
FIL EE -COP

0

N4

HARDWARE IPLEMNTAON OF A
BCH ENCODER, DECODER,

AND INTERFACE], m
THESIS :Z

Norman R. LeClair JAN 1 7 IM8
Captain, USAF

AFIT/GE/ENG/88D-20

Approved t--r pt,.bic rics'
Distnibunnti= nt

~~ - ~DEPARTMENT OF THE AIR FORCE -.. ;
,2IC - V-

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

-89 1 17 122

AFIT/GE/ENG/88D-20

DTIC
JAN 1 7 1989

HARDWARE IMPLEMENTATION OF A
BCH ENCODER, DECODER,AND INTERFACE CcAoi

N Is- ("' A&I
THESIS DIC TAE []

'U!' ,n,zo,;,"e1 LI
Norman R. LeClair J,., tcd8U:

Captain, USAF By_ _ _

AFIT/GE/ENG/88D-20 Dytrb,.to.I

Avdil:!L ,ty Ccdes

- Aval &d,'or

Dist Specl'll

Approved for public release; distribution unlimited.

iu
"'

AFIT/GE/END/88D-20

HARDWARE IMPLEMENTATION OF A BCH ENCODER/DECODER

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Norman R. LeClair, B.S.

Captain, USAF

December 1988

Approved for public release; distribution unlimited

i

Preface

This study is a follow-on to the study completed by

Capt DeGraff in December 1985. Capt DeGraff constructed a

number of circuits to be used to ultimately "calculate the

error detection and correction performance of different

concatenated coding schemes." Capt DeGraff used a three

wire handshake based on a 7474 D flip flop as the serial I/O

port for his circuits. This thesis was started with the

intent of providing a simulated communications channel which

could be used to test the performance of Capt DeGraff's

circuits. However, after building the appropriate

interface, it was discovered that the 7474 D flip flop would

undergo catastrophic failure within 1000 transmitted bits.

Therefore, it was necessary to rebuild the BCH encoder and

decoder circuits using an Dual Asynchronous Receiver

Transmitter (DART) as the I/O port, allowing the rebuilt BCH

encoder and decoder to interface to any computer through the

computers existing serial I/O ports.

I have found, as all others who have attempted projects

of this sort, that I had to rely on the help and support of

others. Chief among these is my Lord and Saviour Jesus

Christ "For the Lord gives wisdom, and from his mouth comes

knowledge and understanding" (Proverbs 2:6). I thank my

advisor, Major Glenn Prescott, whose very nature instills

ii

calm reasoning into those around him. Finaliy a special

thanks to my patient and understanding wife,i "A

wife of noble characte who can find? She is worth far more

than rubies" (Proverbs 31:10).

ti

t

Table of Contents

Page

Preface ii

List of Figures vi

List of Tables vii

Abstract viii

Chapter One: Overview 1

General Issue .. s. 1
Background 2
Problem Statement 3
Scope 3
Approach 5
Material and Equipent 6
Summary 7

Chapter Two: 7474 D Flip Flop Interface 8

Introduction 8
Background. 9
Design Decisions. 12
Design Parameters 13
Signal Description 17
Circuit Diagrams 21
Test Methodology 21
Test Results 26
Discussion 26
Conclusion. 28
Recommendation 28

Chapter Three: Universal Asynchonous Receiver
Transmitter Interface 30

Introduction 30
Background 30
Design Decisions 32
Signal Description 33
Test Methodology 40
Test Resultsu o. 41
Discussion and Conclusions 42

iv

Chapter Four: BCH Encoder. 44

Introduction 44
Background 44
Generator Polynomial 47
Multiplier Circuitry 48
Control Circuitry 50
Schematics 52
Test Methococlogy.. 52
Test Results 55
Conclusions and Recommendations.. 55

Chapter Five: BCH Decoder 57

Introduction 57
Background 57
Calculating the Syndrome 58
DecodeCrcircuitry... 63
Control Circuitry 65
Schematics 67
Test Methodology.......... . . . 67
Test Results 71
Conclusions and Recommendations... . .. 72

Chapter Six: Demonstration and Follow-on
Thesis Effort 73

Demonstration a i 73
Follow-on Thesis Effort.................. 74

Appendix A: 7474 D Flip Flop Interface Software . . . 78

Appendix B: Protocol Software 92

Appendix C: DART Software 101

Appendix D: Test Data. 108

Appendix E: BCH Encoder Software 112

Appendix F: BCH Decoder Single Character Software . 118

Appendix G: BCH Decoder Syndrome Software 125

Appendix H: Demonstration Software 141

Bibliography 165

Vita . 166

v

List of Ficrures

Figure Page

1. System Configuration 9

2. 7474 D Flip Flop Handshake 10

3. Input Port Address Decoder. 15

4. Output Port Address Decoder. 16

5. Input Port Circuit Diagram 22

6. Output Port Circuit Diagram. 23

7. DART Input/Output Port. 34

8. RD* and IORQ* Implementation 40

9. FIR Multiplication circuit. 49

10. BCH Encoder Control Ciruitry 53

11. BCH Encoder. 54

12. FIR Dividing Circuit. 64

13 . BCH Decoder 68

14. BCH Decoder Control Circuitry. 69

15. System Configuration for Demonstration 74

vi

List of Tables

Table Page

1. BCH Codes for m < 6 46

2. Minimal Plynomials over GF(2) 48

3. Register States for Multiplication 50

4. Syndromes for a (15,7) BCH Code 60

5. Register States for Division 65

vii

Abstract

A BCH encoder and decoder are implemented in hardware

with special emphasis given to the encoder and decoder

interfaces. The pitfalls of using a 7474 D flip flop as the

basis of building the interface is discussed. The

advantages of using a UART for the interface are outlined

and the circuit diagrams to implement the UART interface in

hardware are provided.

Finite impulse response linear filters are chosen to

implement both the BCH encoder and decoder. A basic

theoretical understanding of the BCH encoder and decoder

function is given. Design decisions made for the hardware

implementation of the encoder and decoder are discussed, and

schematics detailing the final hardware configurations are

provided. Software to run and test all of the above is

documented in the appendices.

viii

HARDWARE IMPLEMENTATION OF A

BCH ENCODER, DECODER AND INTERFACE

I. Overview

General Issue:

The Foreign Technology Division (FTD) is investigating

the performance of e:ror correcting schemes employed in a

variety of communications channels. As part of their

investigation, FTD has provided AFIT a large thesis topic

area which has subsequently been broken into several smaller

thesis efforts. The first thesis effort required the

construction of a BCH encoder, BCH decoder, interleaver, and

deinterleaver in hardware. Captain De Graff GE-85D built

the encoders and decoders during the summer of 1985 and

documented his designs in his thesis entitled "Hardware

Implementation of a Concantenated Encoder/Decoder"

(DeGraff, 1985).

The second thesis effort requires the construction of

an asynchronous communication channel to provide a computer

to BCH encoder/decoder interface. The computer will provide

a bit stream to the BCH encoder/decoder as well as the

capability for simulating communication channels. This

document addresses the second thesis effort.

A third thesis effort will provide the software to

1

simulate several communications channels. This software,

when running on the computer interfaced to the BCH

encoder/decoder will provide a test bed to determine the

encoders and decoders ability to correct errors.

The fi.nal thagis effort will require the construction

of a Reed-Solomon encoder decoder scheme in software. The

Reed-Solomon encoder/decoder will be interfaced to the

communications channel simulator. The final thesis effort

ends when data is gathered on the performance of both

hardware and software encoder and decoders over a variety of

simulated communication channels.

Background:

Communication systems in both commercial and military

procurements are moving away from analog technologies in

favor of digital technologies. Analog transmissions take on

a infinite variety of shapes which must be reconstructed at

the receiver for reception of the transmitted information. A

small disturbance in an analog system (known as noise) often

affects the reception of the received signal, causing

distortion (and errors) in the received message.

In contrast to analog systems, digital systems are

limited to a finite number of states. When digital

transmissions are disturbed by noise, the digital system

must chose the closest finite state of the noise-disturbed

signal as the received signal. Choosing the closest finite

2

A

state often results in the regeneration the original

transmitted signal giving digital systems much greater

protection against distortion and interference compared to

their analog cousins. (Sklar, 1988:3).

Digital communication systems transmit their

information in the form of a bit stream. Bit streams can be

created many ways, but our discussion is limited to a binary

bit stream (composed of two-level pulses, ones and zeros)

and transmitted at baseband (unmodulated). The bit stream

originates at an information source, referred to as the

"source bit stream". For the purposes of this thesis, the

source bit stream will be composed of the ASCII set of

characters. Each character is defined by 8 bits in a

predefined state known as the ASCII bit pattern. Some

examples of characters and their associated ASCII bit

pattern are given below:

Character ASCII bit pattern

A 0100 0001

a 0110 0001

L 0100 1100

0011 1011

+ 0010 1011

Although the transmission of a digital bit stream can

be done in a way to minimize the affects of noise, errors in

3

the transmitted bit stream still occur. Fortunately,

encoding the source bit stream prior to transmitting it can

provide protection against transmitted errors. Additional

bits are added by the encoder to each word of the source bit

stream prior to transmission. After reception, the bit

stream is passed to the decoder, which uses the additional

bits to detect and correct errors if they have occurred

during transmission.

Since this thesis centers around the operation of a BCH

encoder/decoder, it is worth noting that the BCH encoder

multiplies a generator polynomial to a character (or source

word) to create the additional bits used for error detection

and correction (more about this in chapter four). The

character plus the additional bits are known collectively as

the code word. The code word, when received by the decoder,

allows detection and correction from 1 to several errors

depending on the nature of the generator polynomial chosen.

Problem Statement:

Determine the feasibility of interfacing a Z-100

computer to an existing BCH encoder/decoder based on a 7474

D flip flop serial I/O port. Make all modifications

necessary to the BCH encoder/decoder to produce a working

final product.

4

A BCH encoder/decoder was designed and constructed by

Capt Peter de Graff for his thesis during the summer of

1985. Capt de Graff's design utilized a 7474 D flip flop to

provide a three wire handshake interface. The interface

includes a data ready line, data request line, and the data

line itself. The interface is controlled by a Z-80 CPU

driven by software located in a 2719 E-Prom.

This thesis will determine the feasibility of

interfacing directly to the 7474 D flip flop of the BCH

encoder from a Z-100 computer. The interface from the Z-100

to the 7474 D flip flop will be controlled from the bus

structure of the Z-100. Design heuristics will be employed

to modify both the Z-100 interface and the BCH interface as

necessary to provide fully functional asynchronous

communications between the computer and the BCH encoder.

AD~roach:

A hardwire interface from the Z-100 to the BCH encoder

will be constructed on a wire-wrap board. The initial

design of the hardwire interface will use a 7474 D flip flop

to provide compatibility with the BCH encoder/decoder

designs. The interface will be mounted on an extender card

which in turn is plugged into the S-100 bus of the Z-100

computer. Control over the interface will be accomplished

by the Z-100 CPU issuing control signals over the S-100 bus

at a specified port address. Isolation of the bus from

5

spurious signals will be accomplished by appropriate data

and address buffers.

During construction of the initial interface, test

software vill be written to help verify the design process.

Each stage of the design will be independently tested, along

with the final completed design. Once the interface is

completed it will be tested for fully asynchronous

communications. All problems encountered with the initial

design will be documented.

If the initial design fails to provide adequate

asynchronous communications, a design modification to the

BCH encoder will be chosen that will provide fully

asynchronous communications. The design modification, if

needed, will be implemented in hardware and tested for

proper operation.

Materials and Eauioment:

1. Z-100 computer

2. Assorted IC's

3. Logic Analyzer

4. Logic Probe

5. Wire-wrap board

6. Voltage regulators with heat sinks

7. Assorted tools

B. Ribbon cables with connectors

9. MASM software

6

10. Two Z-80 DARTs

11. Function generator (156 Khz square wave)

12. Multimeter

13. Oscilloscope

A prototype BCH encoder will be interfaced to a Z-100

computer to provide the encoder with a source bit stream. A

prototype BCH decoder will also be interface to a Z-100

computer to provide the decoder with a received bit stream

and to allow the simulation a communication channel. Both

system will be tested to insure fully functional

asynchronous serial transmission can be sustained by the

encoder's and decoder's I/O port. The procedure for

demonstrating the final product can be found in chapter six.

7

II. 7474 D Flip FloD Interface

Introduction:

A BCH encoder/decoder, and an interleaver/deinterleaver

were designed and built by Capt DeGraff in a prior thesis

effort. Capt DeGraff's design used a 7474 D flip flop as

the basis for serial interface between the components of

his system. These interfaces were to allow a source bit

stream to supply a source word to the encoder, the encoder

to supply the encoded source word (code word) to either a

channel simulator or a deinterleaver (in the concatenated

mode), the channel simulator to supply the transmitted code

word (corrupted with noise) to the decoder (or deinterleaver

in the concatenated mode), and finally the decoder to supply

the decoded word to a bit sink. The source bit stream,

channel simulator, and bit sink were all to be supplied as

software routines run on dedicated computers. The final

system configuration is shown below:

Each interface was designed to support a three wire

handshake for data transmissions. The handshaking includes

a data line, data ready line, and data request lines. The

received bit stream is clocked directly into the system

component and can not contain any parity, checksum or stop

bits. Since no direct interface exists from any Z-1O0 I/O

8

[iulerisaw, D lecoler

Chau l Simlatr lit sill

Figure 1 - System Configuration

port to the BCH encoder, a special serial I/O port from the

Z-100 to the BCH encoder must be designed to support data

transmissions (DeGraff, 1987:8).

To better appreciate the design problem presented above,

it is best to spend some time gaining an understanding of

the interface designed into the BCH encoder. The interface

is based on a 7474 D flip flop and is shown in the block

diagram below:

9

Data
D~ata

Clk

Data Requestcit lk 4 ~ g~~

I Clk Cr

Data Ready

Figure 2 - 7474 D Flip Flop Interface

The sequence of events that accomplish data

transmissions between the two 7474 D flip flops are as

follows:

One: The flip flop requesting data sets its data

request line high. This automatically clears the sending

flip flop's data ready line. The receiving flip flop starts

polling the data ready line to see if data has been place

on the data line.

Two: During this time the sending flip flop polls the

data request line to see if the receiving flip flop wants

some data. When the request line goes high, the sending

flip flops places one bit of data on the data line, and sets

10

LI

its data ready line high. Setting the data ready line high

automatically resets the data request line on the receiving

flip flop. Once the data request line is reset, the sending

flip flop is free to resume its polling of the data request

line.

Three: When the data ready line goes high, the

receiving flip flop clocks the data into its processor. As

soon as the processor is finished processing the bit, the

receiving flip flop sets the data request line high to

request another data bit. Setting the data request line

high automatically sets the data ready line low on the

sending flip flop and the process repeats again.

As can be seen in the diagram, two 7474 D flip flops

are needed to interface any two pieces of equipment for one

way (half duplex) data transmissions. For two half duplex

transmissions a total of four 7474 D flip flops are needed,

two flip flops for half duplex signal. Both the encoder and

decoder boards contained two 7474 D flip flops enabling them

to perform two half duplex transmissions. Typically, the

encoder will receive a bit stream from some source (a Z-100

computer in our case), encode the received bit stream and

send the encoded bit stream to a transmitter. Since the

received bit stream and the encoded bit stream interface

with different devices (a source and a transmitter) it is

11

expedient to have two separate half duplex serial ports on

the encoder. Similarly, the BCH decoder needs to interface

to a receiver and to a bit sink such as a CRT that can

display a message.

Design Decisions:

Design decisions made prior to implementing an interface

between the Z-100 computer and the BCH encoder/decoder are

as follows.

Z-100 Serial Ports: Neither the serial A port nor the

serial B port of a Z-100 can be used to support data

transmissions to or from the BCH encoder. Both ports are

implemented using a Motorola 2661 universal asynchronous

receiver transmitter. While the 2661 IC is ideally suited

to asynchronous serial transmissions, it cannot be program

to exclude either start or stop bits. Since neither the BCH

encoder or decoder circuitry can tolerate stop and start

bits, the serial A and serial B ports cannot be used for the

interface.

Z-100 Parallel Port: The parallel data port on the Z-

100 might possibly support data transmission from the Z-100

to either the BCH encoder or decoder. However, no MACRO

function MASM (Micro Assembler) call exits to the operation

shell that allows data to be imported through the parallel

12

I/O port. In fact, even if a MACRO call could be

constructed that would allow inputting into the parallel

port, there is only one parallel port available on each

computer when two would be needed to implement a channel

simulator. Therefore the serial I/O port was ruled out as a

means of accomplishing the interface.

7474 D Flip Flo: The interface currently existing on

the BCH encoder and decoder utilizes a 7474 D flip flop to

implement a three line handshake between the encoder and

decoder for the transmission of data. Fortunately, it is

possible to construct an I/O port based on a 7474 D flip

flop that will interface to the S-100 bus of a Z-100

computer. Each computer is configured with up to three

expansion slots on the S-100 bus making interfacing to the

bus very easy. Once the flip flop is interfaced to the bus,

the Z-100 can effectively control all operations of its flip

flop exactly as the BCH encoder or decoder controls

operations of its flip flop. Therefore, the method of

choice for constructing an I/O port from the Z-100 to the

BCH encoder is to use a 7474 D flip flop based on the design

inherent within the BCH encoder and decoder.

Desian Parameters:

The design of the Z-100 serial data interface based on

a 7474 D flip flop centered around three design parameters:

13

1) control by the Z-100 over the interface, 2)

characteristics of the 7474 D flip flop, and 3) buffering of

address and data lines. Each of these design parameters are

addressed below:

Control Functions: The implementation of effective

data communications to and from any I/O port will ultimately

allow the host computer complete control over the I/O port.

A Z-100 computer normally uses assembly language function

calls to exercise control over its existing serial I/O

ports. These calls are IN and OUT instructions embedded

within a software routine than transfers data to and from

the port. Both the IN and OUT instructions use a specified

port address to direct the flow of data. Data is clocked

into or out of the port by special processor signals that

occur during the execution of the IN of OUT instruction.

These processor signals are available on the S-100 bus of

the Z-100 computer.

To implement control by the Z-100 computer over the

7474 D flip flop both IN and OUT instructions are used along

with their associated processor signals. In order to

specify a unique port address for the IN and OUT

instructions, an address decoder was construction for both

the input port and the output port (see Figures 3 and 4).

Address bit Al is inverted for the output port, but not for

the input port.

14

A61

A32

AAl

151

A72

A43

A61
All

A5N

16

7474 D Fli Flop Characteristics: The 7474 D flipflop

consist of two delay or following flip flops on one

integrated circuit. Each flip flop comes with is own

preset, clear, clock, and Q output lines. The clock line on

a 7474 D flip flop is extremely sensitive and must be

isolated by a buffer to prevent inadvertent triggering of

the clock by noise. Note that the data request line is tied

to the clk of D2 on the output port flip flop. This data

request line cannot be read as a status bit (data request

high) without triggering the clock. Therefore, the data

request line is split by a 7407 hex non-inverting buffer

into two separate lines. One line isolated is to the clock

alone, the other line is used to read in the status bit

(data request).

Buffering of Lines: All data lines are buffered by a

DP8216 data buffer to isolate the S-100 data lines from

those used by the I/O ports. Data lines leading into and

out of the ports are active only when the port address is

active. All address lines leading into the address decoder

are isolated by either 7405 or 7407 hex buffers to prevent

address lines from inadvertently being drawn either high or

low by the port operations.

Signal Description:

Control of the input and output ports by the Z-100 CPU

17

requires the Z-100 to provide signals to clear and set the

data ready line, clear and set the data the request line,

and clock in data both to and from the data line. Both the

input and output port control signals are discussed

separately below:

Data Reauest Line: The data request line is

enabled (high) by presetting Q1 of the 7474 D flip flop.

The preset input to the 7474 D flip flop is active low. A

low signal is provided by the CPU to the flip flop when AO,

sOUT, and DS are all concurrently high. AO, sOUT, and DS

will all be high when the CPU issues an OUT command at

address 03h (note that DS* has been conditioned by an

invertor to yield DS).

Data Ready Line: The data request line is

disabled (low) when the data request line is enabled.

Disabling the data request line is most easily accomplished

by letting Q2 of the 7474 D flip flop represent the state of

the data ready line. Then, tying the clear input of Q2 on

the 7474 D flip flop to the same line controlling the data

request line insures that Q2 will always be cleared when the

data request line is preset. When the data ready line goes

high, Q2 is clocked into its high state by the incoming data

ready signal, telling the CPU that data on the data line is

18

ready to be clocked into the computers memory.

Data: Data being clocked into the input port is

isolated by a 7407 non inverting buffer as it enters the

input port. Leaving the input port, the data is buffered by

a DP8216 quad line buffer. The DP8216 is enabled by DS* and

controlled by pDBIN. Therefore, data can only be clocked

into memory when the CPU issues an IN command at either

address 02h or 03h.

Clear Data Reauest Line: During the

initialization of the input port, it is helpful to clear the

data request line. The data request line can be cleared by

enabling the clear input of the 7474 D flip flop to Q1. AO,

sIN, and DS are combined by a triple input nand gate to

provide the control signal needed. When the CPU issues an

IN instruction at address 03h, the data request line will be

cleared.

Output Port:

Data Request Line: The data request signal

originates at an input port and is viewed as an incoming

signal by the output port. The incoming data request signal

is monitored by the CPU so that the CPU knows when to place

new data on the data line. The data request line also sets

the data ready line of the output port low. The data ready

19

line is represented by Q2 of the output port's 7474 D flip

flop. The incoming data request line is tied to the clock

of the 7474 D flip flop. Since D2 is tied to ground, only a

low signal can be clocked into Q2. Hence, when the data

request line goes high, the data ready line will go low.

Data Ready Line: The data ready line is place

high by the CPU whenever new data is place on the data line.

Q2 of the output port's 7474 D flip flop is used to

represent the data ready signal. Q2 can be enabled by

enabling the present input (active low) to the flip flop.

DS, pDBIN, and sOUT are combined by a triple input nand gate

to provide the control signal needed. When the CPU issues a

OUT command at address 00, the data ready line will go high.

Data: Data is represented by Q1 of the output

ports 7474 D flip flop. Data is clocked into Q1 when the

data ready line goes high. This is accomplished by tying

the clock input of the flip flop to the same control signal

that sets the data ready line high. The D input to the flip

flop is tied to DOO of the S-100 bus through a DP8216 quad

line buffer. Data is clock into the flip flop whenever the

CPU issues the command OUT at address 00.

Clear Data Ready Line: During initialization of

the output port, it is helpful to clear the data ready line.

20

The data ready line can easily be cleared by enabling the

clear input to Q2 of the flip flop. AO, sIN, and DS are

combined by a triple input nand gate to provide the control

signal. When the CPU issues an IN command at address 01,

the data ready line is cleared.

Circuit Diaarams: Circuit diagrams, including pin

connections, are provided in Figure 5 (input port) and

Figure 6 (output port) on the following two pages.

Test Methodology:

Introduction: The test methodology was developed to

provide a quantifiable measure of the 7474 D flip flop

interface's performance. The interface design was deemed

acceptable when it could receive a 10 megabit source bit

stream (in 8 bit blocks) into its input port and transmit it

back to the source through its output port without error.

The source bit stream was generated from a test bed that

could transmit and receive data based on a three wire

handshake protocol.

T Capt DeGraff's BCH encoder was originally

considered for use as the system interface test bed.

Unfortunately, the encoder IC is not easily accessible to

21

"IA?

A66

A62
A5

47

A22

AtU

A7 c=
A6 a
A5 =
A4 c: ADDRESS
A3 DECODIR F
A2
At PWR

9IN
MOUT 46

7410 +5 74CH 06

46

A0--q
4

LK
UTA

RDY
)-RQST

::JIK.6
sOUT-9

EF0216 ?474

D09 Z

D aM

--- il ax D

CLE

DI 3 -- 4
pDBIN

Figure 6 Output Port

23

probes making it difficult to trap and analyze the data

received by the encoder. In addition, the BCh encoder has

never been tested at high bit rates (4800 baud and above) it

is not known whether the BCH encoder has any design flaws

that might interfere with the serial transmissions at high

bit rates. Therefore, the BCH encoder was ruled out for use

as test bed to test the 7474 D flip flop interface.

An identical 7474 D flip flop interface running on a

second Z-100 provides a better alternative test bed. Each

interface consists of one input and one output port both of

which have identical designs (based on the interface

existing on the BCH encoder). Since the designs are

analogous to the BCH encoder, testing the interface using a

second Z-100 will yield the same results as testing the

interface using the BCH encoder. In addition, all data and

control lines on the Z-100 are easily accessible, making the

trapping and analysis of data and signal flow relatively

easy.

Test MethodologY: The test methodology chosen is

incremental in nature and consists of two steps. Each step

requires a software driver to be written. All software

drivers are included in appendix A.

it.QneL The input port and the output port of

the Z-100 interface are tied together on a single computer.

24

The ports are exercised for the proper transmission and

reception of data. Two separate software drivers are used:

D Accept a character from the

keyboard and transmit it out the output port to the input

port. Receive the character from the input port and display

it on the screen. A visual check of the screen will show

whether the transmission is handled correctly.

Diver Take a single character and

transmit it out the output loop to the input port. Receive

the character from the input port and check the character

internally to determine if the receive character matches the

sent character. Report the number of characters sent and

the number of errors found on the CRT screen. Repeat the

process indefinitely.

Step TwO; The input port of the first Z-100 is

tied to the output port of the second Z-100 and the input

port of the second Z-100 is tied to the output port of the

first Z-100. A software driver is written for each Z-100:

First Z-100: Accept a character from the

keyboard, echo it to the screen and transmit the character

out the output port to the second Z-100. Watch the input

port to see if the data ready line goes high. When it does,

25

receive the character from the input port and echo the

character to the screen. It should be the same character as

the one originally sent. Repeat this process indefinitely.

Second Z-100: Receive a character from the

input port, echo it to the screen and output this character

to the output port. Repeat the process indefinitely.

Test Results:

Testing of the interface on a single Z-100 (step one)

resulted in the successful transmission of over 10 Mbits

without error. The second test (step two) had some

surprising results. The transmission invariably failed

within 1000 transmitted bits. The failure was catastrophic,

with no ability to recover transmission. Types of failures

occurring included missed bits (the failure of the receiving

Z-100 to receive all 8 bits), improper bits (bits that are

inverted in state), and failure to transmit because both Z-

100's fall into a receive only mode.

Discusio

Failure to transmit between the two separate Z-100s

probably occurred because the lines were sampled as the

lines were changing state (amounting to a contention between

states). Unfortunately, it is impossible to program the

existing lab equipment to trap the status of all signals

26

when such a contention arises, so it is impossible to prove

the actual cause of the failure.

However, the failures observed are well known and

documented for networks, and the solution to network

contentions has traditionally been the addition of protocol

to the transmission. Since the two Z-100s, when attempting

to communication to one another through the customized I/O

ports, constitute a crude network, it seems reasonable to

add protocol to their transmissions to solve the observed

contention problems.

The addition of protocol to the software drivers was in

fact tried. Appendix B contains the software used. The

protocol attempted to determine if the character (8 bits)

was sent in its entirety, and if not, the character was

retransmitted. In addition, the protocol attempted to

determine if a single bit was transmitted correctly by

repeatedly sampling the transmitted bit. Although the

protocol was successful in raising the average number of

bits transmitted before a failure occurred, it did not

succeed in preventing failures.

The question arises as to why transmission on a single

Z-100 (to and from) were so successful (10 Mbits without an

error) when transmissions between two Z-100s were so

inadequate. This can be explained by the execution of the

software driver written to handle the data transmission.

The software takes one bit of a character, places in on the

27

output port, then goes to the input port to see if the bit

is there. Since it takes the execution time of several

instructions for the Z-100 to switch from outputting the bit

to determining if it is at the input port, the 7474 D flip

flop has had ample time to complete its transitions and

stabilize. The net results is that when the Z-100 goes to

look for the bit at the input port, the bit is always there

and always stable. The software acts as a type of

synchronization between transmission. Of course, this type

of synchronization will never occur between two separate Z-

100s (with separate internal clocks) trying to talk to each

other.

More protocol could be added (beyond what was initially

tried) by adding start bits, stop bits, and parity.

Unfortunately, the BCH encoder, as designed will not support

such additions of protocol. The BCH encoder must receive

raw data alone, the encoder has no provisions to strip out

any support bits.

An interface between a Z-100 and a BCH encoder based on

a 7474 D flip flop is unworkable. A new interface that

supports asynchronous serial transmissions is needed.

Recommendation:

An interface base on a Universal Asynchronous Receiver

28

Transmitter (UART) should be added to the BCH encoder. A

UART provides RS232 standard serial transmissions that can

be tied directly to any computers serial I/O ports (no

customized ports are needed). The UART provides protocol in

the form of start, stop, and parity bits. In addition, the

UART can be programmed to synchronize its sampling of

transmissions based on a start bit, virtually eliminating

the chance of missampling a bit.

29

III. Universal Asynchronous Receiver

Transmitter Interface

Introduction:

The previous chapter concluded with the statement that the

serial I/O port to the BCH encoder is unworkable as it is

presently designed. The encoding function of the BCH encoder is

implemented by a finite impulse response (FIR) filter and can be

easily isolated from the serial I/O port function. Modifying the

BCH I/O port based on a Universal Asynchronous Receiver

Transmitter (UART) will completely restore the BCH encoders

functionality, and by using a Dual Asynchronous Receiver

Transmitter (DART), the BCH encoder will have the two separate

I/O ports it needs to meet its interface requirements.

Background:

The DART is composed of two Universal Asynchronous Receiver

Transmitters (UARTs). Each UART provides the capability for half

duplex transmissions over a single serial port along with an

interface for modem control. Control lines to the UART allow the

designer complete control over UART functions.

The DART relieves the user from the task of breaking a data

byte into single bits, transmitting the bits serially, and

30

reassembling the bits. The user simply loads the DART with the

byte to be transmitted and receives reassembled bytes from the

DART upon the return transmission. All start bits, stop bits,

and parity bits are added by the DART independently of user

action. Data and framing errors are relayed to the user through

a special status register located in the DART.

Data lines into and out of the UART are triply buffered to

insure data byte isolation. The UART is programmable from 300 to

800K bits per second, and provides internal sampling

synchronization based on the start bit and the programmed

transmission rate. The internal sampling synchronization can be

program from 1 to 32 times the bit rate. By selecting a sampling

synchronization rate of 16, for example, the DART automatically

sets its internal sampling clock to 16 times the transmission

rate. The DART will sample the incoming bit stream every 16

clock pulses (of the internal clock), starting its first sample

at the center of the pulse representing the start bit. The DART

effectively synchronizes its sampling of the incoming data to the

data transmission rate thereby preventing the sampling of data

during the data's transition from one state to another (Campbell,

1987: 151-161).

31

Desian Decisions:

The DART will be configured to interface directly to the

serial port of a Z-100 computer. Using the J2 port (modem or

Data Terminal Equipment (DTE) port) requires the DART to be

configured as a Data Communication Equipment (DCE) device.

The DART will be configured to transmit at 9600 baud to interface

to the Z-100 modem port. Experience has shown that for short

transmissions, no parity bit is required. Therefore the parity

bit will be disabled on both the DART and Z-100 ports.

Using the Z-100 serial port limits the design to strict RS-

232 standards. Therefore the BCH encoder will use a DP1488 Quad

Line Driver and DP1489 Quad Line Receiver to condition the

transmission line signals to RS-232 standards (± 12 volts, see

Figure 7).

The BCH encoder will undergo a prototype design on a S-l00

wirewrap board. Using the S-100 wirewrap board enables the

design to interface directly with a Z-100 CPU through the S-100

bus located on the Z-100 mother board. All control signals that

are software programed will be provided to the BCH encoder by the

Z-100 CPU through the S-100 bus. Designing the BCH encoder on

the S-100 wirewrap board allows the designer greater flexibility

in monitoring signals and implementing design changes. All data

lines between the DART and the Z-100 are buffered by DP8216

bidirectional bus transceivers. A customized address decoder is

32

* - •r ... -

provided to isolate chip enable control signals to a specific

command address (see Figure 7).

Signal Description:

The DART is controlled by the CPU through signals provided

on the S-100 bus. Details of these control signals are provided

in the following discussion (note that the pin numbers given

indicate pins found on the DART):

1. Pins 5, 6, & 7 (INT*, IEI, IEO). Both interrupt enable

signals (IEI and IEO) are tied to ground. Interrupts are not

used to implement the design. Since interrupts are disabled,

INT* will not affect the DART operation. INT*, therefore, is

allowed to float.

2. Pin 8 (Ml*). M1*, machine cycle one, is used in conjunction

with IORQ* to acknowledge an interrupt. Since interrupts are

disabled, M1* is disabled by tying it to +5 volts.

3. Pin 9 (V). Tied to +5 volts.

4. Pin 10 (W/RDYA*). Normally, the wait/ready states are user

defined to one function (either wait or ready). Once defined,

W/RDYA* is used to implement I/O control from the CPU to the Z-80

33

Doo
Dlfop
Doi
Dru DO vcc
D02 DI X4
DL2 lu D2 ul
D03 D8

D4 R/A -Al
D5 In

m AoDBIN Do fd
D7 CLIC PxIser

TXDA pra
RMADO lm TXCArT r-ND RxciD05

D15
Doe
Die

' 7D 6 M1907
DDIN

VP14ft

A? 4

AS
AS
A4 ADDRRqS
A3 DECoDRIt
A2
A I

six
BOTJT

PDRIN
pm

BP14ft

+6 34

CITMS

REC

Ficiure 7 Dart Input/outPut
Port

34

- -.

Dart and vice versa. The BCH encoder design will utilize

software to implement DART control by polling the appropriate Z-

80 DART status registers and providing appropriate I/O functions

based on the returned status bits. W/RDYA* is not used in the

design and is therefore allowed to float.

5. Pin 11 (R/A*). R/A*, ring indicator for channel A, is used

to receive a request for connection in switched line operations.

When the input goes low, the Z-80 DART interrupts the CPU. This

function is not implemented in the design. Therefore, R/A* is

disabled by tying it to +5v.

6. Pin 12 (RxDA). Data is received by the Z-80 Dart at this pin

from the serial bit stream. No control is implemented here,

however, the line into pin 12 is conditioned by the DS1489 Quad

Line Receiver.

7. Pins 13 and 14 (RxCA* and TxCA*). The receiver and

transmitter clocks are programmed for 9600 baud. The design

implements a divide by 16 command for the clock inputs. This

requires 153.6 KHz at the inputs of pins 13 and 14.

8. Pin 15 (TxDA). TxDA is used to transmit data from the Z-80

DART to a receiving DTE device. TxDA requires no control

35

functions. The outgoing line is, however, conditioned by the

DS1488 Quad Line Driver.

9. Pin 16 (DTRA*). DTRA*, data terminal ready, is an output

signal used to inform the receiver of a ready condition. It is

not used in the design and is therefore allowed to float.

10. Pin 17 (RTSA*). RTSA*, ready to send, is shown connected to

pin 5 (CTS - clear to send) of the DTE interface. When RTSA is

enable, the receiving transmitter is enabled if the DTE device is

in auto enable mode. This tells the DTE device to send the data

that is loaded into its transmitter buffer. The line from the Z-

80 to the H-29 is conditioned by a DS1488 Quad Line Driver to

meet RS-232 standards.

11. Pin 18 (CTSA*). CTSA*, clear to send, is connected to pin 4

(RTS - request to send) of the H-29 DTE interface. The DART is

not configured for auto enable, therefore CTSA* cannot not enable

the DART's transmitter. Instead, the CPU will poll the status

register which will indicate that CTSA has been enabled by the

DTE device. When the CPU knows that CTSA is enabled, the CPU

will load the transmitter buffer with a data byte. The

transmitter of the DART is always in the enabled mode and the

loaded byte will automatically be sent. Since CTSA* must meet

36

RS-232 standards, it is conditioned by a DS1489 Quad Line

I Receiver.

12. Pin 19 (DCDA*). Data carrier detect (DCDA*) is clocked into

register 0, bit 3, of the Z-80 Dart. Our design shows DCDA*

connected to pin 20 (DTR - data terminal ready) of the DTE

interface to provide terminal on/off condition information to the

Z-80 DART. Similar information is available through CTSA*, that

is, the H-29 terminal must be on to provide a request to send

signal.

13. Pin 20 (CLK). Tied directly to the CPU clock - Phi.

14. Pin 21 (RESET*). Tied directly to the CPU reset - RESET*.

15. Pin 22 through 30. These pins are used for channel B and do

not apply to the design. They are allowed to float.

16. Pin 31 (Gnd). Tied directly to system ground.

17. Pin 32 (RD*). RD*, read, is an input line used to inform the

Z-80 DART when the CPU is reading data from memory or from an

I/O. This is equivalent to the CPU state that occurs when pDBIN

goes high. Therefore pDBIN is connect through an invertor to RD*

37

of the Z-80 DART.

18. Pin 33 (C/D*). C/D*, control or data select input line

provides the CPU either control or data input conditions for the

Z-80 DART. When this line is a logical 0, the DO-D7 pins on the

Z-80 DART are used for data I/O. When the line is a logical 1,

the DO-D7 pins are used for control information. The system

address line AO provides this information to the DART. Address

OOh corresponds to channel A - I/O data port, address 01h

corresponds to channel A - Status and Command port. Note that

the least significant bit, AO, provides the necessary condition

for the selection of control or data input as needed. Therefore,

AO is tied directly to pin 33.

19. Pin 34 (B/A*). Although channel B is not used for the

initial BCH encoder design, provisions have been made to expand

the design to include channel B. The design allows a future

expansion to include channel B by tying pin 34 to address line

Al. Then all address to either 00 or 01 will access channel A

while all addresses to either 02 or 03 will access channel B.

20. Pin 35 (CE*). Chip enable is tied directly to DS* of the

address decoder. When either address 00h or 01h for channel A or

02h or 03h for channel B is used by the CPU, the Z-80 DART is

38

enabled. See figure 3 for a schematic of the address decoder.

21. Pin 36 (IORQ*). IORQ*, input and output request, is an input

signal to the Z-80 DART. It is used by the CPU to inform the Z-

80 DART that the CPU is performing an input or an output

operation. Our design implements this control signal through the

use of pDBIN and pWR*. A truth table showing input signal states

and the desired output is given below along with a logic diagram

implementing the truth table criteria.

pDBIN pWR* Desired Output Exclusive Or

0 0 0 0

0 1 1 1

1 0 N/A 1

1 1 0 0

Note: pDBIN should never be high when pWR* is low. This

equates to a read and write cycle occurring simultaneously. Our

design disable IORQ* under this condition to complete the truth

table.

Figure 8 shows the control signal implementation for both

IORQ* and RD*. Exclusive Or gates were chosen for both circuits

to minimize chip count.

39

pWR TORO

pOB IN +5

Figure 8 - RD* and IORQ* Implementation

Test Methodolociv:

To meet operational requirements, the DART must be able to

transmit or receive at least 10M bits of information,

consecutively, without error. Two software drivers were written

to implement the test (see appendix C).

DriverSt From a Z-100, initialize the modem port (J2) to

9600 baud, one stop bit, no parity, 8 bits/character, and x16

clock. Transmit one character (8 bits) out the J2 port directly

to the DART located on a second Z-100. Once the character has

been transmitted, poll J2 for a received character (the DART will

retransmit the character back to J2). Extract the received

character from J2 and compare it to the sent character. Repeat

the process for 10M bits while reporting the outcome (number of

40

characters sent and number of bad characters received) to the

CRT.

Drivnr Two: Using a Z-100 to send commands to a DART

through the S-100 bus, initialize the DART to 9600 baud, one stop

bit, no parity, 8 bits/character, and x16 clock. Receive a

character into the DART, echo the character to the CRT, and

retransmit the character back to the first Z-100.

Test Results:

Five test runs were conducted over two days. Each test run

required about 2 hour and 15 minutes to transmit 10.4 Mbits at

9600 baud from a Z-100 to the DART and back to the Z-100. Each

word (8 bits) of information transmitted was compared to the

received word to determine the number of errors occurring. The

first test run was started while the equipment was at room

temperature. Data collected during the test showed errors

occurring at the rate of one error per word transmitted. The

error rate drop to zero as the equipment warmed up to the

operating temperature. Data from the first test can be found in

appendix D.

The four remaining test runs were all conducted at the

system operating temperature. No errors were recorded for the

first three test runs. The fifth test run recorded two errors,

41

both occurring within the last 5 minutes of the test.

A final test run was conducted one week later. For this

test, the external clock was set at 166.6 KHz (6 usec/clock

pulse). At 166.6 KHz, the system performed well both at room

temperature and at operating temperature.

Discussion and Conclusions:

Errors in transmissions occur because the sampling of a

particular bit is erroneous. The sampling rate for the DART is

tied to an external clock, which was originally set at 153.6 KHz.

A change in the external clock rate will result in sampling

errors when the change takes the external clock outside of its

proper operating range.

When the clock was set at 153.6 KHz, it is possible that the

clock was set just outside of its proper operating range, causing

errors to occur at room temperature. As the clock warmed up, it

shifted to a slightly higher frequency, just inside its normal

operating range, allowing the DART to work perfectly at operating

temperatures.

The two errors of the fifth test run may be attributed to

random noise. They represent a error rate of 1 in 20.8 M bits

transmitted and can be tolerated for the purposes of this thesis.

A DART configured for one stop bit, one start bit, no

parity, 9600 baud, and x16 clock will work best with the external

42

clock set at 166.6 IO~z.

43

IV. BCH Encoder

Introduction:

As mentioned earlier in this thesis, FTD has an interest

in testing the performance of a BCH encoder over several

communication channels. Chapter four describes the BCH

encoder, the circuitry used to build the encoder, and the

methodology used to test the encoder for correct operation.

Background;

The BCH code originated from the work of three

individuals (Bose, Chaudhuri, and Hocquenghem) in the early

1960s. The first letter of each individuals last name was

combined to name the code (BCH). The BCH codes are cyclic

in nature, mean that rotating a code word any number of bits

either left or right will still result in a code word. BCH

codes are often thought of as a generalization of the

Hamming code and are used as single or multiple error

correcting codes. (Lin and Costello, 1983:141)

A discussion of codes, encoding, and decoding begins

with the length of the code word (n), the length of the

source word to be encoded (k), and the number of errors to

be corrected in any given code word (t). Encoding is the

process of taking a source word of length k and adding error

checking bits to the word resulting in a code word of length

44

n. The idea is to add enough error checking bits to the

code word so that single or multiple errors can be found and

corrected after the code word has been transmitted and

received. Describing a particular coding scheme is done by

giving the length of the code word and the length of the

source word in parenthetical notation (n,k) followed by the

number of errors the coding scheme can correct. As an

example, one useful coding scheme is describe as a (15,7)

double error correcting BCH code.

BCH codes are characterized by the following parameters

(given m is an integer > 3 and t < 2 1)):

1) N = 2m - 1.

2) Number of error checking digits < m * t.

Note that the number of error checking digits also

equals n - k.

(Blahut, 1984:162)

The BCH code characteristics given above result in the

following table of BCH codes for m < 6:

45

Table 1 - BCH Codes for m < 6:

M n k t

3 7 4 1
4 15 11 1
4 15 7 2
4 15 5 3
5 31 26 1
5 31 21 2
5 31 16 3
5 31 11 5
5 31 6 7
6 63 57 1
6 63 51 2
6 63 45 3
6 63 39 4
6 63 36 5
6 63 30 6
6 63 24 7
6 63 18 10
6 63 16 11
6 63 10 13
6 63 7 15

To generate a BCH code word, the encoder receives a

source word and multiplies it by a generator polynomial.

For the purpose of this thesis, the source word, generator

polynomial, and the code word are all represented as binary

polynomials. For instance, the source word 11 (in bits) is

represented as x + 1. The source word 1001 is represented

as x3 + 1. The multiplication of the source polynomial and

the generator polynomial is strictly algebraic but follows

the rules for exclusive-or binary addition to combine terms.

Calculating the generator polynomial requires the use

46

of prime polynomials of degree m within a Galois Field (20)

and the determination of the minimal polynomial for i = i

2t over the source words within the Galois Field. For a

more through discussion of Galois Fields and minimal

polynomials, the reader is referred to Blahut pages 162-166.

Generator Polynomial:

Transmitting bits of information between the Z-100 and

the BCH encoder is easiest to accomplish if the number of

bits transmitted is the length of a byte (8 bits) since the

MASM calls and registers within the Z-100 are built to

handle a byte of information at a time. Each byte

transmitted is taken from the ASCII character set and is 7

bits in length. The eighth bit transmitted is always

defined, but not really needed to represent the ASCII

character. Therefore, a BCH code that has k equal to 7 or 8

bits is most useful for the transmissions that are occurring

between the Z-100 and the BCH encoder.

For m < 6, the BCH codes with k = 7 or 8 are:

(15,7) 2 error correcting BCH code

(63,7) 15 error correcting BCH code

To calculate the generator polynomial for the (15,7)

BCH code (m=4), a Galois Field of GF(24) is chosen using the

primitive polynomial p(z) = z4 + z + 1. The minimal

polynomials for all the field elements over GF(2) is given

47

in Table 2:

Table 2 - Minimal Polynomials over GF(24)

Field Element(s) Minimal Polynomial

a Ia,a8126948
a a a aX

a51aa x2 + x + 1
aa 1,a3,a14 X4 + X3 + 1

(Blahut, pg 163)

The generator polynomial is found by multiplying the

Lowest Common Multiple (LCM) of the minimal polynomials for

the field elements ranging from al .. a2t where t equals the

number of errors corrected by the BCH code. For the (15,7)

2 error correcting code chosen, the generator polynomial

(g(x)) is given~as:

g(x) = LCM (a',a2,a3,a 4

g(x) = (x' + x + 1)(x 4 + X3 + X2 + x + 1)

g(x) = X8 + XT + k6 + X4 + 1

or in binary:

g(x) = 111010001

(Blahut, 1985: 163-164)

Multiplier Circuitry:

Fortunately, many simple circuits taken from the family

of finite impulse response (FIR) (non-recursive) digital

filters work beautifully to multiply polynomials. The BCH

48

encoder constructed for this thesis uses a linear-

feedforward shift register FIR (shown below) for its

multiplication.

Xa X7 X4 X 2 X

Data Out

Figure 9 - FIR Multiplication Circuit

A quick example demonstrates the operation of the FIR.

The generator polynomial shown can be represented by xe + x7

+ x4 + x2 + x + 1. The generator polynomial will be

multiplied by the code word 01100001 (ASCII "a"). Note that

the high order bit of the ASCII "a" enters the encoder first

and that the high order bit of the encoded word (the result)

is read from the FIR first. Each stage of the

multiplication is given in Table 3.

49

Table 3 - Register States for Multiplication

Clock R1 R2 R3 R4 R5 R6 R7 R8 R9 Result

1 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 1
3 1 1 0 0 0 0 0 0 0 0
4 0 1 1 0 0 0 0 0 0 1
5 0 0 1 1 0 0 0 0 0 0
6 0 0 0 1 1 0 0 0 0 1
7 0 0 0 0 1 1 0 0 0 1
8 1 0 0 0 0 1 1 0 0 0
9 0 1 0 0 0 0 1 1 0 1
10 0 0 1 0 0 0 0 1 1 0
11 0 0 0 1 0 0 0 0 1 1
12 0 0 0 0 1 0 0 0 0 1
13 0 0 0 0 0 1 0 0 0 0
14 0 0 0 0 0 0 1 0 0 1
15 0 0 0 0 0 0 0 1 0 1
16 0 0 0 0 0 0 0 0 1 1
17 0 0 0 0 0 0 0 0 0 1

Thl result is 010101010110111 (binary), or x14 + x 1
+x 10 + X + x 7+ X +X4 + X + X +1

Control Circuitry:

The BCH encoder is controlled by three signals: one to

clear the encoder, one to clock data into the encoder, and

one to clock data out of the encoder. Each control signal

must be isolated from all other control signals to the BCH

encoder as well as control signals occurring on the S-100

bus and control signs to the Z-80 DART. Isolation of the

control signals is accomplished through a 74139 Dual 2 to 4

Decoder. The decoder enable input is tied to DS* linking

the decoder function directly to the Z-80 DART and isolating

the decoder from any S-100 internal control functions.

50

Pins Al and Bi of the decoder are tied to address lines

A14 and A15, neither of which are used by the Z-80 DART's

address decoder. A14 and A15 provide control over the

decoder operation independently of Z-80 DART operation.

Since the 74139 control lines (Y1 through Y3) are asserted

(low) ONLY when A14 and/or A15 are asserted (high), the BCH

encoder is active only when address 4000, 8000, and cOOO

(hex) are asserted. DART operations must be disabled (Tx

disabled) because the DART will misinterpret OUT commands at

the BCH encoder address as an instruction to load its

transmit buffer.

Data is routed into the DART through D07 of the S-100 bus

and is not affected by DART operations. Data is routed from

the BCH encoder into the Z-100 through DIO. DIO is

multiplexed from both the BCH encoder and Z-80 DART to

insure that input data is always taken from one source at a

time.

The encoder clock and encoder clear functions are

narrowed by combining pWR* on the S-100 bus with the

appropriate 74139 decoder output lines. The narrowed

control pulses are necessary to prevent inadvertent

triggering of the 74139 output lines when DS* changes during

transitions of A14 and A15. These state changes can cause

Y2 of the 74139 to momentarily go low, clearing the BCH

encoder registers which (obviously) prevents the

multiplication of the code word with the generator

51

polynomial.

Circuit diagrams are given for both the BCH encoder and

the control circuitry in Figures 10 and 11 on the following

pages.

Test Methodology:

The BCH encoder must successfully encoded a given set

of code words for a variety of generator polynomials to be

deemed fully acceptable. The test methodology chosen

requires the BCH encoder to encode the ASCII set of

characters (the code words) using generator polynomials

varying from order 1 to order 8. Beyond order 8, it becomes

impractical for the Z-100 register set to handle the

polynomial multiplication.

A single software test routine was written to test the

BCH encoder (see appendix E). The test routine prompts the

user for the generator polynomial as an ASCII character - 30

hex. Subtracting 30(hex) from an ASCII character results in

numerics (1-9) being represented as their binary value in

the Z-100 registers. The generator polynomial entered by

the user must be set on the BCH encoder using the

%ppropriate dip switches.

52

110

8I'

D0 A U LMUINE

Lnoe vi De? Hihore

Figure ~ ~ V 10 Dat An" Enoe oto iCir

5 3 I s

Fiser 41 - CDoe

544

Once the generator polynomial has been entered into the

computer by the user, the computer will prompt the user for

the value of n-k (or the order of the generator polynomial).

With this information the computer will format its registers

to conduct the polynomial multiplication.

Next, the computer prompts the user for a ASCII

character (the source word). After the source word is

entered, the computer generates the code word using a

software routine and displays the code word on the screen.

Then the computer sends the source word through the BCH

encoder, padding the source word with the appropriate number

of zeros. The code word received from the BCH encoder is

displayed on the screen directly under the code word

generated by the computer. If the two code words are

identical, the BCH encoder worked correctly for that source

word.

Test Results:

Three generator polynomials (1001, 10001, and 111010001

- binary) were selected to test the BCH encoder. Source

words were picked at random from the keyboard. In all cases

the encoder worked perfectly.

Conclusions and Recommendations:

The linear feed-forward shift register chosen to

implement the BCH encoder performs extremely well. The BCH

55

encoders performance remains stable at the data rates needed

to interface to a Z-100 computer.

56

V BCH Decoder

Introduction:

The counterpart to the BCH encoder is the BCH decoder.

The decoder receives the code word after the code word has

been transmitted over free space from the encoder. The

decoder is responsible for correcting any errors in the code

word (up to a specified limit) that might have occurred

during transmission, and decoding the corrected code word to

produce the original transmitted source word. Chapter five

describes the nature of a BCH decoder, the circuitry used to

build a BCH decoder, and the test methodology used to test

the final product.

Background:

A BCH code word is generated by selecting a source word

and multiplying the source word by a given generator

polynomial to produce the code word. Decoding the code word

uses the same generator polynomial to divide the code word,

resulting in the original source word as the quotient of the

division.

A problem arises, however, when the transmitted code

word is received with an error in it. The error in the

code word can cause a different quotient (and hence a

57

different source word) to be produced by the decoder.

Fortunately, the decoder can detect when the code word is

erroneous by looking at the remainder of the division

process. If no error is present when the code word is

received, the remainder will always be zero. If an error is

present the remainder will always be greater than zero. The

remainder of the division process is known as the syndrome

and is the length of the order of the generator polynomial

(n-k). The only time the decoder will fail to detect an

error in the received code word is when the error3

introduced by the communications channel into the

transmitted code word produce a different, but correctly

encoded, source word.

Calculating the Syndrome:

For cyclic codes (such as the BCH code), the syndrome

is determined by:

S(x) = Sg(x)CV(x)

where:

S(x) = the code word

RO(x) = the remainder after dividing by g(x)

V(x) = the received code word

Note, however, that the received code word can be

written as the transmitted code word exclusive-ored to an

58

error polynomial (exclusive-or denoted as a + sign):

S(x) = Rg(x)[e(x) + C(x)]

S(x) = Rg(x)[e(x)] + Rg(x) [C(x)

S(x) = R(X)[e(x)] + 0

(1) S(x) = R9 (x[[e(x)]

where:

e(x) = error polynomial

C(x) = transmitted code word

(Blahut, 1984:99)

Equation 1 shows that all the syndromes for a cyclic

code can be found by dividing all possible error polynomials

by the generator polynomial. Each resulting quotient after

the division becomes the syndrome for the particular error

polynomial.

For example, choosing the (15,7) two error correcting

BCH code with a generator polynomial of x8 + x7 + x6 + x4 + x

+ 1 yields the following table of syndromes for the given

error polynomials:

59

Table 4 - Syndromes for a (15,7) BCH Code

Error Polynomial Syndrome Polynomial

0000000000000001 0000000000000001"
0000000000000010 0000000000000010
0000000000000100 0000000000000100
0000000000001000 0000000000001000
0000000000010000 0000000000010000
0000000000100000 0000000000100000
0000000001000000 0000000001000000
0000000010000000 0000000010000000 -

0000000100000000 0000000011010001
0000001000000000 0000000001110011
0000010000000000 0000000011100110
0000100000000000 0000000000011101
0001000000000000 0000000000111010
0010000000000000 0000000001110100
0000000000000011 0000000000000011
0000000000000101 0000000000000101
0000000000001001 0000000000001001
0000000000010001 0000000000010001
0000000000100001 0000000000100001
0000000001000001 0000000001000001
0000000010000001 0000000010000001
0000000100000001 0000000011010000
0000001000000001 0000000001110010
0000010000000001 0000000011100111
0000100000000001 0000000000011100
0001000000000001 0000000000111011
0010000000000001 0000000001110101
0100000000000001 0000000011101001
0000000000000110 0000000000000110
0000000000001010 0000000000001010
0000000000010010 0000000000010010
0000000000100010 0000000000100010 -
0000000001000010 0000000001000010
0000000010000010 0000000010000010
0000000100000010 0000000011010011
0000001000000010 0000000001110001
0000010000000010 0000000011100100
0000100000000010 0000000000011111 A
0001000000000010 0000000000111000
0010000000000010 0000000001110110
0100000000000010 0000000011101010
0000000000001100 0000000000001100

60

OOOO~lOOOOOOO OOOOOO~llO~l

Table 4 Continued
Syndromes for a (15,7) BCH Code

Error Polynomial Syndrome Polynomial

0000000000010100 0000000000010100
0000000000100100 0000000000100100
0000000001000100 0000000001000100
0000000010000100 0000000010000100
0000000100000100 0000000011010101
0000001000000100 0000000001110111
0000010000000100 0000000011100010
0000100000000100 0000000000011001
0001000000000100 0000000000111110 •
0010000000000100 0000000001110000
0100000000000100 0000000011101100
0000000000011000 0000000000011000 i
0000000000101000 0000000000101000
0000000001001000 0000000001001000
0000000010001000 0000000010001000
0000000100001000 0000000011011001
0000001000001000 0000000001111011
0000010000001000 0000000011101110
0000100000001000 0000000000010101
0001000000001000 0000000000110010
0010000000001000 0000000001111100
0100000000001000 0000000011100000
0000000000110000 0000000000110000
0000000001010000 0000000001010000
0000000010010000 0000000010010000
0000000100010000 0000000011000001
0000001000010000 0000000001100011
0000010000010000 0000000011110110
0000100000010000 0000000000001101
0001000000010000 0000000000101010
0010000000010000 0000000001100100
0100000000010000 0000000011111000
0000000001100000 0000000001100000
0000000010100000 0000000010100000
0000000100100000 0000000011110001
0000001000100000 0000000001010011
0000010000100000 0000000011000110
0000100000100000 0000000000111101
0001000000100000 0000000000011010
0010000000100000 0000000001010100
0100000000100000 0000000011001000
0000000011000000 0000000011000000

61

Table 4 Continued
Syndromes for a (15,7) BCH Code

Error Polynomial Syndrome Polynomial

0000000101000000 0000000010010001
0000001001000000 0000000000110011
0000010001000000 0000000010100110
0000100001000000 0000000001011101
0001000001000000 0000000001111010
0010000001000000 0000000000110100
0100000001000000 0000000010101000•
0000000110000000 0000000001010001
0000001010000000 0000000011110011
0000010010000000 0000000001100110
0000100010000000 0000000010011101
0001000010000000 0000000010111010
0010000010000000 0000000011110100
0100000010000000 0000000001101000
0000001100000000 0000000010100010
0000010100000000 0000000000110111
0000100100000000 0000000011001100
0001000100000000 0000000011101011
0010000100000000 0000000010100101
0100000100000000 0000000000111001
0000011000000000 0000000010010101
0000101000000000 0000000001101110
0001001000000000 0000000001001001
0010001000000000 0000000000000111
0100001000000000 0000000010011011
0000110000000000 0000000011111011 .
0001010000000000 0000000011011100
0010010000000000 0000000010010010
0100010000000000 0000000000001110
0001100000000000 0000000000100111
0010100000000000 0000000001101001
0100100000000000 0000000011110101
0011000000000000 00000000010011100101000000000000 0000000011010010
0110000000000000 0000000010011100

It should become clear, from the exhaustive example in

the table above, that for a known BCH code all given error

62

polynomials have a unique syndrome. The BCH decoder can

determine the error pattern of the received code word by

matching the syndrome of the received code word to the

syndromes corresponding error polynomial. Once the error

polynomial is known, the received code word can be corrected

by exclusive-oring the error polynomial to the received code

word. The decoder will take the corrected received code

word and decode it to yield the original source word and a

syndrome composed solely of zeros.

D. DECODER CIRCUITRY

The BCH decoder can be easily implemented using simple

circuits from the family of finite impulse response (FIR)

non-recursive digital filters. For the purpose of this

thesis, an internal Xor circuit was choosen to ease the

implementation of the feedback gate. The internal Xor

circuit requires one additional chip to form the feedback

gate while the external Xor circuit requires enough chips to

form a gate at each point of feedback in the generator

polynomial. An example of an internal xor FIR circuit,

using x8 + x" + x6 + x4 + x + 1 as the generator polynomial

is given in figure 12.

63

........ 1 4 X 6 X 7 X

Input Output

Figure 12 - FIR Dividing Circuit

An example of the decoder operation is given below.

For the example, an ASCII "a" is encoded to yield

100111110110001 (binary) as the input polynomial. The

generator polynomial (both for encoding and decoding) is

given as x 8 + x T + 6 + x4 + x + 1. The first 8 bits of the

code word are clocked into the decoder with the feedback

gate closed. The next seven bits are also clocked in the

decoder with the feedback gate close, but each resulting bit

is saved by the CPU to form the decoded word. When the last

bit of the result is stored in the CPU, the syndrome

(remainder) of the division is residing in the registers of

the decoder. The syndrome is clocked into the CPU by

opening the feedback gate, and entering zeros into the input

of the decoder. A total of 8 bits must be clocked out of

64

the decoder to form the complete syndrome. Note that high

order bits enter the decoder first and leave the decoder

first.

Table 5 - Register States for Division

Input R1 R2 R3 R4 R5 R6 R7 R8 Output

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0
1 1 1 1 0 0 1 0 0 0
1 1 1 1 1 0 0 1 0 0
0 1 1 1 1 1 0 0 1 1
1 1 1 1 1 0 1 1 1 1
1 0 1 1 1 0 0 0 0 0
0 1 0 1 1 1 0 0 0 0
0 0 1 0 1 1 1 0 0 0
0 0 0 1 0 1 1 1 0 0
1 0 0 0 1 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0

Control Circuitry:

The BCH decoder is controlled by four signals: one to

clear the decoder, one to clock data into the decoder with

the feedback gate closed, one to clock data into the decoder

with the feedback gate opened, and one to clock data out of

the decoder. Each control signal must be isolated from all

other control signals to the BCH decoder. Isolation of the

control signals is accomplished through a 74139 Dual 2 to 4

Decoder. The decoder enable input is tied to DS* linking

65

the decoder function directly to the Z-80 DART and isolating

the decoder from any S-100 internal control functions.

Pins Al and B1 of the decoder are tied to address lines

A14 and A15, neither of which are used by the Z-80 DART's

address decoder. Unlike the encoder control, the decoder

controller uses all state combinations of A14 and A15 to

provide control over the decoder operations. Since the

74139 control lines (YO through Y3) are asserted (low) for

all state combinations of A14 and A15, the BCH decoder is

active when addresses 0000, 4000, 8000, and cOOO (hex) are

asserted. DART operations must be disabled (Tx disabled)

because the DART will misinterpret OUT commands at the BCH

decoder address as an instruction to load its transmit

buffer. The DART will end up loading its buffer with

erroneous data and transmitting it to the final bit sink.

The BCH decoder function is not affected whether the

DART transmitter is disabled or not. Data is routed into

the decoder through D07 of the S-100 bus and is not affected

by DART operations. Data is routed from the BCH decoder

into the Z-100 through DIO. DIO is multiplexed from both

the BCH decoder and Z-80 DART to insure that input data is

always taken from one source at a time.

The decoder clock and decoder clear functions are

narrowed by combining pWR* on the S-100 bus with the

appropriate 74139 decoder output lines. The narrowed

control pulses are necessary to prevent inadvertent

66

triggering of the 74139 output lines when DS* transitions

during changes A14 and A15. After control lines Yl and Y2

(clock with gate closed and clock with gate open

respectively) are narrowed, they are combined through a 7406

dual input And gate resulting in a single clock pulse

transmitted to the BCH decoder at any given time.

Schematics of the BCH decoder and BCH decoder

controller are found in Figures 13 and 14 respectively.

Test Mehodologv:

Testing of the BCH decoder is conducted in two phases.

The first phase determines whether the BCH decoder is

decoding a code word to give the correct source word. The

second phase determines whether the BCH decoder is

generating the correct syndrome of a given generator

polynomial and error polynomial. Each phase of testing is

describe in greater detail in the paragraphs below.

Phase One: A software routine is written that prompts

the user for the generator polynomial, n-k, and k. The

generator polynomial is entered by the user as the bitwise

representation of an ASCII character - 30h. For example,

the bitwise representation of the generator polynomial x3 +

1 is 1001. This amounts to the ASCII character 9 - 30h (in

67

Low, Order fit of A

monerstor

I F

MW
46

fc 60 MK

K

4
4

IK IK

's

VOC VOC

Li F vw
L-0 U U

4

D 0

I W MWK
Dipsv

D IK I
I 2L-- - I

Eg:-:

i

6 IK I

IK IK IF

46 vw MUM 4S

Vmm Vft=

go

/P77
-W V

D K

(& - Clear Goommirr

(1) - Cloak Onto Ante

SK SK - Tied to high ardw bit oF Uwwvsuw ftlg isl

Oftee On" ma Waken Prom (D

Figure 13 - BCH Decoder

68

9 DOhah 1*M w .4

Om a- S

Ora S I 4

I SID
N S-U

Drncinhr

rin. u74mS

L ~~IV Lm L ClHo ak bw"ut. Ylot -Cwl. mit

Figr 14 -, B DeodrCoto k CictrywwOo

69f"Gm P

binary: 01101001 - 01100000). The generator polynomial

chosen by the user must be enter as its bitwise value on the

decoder dip switches. Values of n-k and k are entered by the

user as their actual numeric value (the software will

automatically convert to binary for internal usage).

After the generator polynomial, n-k, and k are entered,

the software will prompt the user for a source word (any

ASCII character will do as long as k = 7). The software

encodes the source word internally using the generator

polynomial to yield the code word. The code word is sent to

the decoder for decoding, yielding the source word upon

completion. The original source word, the binary

representation of the code word, the binary representation

of the decoded code word, and the final ASCII representation

of the quotient (new source word) are displayed for

comparison. Both the original and new source word must be

identical to indicate the proper operation of the decoder.

The software written for phase one can be found in appendix

F.

Phase Two: A second software routine is written that

uses a BCH (15,7) two error correcting code with x8 + x7 +

X6 + X4 + 1 as the generator polynomial. The software

generates all the error polynomials and concomitant

syndromes for the given BCH code and displays them as a hard

copy on the printer.

70

4

A third software routine is written that uses the same

BCH (15,7) two error correcting code and x8 + X? + x6 + x4 +

1 as the generator polynomial. Once again, the software

generates all the error polynomials associated with the BCH

code. Then the software sends each error polynomial to the

decoder for decoding. Each resultant syndrome for the

decoding process is stored with its concomitant error

polynomial. The final list of error polynomials and

syndromes are sent to a temporary file that can be printed

as a hard copy. This final hard copy must match the

original printed copy generated from the second software

routine to indicate the proper operation of the decoder.

The software written for phase two can be found in appendix

G.

A final demonstration of both the decoder and encoder

working as a complete product is described in chapter six.

The final demonstration uses the syndrome created by the

decoder to correct errors which ultimately yields the

correctly decoded source word.

Test Results:

The decoder worked well for all generator polynomials

chosen in Phase One. All syndromes for the (15,7) two error

correcting BCH code generated by the decoder matched those

generated in software during Phase Two.

71

Conclusions and Recommendations:
The decoder, as implemented, will work well for any

cyclic code of order 23 or less. Because the Z-100 has 8

and 16 bit registers, it is most convenient to use codes of

these lengths.

72

VI. Demonstration and Follow-on Thesis Effort

Demonstration:

Introduction: It is desirable, especially to those who

might want to use the encoder and decoder in a follow-on

effort, to prove that the final system design works

properly. To this end, a "demonstration" software module

was written which exercises the final system (comprised of

the encoder hardware, decoder hardware, and DART interfaces)

in a manner consistent with a realtime encoding and decoding

problem. The problem, in essence, is to take an ASCII

character, encode it on one computer, send the encoded word

to a second computer, have the second computer decode the

code word, display the result, and send a request for

another encoded word back to the first computer, where upon

the process starts over again. The demonstration is limited

to the (15,7) two error correcting BCH code that has been

discussed throughout this document.

System Confiquration: The system is configured as

shown in Figure 15. only two computers are needed, one for

the encoder and one for the decoder, because the

communications channel is not simulated independently of the

encoder function for the demonstration.

73

The encoder host computer's AUX output is tied to the

DART input of the decoder board. The encoded word is sent

over this link. The decoder host computer's AUX output is

tied to the DART input of the encoder board. The request by

the decoder for another encoded word is sent over this link.

Although the system could be configured from DART to DART

for both links, the current configuration proves that ANY

computer with a serial output set at 9600 Baud, no parity,

and one stop bit, can effectively communicate with the

encoder and decoder boards. This means that the final

system configuration can use any available PC computer as

the host computer for the channel simulator.

oeoo. mo1 1': eg an

BCH Encoder BCH Decoder

Figure 15 - System Configuration for Demonstration

74

Demonstration Software: The demonstration software

written to exercise the encoder and decoder can best be

understood in a step by step approach. The encoder and

decoder are treated separately in the paragraphs below:

Encoder:

SteD one: Initialize the DART to 9600 Baud,

one stop bit, and no parity.

SteD Two: Prompt the user for a source word.

The user may enter any ASCII character on the keyboard.

Step Three; Encode the character and display

the code word on the screen.

SteD Four; Prompt the use to enquire of the

users desire to add a error polynomial. If the answer is

yes, accept an error polynomial from the screen. If the

answer is not jump to step Six.

SteD Five: Exclusive or the error polynomial

to the encoded word.

Seix: Transmit the final encoded word.

Then wait for a request for another encoded word before

repeating the process.

Step One: Initialize the DART to 9600 Baud,

one stop bit and no parity.

Step Two: Generate the syndromes for the

75

(15,7) BCH two error correcting code and store the results

in a look-up table.

Step Three: Receive an encoded word from the

encoder.

Step Four: Decode the encoded word. If no

syndrome results, display the transmitted word, and the

final result (then skip to step seven).

i ive: Display the resulting syndrome on

the CRT, then use the syndrome and the look-up table to find

the error polynomial. Exclusive-or the error polynomial to

the transmitted word to form the corrected transmitted word.

S Decode the corrected transmitted

word and determine if there is a syndrome. If there is a

syndrome, display an error message and skip to step eight.

Step Seven: Display the final result on the

CRT.

SteREight: Transmit a request for another

encoded word to the encoder. Go to step three.

Follow-On Thesis Effort:

As discussed in the overview of chapter one, several

follow-on thesis efforts are required in order to meet the

needs of the Foreign Technology Division. As part of the

follow-on effort, and of immediate interest, is the

simulation of a communications channel in software. The

simulated channel should minimally address random gaussian

76

and Markov burst error noise patterns. As an aid in

understanding the level of effort involved in developing the

simulated communications channel, the following list of

tasks to complete has been compiled.

A. Research the selected communication channels and

associated noise (random gaussian and Markov burst error) to

determine the probability of bit error (and bit error

pattern) for each communications channel.

&. Select a computer and programming language suitable

for writing the channel simulation programs needed. (I

would recommend a Z-248 as the computer and C as the

programming language).

C. Write the software routines that will ultimately

simulate the communications channel.

D. Interface the selected computer and the software to

simulate the communications channel with the existing

encoder and decoder.

L. Write any driving routines that are required to

provide a completely functional system.

f. Write your thesis, and demonstrate the final system

to your thesis advisory board.

77

7

Appendiz A: 74747 D Flip FloD Interface Software

STEP ONE - DRIVER ONE

Accepts a character from the keyboard and transmits it
;out the output port to the input port. Receives the
;character from the input port and displays the character on
;the screen. A visual check of the screen will show whether
;the transmission is handled correctly.

; Define constants
;

bell equ 07h ;ASCII char for bell
cr equ Odh ;ASCII char for ;

stackarea segment stack ;define the stack
;area

db 40 dup(?) ;set aside room for stack
stack-area ends

data area segment ;define data area
outco db 00h
inco db OOh
char db 00h
mych db 41h
data-area ends

LAB_1 segment ;define segment area for program
main proc far

assume cs:LAB_1, ds:dataarea,
ss:stack-area

;set all register to zero (makes it easier to debug)

begin: sub ax,ax ;set ax to zero
sub bx,bx ;set bx to zero
sub cx,cx ;set cx to zero
sub dx,dx ;set dx to zero

;set DS reg to point to the current data area

mov ax,data area ;point to data-area
mov ds,ax ;DS now points to

;dataarea

78

;begin parti of lab -initialize data ready and data request
;lines

mov dlOih ;output port address
in al,dx ;clear data ready
mov dl,03h ;input port address
in al,dx ;clear data request

;load the character to transmit into bx, and set data
request ;high

Roy bl,uych ;character in bx
mov dl,03h ;input port address
out dx,al ;set data request

;clear data ready
mov outco,08h ;set out count number
may inco,08h ;set in count number

;begin output loop

Outlp: mov al,outco ;load out count
;number

cup al,O0h ;compare to zero
jz Inip ;Jump to inloop
mov dl,O0h ;output port
in al,dx ;check if data

; request
;is set

and al,O8h ;mask for third bit
cup al,O8h ;is data request

;high?
jne outlp ;wait until data

;request goes high
mov al,bl ;load al with bit
out dx,al ;data rdy high

;data req low
shr bl,l ;shift bl right one

;bit
mov cl,outco ;load out count

;number
dec cx ;dec by one
mov outco'cl ;replace count number

;Begin inloop:

Inlp: mov dl,02h ;input port
in al,dx ;get some data
and al,05h ;miask for rdy and

;data

79

cup al,02h ;less than 2?
ii Inlp ;wait for data ready
and alOlh ;get data bit
Nov cl,char ;put character into

;cx
nov ch,al ;put bit into ci
shr cx,i ;Shift bit into char
nov char,ci ;put character back
or cl,al ;append data bit
nov al,inco ;enough bits yet?
cmp al,Olh, ;last bit?
je Pint ;yes, go print
dec al ;decrease incount by

;one
nov inco,al ;store the count
nov dl,03h ;input port
out dx,al ;set data request,

;clear
;data ready

jup Outip ;JUMP to outloop

;Time to print the received character

Pint: nov dl,char ;dl has character
nov ah,02h
int 21h

;All do, so exit from program
;Exit3: nov ax,4cOOh ;use DOS

function 4c
;with return

int 21h ;to exit from
program

main endp
LAB_1 ends

end main ;end assy

so

STEP ONE - DRIVER TWO

Take a single character and transmit it out the output
;port to the input port. Receive the character from the
;input port and check the character internally to determine
;if the received character matches the sent character.
;Report the number of characters sent and the number of
;errors detected to the CRT. Repeat the process
;indefinitely. (Note that an overflow condition will arise
;when the number of bits sent equals about 25k bits.
;Running the program four times consecutively amounts to
;transmitting over 10M bits.)

; Define constants

bell equ 07h ;ASCII char for bell
cr equ Odh ;ASCII char for carriage

;return
if equ Oah ;ASCII char for line
feed

stackarea segment stack ;define the stack area
db 40 dup(?) ;set aside room for

stack
stack-area ends

data area segment ;define data area
msgl db 'and','$'
msg2 db 'cr,'$1
outco db 00h
inco db OOh
char db 00h
mych db 41h
good dw 0000h
bad dw 0000h
dataarea ends

LAB_1 segment ;define segment area for
program
main proc far

assume cs:LAB_1, ds:dataarea,
ss:stack area-

81

;set all register to zero (makes it easier to debug)

begin: sub ax,ax ;set ax to zero
sub bx,bx ;set bx to zero
sub cx,cx ;set cx to zero
sub dx,dx ;set dx to zero

;set DS reg to point to the current data area
;

mov ax,data area ;point to data-area
mov ds,ax ;DS now points to

data-area

;begin partl of lab - initialize data ready and data request
;lines

mov dl,Olh ;output port address
in aldx ;clear data ready
mov dl,03h ;input port address
in al,dx ;clear data request

;load the character to transmit into bx, and set data
request ;high

loopl: mov bl,mych ;character in bx
mov dl,03h ;input port address
out dx,al ;set data request

;clear data ready
mov outco,08h ;set out count number
mov inco,08h ;set in count number

;begin output loop

Outlp: mov al,outco ;load out count number
cmp al,00h ;compare to zero
jz Inlp ;jump to inloop
mov dl,00h ;output port
in al,dx ;check if data request

;is set
and al,08h ;mask for third bit
cup al,08h ;is data request high?
jne outlp ;wait until data request

;goes high
mov al,bl ;load al with bit
out dxal ;transmit bit, data

;ready
;goes high, data req.

;low

82

shr bl,l ;shift bi right one bit
nov cl'outco ;load out count number
dec cx ;dec by one
Nov outco'cl ;replace count number

;Begin inloop:

Inip: Nov dl,02h ;input port
in al,dx ;get some data
and al,05h ;mask for rdy and data
cmp al,02h ;less than 2?
ji Inip ;wait for data ready
and al,Olh ;get data bit
Nov cl,char ;put character into cx
Nov chal ;put bit into ci
shr cxl ;shift bit into char
nov char ci ;put character back
or clal ;append data bit
Nov al,inco ;enough bits yet?
c]Up al,Oih ;last bit?
je Pint ;yes, go print
dec al ;decrease incount by one

nov incoal ;store the count
nov dl,03h ;input port
out dx,al ;set data request, clear

;data ready
imp Outip ;Jumnp to outloop

;Time to print the results.

Pint: nov dl char ;dl has character
nov al, uiych ;al has sent character
cmp al,dl ;compare characters
je upgd ;same? inc good count
nov cx,bad ;different?
inc cx ;inc bad count
nov bad,cx ;store bad count
jnp pt ;print results

upgd: nov cx,good ;get the current good
;count

inc cx ;increment the good
;count

nov good,cx ;store the good count
pt: nov bx,good ;place the good count in

;bx
call binidec ;call to convert to

;decimal
nov dx offset msgl ;insert and in

; output
nov ah,09h ;DOS call to print

83

string
int 21h
mov bx,bad ;place bad count into bx

call binidec ;convert bx to binary
mov dx, offset msg2 ;output a

;carriage return
mov ah,09h
int 21h
jmp loopi ;repeat the process

;Binidec program number in bx

binidec proc near
push bx
push cx
mov cx,lOOO0d
call dec div
mov cxjlOOOd
call dec div
mov cx, OOd
call dec div
mov cxjl~d
call dec div
mov cxjld
call dec div
pop cx
pop dx
ret

dec-div proc near
Nov ax,bx
cwd
div cx
mov bx,dx
mov dl,al
add dl,30h
mov ah,02h ;display character
int 21h
ret

dec div endp
binfdec endp

;All do, so exit from program

exit3: mov ax,4cOOh ;use DOS function 4c
int 21h ;to exit from program

84

main endp
LAB_1 ends

end main ;end assy

85

STEP TWO - FIRST Z-100

Accept a character from the keyboard, echo it to the
;screen, and transmit the character out the output port to
;the second Z-100. Watch the input port to see if the data
;ready line goes high. When the data ready line goes high,
;receive the character from the input port and echo the
;character to the screen. It should be the same character
;as the one initially sent. Repeat this process
;indefinitely.

; Define constants

bell equ 07h ;ASCII char for bell
cr equ Odh ;ASCII char for carriage
return
if equ Oah ;ASCII char for line
feed

stackarea segment stack ;define the stack area
db 40 dup(?) ;set aside room for

stack
stack-area ends

data area segment ;define data area
outco db 00h
inco db 00h
char db 00h
mych db 41h
data-area ends

LAB_1 segment ;define segment area
main proc far

assume cs:LAB_1, ds:data_area,
ss:stack area

;set all register to zero (makes it easier to debug)

begin: sub ax,ax ;set ax to zero
sub bx,bx ;set bx to zero
sub cx,cx ;set cx to zero
sub dx,dx ;set dx to zero

86

;set DS reg to point to the current data area

mov ax,data area ;point to data area
mov ds,ax ;DS now points to

data-area

;begin part1 of lab - initialize data ready and data request
lines

mov dl,Oh ;output port address
in al,dx ;clear data ready
mov dl,03h ;input port address
in al,dx ;clear data request

;load the character to transmit into bx, and set data
request high

loopl: Nov ah,01h ;read char and echo
int 21h ;DOS call

mov bl,al ;character in bx
mov outco,08h ;set out count number

;begin output loop

Outlp: mov dlOOh ;output port
in al,dx ;check if data request

;is set
and al,08h ;mask for third bit
cmp al,08h ;is data request high?
jne outlp ;wait until data request

;goes high
mov al,bl ;load al with bit
out dxal ;transmit bit, data RDY

;goes high, data req.
;low

shr bl,1 ;shift bl right one bit
mov cloutco ;load out count number
dec cx ;dec by one
mov outcocl ;replace count number
cMp cl,00h ;all done?
jne outlp ;no, transmit next bit
mov inco,08h ;initialize incount to 8
Jmp inlp ;go get a character

;Begin inloop:

Inlp: Nov dl,03h ;set data request
out dx,al ;and clear data ready

87

Wt: Nov dl,02h ;input port
in ai,dx ;get some data
and al,05h ;mask for rdy and data
cup al,02h ;less than 2?
ii Wt ;vait for data ready
and al,Oih ;get data bit
nov cl,char ;put character into cx
nov ch,al ;put bit into ci
shr cx,1 ;shift bit into char
nov char,cl ;put character back
nov ai,inco ;enough bits yet?
cup al,Oih ;last bit?
je Pint ;yes, go print
dec al. ;decrease incount by one
Nov inco,al ;store the count
imp InJlp ;Jump to inloop

;Time to print the received character

Pint: mov dl,char ;dl has character
Nov ah,02h
int 21h
nov outcoO08h ;initialize outcount
imp loopi ;get another character

;All do, so exit from program

exit3: nov ax,4cOOh ;use DOS function 4c
mnt 21h ;to exit from program

main endp
LAB_1 ends

end main ;end assy

88

STEP 2 - SECOND Z-100

Receive a character from the input port, echo it to
;the screen and output this character to the output port.
;Repeat the process indefinitely.

; Define constants

bell equ 07h ;ASCII char for bell
cr equ Odh ;ASCII char for carriage

;return
if equ Oah ;ASCII char for line
feed

stack-area segment stack ;define the stack area
db 40 dup(?) ;set aside room for

stack
stackarea ends

data area segment ;define data area
outco db OOh
inco db OOh
char db 00h
mych db 41h
dataarea ends

LAB_1 segment ;define segment area
main proc far

assume cs:LAB_1, ds:dataarea,
ss:stack-area
;

;set all register to zero (makes it easier to debug)

begin: sub ax,ax ;set ax to zero
sub bx,bx ;set bx to zero
sub cxcx ;set cx to zero
sub dx,dx ;set dx to zero

;set DS reg to point to the current data areaII
nov ax,dataarea ;point to data area
nov dsax ;DS now points to

dataarea

89

;begin parti of lab -initialize data ready and data request
;lines

Nov dl,Olh ;output port address
in al,dx ;clear data ready
Nov dl,03h ;input port address
in al,dx ;clear data request

;load the character to transmit into bx, and set data
request ;high

Nov inco,08h ;set out count number
imp inip ;go get a character

;begin output loop

Outip: mov dl,O0h ;output port
in al,dx ;check if data request

;is set
and al,O8h ;mask for third bit
cmp al,08h ;is data request high?
jne outip ;wait until data request

;goes high
may albl ;load al with bit
out dx,al ;transmit bit, data

;ready high, data req
;low

shr bl,l ;shift bi right one bit
mov cl'outco ;load out count number
dec cx ;dec by one
mov outco'cl ;replace count number
cmp cl,O0h ;all done?
jn. outlP ;no, transmit next bit
may inco,O8h ;initialize iricount to 8

imp inip ;go get a character

;Begin inloop:

Inip: nov dl,03h ;set data request
out dx,al ;and clear data ready

Wt: nov dl,02h ;input. port
in al,dx ;get some data
and al,05h ;mask for rdy and data
CMP al,02h ;less than 2?

Vi t ;wait for data ready
and al,Olh ;get data bit
nov cl,char ;put character into cx

90

nov chal ;put bit into cl
shr cxl1 ;shift bit into char
Nov chardc ;put character back
Nov al,inco ;enough bits yet?
cMp al,Olh ;last bit?
je Prnt ;yes, go print
dec al ;decrease incount by one

nov incoal ;store the count
imp Inlp ;Jump to inip

;Time to print the received character

Prnt: nov dl,char ;dl has character
mov ah,02h
int 21h
nov outco,O8h ;initialize outcount
nov bi char
imp outip

;All do, so exit from program

exit3: nov ax, 4cOOh ;use DOS function 4c
int 21h ;to exit from program

main endp
LAB_1 ends

end main ;end assy

91

Appendix B - Protocol Software

;PROTOCOL 2

Protocol 2 is performs the same function as STEP 2-1 -
;FIRST Z-100. That is, it transmits a character to another
;Z-100 and receives that character back. Both the
;transmitted character and the received character are
;displayed on the screen so that they can be compared.
;Protocol 2 adds protocol in the form of software checks to
;insure that the transmission occurs without error. The
;original transmitted character is outputted twice to insure
;that the data ready line is clocked high. After eight bits
;have been transmitted (one character), Protocol two will
;check to see if all eight bits have been received by the
;second Z-100. Protocol 2 does this by waiting a specified
;time,then sampling the data request line. If the data
;request line is high all eight bits of the word were not
;received. Protocol two then prints the message "Trapout"
;indicating that it is about to repeat the original
;transmission. Protocol two will again wait a specified
;time giving the second Z-100 sufficient time to reset
;itself for a new character, then the character is
;retransmitted.

When Protocol two is in the receive mode, it checks
;the data ready line twice to insure that the data is stable
;on the data line. Protocol two will count the number of
;bits it receives, and if sufficient bits are not received
;in the given amount of time it prints the message "Trapin"
;indicating that it is going to start the process of
;receiving a character over ;again.

; Define constants

bell equ 07h ;ASCII char for bell
cr equ Odh ;ASCII char for CR
if equ Oah ;ASCII char for line
feed

stackarea segment stack ;define the stack area
db 40 dup(?) ;set aside room for

;stack
stack-area ends

dataarea segment ;define data area

92

Msgi db 'Trapout',t$1
msg2 db 'Trapin','$'
msg3 db bell,cr,lf,lf

db 'I/O at port 02h!',cr,lflf,'$'
outco db 00h
inco db 00h
char db 00h
mych db 41h
dataarea ends

LAB_1 segment ;define segment area
main proc far

assume cs:LAB_1, ds:dataarea,
ss:stack-area

;set all register to zero (makes it easier to debug)

begin: sub ax,ax ;set ax to zero
sub bx,bx ;set bx to zero
sub cx,cx ;set cx to zero
sub dx,dx ;set dx to zero

;set DS reg to point to the current data area

mov ax,dataarea ;point to data area
mov ds,ax ;DS now points to

dataarea

;begin part1 of lab - initialize data ready and data request
;lines

mov dl,Olh ;output port address
in al,dx ;clear data ready
mov dl,03h ;input port address
in al,dx ;clear data request

;load the character to transmit into bx, and set data
request ;high

loopl: mov al,51h ;load al with the char
mov bl,al ;character in bx
mov outco,08h ;set out count number

;begin output loop

Outlp: mov dl,00h ;output port
in al,dx ;check if data request

93

;is high
and al,O8h ;mask for third bit
cup al,08h ;is data request high?
jn. outip ;wait until data request

;goes high
02: in al,dx ;check data request

and al,08h ;mask for third bit
cup al,08h ;is data request high?
in. 02 ;if not, wait until it

;does go high
nov al,bl ;put bit into al
out dx,al ;transmit bit, data

;ready high, data req
;low

shr bl'l ;shift bi right one bit

nov ci outco ;load out count number
dec cx ;dec by one
nov outco'cl ;replace count number
cup cl,O0h ;all done?
Jne outip ;no, transmit next bit
uov inco,08h ;initialize incount to 8

;vas the data received? Is data request still high?

nov cx,0020h ;wait about twenty
Wait2: loop Wait2 ;operations

nov dl,O0h ;output port
in al,dx ;get data request bit
and al,O8h ;mask for data request
cup al,08h ;is it high
jne inlpz ;no? we're OK, go on to

;receive the char
nov dx,offset asgi ;data request is still

;high
uov ah,09h ;so output "trapout"
int 21h
nov cx, lOO0h ;wait for the other

;Z-100
Waitl: loop Waiti ;to reset itself

jup loopi ;go retransmit the char

;Begin inloop:

Inlp: nov dl,03h ;set data request
out dx,al ;and clear data ready
out dx,al ;again, just to be sure

P:Nov cx,OOO0h ;clear cx (the timer)

94

Wt: Nov dl,02h ;input port
in al,dx ;get some data
and al,05h ;mask for rdy and data

inc cx ;increment cx
cup cx,100h ;is time up?
is Prob ;yes, jump to Prob(lem)

cUp al,02h ;less than 2?
ji Wt ;wait for data ready

Wt2: mov dl,02h ;check for data ready
;again

in al,dx ;get some data
and al,05h ;mask for rdy and data

inc cx ;increment the timer
cMp cx,100h ;time up yet?
Je Prob ;yes, jump to Prob(lem)

cmp al,02h ;less than 2?
ji Wt2 ;wait for data rdy

and al,01h ;get data bit
mov cl,char ;put character into cx
Nov ch,al ;put bit into cl
shr cx,l ;shift bit into char
nov char,cl ;put character back
Nov alinco ;enough bits yet?
cmp al,01h ;last bit?
je Prnt ;yes, go print
dec al ;decrease incount by one

mov incoal ;store the count
imp Inlp ;Jump to inloop

Prob: mov inco,08h ;reinitialize inco
mov dx,offset msg2 ;print "trapin"
mov ah,09h ;using DOS call 09h
int 21h
mov cx,0200h ;now wait a little bit

Wait4: loop Wait4 ;to make sure the other

imp P ;Z-100 has reinitialized

;Time to print the received character

Prnt: mov dl,char ;dl has character
mov ah,02h
int 21h

95

01-

UOV outco,O8h ;initialize outcount
imp loopi

;All do, so exit from program

exit3: mov ax,4cOOh ;use DOS function 4c
int 21h ;to exit from program

main endp,
LAB_1 ends

end main ;end assy

96

PROTOCOL 3.ASM

Protocol 3 is virtually identical to protocol two but
;is meant to run on the "other Z-100". Protocol 3 performs
;the same function as STEP2-2.ASM. That is, it receives a
;transmitter character, echoes it to the screen, and
;transmits the character back to the first Z-100. Protocol
;3 starts its program in the receive mode. Therefore, there
;is an initial jump to the Input loop (Inlp) early in the
;program sequence.

; Define constants

bell equ 07h ;ASCII char for bell
cr equ Odh ;ASCII char for carriage

;return
if equ Oah ;ASCII char for line
feed

stackarea segment stack ;define the stack area
db 40 dup(?) ;set aside room for

stack
stack-area ends

data area segment ;define data area
msgl db 'Trapinl',cr,lf,°$1
msg2 db 'TrapoutO,cr,lf,'$'
msg3 db bell,cr,lf,lf

db 'I/O at port 02h!',cr,lf,lf,'$'
outco db 00h
inco db OOh
char db 00h
mych db 41h
dataarea ends

LAB_1 segment ;define segment area
main proc far

assume cs:LAB_1, ds:dataarea,
as:stack-area

;set all register to zero (makes it easier to debug)

begin: sub ax,ax ;set ax to zero

97

sub bx,bx ;set bx to zero
sub cx,cx ;set cx to zero
sub dxdx ;set dx to zero

;set DS reg to point to the current data area

mov ax,data area ;point to data area
Nov ds,ax ;DS now points to

;data-area

;begin parti of lab - initialize data ready and data request
;lines

mov dl,Olh ;output port address
in al,dx ;clear data ready
mov dl,03h ;input port address
in al,dx ;clear data request

;load the character to transmit into bx, and set data
;request high

mov inco,08h ;set out count number
jmp inlp ;go get a character

;begin output loop

Outlp: mov dl,00h ;output port
in aldx ;check if data request

;is high
and al,08h ;mask for third bit
cmp al,08h ;is data request high?
jne outlp ;wait until data request

;goes high
02: in al,dx ;check data request

;again
and al,08h ;mask for third bit
cmp al,08h ;is data request high?
Jne 02 ;if not, wait until it

;does go high
mov al,bl ;put bit into al
out dx,al ;transmit bit, data

;ready high,data req
;low

shr bl,l ;shift bl right one bit
mov cloutco ;load out count number
dec cx ;dec by one
mov outco'cl ;replace count number
cMp cl,00h ;all done?
jne outlp ;no, transmit next bit
mov inco,08h ;initialize incount to 8

98

. ' M , I n u I I ~ l l i~ l - I I

;was the data received? Is data request still high?

mov cx,0020h ;wait about twenty
Wait2: loop Wait2 ;operations

mov dl,Ooh ;output pcrt
in aldx ;get data request bit
and al,08h ;mask for data request
cmp al,08h ;is it high
jne inlp2 ;no? we're OK, go on to

;receive the char
mov dx,offset msgi ;data request is still

;high
mov ah,09h ;so output "trapout"
int 21h

mov cx,1000h ;wait for the other
;Z-100

Waiti: loop Waiti ;to reset itself
jmp loopl ;go retransmit the char

;Begin inloop:

Inlp: mov dl,03h ;set data request
out dx,al ;and clear data ready
out dx,al ;again, just to be sure

P: mov cx,0000h ;clear cx (the timer)

Wt: mov dl,02h ;input port
in al,dx ;get some data
and al,05h ;mask for rdy and data

inc cx ;increment cx
cmp cx,100h ;is time up?
je Prob ;yes, jump to Prob(lem)

cmp al,02h ;less than 2?
j1 Wt ;wait for data ready

Wt2: mov dl,02h ;check for data ready
;again

in al,dx ;get some data
and al,05h ;mask for rdy and data

inc cx ;increment the timer
cmp cx,100h ;time up yet?
je Prob ;yes, jump to Prob(lem)

cmp al,02h ;less than 2?

99

ji Wt2 ;wait for data rdy

and al,Olh ;get data bit
nov cl,char ;put character into cx
nov ch,al ;put bit into ci
shr cx,1 ;shift bit into char
Mov char,cl ;put character back
nov al,inco ;enough bits yet?
cup al,Oih ;last bit?
16 Pint ;yes, go print
dec al ;decrease incount by one

nov inco,al ;store the count
imp Inip ;Jump to inloop

Prob: nov inco,O8h ;reinitialize inco
nov dx offset msg2 ;print "trapin"
nov ah,09h ;using DOS call 09h
int 21h
nov cx, 0200h ;now wait a little bit

Wait4: loop Wait4 ;to make sure the other

imp P ;Z-100 has reinitialized

;Time to print the received character

Pint: nov dl,char ;dl has character
nov ah,02h
mnt 21h
nov outcoO08h ;initialize outcount
imp loopi

;All do, so exit from program

exit3: nov ax,4cOOh ;use DOS function 4c
int 21h ;to exit from program

main endp
LAB_1 ends

end main ;end assy

100

Appendix C - DART Software

DARTDRIVERONE

DART-DRIVER ONE is used in conjunction with DART-
;DRIVERTWO to test the performance of the DART (serial
;I/O port) on the BCH encoder. DART DRIVER ONE sends a
;character to the DART through the modem (J2) serial I/O
;port. J2 is configured to 9600 baud, one stop bit, no
;parity, and x16 clock. After the character has been sent,
;DART DRIVER ONE receives the character back through the
;same port (J2). The character received is compared to the
;character sent. After a block of 1000 characters are sent,
;the results are tabulated and the number of blocks
;transmitted along with the number of errors found are
;displayed on the CRT.

; Define constants

bell equ 07h ;ASCII char for bell
cr equ Odh ;ASCII char for carr

;return
if equ Oah ;ASCII char for line feed

portl equ 00h ;output port, data
port2 equ 01h ;output port, control
char equ 41h ;ASCII char for "A"

stackarea segment stack ;define the stack area
db 40 dup(?) ;set aside room for

stack
stack-area ends

data area segment ;define data area
count dw 0000h ;to count words tx
bad dw 0000h ;to count errors
msgl db 'and",$1
msg2 db cr,°$1
dataarea ends

101

LAB_1 seqment ;def ine sequent area
main proc far

ss~tak-aeaassume cs:LAB-1, ds:data-area,

;set all register to zero (makes it easier to debug)

begin: sub ax,ax ;set ax to zero
sub bx,bx ;set bx to zero
sub cx,cx ;set cx to zero
sub dx,dx ;set dx to zero

;set DS reg to point to the current data area

nov ax,data -area ;point to data-area
nov ds,ax ;DS points to

data-area

;Start the program here:

Loopi: nov bx,OOO0d ;bx will count the char
;tx

;Output the received data from the Z-100 using DOS call
04h

Loop2: nov dl,char ;character loaded into dl
nov ah,04h ;DOS call 04h outputs
int 21h ;the char through AUX

;(J2)

;Receive the charcter back through the sane port (J2),
;using DOS call 03h.

nov ah,03h ;DOS call to receive
int 21h ;a charcter through J2

;character is in al

;Compare the received character to the transmitted
;charcter and tabulate the results.

cmp al,char ;is character the same?
jne Ibad ;no increnent error count

Iword: inc bx ;inc number of char sent
omp bx,1OO0d ;1000 words sent?
je Pint ;yes, output results
jap Loop2 ;tx next character

102

Ibad: mov cx,bad ;get current error count
inc cx ;increment by one
Nov bad,cx ;replace error count
imp Iword ;go back to main routine

;Time to print the results.

Prnt: mov bx,count ;bx contains the number
inc: bx ;of words x 1000
Nov count,bx ;store count
call binidec ;convert to decimal and

;print the results

Nov dx,offset asgl ;insert and in output
nov ah,09h ;DOS call to print string

int 21h

nov bx,bad ;place bad count into bx
call binidec ;convert bx to binary

nov dx,offset msg2 ;output a carriage return

mov ah,09h
mnt 21h

See if over 10M bits have been transmitted. Stop the
;program when this happens.

mov cx,count ;number of words tx in cx

CUP cx,1300d ;1300 x 1000 x Bbits-
;10.4 N bits

je exitl ;if equal, all done
jup loopi ;repeat the process

;Binidec program number in bx

binidec proc near
push bx
push cx
Nov cx, lOOO0d
call dec div
nov cx,lOO0d
call dec div
nov cx, lOd
call dec div
nov cx, lOd

103

call dec div
Nov cxjld
call dec div
POP cx
POP dx
ret

dec-div proc near
nov ax,bx
cwd
div cx
nov bx,dx
nov dl,al
add dl,30h
Nov ah,02h ;display character
int 21h
ret

dec -div endp
bini7dec endp,

;All do, so exit from program

exiti: nov ax,4cOOh ;use DOS function 4c
int 21h ;to exit from program

main endp,
LAB_1 ends

end miain ;end assy

DARTDRIVERTWO

DARTDRIVERTWO provides the test routines to
;determine if the DART is receiving a character correctly
;from another Z-100. Once the character is received, the
MDART outputs the character back to the Z-100.

SDefine constants

bell equ 07h ;ASCII char for bell
cr equ Odh ;ASCII char for carriage
return
if equ Oah ;ASCII char for line feed
portl equ 00h ;output port, data
port2 equ 01h ;output port, control

104

stack-area segment stack ;define the stack area
db 40 dup(?) ;set aside room for

stack
stack-area ends

dataarea segment ;define data area

data-area ends

LAB_1 segment ;define segment area for
program main proc far

assume cs:LAB_1, ds:dataarea,
ss:stackarea

;set all register to zero (makes it easier to debug)
begin: sub ax,ax ;set ax to zero

sub bx,bx ;set bx to zero
sub cx,cx ;set cx to zero
sub dx,dx ;set dx to zero

;set DS reg to point to the current data area

mov ax,data-area ;point to dataarea
mov ds,ax ;DS now points to

;data-area

; Initialize the DART to x16 clock, 1 stop bit, 8 Tx/Rx
;bits, no parity, and no interrupts (polled mode).

AL contains the control byte to the DART
DX contains the control byte address

push ax ;save ax
push dx ;save dx
Nov dx,port2 ;output port control

;address
mov al,18h ;channel reset command

out dx,al ;issue command
out dx,al -again, just to be

;sure
WRl: mov al,Olh ;point to WRl

out dx,al ;load pointer into WRO

105

mov al,00h ;disable all
;interrupts

out dx,al ;issue command
WR2: Nov al,02h ;point to WR2

out dx,al ;load pointer into WRO

mov al,00h ;disable all
;interrupts

out dx,al ;issue command
WR3: mov al,03h ;point to W32

out dx,al ;load pointer into WRO

mov al,Oclh ;Rx enable, 8 bits,
;auto enable off

out dx,al ;issue command
WR4: mov al,04h ;point to WR4

out dx,al ;load pointer into WRO

mov al,44h ;x16 clk, no parity, 1
;stop bit

out dx,al ;issue command
WR5: mov al,05h ;point to WR5

out dxal ;load pointer into WRO

mov al,6ah ;Tx enable, 8 Tx
;bits, RTS enable

out dx,al ;issue command

; Receive some data from the other Z-100
Test bit DO of RRO. If the bit is set, a receive

;character is available.

Loop2: mov dxOlh ;control address of
DART

in aldx ;read RRO
and al,01h ;mask for 1st data bit

jz loop2 ;no chara? keep
;polling

mov dx,OOh ;data address of DART
in al,dx ;read character into

;al
mov bl,al ;store character into

;bl

; Output the character back to the DART. Check the tx
;buffer to see if it is empty first. This is done by
;testing bit 3 of RRO.

106

Loop3: mov dx,Olh ;control address of
DART

in al,dx ;read RRO
and al,04h ;mask for bit 3
jz loop3 ;wait for the Tx

;buffer
Nov dx,00h ;data address of DART
ov al,bl ;put character into al

out dx,al ;output the character
Jmp loop2 ;no, output same

;character

;All do, so exit from program

exit3: mov ax,4cOOh ;use DOS function 4c
int 21h ;to exit from program

main endp
LAB_1 ends

end main ;end assy

107

Appendix D: T

The following test data was collected during the first

test of a DART configured as a serial I/0 port. The DART

was set internally to 9600 baud, one start bit, one stop

bit, no parity, and x16 clock. An external clock running at

153.6 Khz was connected to pins 13 and 14 of the DART to

provide an internal clock pulse. All equipment was turned

on simultaneously and allowed to warm up as the test

progressed.

The DART was tested by sending a word (8 bits) to the

DART from a Z-100. The DART received the word, then

transmitted the word back to the Z-100. The Z-100 checked

the received word with the orginal transmitted word to

determine if they were equal. Any word found not equal to

the transmitted word was counted as one error. Multiple

errors within a word, if they occured, were not check and

therefore are not accounted for in the following data.

Nevertheless, the data given is sufficient to develop an

error curve versus time. Once the equipment is sufficiently

warm, the error rate drops to zero.

108

L-----=.= m-mmlniin[..

Words transmitted Approximate Time Errors Count Errors

01000 00:00:10 01000 1000
02000 00:00:20 02000 1000
03000 00:00:30 03000 1000
04000 00:00:40 04000 1000
05000 00:00:50 05000 1000
06000 00:00:60 06000 1000
07000 00:00:70 07000 1000
08000 00:00:80 08000 1000
09000 00:00:90 09000 1000
10000 00:01:00 10000 1000
11000 00:01:10 11000 1000
12000 00:01:20 12000 1000
13000 00:01:30 13000 1000
14000 00:01:40 14000 1000
15000 00:01:50 15000 1000
16000 00:01:60 16000 1000
17000 00:01:70 17000 1000
18000 00:01:80 18000 1000
19000 00:01:90 19000 1000
10000 00:02:00 20000 1000
21000 00:02:10 21000 1000
22000 00:02:20 22000 1000
23000 00:02:30 23000 1000
24000 00:02:40 24000 1000
25000 00:02:50 25000 1000
26000 00:02:60 26000 1000
27000 00:02:70 27000 1000
28000 00:02:80 28000 1000
29000 00:02:90 29000 1000
30000 00:03:00 30000 1000
31000 00:03:10 31000 1000
32000 00:03:20 32000 1000

Divide overflow on error count, reset and continue:

33000 00:03:30 01000 1000
34000 00:03:40 02000 1000
35000 00:03:50 03000 1000
36000 00:03:60 04000 1000
37000 00:03:70 05000 1000
38000 00:03:80 06000 1000
39000 00:03:90 07000 1000
40000 00:04:00 08000 1000
41000 00:04:10 09000 1000
42000 00:04:20 10000 1000
43000 00:04:30 11000 1000
44000 00:04:40 12000 1000
45000 00:04:50 13000 1000
46000 00:04:60 14000 1000

109

Words transmitted Approximate Time Errors Count Errors

47000 00:04:70 15000 1000
48000 00:04:80 16000 1000
49000 00:04:90 17000 1000
50000 00:05:00 18000 1000
51000 00:05:10 19000 1000
52000 00:05:20 20000 1000
53000 00:05:30 21000 1000
54000 00:05:40 22000 1000
55000 00:05:50 23000 1000
56000 00:05:60 24000 1000
57000 00:05:70 25000 1000
58000 00:05:80 26000 1000
59000 00:05:90 27000 1000
60000 00:06:00 28000 1000
61000 00:06:10 29000 1000
62000 00:06:20 30000 1000
63000 00:06:30 31000 1000
64000 00:06:40 32000 1000

Divide overflow on error count, reset and continue:

65000 00:06:50 00828 0828
66000 00:06:60 01616 0788
67000 00:06:70 02321 0705
68000 00:06:80 03129 0808
69000 00:06:90 03852 0723
70000 00:07:00 04566 0714
71000 00:07:10 05267 0701
72000 00:07:20 05897 0630
73000 00:07:30 06504 0607
74000 00:07:40 07110 0606
75000 00:07:50 07679 0587
76000 00:07:60 08220 0523
77000 00:07:70 08753 0533
78000 00:07:80 09250 0497
79000 00:07:90 09750 0500
80000 00:08:00 10132 0382
81000 00:08:10 10555 0423
82000 00:08:20 10958 0403
83000 00:08:30 11343 0385
84000 00:08:40 11700 0357
85000 00:08:50 12011 0311
86000 00:08:60 12313 0302
87000 00:08:70 12591 0278
88000 00:08:80 12851 0260
89000 00:08:90 13079 0228
90000 00:09:00 13281 0202
91000 00:09:10 13456 0175

110

...... .,.,,,,,, MWMn aaimllmi

Words transmitted Approximate Time Errors Count Errors

92000 00:09:20 13605 0149
93000 00:09:30 13727 0122
94000 00:09:40 13814 0087
95000 00:09:50 13894 0080
96000 00:09:60 13940 0054
97000 00:09:70 13955 0015
98000 00:09:80 14020 0025
99000 00:09:90 14044 0024
100000 00:09:00 14051 0007
101000 00:10:10 14051 0000
102000 00:11:20 14051 0000
103000 00:12:30 14051 0000

An additional five errors were observed as the number

of words transmitted increased to 400000 (about 40 minutes

after starting). After this time, no additional errors were

observed.

11-1

i i I I I I I i~

Appendix E: BCH Encoder Software

BCH.ASM

BCH.ASM is a test routine for the BCH encoder.
;BCH.ASM will prompt the user for a multiplier polynomial
;(up to eight bits) which it stores in a one character word.

NOTA BENE: The BCH encoder must be set to the
;generator polynomial choosen by the user above.

BCH.ASM then prompts the user for a code word which
;can be any ASCII character. The code word is multiplied by
;the multiplier polynomial and displayed on the screen.
;Once the results has been displayed, BCH.ASM sends the code
;word through the BCH encoder for encoding. The encoded
;word is displayed on the screen for easy comparison to the
;multiplied word.

IA

; Define constants

bell equ 07h ;ASCII char for bell
cr equ Odh ;ASCII char for carriage
return
if equ Oah ;ASCII char for line feed
portl equ O000h ;output port, data
port2 equ 0001h ;output port, control

stack-area segment stack ;define the stack area
db 40 dup(?) ;set aside room for

stack
stackarea ends

data area segment ;define data area
msgl db cr,lf

db 'Enter the generator polynmial (-30h):',
db cr,lf,'$'

msg2 db cr,lf,lf
db 'Enter the code word:',cr,lf,'$'

msg3 db 111,1$1
msg4 db 101,1$'
msg5 db crlf,'$'
msg6 db 'Enter the value of n-k:','$'

112

GEN db OOh
CODE dw OOOCh
MWORD dw 0000h
NK db 00h
dataarea ends

LAB_1 segment ;define segment area for
;program

main proc far
assume cs:LABl1, ds:dataarea,

ss:stackarea

;set all register to zero (makes it easier to debug)

begin: sub ax,ax ;set ax to zero
sub bx,bx ;set bx to zero
sub cx,cx ;set cx to zero
sub dx,dx ;set dx to zero

;set DS reg to point to the current data area

mov ax,data area ;point to data area
mov ds,ax ;DS now points to

data-area

; Initialize the DART to x16 clock, 1 stop bit, 8 Tx/Rx ;
bits, nu parity, and no interrupts (polled mode).

AL contains the control byte to the DART
DX contains the control byte address

push ax ;save ax
push dx ;save dx
mov dx,port2 ;output port address
mov al,18h ;channel reset command
out dxal ;issue command
out dxal ;again, just to be sure

WRI: mov alOlh ;point to WR1
out dxal ;load pointer into WRO
mov al,00h ;disable all interrupts
out dxal ;issue command

WR2: mov al,02h ;point to WR2
out dxal ;load pointer into WRO
mov al,00h ;disable all interrupts
out dxal ;issue command

WR3: uov al,03h ;point to WR3
out dxal ;load pointer into WRO
mov alOclh ;Rx enable, 8 bits,

113

;auto enable of f
out dx,al ;issue command

WR4: DOV al,04h ;point to WR4
out dx,al ;load pointer into WRO
uov al,44h ;x16 cik, no parity, 1 stop

bit
out dx,al ;issue command

WR5: mov al,05h ;point to WR5
out dx,al ;load pointer into WRO
mov al,6ah ;Tx enable, 8 Tx bits,RTS

; enable
out dx,al ;issue command

; Disable the DART receiver and transmitter, so that
; the BCH encoder can be used without affecting;
transmissions.

mov al,03h ;point to WR3
out dx,al ;load pointer into WRO
Mov al,Oclh ;Rx disabled, 8 bits,

;auto enable of f

mov al,05h ;point to WR5
out dx,al ;load pointer into WRO
mov al,6ah ;Tx disabled, 8 Tx bits,
out dx,al ;RTS disabled

;Prompt for the generator polynomial:

mov dx,offset msgl ;load dx with add msgl
mov ah,09h
int 21h

mov ah,Olh MRead char and echo
int 21h ;Char in al
sub al,30h ;convert to binary
mov GEN,al ;store char in bl

mov dx,of fset msg5 ;to cr and if
mov ah,09h
int 21h

; Prompt for value of n-k:

mov dx,offset msg6 ;prompt for n-k
mov ah,09h
int 21h

mov ah, Olh ;read char and echo
int 21h ;n-k in al
sub al,30h ;convert to binary

114

mov NK,al ;store n-k in NK

Nov dx,offset msg5 ;to cr and If
nov ah,09h
int 21h

; Prompt for the code word:

Loopi: mov dx,offset zsg2 ;load dx with add msg2
Nov ah,09h
int 21h

mov ah,01h ;Read char and echo
int 21h ;Char in al
sub bx,bx ;clear bx
mov bl,al ;put code word in bl
mov CODE,bx ;store code word

Nov dx,offset nsg5 ;load cr and If
nov ah,09h
int 21h

; Multilply code word with generator polylnomial and
display the result (Note, this is not binary ;
multiplication):

sub bx,bx ;clear bx
sub ax,ax ;clear ax (holds ans)
Nov dx, CODE ;code word in dx
nov bh,GEN ;put gen poly in bh
mov cx,0008h ;count 8 bits

ContM: shr bx,l ;shift bit into bx
and bl,S0h ;mask for high bit
cmp bl,00h ;is bit 0 or 1
je Skip ;yes, skip xor
xor ax,dx ;answer in ax

Skip: shl dx,l ;get ready for next xor

dec cx ;decrease count
cmp cx,0000h ;all done?
jg ContM ;no, continue

;multipling
mov bx,ax ;answer in bx
call Prnt

; Now generate the encoded word using the BCH encoder

115

Nov bxCODE ;bx has code word
nov ci'NK ;cl loaded with n-k
shi bxcl ;add zero padding
nov CODE,bx ;store padded code

nov dx,8OO0h ;to clear the encoder
nov al,O0h
out dx,al

nov cx,OOOfh ;cx counts 15 bits
LOOP3: nov bx,CODE ;bx has code char

nov dx,4000h ;to clock data into
;BCH encoder

mov al,bh ;mov bh into al
out dx,al ;output high bit
shi bx,l ;shift bx left 1 bit
nov CODE ,bx ;store code word

;Get the encoded word

LOOP4: nov dx, OcOOOh ;to input a bit
sub bx,bx ;clear bx
in al,dx ;al has low order bit
and al,Olh ;strip of f low bit
nov blal ;bl has low order bit
nov ax,NWORD ;al has encoded word
or ax,bx ;append new bit

nov bx,ax ;Prnt prints bx
cnp cx,OO0lh ;all done?
je GoPrnt ;yes, Print result

shl ax,1 ;shift al left 1 bit
nov MWORD,ax ;store result in MWORD
dec cx ;cx holds count
imp WOOP3 ;finish getting result

GoPrnt: call Pint
sub ax ax ;clear ax
Nov NWORD,ax ;clear MWORD
imp Loopl

; Subroutine to print the result
; Word to be printed must be in bx

Pint proc near
nov cx, O0l0h 11 cx counts 16 bits

Loop2: nov ax,bx ;put answer in ax
and ax,8OO0h ;aask for high order

;bit
CUP ax,OOO0h ;is bit a zero?
js Zero
NOV dx,of fst asg3 ;output a "1"
Nov ah,09h
int 21h
jap Cont

Zero: nov dx,offset usg4 ;output a "0"
nov ah,09h
int 21h

Cont: dec cx ;decrease counter
cmp cx,OOO0h ;all done?
je Go ;yes, exit
shl bx,i ;get next bit and
imp Loop2 ;continue

Go: nov dx,offset nsg5 ;cr and If
Nov ah,09h
int 21h
ret

Pint *ndp

;All do, so exit from program

Exit: nov ax,4cOOh ;use DOS function 4c
int 21h ;to exit from program

main endp
LAB_1 ends

end main ;end assy

117

Appendix F: BCH Decoder Single Character Software

DECODE. ASH

DECODE.ASM is a test routine for the BCH decoder.
;DECODE.ASM will prompt the user for a multiplier polynomial
;(up to eight bits) which it stores in a one character word.

NOTA BENE: The BCH decoder must be set to the
;generator polynomial choosen by the user above.

DECODE.ASM then prompts the user for a code word which
;can be any ASCII character. The code word is multiplied by
;the multiplier polynomial and displayed on the screen.
;Once the results has been displayed, BCH.ASM sends the
;encoded word through the BCH decoder for decoding. The
;decoded word is displayed on the screen for easy comparison
;to the original code word.

; Define constants

bell equ 07h ;ASCII char for bell
cr equ Odh ;ASCII char for carriage

;return
if equ Oah ;ASCII char for line feed
portl equ 0000h ;output port, data
port2 equ 0001h ;output port, control

stackarea segment stack ;define the stack area
db 40 dup(?) ;set aside room for

stack
stack-area ends

data area segment ;define data area
msgi db cr,lf

db 'Enter the generator polynmial (-30h):',
db cr,lf,'$'

msg2 db cr,lf,lf
db 'Enter the code word:',cr,lf,'$'

msg3 db 111,1$1
msg4 db 0,1$
msg5 db cr,lf,'$'
msg6 db 'Enter the value of n-k:', '$'

118

msg7 db 'Enter the value of k:','$'
GEN db 00h
CODE dw 0000h
NWORD dw 0000h
NK db 00h
K db OOh
RESULT db OOh
dataarea ends
;

LAB_1 segment ;define segment area for
;program

main proc far
assume cs:LABI, ds:dataarea,

ss:stack area

;set all register to zero (makes it easier to debug)

begin: sub ax,ax ;set ax to zero
sub bx,bx ;set bx to zero
sub cx,cx ;set cx to zero
sub dx,dx ;set dx to zero

;set DS reg to point to the current data area

mov ax,dataarea ;point to dataarea
mov ds,ax ;DS now points to

dataarea

; Initialize the DART to x16 clock, 1 stop bit, 8 Tx/Rx ;
bits, no parity, and no interrupts (polled mode).

AL contains the control byte to the DART
DX contains the control byte address

push ax ;save ax
push dx ;save dx
mov dx,port2 ;output port address
mov al,18h ;channel reset command
out dx,al ;issue command
out dx,al ;again, just to be sure

WRI: mov al,Olh ;point to WR1
out dx,al ;load pointer into WRO
mov al,00h ;disable all interrupts
out dx,al ;issue command

WR2: mov al,02h ;point to WR2
out dx,al ;load pointer into WRO
mov al,O0h ;disable all interrupts
out dx,al ;issue command

119

WR3: Nov al,03h ;point to WR3
out dx,al ;load pointer into WRO
Nov al,Oclh ;Rx enable, 8 bits,

;auto enable of f
out dx,al ;issue command

WR4: uov al,04h ;point to WR4
out dx,al ;load pointer into WRo
Nov a1,44h ;xl6 cik, no parity, 1 stop

;bit
out dx,al ;issue command

WR5: mov al,05h ;point to WR5
out dx,al ;load pointer into WRO
NOV al,6ah ;Tx enable, 8 Tx bits,RTS

;enable
out dx,al ;issue command

; Disable the DART receiver and transmitter, so that
; the BCH decoder can be used without affecting
transmissions.

Nov al,03h ;point to WR3
out dx,al ;load pointer into WRO
Nov al,Oclh ;Rx disabled, 8 bits,

;auto enable of f

mov al,05h ;point to WR5
out dx,al ;load pointer into WRO
MOV al,6ah ;Tx disabled, 8 Tx bits,
out dx,al ;RTS disabled

;Prompt for the generator polynomial:

Nov dx,offset msgl ;load dx with add msgl
Nov ah,09h
int 21h

Mov ah,Olh MRead char and echo
int 21h ;Char in al
sub al,30h ;convert to binary
mov GEN,al ;store char in bl

mov dx,offset msg5 ;to cr and If
Nov ah,09h
int 21h

; Prompt for value of n-k:

NOV dx,offset msg6 ;prompt for n-k
NOV ah,09h
int 21h

120

nov ah, 0111 ;read char and echo
int 21h1 ;n-k in &l
sub al,30h ;convert to binary
nov NK,al ;store n-k in NK

nov dx,of fst msg5 ;to cr and If
Nov ah,09h
int 2111

Prompt for value of k:

Nov dx,of fst nag? ;prompt for k
Nov ah,09h
int 21h1

NOV ah,0lh ;read char and echo
int 21h ;k in al
sub al,30h ;convert to binary
NOV K,al ;store k in K

nov dx,of feet msg5 ;to cr and if
nov ah, 0911
mnt 21h1

;Prompt for the code word:

Loopi: nov dxoffset nsg2 ;load dx with add msg2
nov ah,0911
int 2111

nov ah,Olh ;Read char and echo
int 21h1 ;Char in al
sub bx,bx ;clear bx
mov bl,al ;put code word in bi
nov CODE,bx ;store code word

Nov dx,of fact msg5 ;load cr and if
Nov ah, 0911
int 2111

Nov bx,CODE
call Prnt

;Multilply code word with generator polylnomial and;
display the result (Note, this is not binary;
multiplication):

sub bx,bx ;clear bx
sub ax,ax ;clear ax (holds ans)

121

xcv dx,CODE ;code word in dx
Mcv bh,GEN ;put gen poly in bh
mcv cx, OOO8h ;count 8 bits

ContM: shr bx,l ;shift bit into bx
and bl,80h ;miask for high bit
cup bl,O0h ;is bit 0 or 1
is Skip ;yes, skip xor
xor ax,dx ;answer in ax

Skip: shi dx,1 ;get ready for next xor

dec cx ;decrease count
cup cx, OOO0h ;all done?
jg Cont! ;no, continue

;Multipling

nov NWORD,ax ;store answer in MWORD
nov bx,ax ;answer in bx
call Pint

;Nov decode the encoded word using the BCH decoder

nov dx,OOO0h ;to clear the decoder
nov al,O0h
out dx,al

; Clock in n-k data bits

xcv bx,NWORD ;encoded word in bx

BHigh: nov al,NK ;al has n-k
nov dl,K ;dl has k
add al,dl ;al has n
nov cl,16d ;cl has 16
sub ci, al ;cl has # of zeros
shi bx,cl ;shift out zeros

sub cx,cx ;clear cx
Nov cl,NK ;cx counts n-k bits
nov dx,4000h ;to clock data into

;BCH decoder

WOOP3: Nov al,bh ;high order bit in A7
out dx,al ;output high bit
shi bx,l ;shift bx left once
dec cx mcount down n-k
cup cx,OOO0h ;all done?

122

is DEC ;yes, finish decoding
imp LOOP3 ;finish loading bits

;Next kc bits are the decoded word

DEC: mRov cl,K ;to count k bits
nov RESULT,O0h ;clear result

WOOP4: Nov dx,OcOOOh ;input a bit into CPU
in al,dx ;bit is in AO
and al,Olh ;mask for DO (AO)
nov d1,RESULT ;decoder word in dl
shi dl,l ;shift deocded word

;left 1
xor dl,al ;add bit to decoded

;word
nov RESULT,d1 ;store result

nov dx,4000h ;to output a bit
NOV al,bh ;high order bit in A7
out dx,al ;output the bit
shi bx,l ;shift encoded word

;left 1

dec cl ;decrease count
cup cl,OOh ;all done?

jeOUT ;yes, go to OUT
imp LOOP4 ;finish decoding

OUT: sub bxbx ;clear bx
NOV bl,RESULT ;place result in bi
call Prnt ;Print result

;Output the character to the screen

mov dl,RESULT ;character in dl
NOV ah,02h ;DOS call to pint char
int 21h
imp Loopl

; Subroutine to print the result
; Word to be printed must be in bx

Pint proc near
NOV cx, O0l0h ;cx counts 16 bits

Loop2: Nov ax,bx ;put answer in ax

123

and ax,8000h ;mask for high order
;bit

cmp ax,0000h ;is bit a zero?
je Zero
Nov dx,offset msg3 ;output a "i"
mov ah,09h
int 21h
imp Cont

Zero: mov dx,offset msg4 ;output a "0"
mov ah,09h
int 21h

Cont: dec cx ;decrease counter
cmp cx,0000h ;all done?
je Go ;yes, exit
shl bx,1 ;get next bit and
imp Loop2 ;continue

Go: mov dx,offset msg5 ;cr and if
mov ah,09h
int 21h
ret

Prnt endp

;All do, so exit from program

Exit: mov ax,4cOOh ;use DOS function 4c
int 21h ;to exit from program

main endp
LAB_1 ends

end main ;end assy
Z

124

Appendix G: BCH Decoder Syndrome Software

DEC1.ASM generates the syndromes for the (15,7) two
;error correcting BCH code using the generator polynomial
;x + xY + x + xi + 1. All error polynomials and
;syndromes are generated in software and sent to the printer
;for a hard copy display of the results.

; Define constants

bell equ 07h ;ASCII char for bell
cr equ 0dh ;ASCII char for carriage

;return
if equ Oah ;ASCII char for line feed
portl equ 0000h ;output port, data
port2 equ 0001h ;output port, control

stack-area segment stack ;define the stack area
db 40 dup(?) ;set aside room for

stack
stack-area ends

dataarea segment ;define data area
GEN dw 01dlh
CODE dw 0000h
NWORD dw 0000h
NK db 08h
K db 07h
N db Ofh
T db 02h
Base dw 0001h
Dry dw 0002h
RESULT db 00h
1SK dw 0000h
Count db OOh
LIST db 300 dup ('
Extr db 10 dup ('
dataarea ends

LAB_1 segment ;define segment area for

125

. --- -- m mml i l m l I I

program
main proc far

assume cs:LAB_1, ds:data_area,
ss:stackarea

;set all register to zero (makes it easier to debug)

sub ax,ax ;set ax to zero
sub bx,bx ;set bx to zero
sub cxcx ;set cx to zero
sub dx,dx ;set dx to zero

;set DS reg to point to the current data area

mov ax,data area ;point to data area
mov ds,ax ;DS now points to

data-area

call Generate
call LST
jmp Exit

; Generate is a subroutine that generates the syndroms for
;all possible error conditions allowed by the given code
;structure.

; Note that cx contains the length of the encoded word
and dx contains the number of correctable errors

Generate proc nearII
; Generate single error polynomials

push ax
push bx
push cx
push dx

; Clear LIST to all Zeros

sub bx,bx ;bx has all zeros
mov SI,offset LIST ;SI points to LIST
mov cx,300d ;cx has number of

;records

Rpt: mov (SI],bx ;output zeros
add SI,02h ;point to next record
mov [SI],bx ;output zeros

126

add SI,02h ;point to next record
dec cx
cup cx, O0h ;all done?
je Sta
imp Rpt

;Compute single errors:

Sta: mov SIoff set LIST ;SI points to LIST
mov bx,OO0lh ;bx used to generate

;error
;polynomials

mov cl,N ;cx has length of
; polynomial

Goopi: Nov (SI],bx ;store bx in LIST
call SYNDROME ;calculate the syndrom
add SI,02h ;SI points to next pos
shi bx,l ;generate next error

;poly
dec ci ;count down number of

;errors
cup cl,Olh ;all done?
je Gext ;do double errors
jup Goopi ;no, finish single

;errors

;Compute double errors if number of errors = 2

Gext: mov cl,T ;number of errors in ci
cup cl,02h ;double errors

; indicated?
jne Gxit ;no, skip double errors

mov clN ;cx has length of
;polynomial

mov diN ;dx has length of
;polynmoiai

dec dl ;dx has N-1
Nov Count,dl ;store N-i in Count
nov bx,Base ;bx used to generate

;error
;plynomials

Nov ax,drv ;ax has 02h

Goop2: xor bx,ax ;bx contains double
;error

Nov (SI],bx ;store bx in LIST
call SYNDROME ;calculate the syndrome
add SI,02h ;SI points to next pos
nov bx,Base ;zeoinitialize bx
shl axil ;shift ax left once
dec dl ;to count shifts

127

cup dl,OOh ;all done yet
je Chang ;yes change bx and ax
Jmp Goop2 ;no continue

Chang: dec cl ;decrease length by one
cUp cl,01h ;all combinations done

;yet?
je Gxit ;all done, exit
mov bx,Base ;load bx with Base
shl bxl ;shift base left once
mov Base,bx ;store bx in Base
mov ax,Drv ;ax has driver
shl ax,1 ;shift ax left once
mov Drv,ax ;store new driver in Dry

mov dl,Count ;put Count in dl
dec dl
mov Count,dl ;store Count-1 in Count
jmp Goop2

Gxit: pop dx
pop cx
pop bx
pop ax

ret
Generate endp

SYNDROME is a subroutine to calculate the syndrome of
;an error polynomial given the generator polynomial.

Note: The error polynomial must be in bx, the
generator polynomial is stored as a global variable
in GEN. SI has been initialzed to point to LIST by
subroutine Generate.

SYNDROME proc near

push ax
push bx
push cx
push dx

; Place generator polynomial in ax to use as the divisor
; and intialize ax by shifting the high order bit as far
; left as possible

Nov dx,80OOh ;mask for high order bit

128

...... . -, * m/ i mnll] ...W

mov ax,GEN ;ax load with gen poly
Soopl: and dxax ;test for high order bit

cMp dx,S000h ;high order bit set?
Je Sext ;yes, procede
shl ax,1 ;no, shift ax left once
Mov dxS000h ;reinitialize dx
imp Soopl

; Ready to calculate the Syndrome

Sext: mov cl,16d ;number of bits in a
;register

sub cl,NK ;cl has # of shifts needed
;to divide error polynmial

mov dx,8000h ;to mask high bit
mov NSK,dx ;store mask in MSK

Soop2: and dx,bx ;is bit high?
cep dx,0000h ;test for bit high.
je Shft ;no, shift registers
xor bx,ax ;xor (divide by steps)

;bx/ax
Shft: cmp cl,01h ;all done?

je Stor ;store syndrome
mov dx,NSK ;load dx with mask
shr dx,1 ;shift mask right once
mov MSK,dx ;store new mask in HSK
shr ax,1 ;shift gen poly right once
dec cl ;decrease count by one
jmp Soop2 ;repeat the process

; Store the syndrome

Stor: add SI,02h ;point to storage location
mov [SI],bx ;syndrome (remainder)

;stored

; Restore registers

pop dx
pop cx
pop bx
pop ax
ret

SYNDROME endp

; Subroutine to print the result
; Word to be printed must be in bx

129

Prnt proc near

push ax
push bx
push cx
push dx

Nov cx,0010h ;cx counts 16 bits

Loop2: Nov ax,bx ;put answer in ax
and ax,8OOOh ;mask for high order

*bit
cmp ax,0000h ;is bit a zero?
je Zero
mov dl,31h ;output a 1
mov ah,05h
int 21h
jmp Cont

Zero: mov dl,30h ;output a 0
Nov ah,05h
int 21h

Cont: dec cx ;decrease counter
CMp cx,0000h ;all done?
je Go ;yes, exit
shl bx,l ;get next bit and
jmp Loop2 ;continue

Go: pop dx
pop cx
pop bx
pop ax

ret
Prnt endp

; CRLF is a subroutine to output a carriage return
;and a line feed.

CRLF Proc near

Nov dl,Odh ;cr
nov ah,05h
int 21h

mov dl,Oah ;lf
Nov ah,05h

130

int 21h

ret
CRLF endp

BLNK is a subroutine to output four blanks

BLNK proc near

mov dx,20h ;four blanks
Mov ah,05h
int 21h

ret
BLNK endp

LST is a subroutine to list the contents of memory in
;a binary format;

Note: will only list the contents of memory stored in
;memory location LIST

LST proc near

mov SI,offset LIST ;SI points to LIST

;Calculate length of list to display

nov al,T ;ax has number of errors
cmp al,02h ;two errors?
je Two
sub cx,cx ;clear cx
mov cl,N ;n single errors
jup Show

Two: sub cxcx ;clear cx
sub bx,bx ;clear bx
Nov cl,N ;length of polynomial
mov bl,N ;length of polynomial
dec bx ;bx has N-1

Agn: add cx,bx ;cx has # of error polys
cmp bx,000h ;all done?

131

je Show ;yes, print the results
dec bx ;next number to add
jup Agn

Display the list

Show: mow bx,[SI] ;polynomial to be
;displayed

call Prnt ;print the results
call BLNK ;add some blanks
inc SI
inc SI ;point to next record
Nov bx,[SI] ;load bx with next record
call Prnt ;print the next record
call CRLF ;Cr and Lf
inc SI
inc SI ;point to next record
dec cx ;decrement counter
cmp cx,OOh ;all done?
je DN ;yes, exit
jmp Show ;no, get next record

DN: ret
LST endp

;All do, so exit from program

Exit: mov ax,4cOOh ;use DOS function 4c
int 21h ;to exit from program

main endp
LAB_1 ends

end main ;end assy^Z

; DEC2.ASM tests the BCH decoder by generating all the
;sydromes for the (15,7) BCV two error correcting code using
;the generator polynomial x + x7 + X6 + x4 + 1. Each
;possible error polynomial along with the generated syndrome
;is sent to the printer for a hard copy of the results.
;The results of this program are to be compared witht the
;results of DEC1.ASM (which generates the correct syndromes
;in software). When the results of DEC2.ASM match the
;results of DEC1.ASM, the BCH decoder is working properly.

; Define constants

132

bell equ 07h ;ASCII char for bell
cr equ Odh ;ASCII char for carriage
return
if equ 0ah ;ASCII char for line feed
port1 equ 0000h ;output port, data
port2 equ 0001h ;output port, control

stackarea segment stack ;define the stack area
db 40 dup(?) ;set aside room for

stack
stack-area ends

dataarea segment ;define data area
GEN dw 01dlh
CODE dw 0000h
MWORD dw O000h
NK db 08h
K db 07h
N db Ofh
T db 02h
Base dw 0001h
Dry dw 0002h
RESULT db 00h
MSK dw 0000h
Count db 00h
LIST db 300 dup (
Extr db 10 dup (t
data-area ends

LAB_1 segment ;define segment area for
;program

main proc far
assume cs:LAB_1, ds:data area,

ss:stackarea

;set all register to zero (makes it easier to debug)
sub ax,ax ;set ax to zero
sub bx,bx ;set bx to zero
sub cx,cx ;set cx to zero
sub dx,dx ;set dx to zero

;set DS reg to point to the current data area

mov ax,dataarea ;point to data-area
mov ds,ax ;DS now points to

133

;dataarea

call Generate
call LST
imp Exit

; Generate is a subroutine that generates the syndroms for
;all possible error conditions allowed by the given code
;structure.

; Note that cx contains the length of the encoded word
and dx contains the number of correctable errors

Generate proc near

; Generate single error polynomials

push ax
push bx
push cx
push dx

; Clear LIST to all Zeros

sub bx,bx ;bx has all zeros
mov SIoffset LIST ;SI points to LIST
mov cx,300d ;cx has number of

;records

Rpt: mov [SI],bx ;output zeros
add SI,02h ;point to next record
mov (SI],bx ;output zeros
add SI,02h ;point to next record
dec cx
cmp cx,00h ;all done?
je Sta
imp Rpt

; Compute single errors:

Sta: mov SI,offset LIST ;SI points to LIST
mov bx,000lh ;bx used to generate

;error
;polynomials

mov cl,N ;cx has length of
;polynomial

Goopl: mov [SI],bx ;store bx in LIST
call DECODE ;calculate the syndrom

134

add SI,02h ;SI points to next pos
shi. bx,i ;generate next error

;poly
dec ci ;count down number of

;errors
cup cl,Oih ;all done?
je Gext ;do double errors
jup Goopi ;no, finish single

;errors

;Compute double errors if number of errors = 2

Gext: Nov cl,T ;number of errors in ci
cup cl,02h ;double errors

;indicated?
jne Gxit ;no, skip double errors

mov cl,N ;cx has length of
;polynomial

mov dl,N ;dx has length of
;polynmoial

dec dl ;dx has N-1
mov Count,dl ;store N-i in Count
Nov bx, Base ;bx used to generate

;error
;plynomials

mov ax,drv ;ax has 02h

Goop2: xor bx,ax ;bx contains double
;error

Nov (SI] ,bx ;store bx in LIST
call DECODE ;caiculate the syndrome
add SI,02h ;SI points to next pos
Nov bx,Base ;reinitialize bx
shl ax,1 ;shift ax left once
dec dl. ;to count shifts
cup dl,O0h ;all done yet
je Chang ;yes change bx and ax
jup Goop2 ;no continue

Chang: dec ci ;decrease length by one
cup cl,01h ;all combinations done

; yet?
je Gxit ;all done, exit
Nov bx,Base ;load bx with Base
shl bx,l ;shift base left once
uov Base,bx ;store bx in Base
Nov ax,Drv ;ax has driver
shl ax,l ;shift ax left once
Nov Drv,ax ;store new driver in Dry

Nov dl,Count ;put Count in dl

135

dec dl
Nov Count,dl ;store Count-i in Count
imp Goop2

Gxit: pop dx
pop cx
pop bx
pop ax

ret
Generate endp

; DECODE will find the syndrom for each error polynmial
;using the BCH decoder.

; The error polynomial must be in bx when DECODE is ;
called. SI points to LIST (initialized by the calling ;
routine)

DECODE proc near

push ax
push bx
push cx
push dx

mov dx,0000h ;to clear the decoder
mov al,00h
out dx,al

; Clock in n-k data bits

BHigh: mov alNK ;al has n-k
Nov dlK ;dl has k
add aldl ;al has n
nov cl,16d ;cl has 16
sub clal ;cl has # of zeros
shl bxcl ;shift out zeros

sub cx,cx ;clear cx
mov cl,NK ;cx counts n-k bits
mov dx,4000h ;to clock data into

;BCH decoder

DOOP3: mov al,bh ;high order bit in A7
out dx,al ;output high bit
shl bx,l ;shift bx left once
dec cx ;count down n-k

136

cup cxeOOOOh ;all done?
je DEC ;yes, finish decoding
imp DOOP3 ;finish loading bits

; Next k bits are the decoded word

DEC: mov cl,K ;to count k bits
mov RESULT,00h ;clear result

DOOP4: mo dx,OcOOOh ;input a bit into CPU
in al,dx ;bit is in AO
and al,01h ;mask for DO (AO)
mov d1,RESULT ;decoder word in dl
shl dl,l ;shift deocded word

;left 1
xor dl,al ;add bit to decoded

;word
mov RESULT,d1 ;store result

dec cl ;decrease count
cmp cl,00h ;all done?
je SYND ;yes, get syndrome

mov dx,4000h ;to output a bit
mov al,bh ;high order bit in A7
out dx,al ;output the bit
shl bx,l ;shift encoded word

;left 1
jmp DOOP4 ;finish decoding

; Syndrome (remainder) is in the n-k registers forming
;the generator polynmial

SYND: mov dx,8000h ;output a bit, gate
;open

mov al,bh ;to output last bit
mov cl,08h ;to count NK bits

; One more time with gate closed.
mov dx,4000h ;output, gate open
out dx,al ;clock in last bit
mov al,O0h ;output zeros now
sub bx,bx ;make sure bx clear

; Get syndrome bits and continue to clock in bits with the
;gate open.

DOOP: mov dx,OcOOOh ;to input a bit
in al,dx ;bit in AO
and al,01h ;mask for low bit
xor bl,al ;bx has syndrome
dec cl ;decrease bit count

137

clp cl,OOh ;all done?
je Dstr ;store the syndrome
shl bx,1 ;ready for next bit
nov dx,8000h ;output a bit, gate

;open
mov al,00h ;to output a zero
out dx,al ;output, gate closed
jMp DOOP ;repeat

Dstr: add SI,02h ;SI points to loc in
;LIST

mov [SI],bx ;store syndrome

; Restore registers

pop dx
pop cx
pop bx
pop ax
ret

DECODE endp

; Subroutine to print the result
Word to be printed must be in bx

Prnt proc near

push ax
push bx
push cx
push dx

mov cx,0010h ;cx counts 16 bits

Loop2: mov ax,bx ;put answer in ax
and ax,8000h ;mask for high order

;bit
cmp ax,0000h ;is bit a zero?
je Zero
mov dl,31h ;output a 1
mov ah,05h
int 21h
Jmp Cont

Zero: Nov dl,30h ;output a 0
Mov ah,05h
int 21h

138

4

Cont: dec cx ;decrease counter
cMp cx,OOOOh ;all done?
je Go ;yes, exit
shl bx,l ;get next bit and
Jmp Loop2 ;continue

Go: pop dx
pop cx
pop bx
pop ax

ret
Prnt endp

; CRLF is a subroutine to output a carriage return
;and a line feed.

CRLF Proc near

mov dl,Odh ;cr
mov ah,05h
int 21h

mov dl,Oah ;If
mov ah,05h
int 21h

ret
CRLF endp

BLNK is a subroutine to output four blanks

*********************************** *************************

BLNK proc near

mov dx,20h ;four blanks
mov ah,05h
int 21h

ret
BLNK endp

139

II

LST is a subroutine to list the contents of memory in
;a binary format;

Note: will only list the contents of memory stored in
;memory location LIST

LST proc near

mov SI,offset LIST ;SI points to LIST

;Calculate length of list to display

mov al,T ;ax has number of errors
cmp al,02h ;two errors?
je Two
sub cx,cx ;clear cx
mov cl,N ;n single errors
jmp Show

Two: sub cx,cx ;clear cx
sub bxbx ;clear bx
mov clN ;length of polynomial
mov bl,N ;length of polynomial
dec bx ;bx has N-1

Agn: add cx,bx ;cx has # of error polys
cmp bx,000h ;all done?
je Show ;yes, print the results
dec bx ;next number to add
Jmp Agn

;Display the list

Show: mov bx,[SI] ;polynomial to be
;displayed

call Prnt ;print the results
call BLNK ;add some blanks
inc SI
inc SI ;point to next record
mov bx,[SI] ;load bx with next record
call Prnt ;print the next record
call CRLF ;Cr and Lf
inc SI
inc SI ;point to next record
dec cx ;decrement counter
cmp cx,00h ;all done?
je DN ;yes, exit
jmp Show ;no, get next record

140

.... . .. "" m m m lun B R [I 1

DN: ret
LST endp

;All do, so exit from program

Exit: mov ax,4cOOh ;use DOS function 4c
int 21h ;to exit froal program

main endp
LAB_1 ends

end main ;end assy
^z

141

Appendix H: Demonstration Software

FDEMOENC.ASM

FDEMOENC.ASM is the software needed to run the final
;demonstration of the BCH encoder/decoder system.
;FDEMOENC.ASH stands for Final DEMO ENCoder.ASeMbly
;language, and is meant to run the encoder portion of the
;encoder/decoder system.

FDEMOENC.ASM will initialize the Z-80 DART to 9600
;baud, one stop bit, no parity, and x16 clock. The user
;will be prompted for any ASCII character which will be sent
;to the encoder for multiplication by the generator
;polynomial. The resulting code word is displayed on the
;screen, and the user prompted with the message "Do you wish
;to enter an error polynomial?".

If the user answers no, the code word is sent to the
;decoder without modification. When the user answers yes,
;FDEMOENC.ASM will prompt the user for the error polynomial
;which is subsequently entered by the user into the
;computer. The error polynomial is exclusive-ored to the
;code word to produce the transmitted code word. The
;transmitted code word is finally sent to the decoder for
;decoding.

; Define constantsII
bell equ 07h ;ASCII char for bell
cr equ Odh ;ASCII char for carriage

;return
if equ Oah ;ASCII char for line feed
port1 equ 0000h ;output port, data
port2 equ O001h ;output port, control

stackarea segment stack ;define the stack area
db 400 dup(?) ;set aside room for

stack
stackarea ends

dataarea segment ;define data area

141

Usgi db cr,lf
db 'Do you wish to enter an error

polynomial?', '$'
db cr,lf,'S'

mag2 db cr, lf,lf
db 'Enter the code vord:',cr,lf,'$'

msg3 db 'Please enter the error polynomial:','$'
msg4 db 1K1$
msg5 db I Encoded word is: '$
msg6 db 'Error polynomial is: ',S
usg7 db 'Transmitted word is: '''
GEN dw Oldlh
CODE dw 0000h
MWORD dw 0000h
TWORD db 00h
TRCD dw 0000h
ERRP dw 0000h
NK db 08h
data-area ends

LAB_-1 segment ;define segment area for
program
main proc far

assume cs:LAB_-1, ds:data-area,
ss: stack-area

;set all register to zero (makes it easier to debug)

beinsu xa;statozr

bei:sub ax,ax ;set ax to zero
sub bx,bx ;set bx to zero
sub cx,cx ;set cx to zero

;set DS reg to point to the current data area

mov ax,data -area ;point to data area
mov ds,ax ;DS now points to

;data-area

Call IDART
Tloop: Call Get_-WORD

Call CodeWORD
Call TErr
Call Send WORD
jmp Tloop

;I-DART is a subroutine to initialize the DART to 9600

142

;baud, one stop bit, no parity, and x16 clock

I-DART proc near
push ax
push bx
push cx
push dx

: Initialize the DART to x16 clock, 1 stop bit, 8 Tx/Rx
;bits, no parity, and no interrupts (polled mode).

AL contains the control byte to the DART
DX contains the control byte address

mov dx,port2 ;output port address
mov al,18h ;channel reset command
out dx,al ;issue command
out dx,al ;again, just to be sure

WRI: mov al,01h ;point to WR1
out dx,al ;load pointer into WRO
mov al,00h ;disable all interrupts
out dx,al ;issue command

WR2: mov al,02h ;point to WR2
out dx,al ;load pointer into WRO
mov al,00h ;disable all interrupts
out dx,al ;issue command

WR3: mov al,03h ;point to WR3
out dx,al ;load pointer into WRO
mov al,Oclh ;Rx enable, 8 bits,

;auto enable off
out dx,al ;issue command

WR4: mov al,04h ;point to WR4
out dx,al ;load pointer into WRO
mov al,44h ;x16 clk, no parity, 1 stop

;bit
out dx,al ;issue command

WR5: mov al,05h ;point to WR5
out dx,al ;load pointer into WRO
mov al,6ah ;Tx enable, 8 Tx bits,RTS

;enable
out dx,al ;issue command

;finished intializing, so restore registers

pop dx
pop cx
pop bx
pop ax
ret

143

I-DART endp

; Get Word is a subroutine that gets the source word as
;a user input and stores that word in WORD.

GetWORD proc near

push ax
push bx
push cx
push dx

mov TWORD,00h ;clear word buffer
mov dx,offset msg2 ;point to string
mov ah,09h ;print string function
int 21h

mov ah,01h ;read char and echo
int 21h
mov TWORD,al ;store char in WORD

call CRLF

pop dx
pop cx
pop bx
pop ax
ret

GetWORD endp

; Code WORD is a subroutine that encodes the source word
;and stores the result in XWORD

CodeWORD proc near

push ax
push bx
push cx
push dx

; Disable the DART receiver and transmitter, so that
; the BCH encoder can be used without affecting ;
transmissions.

144

mov dx,port2 ;control port
Nov al,03h ;point to WR3
out dx,al ;load pointer into WRO
mov alO00h ;Rx disabled, a bits,
out dx,al ;auto enable off

nov al,05h ;point to WR5
out dx,al ;load pointer into wRO
nov al,O0h ;Tx disabled, 8 Tx bits,
out dx,al ;RTS disabled

; Generate the encoded word using the BCH encoder

nov MWORD,OOO0h ;clear word buffer
sub bx,bx ;clear bx
nov blTWORD ;bx has code word
nov cl,NK ;cl loaded with n-k
inc cl ;One more shift req
shl bx,cl ;add zero padding
nov CODE,bx ;store padded code

nov dx,8000h ;to clear the encoder
nov al,O0h
out dx,al

nov cx,OO0fh ;cx counts 15 bits
CLOOP: nov bx,CODE ;bx has code char

nov dx, 4000h ;to clock data into
;BCH encoder

nov al,bh ;mov bh into al
out dx,al ;output high bit
shl bx,l ;shift bx left 1 bit
nov CODE,bx ;store code word

;Get the encoded word

nov dx,OcOOOh ;to input a bit
sub bx,bx ;clear bx
in al,dx ;al has low order bit
and al,Olh ;strip off low bit
nov bl,al ;bl has low order bit
nov ax,NWORD ;al has encoded word
or ax,bx ;append new bit

nov NWORD,ax ;store code word
cup cx,OO0lh -all1 done?
is Cxit ;yes, Print result

shl ax 1 ;shift al left 1 bit
nov IIWORD ,ax ; store code word in

;4WORD

145

dec cx ;cx holds count
jmp CLOOP ;finish getting result

Cxit: mov dx,offset msg5 ;encoded word usg
nov ah,09h
int 21h

mov bx,KWORD ;encoded word in bx
call Prnt
pop dx
pop cx
pop bx
pop ax
ret

Code-WORD endp

; Subroutine to print the result
; Word to be printed must be in bx

Prnt proc near
push ax
push bx
push cx
push dx

Nov cx,0010h ;cx counts 16 bits

Loop2: mov ax,bx ;put answer in ax
and ax,8000h ;mask for high order

;bit
cMp ax,0000h ;is bit a zero?
je Zero
mov dl,31h ;output a "1"
mov ah,02h
int 21h
jmp Cont

Zero: mov dl,30h ;output a "0"
mov ah,02h
int 21h

Cont: dec cx ;decrease counter
cMp cx,OOOOh ;all done?
je Go ;yes, exit
shl bx,1 ;get next bit and
Jmp Loop2 ;continue

146

Go: call CRLF
pop dx
pop cx
pop bx
pop ax
ret

Prnt endp

CRLF is a subroutine to print a CR and LF

CRLF proc near
push ax
push bx
push cx
push dx

mov ah,02h ;print character
mov dl,Odh ;CR
int 21h

mov dl,Oah ;LF
mov ah,02h
int 21h

pop dx
pop cx
pop bx
pop ax
ret

CRLF endp

;subroutine to check

CK proc near
push ax
push bx
push cx
push dx

mov dx,offset msg4
mov ah,09h
int 21h

pop dx
pop cx
pop bx
pop ax

147

ret
CK endp

; TErr is a subroutine that gets the error polynomial from
;the user and exclusive-ors it to the code word. The code
;word is stored in MWORD

TErr proc near

push ax
push bx
push cx
push dx

; Prompt for user intent

mov dx,offset msgl ;does user want an error
;poly?

mov ah,09h ;print string call
int 21h

mov ah,01h ;get character and echo
int 21h
cmp al,79h ;y typed?
je Rever ;yes, get error poly
cmp al,59h ;Y typed?
je Rever ;yes, get error poly
mov ax,MWORD ;encoded word is TRCD
mov TRCD,ax
jmp Edone ;no exit

Rever: call CRLF
mov dx,offset msg3 ;"Enter error poly"
mov ah,09h ;print string call
int 21h
call CRLF

; Get error poly and process

sub bxbx ;clear bx
JC: mov ah,01h ;read keyboard and echo

int 21h

CUp al,30h ;is it a zero?
je JZero
cMp al,31h ;is it a one?
je One

148

cmp al,Odh ;is it a CR
is JXor
imp JC

JZero: shi bx,l ;put 0 in bx
imp JC

one: may ax, 0001 ;to add one to bx
shi bx,l ;position poly
or bx,ax ;add one to bx
imp JC

JXor: nov ERRP,bx ;store error in bx
nov dx,MWORD ;code poly in dx
xor dx,bx ;xor error poly
Nov TRCD,dx ;store trans poly
nov bx,dx ;trans poly in bx
call CRLF
call Pint

Edone: call CRLF
POP dx
POP cx
POP bx
POP ax
rot

TErr endp

; SendWORD will send the final code word to the decoder
; Note that Send_-WORD waits for a request prior to sending
; the code word.

SendWORD proc near
push ax
push bx
push cx
push dx

;Display encoded word, error polynomial, and transmitted
;word on the screen

Nov dx,offset insg5
Nov ah,09h
int 21h

Nov bx,NWORD
call Pint

nov dx,offset msg6

149

nov ah,09h
int 21h

Nov bx, ERRP
call Pint

nov dx,offset. msg7
Nov ah,09h
int 21h

Nov bx,TRCD
call Pint

; Enable DART transmissions

nov dx,port2 ;control port
nov al,03h ;point to WR3
out dx,al ;load pointer into WRO
nov al,Oclh ;Rx enabled, 8 bits
out dx,al ;autoenable off

nov al,05h ;point to WR5
out dx,al ;load pointer into WRO
nov al,6ah ;Tx enabled, 8 tx bits
out dx,al ;RTS enabled

; Get a request to send from the decoder

Soopi: nov dx,Olh ;control port
in al,dx ;rec buffer full?
and al,Olh ;mask for 1st bit
cmp al,O0h ;rec buffer full?
jz SOOPi ;no, wait for word
nov dx, O0h ;data port of DART
in al,dx ;word in al
cmp al,52h ;capital R sent?
je Sextl ;go send code word
imp SOOPl ;no, wait for R

;Send the code word

Sextl: nov bx,TRCD ;code word in bx
nov ah,04h ;Aux output call
nov dl,bh ;high byte first
int 21h

nov dl,bl ;low byte next
int 21h

;Clear buffers

nov HWORD,OOO0h

150

mov ERRP,0000h
mov TRCD,0000h

pop dx
pop cx
pop bx
pop ax
ret

SendWORD endp

;All do, so exit from program

Exit: moV ax,4cOOh ;use DOS function 4c
int 21h ;to exit from program

main endp
LAB_1 ends

end main ;end assy^Z

; FDEMODEC.ASM is the software for the final demonstration
;of the decoder.

; FDEMODEC.ASM begins by building a table for all the
;sydromes for the (15,7) BCV two error correcting code using
;the generator polynomial x + x7 + x6 + x4 + 1. Then
;it initializes the Z-80 DART to 9600 baud, x16, one stop
;bit and no parity.I
; FDEMODEC.ASM will accept a 16 bit binay bit stream as
;the received encoded word. An ASCII "R" (symbolizing ready
;to receive) is outputted through the auxilliary port to the
;transmitter. After the transmitter has received the "R",
;the transmitter sends the transmitted word via its
;auxilliary port to the decoders Z-80 DART. The received
;encoded word is sent to the decoder for decoding.

; If the transmitted word had no errors, the transmitted
;word and the final result (ASCII character) are displayed
;on the screen for the user. If the transmitted word has
;one or two errors, the transmitted word, syndrome
;polynomial, corrected transmitted word, and final result
;are displayed on the screen for the user. In the advent
;that three or more errors are transmitted in the encoded
;word and the decoder is unable to resolve the error, it
;will display an uncorrectable error message.

15

151

Define constants

bell equ 07h ;ASCII char for bell
cr equ Odh ;ASCII char for carriage

;return
if equ Oah ;ASCII char for line feed
port1 equ 0000h ;output port, data
port2 equ 0001h ;output port, controlI "
stack-area segment stack ;define the stack area

db 80 dup(?) ;set aside room for
stack
stack-area ends

data area segment ;define data area
msg9 db 'Uncorrectable error transmitted','$'
asgi db 'Transmitted word is:','$'
msg2 db 'Syndrome is: $
msg3 db 'Error polynomial is:''$'
msg4 db Correct code word: ','$
msg5 db 'Final Result is:
GEN dw 01dlh
CODE dw 0000h
NWORD dw 0000h
NK db 08h
K db 07h
N db Ofh
T db 02h
Base dw 0001h
Dry dw 0002h
RESULT db 00h
NSK dw 0000h
MSYND dw O000h
TRCD dw 0000h
Count db OOh
LIST db 300 dup ()
Extr db 10 dup,(
data-area endsI
LAB_1 segment ;define segment area for
program
main proc far

assume cs:LAB_1, ds:data area,
ss:stack area

152

II

;set all register to zero (makes it easier to debug)
sub ax,ax ;set ax to zero
sub bx,bx ;set bx to zero
sub cx,cx ;set cx to zero
sub dx,dx ;set dx to zero

;set DS reg to point to the current data area

may ax,data_area ;point to data-area
mov ds,ax ;DS now points to

;dataarea

call I DART
call Generate
call LST

MyLp: call Get WORD
call DecCode
jmp NyLp

; I DART is a subroutine to initialize the DART to 9600
;baud, one stop bit, no parity, and x16 clock

I-DART proc near
push ax
push bx
push cx
push dx

; Initialize the DART to x16 clock, 1 stop bit, 8 Tx/Rx ;
bits, no parity, and no interrupts (polled mode).

AL contains the control byte to the DART
DX contains the control byte address

mov dxport2 ;output port address
mov al,18h ;channel reset command
out dxal ;issue command
out dxal ;again, just to be sure

WRI: mov al,01h ;point to WRI
out dxal ;load pointer into WRO
mov al,00h ;disable all interrupts
out dxal ;issue command

WR2: mov al,02h ;point to WR2
out dxal ;load pointer into WRO

153

mov al,O0h ;disable all interrupts
out dxal ;issue command

WR3: nov al,03h ;point to WR3
out dx,al ;load pointer into WRO'
nov al,oclh ;Rx enable, 8 bits,

;auto enable of f
out dx,al ;issue command

WR4: mov al,04h ;point to WR4
out dx,al ;load pointer into WRO
mov al,44h ;x16 clk, no parity, 1 stop

;bit
out dx,al ;issue command

WR5: nov al,05h ;point to WR5
out dx,al ;load pointer into WRO
nov al,6ah ;Tx enable, 8 Tx bits,RTS

;enable
out dx,al ;issue command

;finished intializing, so restore registers

POP dx
POP cx
POP bx
POP ax
ret

I-DART endp

;GetWORD will get the final code word for the decoder

GetWORD proc near
push ax
push bx
push cx
push dx

;Output a ready to receive (ASCII "R")

Glp: nov dl,52h ;ASCII "R"
mov ah,04h ;AUX output call
int 21h

;Enable DART transmissions

nov dx,port2 ;control port
nov &1,03h ;point to WR3
out dx,al ;load pointer into WRO
nov al,Oclh ;Rx enabled, 8 bits
out dx,al ;autoenable of f

154

mov al,05h ;point to WR5
out dx,al ;load pointer into WRO
mov al,6ah ;Tx enabled, 8 tx bits
out dx,al ;RTS enabled

; Check input buffer:

mov dx,Olh ;control port
in al,dx ;rec buffer full?
and al,01h ;mask for 1st bit
cuP al,00h ;rec buffer full?
jz Gip ;no, send ready again

; Get high byte

mov dx,00h ;data port of DART
in al,dx ;word in al
mov bh,al ;high bits in bh

; Wait for low byte

GGlp: mov dx,Olh ;control port
in al,dx ;rec buffer full?
and al,01h ;mask for 1st bit
cmp al,00h ;rec buffer full?
jz GGlp ;wait for word

; Get low byte

mov dx,00h ;data port of DART
in al,dx ;word in al
mov bl,al ;low bits in bl
mov TRCD,bx ;store transmitted word

; Disable DART transmissions:

mov dx,port2 ;control port
mov al,03h ;point to WR3
out dxal ;load pointer into WRO
mov al,00h ;Rx disabled
out dx,al ;Issue command

mov al,05h ;point to WR5
out dx,al ;load pointer into WRO
mov al,00h ;Tx disabled
out dx,al ;Issue command

pop dx
pOp cx
pop bx
pop ax

155

ret
GetWORD endp

; Generate is a subroutine that generates the syndroms for
;all possible error conditions allowed by the given code
;structure.

; Note that cx contains the length of the encoded word
and dx contains the number of correctable errors

Generate proc near

; Generate single error polynomials

push ax
push bx
push cx
push dx

; Clear LIST to all Zeros

sub bx,bx ;bx has all zeros
mov SI,offset LIST ;SI points to LIST
mov cx,300d ;cx has number of

;records

Rpt: mov [SI],bx ;output zeros
add SI,02h ;point to next record
mov (SI],bx ;output zeros
add SI,02h ;point to next record
dec cx
cmp cx,OOh ;all done?
je Sta
imp Rpt

; Compute single errors:

Sta: mov SI,offset LIST ;SI points to LIST
mov bx,0001h ;bx used to generate

;error
;polynomials

mov cl,N ;cx has length of
;polynomial

Goopl: nov [SI],bx ;store bx in LIST
call DECODE ;calculate the syndrom
add SI,02h ;SI points to next pos
nov axNSYND

156

nov [SI],ax ;store syndrome
add SI,02h ;point to next position
shi bx'l ;generate next error

;poly
dec ci mcount down number of

;errors
cup cl,Olh ;all done?
je Gext ;do double errors
imp Goopi ;no, finish single

;errors

SCompute double errors if number of errors = 2

Gext: mov cl,T ;numiber of errors in cl
cmp cl,02h ;double errors

; indicated?
jne Gxit ;no, skip double errors

nov cl,N ;cx has length of
; polynomial

mov dl,N ;dx has length of
;polynmoial

dec dl ;dx has N-i
mov Count,dl ;store N-i in Count
mov bxBase ;bx used to generate

;error
;plynomials

mov ax,drv ;ax has 02h

Goop2: xor bx,ax ;bx contains double
; error

mov (SI],bx ;store bx in LIST
call DECODE ;calculate the syndrome
add SI,02h ;SI points to next pos
may bx,NSYND
mov (SI],bx ;store syndrome in LIST
add SI,02h ;inc SI
mov bx,Base ;reinitialize bx
shl ax,1 ;shift ax left once
dec dl Mto count shifts
cmp dl,O0h ;all done yet
ie Chang ;yes change bx and ax
jmp Goop2 ;no continue

Chang: dec ci ;decrease length by one
clap cl,Olh ;all combinations done

je Gxit;yet?
je Gxit;all done, exit

mov bx,Base ;load bx with Base
shi bx,l ;shift base left once
Nov Base,bx ;store bx in Base
Nov ax,Drv ;ax has driver

157

shl ax,1 ;shift ax left once
Mov Drvax ;store new driver in Dry

mov dl,Count ;put Count in dl
dec dl
mov Count,dl ;store Count-1 in Count
jmp Goop2

Gxit: pop dx
pop cx
pop bx
pop ax

ret
Generate endp
;**

; DECODE will find the syndrom for each error polynmial
;using the BCH decoder.

; The error polynomial must be in bx when DECODE is
;called. SI points to LIST (initialized by the calling
;routine)

DECODE proc near

push ax
push bx
push cx
push dx

mov dx,OOOOh ;to clear the decoder
mov al,00h
out dx,al

; Clock in n-k data bits

BHigh: mov al,NK ;al has n-k
mov dl,K ;dl has k
add al,dl ;al has n
mov cl,16d ;cl has 16
sub cl,al ;cl has # of zeros
shl bx,cl ;shift out zeros

sub cx,cx ;clear cx
nov cl,NK ;cx counts n-k bits
nov dx,4000h ;to clock data into

;BCH decoder

DOOP3: mov al,bh ;high order bit in A7

158

out dx,al ;output high bit
shl bx, 1 ;shift bx left once
dec cx ;count down n-k
cmp cx,OOO0h ;all done?
je DEC ;yes, finish decoding
imp DOOP3 ;finish loading bits

;Next k bits are the decoded word

DEC: mov cl,K ;to count k bits
Nov RESULT, O0h ;clear result

DOOP4: mov dx,OcOOOh ;input a bit into CPU
in al,dx ;bit is in AO
and al,Olh ;mask for DO (AO)
Nov dl,RESULT ;decoder word in dl
shi dl,l ;shift deocded word

;left 1
xor dl,al ;add bit to decoded

; word
Nov RESULT,dl ;store result

dec ci ;decrease count
cmp cl,O0h ;all done?
je SYND ;yes, get syndrome

Nov dx,4000h ;to output a bit
Nov al,bh ;high order bit in A7
out dx,al ;output the bit
shi bx,l ;shift encoded word

;left 1
imp DOOP4 ;finish decoding

;Syndrome (remainder) is in the n-k registers forming
;the generator polynmial

SYND: mov dx,8OO0h ;output a bit, gate
; open

mov al,bh ;to output last bit
mov cl,08h ;to count NK bits

; One more time with gate closed.
nov dx,4000h ;output, gate open
out dx,al ;clock in last bit
Nov al,O0h ;output zeros now
sub bx,bx make sure bx clear

; Get syndrome bits and continue to clock in bits with the
;gate open.

DOOP: mov dx, OcOOOh ;to input a bit

159

in al,dx ;bit in AO
and al,Olh ;mask for low bit
xor bl,al ;bx has syndrome
dec cl ;decrease bit count
cp cl,00h ;all done?
je Dstr ;store the syndrome
shi bx,l ;ready for next bit
mov dx,8000h ;output a bit, gate

;open
mov al,00h ;to output a zero
out dxal ;output, gate closed
imp DOOP ;repeat

Dstr: mov MSYND,bx ;store syndrome in SYND

Restore registers
pop dx
pop cx
pop bx
pop ax
ret

DECODE endp

; Subroutine to print the result
; Word to be printed must be in bx

;I

Prnt proc near

push ax
push bx
push cx
push dx

mov cx,0010h ;cx counts 16 bits

Loop2: mov ax,bx ;put answer in ax
and ax,8000h ;mask for high order

;bit
cmp ax,0000h ;is bit a zero?
je Zero
mov dl,31h ;output a 1
mov ah,02h
int 21h
Jmp Cont

Zero: mov dl,30h ;output a 0

160

Nov ah,02h
int 21h

Cont: dec cx ;decrease counter
cMp cx,0000h ;all done?
je HGo ;yes, exit
shl bx,l ;get next bit and
imp Loop2 ;continue

MGo: call CRLF
pop dx
pop cx
pop bx
pop ax

ret
Prnt endp

; CRLF is a subroutine to output a carriage return
;and a line feed.

CRLF Proc near

mov dl,Odh ;cr
mov ah,02h
int 21h

mov dl,Oah ;If
mov ah,02h
int 21h

ret
CRLF endp

BLNK is a subroutine to output four blanks

BLNK proc near

Fauv dx,20h ;four blanks
mov ah,02h
int 21h

ret

BLNK endp

161

LST is a subroutine to list the contents of memory in
;a binary format;

Note: will only list the contents of memory stored in
;memory location LIST

LST proc near

mov SI,offset LIST ;SI points to LIST

;Calculate length of list to display

mov al,T ;ax has number of errors
cup al,02h ;two errors?
je Two
sub cx,cx ;clear cx
mov cl,N ;n single errors
IMP Show

Two: sub cx,cx ;clear cx
sub bx,bx ;clear bx
mov cl,N ;length of polynomial
mov bl,N ;length of polynomial
dec bx ;bx has N-i

Agn: add cxbx -cx has # of error polys
cup bx,OO0h ;all done?
je Show ;yes, print the results
dec bx ;next number to add
jup Agn

;Display the list

Show: mov bx,[SI] ;polynomial to be
; displayed

call Pint ;print the results
call BLNK ;add some blanks
inc SI
inc SI ;point to next record
NOV bx, [SI) ;load bx with next record

call Pint ;print the next record
call CRLF ;Cr and Lf
inc SI
inc SI ;point to next record
dec cx ;decrement counter
cup cx, O0h ;all done?
je DN ;yes, exit

162

jap Show ;no, get next record

DN: ret

LST endp,

;DecCode is a subroutine that decodes the received
;transu~itted code word. Note that the transmitted
;code word is in TRCD

DecCode proc near
push ax
push bx
push cx
push dx

nov bx,TRCD ;transmnitted word in bx
nov dx,offset msgl
nov ah,09h
mnt 21h
call Pint
call DECODE
nov bx,HSYND ;but syndrome in bx
cup bx,OOO0h ;syndrome = 0?
je DCR ;go print result
nov dx,offset msg2
nov ah,09h
int 21h
call Pint ;print syndrome

;Now search list for correct error polynomial

nov SI,offset LIST ;point to LIST
add SI,02h ;point to syndrome
nov dl,8ch ;search list

Clop: nov ax,[SI]
nov bx,NSYND
cup bxax ;syndromes match?
je SYnM
add SI,04h ;get next record
dec dl
cup dlO00h ;all done
je Ermsg
imp Clop

SynJ4: nov ax,SI
sub ax,0002h
nov SI,ax ;point to error poly
nov bx,[SI] ;load error poly

163

mov dx,offset msg3
mov ah,09h
int 21h
call Pint
Nov dx,TRCD ;transmitted word in TRCD
xor bx,dx ;correct trans word in bx
nov dx,offset msg4
nov ah,09h
int 21h
call Prnt
call DECODE
nov bx,HSYND ;syndrome in bx
cap bx,OOO0h ;syndrome - 0?
je DCR ;yes, print result

Ermsg: nov dx,of fset msg9 ;error usg
nov ah,09h ;print string
int 21h
call CRLF
imp NL

DCR: nov dx,offset msg5 ;Final Reusit msg
nov ah,09h
int 21h

nov dlRESULT
nov ah,02h ;display char function
int. 21h
call CRLF
nov dl,02h
int 21h
call CRLF

NL: pop dx
pop cx
POP bx
POP ax
ret

DecCode endp

;All do, so exit from program

Exit: nov ax, 4cOOh ;use DOS function 4c
int 21h ;to exit from program

main endp
LABl1 ends

end main ;end assy

164

1*.REOR SCUIYCLSS REAO RT DOUMNATO PAETRCVEMRIG

2 a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

2b. ICLSSIATIOIDONGRDINGSCHDUL Aproved for public release
Zb. ECLSSIFCATON DOWGRAiNG CHEULEDistriW~tin unlimitd.

4. PROMING ORGANIZATION REPORT NUM3ER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S

AFIT/E/*M/8D-2O

SoL. NAME OF PERFORMING ORGANIZATION Sb. OFFICE SYMBOL 7aNAME OF MONITORING ORGANIZATION[(if Sppikable)
School1 of Engineering AFIT/N___________________

S.AOORIESS (Ct State, and LU Code) 7b. ADDRESS (City, State, end ZIP Code)
Air Force Institute of Tecbriology
Wiright-Pattersr AFB, 011. 45433

8a. N4AME OF FUNDING /SPONSORING 8 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION I(If #Alcabl.)

* Foreign TWchImlogy Division Pw'/SDJC
8C. ADDRESS (City, State, and ZIP Co*e) 10. SOURCE OF FUNDING NUMBERS

EM PROGRAM IPROJECT 5TASK IWORK UNIT
Wight-Patterson AFB, OH. 45433 ELEMENT NO. NO. NOCCESSION NO.

11. TITLE (Mclude =ecr"o Clasifcation)

See box 19
12. PERSONAL AUTHOR(S)

Norma R. LeClair, atUSAF
13a. TYPS OF REPORT f13b. TIME COVERED 14. DATE OF REPORT (Year, Mfonth Day) I5. PAGE COUNT

* SThssFROM TO 1988 Decemiber 166
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 11S. SUBJECT TERMS (Continue on reverse Nf necessary and /denfl' by block number)
FIELD GROUP ISUB-GROUP BCH ax~der, BCH Deco~der, Asynhrrxu Serial

I Interface, Error Detection and~ Correction
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: HAFOAAMR 1)iPLEMNVMCNI OF A BCH ENCXDER, DECODER, AND flMffRFP

Thesis Advisor: Glenn E. Presott, Capt, USAF

Professor of Electrical Engineering

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION
0OUNCLASSIFIEDIUNLIMITED 0 SAME AS RPT. 0 OTIC USERS jUN2ASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL I22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Glenn V. Prs~.C * SFI(513) 255-3576 1 AFITB2=

DOForm 1473. JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

MNxxASSIMID

MLASSIFIED

A BCH encoder and decoder are implemented in hardware

with special emphasis given to the encoder and decoder

interfaces. The pitfalls of using a 7474.D flip flop as the

basis of building the interface is discussed. The

advantages of using a UART for the interface are outlined

and the circuit diagrams to implement the UART interface in

hardware are provided.

Finite impulse response linear filters are chosen to

implement both the MM encoder and decoder. A basic

theoretical understanding of the SCM encoder and decoder

function is given. Design decisions made for the hardware

implementation of the encoder and decoder are discussed, and

schematics detailing the final hardware configurations are

provided. Software to run and test all of the above is

documented in the appendices.

MUCASSIFIED

