see Fig. 1.1-1) and come to the Guidebook with a specific chapter and section number in

hand, prepared to read about a specific instance of E&V technology. A user following this

path does not particularly care about the overall structure of the document. Other users,

however, may come to the document with a less narrowly-defined objective. An attempt
has been made, with such users in mind, to make the Guidebook easy to use as a stand-

alone document.

2.1 STRUCTURE

The Guidebook structure may be considered as having four major subdivisions,

as follows:

0 Introductory Material (Chapters 1 and 2)

* General Background Material (Chapters 3 and 4)

a Specific E&V Technology Descriptions (Chapters 5 and beyond)

* Appendices.

The introductory material is used to introduce the document and its structure. The general

background material is used to introduce the general subject of APSE assessment. Chap-

ter 3 is an "essay" designed to help users who are faced with the question of how to

evaluate an APSE as a whole, or how to compare several APSEs with the objective of se-
lecting one. (Chapter 3 of the E&V Reference Manual, dealing with whole APSE assess-

ment issues, is a "companion essay" that provides complementary background material.)

Chapter 4 provides a different kind of background material. It may be considered a "guide

to the literature" of APSE assessment. It contains synopses of documents that fall into

one of two categories. One category is that of documents that contain no specific

2-1

E&V Guidebook, Version 1.1

instances of E&V technology, but contain generally useful background material. The other
category is that of documents that contain or discuss multiole instances of E&V technol-
ogy, which are individually covered in multiple parts of the later, formal chapters. These
multiple instances can be thought of as children of a common parent. In order to avoid
the redundancy of summarizing the parent document many times, the Chapter 4 synopsis
is provided as a common point to which all the children may refer. Each "synopsis text
frame" in Chapter 4 has the following parts:

" Citation: (the primary reference)

" Synopsis: (brief description)

* Methods: (references to specific instances of E&V technology, if
any).

The formal chapters (Chapters 5 and beyond), which comprise the main bulk
of the Guidebook, describe or summarize specific instances of E&V technology. The
chapter subjects and titles were chosen to be meaningful and intuitive to users of the
Guidebook. Thus, they focus on the subject of assessment (e.g., Compilation System,
Test System, Ada Design Support System, etc) rather than the method of assessment
(e.g., formal validation, subjective evaluation, etc). Within each chapter there are, in gen-
eral, multiple instances of assessment technology. Some may be examples of evaluation
techniques, others may be examples of validations, others may be mixtures of the two.
Readers should not infer aoDroval of the E&V Task, because a tool or technique is in-
cluded in the collection, or disa.oval, because a tool or technique is not included.
Readers who know of instances of E&V technology not reported here are urged to contact
the E&V Task chairman, in the manner described in the Executive Summary. The sepa-
rate instances within a chapter are simply placed there in chronological order, indicating
the relative timing of the material's first appearance in the Guidebook. Readers should not
infer any iudament as to relative importance based on order. Each chapter thus provides
a dynamically growing section of the Guidebook. Old sections will not be thrown away or
replaced by new sections describing newer techniques. Old sections may, however, be
updated if a particular vendor or agent has updated material describing a technique, or
has improved the technique itself without fundamentally changing the approach. Each
"technique text frame" in the formal chapters has the following parts:

2-2

E&V Guidebook, Version 1.1

0 Purpose:

* Primary References:

0 Host/OS: (if applicable)

• Vendors/Agents: (if applicable)

* Method:

Inputs:

Process:

Outputs:

The final major subdivision (the appendices) require little explanation here.
The formal grammar described in Appendix C need not concern most users. It was em-
ployed because of the possibility of a future on-line, electronic version of the Reference
System, supported by advanced updating and information retrieval techniques.

2.2 EXAMPLE USES

Instances of E&V technology may be found in two ways. A user may consult
the Guidebook directly, or may first consult the E&V Reference Manual, as pictured in Fig-
ure 1.1-1. A user who comes directly to the Guidebook would typically first look at the Ta-
ble of Contents. For example, a user interested in evaluating compiler performance would
naturally look under Chapter 5 "Compilation System Assessors." The titles of Sec-
tions 5.2, "IDA Benchmarks," and 5.3, "Ada Compiler Evaluation Capability (ACEC),"
would probably suggest themselves as relevant to this user's needs - as indeed they are.

Alternatively, the user may consult the E&V Reference Manual, which is de-
signed to help find E&V techniques in the same way that the card catalog helps people
find books in the library. For example, the Reference Manual contains both a Function In-

dex and an Attribute Index, each of which contains cross references to elements in the
other. One element of the Function Index is the function "Compilation," which is cross-ref-
erenced to a number of relevant attributes. Under the particular function-attribute pair
"Compilation-Processing Effectiveness" are listed a number of Guidebook references.

2-3

E&V Guidebook, Version 1.1

Among these are the same two Sections, 5.2 and 5.3, of the Guidebook, mentioned in the

previous paragraph. The user following this procedure could pick up the Guidebook and

go directly to these two sections or "text frames" and find summary information concerning

the IDA Benchmarks test suite and the ACEC test suite, respectively.

2-4

E&V Guidebook, Version 1.1

3. INTEGRATION OF APSE ASSESSMENTS

The purpose of this chapter is to provide high-level guidance for the user of
the E&V Reference System (Reference Manual and Guidebook) who is interested in evalu-
ating an APSE as a whole, or in comparing several APSEs with the objective of selecting
one. While the "formal chapters" (beginning with Chapter 4 of the Reference Manual and
Chapter 5 of the Guidebook) provide assistance in locating, defining, and assessing many
individual aspects of APSEs, they do not provide an overall approach to weighting and
combining the results of such assessments. Section 3.1 briefly discusses some relevant
general background material. Section 3.2 discusses some earlier, partial efforts aimed at
an integrated approach. Section 3.3 provides some additional guidance leading to a com-
prehensive, integrated approach.

It is necessary, first, to distinguish the subject of this chapter -- integrated
whole-APSE assessment - from the subject of Chapter 13 - specific "Whole-APSE Asses-
sors." The integrated form of whole-APSE assessment (Section 3.3) involves a combining
or mixing together of the results of individual assessment steps to arrive at a decision.
These individual steps may be oriented toward specific functions or tools, or may be ori-
ented toward a "whole APSE," in relation to specific attributes or the APSE's performance
in a specific life-cycle phase or activity. Thus, a whole APSE assessor (Chapter 13) might

be used to evaluate the APSE's capability to support a project team during one major ac-
tivity, such as preliminary design. The results of such an assessment would become one
of the weighted factors of an integrating process leading to a major decision.

3.1 GENERAL BACKGROUND

Chapter 4 of this Guidebook contains synopses of books, articles, and docu-
ments. Some of these have historical value and are also indirectly relevant to the topic of

- an integrated approach to APSE evaluation because they provide definitions of an APSE or
* highlight issues that may be important during APSE evaluations. The Stoneman document

3-1

E&V Guidebook, Version 1.1

[@DoD 1980] defines an APSE as a layered system and includes some discussion of

evaluation criteria. The Common APSE Interface Set (CAIS) and CAIS-A definition docu-

ments [@DoD 1986, @DoD 1988] describe proposed interface requirements for interfaces

that exist between layers of an APSE. The motivation for these interface requirements is

to support the transportability of tools and project data bases from one APSE to another.

The book "Life Cycle Support in the Ada Environment" by McDermid and Ripken

[@McDermid 1984] takes a top-down approach to defining a "coherent APSE," starting

with requirements for a coherent life-cycle methodology; see synopsis (4.10]. Several pa-

pers in an IEEE Tutorial [@Wasserman 1981] provide relevant observations on desirable

characteristics and major issues for Ada support environments: see synopses [4.11, 4.12,

4.13]. A more recent survey paper "Characteristics and Functions of Software Engineering

Environments: An Overview" [@Houghton and Wallace 1987] provides a broad discussion

of environments and the state of the art; see synopsis [4.15]. Chapter 3 of the E&V Ref-

erence Manual [@RM: Whole APSE Issues 3.] presents various ways of viewing an APSE

and key whole-APSE attributes.

3.2 EARLY EFFORTS AT INTEGRATED APSE ASSESSMENT

The following quotation is from a paper by Henderson and Notkin [@Henderson
1987]:

"Perhaps the biggest failing of environments research and development
to date is the general lack of scientific evaluation of existing environ-
ments. Evaluation approaches and actual evaluations are beginning to
appear, but relatively little effort has been given to this undeniably fun-
damental subject."

Some early efforts are mentioned briefly below.

The Software Engineering Institute (SEI) has developed a methodology

[@Weiderman 1986] to evaluate certain aspects of APSEs. The methodology centers
around the execution of several experiments in the environment(s) to be evaluated. The

experiments are designed in a generic fashion and must be tailored or "instantiated" for

each specific environment; see synopsis [4.13].

3-2

E&V Guidebook, Version 1.1

The book "Selecting an Ada Environment" [@Lyons 1986], written by the Ada
Europe Environment Working Group, provides background discussion about a broad range
of topics. In each chapter and section it provides a list of questions to be asked about the
environment under consideration; see synopsis [4.9].

It is apparent that industry has devoted resources internally to comparative as-
sessment of commercial APSEs. However, little has yet been published in the open litera-
ture describing the techniques employed.

3.3 TOWARDS A COMPREHENSIVE APPROACH

The published literature on assessment of software engineering environments
does not include descriptions of "decision support" oriented approaches. A decision sup-
port system is one that leads a user through a structured framework that includes weight-
ing factors and decision criteria, and supports a final decision process. As applied to
APSE assessment this kind of approach would support a final decision, such as, whether a
single APSE under consideration is "good enough," or which of several APSEs under con-
sideration is "best."

The following characteristics appear to be appropriate for a decision support
system designed for integrated APSE assessment:

* The system should allow the specification of a list of "essential
features" that are absolutely required for the contemplated applica-
tion or family of applications. Ideally, each of these essential fea-
tures would be subject to a question or test that yields an
unambiguous "yes/no" result.

-- The system should allow the specification of a second list of attrib-
utes and function-attribute pairs that represent desirable features or
criteria, which should be involved in an integrated assessment.

* The system should allow for specification of "weights" to be ap-
plied to each attribute and function-attribute pair in the second list.
The weights will typically be chosen subjectively by the assess-
ment participants.

3-3

E&V Guidebook, Version 1.1

" The system should include a mechanism to document/identify the
method of assessment used for every test/metric to be employed
in addressing every essential and desirable feature.

* The system should include a well-defined method of combination,
leading to an overall set of pre-decision results. For example, the
results may be summarized in two lines as in:

1) satisfies all essential requirements (listed in Table A)

2) scores 72 out of possible 100 (based on weights in Table B).

The characteristics outlined above represent a general framework that can be applied very
differently by different users. At one extreme is a decision maker with little time or re-
sources, who focuses on a short list of essential features only, and accepts answers sup-
plied by vendors or vendor documentation. At the other extreme is a team of APSE
assessors who conduct a comprehensive, detailed set of tests and "model project" experi-
ments and expend multiple person-years of effort in a comparative, hands-on assessment

of competing APSEs.

It is also possible that two assessment teams applying equal resources might
differ greatly in the manner of their assessments. One might view the APSE as a support
system for a particular life-cycle methodology adopted by its organization. Another might
view the APSE as a project data base management system. These two teams would be
likely to use very different tests, or very different weights where the same tests are used.
Neither is necessarily right or wrong. In the final analysis, it is the software developer's re-
sponsibility to understand his own application area and the most critical attributes of his de-
velopment support environment.

3-4

E&V Guidebook, Version 1.1

4. SYNOPSES

The purpose of this chapter is to provide a single place in the Guidebook for
synopses of documents (or other resources), which have too broad a scope to fit within
one of the subsequent Chapters. In some cases the subject document appears only in
this Chapter because it does not contain specific instances of E&V technology. For exam-
ple, the Stoneman document [@DoD 1980] does not deal with evaluation or validation of
APSEs, but it has general historical importance to the entire field of Ada environments and
has been selected as the first document to be synopsized. In other cases a particular
document may contain multiple instances of E&V technology, which are themselves sum-
marized or referenced in multiple parts of the Guidebook. These multiple instances can be
thought of as children of a common parent. In order to avoid the redundancy of summa-
rizing the parent document many times, the Chapter 4 synopsis is provided as a common
point to which all the children may refer. The formal grammar used to structure the entries
in subsequent chapters includes, therefore, a mechanism for referring back to the synopsis
contained in Chapter 4. Similarly, after each synopsis there is a provision for forward ref-
erences to specific techniques (if any) described in later chapters.

Most of the documents synopsized in this chapter are readily available through
public sources. A few of them may be difficult or impossible to obtain for some readers;
these were included because the synopsis itself was judged to be helpful in filling in a
piece of the historical background.

4-1

E&V Guidebook, Version 1.1

4.1 STONEMAN

Citations:
[@DoD 1980] "Requirements for Ada Programming Support
Environments - STONEMAN," 1980.

Synopsis:
The Stoneman document defines the APSE as a layered system. The innermost

layer is referred to as the Kernel APSE, or KAPSE. The KAPSE is machine-
dependent and includes the database functions and other general operating system
support functions. The next layer, the Minimal APSE, or MAPSE, consists of the
minimal set of tools which can support the development of software. The outer-
most layer, the APSE, consists of tools and functions that are project dependent.
In addition to providing guidance for APSE designers, the Stoneman document pro-
vides some evaluation criteria for APSEs.

4-2

E&V Guidebook, Version 1.1

4.2 HOUGHTON: A TAXONOMY OF TOOL FEATURES FOR THE Ada
PROGRAMMING SUPPORT ENVIRONMENT (APSE)

Citations:
[Houghton 1983] R.C., Houghton, Jr., "A Taxonomy of Tool Features for the
Ada Programming Support Environment (APSE)," National Bureau of Standards,
NBSIR-81-2625, February 1983.

Synopsis:
This paper puts forth a taxonomic classification of APSE features. The features

included satisfy the criteria that they are "within current technology" and are "ori-
ented to the Ada language." The top two levels of the classification are as fol-
lows:

Input

Subject

Control Input

Function

Transformation

Management

Static Analysis

Dynamic Analysis

Output

User Output

Machine Output

For each of the second-level elements above, a third-level list is given, and some
discussion is provided. The paper includes the results of a survey in which the
second and third-level elements under "Function" are each rated as "Required,"
"Important," or "Useful."

4-3

E&V Guidebook, Version 1.1

4.3 E&V REPORT: DoD APSE ANALYSIS

Citations:
[E&V Report 1984] "DoD APSE Analysis Report, Draft Version 1.0," 31 August 1984,
Appendix C of "Evaluation and Validation (E&V) Team Public Report". Air Force
Wright Aeronautical Laboratories, November 1984.

Synopsis:
The DoD Ada Programming Support Environment (APSE) Analysis Document was

prepared by the APSE Working Group (APSEWG) of the E&V Team. It contains a
description and analysis of the Ada programming support environments developed
by each of the armed services. The three environments analyzed were the Air
Force's Ada Integrated Environment (AlE), the Army's Ada Language System
(ALS), and the Navy's Ada Language System/Navy (ALS/N). The design docu-
mentation was used to determine the functionality contained in each programming
environment. The functions were described in a taxonomy in order to determine
the commonality and differences of each system. The taxonomy developed for
this purpose was an expanded version of the function part of the taxonomy devel-
oped earlier by Houghton [@Houghton 1983]; see synopsis [4.2].

4-4

E&V Guidebook, Version 1.1

4.4 CLASSIFICATION SCHEMA/E&V TAXONOMY CHECKLISTS

Citations:
[E&V Schema 1987] "E&V Classification Schema Report," TASC. TR-5234-2,
Version 1.0, 15 June 1987.

Synopsis:
The purpose of this document was to set forth a schema, or a framework, to be

used in subsequent E&V documents, especially the E&V Reference Manual [RM].
The Function Index of the schema was strongly influenced by earlier documents,
such as Houghton's taxonomy [4.2], the DoD APSE Analysis Report [4.3], and the
SEE tool features taxonomy [@Kean 1985]. The upper levels of the Function In-
dex of the schema became the initial version of the Function Index of the Refer-
ence Manual. The lower levels were found to incorporate a large number of tool
functions which could be evaluative in nature. These tool function features have
been carried over into the Guidebook as capability assessment checklists. As a
group, they are considered the Classification Schema Checklists.

Methods:
[Compilation Checklist 5.8;
Program Library Management Checklist 5.9;
Linking/Loading Checklist 6.2;
Import/Export Capabilities Checklist 6.3;
Emulation Capabilities Checklist 6.4;
Debugging Capabilities Checklist 6.5:
Tuning Analysis Capabilities Checklist 6.7;
Real-Time Analysis Capabilities Checklist 6.8;
Configuration Management Capabilities Checklist 10.1;
Text Editing Capabilities Checklist 99.1;
Electronic Mail Capabilities Checklist 99.3]

4-5

E&V Guidebook, Version 1.1

4.5 REQUIREMENTS FOR E&V

Citations:
[@E&V Report 1987] "Requirements for Evaluation and Validation of Ada Program-
ming Support Environments, Version 2.0," 4 December 1986, Appendix D of
"Evaluation and Validation (E&V) Team Public Report," Air Force Wright
Aeronautical Laboratories, September 1987.

Synopsis:
This document was prepared by the Requirements Working Group (REQWG) of the

E&V Team. Its purpose is to set forth requirements on the E&V Task. It is in-
tended for use by the E&V Team and by the E&V Task contractors in developing
technology for the evaluation and validation of APSEs. However, its use in other
E&V efforts is encouraged. The document contains three categories of require-
ments: (1) those on the E&V Team itself, (2) those on the E&V methods and pro-
cedures, and (3) those specifying what is to be evaluated or validated. See also
the Tools and Aids Document, synopsis [4.6].

4-6

E&V Guidebook, Version 1.1

4.6 TOOLS AND AIDS FOR E&V

Citations:
[@E&V Report 1987] "Tools and Aids Document, Version 1.0," September 1987,
Appendix C of "Evaluation and Validation (E&V) Team Public Report," Air Force
Wright Aeronautical Laboratories, September 1987.

Synopsis:
This document was prepared by the Requirements Working Group (REQWG) of the

E&V Team. It identifies the community's E&V technology needs, provides defini-
tions of those needs, and prioritizes them in order of their relative importance. The
purpose of this document is to provide pertinent information to those agencies will-
ing and able to fund the development of E&V technology. It reflects the E&V Re-
quirements Document (see synopsis (4.5]) and views on the subject obtained from
surveys conducted among the E&V Team and appropriate ARPANET-MILNet Inter-
est Groups.

4

4-7

E&V Guidebook, Version 1.1

4.7 STARS-SEE OPERATIONAL CONCEPT DOCUMENT

Citations:
(STARS-SEE 1985] "Proposed Version 001.0," STARS Joint Service Team for
Software Engineering Environments, Stars Joint Program Office, October 1985.

Synopsis:
The Software Technology for Adaptable, Reliable Systems - Software Engineering

Environment (STARS-SEE) Operational Concept Document (OCD) presents require-
ments from the perspective of the STARS-SEE users. It represents a consensus
among the Government agencies responsible for SEE development and support,
STARS-SEE implementors, and potential users. Major sections of the document
describe the STARS-SEE mission, operational and support environments, and sys-
tem components and functions. The primary mission centers on the development,
support, reuse, management, and control of mission critical software. The STARS-
SEE system is defined to consist of the people, computers, software, and proce-
dures needed to perform the mission. Major topics discussed include (1) the types
of users and associated software activities, (2) the function of the Integration and
Compatibility Framework, (3) the capabilities required by the Information Storage
and Retrieval System, (4) the functional capabilities of the SEE, (5) the SEE-user
interaction, and (6) the hardware and software characteristics of the computer sys-
tem. The functional capabilities address project planning and control, requirements
specification and analysis, design specification and analysis, software prototyping
and modeling, reusability, program generation and unit testing, integration testing,
quality assurance, verification and validation, configuration management, software/
hardware integration, post deployment software support, project communications,
generation of documents, data collection, performance and productivity measure-
ment, help and training for STARS-SEE users, the transition to and tailoring of the
STARS-SEE, and knowledge engineering.

4-8

E&V Guidebook, Version 1.1

4.8 GRUND, ET AL.: KEY CHARACTERISTICS OF APSES

Citations:
[Grund 1985] E.C. Grund, L.A. Hilliard, and K.A. Younger, "Key Characteristics
of Ada Programming Support Environments," MITRE Corporation, ESD -
TR-85-144, MTR-9590, July 1985.

Synopsis:
This document is intended to provide basic information about Ada Programming

Support Environments for people concerned with the specification or selection of
an APSE. Section 1 summarizes the STONEMAN APSE requirements. Section 2
describes desirable characteristics of APSEs in five areas: compilers, run-time en-
vironments, databases, configuration management tools, and editors. A short list
of questions to ask in each area is included. Section 3 describes four Ada pro-
gramming support products available or under development in early 1985 in terms
of their capabilities in the same five areas.

4-9

E&V Guidebook, Version 1.1

4.9 Ada-EUROPE: SELECTING AN Ada ENVIRONMENT

Citations:
(Lyons 1986] "Selecting an Ada Environment," eds. T.G.L. Lyons and J.C.D.
Nissen, Ada-Europe Working Group, Cambridge University Press, 1986.

Synopsis:
The Ada-Europe Environment Working Group, under the chairmanship of John

Nissen, produced a guide which adopts the "point of view of a potential user wish-
ing to select an environment, and provides lists of questions to be asked about the
environment under consideration." It generally follows the structure proposed in
Stoneman [@DoD 1980]; it "starts from the inside of the onion structure and works
outwards." Each of its 19 Chapters follows a standard format. Topics are intro-
duced and discussed, typically using one or two pages of text, and then a list of
appropriate questions is provided.

4-10

E&V Guidebook, Version 1.1

4.10 MCDERMID AND RIPKEN: UFE CYCLE SUPPORT IN THE Ada ENVIRONMENT

Citations:
[McDermid 1984] J. McDermid and K. Ripken, "Life Cycle Support
in the Ada Environment," Cambridge University Press, 1984.

Synopsis:
This book contrasts its own approach to APSE development with that of the

Stoneman report [@DoD 1980]. Stoneman takes a bottom-up approach, starting
with a kernel and minimal APSE (KAPSE and MAPSE), as a foundation for exten-
sions to more powerful and better integrated environments. McDermid and Ripken
follow a top-down approach by defining requirements for a coherent life-cycle
methodology. They then describe a particular instance of a coherent methodol-
ogy, as a combination of existing methods used in various life-cycle phases. This
description becomes the basis for a definition of a "coherent APSE" that supports
the entire life cycle.

The authors use a seven-phase life cycle and state requirements for each phase in
terms of (1) a system representation form, (2) a transformation method and (3) a
verification activity. Table 4.8-1 lists the names of the seven phases (each named
for its principal output) and the methods selected for each.

TABLE 4.8-1

EXAMPLE COHERENT METHODOLOGY

PHASE (OUTPUT) SELECTED METHOD

Requirements Expression CORE

System Specification A-7 Techniques

Abstract Functional Specification A-7 Techniques

Module Specification Ada and ANNA

Module Design Ada and ANNA

Module Code Ada and ANNA

Executable System

4-11

E&V Guidebook, Version 1.1

The authors are not completely satisfied with all of the methods chosen, and
point out shortcomings in each case. They suggest the book be used as "a refer-
ence point for further work on APSE design and development." They stress that
the coherence of the methods and ease of transition from one phase to the next is
an important attribute. They also outline a phased development plan in which a
larger scale APSE might be developed in the following three steps: (1) a "Clerical
Support APSE," (2) a "V&V and Management Support APSE," and (3) a "Transfor-
mation Support APSE."

4-12

E&V Guidebook, Version 1.1

4.11 NOTKIN AND HABERMANN: SOFTWARE DEVELOPMENT ENVIRONMENT
ISSUES AS RELATED TO Ada

Citations:
[Notkin 1981] D.S. Notkin and A.N. Habermann, "Software Development
Environment Issues as Related to Ada," in "Tutorial: Software Development
Environments," ed. A.I. Wasserman, IEEE, 1981, pp. 107-133.

Synopsis:
This paper addresses software development problems that arise in three areas:

programming, system composition, and management. In each area traditional
methods and tools are contrasted with a more integrated approach exemplified by
an experimental environment named Gandalf.

"Programming issues are those that arise when a single programmer takes a
program all the way from its specifications to a working program."

"System composition issues are those that arise when a system (or a version of a
system) is built by integrating many programs into one." "The two basic problems
in system composition are interface control and version control." Traditional meth-
ods use isolated tools "coordinated by memory.. .or scraps of paper."

"Management issues are those that arise when a group of more than one person
develops and maintains a system over a period of time." Three problem catego-
ries are addressed: misunderstanding, lack of information, and conflict of interest.
Traditionally, these problems have been handled by non-technical means. The
problem with the management approach to a management environment is that the
solution to human interaction difficulties is treated by the introduction of more hu-
man interaction.

Methods:
Although this paper was not written as an example of E&V technology, the following

list of environment software requirements (paraphrased from the paper) may be
used as a high-level checklist:

* Concurrent multiple users must be supported

0 An efficient implementation of Ada must be possible

0 Efficient support for data base manipulations is needed

* A good file system is essential

* An extensible command language is needed.

It is also pointed out that the most important hardware requirement is that the
software requirements listed above must be supported.

4-13

E&V Guidebook, Version 1.1

4.12 STENNING, ET AL.: THE Ada ENVIRONMENT: A PERSPECTIVE

Citations:
[Stenning 1981] V. Stenning, T. Froggart, R. Gilbert, and E. Thomas, "The Ada
Environment: a Perspective," in "Tutorial: Software Development Environments,"
ed. A.I. Wasserman, IEEE, 1981, pp. 36-46.

Synopsis:
This paper discusses the objectives and the design of the Ada Programming

Support Environment. It is strongly influenced by the United Kingdom Ministry
of Defense Ada Support System Study, which was initiated by the MoD in January
1979. According to the paper, the DoD KAPSE/MAPSE/APSE approach is
strongly recommended to achieve portability. The APSE should be designed to
support a project throughout its life cycle. Furthermore, it should be an open-
ended environment. This would allow for the user to extend or modify existing
tools. A basic configuration control manager, a complete user interface, and a
complete basic tool set are necessary to develop an Ada Environment which will
improve program reliability, life-cycle program costs, and promote portability.

4-14

E&V Guidebook, Version 1.1

4.13 WEIDERMAN: EVALUATION OF Ada ENVIRONMENTS

* Citations:
(Weiderman 1986] N. Weiderman, "Evaluation of Ada Environments,"
Software Engineering Institute, SEI-86-MR-10, September 1986.

Synopsis:
In response to the lack of available research about the selection of APSEs, the

- Software Engineering Institute (SEI) has developed a methodology to evaluate
these environments. The methodology centers around the execution of several ex-
periments in the environment to be evaluated. Several experiments have been de-
veloped in the following areas: System Management; Configuration
Management/Version Control; Design and Code Development; Unit Testing and De-
bugging. The experiments are evaluated in terms of functionality, performance, us-
er interfaces, and system interfaces. The need for an evaluator to tailor an
evaluation technique to a specific environment is addressed by the SEI study. The
experiments that have been designed are generic experiments. The evaluator de-
rives, or "instantiates," the environment-specific technique from the generic experi-
ment. In the final phase of the evaluation, the results are analyzed. An advantage
of the application of this methodology is that results can be compared from one
environment to another. See also a paper describing an application of the SEI's
method [@Gray 19871.

Methods:
[SEI Unit Testing and Debugging Experiment 7.2;
SEI Design Support Experiment 9.1;
SEI Configuration Management Experiment 10.2]

4-15

E&V Guidebook, Version 1.1

4.14 BARSTOW AND SHROBE: OBSERVATIONS ON INTERACTIVE
PROGRAMMING ENVIRONMENTS

Citations:
[Barstow 1981] D.R. Barstow and H.E. Shrobe, "Observations on Interactive
Programming Environments," in "Tutorial: Software Development Environments,"
ed. A.I. Wasserman, IEEE, 1981, pp. 285-301.

Synopsis:
This paper reviews key features of LISP-based environments and comments upon

lessons learned from these environments and future directions. These environ-
ments encourage a "progressive enrichment" style of development rather than de-
velopments broken into distinct phases such as specification, implementation, and
maintenance. The following set of lessons (described more fully in the paper) are
concerned with the programmer's perception of the environment:

" It is important to be able to run an incomplete program.

* The user should be able to view the program from many different
natural viewpoints, most of which are "structured" in nature.

" Intercommunication among tools is extremely important.

* The programmer should not be required to know the details of the
particular language definition used in the current implementation.

" The environment's interface must be highly tuned to be as natural
as possible for the human programmer.

Environment characteristics created with these lessons in mind "lead to the ultimate
goal of a programming environment (which is to increase the ability of the pro-
grammer to communicate with the computer) by taking advantage of as many
naturally occurring structures as possible."

4-16

E&V Guidebook, Version 1.1

4.15 HOUGHTON AND WALLACE: CHARACTERISTICS AND FUNCTIONS
OF SOFTWARE ENGINEERING ENVIRONMENTS: AN OVERVIEW

Citations:
[Houghton and Wallace 1987] R.C., Houghton, Jr. and D.R., Wallace, "Charac-
teristics and Functions of Software Engineering Environments: An Overview,"
ACM Software Engineering Notes, Vol. 12 Number 1, January 1987.

_ Synopsis:
This paper provides a comprehensive discussion of software engineering environ-

ments in general, with no focus on Ada or any specific language. Some major
topics discussed are:

* Environment Types and Life Cycle Relationships

* Integration

* Human Factors

* Analysis and Software Quality

* Support for Different Types of Users

* Support for Application

* Hardware Support

* Levels of Support.

In its concluding section, the paper stresses that software engineering environments
should be viewed as systems that support broad categories of users and tasks
throughout the full life cycle.

4-17

E&V Guidebook, Version 1.1

4.16 CAIS

Citations:
(DoD 1986] DoD-STD-1838, Common APSE Interface Set (CAIS),
U.S. Department of Defense, 9 October 1986.

Synopsis:
DoD-STD-1838, hereafter called CAIS, was developed by the KAPSE Interface

Team (KIT) and the KAPSE Interface Team for Industry and Academia (KITIA) dur-
ing the period from 1981 to 1986 as a first evolutionary step towards a full state-of-
the-art common APSE interface standard.

The CAIS is designed to promote source-level portability of Ada programs,
especially Ada software development tools. The goal of the CAIS is to promote in-
teroperability (of database objects) and transportability (of APSE tools) of Ada soft-
ware across Department of Defense (DoD) APSEs. The scope of the CAIS
includes interfaces to those services, traditionally provided by an operating system,
that affect tool transportability. The CAIS contains definitions for a set of Ada
package specifications that will provide a standard and transportable set of inter-
faces to a collection of such underlying services. See also [@DoD 1988] and syn-
opsis (4.17], and the overview paper [@Oberndorf 1988].

4-18

E&V Guidebook, Version 1.1

4.17 CAIS-A

Citations:
[DoD 1988] "Common APSE Interface Set. Revision A," Proposed DoD-STD-1838A,
January 1988.

Synopsis:
CAIS-A is a set of Ada package interfaces designed to enhance the transportability

of Ada Support Environment Tools. The scope of the CAIS-A includes the func-
tionality affecting transportability that is needed by tools, but not provided by the
language. The proposed CAIS-A contains definitions for an entity management
system for software engineering tools. The primitive entities defined allow for the
manipulation of devices, files and processes. CAIS-A is based on an entity-rela-
tionship approach and it allows the user to define entities, in a limited way, by
means of a typing mechanism. CAlS-A also includes functionality to support tools
requiring transaction processing, a rudimentary triggering mechanism, and explicit
control over APSE distribution.

The CAIS-A was developed by SofTech under contract to Naval Ocean Systems
Center. CAIS-A is a design enhancement to the existing CAIS (DoD-STD-1838)
[@DoD 1986]; see synopsis [4.14], which was developed by the KIT and KITIA
(see Appendix B) as a first evolutionary step towards a full, state-of-the-art inter-
face standard. Designers view CAIS-A as the next step in that evolutionary proc-
ess. See also [@DoD 1986] and synopsis [4.16].

4-19

E&V Guidebook, Version 1.1

4.18 HOGAN AND PRUD'HOMME: DEFINITION OF A
PRODUCTION QUALITY COMPILER

Citations:
[Hogan 1985] M.O. Hogan, and S.M. Prud'homme, "Definition of a Production
Quality Compiler," Aerospace Corporation, Technical Report, July 1985.

Synopsis:
The study that led to this report was sponsored by the Space Division of the Air

Force Systems Command. The report "is organized as a set of prototype require-
ments, along with guidance on how to tailor the requirement for specific application
areas. In this form it can be used either as a tool to help determine whether a
particular compiler is of production quality or as a guide for preparing requirements
for compilers to be used in the development and maintenance of software for mis-
sion critical computer resources."

Chapters 2 through 6 address interface requirements: user interfaces, machine
interfaces, runtime system interfaces, compiler related components interfaces, and
Ada language interfaces, respectively. Chapter 7 addresses capacity and perform-
ance requirements, Chapter 8 addresses reliability requirements, Chapter 9 ad-
dresses documentation requirements. Each of the above chapters follows a
standard format in which a requirement is stated in the form: "The compiler shall
. . ," and then a "Guidance" section is provided giving background information
and help in subsetting or tailoring the requirement for specific application domains.

4-20

E&V Guidebook, Version 1.1

4.19 NISSEN, ET AL: GUIDELINES FOR Ada COMPILER
SPECIFICATION AND SELECTION

Citations:
[Nissen 1984] J.C.D. Nissen, B.A. Wichman, et al.,
"Guidelines for Ada compiler specification and selection," in Ada: Language,
compilers and bibliography, ed. M.W.Rogers, Cambridge University Press, 1984.

- Synopsis:
Members of Ada-Europe produced this set of guidelines based upon a taxonomy of
compiler features. Their caveat is clear: "The relative value of information about
different features of the compiler is a matter of judgment and circumstance. ... It
is the reader's responsibility to weigh each factor according to his requirements.
No liability of whatever kind shall be carried by the authors."

The taxonomy is represented by the table of contents of the guide, reproduced in
part below.

2. Host and target
3. Language-related issues
4. User-interfacing and facilities

4.1 Compiler invocation and listing management
4.2 Compilation options
4.3 Other features
4.4 Errors and warnings
4.5 Other software supplied
4.6 Compilation management

5. Performance and capacity
5.1 Host performance and capacity
5.2 Target code performance

6. Compiler and run-time interfacing
6.1 Compiler issues
6.2 Run-time system issues

7. Retargetting and rehosting
7.1 Introduction and definitions
7.2 Retargetting
7.3 Rehosting

8. Contractual matters
9. Validation

4-21

E&V Guidebook, Version 1.1

Chapter 2. Host and Target, briefly treats compiler configuration issues, and pro-
vides a checklist [Host and target checklist 14.1]

Chapter 3. Language-related issues, extracts from the Ada language reference
manual [@DoD 1983] those features explicitly allowed to vary based upon machine
specific characteristics [Machine-specific characteristics checklist 14.2]

Methods:
[Host and target checklist 14.1;
Machine-specific characteristics checklist 14.2]

4-22

E&V Guidebook, Version 1.1

4.20 WIS COMPILER EVALUATION GUIDELINES

Citations:
(WIS CEG 1985] "WIS Compiler Evaluation Guidelines," GTE Labs, Technical
Report, 1985.

Synopsis:
This document presents guidelines that provide an information base on which

specific compiler evaluation methodology and criteria can be built. Three types of
guidelines have been identified: essential characteristics, highly recommended
characteristics, and recommended characteristics. Also, certain questions that
compiler vendors should be asked regarding their compilers measurable character-
istics are listed. The guidelines take the view that the development of Ada compil-
ers is an ongoing process. To address this fact, the document discusses, where
appropriate, general aspects of compilers, and specific aspects of Ada compilers.

The document is broken down into four main sections. Part 1 is an introductory
section. Part 2 provides background information on Ada compilers. Part 3 dis-
cusses compiler architecture issues. Part 4 then provides the main Ada compiler
guidelines.

4-23

E&V Guidebook, Version 1.1

4.21 WIS TOOL EVALUATION CRITERIA

Citations:
[WIS PCEG 1985] G. Gicca and C. Stacey, "Proposed Component Evaluation
Guidelines," GTE Government Systems, Technical Report, 16 August 1985.

Synopsis:
This document outlines a process to be used in evaluating currently available soft-
ware tools for inclusion in an Ada software development environment. It defines a
four phase evaluation process where each successive phase takes a more detailed
view of the particular development tool. All phases have the same basic set of
evaluation categories, with the definition of each being defined at a more refined
level in the following phase. There are seven such categories. These are:
"Functional Applicability," "Understandability," "Testability," "Evolvability," "Effi-
ciency," "Portability," and "Human Engineering." Their definitions at a high level
are:

Functional Applicability - the extent to which the tool or component fulfills
a current need within a software development support environment

Understandability - the extent to which the tool or component is under-
standable from a systems viewpoint

Testability - the ease with which a program can be tested to verify that it
performs its intended functions

Evolvability - a category that evaluates the combination of both modifiabil-
ity and expandability

Efficiency - the amount of time and space required by a program to per-
form a function

Portability - the ease of transferring a program from one hardware con-
figuration or software environment to another

Human Engineering - the ease of learning, operating, preparing input, and
interpreting output of a program.

Each of the four phases of the component evaluation has its own rating scheme.
A checklist is created for each category and for each sub-category within the ba-
sic evaluation categories. The rating scheme itself defines a set of numbers from
1 to 5. The reviewer then rates a particular tool or component by assigning a
value for each sub-category. A weighting factor is then used to prioritize sub-cate-
gories and main categories. In the end a final set of numbers is produced that al-
lows for overall comparisons between tools that offer similar capabilities.

4-24

E&V Guidebook, Version 1.1

5. COMPILATION SYSTEM ASSESSORS

For the purposes of this document, the compilation system is defined as those

APSE components which are Ada-specific and are required for validation: the compiler,

the code generator, the program library management system, and the runtime support sys-

tem. While each of these components have characteristics which should be assessed in-

dividually, the assessment of their combined functionality will be more critical to the

successful development of mission critical software.

The criticality of assessor development for these four compilation system com-

ponents is made evident by the many large-scale projects with requirements for the use of

Ada. These large-scale projects include the Strategic Defense Initiative (SDI), the NASA

Space Station, the Software Technology for Adaptable, Reliable Systems (STARS) program,

Army Tactical Command and Control System, Army WWMCCS Information System (WIS),

and the Advanced Tactical Fighter (ATF), Advanced Tactical Aircraft (ATA), and Light

Helicopter Experimental (LHX) programs being evaluated for common avionics systems un-

der the auspices of the Joint Integrated Avionics Working Group (JIAWG). The successful

performance of these systems depends upon the quality/extent of code generation support

and execution support found in the compilation system.

5-1

E&V Guidebook, Version 1.1

5.1 Ada COMPILER VALIDATION CAPABILITY (ACVC)

Purpose: Validation of the completeness of the Ada compiler by means of a compiler
test suite. The ACVC consists of a test suite, analysis tools, and accompanying
documentation, to enable the determination of conformance of Ada compiler imple-
mentations to the ANSI/MIL-STD-1815A. Note: The AJPO requires that Ada compil-
ers pass the ACVC and the vendor allow the distribution of the resulting Validation
Summary Report (VSR) in order for the compiler to be advertised as a commercially
available Ada compiler.
[@RM: Compilation 7.1.6.7; @RM: Completeness 6.4.9]

Primary References:
[@ACVC 1987]

Host/OS: Unrestricted.

Vendors/Agents: [National Technical Information Service]

Method: Automated test suite.

Inputs:
ACVC source code, Ada compiler and runtime system, and host (and target) com-
puter.

Process:

1. Obtain latest ACVC test suite

2. Following documentation, compile and run tests

3. Use analysis tools on test outputs.

Outputs:
Validation results;
Validation Summary Report (VSR).

5-2

E&V Guidebook, Version 1.1

5.2 IDA BENCHMARKS

Purpose: Evaluation of the capacity and performance of the Ada compiler by means
of a compiler test suite.

[@RM: Compilation 7.1.6.7, @RM: Capacity 6.4.6;
@RM: Processing Effectiveness 6.4.22; @RM: Storage Effectiveness 6.4.31]

Primary References:
[@IDA 1985]

Host/OS: VAXNMS or any system that can read ANSI standard tapes.

Vendors/Agents: [SofTech, Inc.]

Method: Test suite.

Inputs: IDA source code, Ada compiler and runtime system, and host (and target)
computers.

Process:
1. Obtain test suite from agent

2. Compile and run Ada programs.

Outputs: Timing and storage measurements for individual language features.

5-3

E&V Guidebook, Version 1.1

5.3 Ada COMPILER EVALUATION CAPABILITY (ACEC)

Purpose: The purpose of this test suite is best stated by the following quote taken
from the introduction in the ACEC Reader's Guide: "The ACEC consists of a
portable test suite and support tools. ... It contains test problems designed to meas-
ure the execution time and size of a systematically constructed set of Ada examples.
The support tools assist the ACEC user in executing the test suite and analyzing the
results obtained." The scope of coverage provided by the test suite is shown by the
following excerpts from the ACEC classification taxonomy:

11. Execution Time Efficiency
A. Language Feature Efficiency

1. Required (referenced by LRM section)
2. Implementation Dependent (referenced by LRM section)

* attributes (LRM Appendix A)
* clauses
" interrupts
" language interface
" unchecked programming

B. Optimizations
1. Classical

" folding
* common subexpression elimination
* loop invariant motion
" strength reduction
* dead code elimination
* register allocation
* loop merging
* boolean expression optimization
* algebraic simplification
* order of expression evaluation
* jump tracing

2. Effects of Pragmas
3. Other

* Habermann-Nassi transformation for tasking
* delay statement optimization

C. Degradation
1. Classical

" Ackermann
" Tower of Hanoi

2. Task Performance
* task creation
* task termination
" task abortion
* Dining Philosophers Problem
* task starving

3. Other
* unchecked deallocation

5-4

E&V Guidebook, Version 1.1

D. Tradeoffs
1. Coding Styles

* order of evaluation
* default vs initialized
- order of selection (rendezvous)
* scope of usage (global, local, shared)

2. Language Feature Selection (referenced by LRM section)
E. Operating System Kernel Efficiency

1. Task Scheduling
2. Exception Handling
3. File I/O
4. Memory Management/Storage Reclamation
5. Elaboration
6. Run Time Checks

F. Application Profile Tests
1. Classical

* Whetstone
* Dhrystone

2. Ada in Practice
• E-3A simulator
0 navigation algorithms
* radar tracking algorithms
* communication algorithms

3. Ideal Ada
* Al applications
* kernel algorithms

Ill. Code Size Efficiency
A. Expansion Code Size
B. Run Time System Size
C. Executable File Size

The first version of the ACEC is expected in August 1988.
[@RM: Compilation 7.1.6.7, @RM: Processing Effectiveness 6.4.22;
@RM: Storage Efficiency 6.4.31]

Primary References:
[ACEC 1988] "Ada Compiler Evaluation Capability (ACEC) Technical Operating

Report (TOR) Reader's Guide," Air Force Wright Aeronautical Laboratory, Docu-
ment Number D500-11790-2, Draft 31 January 1988.

Host/OS: Portable

Vendors/Agents: [DACS]

5-5

E&V Guidebook, Version 1.1

Method:
Automated test suite

Inputs: ACEC source code, Ada compiler and runtime system, host and target
computer.

Process:

1. Obtain the ACEC

2. Compile and run the tests according to the documentation

3. Use the analysis tools on the test outputs.

Outputs: Reports containing the execution time and/or code size for the se-
lected tests.

5-6

E&V Guidebook, Version 1.1

5.4 PIWG BENCHMARK TESTS

Purpose: Identification of performance characteristics of Ada compilers. The tests
examine the performance of the compiler itself in terms of compilation speed, as well
as the quality of the generated code for both processing and storage effectiveness.
The test suite measures performance for both isolated language features and com-
posites or mixes of language features (using the Whetstone and Dhrystone tests).

[@RM: Compilation 7.1.6.7, @RM: Processing Effectiveness 6.4.22, @RM: Stor-
age Effectiveness 6.4.31]

Primary References:

Host/OS: Unrestricted

Vendors/Agents: [PIWG]

Method:
Automated test suite.

Inputs: PIWG source code, Ada compiler and runtime system, and host (and
target) computer.

Process:

1. Obtain the latest PIWG tests

2. Compile and run tests according to the documentation.

Outputs: Reports on the outcome of each test run.

5-7

E&V Guidebook, Version 1.1

5.5 UNIVERSITY OF MICHIGAN BENCHMARK TESTS

Purpose: Identification of the execution efficiency of the code generated by Ada
compilers. The tests measure only the performance of isolated language features as
they relate to real-time performance.

[@RM: Compilation 7.1.6.7, @RM: Processing Effectiveness 6.4.22]

Primary References:
[Mich 1986] R.M. Clapp, L. Duchesneau, R.A. Volz, T.N. Mudge, and

T. Schultze, "Toward Real-Time Performance Benchmarks for Ada," Electrical En-
gineering and Computer Science Dept., Univ. of Michigan, RSD-TR-6-86, January
1986, pp. 1-25.

Host/OS: Unrestricted

Vendors/Agents: [UMich]

Method:
Test suite.

Inputs: UMichigan source code, Ada compiler and runtime system, and host

(and target) computer.

Process:

1. Obtain the UMichigan tests

2. Compile and run according to the documentation.

Outputs: Reports on the outcome of each test run.

5-8

E&V Guidebook, Version 1.1

5.6 MITRE BENCHMARK GENERATOR TOOL (BGT)

Purpose: Evaluation of the ability of an Ada compilation system to support
development of very large systems in Ada. Under sponsorship of the Federal Avia-
tion Administration, MITRE developed the Benchmark Generator Tool (BGT). The
benchmark tests address capacity issues arising with large system developments.
The initial version (1988) includes two types of tests: Library Capacity Tests and De-
pendency Maintenance Tests.

Primary References:
(MITRE BGT 1986] S.R. Rainer, and T.P. Reagan, "User's Manual for the Ada

Compilation Benchmark Generator Tool," MITRE Corporation, MTR-87W00192-01,
January 1988.

Host/OS: Any for which an Ada compiler exists.

Vendors/Agents: [MITRE, McLean, VA]

Method:
Automated tool.

Inputs:

BGT source code, Ada compiler, and host computer.

Process:

1. Obtain the BGT

2. Compile according to the documentation.

Outputs:
Results of the above analysis, including capacity limits, link time,
compilation time, etc.

5-9

E&V Guidebook, Version 1.1

5.7 UK Ada EVALUATION SYSTEM (AES)

Purpose: Evaluation of Ada compilers and associated linkers/loaders, program
library systems, debuggers, and run-time libraries. A test suite and a methodology
(AES) were developed by Software Sciences Ltd., under sponsorship of the UK Minis-
try of Defense (MoD). The British Standards Institute (BSI) has been sponsored by
the MoD to provide an Ada Evaluation Service, using the AES. Interested parties,
such as compiler vendors or potential compiler purchasers, may pay BSI to conduct
an evaluation or to supply a copy of an existing evaluation report.

Primary References:
[UK AES 1986]

Host/OS: Any for which an Ada compiler exists.

Vendors/Agents: [BSI, Milton-Keynes, UK]

Method:
Automated test suite and questionnaire.

Inputs:
AES source code and questionnaire, Ada compiler and runtime system, and
host (and target) computer.

Process:
Pay BSI to do an evaluation or purchase an existing evaluation report.

Outputs:
An Evaluation Report organized in a standard format.

5-10

E&V Guidebook, Version 1.1

5.8 COMPILATION CHECKLIST

Purpose: Evaluation of the power of compilation by developing a list of functional
capabilities.

[@RM: Compilation 7.1.6.7, @RM: Power 6.4.21]

Primary References:
[@E&V Schema 1987: B.;
Classification Schema/E&V Taxonomy Checklists: 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capability checklist (see Table 5.8-1) and compiler documentation.

Process: Check off capabilities demonstrated during compiler runs or dis-
cussed in the documentation.

Outputs: A list of capabilities performed by the compiler.

5-11

E&V Guidebook, Version 1.1

TABLE 5.8-1

COMPILATION CAPABILITIES CHECKLIST

FEATURE FOUND

Conditional Compilation
Debug Information Generation
Enable/Disable Listing
Errors Only Listing
Error Identification
Set Default Directory For Source
Set Listing Width And Height
Specify Different Program Library
Specify Main Program
Disable Use Of SYSTEM Library
Suppress All Run-Time Checks
Compile Multiple Files
Language Sensitive Editor Support
Specify Error Limit
Enable/Disable An Error Category
Specify Optimization Parameters
Syntax Only Checking
Symbol Table
Variable Set/Use Indications (Cross Reference)
Object Code Listing
Object Attribute Map
Code Statistics
Unidentified Compiler Options(Pragmas)
Controlled Dynamic Storage
Elaboration Control
Inline Expansion Of Subprograms
Interface With Other Languages
Specify Memory Size
Pack Data Representations In Memory
Priority Control Of Concurrent Tasks
Shared Variables
Specify Storage Unit
Specify Alternative System Characteristics
Machine Code Mapping
Machine Code Insertions
Cross Compilation

Error Reporting
Exceptions List

Identify Target Dependencies

5-12

E&V Guidebook, Version 1.1

5.9 PROGRAM UBRARY MANAGEMENT CHECKLIST

Purpose: Evaluation of the power of program library management by developing a
list of functional capabilities.

[@RM: Program Library Management 7.2.1.7, @RM: Power 6.4.21]

Primary References:
[@E&V Schema 1987: B.;
Classification Schema/E&V Taxonomy Checklists: 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 5.9-1) and program library manager
documentation.

Process: Check off capabilities demonstrated by the program library manager
or discussed in the documentation.

Outputs: A list of capabilities performed by the program library manager.

TABLE 5.9-1

PROGRAM LIBRARY MANAGEMENT CAPABILITIES CHECKLIST

FEATURE FOUND

Listing Information
List Of Logical Unit Names
Associated File Names For Unit
Units Using Specified Unit
Units Used By Specified Unit
Size Information
Time-Stamp Information
Kind Of Compilation Unit

Units Used To Construct Executable
Completeness And Currency Check
Automatic Recompilation
Spawn CLI Subprocess
Create Structures
Move Elements Between Libraries
Move Elements Between Directories
Remove Compilation Unit
Library Access Control

Read Only (Shared)
Exclusive

5-13

E&V Guidebook, Version 1.1

5.10 ARTEWG CATALOGUE OF Ada RUNTIME IMPLEMENTATION DEPENDENCIES

Purpose: The purpose of this document is best stated by the following quotation taken
from the rationale section in the catalogue: "The main goal of this catalogue is to be
the one place where all the areas of the Ada Reference Manual ... which permit im-
plementation flexibilities can be found." These implementation dependencies affect
the performance and adaptation characteristics of the generated code. The text de-
scribes each known dependency by a number (which identifies the relevant section
and paragraph in the Ada Reference Manual), a topic or title, a question which poses
the implementation issue, a dependency type (either explicit or implicit), a rationale
explaining why the dependency exists, and an Ada example to further clarify the de-
pendency. (These descriptions could be used as the basis for an automated test
suite.)

[@RM: Compilation 7.1.6.7, @RM: Anomaly Management 6.4.2,
@RM: Processing Effectiveness 6.4.22, @RM: Retargetability 6.4.27,
@RM: Storage Effectiveness 6.4.31]

Primary References:
[ARTEWG 1987] Catalogue of Ada Runtime Implementation Dependencies,"
Association for Computing Machinery, Special Interest Group on Ada,
Ada Runtime Environment Working Group, 1 December 1987.

Host/OS: Not applicable.

Vendors/Agents: [ARTEWG]

Method:
Questionnaire.

Inputs: Descriptions of implementation dependent features.

Process:
1. Select critical dependencies

2. Build and run tests for each dependency or ask vendor how
dependencies are implemented

3. Select compiler and/or make coding standards based on results of step 2.

Outputs: Evidence showing how features are implemented.

5-14

E&V Guidebook, Version 1.1

5.11 ARTEWG RUNTIME ENVIRONMENT TAXONOMY

Purpose: Describes the basic elements of Ada runtime environments and provides a
common vocabulary. The following excerpt is taken from the introduction to the Tax-
onomy section. "If a runtime environment for an Ada program is composed of a set
of data structures, a set of conventions for the executable code, and a collection of
predefined routines, then the question arises: what are examples of these elements,
and moreover, what is the complete set from which such elements are taken when a
particular runtime environment is built?... It should be noted that the dividing line be-
tween the predefined runtime support library on one hand, and the conventions and
data structures of a compiler on the other hand, is not always obvious. One Ada im-
plementation may use a predefined routine to implement a particular language fea-
ture, while another implementation may realize the same feature through conventions
for the executable code. ... This taxonomy concerns itself primarily with those as-
pects of the runtime execution architecture which are embodied as routines in the
runtime library. It does not treat issues of code and data conventions, nor issues re-
lated to particular hardware functionalities, in any great depth."

Primary References:
[ARTEWG 1988] "A Framework for Describing Ada Runtime Environments," Pro
posed by Ada Runtime Environment Working Group (SIGAda), Ada Letters, Volume
VIII, Number 3, May/June 1988, pp. 51-68.

Vendors/Agents: [ARTEWG]

Method: Capabilities checklist

Inputs: Capability checklist (see Table 5.11-1) and runtime environment
documentation.

Process: Check off capabilities demonstrated by the runtime environment or
discussed in the documentation.

Outputs: A list of capabilities performed by the runtime environment.

5-15

E&V Guidebook, Version 1.1

TABLE 5.11-1

RUNTIME ENVIRONMENT TAXONOMENT

FEATURE FOUND

Runtime Execution Model
Dynamic Memory Management
Processor Management
Interrupt Management
Time Management
Exception Management
Rendezvous Management
Task Activation
Task Termination
I/O Management
Commonly Called Code Sequences
Target Housekeeping Functions

5-16

E&V Guidebook, Version 1.1

6. TARGET CODE GENERATION AIDS AND ANALYSIS
TOOLSET ASSESSORS

These tools are used to assess host-target system cross-assemblers; host-

based target linkers and loaders; host-based target system instruction-level simulators/emu-

lators; host-based target-code symbolic debuggers; and host-based target system

instrumentation interfaces which provide visibility into target processes during program exe-

cution. These assessments are also used in the case where the host computer is also the

target computer.

6-1

E&V Guidebook, Version 1.1

6.1 ASSEMBLING CHECKLIST

Purpose: Evaluation of the power of assembling by developing a list of functional
capabilities.

[@RM: Assembling 7.1.6.6, @RM: Power 6.4.21]

Primary References:

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 6.1-1) and assembler documentation.

Process: Check off capabilities demonstrated during assembler runs or discussed
in the documentation.

Outputs: A list of capabil;ties performed by the assembler.

TABLE 6.1-1

ASSEMBLING CAPABILITIES CHECKLIST

FEATURE FOUND

Code Generation
Macro Preprocessing
Conditional Assembly
Debug Information Generation
Enable/Disable Listing
Errors Only Listing
Set Listing Width and Height
Suppress All Run-Time Checks
Assemble Multiple Files
Specify Error Limit
Enable/Disable An Ertor Category
Syntax Only Checking
Symbol Table
Code Statistics
Cross Assembly

6-2

E&V Guidebook, Version 1.1

6.2 LINKING/LOADING CHECKLIST

Purpose: Evaluation of the power of linking/loading by developing a list of functional
capabilities.

[@RM: Linking/Loading 7.1.6.13, @RM: Power 6.4.21]

Primary References:
[@E&V Schema 1987: B.;
Classification Schema/E&V Taxonomy Checklists: 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 6.2-1) and linker/loader documentation.

Process: Check off capabilities demonstrated during linker/loader runs or dis-
cussed in the documentation.

Outputs: A list of capabilities performed by the linker/loader.

TABLE 6.2-1
LINKING/LOADING CAPABILITIES CHECKLIST

FEATURE FOUND

Non-Specific Language Linking
Deferred (After A Specific Time)
Enable/Disable Link Map Generation
Specify Full/Brief Link Map
Generate A Link Command File
Enable/Disable Symbol Cross-Reference
Generate Debug Information
Enable/Disable Execution File Creation
Specify Batch/Nobatch Operation
Specify Map File Name
Specify Object File Name
Specify Diagnostic Output File
Enable/Disable System Library Search
Enable/Disable Traceback Information
Library Search Capabilities
Extended Options Capabilities
Sharable Image Support
Specify Maximum Memory
Specify Optimization Parameters
Force Load
Enable/Disable Library Trace
Specify Main Program
Non-Specific Language Main Program
Overlays

6-3

E&V Guidebook, Version 1.1

6.3 IMPORT/EXPORT CAPABILITIES CHECKLIST

Purpose: Evaluation of the power of import/export by developing a list of functional
capabilities.

[@RM: Import/Export 7.2.3.6, @RM: Power 6.4.21]

Primary References:
[@E&V Schema 1987: B.;
Classification Schema/E&V Taxonomy Checklists: 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 6.3-1) and import/export documentation.

Process: Check off capabilities demonstrated by the import/export system or dis-
cussed in the documentation.

Outputs: A list of capabilities performed by the import/export system.

TABLE 6.3-1
IMPORT/EXPORT CAPABILITIES CHECKLIST

FEATURE FOUND

Host to Target Object Downloading
Target to Host Data Uploading

Note: This table will be expanded in a future version of the Guidebook.

6-4

E&V Guidebook, Version 1.1

6.4 EMULATION CAPABILITIES CHECKLIST

Purpose: Evaluation of the power of emulation by developing a list of functional
capabilities.

[@RM: Emulation 7.3.2.13, @RM: Power 6.4.21]

Primary References:
[@E&V Schema 1987: B.;
Classification Schema/E&V Taxonomy Checklists: 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 6.4-1) and emulation system documenta-
tion.

Process: Check off capabilities demonstrated by the emulation system or dis-
cussed in the documentation.

Outputs: A list of capabilities performed by the emulation system.

TABLE 6.4-1

EMULATION CAPABILITIES CHECKLIST

FEATURE FOUND

Hardware
System Emulation/Simulation

Note: This table will be expanded in a future version of the Guidebook.

6-5

E&V Guidebook, Version 1.1

6.5 DEBUGGING CAPABILITIES CHECKLIST

Purpose: Evaluation of the power of debugging by developing a list of functional
capabilities.

[@RM: Debugging 7.3.2.5, @RM: Power 6.4.21]

Primary References:
[@E&V Schema 1987: 13.;
Classification Schema/E&V Taxonomy Checklists: 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 6.5-1) and debugger documentation.

Process: Check off capabilities demonstrated by the debugger or discussed in
the documentation.

Outputs: A list of capabilities performed by the debugger.

6-6

E&V Guidebook, Version 1.1

TABLE 6.5-1

DEBUGGING CAPABILITIES CHECKLIST

FEATURE FOUND

Instrumentation
Statement
Branch
Unit
CSC

Machine Level Debugging
Symbolic Debugging

Tracing
Breakpoint Control
Data Flow Tracing
Path Flow Tracing
Selectable Level Of Granularity

Display
Program Source
History
Stack
Tasks
Breakpoints

*Tracepoints
Memory
Collections And Global Heaps
Name Of Current Exception

Evaluate Objects
Step

Single
By Discrete Amounts
Into Subprograms
Over Subprograms
To Next Scheduling Event
To Next Exception
To End of Program Unit

Miscellaneous
Symbol Abbreviation
Set Context For Control
Input Debugger Command Files
Modify Variable Values
Modify Object Code
Modify Control Flow
Console Interrupt
Full Screen Mode
Keypad For Entering Commands
Virtual Clock
Special Compilation Mode
Multi-Language Support
Dynamic Interrupt
Optimization Support
Units Comprising Executable

6-7

E&V Guidebook, Version 1.1

6.6 TIMING ANALYSIS CAPABILITIES CHECKLIST

Purpose: Evaluation of the power of timing analysis by developing a list of functional
capabilities.

[@RM: Timing 7.3.2.14, @RM: Power 6.4.21]

Primary References:

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 6.6-1) and timing analysis system docu-
mentation.

Process: Check off capabilities demonstrated by the timing analysis system or
discussed in the documentation.

Outputs: A list of capabilities performed by the timing analysis system.

TABLE 6.6-1

TIMING ANALYSIS CAPABILITIES CHECKLIST

FEATURE FOUND

Timing Instrumentation
Obtrusive
Non Obtrusive

Fraction By Section Of Code
Tasking Monitor

Fraction Executing
Fraction Runnable
Fraction Runnable And Not Executing
Time Between Runnable And Executing
Time Between Events
System Idle Time

6-8

E&V Guidebook, Version 1.1

6.7 TUNING ANALYSIS CAPABILITIES CHECKLIST

Purpose: Evaluation of the power of tuning analysis by developing a list of functional
capabilities.

[@RM: Tuning 7.3.2.15, @RM: Power 6.4.21]

Primary References:
[@E&V Schema 1987: B.;
Classification Schema/E&V Taxonomy Checklists: 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 6.7-1) and tuning analysis system docu-
mentation.

Process: Check off capabilities demonstrated by the tuning analysis system or
discussed in the documentation.

Outputs: A list of capabilities performed by the tuning analysis system.

TABLE 6.7-1
TUNING ANALYSIS CAPABILITIES CHECKLIST

FEATURE FOUND

Task Monitoring Instrumentation

Note: This table will be expanded in a future version of the Guidebook.

6-9

E&V Guidebook, Version 1.1

6.8 REAL-TIME ANALYSIS CAPABILITIES CHECKLIST

Purpose: Evaluation of the power of real-time analysis by developing a list of functional
capabilities.

[@RM: Real-Time Analysis 7.3.2.17, @RM: Power 6.4.21]

Primary References:
[@E&V Schema 1987: B.;
Classification Schema/E&V Taxonomy Checklists: 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 6.8-1) and real-time analysis system
documentation.

Process: Check off capabilities demonstrated by the real-time analysis system or
discussed in the documentation.

Outputs: A !ist of capabilities performed by the real-time analysis system.

TABLE 6.8-1

REAL-TIME ANALYSIS CAPABILITIES CHECKLIST

FEATURE FOUND

Hardware-In-The-Loop
Non-Intrusive Instrumentation
Performance Analysis
Symbolic Trace

6-10

E&V Guidebook, Version 1.1

7. TEST SYSTEMS ASSESSORS

These assessors examine the ability of the APSE or APSE component to sup-
port and facilitate the planning, development, execution, evaluation, and documentation of

tests of software.

7.1 TESTING CAPABILITIES CHECKLIST

Purpose: Evaluation of the power of testing by developing a list of functional capabilities.
[@RM: Testing 7.3.2.10, @RM: Power 6.4.21]

Primary References:
(@DeMillo 1986] R.A. DeMillo, "Functional Capabilities of a Test and Evaluation
Subenvironment in an Advanced Software Engineering Environment," Georgia
Institute of Technology GIT-SERC-86/07, 20 October 1986.

Vendors/Agents: [GIT]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 7.1-1) and testing system documentation.

Process: Check off capabilities demonstrated by the testing system or discussed in
the documentation.

Outputs: A list of capabilities performed by the testing system.

7-1

E&V Guidebook, Version 1.1

TABLE 7.1-1
TESTING CAPABILITIES CHECKLIST

FEATURE FOUND

Static Analyzers
Code Auditors
Traceability Analyzers
Consistency Checkers
Interface Analyzers
Completeness Checkers

Tool Building Services
Common "Front-End" Facilities for Languages of Interest (Parsing,

Source & Internal Form Manipulation, Execution Facilities)
Tool Composition Aids

Test Building Services (including Test Data Generators)
Symbolic Evaluators
Component Coverage Analyzers
Data Flow Analyzers
Assertion Processors
Mutation Analyzers
Path and Domain Selection Aids
Random Test Generators

Test Description and Preparation Services
Data Editors
Data Auditors
Body/Stub Generators
File Comparators
Data/File Services
Software and System Test Communications Facilities

Test Execution Services
Test Harness Generator
Data and Error Logging Services
Quality Measurement Tools

Test Analysis Services
Correctness Analyzers (Oracles)
Instrumentation Aids
Status Display Tools
Data Reduction and Analysis Tools

Decision Support Services
Documentation Services
Information Repositories
Problem Report Processing and Analysis Tools
Change Request Processing and Analysis Tools

7-2

E&V Guidebook, Version 1.1

7.2 SEI UNIT TESTING AND DEBUGGING EXPERIMENT

Purpose: Evaluation of an environment's capabilities, from the point of view of the
unit tester. An experiment was designed to simulate the activities normally associated
with small projects, namely the design, creation, modification, and testing of a single
unit or module. See also the SEI Design Support Experiment [9.1].

Primary References:
[@Weiderman 1986, Chapter 6;
Weiderman: Evaluation of Ada Environments, 4.11]

Host/OS: VAX/VMS and VAX/UNIX

Vendors/Agents: [SEI]

Method: Structured experiment
Inputs: The "generic" experiment description, an APSE, and host (and target) com-

puter.

Process: "Instantiate" the experiment for a specific Host/OS/APSE combination and
carry it out.

Outputs: A filled-in table of functional elements present and missing, elapsed time and
cpu time values, and subjective judgments based on the experience.

7-3

E&V Guidebook, Version 1.1

8. TOOL/HOST INTERFACE ASSESSORS

These assessors evaluate or validate implementations of Ada language specifi-

cations for tool/host interface sets. Interface sets that may be assessed could include a

CAIS or a CAIS-A implementation, Portable Common Tool Environment (PCTE) implementa-

tions and Ada language interfaces to the UNIX operating system and its variants (e.g.,
Berkeley UNIX, System V, A/UX, POSIX).

8.1 CAIS IMPLEMENTATION VALIDATION CAPABILITY (CIVC)

Purpose: Assess the conformance of CAIS implementations to the DoD-STD-1838
and DoD-STD-1838A standards. The CIVC consists of a test suite, analysis tools,
and associated documentation which enable validators and CAIS implementors to
determine the completeness of CAIS implementations with respect to conformance
to the standards. A suite of tests to be compiled and executed with interfaces
provided for a CAIS implementation. Analysis tools are utilized for aiding the users
in selecting tests and obtaining results.

Primary References:
TBA

Host/OS:
Not Applicable

Vendors/Agents:

TBA

Method: Automated test suite

Inputs: The CIVC test suite, CAIS implementation, Ada compiler and runtime system,
and host computer.

Process:
1. Obtain the CIVC test suite
2. Compile and run the tests
3. Collect and analyze the results.

Outputs: Report describing the conformance of various aspects of the CAIS imple-
mentation to DoD-STD-1838 or 1838A.

8-1

E&V Guidebook, Version 1.1

8.2 TOOL SUPPORT INTERFACE EVALUATION

Purpose: Evaluation of tool support interfaces in terms of four criteria: level,
appropriateness, implementability, and performance. Five "scenarios" were designed
and used to exercise a prototype CAIS implementation and a prototype PCTE imple-
mentation. The scenarios involved a configuration management system, an edit-com-
pile-link-test cycle, a conference management system, a window manager, and a
design editor.

Primary References:
[Long 1988] F.W. Long, and M.D. Tedd, "Evaluating Tool Support Interfaces,"
Ada in Industry, Proceedings of the Ada-Europe Conference, Munich, 7-9 June 1988,
Cambridge University Press, 1988.

Host/OS: Sun

Vendors/Agents: [College of Wales, UK]

Method: Structured experiment

Inputs: The source code for the scenarios, the tool support interface(s) (CAIS, PCTE,
other), Ada compiler and runtime system, and host computer.

Process:
1. Obtain the source code for the scenarios
2. Compile and run the scenario(s)

3. Collect the results.

Outputs: Objective results and subjective conclusions concerning the impact on tool
writers and the cost and behavior of the interface implementation.

8-2

E&V Guidebook, Version 1.1

9. Ada DESIGN SUPPORT ASSESSORS

These assessors measure the suitability and effectiveness of various software

- definition, specification, and design tools. This specifically includes assessors of Ada Pro-
gram Design Language (PDL) implementations and/or guidelines in the use of Ada as a
PDL.

9.1 SEI DESIGN SUPPORT EXPERIMENT

Purpose: Evaluation of the design and code development capabilities of an environment,
as represented in a small project. An experiment was designed to simulate the activi-
ties normally associated with small projects, namely the design, creation, modification,
and testing of a single unit or module. See also the SEI Unit Testing and Debugging
Experiment (7.21.

Primary References: [@Weiderman 1986, Chapter 5;
Weiderman: Evaluation of Ada Environments, 4.11]

Host/OS: VAX/VMS and VAX/UNIX

Vendors/Agents: (SEI]

Method: Structured experiment.

Inputs: The "generic" experiment description, an APSE, and host computer.

Process: "Instantiate" the experiment for a specific Host/OS/APSE combination and
carry it out.

Outputs: A filled-in checklist of functional elements present and missing, tables of
time and space data, and subjective judgments based on the experience.

9-1

E&V Guidebook, Version 1.1

10. CONFIGURATION MANAGEMENT SUPPORT ASSESSORS

These assessors examine the performance, usability, and completeness of the

APSE or APSE component functionality related to controlling the contents of software sys-

tems. This includes monitoring the status, preserving the integrity of released and develop-
ing versions, and controlling the effects of changes throughout the lifetime of the software

sys:em.

10.1 CONFIGURATION MANAGEMENT CAPABILITIES CHECKLIST

Purpose: Evaluation of the power of configuration management by developing a list of
functional capabilities.

[@RM: Configuration Management 7.2.2.7, @RM: Power 6.4.211

Primary References:
[@E&V Schema 1987: B.;
Classification Schema/E&V Taxonomy Checklists: 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 10.1-1) and configuration management docu-
mentation.

Process: Check off capabilities demonstrated by the configuration manager or dis-
cussed in the documentation.

Outputs: A list of capabilities performed by the configuration manager.

10-1

E&V Guidebook, Version 1.1

TABLE 10.1-1

CONFIGURATION MANAGEMENT CAPABILITIES CHECKLIST

FEATURE FOUND

Version Management
Archive
Protect

Revision Management
Audit Support
Configuration Library

Create
Delete
Verify

Library Elements
Create
Delete
Fetch
Reserve
Unreserve
Replace
Differences

Element Classes
Create
Delete
Insert Element
Remove Element

Listings
Elements
Reservation
History
Annotation
Completeness

Level Control
Usage Administration
Test Control

Procedures
Data
Results
Failure Reporting

10-2

E&V Guidebook, Version 1.1

10.2 SEI CONFIGURATION MANAGEMENT EXPERIMENT

Purpose: Evaluation of the configuration management and version control capabilities of an
environment. An experiment was designed to simulate the system integration and test-
ing phase of the life cycle by having three separate development lines of descent from
a single baseline.

Primary References: [@Weiderman 1986, Chapter 3;

Weiderman: Evaluation of Ada Environments, 4.11]

Host/OS: VAX/VMS and VAX/UNIX

Vendors/Agents: [SEI]

Method: Structured experiment.

Inputs: The "generic" experiment description, an APSE, and host computer.

Process: "Instantiate" the experiment for a specific Host/OS/APSE combination and
carry it out.

Outputs: A filled-in checklist showing functional elements present and missing, a table
of elapsed-time values for certain specific operations, and subjective judgments
based on the experience.

10-3

E&V Guidebook, Version 1.1

11. DISTRIBUTED SYSTEMS DEVELOPMENT AND
RUNTIME SUPPORT ASSESSORS

These assessors examine the ability of the APSE or APSE components to sup.

port software development for distributed processing systems, and to provide runtime sup-

port for distributed processing systems.

11-1

E&V Guidebook, Version 1.1

12. DISTRIBUTED APSE ASSESSORS

These assessors examine the ability of two or more distributed APSEs to com-

municate in cooperative ways in supporting the development of mission critical software at

diverse geographical locations.

12-1

E&V Guidebook, Version 1.1

13. "WHOLE APSE" ASSESSORS

These assessors examine or measure the overall quality or performance of an

APSE considered as a whole rather than as a collection of individual parts individually as-

sessed. A specific whole-APSE assessor may be designed to achieve a limited objective,

such as: evaluate the quality of an APSE in supporting a team of software developers per-

forming a specific life-cycle phase or activity such as preliminary design or integration test-

ing. The results of such an evauation could then become one ingredient of an integrated

whole-APSE assessment, as described in Section 3.3.

13.1 APSE CHARACTERIZATION

Purpose: The purpose of this form is to provide an overview or summary of the capabili-
ties and features of an APSE. This form can be used as an initial information gathering
device to begin the process of whole-APSE assessment. This information would then
be supplemented by results of detailed evaluations or examinations of attributes that are
of specific interest to the potential buyer or user of an APSE.

[@RM: Whole APSE Issues 3.]

Primary References:

Host/OS: Not Applicable.

Vendors/Agents: [E&V Team]

Method: Questionnaire

Inputs: Blank APSE characterization form (see Fig. 13.1-1) and APSE documentation.

Process:
1. Have APSE vendor complete the APSE characterization form
2. Select APSEs for further investigation based on information gathered

from step 1.

Outputs: Completed APSE characterization form.

13-1

E&V Guidebook, Version 1.1

Name/Acronym:

Vendor:

Address:

Phone Number:

Cost ($, no charge, not available/applicable):

Purchase Seminars
Maintenance In House Classes
Documentation Educational Videos
On-Line Help On-Line Tutorials
Hot-Line Support

Problem Reporting/Resolution Procedures:

Frequency of Updates:

Usage Limitations (License Restrictions):

Host/Target(s) - Required Configurations:

Peripherals Supported:

Languages Supported & Interoperability Features:

Summary of Features:

Life Cycle Support - Capabilities/Phase:

Methodology Support:

Management Support:

Application-Specific Capabilities:

Documentation Support (editors, word processors, document generators, desktop publishing):

Figure 13.1-1 APSE Characterization Form (Page 1)

13-2

E&V Guidebook, Version 1.1

File/Database/Program Library Management (hierarchical, relational):

Access Control - Level of Granularity:

Integration Mechanism (standard file structures, database, standard intertool interfaces):

User Interface (command language, menus, icons) - Flexibility vs. Consistency:

Extensibility:

Support for Distributed Development:

Capacity (number of users, size of project):

Typical Usage Scenarios:

Developer:

NProduction Process/Vehicles:

Date First Released:

Previous Use:

References (documentation, evaluation results, case histories):

Figure 13.1-1 APSE Characterization Form (Page 2)

13-3

E&V Guidebook, Version 1.1

14. ADAPTION ASSESSORS

These assessors examine the ease with which an APSE or APSE component

can be used beyond its original requirements, such as extending or expanding capabilities
and adapting for use in another application or environment. This is measured as the de-
gree to which this adaptation can be accomplished without reprogramming.

14.1 HOST AND TARGET CHECKLIST

Purpose: Evaluation of tools relative to host and target configurations.
[@RM: Rehostability 6.4.25;
@RM: Retargetability 6.4.27;
@RM: Transportability 6.3.4]

Primary References:
[@Nissen 1984;
Nissen, et al.: Guidelines For Ada Compiler Specification And Selection: 4.17]

Vendors/Agents: [Cambridge University Press]

Method: Assessment checklist

Inputs: Checklist and tool documentation.

Process: Fill in the appropriate answers in the following checklist.

a) Host configuration(s) required

b) Host operating system(s) required

c) Target configuration(s) supported

d) Target operating system(s) supported

e) APSE(s) supported, if applicable

f) Host-target communication supported

i) program loading

ii) program execution and debugging.

Outputs: A completed list which characterizes the tool relative to host-target issues.

14-1

E&V Guidebook, Version 1.1

14.2 MACHINE-SPECIFIC CHARACTERISTICS CHECKLIST

Purpose: Evaluation of tools relative to machine-specific characteristics.
[@RM: Rehostability 6.4.25:
@RM: Retargetability 6.4.27]

Primary References:
[@Nissen 1984;
Nissen, et al.: Guidelines For Ada Compiler Specification And Selection: 4.17]

Vendors/Agents: [Cambridge University Press]

Method: Assessment checklist

Inputs: Checklist and tool documentation.

Process: Fill in the appropriate answers in the following checklist.

[@DoD 1983: Lexical Elements 2.]

* [@DoD 1983: 2.1] Character set of the host and target

* [@DoD 1983: 2.2] Maximum number of characters on a line
of the host and target

* [@DoD 1983: 2.3. 2.41 Is the maximum character length of
an identifier or numerical literal restricted other than by line
length

* [@DoD 1983: 2.8, F.] The form, allowed place, and effect
of every implementation-defined pragma

[@DoD 1983: Declarations and Types 3.]

* [@DoD 1983: 3.2.1] The effect of using uninitialized vari-
ables - does the compiler flag or reject program that de-
pends upon such variables

* [@DoD 1983: 3.5.1] The maximum number of elements in
an enumeration type

[@DoD 1983: 3.5.4] The values cf:

-- INTEGER'FIRST

-- SHORT INTEGER'FIRST

-- LONGINTEGER'FIRST

-- INTEGER'LAST

14-2

E&V Guidebook, Version 1.1

-- SHORTINTEGER'LAST

-- LONGINTEGER'LAST

[@DoD 1983: 3.5.8] The values of:

-- FLOAT'DIGITS

-- SHORTFLOAT'DIGITS

-- LONGFLOAT'DIGITS

[@DoD 1983: Names and Expressions 4.]

0 [@DoD 1983: 4.10] Is there a limit on the range of universal
values which exceeds the capacity of the compiler

0 [@DoD 1983: 4.10] Is there a limit on the accuracy real uni-
versal expressions

[@DoD 1983: Tasks 9.]

* [@DoD 1983: 9.6] The values of:

-- DURATION'DELTA

-- DURATION'SMALL

-- DURATION'FIRST

-- DURATION'LAST

& [@DoD 1983: 9.8] The values of:

-- PRIORITY'FIRST

-- PRIORITY'LAST

[@DoD 1983: 9.11] The restrictions on shared variables

[@DoD 1983: Program Structure and Compilation Issues 10.]

* [@DoD 1983: 10.1] Initiation, communication with, and re-
strictions on the main program

0 [@DoD 1983: 10.5] When tasks initiated in imported library
units will terminate

[@DoD 1983: Exceptions 11.]

0 [@DoD 1983: 11.1] Conditions under which these exceptions
are raised:

-- NUMERIC ERROR

-- PROGRAMERROR

-- STORAGE ERROP

14-3

E&V Guidebook, Version 1.1

[@DoD 1983: Representation Clauses and Implementation-Dependent
Features 13.]

[@DoD 1983: 13.4, F.] The list of all restrictions on repre-
sentation clauses

[@DoD 1983: 13.1, F.] The conventions used for any sys-
tem generated name denoting system dependent components

[@DoD 1983: 13.5, F.] The interpretation of expressions that
appear in address clauses, including those for interrupts

[@DoD 1983: 13.7] The specification of package SYSTEM;
which includes the values of:

-- MIN INT

-- MAXINT

-- MAXDIGITS

-- MAXMANTISSA

-- FINEDELTA

-- TICK

[@DoD 1983: 13.7.3] For a pre-defined floating point type F, the value

of:

F'MACHINEROUNDS

F'MACHINERADIX

F'MACHINEMANTISSA

F'MACHINEEMAX

F'MACHINEEMIN

F'MACHINEOVERFLOWS

" [@DoD 1983: 13.7.3] The values outside the range of safe
numbers for real types

* [@DoD 1983: 13.10.1] Any restriction on UN-
CHECKEDDEALLOCATION

* [@DoD 1983: 13.10.2, F.] Any restriction on UN-
CHECKEDCONVERSION

[@DoD 1983: Input-Output 14]

* [@DoD 1983: 14., F.] Any implementation-dependent
characteristics of the
input-output packages

14-4

E&V Guidebook, Version 1.1

* [@DoD 1983: Implementation-Dependent Features F.]

-- [@DoD 1983: F.] The name and type of every implementa-
tion-dependent attribute

Outputs: A completed list which characterizes the tool relative to machine
dependencies.

14-5

E&V Guidebook, Version 1.1

99. OTHER ASSESSORS

This chapter contains instances of E&V technology that do not conveniently fit

one of the earlier chapters. It is likely that in future versions of the Guidebook some of

these "miscellaneous" instances will be grouped together in new chapters, and therefore

moved out of Chapter 99.

99.1 TEXT EDITING CAPABILITIES CHECKLIST

Purpose: Evaluation of the power of text editing by developing a list of functional
capabilities.

[@RM: Text 7.1.1.1, @RM: Power 6.4.21]

Primary References:
[@E&V Schema 1987: B.;
Classification Schema/E&V Taxonomy Checklists: 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 99.1-1) and text editor documentation.

Process: Check off capabilities demonstrated during editing sessions or discussed in
the documentation.

Outputs: A list of capabilities performed by the text editor.

99-1

E&V Guidebook, Version 1.1

TABLE 99.1-1

TEXT EDITING CAPABILITIES CHECKLIST

FEATURE FOUND

Locator Movement
Left, Right, Up, Down
Top, Bottom
Beginning/End of Line
Next/Previous Word

Search/Replace
Search Forward
Search Backward
Regular Expression Search
Regular Expression Replace
Multiple Replace
Scroll Up, Down, Left, Right
Page Up, Down

Buffers
Copy Text To
Copy Text From
Edit Multiple Files
Split Screen

Regions
Set Mark
Delete Region
Copy Region
Move Region

File Manipulation
Copy From File
Append To File

Macros
Keyboard Macros
Macro Language
Language Sensitive

Identifiers/Keywords Search
Syntax Templates/Completion
Reformat (Pretty Print)
Display High-Level Structure
Display Unclosed Structures
Display Matching Structures
Display Permitted Constructs
"Comment Out" Code Block
Invoke Syntax Check/Translation

LRM Automated Access
Miscellaneous

Terminal Independent
On-Line Help Facility
Minimal Redisplay Algorithm
Key Redefinition
Undo Capability
Spawn CLI
Command Recall and Integration
Command Type-Ahead

99-2

E&V Guidebook, Version 1.1

99.2 DATA BASE MANAGEMENT CHECKLIST

Purpose: Evaluation of the power of data base management by developing a list of func-
tional capabilities.

[@RM: Data Base (Object) Management 7.2.1.1. @RM: Power 6.4.21]

Primary References:

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 99.2-1) and data base manager documenta-
tion.

Process: Check off capabilities demonstrated by the data base manager or discussed
in the documentation.

Outputs: A list of capabilities performed by the data base manager.

TABLE 99.2-1

DATA BASE MANAGEMENT CAPABILITIES CHECKLIST

FEATURE FOUND

Administration
Access Control
Backup And Recovery
Data Dictionary Management
Design Aids
Performance Prediction
Report Generation

Query
Data Set
User Defined
Tools

Subschema (View) Facility

99-3

E&V Guidebook, Version 1.1

99.3 ELECTRONIC MAIL CHECKLIST

Purpose: Evaluation of the power of electronic mail by developing a list of functional
capabilities.

[@RM: Electronic Mail 7.2.1.4, @RM: Power 6.4.21]

Primary References:
[@E&V Schema 1987: B.;
Classification Schema/E&V Taxonomy Checklists: 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 99.3-1) and mail system documentation.

Process: Check off capabilities demonstrated by the mail system or discussed in the
documentation.

Outputs: A list of capabilities performed by the mail system.

TABLE 99.3-1

ELECTRONIC MAIL CAPABILITIES CHECKLIST

FEATURE FOUND

Send
Receive
Immediate Forwarding
Immediate Reply
Archive
Print
Search For String
Edit Message To Be Sent
Read Next Message
Read Previous Message
Read First Message
Read Last Message
Position To Start Of Message
Keypad Support
On-Line Help Facility
Send To Distribution Lists
Send Across Network
Mail Filing

99-4

E&V Guidebook, Version 1.1

99.4 REQUIREMENTS PROTOTYPING CAPABILITIES CHECKLIST

Purpose: Evaluation of the power of requirements prototyping by developing a list of
functional capabilities.

[@RM: Requirements Prototyping 7.3.2.2, @RM: Power 6.4.21]

Primary References:

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 99.4-1) and requirements prototyping docu-
mentation.

Process: Check off capabilities demonstrated by the requirements prototyping system
or discussed in the documentation.

Outputs: A list of capabilities performed by the requirements prototyping system.

TABLE 99.4-1
REQUIREMENTS PROTOTYPING CAPABILITIES CHECKLIST

FEATURE FOUND

Standards Requirements Libraries
Executable Specifications
Fourth Generation Languages or Very High Level Languages
Reusable Building Blocks and Associated Tools
Man-Machine Interface Prototyping Capabilities
Applications Generators
Previous Software Version Import Capabilities

99-5

E&V Guidebook, Version 1.1

99.5 PERFORMANCE MONITORING CHECKLIST

Purpose: Evaluation of the power of performance monitoring by developing a list of
functional capabilities.

[@RM: Performance Monitoring 7.2.1.10, @RM: Power 6.4.21]

Primary References:

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 99.5-1) and performance monitor
documentation.

Process: Check off capabilities demonstrated by the performance monitor or dis-
cussed in the documentation.

Outputs: A list of capabilities performed by the performance monitor.

TABLE 99.5-1

PERFORMANCE MONITOR CAPABILITIES CHECKLIST

FEATURE FOUND

Hardware
CPU Time (Real And Virtual)
Memory Usage
I/O Channel Traffic
Terminal Response
Terminal Connect Time
Terminal Availability
Disk Usage
Disk Space Availability
Tape Mounts
Tape Drive Availability
Printout Quantity
Software
Tool Usage
Program Library Monitoring
Wall Clock Time

99-6

E&V Guidebook, Version 1.1

99.6 SIMULATION AND MODELING CAPABILITIES CHECKLIST

Purpose: Evaluation of the power of simulation and modeling by developing a list of func-
tional capabilities.

[@RM: Simulation and Modeling 7.3.2.3, @RM: Power 6.4.21]

Primary References:
[ISTAR 1987] Workshop on Future Development Environments, Information Science
and Technology Assessment for Research, Conference on Information Mission
Area (IMA) Productivity, Department of Army Director of Information Systems for
Command, Control, Communications and Computers, 13-15 April 19b7, pp 28.

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 99.6-1) and simulation and modeling
documentation.

Process: Check off capabilities demonstrated by the simulation and modeling sys-
tem or discussed in the documentation.

Outputs: A list of .capabilities performed by the simulation and modeling system.

TABLE 99.6-1
SIMULATION AND MODELING CAPABILITIES CHECKLIST

FEATURE FOUND

Conceptual Modeling Support
Domain-Specific Knowledge Base
Inferencing Systems
Operational Environment Modeling Support
User Modeling Support
Model Browsers
Game and Risk Models Database
Functional Allocation Methodologies Database
Scaling Rules Database
Constraint Evaluation Tools
Resource Utilization Models
Precision Estimators

99-7

E&V Guidebook, Version 1.1

APPENDIX A
CITATIONS

[ACEC 1986] "Ada Compiler Evaluation Capability (ACEC) Technical Operating Report
(TOR) Reader's Guide," Air Force Wright Aeronautical Laboratory, Document Number
D500-11790-2, Draft 31 January 1988.

[ACVC 1987] ACVC Procedures and Guidelines, Version 1.1, AJPO, 1 January 1987.

[ALS 1984] SofTech, "Ada Language System (ALS) Specification, "CR-CP-0059-AOO,
August 1984.

[ARTEWG 1987] "Catalogue of Ada Runtime Implementation Dependencies,"
Association for Computing Machinery, Special Interest Group on Ada,
Ada Runtime Environment Working Group, 1 December 1987.

[ARTEWG 1988] "A Framework for Describing Ada Runtime Environments," Proposed by
Ada Runtime Environment Working Group (SIGAda), Ada Letters, Volume VIII, Number
3, May/June 1988, pp. 51-68.

[Barnes 1985] Proceedings of the International Ada Conference, Paris, eds. J.G.P. Barnes
and G.A. Fisher, Jr, Cambridge University Press, 1985.

[Barstow 1981] D.R. Barstow and H.E. Shrobe, "Observations on Interactive Programming
Environments," [@Wassermann 1981], 286-301, 1981.

[Buxton 1980] [@DoD 1980].

[CAIS] [@DoD 1986].

[CAIS-A] [@DoD 1988].

[CIVC 1985] TBA

[DACS 1979] The DACS Glossary, A Bibliography of Software Engineering Terms,
October 1979.

IDeMillo 1986] R.A. DeMillo, "Functional Capabilities of a Test and Evaluation
Subenvironment in an Advanced Software Engineering Environment," Georgia
Institute of Technology GIT-SERC-86/07, 20 October 1986.

[DoD APSE Analysis 1984] [@E&V Report: DoD APSE Analysis Report C.]

[DoD-STD-2167] Proposed DoD-STD-2167, Defense System Software Development, U.S.
Department of Defense, 30 January 1985.

A-1

E&V Guidebook, Version 1.1

[DoD 1977] DoD. "Requirements for High Order Computer Languages (IRONMAN), U.S.
Department of Defense, 1977.

[DoD 1980] J.N. Buxton, "Requirements for Ada Programming Support Environments -
STONEMAN," U.S. Department of Defense, February 1980.

(DoD 1982] "Software Development Methodologies and Ada (METHODMAN)," U.S. Depart-
ment of Defenise, 1982.

[DoD 1983] ANSI/MIL-STD-1815A-1983, Reference Manual for the Ada Programming Lan-
guage, U.S. Department of Defense, 17 February 1983.

[DoD 1986] DoD-STD-1838, Common APSE Interface Set (CAIS), U.S. Department of
Defense, 9 October 1986.

[DoD 1988] "Common APSE Interface Set, Revision A,"proposed DoD-STD-1838A,
U.S. Department of Defense, January 1988.

[DoD Trusted Computer Reoort 1983] "Trusted Computer System Evaluation Criteria,"
CSC-STD-001-83, U.S. Department of Defense Computer Security Center,
15 August 1983.

[E&V Plan] [@E&V Report 1984: E&V Plan A]. [@E&V Report 1987: E&V Plan A].

[E&V Reference Manual] [@RMJ.

[E&V Report 1984] Evaluation and Validation (E&V) Team Public Report, Volume I, Air
Force Wright Aeronautical Laboratories, Wright-Patterson AFB, 30 November 1984.

[E&V Report 1985] "Evaluation and Validation (E&V) Team Public Report," Volume II, Air
Force Wright Aeronautical Laboratories, Wright-Patterson AFB, November 1985.

[E&V Report 1987] "Evaluation and Validation (E&V) Team Public Report," Volume III, Air
Force Wright Aeronautical Laboratories, Wright-Patterson AFB, September 1987.

[E&V Requirements 1987] [@E&V Report 1987: E&V Requirements D].

[E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-5234-2, Version 1.0,
15 June 1987.

[E&V Tools and Aids 1987] [@E&V Report 1987: Tools and Aids C].

[Gray 1987] L. Gray, "Using the SEI's Methodology for Evaluating Ada Environments: A
Comparison of VAXNMS to Rational," Proceedings of the AIAA Computers in Aero-
space VI Conference, 7-9 October 1987.

[Grund 1985] E.C. Grund, L.A. Hilliard, and K.A. Younger, "Key Characteristics of Ada
Programming Support Environments," MITRE Corporation, ESD-TR-85-144, 9590,
July 1985.

A-2

E&V Guidebook, Version 1.1

[Henderson 1987] P.B. Henderson and D. Notkin, "Integrated Design and Programming En-
vironment," Computer, IEEE, November 1987.

[Hogan 1985] M.O. Hogan and S.M. Prud'homme, "Definition of a Production Quality Com-
piler," Aerospace Corporation, Technical Report, July 1985.

[Houghton 1983] R.C. Houghton, Jr., "A Taxonomy of Tool Features for the Ada Program-
ming Support Environment (APSE)," U.S. Department of Commerce, National Bureau
of Standards, NBSIR-81-2625, December 1982, Issued February 1983.

[Houghton and Wallace 1987] R.C. Houghton, Jr. and D.R. Wallace, "Characteristics and
Functions of Software Engineering Environments: An Overview," ACM Software
Notes, Vol. 12, No. 1, January 1987.

[Howden 1982] W.E. Howden, "Contemporary Software Development Environments,"
Communications of the ACM 25(5), 318-329, 1982.

(IDA 1985] A.A. Hook, G.A. Riccardi, M. Vilot, and S. Welke, "User's Manual for the Proto-
type Ada Compiler Evaluation Capability (ACEC)," Version 1, Institute for Defense
Analysis, IDA Paper P-1879, October 1985.

[ISTAR 1987] Workshop on Future Development Environments, Information Science
and Technology Assessment for Research, Conference on Information Mission
Area (IMA) Productivity, Department of Army Director of Information Systems for
Command, Control, Communications and Computers, 13-15 April 1987, pp 28.

[Jackson 1985] A.R. Jackson, "Abstract Data Types and the IPSE Database,"
[@McDermid 1985], 135-145, 1985.

[Kean 1985] E.S. Kean and F.S. Lamonica, "A Taxonomy Of Tool Features For A Life Cy-
cle Software Engineering Environment," Rome Air Development Center, Griffiss AFB,
June 1985.

[Lehman 1981] M.M. Lehman, "The Environment of Program Development, Maintenance
Programming, and Program Support," [@Wasserman 1981], 3-14, 1981.

[Long 1988] F.W. Long, and M.D. Todd, "Evaluating Tool Support Interfaces,"
Ada in Industry, Proceedings of the Ada-Europe Conference, Munich, 7-9 June 1988,
Cambridge University Press, 1988.

[Lyons 1986] "Selecting an Ada Environment," eds. T.G.L. Lyons and J.C.D Nissen,
Ada-Europe Working Group, Cambridge University Press, 1986.

[McDermid 1984] J. McDermid and K. Ripken, "Life Cycle Support in the Ada Environ-
ment," Cambridge University Press, 1984.

[METHODMAN] [@DoD 1982].

A-3

E&V Guidebook, Version 1.1

[Mich 1986] R.M. Clapp, L. Duchesneau, R.A. Volz, T.N. Mudge, and T. Schultze, "Toward
Real-Time Performance Benchmarks for Ada," Electrical Engineering and Computer
Science Dept., Univ. of Michigan, RSD-TR-6-86, January 1986, pp. 1-25.

[MITRE BGT 1986] S.R. Rainer and T.P. Reagan, "User's Manual for the Ada Compilation
Benchmark Generator Tool," MITRE Corp. MTR-87W00192-01, January 1988.

(Morton 1985] RP. Morton and J.C. Wileden, "Information Interface Related Sources,"
Institute for Defense Analyses, SEE-INFO-003-001.0, IDA Paper p-1821, April 1985
(Appendix 2, L. Stucki, "Some Thoughts on a Taxonomy for Software Engineering
Objects").

(NBS Taxonomy] [@Houghton 1983].

[Nissen 1984] J.C.D. Nissen, B.A. Wichman, et al.,"Guidelines for Ada Compiler Specifica-
tion and Selection," in Ada: Language, Compilers And Bibliography, ed.
M.W. Rogers, Cambridge University Press, 1984.

[Notkin 1981] D.S. Notkin and A.N. Habermann, "Software Development Environment Is-
sues as Related to Ada," [@Wasserman 1981], 107-133, 1981.

[Oberndorf 1988] P.A. Oberndorf, "The Common Ada Programming Support Environment
(APSE) Interface Set (CAIS)," IEEE Transactions on Software Engineering, Vol. 14,
No. 6, June 1988.

[RM] "Evaluation and Validation (E&V) Reference Manual," Version 1.0, Air Force Wright
Aeronautical Laboratories, AFWAL TR-88-1060, Wright Patterson AFB, (DTIC Acces-
sion Number Pending), March 1988.

[SEE Taxonomy] [@Kean 1985].

[STARS-SEE 1985] "Proposed Version 001.0," STARS Joint Service Team for Software En-
gineering Environments, Stars Joint Program Office, October 1985.

[Stenning 1981] V. Stenning, T. Froggart, R. Gilbert, and E. Thomas, "The Ada Environ-
ment: A Perspective," [@Wasserman 1981], 36-46, 1981.

[STONEMAN] [@DoD 1980].

[Texas Instruments 1985] The APSE Interactive Monitor, Texas Instruments, Slide Presenta-
tion to the E&V Team, 5 September 1985.

[UK AES 1986] R.H. Pierce, I. Marshall, and S.D. Blude, "An Introduction to the MoD Ada
Evaluation System," Software Sciences Ltd., Report Number 5485, June 1986.

[Wasserman 1981] A.I. Wasserman, Tutorial: Software Engineering Environments,
IEEE, 1981.

[Weiderman 1986] N. Weiderman, "Evaluation of Ada Environments," Software Engineering
Institute, SEI-86-MR-10, September 1986.

A-4

E&V Guidebook, Version 1.1

[WIS CEG 1985] "WIS Compiler Evaluation Guidelines," GTE Labs, Technical Report,
1985.

[WIS PCEG 1985] G. Gicca and C. Stacey, "Proposed Component Evaluation Guidelines,"
GTE Government Systems, Technical Report, 16 August 1985.

A-5

E&V Guidebook, Version 1.1

APPENDIX B
ACRONYMS AND ABBREVIATIONS

ACEC Ada Compiler Evaluation Capability
ACM Association for Computing Machinery
ACVC Ada Compiler Validation Capability
AES Ada Evaluation System
AFB Air Force Base
AFWAL Air Force Wright Aeronautical Laboratories
AlE Ada Integrated Environment
AJPO Ada Joint Program Office
ALS Ada Language System
ALS/N Ada Language System/Navy
ANNA Annotation Language for Ada
ANSI American National Standards Institute
APSE Ada Programming Support Environment
ARTEWG Ada RunTime Environment Working Group (SIGAda)
ATA Advanced Tactical Aircraft
ATF Advanced Tactical Fighter
AVF Ada Validation Facility
AVO Ada Validation Office
BGT Benchmark Generator Tool
BSI British Standards Institute (UK)
CAIS Common APSE Interface Set
CIVC CAIS Implementation Validation Capability
CLI Command Language Instruction
CPU Central Processing Unit
CSC Computer Software Component
DACS Data and Analysis Center for Software
DoD Department of Defense
DTIC Defense Technical Information Center
ESD Electronic Systems Division (Air Force)
E&V Evaluation and Validation
GB Guidebook
GIT Georgia Institute of Technology
IBM International Business Machines Corporation
IDA Institute for Defense Analysis
IEEE Institute of Electrical and Electronics Engineers, Inc.
IPSE Integrated Project Support Environment
ISTAR Information Science and Technology Assessment for Research
I/O Input/Output

B-i

E&V Guidebook, Version 1.1

JIAWG Joint Integrated Avionics Working Group
KAPSE Kernel Ada Programming Support Environment
KIT KAPSE Interface Team
KITIA KAPSE Interface Team for Industry and Academia
LHX Light Helicopter Experimental
LRM Language Reference Manual [@DoD 1983]
MAPSE Minimal Ada Programming Support Environment
MCCS Mission-Critical Computer System
MMI Man-Machine Interface
MoD Ministry of Defense (UK)
NBS National Bureau of Standards
NTIS National Technical Information Service
OCD Operational Concept Document
OS Operating System
PCTE Portable Common Tool Environment
PDL Program Design Language
PIWG Performance Issues Working Group (SIGAda)
RM Reference Manual
SDI Strategic Defense Initiative
SEE Software Engineering Environment
SEI Software Engineering Institute
SIGAda Special Interest Group for Ada of the Association for Computing

Machinery (ACM)
STARS Software Technology for Adaptable, Reliable Systems
TASC The Analytic Sciences Corporation
UK United Kingdom
VAX Virtual Address Extension
VMS Virtual Memory System
VSR Validation Summary Report
V&V Verification and Validation
WIS WWMCCS Information System
WWMCCS WorldWide Military Command and Control System

B-2

E&V Guidebook, Version 1.1

APPENDIX C
FORMAL GRAMMAR

This appendix specifies sections of the Reference Manual and Guidebook
(Reference System) as a formal grammar. The sections include chapters four through
seven of the Reference Manual (RM), chapters four through 99 of the Guidebook (GB),
all explicit references, the tables of contents, the indices, and the citations. The specifica-
tion is presented as a partitioned grammar for convenience.

(The grammar is presented in a modified Backus-Naur form. Brackets repre-
sent optionality when alone, and may be marked by an asterisk '*' to denote 0-N in-
stances of the production, or by a sharp '#' to denote 1-N instances. Angle brackets
denote comments in place of productions which are too elaborate to express here. All
terminals of the grammar are expressed as quoted literals, or composite literals based on
characters and character strings.)

C.1 FORMAL REFERENCES

Throughout the Reference System, whenever formal references are made, a
single consistent set of grammar rules are used. This includes reference from one vol-
ume to the other, reference from one section in a volume to another section in the same
document, and reference to documents outside the Reference System.

referencelist "[" references (";" references] "

references reference ["," reference]'

reference "@" phrase [":" [phrase
[designator-list]]
[phrase] designatorlist

phraselist phrase [., phrase]'

C-1

E&V Guidebook, Version 1.1

phrase ::= <text lacking special characters>

designator-list designator ["," designator]

designator : lead ""] lead ["." digits]

lead ::= digits] caps

digits ::= one.to nine (zerotonine]'

one to nine ('1'-'9')

zerotonine ('0'-'9')

caps ('A'-'Z')

C.2 FORMAL CHAPTERS

Those chapters of the Reference System which are derived from the classifica-

tion schema are formally defined here.

C.2.1 Chapter Components

The following rules define the components which are used to compose formal

chapter entries.

header designator phrase

prolog header purpose primary host
[vendors_agents]

purpose "Purpose:" text

host ::= "Host/OS:" text

primary ::= "Primary References:" referencelist

vendorsagents::= "Vendors/Agents:" reference-list

C-2

E&V Guidebook, Version 1.1

method ::= meth description inputs
process outputs

methdescription "Method:" text

inputs ::= "Inputs:" text

process "Process:" text

outputs ::= "Outputs:" text

citations..-" "Citations:" [citations]#

synopsis-text..-" "Synopsis:" text

methods :: "Methods:" reference list

text.:-" < prose text >

C.2.2 Chapter Entries

Each numbered section of the formal chapters follows a specific grammar rule.
The following rules define the format of each chapter entry.

synopsi ::= header citations synopsis-text [methods]

E&V technology ::= prolog method

C.2.3 Formal Chapter Ordering

The formal portion of the GB is found in chapters four through ninety nine.

formal-chapters ::= [synopsis]

[E&V technology]*

[E&V technology]

C-3

E&V Guidebook, Version 1.1

C.3 TABLE OF CONTENTS

The table of contents shares some features with the rest of the formal aspects

of the GB.

tableofcontents [chapter] index

chapter ::= designator phrase digits

C.4 CITATIONS

The citations are found in Appendix A. and have a formal structure as defined

in the following grammar. The (semantic) form of citation text is taken from the standard

for IEEE Software Magazine.

citations [citation]'

citation key body .

key "[" phrase-list "]"

body referencelist] phrase list

C-4

E&V Guidebook, Version 1.1

APPENDIX D
VENDORS AND AGENTS

[ARTEWG]
Mike Kamrad (612) 782-7321
Honeywell Systems and Research Center
M/S MN17-2351
3660 Marshall St., NE
Minneapolis, MN 55418

[BSI, Milton-Keynes, UK] 0908-220908 x2313
J.B. Souter
BSI Quality Assurance

*P.O. Box 375
Milton Keynes MK14 6LL
UK

[Cambridge University Press]
; Cambridge University Press

32 East 57th Street
New York, NY 10022

[Defense Technical Information Center]
Defense Technical Information Center (703) 274-7633
Cameron Station
Alexandria, VA 22314

[DACS]
Data & Analysis Center for Software (315) 336-0937
RADC/COED
Gnffiss AFB, NY 13441

D-1

E&V Guidebook, Version 1.1

JE&V Team]
Mr. Raymond Szymanski (513) 255-2446

AFWAL/AAAF -6730
Wright-Patterson AFB AV 785-2446
OH 45433-6543 -6730

MILNET: SZYMANSK@AJPO.SEI.CMU.EDU

[GIT]

Georgia Institute of Technology (404) 894-3180

Software Engineering Research Center

Atlanta, GA 30332-0280

[MITRE]

MITRE Corporation (703) 883-6000

Civil Systems Division

7525 Colshire Drive

McLean, VA 22102-3481

[National Technical Information Service]

National Technical information Service (703) 487-4650

U.S. Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

(PIWG]
Dan M. Roy (301) 464-6800
Ford Aerospace

7401-D Forbes Blvd.

Seabrook, MD 20706

D-2

E&V Guidebook, Version 1.1

[SofTech, Inc.]
Teresa L. Banks (513) 429-3241

SofTech, Inc.

3100 Presidential Drive

Fairborn, OH 45324-2039

ARPANET: HILLM@WPAFB-JALCF

[SEI]

Software Engineering Institute (412) 268-7700

Canegie Mellon University

Pittsburg, PA 15213

[UMich]
Russel M. Clapp, Louis Duchesneau, Richard A. Votz, (313) 764-1817
Trevor N. Mudge, and Timothy Schultze

The Robotics Research Laboratory
The University of Michigan

Ann Arbor, MI 48109

D

D-3

