HARDWARE IMPLEMENTATION OF A
BCH ENCODER, DECODER, .
AND INTERFACE ‘

THESIS

Norman R. LeClair
Captain, USAF

AFIT/GE/ENG/88D-20

DISTRIBUTION STATIMINT A& .

: —
Approved {zr pub te talecse
Distribuzsa Ualimites .

DEPARTMENT OF THE AIR FORCE :

iv A R3gss 'J‘l‘wn

AIR UNIVERSITY =~

AIR FORCE INSTITUTE OF TECHNOLOGY

mr(r

) N nb,

Wright-Patterson Air Force Base, Ohio

U 89

B — —— T ———— ———
S et P otk ka Bl dhenks ar T B phe b - ek e A am e b . S . b .

b e

AFIT/GE/ENG/88D-20

DTIC
ELEC "I
JAN 1 71983 E

I) (o

- . e

HARDWARE IMPLEMENTATION OF A
BCH ENCODER, DECODER,

AND INTERFACE Accesion Far {
mls CRA&I w

THESIS L DIIC TAB 0

U Unenacinced »

Norman R. LeClair Justificaton

Captain, USAF -

AFIT/GE/ENG/88D-20 By

D»s't.r'ibu,tisn {

Avadabiity Ceodes

- Aval aad, o
Dist Special

Al |

Approved for public release; distribution unlimited.

Qu/f
WsP:

m:;-.;-ﬁ PN T DR e e o]

AFIT/GE/END/88D-20

HARDWARE IMPLEMENTATION OF A BCH ENCODER/DECODER

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Electrical Engineering

Norman R. LeClair, B.S.

Captain, USAF

December 1988

Approved for public release; distribution unlimited

..

mm .

Preface

This study is a follow-~on to the study completed by
Capt DeGraff in December 1985. Capt DeGraff constructed a
number of circuits to be used to ultimately "calculate the
error detection and correction performance of different
concatenated coding schemes."™ Capt DeGraff used a three
wire handshake based on a 7474 D flip flop as the serial I/0
port for his circuits. This thesis was started with the
intent of providing a simulated communications channel which
could be used to test the performance of Capt DeGraff's
circuits. However, after building the appropriate
interface, it was discovered that the 7474 D flip flop would
undergo catastrophic failure within 1000 transmitted bits.
Therefore, it was necessary to rebuild the BCH encoder and
decoder circuits using an Dual Asynchronous Receiver
Transmitter (DART) as the I/0 port, allowing the rebuilt BCH
encoder and decoder to interface to any computer through the
computers existing serial I/0 ports.

I have found, as all others who have attempted projects
of this sort, that I had to rely on the help and support of
others. Chief among these is my Lord and Saviour Jesus
Christ "For the Lord gives wisdom, and from his mouth comes
knowledge and understanding” (Proverbs 2:6). I thank my

advisor, Major Glenn Prescott, whose very nature instills

ii

i W A W W X W

B A S -

calm reasoning into those arourd him. Finaliy a special

thanks to my patient and understanding wife,- A

wife of noble characte who can find? She is worth far more

than rubies" (Proverbs 31:10).

iii

Preface ¢ ¢ ¢ ¢ ¢« ¢« ¢ ¢ o o o
List of Figures ¢« « « ¢« « + &
List cf Tables . . « +« ¢« « o« o « o o &
Abstract ¢ ¢ o ¢ o e e 4 . e
Chapter One: Overview

General Issue . . .
Background
Problem Statement .
Scope . . .« . ¢ . .
Approach

Material and Equipment
SUummary . . . o« o o o o

Chapter Two: 7474 D Flip Flop Interface

Introduction . . .
Background . . .
Design Decisxons .
Design Parameters .
Signal Description
Circuit Diagrams
Test Methodology
Test Results .
Discussion . .
Conclusion . .
Recommendation

Chapter Three: Universal Asynchonous Receiver

Transmitter Interface

Introduction
Background
Design Decisions . .
Signal Description .
Test Methodology . .
Test Results
Discussion and Conclu

SiO;\S

iv

* o 8 o e s

e & o o e o o

* e ® ® o e » & ¢ e @

*® o o o o o o

Page

ii
vi
vii

viii

NOoOVNT W WN e L

[}

12
13
17
21
21
26
26
28
28

30

30
30
32
33
40
41
42

S st

Chapter Four

In
Ba
Ge
Mu
Co
Sc
Te
Te
Co

Chapter Five

In
Ba
Ca
De
Co

Schematics

Te
Te
Co

Chapter Six:

Fo

Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:
Appendix F:
Appendix G:
Appendix H:
Bibliography

vita . . .

t BCHEncoder . . « « o« o o« o &

troduction
ckground

nerator Polynomlal
ltiplier Circuitry
ntrol Circuitry . .
hematics
st Methococlogy . .
st Results
nclusions and Recommendation

end

t: BCHDecoder . . « « o ¢ o o

troduction
ckground . . .
lculating the Syndrome
coder Circuitry . . .
ntrol Circuitry .

st Methodology . .
st Results
nclusions and Recommenda

Q¢ o s s o o o o
N e ¢ ¢ o« ¢ o o o

3

t

i

Demonstration and Follow-on
Thesis Effort

Demonstration

llow-on Thesis Effort

7474 D Flip Flop Interface Software

Protocol Software . . . « .« + .
DART Software . .« « ¢ o« ¢ « o
Test Data . ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o o

BCH Encoder Software

BCH Decoder Single Character Software

BCH Decoder Syndrome Software .

Demonstration Software

44
44
44
47
48
50
52
52

55

57
57
57
58
63
65
67
67

71
72

73

73

74

78

92

101

108

112

118

125

141

165

166

Satnd

: List of Fiqures

i Figure Page
: 1. System Configuration ¢« ¢ ¢ . ¢« « « . 9
. 2. 7474 D Flip Flop Handshake 10
i 3. Input Port Address Decoder « .« « ¢ « o . 15
‘ 4. Output Port Address Decoder « «+ « ¢« « o . 16
5. Input Port Circuit Diagram 22
_ 6. Output Port Circuit Diagram 23
. 7. DART Input/Output Port ¢« ¢ ¢« ¢ ¢ « o« 34
8. RD* and IORQ* Implementation 40
9. FIR Multiplication Circuit 49
10. BCH Encoder Control Ciruitry 53
11. BCHEncoder . . « . « o o s o o o o o o o o o o« & 54
12. FIR Dividing Circuit ¢« ¢ ¢« ¢ ¢ o o . 64
13. BCH Decoder+ + « » =+ o s o o o o o o o o 68
14. BCH Decoder Control Circuitry 69

15. System Configuration for Demonstration 74

Table Page

1.

BCH Codes fOr m < 6 . . =« « « o « o o o s o o o = 46
Minimal Plynomials over GF(Z‘) e v e e e e e e e 48
Register States for Multiplication 50
Syndromes for a (15,7) BCH Code 60

Register States for Division 65

vii

Abstract

o

A BCH encoder and decoder are implemented in hardware
with special emphasis given to the encoder and decoder
interfaces. The pitfalls of using a 7474 D flip flop as the
basis of building the interface is discussed. The
advantages of using a UART for the interface are outlined
and the circuit diagrams to implement the UART interface in
hardware are provided.

Finite impulse response linear filters are chosen to
implement both the BCH encoder and decoder. A basic
theoretical understanding of the BCH encoder and decoder
function is given. Design decisions made for the hardware
implementation of the encoder and decoder are discussed, and
schematics detailing the final hardware configurations are
provided. Software to run and test all of the above is

documented in the appendices.

HARDWARE IMPLEMENTATION OF A

BCH ENCODER, DECODER AND INTERFACE

ssue:

The Foreign Technology Division (FTD) is investigating
the performance of e:ror correcting schemes employed in a
variety of communications channels. As part of their
investigation, FTD has provided AFIT a large thesis topic
area which has subsequently been broken into several smaller
thesis efforts. The first thesis effort required the
construction of a BCH encoder, BCH decoder, interleaver, and
deinterleaver in hardware. Captain De Graff GE-85D built
the encoders and decoders during the summer of 1985 and
documented his designs in his thesis entitled "Hardware
Implementation of a Concantenated Encoder/Decoder"

(DeGraff, 1985).

The second thesis effort requires the construction of
an asynchronous communication channel to provide a computer
to BCH encoder/decoder interface. The computer will provide
a bit stream to the BCH encoder/decoder as well as the
capability for simulating communication channels. This
document addresses the second thesis effort.

A third thesis effort will provide the software to

simulate several communications channels. This software,

! when running on the computer interfaced to the BCH
encoder/decoder will provide a test bed to determine the

encoders and decoders ability to correct errors.

. The final thosis effort will require the construction

) of a Reed-Solomon encoder decoder scheme in software. The

1 Reed-Solomon encoder/decoder will be interfaced to the

communications channel simulator. The final thesis effort

ends when data is gathered on the performance of both

hardware and software encoder and decoders over a variety of

simulated communication channels.

a :
Communication systems in both commercial and military
procurements are moving away from analog technologies in

favor of digital technologies. Analog transmissions take on

a infinite variety of shapes which must be reconstructed at

the receiver for reception of the transmitted information. A
small disturbance in an analog system (known as noise) often
affects the reception of the received signal, causing I
distortion (and errors) in the received message. |
In contrast to analog systems, digital systems are
limited to a finite number of states. When digital ’
transmissions are disturbed by noise, the digital system
must chose the closest finite state of the noise-disturbed

signal as the received signal. Choosing the closest finite

el B

state often results in the regeneration the original
transmitted signal giving digital systems much greater
protection against distortion and interference compared to
their analog cousins. (Sklar, 1988:3).

Digital communication systems transmit their
information in the form of a bit stream. Bit streams can be
created many ways, but our discussion is limited to a binary
bit stream (composed of two-level pulses, ones and zeros)
and transmitted at baseband (unmodulated). The bit stream
originates at an information source, referred to as the
"source bit stream". For the purposes of this thesis, the
source bit stream will be composed of the ASCII set of
characters. Each character is defined by 8 bits in a
predefined state known as the ASCII bit pattern. Some
examples of characters and their associated ASCII bit

pattern are given below:

Character ASCII bit pattern
A 0100 0001
a 0110 0001
L 0100 1100
H 0011 1011
+ 0010 1011

Although the transmission of a digital bit stream can

be done in a way to minimize the affects of noise, errors in

the transmitted bit stream still occur. Fortunately,

. encoding the source bit stream prior to transmitting it can
provide protection against transmitted errors. Additional
bits are added by the encoder to each word of the source bit
i stream prior to transmission. After reception, the bit

stream is passed to the decoder, which uses the additional

bits to detect and correct errors if they have occurred
during transmission.

Since this thesis centers around the operation of a BCH
encoder/decoder, it is worth noting that the BCH encoder
multiplies a generator polynomial to a character (or source
word) to create the additional bits used for error detection
and correction (more about this in chapter four). The
character plus the additional bits are known collectively as
the code word. The code word, when received by the decoder,
allows detection and correction from 1 to several errors

depending on the nature of the generator polynomial chosen.

Problem Statement:

Determine the feasibility of interfacing a Z-100
computer to an existing BCH encoder/decoder based on a 7474
D flip flop serial 1I/0 port. Make all modifications

necessary to the BCH encoder/decoder to produce a working

final product.

- !

TR

s B e et -

A BCH encoder/decoder was designed and constructed by
Capt Peter de Graff for his thesis during the summer of
1985. Capt de Graff's design utilized a 7474 D flip flop to
provide a three wire handshake interface. The interface
includes a data ready line, data request line, and the data
line itself. The interface is controlled by a z-80 CPU
driven by software located in a 2719 E-Prom.

This thesis will determine the feasibility of
interfacing directly to the 7474 D flip flop of the BCH
encoder from a Z-100 computer. The interface from the 2Z-100
to the 7474 D flip flop will be controlled from the bus
structure of the Z-100. Design heuristics will be employed
to modify both the Z-100 interface and the BCH interface as
necessary to provide fully functional asynchronous

communications between the computer and the BCH encoder.

Approach:

A hardwire interface from the Z-100 to the BCH encoder
will be constructed on a wire-wrap board. The initial
design of the hardwire interface will use a 7474 D flip flop
to provide compatibility with the BCH encoder/decoder
designs. The interface will be mounted on an extender card
which in turn is plugged into the $-100 bus of the Z-100
computer. Control over the interface will be accomplished
by the 2-100 CPU issuing control signals over the S-100 bus

at a specified port address. Isolation of the bus from

spurious signals will be accomplished by appropriate data
and address buffers.

During construction of the initial interface, test
software will be written to help verify the design process.
Each stage of the design will be independently tested, along
with the final completed design. Once the interface is
completed it will be tested for fully asynchronous
communications. All problems encountered with the initial
design will be documented.

If the initial design fails to provide adequate
asynchronous communications, a design modification to the
BCH encoder will be chosen that will provide fully
asynchronous communications. The design modification, 1if
needed, will be implemented in hardware and tested for

proper operation.

Material 3 Equi ts
1. Z-100 computer

2. Assorted IC's

3. Logic Analyzer

4. Logic Probe

5. Wire-wrap board

6. Voltage regulators with heat sinks
7. Assorted tools

8. Ribbon cables with connectors

9. MASM software

h'»‘.s.—.h:..wia'-“uusl." P T N ive - . R R L ixa e

T IS

e Lape

10. Two Z-80 DARTs
11. Function generator (156 Khz square wave)
12. Multimeter

13. Oscilloscope

Summary:

A prototype BCH encoder will be interfaced to a 2-100
computer to provide the encoder with a source bit stream. A
prototype BCH decoder will also be interface to a 2-100
computer to provide the decoder with a received bit stream
and to allow the simulation a communication channel. Both
system will be tested to insure fully functional
asynchronous serial transmission can be sustained by the
encoder's and decoder's I/0 port. The procedure for

demonstrating the final product can be found in chapter six.

Introduction:

A BCH encoder/decoder, and an interleaver/deinterleaver

were designed and built by Capt DeGraff in a prior thesis
effort. Capt DeGraff's design used a 7474 D flip flop as
the basis for serial intcrface between the components of
his system. These interfaces were to allow a source bit
stream to supply a source word to the encoder, the encoder
to supply the encoded source word (code word) to either a
channel simulator or a deinterleaver (in the concatenated
mode), the channel simulator to supply the transmitted code
word (corrupted with noise) to the decoder (or deinterleaver
in the concatenated mode), and finally the decoder to supply
the decoded word to a bit sink. The source bit stream,
channel simulator, and bit sink were all to be supplied as
software routines run on dedicated computers. The final
system configuration is shown below: .
Each interface was designed to support a three wire
handshake for data transmissions. The handshaking includes
a data line, data ready line, and data request lines. The
received bit stream is clocked directly into the system
component and can not contain any parity, checksum or stop

bits. Since no direct interface exists from any Z-100 I/O

[nterleaver

et “ogEssIsssnNI”
Channel Simulator Bit Sink

Figure 1 - System Configuration

port to the BCH encoder, a special serial I/0 port from the
Z-100 to the BCH encoder must be designed to support data

transmissions (DeGraff, 1987:8).

ac :

To better appreciate the design problem presented above,
it is best to spend some time gaining an understanding of
the interface designed into the BCH encoder. The interface
is based on a 7474 D flip flop and is shown in the block

diagram below:

——

SR Alide Mk ivgns cinlf 1 o - s B e b mmres v s L e DY

Datma

L [} » r——Data
Clhp— Clk
Data Requeaest
Cluk ax 8 —>
+5 D Clear
Clear » — +5S
L o R Cxp—Clk
Data Ready

Figure 2 - 7474 D Flip Flop Interface

The sequence of events that accomplish data
transmissions between the two 7474 D flip flops are as

follows:

One: The flip flop requesting data sets its data
request line high. This automatically clears the sending
flip flop's data ready line. The receiving flip flop starts
polling the data ready line to see if data has been place

on the data line.

Two: During this time the sending flip flop polls the
data request line to see if the receiving flip flop wants
some data. When the request line goes high, the sending

flip flops places one bit of data on the data line, and sets

10

)

¢ S Ve L S a iy s o et et Dl L bt S 1A

e e

its data ready line high. Setting the data ready line high

automatically resets the data request line on the receiving

T T

flip flop. Once the data request line is reset, the sending
flip flop is free to resume its polling of the data request

line.

Three: When the data ready line goes high, the
- receiving flip flop clocks the data into its processor. As
soon as the processor is finished processing the bit, the

receiving flip flop sets the data request line high to

request another data bit. Setting the data request line
high automatically sets the data ready line low on the

sending flip flop and the process repeats again.

As can be seen in the diagram, two 7474 D flip flops
are needed to interface any two pieces of equipment for one
way (half duplex) data transmissions. For two half duplex
transmissions a total of four 7474 D flip flops are needed,
two flip flops for half duplex signal. Both the encoder and

decoder boards contained two 7474 D flip flops enabling them

to perform two half duplex transmissions. Typically, the

encoder will receive a bit stream from some source (a Z-100
computer in our case), encode the received bit stream and ‘
send the encoded bit stream to a transmitter. Since the

received bit stream and the encoded bit stream interface

with different devices (a source and a transmitter) it is

11

T TN TR T —— - 0

expedient to have two separate half duplex serial ports on
the encoder. Similarly, the BCH decoder needs to interface
to a receiver and to a bit sink such as a CRT that can

display a message.

DResign Decisjons:
Decign decisions made prior to implementing an interface
between the Z-100 computer and the BCH encoder/decoder are

as follows.

Z2-100 Serial Ports: Neither the serial A port nor the
serial B port of a 2-100 can be used to support data

transmissions to or from the BCH encoder. Both ports are
implemented using a Motorola 2661 universal asynchronous
receiver transmitter. While the 2661 IC is ideally suited
to asynchronous serial transmissions, it cannot be program
to exclude either start or stop bits. Since neither the BCH
encoder or decoder circuitry can tolerate stop and start
bits, the serial A and serial B ports cannot be used for the

interface.

2=-100 Parallel]l Port: The parallel data port on the Z-
100 might possibly support data transmission from the Z-100

to either the BCH encoder or decoder. However, no MACRO
function MASM (Micro Assembler) call exits to the operation

shell that allows data to be imported through the parallel

12

T e A R Y IR

B R N T N G I

I/0 port. 1In fact, even if a MACRO call could be
constructed that would allow inputting into the parallel
port, there is only one parallel port available on each
computer when two would be needed to implement a channel
simulator. Therefore the serial I/0 port was ruled out as a

means of accomplishing the interface.

74724 D Flip Flop: The interface currently existing on
the BCH encoder and decoder utilizes a 7474 D flip flop to

implement a three line handshake between the encoder and
decoder for the transmission of data. Fortunately, it is
possible to construct an I/0 port based on a 7474 D flip
flop that will interface to the $-100 bus of a Z-100
computer. Each computer is configured with up to three
expansion slots on the S-100 bus making interfacing to the
bus very easy. Once the flip flop is interfaced to the bus,
the Z-100 can effectively control all operations of its flip
flop exactly as the BCH encoder or decoder controls
operations of its flip flop. Therefore, the method of
choice for constructing an I/0 port from the Z-100 to the
BCH encoder is to use a 7474 D flip flop based on the design

inherent within the BCH encoder and decoder.

Design Parameters:
The design of the Z-100 serial data interface based on

a 7474 D flip flop centered around three design parameters:

13

1) control by the Z-100 over the interface, 2)
characteristics of the 7474 D flip flop, and 3) buffering of
address and data lines. Each of these design parameters are

addressed below:

control Functions: The implementation of effective
data communications to and from any I/0 port will ultimately
allow the host computer complete control over the I/0 port.
A 2-100 computer normally uses assembly language function
calls to exercise control over its existing serial I/0
ports. These calls are IN and OUT instructions embedded
within a software routine than transfers data to and from
the port. Both the IN and OUT instructions use a specified
port address to direct the flow of data. Data is clocked
into or out of the port by special processor signals that
occur during the execution of the IN of OUT instruction.

These processor signals are available on the S-100 bus of

the 2-100 computer.
To implement control by the Z-100 computer over the

7474 D flip flop both IN and OUT instructions are used along

ii
with their associated processor signals. In order to]
specify a unique port address for the IN and OUT

instructions, an address decoder was construction for both *
the input port and the output port (see Figures 3 and 4).

Address bit Al is inverted for the output port, but not for

the input port. i

14

L

+5
A7 ‘.3\/ %,_l
_— s Ad
A6 —éj rf:é—
-0 - A3
AS ——é:fj Ef:§__
T B A2
o
4
ol 7407 +5
— A3
A9 ﬂj =
— [j:gh—‘ Al2
A10 f:m 5 —
| — >— All
¥ /————P—
74208 +5
sIN ___.:= \ §_l R
‘°”T‘—‘—g,3=7§?;_1 i
& C =
b 4{-?—
— —
< j K
4
L 46

Figure 3 - Input Port Address Decoder

15

F 3

—
¥
L - 45

Camnn

1

%_J

&

7400
47
74260

]

3
Pon

sIN —
sOUT —

Figure 4 - Output Port Address Decoder
16

7474 D Flip Flop Characterigtics: The 7474 D flipflop

consist of two delay or following flip flops on one
integrated circuit. Each flip flop comes with is own
preset, clear, clock, and Q output lines. The clock line on
a 7474 D flip flop is extremely sensitive and must be
isolated by a buffer to prevent inadvertent triggering of
the clock by noise. Note that the data request line is tied
to the clk of D2 on the output port flip flop. This data
request line cannot be read as a status bit (data request
high) without triggering the clock. Therefore, the data
request line is split by a 7407 hex non-inverting buffer
into two separate lines. One line isolated is to the clock
alone, the other line is used to read in the status bit

(data request).

Buffering of Lines: All data lines are buffered by a
DP8216 data buffer to isolate the S-100 data lines from

those used by the I/0 ports. Data lines leading into and
out of the ports are active only when the port address is
active. All address lines leading into the address decoder
are isolated by either 7405 or 7407 hex buffers to prevent
address lines from inadvertently being drawn either high or

low by the port operations.

Signal Description:
Control of the input and output ports by the 2-100 CPU

17

requires the Z-100 to provide signals to clear and set the
data ready line, clear and set the data the request line,
and clock in data both to and from the data line. Both the
input and output port control signals are discussed

separately below:

Input Port:

Data Request Line: The data request line is
enabled (high) by presetting Q1 of the 7474 D flip flop.
The preset input to the 7474 D flip flop is active low. A
low signal is provided by the CPU to the flip flop when A0,
sOUT, and DS are all concurrently high. A0, sOUT, and DS
will all be high when the CPU issues an OUT command at
address 03h (note that DS* has been conditioned by an

invertor to yield DS).

Data Ready Line: The data request line is

disabled (low) when the data request line is enabled.
Disabling the data request line is most easily accomplished
by letting Q2 of the 7474 D flip flop represent the state of
the data ready line. Then, tying the clear input of Q2 on
the 7474 D flip flop to the same line controlling the data
request line insures that Q2 will always be cleared when the
data request line is preset. When the data ready line goes
high, Q2 is clocked into its high state by the incoming data
ready signal, telling the CPU that data on the data line is

18

by B ke ST i M Sk R Tede ok o o

ready to be clocked into the computers memory.

Data: Data being clocked into the input port is
isoclated by a 7407 non inverting buffer as it enters the
input port. Leaving the input port, the data is buffered by
a DP8216 quad line buffer. The DP8216 is enabled by DS* and
controlled by pDBIN. Therefore, data can only be clocked
into memory when the CPU issues an IN command at either

address 02h or 03h.

Clear Data Request Line: During the
initialization of the input port, it is helpful to clear the
data request line. The data request line can be cleared by
enabling the clear input of the 7474 D flip flop to Q1. A0,
sIN, and DS are combined by a triple input nand gate to
provide the control signal needed. When the CPU issues an
IN instruction at address 03h, the data request line will be

cleared.

Qutput Port:

Data Request Line: The data request signal
originates at an input port and is viewed as an incoming
signal by the output port. The incoming data request signal
is monitored by the CPU so that the CPU knows when to place
new data on the data line. The data request line also sets

the data ready line of the output port low. The data ready

19

line is represented by Q2 of the output port's 7474 D flip
flop. The incoming data request line is tied to the clock
of the 7474 D flip flop. Since D2 is tied to ground, only a
low signal can be clocked into Q2. Hence, when the data

request line goes high, the data ready line will go low.

Data Ready Line: The data ready line is place
high by the CPU whenever new data is place on the data line.

Q2 of the output port's 7474 D flip flop is used to
represent the data ready signal. Q2 can be enabled by
enabling the present input (active low) to the flip flop.
DS, pDBIN, and sOUT are combined by a triple input nand gate
to provide the control signal needed. When the CPU issues a

OUT command at address 00, the data ready line will go high.

Data; Data is represented by Q1 of the output
ports 7474 D flip flop. Data is clocked into Q1 when the
data ready line goes high. This is accomplished by tying
the clock input of the flip flop to the same control signal
that sets the data ready line high. The D input to the flip
flop is tied to DOO of the S-100 bus through a DP8216 quad
line buffer. Data is clock into the flip flop whenever the

CPU issues the command OUT at address 00.

Clear Data Ready Line: During initialization of
the output port, it is helpful to clear the data ready line.

20

The data ready line can easily be cleared by enabling the
clear input to Q2 of the flip flop. AO, sIN, and DS are
combined by a triple input nand gate to provide the control
signal. When the CPU issues an IN command at address 01,

the data ready line is cleared.

Circuit Djagrams: Circuit diagrams, including pin

connections, are provided in Figure 5 (input port) and

Figure 6 (output port) on the following two pages.

Test Methodology:

Introduction: The test methodology was developed to
provide a quantifiable measure of the 7474 D flip flop
interface's performance. The interface design was deemed
acceptable when it could receive a 10 megabit source bit
stream (in 8 bit blocks) into its input port and transmit it
back to the source through its output port without error.
The source bit stream was generated from a test bed that
could transmit and receive data based on a three wire

handshake protocol.

Test Bed: Capt DeGraff's BCH encoder was originally

considered for use as the system interface test bed.

Unfortunately, the encoder IC is not easily accessible to

21

- TR T

)

18
Dfo—4e
11
—

p—
m?—«s
0 l
:

"
Uas\V/

22

3
0
—
=
=
Y
Figure 5 - Input Port

| /

) |
_mr *Ragapsfathu ..H__ -0 sk an B
T 1

28 P P §

. mm]] J

” 522323355 -:.j_ .__. e TR
'y a
)

y

¥

!

]

!

i

4

$
E. %T
% ¢ L) & | o
MF-:.:uMH%oW“_ MFuMn:u 2 p}- ﬁuw
D) L D

]
i
i

23

Figure 6 - Output Port

T 2l
+ Dl '
a
gugbogououd wulJo[]el]=l]e[]»] - 1
S9SISYIEE MM TTs s ~FIEIIE S
1 s o
g mm

probes making it difficult to trap and analyze the data
received by the encoder. 1In addition, the BCh encoder has
never been tested at high bit rates (4800 baud and above) it
is not known whether the BCH encoder has any design flaws
that might interfere with the serial transmissions at high
bit rates. Therefore, the BCH encoder was ruled out for use
as test bed to test the 7474 D flip flop interface.

An identical 7474 D flip flop interface running on a
second 2-100 provides a better alternative test bed. Each
interface consists of one input and one output port both of
which have identical designs (based on the interface
existing on the BCH encoder). Since the designs are
analogous to the BCH encoder, testing the interface using a
second Z-100 will yield the same results as testing the
interface using the BCH encoder. 1In addition, all data and
control lines on the Z~100 are easily accessible, making the
trapping and analysis of data and signal flow relatively

easy.

Test Methodology: The test methodology chosen is

incremental in nature and consists of two steps. Each step
requires a software driver to be written. All software

drivers are included in appendix A.

Step One: The input port and the output port of

the 2-100 interface are tied together on a single computer.

24

The ports are exercised for the proper transmission and

reception of data. Two separate software drivers are used:

Driver One: Accept a character from the
keyboard and transmit it out the output port to the input
port. Receive the character from the input port and display
it on the screen. A visual check of the screen will show

whether the transmission is handled correctly.

Driver Two: Take a single character and
transmit it out the output loop to the input port. Receive
the character from the input port and check the character
internally to determine if the receive character matches the
sent character. Report the number of characters sent and
the number of errors found on the CRT screen. Repeat the

process indefinitely.

Step Two: The input port of the first Z-100 is
tied to the output port of the second Z-100 and the input
port of the second Z-100 is tied to the output port of the

first 2-100. A software driver is written for each Z-100:

First Z-100: Accept a character from the
keyboard, echo it to the screen and transmit the character
out the output port to the second 2-100. Watch the input

port to see if the data ready line goes high. When it does,

25

L _EB

receive the character from the input port and echo the
character to the screen. It should be the same character as

the one originally sent. Repeat this process indefinitely.

Second 2-100: Receive a character from the
input port, echo it to the screen and output this character

to the output port. Repeat the process indefinitely.

Test Results:

Testing of the interface on a single Z-100 (step one)
resulted in the successful transmission of over 10 Mbits
without error. The second test (step two) had some
surprising results. The transmission invariably failed
within 1000 transmitted bits. The failure was catastrophic,
with no ability to recover transmission. Types of failures
occurring included missed bits (the failure of the receiving
Z-100 to receive all 8 bits), improper bits (bits that are
inverted in state), and failure to transmit because both Z-

100's fall into a receive only mode.

Discussion:

Failure to transmit between the two separate 2Z-100s
probably occurred because the lines were sampled as the
lines were changing state (amounting to a contention between
states). Unfortunately, it is impossible to program the
existing lab equipment to trap the status of all signals

26

when such a contention arises, so it is impossible to prove
the actual cause of the failure.

However, the failures observed are well known and
documented for networks, and the solution to network
contentions has traditionally been the addition of protocol
to the transmission. Since the two 2-100s, when attempting
to communication to one another through the customized I/O
ports, constitute a crude network, it seems reasonable to
add protocol to their transmissions to solve the observed
contention problems.

The addition of protocol to the software drivers was in
fact tried. Appendix B contains the software used. The
protocol attempted to determine if the character (8 bits)
was sent in its entirety, and if not, the character was
retransmitted. In addition, the protocol attempted to
determine if a single bit was transmitted correctly by
repeatedly sampling the transmitted bit. Although the
protocol was successful in raising the average number of
bits transmitted before a failure occurred, it did not
succeed in preventing failures.

The question arises as to why transmission on a single
Z-100 (to and from) were so successful (10 Mbits without an
error) when transmissions between two Z-100s were so
inadequate. This can be explained by the execution of the
software driver written to handle the data transmission.

The software takes one bit of a character, places in on the

27

Lal

|l "

in.

N

LT APTVN DI | RO

AMom Tod LTt B T

output port, then goes to the input port to see if the bit
is there. Since it takes the execution time of several
instructions for the Z-100 to switch from outputting the bit
to determining if it is at the input port, the 7474 D flip
flop has had ample time to complete its transitions and
stabilize. The net results is that when the Z-100 goes to
look for the bit at the input port, the bit is always there
and always stable. The software acts as a type of
synchronization between transmission. Of course, this type
of synchronization will never occur between two separate zZ-
100s (with separate internal clocks) trying to talk to each
other.

More protocol could be added (beyond what was initially
tried) by adding start bits, stop bits, and parity.
Unfortunately, the BCH encoder, as designed will not support
such additions of protocol. The BCH encoder must receive
raw data alone, the encoder has no provisions to strip out

any support bits.

conclusjon:
An interface between a Z-100 and a BCH encoder based on
a 7474 D flip flop is unworkable. A new interface that

supports asynchronous serial transmissions is needed.

Recommendation:

An interface base on a Universal Asynchronous Receiver

28

—dBL

Transmitter (UART) should be added to the BCH encoder. A
UART provides RS232 standard serial transmissions that can
be tied directly to any computers serial I/O ports (no
customized ports are needed). The UART provides protocol in
the form of start, stop, and parity bits. 1In addition, the
UART can be programmed to synchronize its sampling of
transmissions based on a start bit, virtually eliminating

the chance of missampling a bit.

29

III. Universal Asynchronous Recejver
Transmitter Interface

Intro ion:

The previous chapter concluded with the statement that the
serial I/O port to the BCH encoder is unworkable as it is
presently designed. The encoding function of the BCH encoder is
implemented by a finite impulse response (FIR) filter and can be
easily isolated from the serial I/0 port function. Modifying the
BCH I/0 port based on a Universal Asynchronous Receiver
Transmitter (UART) will completely restore the BCH encoders
functionality, and by using a Dual Asynchronous Receiver
Transmitter (DART), the BCH encoder will have the two separate

I/0 ports it needs to meet its interface requirements.

a d:

The DART is composed of two Universal Asynchronous Receiver
Transmitters (UARTs). Each UART provides the capability for half
duplex transmissions over a single serial port along with an
interface for modem control. Control lines to the UART allow the
designer complete control over UART functions.

The DART relieves the user from the task of breaking a data

byte into single bits, transmitting the bits serially, and

30

M- Sunih ot

A T e S T T T PO T

T

reassembling the bits. The user simply loads the DART with the
byte to be transmitted and receives reassembled bytes from the
DART upon the return transmission. All start bits, stop bits,
and parity bits are added by the DART independently of user
action. Data and framing errors are relayed to the user through
a special status register located in the DART.

Data lines into and out of the UART are triply buffered to
insure data byte isolation. The UART is programmable from 300 to
800K bits per second, and provides internal sampling
synchronization based on the start bit and the programmed
transmission rate. The internal sampling synchronization can be
program from 1 to 32 times the bit rate. By selecting a sampling
synchronization rate of 16, for example, the DART automatically
sets its internal sampling clock to 16 times the transmission
rate. The DART will sample the incoming bit stream every 16
clock pulses (of the internal clock), starting its first sample
at the center of the pulse representing the start bit. The DART
effectively synchronizes its sampling of the incoming data to the
data transmission rate thereby preventing the sampling of data
during the data's transition from one state to another (Campbell,

1987: 151-161).

.1

Y " 3 v v - . i b

P e RN

Design Decisions:

The DART will be configured to interface directly to the
serial port of a Z-100 computer. Using the J2 port (modem or
Data Terminal Equipment (DTE) port) requires the DART to be
configured as a Data Communication Equipment (DCE) device.

The DART will be configured to transmit at 9600 baud to interface
to the Z-100 modem port. Experience has shown that for short
transmissions, no parity bit is required. Therefore the parity
bit will be disabled on both the DART and Z-100 ports.

Using the Z-100 serial port limits the design to strict RS-
232 standards. Therefore the BCH encoder will use a DP1488 Quad
Line Driver and DP1489 Quad Line Receiver to condition the
transmission line signals to RS-232 standards (+ 12 volts, see
Figure 7).

The BCH encoder will undergo a prototype design on a S-100
wirewrap board. Using the S-100 wirewrap board enables the
design to interface directly with a Z-100 CPU through the S-100
bus located on the 2-100 mother board. All control signals that

are software programed will be provided to the BCH encoder by the

Z~100 CPU through the S-100 bus. Designing the BCH encoder on
the S-100 wirewrap board allows the designer greater flexibility
in monitoring signals and implementing design changes. All data J
lines between the DART and the Z~100 are buffered by DP8216

bidirectional bus transceivers. A customized address decoder is

I

32

w et l —_ T T T Y T . T

Fj..‘s‘.u.'...wrr.;:l;.s_i’..._.,&‘, WEileat el A% et . el e alc

provided to isolate chip enable control signals to a specific

command address (see Figure 7).

Signal Description:

The DART is controlled by the CPU through signals provided
on the S-100 bus. Details of these control signals are provided
i in the following discussion (note that the pin numbers given

indicate pins found on the DART):

1. Pins 5, 6, & 7 (INT*, IEI, IEO). Both interrupt enable

signals (IEI and IEO) are tied to ground. Interrupts are not
used to implement the design. Since interrupts are disabled,
INT* will not affect the DART operation. INT*, therefore, is

allowed to float.

2. Pin 8 (M1*). Ml*, machine cycle one, is used in conjunction

with IORQ* to acknowledge an interrupt. Since interrupts are

disabled, M1* is disabled by tying it to +5 volts.

T

3. Pin 9 (V). Tied to +5 volts.

4. Pin 10 (W/RDYA*). Normally, the wait/ready states are user
defined to one function (either wait or ready). Once defined,

W/RDYA* is used to implement I/O control from the CPU to the 2-80

Dart and vice versa. The BCH encoder design will utilize
software to implement DART control by polling the appropriate Z-
80 DART status registers and providing appropriate I/0 functions
based on the returned status bits. W/RDYA* is not used in the

design and is therefore allowed to float.

5. Pin 11 (R/A*). R/A*, ring indicator for channel A, is used
to receive a request for connection in switched line operations.
When the input goes low, the Z-80 DART interrupts the CPU. This
function is not implemented in the design. Therefore, R/A* is

disabled by tying it to +5v.

6. Pin 12 (RxDA). Data is received by the Z-80 Dart at this pin
from the serial bit stream. No control is implemented here,
however, the line into pin 12 is conditioned by the DS1489 Quad

Line Receiver.

7. Pins 13 and 14 (RxCA* and TxCA*). The receiver and
transmitter clocks are programmed for 9600 baud. The design
implements a divide by 16 command for the clock inputs. This

requires 153.6 KHz at the inputs of pins 13 and 14.

8. Pin 15 (TxDA). TxDA is used to transmit data from the Z-80

DART to a receiving DTE device. TxDA requires no control

~

D e

) e

functions. The outgoing line is, however, conditioned by the

DS1488 Quad Line Driver.

9. Pin 16 (DTRA*). DTRA*, data terminal ready, is an output
signal used to inform the receiver of a ready condition. 1It is

not used in the design and is therefore allowed to float.

10. Pin 17 (RTSA*). RTSA*, ready to send, is shown connected to
pin 5 (CTS - clear to send) of the DTE interface. When RTSA is
enable, the receiving transmitter is enabled if the DTE device is
in auto enable mode. This tells the DTE device to send the data
that is loaded into its transmitter buffer. The line from the 2-
80 to the H-29 is conditioned by a DS1488 Quad Line Driver to

meet RS-232 standards.

11. Pin 18 (CTSA*). CTSA*, clear to send, is connected to pin 4
(RTS - request to send) of the H-29 DTE interface. The DART is
not configured for auto enable, therefore CTSA* cannot not enable
the DART's transmitter. Instead, the CPU will poll the status
register which will indicate that CTSA has been enabled by the
DTE device. When the CPU knows that CTSA is enabled, the CPU
will load the transmitter buffer with a data byte. The
transmitter of the DART is always in the enabled mode and the

loaded byte will automatically be sent. Since CTSA* must meet

36

RS-232 standards, it is conditioned by a DS1489 Quad Line

Receiver.

12. Pin 19 (DCDA*). Data carrier detect (DCDA*) is clocked into
register 0, bit 3, of the 2Z-80 Dart. Our design shows DCDA#*
connected to pin 20 (DTR - data terminal ready) of the DTE
interface to provide terminal on/off condition information to the
Z-80 DART. Similar information is available through CTSA*, that
is, the H-29 terminal must be on to provide a request to send

signal.

13. Pin 20 (CLK). Tied directly to the CPU clock - Phi.

14. Pin 21 (RESET*). Tied directly to the CPU reset - RESET*.

15. Pin 22 through 30. These pins are used for channel B and do

not apply to the design. They are allowed to float.

16. Pin 31 (Gnd). Tied directly to system ground.

17. Pin 32 (RD*). RD*, read, is an input line used to inform the
Z-80 DART when the CPU is reading data from memory or from an
I/0. This is equivalent to the CPU state that occurs when pDBIN

goes high. Therefore pDBIN is connect through an invertor to RD*

T n AW T RN T e Ry AN N - e

of the 2-80 DART.

18. Pin 33 (C/D*). C/D*, control or data select input line
provides the CPU either control or data input conditions for the
Z-80 DART. When this line is a logical 0, the D0-D7 pins on the
Z-80 DART are used for data I/O. When the line is a logical 1,
the DO-D7 pins are used for control information. The system
address line A0 provides this information to the DART. Address
00h corresponds to channel A - I/0 data port, address Olh
corresponds to channel A - Status and Command port. Note that
the least significant bit, A0, provides the necessary condition
for the selection of control or data input as needed. Therefore,

A0 is tied directly to pin 33.

19. Pin 34 (B/A*). Although channel B is not used for the

initial BCH encoder design, provisions have been made to expand

the design to include channel B. The design allows a future
expansion to include channel B by tying pin 34 to address line
Al. Then all address to either 00 or 01 will access channel A B

while all addresses to either 02 or 03 will access channel B. !

20. Pin 35 (CE*). Chip enable is tied directly to DS* of the
address decoder. When either address 00h or 01h for channel A or 1

02h or 03h for channel B is used by the CPU, the 2-80 DART is

AL

38

JE s L P - S T T T PO SR

enabled. See figure 3 for a schematic of the address decoder.

21. Pin 36 (IORQ*). IORQ#*, input and output request, is an input
signal to the Z-80 DART. It is used by the CPU to inform the 2-
80 DART that the CPU is performing an input or an output
operation. Our design implements this control signal through the
use of pDBIN and pWR*. A truth table showing input signal states
and the desired output is given below along with a logic diagram

implementing the truth table criteria.

pDBIN PWR* Desired Output Exclusive Or

0 0 0 0
0 1 1l 1l
1 0 N/A 1l
1 1l 0 0

Note: pDBIN should never be high when pWR* is low. This

equates to a read and write cycle occurring simultaneously. Our

design disable IORQ* under this condition to complete the truth
table. ;

Figure 8 shows the control signal implementation for both ﬁ
IORQ* and RD*. Exclusive Or gates were chosen for both circuits

to minimize chip count.

. TN

T

39

Lo
=

= >

\ |
pDBIN) > .

Figure 8 - RD* and IORQ* Implementation

Test Methodology:

To meet operational requirements, the DART must be able to
transmit or receive at least 10M bits of information,
consecutively, without error. Two software drivers were written

to implement the test (see appendix C).

Driver one: From a 2-100, initialize the modem port (J2) to
9600 baud, one stop bit, no parity, 8 bits/character, and x16
clock. Transmit one character (8 bits) out the J2 port directly
to the DART located on a second Z-100. Once the character has
been transmitted, poll J2 for a received character (the DART will
retransmit the character back to J2). Extract the received
character from J2 and compare it to the sent character. Repeat

the process for 10M bits while reporting the outcome (number of

40

characters sent and number of bad characters received) to the

CRT.

Driver Two: Using a 2-100 to send commands to a DART
through the S-100 bus, initialize the DART to 9600 baud, one stop
bit, no parity, 8 bits/character, and x16 clock. Receive a
character into the DART, echo the character to the CRT, and

retransmit the character back to the first zZ-100.

Test Results:

Five test runs were conducted over two days. Each test run
required about 2 hour and 15 minutes to transmit 10.4 Mbits at
9600 baud from a Z-100 to the DART and back to the Z2-100. Each
word (8 bits) of information transmitted was compared to the
received word to determine the number of errors occurring. The
first test run was started while the equipment was at room
temperature. Data collected during the test showed errors
occurring at the rate of one error per word transmitted. The
error rate drop to zero as the equipment warmed up to the
operating temperature. Data from the first test can be found in
appendix D.

The four remaining test runs were all conducted at the
system operating temperature. No errors were recorded for the

first three test runs. The fifth test run recorded two errors,

41

AR

both occurring within the last 5 minutes of the test.

A final test run was conducted one week later. For this
test, the external clock was set at 166.6 KHz (6 usec/clock
pulse). At 166.6 KHz, the system performed well both at room

temperature and at operating temperature.

Di . 3 lusi .

Errors in transmissions occur because the sampling of a
particular bit is erroneous. The sampling rate for the DART is
tied to an external clock, which was originally set at 153.6 KHz.
A change in the external clock rate will result in sampling
errors when the change takes the external clock outside of its
proper operating range.

When the clock was set at 153.6 KHz, it is possible that the
clock was set just outside of its proper operating range, causing
errors to occur at room temperature. As the clock warmed up, it
shifted to a slightly higher frequency, just inside its normal
operating range, allowing the DART to work perfectly at operating
temperatures.

The two errors of the fifth test run may be attributed to
random noise. They represent a error rate of 1 in 20.8 M bits
transmitted and can be tolerated for the purposes of this thesis.

A DART configured for one stop bit, one start bit, no

parity, 9600 baud, and x16 clock will work best with the external

42

clock set at 166.6 KHz.

V. d

Introduction:

As mentioned earlier in this thesis, FTD has an interest

in testing the performance of a BCH encoder over several
communication channels. Chapter four describes the BCH
encoder, the circuitry used to build the encoder, and the

methodology used to test the encoder for correct operation.

Background:

The BCH code originated from the work of three
individuals (Bose, Chaudhuri, and Hocquenghem) in the early
1960s. The first letter of each individuals last name was
combined to name the code (BCH). The BCH codes are cyclic
in nature, mean that rotating a code word any number of bits
either left or right will still result in a code word. BCH
codes are often thought of as a generalization of the
Hamming code and are used as single or multiple error
correcting codes. (Lin and Costello, 1983:141)

A discussion of codes, encoding, and decoding begins
with the length of the code word (n), the length of the
source word to be encoded (k), and the number of errors to
be corrected in any given code word (t). Encoding is the
process of taking a source word of length k and adding error

checking bits to the word resulting in a code word of length

44

I,

bt el

n. The idea is to add enough error checking bits to the
code word so that single or multiple errors can be found and
corrected after the code word has been transmitted and
received. Describing a particular coding scheme is done by
giving the length of the code word and the length of the
source word in parenthetical notation (n,k) followed by the
number of errors the coding scheme can correct. As an
example, one useful coding scheme is describe as a (15,7)
double error correcting BCH code.

BCH codes are characterized by the following parameters

(given m is an integer > 3 and t < 2™ " V).

2) Number of error checking digits < m * t.
Note that the number of error checking digits also
equals n - k.
(Blahut, 1984:162)

The BCH code characteristics given above result in the

following table of BCH codes for m < 6:

45

o -

s cnlilii.

Table 1 - BCH Codes for m < 6:
m n k t
3 7 4 b
4 15 11 1
4 15 7 2
4 15 5 3
5 31 26 1
5 31 21 2
5 31 16 3
5 31 11 5
5 31 6 7
6 63 57 1
6 63 51 2
6 63 45 3
6 63 39 4
6 63 36 5
6 63 30 6
6 63 24 7
6 63 18 10
6 63 16 11
6 63 10 13
6 63 7 15

To generate a BCH code word, the encoder receives a
source word and multiplies it by a generator polynomial.
For the purpose of this thesis, the source word, generator
polynomial, and the code word are all represented as binary
polynomials. For instance, the source word 11 (in bits) is
represented as x + 1. The source word 1001 is represented
as ¥ + 1. The multiplication of the source polynomial and
the generator polynomial is strictly algebraic but follows
the rules for exclusive-or binary addition to combine terms.

Calculating the generator polynomial requires the use

46

L]

UL

i K.

E" A2 Am o iArew bk el S ae Rl e a e e am
b

of prime polynomials of degree m within a Galois Field (2")
and the determination of the minimal polynomial for i = i ..
2t over the source words within the Galois Field. For a
more through discussion of Galois Fields and minimal

polynomials, the reader is referred to Blahut pages 162-166.

Generator Polynomial:

Transmitting bits of information between the Z-100 and
the BCH encoder is easiest to accomplish if the number of
bits transmitted is the length of a byte (8 bits) since the
MASM calls and registers within the 2Z-100 are built to
handle a byte of information at a time. Each byte
transmitted is taken from the ASCII character set and is 7
bits in length. The eighth bit transmitted is always
defined, but not really needed to represent the ASCII
character. Therefore, a BCH code that has k equal to 7 or 8
bits is most useful for the transmissions that are occurring
between the Z-100 and the BCH encoder.

For m < 6, the BCH codes with k = 7 or 8 are:

(15,7) 2 error correcting BCH code

(63,7) 15 error correcting BCH code

To calculate the generator polynomial for the (15,7)
BCH code (m=4), a Galois Field of GF(2‘) is chosen using the
primitive polynomial p(z) = z* + z + 1. The minimal

polynomials for all the field elements over GF(2°) is given

47

ot SR Sefdsulihal B Py ~
B T

in Table 2:

Table 2 - Minimal Polynomials over GF(2°)

LA Field Element(s) Minimal Polynomial
I‘T
a;,a:,a",a‘:z ’ﬁ‘ + x + 1
a,a a?,a x + + xz-+ X + 1
5’ 2
aT'aﬂ 13 _1% X +.x + 1
a’,a',a”,a X+ X + 1

(Blahut, pg 163)

The generator polynomial is found by multiplying the

Lowest Common Multiple (LCM) of the minimal polynomials for

the field elements ranging from a' .. a® where t equals the

number of errors corrected by the BCH code. For the (15,7)
2 error correcting code chosen, the generator polynomial
(g(x)) is given as:
2

LCM (a',a?, a’,a‘)

g(x)
g(x) = (xX* +x+ 1)+ x>+ x2+x+1)

X+ X+ +x+

g(x)
or in binary:

g(x) = 111010001

(Blahut, 1985:163-164)

Multiplier Circujtry:
Fortunately, many simple circuits taken from the family
of finite impulse response (FIR) (non-recursive) digital

filters work beautifully to multiply polynomials. The BCH 11

48

A TR Y St T D At PRl IR A DR

encoder constructed for this thesis uses a linear-

feedforwvard shift register FIR (shown below) for its

multiplication.
x® X’) X* X
& i D&
Data Out

Figure 9 - FIR Multiplication Circuit

A quick example demonstrates the operation of the FIR.

The generator polynomial shown can be represented by ¥+ %

+x*+x+ x4+ 1. The generator polynomial will be i
multiplied by the code word 01100001 (ASCII "a"). Note that
the high order bit of the ASCII "a" enters the encoder first

and that the high order bit of the encoded word (the result)

is read from the FIR first. Each stage of the

multiplication is given in Table 3.

49

Table 3 - Register States for Multiplication
Clock Rl R2 R3 R4 R5 R6 R7 R8 R9 |Result
1 0 0 0 o 0 0 0 0 0 0
2 1 0 0 0 0 o 0 0 0 1
3 1 1 0 0 o 0 0 0 0 0
4 0 1 1 0 0 0 0 0 v 1
5 0 0 1 1 0 0 0 o 0 o
6 0 0 0 1 1 0 0 0 0 1
7 0 0 o 0 1) | 0 o 0 1
8 1 0 (¢} 0 0 1 1 0 o 0
9 o 1 0 0 0 0 1 1 v 1l
10 0 0 1l 0] 0 0 1 1 0o
11 0 0 o 1 o 0 0o 0 1 1
12 0 ¢] 0 0 1 0 0 o 0 1
13 0 0 0 0 0 1l 0 0 o 0
14 0 0 0 0 0 0 1 o o 1
15 o 0 0 0 0 0 0 1 0 1
16 0 0 0 0 0 0 0 0 1l 1
17 0 0 0 0 0 0 0 o 0 1

%, 2

0 Ths resylt %s 01?101%910110111 (binary), or x
+X7 4+ X + X +x + X+ x4+ x4+ 1.
on :

The BCH encoder is controlled by three signals: one to
clear the encoder, one to clock data into the encoder, and
one to clock data out of the encoder. Each control signal
must be isolated from all other control signals to the BCH
encoder as well as control signals occurring on the S-100
bus and control signs to the Z-80 DART. Isolation of the
control signals is accomplished through a 74139 Dual 2 to 4
Decoder. The decoder enable input is tied to DS* linking
the decoder function directly to the 2Z2-80 DART and isolating

the decoder from any S-100 internal control functions.

50

Lt aes sk hates e

Pins Al and Bl of the decoder are tied to address lines
Al4 and Al5, neither of which are used by the 2Z-80 DART's
address decoder. Al4 and Al5 provide control over the
decoder operation independently of Z-80 DART operation.
Since the 74139 control lines (Y1l through Y3) are asserted
(low) ONLY when Al4 and/or AlS are asserted (high), the BCH
encoder is active only when address 4000, 8000, and c000
(hex) are asserted. DART operations must be disabled (Tx
disabled) because the DART will misinterpret OUT commands at
the BCH encoder address as an instruction to load its
transmit buffer.

Data is routed into the DART through DO7 of the S$-100 bus
and is not affected by DART operations. Data is routed from
the BCH encoder into the Z-100 through DIO. DIO is
multiplexed from both the BCH encoder and Z-80 DART to
insure that input data is always taken from one source at a
time.

The encoder clock and encoder clear functions are
narrowed by combining pWR* on the S$-100 bus with the
appropriate 74139 decoder output lines. The narrowed
control pulses are necessary to prevent inadvertent
triggering of the 74139 output lines when DS* changes during
transitions of Al4 and Al15. These state changes can cause
Y2 of the 74139 to momentarily go low, clearing the BCH
encoder registers which (obviously) prevents the

multiplication of the code word with the generator

51

polynomial.

Schematics:
Circuit diagrams are given for both the BCH encoder and
the control circuitry in Figures 10 and 11 on the following

pages.

Test Methodoloqy:

The BCH encoder must successfully encoded a given set
of code words for a variety of generator polynomials to be
deemed fully acceptable. The test methodology chosen
requires the BCH encoder to encode the ASCII set of
characters (the code words) using generator polynomials
varying from order 1 to order 8. Beyond order 8, it becomes
impractical for the Z-100 register set to handle the
polynomial multiplication.

A single software test routine was written to test the
BCH encoder (see appendix E). The test routine prompts the
user for the generator polynomial as an ASCII character - 30
hex. Subtracting 30(hex) from an ASCII character results in
numerics (1-9) being represented as their binary value in
the 2-100 registers. The generator polynomial entered by
the user must be set on the BCH encoder using the

appropriate dip switches.

52

B
3
&

g
heis

-
Jl‘l'l‘ LIt udils

BCH Encoder CIr

v
ve
v:

zrs
rzs

Note:

Data is clocked into the
encoder via 0@7. High order
bit enters and exits first.

Figure 10 -~ BCH Encoder Control Circuitry

53

o=

TP T T
1 "T‘lilﬁli"

@® - Cleer Erceder
@ - Clesk dara ime Erooder

fote: All resistors are 1K ohn.

Figure 11 - BCH Encoder

54

AL

bR

B

). S

Ty —— d .
3 O FIL e L I e L O S]

Once the generator polynomial has been entered into the
computer by the user, the computer will prompt the user for
the value of n-k (or the order of the generator polynomial).
With this information the computer will format its registers
to conduct the polynomial multiplication.

Next, the computer prompts the user for a ASCII
character (the source word). After the source word is
entered, the computer generates the code word using a
software routine and displays the code word on the screen.
Then the computer sends the source word through the BCH
encoder, padding the source word with the appropriate number
of zeros. The code word received from the BCH encoder is
displayed on the screen directly under the code word
generated by the computer. If the two code words are
identical, the BCH encoder worked correctly for that source

word.

Test Results:

Three generator polynomials (1001, 10001, and 111010001
- binary) were selected to test the BCH encoder. Source
words were picked at random from the keyboard. In all cases

the encoder worked perfectly.

s s:
The linear feed-forward shift register chosen to

implement the BCH encoder performs extremely well. The BCH

55

encoders performance remains stable at the data rates needed

to interface to a 2-100 computer.

56

AR

L e

Introduction:

The counterpart to the BCH encoder is the BCH decoder.
The decoder receives the code word after the code word has
been transmitted over free space from the encoder. The
decoder is responsible for correcting any errors in the code
word (up to a specified limit) that might have occurred
during transmission, and decoding the corrected code word to
produce the original transmitted source word. Chapter five
describes the nature of a BCH decoder, the circuitry used to
build a BCH decoder, and the test methodology used to test

the final product.

Background:

A BCH code word is generated by selecting a source word
and multiplying the source word by a given generator
polynomial to produce the code word. Decoding the code word
uses the same generator polynomial to divide the code word,
resulting in the original source word as the quotient of the
division.

A problem arises, however, when the transmitted code
word is received with an error in it. The error in the

code word can cause a different quotient (and hence a

57

different source word) to be produced by the decoder.
Fortunately, the decoder can detect when the code word is
erroneous by looking at the remainder of the division
process. If no error is present when the code word is
received, the remainder will always be zero. If an error is
present the remainder will always be greater than zero. The
remainder of the division process is known as the syndrome
and is the length of the order of the generator polynomial
(n-k). The only time the decoder will fail to detect an
error in the received code word is when the errors
introduced by the communications channel into the
transmitted code word produce a different, but correctly

encoded, source word.

Calculating the Syndrome:
For cyclic codes (such as the BCH code), the syndrome

is determined by:

where:
S(x) = the code word

R = the remainder after dividing by g(x)

9(x)

V(x) = the received code word

Note, however, that the received code word can be

written as the transmitted code word exclusive-ored to an

58

error polynomial (exclusive-or denoted as a + sign):

S(x) = Ry,,[e(x) + C(x)]

S(x) = Ry,le(x)] + Ry, [C(x)]

S(x) = Rgm[e(x)] + 0
(1) 8(x) = Ry,,[e(x)]

where:

e(x) = error polynomial

C(x) = transmitted code word

(Blahut, 1984:99)

Equation 1 shows that all the syndromes for a cyclic
code can be found by dividing all possible error polynomials
by the generator polynomial. Each resulting quotient after
the division becomes the syndrome for the particular error
polynomial.

For example, choosing the (15,7) two error correcting

8 7

BCH code with a generator polynomial of x° + x' + X+ %+ x
+ 1 yields the following table of syndromes for the given

error polynomials:

59

") " K ~ RO
SRS T I

Table 4 - Syndromes for a (15,7) BCH Code

Error Polynomial

Syndrome Polynomial

0000000000000001
0000000000000010
0000000000000100
0000000000001000
0000000000010000
0000000000100000
0000000001000000
0000000010000000
0000000100000000
0000001000000000
0000010000000000
0000100000000000
0001000000000000
0010000000000000
0000000000000011
0000000000000101
0000000000001001
0000000000010001
0000000000100001
0000000001000001
0000000010000001
0000000100000001
0000001000000001
0000010000000001
0000100000000001
0001000000000001
0010000000000001
0100000000000001
0000000000000110
0000000000001010
0000000000010010
0000000000100010
0000000001000010
0000000010000010
0000000100000010
0000001000000010
0000010000000010
0000100000000010
0001000000000010
0010000000000010
0100000000000010
0000000000001100

0000000000000001
0000000000000010
0000000000000100
0000000000001000
0000000000010000
0000000000100000
0000000001000000
0000000010000000
0000000011010001
0000000001110011
0000000011100110
0000000000011101
0000000000111010
0000000001110100
0000000000000011
0000000000000101
0000000000001001
0000000000010001
0000000000100001
0000000001000001
0000000010000001
0000000011010000
0000000001110010
0000000011100111
0000000000011100
0000000000111011
0000000001110101
0000000011101001
0000000000000110
0000000000001010
0000000000010010
0000000000100010
0000000001000010
0000000010000010
0000000011010011
0000000001110001
0000000011100100
0000000000011111
0000000000111000
0000000001110110
0000000011101010
0000000000001100

60

Y

Table 4 Continued
Syndromes for a (15,7) BCH Code

Error Polynomial

Syndrome Polynomial

0000000000010100
0000000000100100
0000000001000100
0000000010000100
0000000100000100
0000001000000100
0000010000000100
0000100000000100
0001000000000100
0010000000000100
0100000000000100
0000000000011000
0000000000101000
0000000001001000
0000000010001000
0000000100001000
0000001000001000
0000010000001000
0000100000001000
0001000000001000
0010000000001000
0100000000001000
00000000001120000
0000000001010000
0000000010010000
0000000100010000
0000001000010000
0000010000010000
09001000000120000
0001000000010000
0010000000010000
0100000000020000
0000000001100000
0000000010100000
0000000100100000
0000001000100000
0000010000100000
0000100000100000
0001000000100000
0010900000100000
0100000000106000
0000000011000000

0000000000010100
0000000000100100
0000000001000100
0000000010000100
0000000011010101
0000000001110111
0000000011100010
0000000000011001
0000000000111110
0000000001110000
0000000011101100
0000000000011000
0000000000101000
0000000001001000
0000000010001000
0000000011011001
0000000001111011
0000000011101110
0000000000010101
0000000000110010
0000000001111100
0000000011100000
0000000000110000
0000000001010000
0000000010010000
0000000011000001
0000000001100011
0000000011110110
0000000000001101
0000000000101010
0000000001100100
00000000111211000
0000000001100000
0000000010100000
0000000011110001
0000000001010011
0000000011000110
000000000011121201
0000000000011010
0000000001010100
0000000011001000
0000000011000000

61

Table 4 Continued
Syndromes for a (15,7) BCH Code

Error Polynomial

Syndrome Polynomial

I

0000000101000000
0000001001006000
0000010001000000
0000100001000000
0001000001000000
0010000001000000
0100000001000000
0000000110000000
0000001010000000
0000010010000000
0000100010000000
0001000010000000
0010000010000000
0100000010000000
0000001100000000
0000010100000000
0000100100000000
0001000100000000
0010000100000000
0100000100000000
0000011000000000
0000101000000000
0001001000000000
0010001000000000
0100001000000000
0000110000000000
0001010000000000
0010010000000000
0100010000000000
0001100000000000
0010100000000000
0100100000000000
0011000000000000
0101000000000000
0110000000000000

0000000010010001
0000000000110011
0000000010100110
0000000001011101
0000000001111010
0000000000110100
0000000010101000
0000000001010001
0000000011110011
0000000001100110
0000000010011101
0000000010111010
0000000011110100
0000000001101000
0000000010100010
0000000000110111
0000000011001100
0000000011101011
0000000010100101
00000000600111001
0000000010010101
0000000001101110
0000000001001001
0000000000000111
0000000010011011
0000000011111011
0000000011011100
0000000010010010
0000000000001110
0000000000100111
0000000001101001
0000000011110101
0000000001001110
0000000011010010
0000000010011100

62

the table above, that for a known BCH code all given error

It should become clear, from the exhaustive example in

al

polynomials have a unique syndrome. The BCH decoder can
determine the error pattern of the received code word by
matching the syndrome of the received code word to the
syndromes corresponding error polynomial. Once the error
polynomial is known, the received code word can be corrected
by exclusive-oring the error polynomial to the received code
word. The decoder will take the corrected received code
word and decode it to yield the original source word and a

syndrome composed solely of zeros.

D. DECODER CIRCUITRY

The BCH decoder can be easily implemented using simple
circuits from the family of finite impulse response (FIR)
non-recursive digital filters. For the purpose of this
thesis, an internal Xor circuit was choosen to ease the
implementation of the feedback gate. The internal Xor
circuit requires one additional chip to form the feedback
gate while the external Xor circuit requires enough chips to
form a gate at each point of feedback in the generator
polynomial. An example of an internal xor FIR circuit,

8 7 6 4

using x + x' + X’ + X" + X + 1 as the generator polynomial

is given in figure 12.

63

W S b M- P LB W Tal T e

Input Output

Figure 12 - FIR Dividing Circuit

An example of the decoder operation is given below.
For the example, an ASCII "a" is encoded to yield
100111110110001 (binary) as the input polynomial. The
generator polynomial (both for encoding and decoding) is
given as ¥ + x + x*+ x* + x + 1. The first 8 bits of the
code word are clocked into the decoder with the feedback
gate closed. The next seven bits are also clocked in the
decoder with the feedback gate close, but each resulting bit
is saved by the CPU to form the decoded word. When the last
bit of the result is stored in the CPU, the syndrome
(remainder) of the division is residing in the registers of
the decoder. The syndrome is clocked into the CPU by
opening the feedback gate, and entering zeros into the input

of the decoder. A total of 8 bits must be clocked out of

64

JR\

L

IR

T

LR

—r

the decoder to form the complete syndrome. Note that high
order bits enter the decoder first and leave the decoder

first.

Table 5 - Register States for Division

x
o
x
N
x
w
x
-
x
(S
b
()]
x
~

Input R8 Output

OFHOOOKFRHROKFRHKHKHKMOOK
COOOFOFKRHKEEPBMHFIHEOORO
COOHOMKMNRKERPRROOKROO
COFRONRPHKHHEKHMOOKMOOO
OMRONKMPRIMEEHEMNOOFOOOO
OCOHHKMHROOMOOHOOOOO
OMNKHRMHOOMHOOKROOOOOO
OrRHOOOMFONOOOOOOO
OMOOOOFKFHOOOOOO0OOO
OHOOOOKHKHOOOOOOOO

Control Circuitry:

The BCH decoder is controlled by four signals: one to
clear the decoder, one to clock data into the decoder with
the feedback gate closed, one to clock data into the decoder
with the feedback gate opened, and one to clock data out of
the decoder. Each control signal must be isolated from all
other control signals to the BCH decoder. Isolation of the
control signals is accomplished through a 74139 Dual 2 to 4

Decoder. The decoder enable input is tied to DS* linking

65

K

ot lids oot S i B A i AL T e BT e W e e SR, et e AREY S - eemm o

the decoder function directly to the Z-80 DART and isolating
the decoder from any S~-100 internal control functions.

Pins Al and Bl of the decoder are tied to address lines
Al4 and Al15, neither of which are used by the Z-80 DART's
address decoder. Unlike the encoder control, the decoder
controller uses all state combinations of Al4 and Al5 to
provide contrcl over the decoder operations. Since the
74139 control lines (YO through Y3) are asserted (low) for
all state combinations of Al4 and Al15, the BCH decoder is
active when addresses 0000, 4000, 8000, and c000 (hex) are
asserted. DART operations must be disabled (Tx disabled)
because the DART will misinterpret OUT commands at the BCH
decoder address as an instruction to load its transmit
buffer. The DART will end up loading its buffer with
erroneous data and transmitting it to the final bit sink.

The BCH decoder function is not affected whether the
DART transmitter is disabled or not. Data is routed into
the decoder through DO7 of the S-100 bus and is not affected
by DART operations. Data is routed from the BCH decoder
into the Z-100 through DIO. DIO is multiplexed from both
the BCH decoder and Z-80 DART to insure that input data is
always taken from one source at a time.

The decoder clock and decoder clear functions are
narrowed by combining pWwR* on the S$-100 bus with the
appropriate 74139 decoder output lines. The narrowed

control pulses are necessary to prevent inadvertent

66

LIk

triggering of the 74139 output lines when DS* transitions
during changes Al4 and A1l5. After control lines Y1 and Y2
(clock with gate closed and clock with gate open
respectively) are narrowed, they are combined through a 7406
dual input And gate resulting in a single clock pulse

transmitted to the BCH decoder at any given time.

Schematics:
Schematics of the BCH decoder and BCH decoder

controller are found in Figures 13 and 14 respectively.

Test Mehodology:

Testing of the BCH decoder is conducted in two phases.
The first phase determines whether the BCH decoder is
decoding a code word to give the correct source word. The
second phase determines whether the BCH decoder is
generating the correct syndrome of a given generator
polynomial and error polynomial. Each phase of testing is

describe in greater detail in the paragraphs below.

Phase One: A software routine is written that prompts
the user for the generator polynomial, n-k, and k. The
generator polynomial is entered by the user as the bitwise
representation of an ASCII character - 30h. For example,

3

the bitwise representation of the generator polynomial x° +

1 is 1001. This amounts to the ASCII character 9 - 30h (in

67

®, ’65
WS GF e PR -
] h. 4 H 4 u—J
] i
o] B8
-~ B P oo
/7 o Oox
i ¥ %}

Y

@® - cleck Duta Into Decomr

: w © = Tiod o high evder bit of Seneritor Polynanial
fota: Data out ;-l-nﬁ-@

Figure 13 - BCH Decoder

68

- l‘ e

\ .

Wioh Oreer 1488
Bic of

Sonerator
Pelynanisl

-

o
L

gl L)

Feadback —

i
s =

:— »

5 -

S50 s

E =
pDBIN —C5 :’»—I-E

Clear

Clevik Data, Gate Closed

Clock Deta, Oste Open

rrrri

rrzxx

High order bit enters First and exits first.

Figure 14 - BCH Decoder Control Circuitry

69

.

binary: 01101001 - 01100000). The generator polynomial
chosen by the user must be enter as its bitwise value on the
decoder dip switches. Values of n-k and k are entered by the
user as their actual numeric value (the software will
automatically convert to binary for internal usage).
After the generator polynomial, n-k, and k are entered,
the software will prompt the user for a source word (any
ASCII character will do as long as k = 7). The software -
encodes the source word internally using the generator
polynomial to yield the code word. The code word is sent to
the decoder for decoding, yielding the source word upon -
completion. The original source word, the binary
representation of the code word, the binary representation
of the decoded code word, and the final ASCII representation
of the quotient (new source word) are displayed for
comparison. Both the original and new source word must be

identical to indicate the proper operation of the decoder.

The software written for phase one can be found in appendix

F.

Phase Two: A second software routine is written that

7

uses a BCH (15,7) two error correcting code with XX+ x4+

x®* + x* + 1 as the generator polynomial. The software
generates all the error polynomials and concomitant
syndromes for the given BCH code and displays them as a hard

copy on the printer.

KL

A third software routine is written that uses the same

T+ x® + x*+

BCH (15,7) two error correcting code and x® 4+ x
1 as the generator polynomial. Once again, the software
generates all the error polynomials associated with the BCH
code. Then the software sends each error polynomial to the
decoder for decoding. Each resultant syndrome for the
decoding process is stored with its concomitant error
polynomial. The final 1list of error polynomials and
syndromes are sent to a temporary file that can be érinted
as a hard copy. This final hard copy must match the
original printed copy generated from the second software
routine to indicate the proper operation of the decoder.

The software written for phase two can be found in appendix

G.

A final demonstration of both the decoder and encoder
working as a complete product is described in chapter six.
The final demonstration uses the syndrome created by the
decoder to correct errors which ultimately yields the

correctly decoded source word.

Test Results:

The decoder worked well for all generator polynomials
chosen in Phase One. All syndromes for the (15,7) two error
correcting BCH code generated by the decoder matched those

generated in software during Phase Two.

71

[ty adiayiaen

a0

Conclusjons and Recommendatijons:

The decoder, as implemented, will work well for any
cyclic code of order 23 or less. Because the Z-100 has 8
and 16 bit registers, it is most convenient to use codes of

these lengths.

72

s i d W esis rt

jon:

Introduction: It is desirable, especially to those who
might want to use the encoder and decoder in a follow-on
effort, to prove that the final system design works
properly. To this end, a "demonstration" software module
was written which exercises the final system (comprised of
the encoder hardware, decoder hardware, and DART interfaces)
in a manner consistent with a realtime encoding and decoding
problem. The problem, in essence, is to take an ASCII
character, encode it on one computer, send the encoded word
to a second computer, have the second computer decode the
code word, display the result, and send a request for
another encoded word back to the first computer, where upon
the process starts over again. The demonstration is limited
to the (15,7) two error correcting BCH code that has been

discussed throughout this document.

System Configuration: The system is configured as

shown in Figure 15. Only two computers are needed, one for
the encoder and one for the decoder, because the
communications channel is not simulated independently of the

encoder function for the demonstration.

73

The encoder host computer's AUX output is tied to the
DART input of the decoder board. The encoded word is sent
over this link. The decoder host computer's AUX output is
tied to the DART input of the encoder board. The request by
the decoder for another encoded word is sent over this link.
Although the system could be configured from DART to DART
for both links, the current configuration proves that ANY
computer with a serial output set at 9600 Baud, no parity,
and one stop bit, can effectively communicate with the
encoder and decoder boards. This means that the final
system configuration can use any available PC computer as

the host computer for the channel simulator.

DART Part DART Part
8,0 00008 L
||Jl'll sanss lUl-n senes
[AX Port fAlX Port l
T
BCH Encoder BCH Decoder

Figure 15 - System Configuration for Demonstration

74

Demonstration Software: The demonstration software

written to exercise the encoder and decoder can best be
understood in a step by step approach. The encoder and

decoder are treated separately in the paragraphs below:

Encoder:

Step One: 1Initialize the DART to 9600 Baud,
one stop bit, and no parity.

Step Two: Prompt the user for a source word.
The user may enter any ASCII character on the keyboard.

Step Three: Encode the character and display
the code word on the screen.

Step Four: Prompt the use to enquire of the
users desire to add a error polynomial. If the answer is
yes, accept an error polynomial from the screen. If the
answer is not jump to step Six.

Step Five: Exclusive or the error polynomial
to the encoded word.

Step Six: Transmit the final encoded word.
Then wait for a request for another encoded word before

repeating the process.

Decoder:
Step One: 1Initialize the DART to 9600 Baud,
one stop bit and no parity.

Step Two: Generate the syndromes for the

75

i

.

(15,7) BCH two error correcting code and store the results
in a look-up table.

Step Three: Receive an encoded word from the
encoder.

Step Four: Decode the encoded word. If no
syndrome results, display the transmitted word, and the
final result (then skip to step seven).

Step Five: Display the resulting syndrome on
the CRT, then use the syndrome and the look-up table to find
the error polynomial. Exclusive-or the error polynomial to
the transmitted word to form the corrected transmitted word.

Step Six: Decode the corrected transmitted
word and determine if there is a syndrome. If there is a
syndrome, display an error message and skip to step eight.

even: Display the final result on the
CRT.
Step Eight: Transmit a request for another

encoded word to the encoder. Go to step three.

Follow-On Thesis Effort:

As discussed in the overview of chapter one, several
follow-on thesis efforts are required in order to meet the
needs of the Foreign Technology Division. As part of the
follow-on effort, and of immediate interest, is the
simulation of a communications channel in software. The

simulated channel should minimally address random gaussian

76

I

and Markov burst error noise patterns. As an aid in
understanding the level of effort involved in developing the
simulated communications channel, the following list of
tasks to complete has been compiled.

A. Research the selected communication channels and
associated noise (random gaussian and Markov burst error) to
determine the probability of bit error (and bit error
pattern) for each communications channel.

B. Select a computer and programming language suitable
for writing the channel simulation programs needed. (I
would recommend a Z2-248 as the computer and C as the
programming language).

C. Write the software routines that will ultimately
simulate the communications channel.

D. Interface the selected computer and the software to
simulate the communications channel with the existing
encoder and decoder.

E. Write any driving routines that are required to
provide a completely functional system.

F. Write your thesis, and demonstrate the final system

to your thesis advisory board.

77

hal al..

.l

!

B A

N

L

Appendiz A: 747 i w

AR R R AR AR R R R R AR R R AR R AR AR A AR AR AR R R AR AR AR AR AR AR Ak kR kA k&
STEP ONE - DRIVER ONE

we wo wo wp

Accepts a character from the keyboard and transmits it
;jout the output port to the input port. Receives the
;character from the input port and displays the character on
ithe screen. A visual check of the screen will show whether
;the transmission is handled correctly.

L2 AR 2222 222222222222 22 2222222222 22222222232 2232220 2

Define constants

we we we we we

bell equ 07h ;ASCII char for bell
cr equ 0dh ;ASCII char for ;
sRARRRRRRRRRRARRRARARRR AR AR R AR A AR A AR A Ak bk kA khhkkk
stack_area segment stack ;define the stack
;area

db 40 dup(?) :set aside room for stack
stack_area ends
data_area segment ;define data area
outco db o0h
inco db 0Ch
char db 00h
mych db 41h
data_area ends

ARRRRRRRRRRARRARRRRKRERRARRRRR R KRR AR AR A A AR AR AR A kAR kA kdkk

* we =

LAB_1 segment ;define segment area for program
main proc far
assume cs:LAB_1, ds:data_area,

ss:stack_area

;set all register to zero (makes it easier to debug)

begin: sub ax,ax ;set ax to zero
sub bx,bx sset bx to zero
sub cxX,CcX ;set cx to zero
sub dx,dx ;set dx to zero

set DS reg to point to the current data area

“»e we “

mnov ax,data_area :point to data_area
mov ds,ax :DS now points to
;sdata_area

78

el

)

| =

sbegin partl of lab - initialize data ready and data request

slines
mov dl,01h ;joutput port address
in al,dx :clear data ready
mov dl,03h :input port address
in al,dx ;clear data request

. we

:1load the character to transmit into bx, and set data
request ;high

mov bl,mych ;character in bx
mov dl,03h ;input port address
out dx,al ;set data request
;clear data ready
nov outco, 08h ;set out count number
mov inco, 08h ;set in count number
sbegin output loop
3 Outlp: mov al,outco ;load out count
snumber
cmp al,o0h ;jcompare to zero
jz Inlp ;jump to inloop
mov dl,o00h soutput port
] in al,dx icheck if data
1 ;request
;is set
and al,osh ;smask for third bit
cmp al,o08h ;is data request
shigh?
jne outlp ;wait until data
:request goes high
mov al,bl :load al with bit
out dx,al ;data rdy high
;sdata req low
shr bl,1 ;shift bl right one
;bit
mov cl,outco s1load out count
;number
dec cx ;dec by one
mov outco,cl sreplace count number i
;Begin inloop:
r’
Inlp: mov dl,o02h :input port
in al,dx ;get some data
and al,oSh smask for rdy and i
;data

L oy N ..
PP JURE DR SO T P S

cmp

and
mov

mov
shr
mov
or

mov
cmp
je

dec
mov

mov
out

jmp

al,o2h
Inlp
al,01h
cl,char

ch,al
cx,1
char,cl
cl,al
al,inco
al,olh
Prnt

al

inco,al

dl,03h
dx,al

Outlp

:less than 2?

;wait for data ready
;get data bit

;put character into
;CX

sput bit into cl
;shift bit into char
;put character back
;append data bit
;enough bits yet?
;last bit?

:yes, go print
:decrease incount by
;one

:store the count
;input port

;set data request,
;clear

;data ready

:jump to outloop

Time to print the received character

H
H
;
Prnt:

;All do,
; Exit3:

mov
mov
int

dl,char
ah,02h
21h

so exit from program

function 4c

;with return

program
:

main
LAB_1

mov ax,4coo0h

int 21h

endp
ends

end main

80

:+dl has character

iuse DOS

1to exit from

:end assy

A e Y Ty Ty e
STEP ONE - DRIVER TWO

Take a single character and transmit it out the output
port to the input port. Receive the character from the
input port and check the character internally to determine
if the received character matches the sent character.
;Report the number of characters sent and the number of
srerrors detected to the CRT. Repeat the process
;indefinitely. (Note that an overflow condition will arise
;when the number of bits sent equals about 25k bits.
;Running the program four times consecutively amounts to
;stransmitting over 10M bits.)

we We We W9 Wa We W

-

LA A AR 22 R 2222222 2222222222222 22222222 22222222222 222X 2

Define constants

e We Wwe We W

bell equ 07h ;ASCII char for bell

cr equ 0dh sASCII char for carriage
;return

1f equ O0ah +ASCII char for line

feed

- -

IR 2222222222222 22222222222 222222222 2222222223222 2222X2 2

e

stack_area segment stack sdefine the stack area
db 40 dup(?) ;set aside room for

stack

stack_area ends

data_area segment ;define data area

msgl db ‘and','$’

msg2 db ‘cr,'S$!

outco db o0h

inco db Oooh

char db 00h

mych db 41h

good dw 0000h

bad dw 0000h

data_area ends

RAZ 222 2222222222222 22222 X2 2222222222 2222222222 222222 R

we wme w»

LAB_ 1 segment ;define seyment area for
program
main proc far

assunme cs:LAB 1, ds:data_area,

ss:stack_area

81

.

K

e wo wo

begin: sub ax,ax
sub bx,bx
sub cX,Ccx
sub dx,dx

“e W we

mov ax,data_area

mov ds,ax
data_area

set all register to zero (makes it easier to debug)

;set ax to zero
;set bx to zero
1set cx to zero
1set dx to zero

set DS reg to point to the current data area

;point to data_area
:DS now points to

;begin partl of lab - initialize data ready and data request

:lines
mov dl,01h
in al,dx
mov dl,03h
in al,dx

.
’

;joutput port address
;clear data ready

;input port address
;clear data request

:load the character to transmit into bx, and set data

request ;high

loopl: mov

bl,mych ;character in bx
mov dl,03h ;input port address
out dx,al :set data request
;clear data ready
mov outco, 08h ;set out count number
mov inco,08h ;set in count number
:begin output loop
Outlp: mov al,outco ;load out count number
cmp al,oo0h ;scompare to zero
jz Inlp :jump to inloop
mov dl,00nh ;output port
in al,dx :check if data request
;is set
and al,o08h ;mask for third bit
cmp al,o8h ;is data request high?
jne outlp ;wait until data request
;goes high
mov al,bl :load al with bit
out dx,al :transmit bit, data
s ready

sgoes high, data req.

:low

B T

shr bl,1 ;shift bl right one bit
mov cl,outco ;load out count number
dec cx ;dec by one
mov outco,cl ;replace count number
:Begin inloop:
Inlp: mov dl,02h ;input port
in al,dx ;get some data
and al,0Sh ;mask for rdy and data
cmp al,o02h rless than 2?
jl Inlp ;wait for data ready
and al,o01h iget data bit
mov cl,char ;put character into cx
mov ch,al ;put bit into cl
shr cx,1 ;shift bit into char
mov char,cl ;put character back
or cl,al ;append data bit
mov al,inco ;enough bits yet?
cmp al,O01lh slast bit?
je Prnt :yes, go print
dec al ;decrease incount by one
mov inco,al :store the count
mov dl,o03h :input port
out dx,al ;8et data request, clear
;sdata ready
jmp Outlp ;jump to outloop
:Time to print the results.
Prnt: mov dl,char ;dl has character
mov al, mych ;al has sent character
cmp al,dl ;compare characters
je upgd ;same? inc good count
mov cx,bad :different?
inc cx sinc bad count
mov bad,cx ;store bad count
jmp pt ;print results
upgd: mov cx,good ;get the current good
;count
inc cx ;increment the good
;count
mov good, cx ;store the good count
pt: mov bx,good splace the good count in
;bx
call binidec ;call to convert to
;decimal
mov dx,offset msgl sinsert and in
;output
mov ah,09n :DOS call to print
83

IR A AR AR s RSS2SR 2222222223 2222222 22222222)

int
mov

call
mov

mov
int
jmp

:Binidec program

shhkhkkhhkhhhhhkhhhhhhhhkhhkhhhhkhhhA kAR R AR A AR Ak hhhhkdhik

binidec

dec_div

dec_div
binidec

;All do, so exit from program

exit3:

o
’

proc
push
push
mov
call
mov
call
noev
call
mov
call
mov
call
Pop
pop
ret

proc
mov
cwd
div
nov
mov
add
mov
int
ret

endp
endp

mov
int

:string

21h
bx,bad :place bad count into bx
binidec ;convert bx to binary

dx,offset msg2 ;output a
;carriage return

ah,09h

21h

loopl ;repeat the process

number in bx

near
bx

cx
cx,100004
dec_div
cx,1000d
dec_div
cx,100d
dec_div
cx,104
dec_div
cx,1d
dec_div
cx

dx

near
ax,bx

cx
bx,dx

dl,al

dl,30h

ah,02h ;display character
21h

ax,4c00h ruse DOS function 4c
21h ;to exit from program !ﬁ

84

main endp
LAB_1 ends
end main send assy

85

Al

n.

W

AAR AR AR RR AR R AR RN R R RN R RN RN IR IR R R AR ARk Ak kkhkkk
STEP TWO - FIRST Z-100

we wo we “wo

Accept a character from the keyboard, echo it to the
;screen, and transmit the character out the output port to
:the second Z-100. Watch the input port to see if the data
:ready line goes high. When the data ready line goes high,
;receive the character from the input port and echo the
;character to the screen. It should be the same character
;as the one initially sent. Repeat this process
sindefinitely.

12222223 2222222222322 2222222222222 2223232222222 2222222222

Define constants

e We We W

bell equ 07h +ASCII char for bell

cr equ odh ;ASCII char for carriage
return

1f equ Oah ;ASCII char for line
feed

(2 : 82 2222222222222 2222222222222 2222222222 2322222 2222222222

we we we e

stack_area segment stack ;define the stack area
db 40 dup(?) ;set aside room for

stack

stack_area ends

data_area segment ;define data area

outco db 00h

inco db 00h

char ab 00h

mych db 41h

data_area ends

1222222222 2222222 22222222 222222222222 2222222222222k R L]

® we wg we

’
LAB_1 segment ;define segment area
main proc far

assume cs:LAB_1, ds:data_area,

ss:stack_area

.
[

;set all register to zero (makes it easier to debug)

’

begin: sub ax, ax :set ax to zero
sub bx,bx ;set bx to zero
sub cX,cx 1set cx to zero
sub dx,dx iset dx to zero

86

set DS reg to point to the current data area

mov ax,data_area ;point to data_area
mov ds, ax :DS now points to
data_area

sbegin partl of lab - initialize data ready and data request
lines

.
[

mov dl,01h sjoutput port address
in al,dx ;clear data ready
mov dl,03h ;input port address
in al,dx ;clear data request

[
’

;load the character to transmit into bx, and set data
reqguest high

loopl: ah,01h ;read char and echo
int 21h :DOS call

mov bl,al :character in bx
mov outco, 08h ;set out count number

:begin output loop

Outlp: mov dl1,00h ;joutput port

in al,dx icheck if data request
1is set

and al,osh ;mask for third bit

cmp al,osh :is data request high?

jne outlp swait until data request
igoes high

mov al,bl ;load al with bit

out dx,al ;transmit bit, data RDY
;goes high, data req.

:low

shr bl,1 :shift bl right one bit

mov cl,outco :load out count number

dec cxX :dec by one

nmov outco,cl ;replace count number

cmp cl,00h :all done?

jne outlp :no, transmit next bit

mov inco, 08h rinitialize incount to 8

Jmp inlp :go get a character

inloop:

mov dl,03h ;set data request
out dx,al ;and clear data ready

87

Wt:

UU we we wp

rnt:

mov
in

and
cmp
j1

and
moVv
mov
shr
mov
mov
cmp
je

dec
mov

jmp

mov
mov
int
mov

jmp

dl1,02h
al,dax
al,os5h
al,o2h
Wt
al,olh
cl,char
ch,al
cx,1
char,cl
al,inco
al,0lh
Prnt

al
inco,al
Inlp

dl,char
ah,02h
21h

outco, 08h

loopl

;All do, so exit from program

.
4

exit3:

main
LAB 1

mov
int

endp
ends
end

ax,4c00h
21h

main

:input port

;get some data

;mask for rdy and data
s;less than 2?7

iwait for data ready
;get data bit

;put character into cx
;put bit into cl
:shift bit into char
;put character back
;senough bits yet?
slast bit?

;yes, go print
;decrease incount by one
istore the count

;jump to inloop

Time to print the received character

;41 has character

;initialize outcount
sget another character

suse DOS function 4c
;to exit from program

;end assy

RRARRRRR AR R R AR R R AR R AR A AR A AR AR R A AR AR AR A AR AR AR AN ARk AR b h
STEP 2 -~ SECOND Z-100

Receive a character from the input port, echo it to
the screen and output this character to the output port.
Repeat the process indefinitely.

RERRRRRRRRRARARRRRERRARRARRRRRARR AR AR RRARREARAR AR AR AR AR ARk kR
Define constants

W WMe e Wy e WE We WO W Wo

bell equ 07h ;ASCII char for bell

cr equ 0dh tASCII char for carriage
;return

1f equ Oah ;ASCII char for line

feed

2222 S22 222 222222 22222 X223 2222 2222222322222 2222222222232

we we %o w

stack_area segment stack ;define the stack area
db 40 dup(?) :set aside room for

stack

stack_area ends

data_area segment idefine data area

outco db o0h

inco db ooh

char db OOh

mych db 41h

data_area ends

H
X322 222 e 22222222222 22222 2232222222222 22222222222

o we W

LAB_1 segnment ;define segment area
main proc far

assume cs:LAB_1, ds:data_area,
ss:stack_area

[
’

:set all register to zero (makes it easier to debug)

begin: sub ax,ax iset ax to zero
sub bx,bx ;set bx to zero
sub CcX,CXx ;8et cx to zero
sub dx,dx :set dx to zero

set DS reg to point to the current data area

*e wo wo

nov ax,data_area
nov ds,ax

spoint to data_area
;DS now points to
data_area

89

Aot ey T ity A 3 A TN RO A PR RO AN gy s S N

:bzgin partl of lab - initjialize data ready and data request
slines

*
’

mov d1,01h ;output port address
in al,dx ;jClear data ready

mov dl,03h ;input port address
in al,dx ;clear data request

.
’

:load the character to transmit into bx, and set data
request ;high

’

mov inco,08h :set out count number
jmp inlp ;go get a character
:begin output loop
outlp: mov dl,00h ;joutput port
in al,dx scheck if data request
:is set
and al,osh ;mask for third bit
cmp al,osh :is data request high?
jne outlp ;wait until data request
igoes high
mov al,bl sload al with bit
out dx,al :transmit bit, data
;ready high, data req
;low
shr bl,1 ;shift bl right one bit
mov cl,outco :load out count number
dec cx ;dec by one
mov outco,cl sreplace count number
cmp cl,ooh sall done?
jne outlp ;no, transmit next bit
mov inco,08h sinitialize incount to 8
Jmp inlp ;go get a character
;Begin inloop:
Inlp: mov dl,03h :set data request
out dx,al sand clear data ready
wt: nov dl,o2h ;input port
in al,dx :get some data
and al,o5h ;smask for rdy and data
cmp al,o2h sless than 2?
j1 wt ;wait for data ready
and al,o1lh ;get data bit
mov cl,char ;put character into cx
90

;put bit into cl

;shift bit into char
;put character back
sienough bits yet?

slast bit?

;yes, go print

sdecrease incount by one

;store the count
;jump to inlp

;dl has character

;initialize outcount

suse DOS function 4c
ito exit from program

mov ch,al
shr cx,1
mov char,cl
mov al,inco
cmp al,01h
je Prnt
dec al
mov inco,al
jmp Inlp
;Time to print the received character
Prnt: mov dl,char
mov ah, 02h
int 21h
mov outco, 08h
nov bl,char
jmp outlp
iAll do, so exit from program
exit3: mov ax, 4cO0h
int 21h
main endp
LAB_1 ends
end main

;end assy

100 i) £ T Vit Yk e A e B B rE Myt e

Appendix B - Protocol Software

RRA R AR AR AR R AR AR R AR RN AR R AR R R AR AR RN AR AR ARk R Ak Ak hhhhk
s PROTOCOL 2

-e

Protocol 2 is performs the same function as STEP 2-1 -
sFIRST 2~100. That is, it transmits a character to another
712-100 and receives that character back. Both the
stransmitted character and the received character are
;displayed on the screen so that they can be compared.
;Protocol 2 adds protocol in the form of software checks to
;insure that the transmission occurs without error. The
soriginal transmitted character is outputted twice to insure
;that the data ready line is clocked high. After eight bits
shave been transmitted (one character), Protocol two will
:check to see if all eight bits have been received by the
;second 2-100. Protocol 2 does this by waiting a specified
stime,then sampling the data request line. If the data
:request line is high all eight bits of the word were not
ireceived. Protocol two then prints the message "Trapout"
;indicating that it is about to repeat the original
stransmission. Protocol two will again wait a specified
itime giving the second 2-100 sufficient time to reset
;itself for a new character, then the character is
;retransmitted.

H When Protocol two is in the receive mode, it checks
'the data ready line twice to insure that the data is stable
son the data line. Protocol two will count the number of
;bits it receives, and if sufficient bits are not received
:in the given amount of time it prints the message "Trapin"
sindicating that it is going to start the process of
ireceiving a character over ;again.

-e

e

3222 222222222 222222 22222223 22222222222 2222222222222 2222 L

Define constants

we %o we =

bell equ 07h ;ASCII char for bell

cr equ 0dh ;ASCII char for CR

1f equ Oah ;ASCII char for line

feed

;************a**************a*ua**a***********a*************

stack_area segment stack ;define the stack area
40 dup(?) :set aside room for

sstack
stack_area ends

L]
’

data_area segment ;define dQata area

RTINS A TR T OSE E E EN

msgl db 'Trapout','$*
msg2 db ‘Trapin','$’
msg3 db bell,cr,1£,1f
db 'I/0 at port O2h!',cr,1f,1f,'S$!
outco db 0oo0h
inco db 00h
char db ooh
nych db 41h
data_area ends

RERRRRRRRARRARRRR AR AR AR AR RR AR AR AR A AR AR RN AR AR hh

* e g w9

LAB_1 segment :define segment area
main proc far
assunme cs:LAB_1, ds:data_area,

ss:stack_area

;set all register to zero (makes it easier to debug)
begin: sub ax,ax :set ax to zero
sub bx,bx :set bx to zero
sub cX,cx :1set cx to zero
sub dx,dx :1set dx to zero

set DS reg to point to the current data area

-e ®wp we

mov ax,data_area ;point to data_area
mov ds,ax :DS now points to
data_area
;begin partl of lab - initialize data ready and data request
;lines

.
’

mov dl,01h soutput port address
in al,dx ;clear data ready

mov dl,o03h ;input port address
in al,dx ;clear data request

.
’

sload the character to transmit into bx, and set data
request ;high

loopl: nov al,51h ;locad al with the char
mov bl,al ;character in bx
mov outco, 08h sset out count number

sbegin output loop

Outlp: mov dl,o00h soutput port
in al,dx ;check if data request

93

A e e al na ke Taoite -

;was the data received?

Wait2:

waiti:

Begin inloop:

«e we o

Inlp:

P:

and

cmp
jne

in

and
cnp
jne

mov
out

shr

mov
dec
mov
cmp
jne
mov

mov

loop

mov
in

and
cmp
jne

mov

mov
int
mov

loop
jmp

mov
out
out
mnov

al,ogh
al,osh
outlp

al,dx
al,osh
al,osh
02

al,bl
dx,al

bl,1

cl,outco
cx
outco,cl
cl,00h
outlp
inco,08h

cx,0020h
wait2

dl,o00h
al,dx
al,osh
al,o8h
inlp2

dx,offset msgl

:is high

smask for third bit

:is data request high?
;wait until data request
sgoes high

:check data request
;mask for third bit

;is data request high?
;1if not, wait until it
sdoes go high

sput bit into al
stransmit bit, data
;ready high, data req
;low

;shift bl right one bit

:1load out count number
;dec by one

sreplace count number
;all done?

:no, transmit next bit
sinitialize incount to 8

Is data request still high?

;wait about twenty
;operations

joutput port

sget data request bit
;mask for data request
:is it high

ino? we're OK, go on to
sreceive the char

:data request is still

shigh

ah,09h ;180 output "trapout”
21h
cx,1000h ;wait for the other

12-100
Waitl :to reset itself
loopl ;go retransmit the char
dl,o03h :1set data request
dx,al sand clear data ready
dx,al ;again, just to be sure
cx,0000h iclear cx (the timer)

94

wWt: nov
in
and

inc
cmp

je

cmp

j1
wt2: mov

in
and

inc
cmp

je

cmp

j1

and
mov
mov
shr
mov
mov
cmp
je

dec

mov
jmp

Prob: mov
mov
mov
int
ROV

wait4: loop

jmp

H

Prnt: mov
mov
int

dl,02h
al,dx
al,05h

cx
cx,100h
Prob

al,ozh
Wt

dl,o2h

al,dx
al,oSh

cxX
€X%,100h
Prob

al,o2n
wt2

al,olh
cl,char
ch,al
cx,1
char,cl
al,inco
al,01h
Prnt

al

inco,al
Inlp

inco, 08h
dx,offset msg2

ah,09h
21h

c¢x,0200h

Wait4

P

dl,char
ah,02h
21h

95

;input port
iget some data
smask for rdy and data

;increment cx
:is time up?
iyes, jump to Prob(lem)

;less than 2?
;wait for data ready

;check for data ready
;again

;iget some data

imask for rdy and data

;increment the timer
itime up yet?
:yes, jump to Prob(lem)

;less than 2?
swait for data rdy

;get data bit

;put character into cx
;put bit into cl

:shift bit into char
;put character back
senough bits yet?

:1last bit?

;yes, go print

s;decrease incount by one

:store the count
:jump to inloop

sreinitialize inco
;print “trapin"
;using DOS call 0%h

:now wait a little bit
;1to make sure the other

:Z-100 has reinitialized

Time to print the received character

;dl has character

A N A A T

nov outco, 08h sinitialize outcount

jmp loopl
:All do, so exit from program
exit3: Rnov ax,4c00h suse DOS function 4c
int 21h :to exit from program
main endp
LAB_ 1 ends
end main ;send assy
96

AR R RN R R AR R R AR R R AR R R R R R AR RN R AR A AR AR AR AN A AR A AR AR AR AR Ak
PROTOCOL 3.ASM

[
’
[
’
[
’
o
’

Protocol 3 is virtually identical to protocol two but
;is meant to run on the "other Z-100". Protocol 3 performs
:the same function as STEP2-2.ASM. That is, it receives a
;transmitter character, echoes it to the screen, and
;transmits the character back to the first Z-100. Protocol
:3 starts its program in the receive mode. Therefore, there
;is an initial jump to the Input loop (Inlp) early in the
;program segquence.

(2222 2282222222222 222222 2222222 2222222232222 222222222

Define constants

we we W we wp

bell equ 07h ;ASCII char for bell

cr equ 0dh ;ASCII char for carriage
sreturn

1f equ Oah ;ASCII char for line

feed

e

(R i 222282222 222 22222222222 2 2 2222222232222 202232232233 222221

-

stack_area segment stack ;define the stack area
db 40 dup(?) ;set aside room for
stack
stack_area ends
data_area segment ;define data area
msgl db ‘Trapin!',cr,1f,'$!
msg2 db ‘Trapout’',cr,1£,'$’
msg3 db bell,cr,1£,1f
db 'I/0 at port O2h!',cr,1f,1£,°'S’
outco dab ooh
inco db OOh
char db 0o0h
mych db 41h
data_area ends

(2233232222222 2322222222 2222222222223 22 2222222222 22222 222222}

’
LAB_1 segment ;define segment area
main proc far

assume cs:LAB 1, ds:data_area,

ss:stack_area

set all register to zero (makes it easier to debug)

e we %o

begin: sub ax,ax :set ax to zero

97

sub bx,bx :sset bx to zero
sub cx,cx :set cx to zero
sub dx,dx :set dx to zero

set DS reg to point to the current data area

we we wo

mov ax,data_area ;point to data_area
mov ds,ax ;DS now points to
;data_area

begin partl of lab - initialize data ready and data request
lines

we “we wo we

mov dl,01h soutput port address
in al),ax ;Clear data ready

mov dl,03h ;input port address
in al,dx ;clear data request

load the character to transmit into bx, and set data
request high

~e w8 we we

mov inco, 08h ;set out count number
jmp inlp ;go get a character

begin output loop

. we we

Outlp: mov dl,o00h ;souvtput port

in al,dx ;check if data request
;is high

and al,08h ;smask for third bit

cmp al,osh ;1is data request high?

jne outlp swait until data request
sgoes high

02: in al,dx :check data request
sagain

and al,osh ;mask for third bit

cmp al,osh ;is data request high?

jne 02 :if not, wait until it
;does go high

mov al,bl :put bit into al

out dx,al ;transmit bit, data

:ready high,data req

tlow

shr bl,1 ;shift bl right one bit

mov cl,outco s1load out count number

dec cx ;dec by one

mov outco,cl sreplace count number

cmp cl,oo0h ;all done?

jne outlp ;no, transmit next bit

mov inco,08h ;initialize incount to 8

98

iwas the data received? 1Is data request still high?

waitz:

Waitl:

“s wme g

Inlp:

wta:

Begin inloop:

mov
loop

mov
in

and
cmp
jne

mov
mov
int
mov

loop
jmp

mov
out
out
mov

mov
in

and
inc
cmp

je

cmp

j1
nov

in
and

inc
cmp

je

cmp

cx,0020h
wait2

dl,00h
al,dx
al,os8h
al, 08h
inlp2

dx,offset msgl

iwait about twenty
joperations

joutput pert

tget data request bit
:mask for data request
t+is it high

ino? we're OK, go on to
ireceive the char

;data request is still

:high
ah,09h ;80 output “trapout"
21h
cx,1000h ;jwait for the other
:12-100
Waitl sto reset itself
loopl igo retransmit the char
dl,03h iset data request
dx,al ;and clear data ready
dx,al sagain, just to be sure
cx,0000h sclear cx (the timer)
dl,02h ;input port
al,dx ;get some data
al,o5h imask for rdy and data
cx ;increment cx
cx,100h iis time up?
Prob ;yes, jump to Prob(lem)
al,o2h iless than 2?
Wt swait for data ready
dal,02h ;check for data ready
;again
al,dx sget some data
al,05h smask for rdy and data
cx iincrement the timer
cx,100h stime up yet?
Prob iyes, jump to Prob(lem)
al,o2h 7less than 2?7
- 1)

b St R S RIS RS

Prob:

Wait4:

we wo

'Uso

rnt:

il

and
mov
mov
shr
mov
mov
cmp

dec

mov
jmp

mov
mov
mov
int
mov
loop

jmp

mov
mov
int
mov

Jmp

wt2

al,olh
¢l,char
ch,al
cx,1
char,cl
al,inco
al,o01h
Prnt

al

inco,al
Inlp

inco, 08h
dx,offset msg2

ah,09h
21h

cx,0200h

Wait4

P

dl,char
ah,02h
21h

outco, 08h

loopl

;All do, so exit from program

exit3:
;
main
LAB_1

mov
int

endp
ends
end

ax,4c00h
21h

main

100

;wait for data rdy

;get data bit

;put character into cx
:sput bit into cl

;shift bit into char
;put character back
senough bits yet?

:last bit?

;yes, go print

;decrease incount by one

:store the count
:junmp to inloop

sreinitialize inco
;print "trapin"
;susing DOS call 0%h

;now wait a little bit
:1to make sure the other

:Z2-100 has reinitialized

Time to print the received character

1dl has character

:initialize outcount

;use DOS function 4c
;to exit from program

;end assy

Appendix C - DART Software

RERRRRR AR R AR AR AR AR R AR R AR AR R AR AR AR AR AR R AR R AR R A ARk ko

DART_DRIVER_ONE

we we Ne we W

DART-DRIVER_ONE is used in conjunction with DART-
:DRIVER_TWO to test the performance of the DART (serial
:I/0 port) on the BCH encoder. DART_DRIVER_ONE sends a
:icharacter to the DART through the modem (J2) serial I/0
;port. J2 is configured to 9600 baud, one stop bit, no
iparity, and x16 clock. After the character has been sent,
:DART_DRIVER _ONE receives the character back through the
;same port (J2). The character received is compared to the
;character sent. After a block of 1000 characters are sent,
;the results are tabulated and the number of blocks
;transmitted along with the number of errors found are
sdisplayed on the CRT.

-e

IRRRRRARRRRRRRRRRRRRRAR R AR AR R R AR R A AR AR R AR R AR AR Ak h k&

Define constants

we wo wo

bell equ 07h ;ASCII char for bell

cr equ 0dh tASCII char for carr
;return

1f equ Oah ;ASCII char for line feed

portl equ 0oo0h soutput port, data

port2 equ 01h joutput port, control

char equ 41h :ASCII char for "A"

AL AR A AL R i i s i s 2 22 2222222222222 X232 222222222

stack_area segment stack ;define the stack area
db 40 dup(?) ;set aside room for

stack

stack_area ends

data_area segment :define data area

count aw 0000h ;to count words tx

bad dw 0000h ;to count errors

msegl db ‘and','$!

msg2 db cr,'s!

data_area ends

222232 2 s d s Rt i i 222222222222 222222222)

we we weo

101

LAB 1 segment ;sdefine segment area
main proc far

assume cs:LAB_1, ds:data_area,
ss:stack_area

;set all register to zero (makes it easier to debug)

begin: sub ax,ax :set ax to zero

sub bx,bx ;set bx to zero
sub cx,cx :set cx to zero
sub dx,dx ;set dx to zero

set DS reg to point to the current data area

. WS W

nov ax,data_area ;point to data_area
mov ds,ax ;DS points to
data_area

:Start the program here:

’
Loopl: mov bx, 00004 sbx will count the char
itx

Output the received data from the Z-100 using DOS call
04h

e we “e we

Loop2: mov dl,char :character loaded into 4l
mov ah,04h ;DOS call 04h outputs
int 21h ;the char through AUX
1 (J2)

Receive the charcter back through the same port (J2),
using DOS call 03h.

we %o ws wo

mov ah,03h :DOS call to receive
int 21h ;a charcter through J2
;character is in al

Compare the received character to the transmitted
charcter and tabulate the results.

we ®we wg we

cmp al,char ;is character the same?
Jne Ibad sno increment error count
Iword: inc bx ;inc number of char sent
cmp bx, 10004 71000 words sent?
je Prnt ;yes, output results
jmp Loop2 stx next character
102

Ibad: ROV cx,bad iget current error count

inc cx :increment by one
mov bad,cx ;replace error count
jmp Iwvord ;go back to main routine

Time to print the results.

Prnt: mov bx,count :bx contains the number
inc bx ;of words x 1000
mov count, bx ;store count
call binidec ;convert to decimal and

:print the results

mov dx,offset msgl ;insert and in output

mov ah,09h ;DOS call to print string
int 21h

mov bx,bad ;place bad count into bx
call binidec ;convert bx to binary
mov dx,offset msg2 ;output a carriage return
mov ah,09h

int 21h

See if over 10M bits have been transmitted. Stop the
program when this happens.

w.e we wo wp

nov cx,count ;number of words tx in cx

cmp cx,13004 :1300 X 1000 x 8bits =
:10.4 M bits

je exitl ;1if equal, all done

jmp loopl ;repeat the process

FRARRRRANRANRAARR AR AR R AR AR SRR A AR AARIRRA R AR AR RS A AR A AR AN

;Binidec program number in bx
;*****t*********t**t********ﬁtt***i*t**t**t****************

binidec proc near
push bx
push cx
nov cx,10000d4
call dec_div
mov cx,10004
call dec_div
mov cx,100d
call dec_div
mov cx,104

103

call dec_div

mov cx,1d
call dec_div
pop cXx
pop dx
ret

dec_div proc near
mnov ax,bx
cwd
div cx
mov bx,dx
mov dl,al
add dl,30h
mov ah,02h ;display character
int 21h
ret

dec_div endp

binidec endp

;All do, so exit from program

exitl: mov ax,4coo0h tuse DOS function 4c
int 21h ;to exit from program
main endp
LAB_1 ends
end main ;rend assy

RRRRRRRRRRRRRRRRRRRERRRRRRRRRRRRRA R AR R AR AR A AR R AR AR AR AR AR A

DART_DRIVER_TWO

we ®e wWe Wy “wo

DART_DRIVER_TWO provides the test routines to
:determine if the DART is receiving a character correctly
;from another Z-100. Once the character is received, the
sDART outputs the character back to the Z-100.

R A E2E22 2222222222222 2 XXX 22223222 22222222222 2222222 222222

Define constants

* We %o W=

bell equ 07h ;ASCII char for bell

cr equ odh :ASCII char for carriage
return

1f equ 0ah ;ASCII char for line feed
portl equ 00h soutput port, data

portz equ 0i1h soutput port, control

’

A s 8222222222222 22222222 222222 2222222222222 X2 22X 220 22)

*
H
.
’
L]
’
8

tack_area segment stack sdefine the stack area
db 40 dup(?) :set aside room for
stack
stack_area ends
data_area segment ;jdefine data area
data_area ends

*
’
2322222222222 22 2222 223222222222 22222222 2222222222222 R0

- wp w

LAB_1 segment sdefine segment area for
program main proc far
assunme cs:LAB_1, ds:data_area,

ss:stack_area

set all register to zero (makes it easier to debug)

e w¢ we

begin: sub ax,ax ;set ax to zero
sub bx,bx :set bx to zero
sub cx,cx :set cx to zero
sub dx,dx ;set dx to zero

set DS reqg to point to the current data area

we we wp

mov ax,data_area ;point to data_area
mov ds,ax ;DS now points to
;data_area

Initialize the DART to x16 clock, 1 stop bit, 8 Tx/Rx
bits, no parity, and no interrupts (polled mode).

AL contains the control byte to the DART
DX contains the control byte address

s me “e W we we wo

push ax ;save ax
push dx ;save dx
mov dx,port2 joutput port control
;address
mov al,18h ;channel reset command
out dx,al ;issue command
out dx,al ;again, just to be
;sure
WR1: rov al,o01lh ;point to WR1
out dx,al ;1load pointer into WRO
105

nov al,o0h ;disable all

:interrupts
out dx,al ;1 issue command
WR2: mov al,o2h ;point to WR2
out dx,al :load pointer into WRO
nov al,o0h sdisable all
;interrupts
out dx,al ;issue command
WR3: mov al,03h ;point to W32
out dx,al :1load pointer into WRO
mov al,Ocih :Rx enable, 8 bits,
sauto enable off -
out dx,al ;issue command
WR4: mov al,04h ;point to WR4
out dx,al :load pointer into WRO
mov al,44n :x16 clk, no parity, 1 .
:stop bit -
out dx,al ;issue command
WR5: mov al,o5h :point to WRS
out dx,al :load pointer into WRO
mov al, 6ah ;Tx enable, 8 Tx
:bits, RTS enable
out dx,al :issue command

Receive some data from the other 2-100
Test bit DO of RRO. If the bit is set, a receive
character is available.

N wWe We Ne we wo

Loop2: mov dx,01h ;control address of
DART
in al,ax :read RRO
and al,o01lh ;mask for 1lst data bit
jz loop2 sno chara? keep
;polling
mov dx, 00h sdata address of DART
in al,dx ;sread character into
sal
mov bl,al ;store character into
bl

; Output the character back to the DART. Check the tx
sbuffer to see if it is empty first. This is done by
;testing bit 3 of RRO.

106

A e CRAT At - At & S AR G S5 %a e “ws e ot s

Loop3: mov dx,01h ;control address of

DART

in al,dx ;:read RRO

and al,o4h ;mask for bit 3

jz loop3 ;wait for the Tx
sbuffer

mov dx,00h ;data address of DART

mov al,bl sput character into al

out dx,al soutput the character

Jmp loop2 ;ino, output same
;character

;All do, so exit from program
e

xit3: mov ax,4c00h :use DOS function 4c
int 21h ;to exit from program
main endp
LAB 1 ends

end main ;end assy

Appendix D: Test Data

The following test data was collected during the first
test of a DART configured as a serial I/0 port. The DART
was set internally to 9600 baud, one start bit, one stop
bit, no parity, and x16 clock. An external clock running at
153.6 Khz was connected to pins 13 and 14 of the DART to
provide an internal clock pulse. All equipment was turned
on simultaneously and allowed to warm up as the test
progressed.

The DART was tested by sending a word (8 bits) to the
DART from a Z-100. The DART received the word, then
transmitted the word back to the Z-100. The 2-~100 checked
the received word with the orginal transmitted word to
determine if they were equal. Any word found not equal to
the transmitted word was counted as one error. Multiple
errors within a word, if they occured, were not check and
therefore are not accounted for in the following data.
Nevertheless, the data given is sufficient to develop an
error curve versus time. Once the equipment is sufficiently

warm, the error rate drops to zero.

108

L
PRV AP R P ST T

I A R AP RN

Words transmitted Approximate Time Errors Count Errors

01000 00:00:10 01000 1000
02000 00:00:20 02000 1000
03000 00:00:30 03000 1000
04000 00:00:40 04000 1000
05000 00:00:50 05000 1000
06000 00:00:60 06000 1000
07000 00:00:70 07000 1000
08000 00:00:80 08000 1000
09000 00:00:90 09000 1000
10000 00:01:00 10000 1000
11000 00:01:10 11000 1000
12000 00:01:20 12000 1000
13000 00:01:30 13000 1000
14000 00:01:40 14000 1000
15000 00:01:50 15000 1000
16000 00:01:60 16000 1000
17000 00:01:70 17000 1000
18000 00:01:80 18000 1000
18000 00:01:90 19000 1000
10000 00:02:00 20000 1000
21000 00:02:10 21000 1000
22000 00:02:20 22000 1000
23000 00:02:30 23000 1000
24000 00:02:40 24000 1000
25000 00:02:50 25000 1000
26000 00:02:60 26000 1000
27000 00:02:70 27000 1000
28000 00:02:80 28000 10600
29000 00:02:90 29000 1000
30000 00:03:00 30000 1000
31000 00:03:10 31000 1000
32000 00:03:20 32000 1000

Divide overflow on error count, reset and continue:

33000 00:03:30 01000 1000
34000 00:03:40 02000 1000
35000 00:03:50 03000 1000
36000 00:03:60 04000 1000
37000 00:03:70 05000 1000
38000 00:03:80 06000 1000
39000 00:03:90 07000 1000
40000 00:04:00 08000 1000
41000 00:04:10 09000 1000
42000 00:04:20 10000 1000
43000 00:04:30 11000 1000
44000 00:04:40 12000 1000
45000 00:04:50 13000 1000
46000 00:04:60 14000 1000

109

Words transmitted Approximate Time Errors Count Errors

47000 00:04:70 15000 1000
48000 00:04:80 16000 1000
49000 00:04:90 17000 1000
50000 00:05:00 18000 1000
51000 00:05:10 19000 1000
52000 00:05:20 20000 1000
53000 00:05:30 21000 1000
54000 00:05:40 22000 1000
55000 00:05:50 23000 1000
56000 00:05:60 24000 1000
57000 00:05:70 25000 1000
58000 00:05:80 26000 1000
59000 00:05:90 27000 1000
60000 00:06:00 28000 1000
61000 00:06:10 29000 1000
62000 00:06:20 30000 1000
63000 00:06:30 31000 1000 -
64000 00:06:40 32000 1000

Divide overflow on error count, reset and continue:

65000 00:06:50 00828 0828
66000 00:06:60 01616 0788
67000 00:06:70 02321 0705 -
68000 00:06:80 03129 0808
69000 00:06:90 03852 0723
70000 00:07:00 04566 0714
71000 00:07:10 05267 0701
72000 00:07:20 05897 0630
73000 00:07:30 06504 0607
74000 00:07:40 07110 0606
75000 00:07:50 07679 0587
76000 00:07:60 08220 0523
77000 00:07:70 08753 0533
78000 00:07:80 09250 0497
79000 00:07:90 09750 0500
80000 00:08:00 10132 0382
81000 00:08:10 10555 0423
82000 00:08:20 10958 0403
83000 00:08:30 11343 0385
84000 00:08:40 11700 0357
85000 00:08:50 12011 0311
86000 00:08:60 12313 0302
87000 00:08:70 12591 0278
88000 00:08:80 12851 0260
89000 00:08:90 13079 0228
90000 00:09:00 13281 0202
91000 00:09:10 13456 0175

110

Words transmitted

92000
93000
94000
95000
96000
97000
98000
99000
100000
101000
102000
103000

Approximate Time

00:09:20
00:09:30
00:09:40
00:09:50
00:09:60
00:09:70
00:09:80
00:09:90
00:09:00
00:10:10
00:11:20
00:12:30

Errors Count

13605
13727
13814
13894
13940
13955
14020
14044
14051
14051
14051
14051

Errors

0149
0122
0087
0080
0054
0015
0025
0024
0007
0000
0000
0000

An additional five errors were observed as the number

of words transmitted increased to 400000 (about 40 minutes

after starting).

observed.

After this time, no additional errors were

Appendix E: BCH Encoder Software

(& 22222222222 22222222222 22222 X2 222222 X2 2222222222222 222220

BCH.ASM

BCH.ASM is a test routine for the BCH encoder.
BCH.ASM will prompt the user for a multiplier polynomial
(up to eight bits) which it stores in a one character word.

NOTA BENE: The BCH encoder must be set to the
generator polynomial choosen by the user above.

We N W Ns Wy e e Ny N9 we We Wy

BCH.ASM then prompts the user for a code word which
;can be any ASCII character. The code word is multiplied by
;the multiplier polynomial and displayed on the screen.
:Once the results has been displayed, BCH.ASM sends the code
;word through the BCH encoder for encoding. The encoded
;word is displayed on the screen for easy comparison to the
smultiplied word.

L2222 22222 222X 2222 2222222222222 2 il s 2 i i a2 a2 222 Ry

Define constants

¢ ®e we wo

bell equ 07h ;ASCII char for bell
cr equ 0dh ;ASCII char for carriage
return
1f equ Oah ;ASCII char for line feed
portl equ 0000h ;soutput port, data
port2 equ 0001h ;joutput port, control
;*i*i*********t***i***t**********t****t******************i**
stack_area segnment stack ;define the stack area
db 40 dup(?) ;set aside room for
stack
stack_area ends
data_area segment ;define data area
msgl db cr,lf
db '‘Enter the generator polynmial (-30h):°',
db cr,lf,'sS!
msg2 ab cr,1£,1f
db 'Enter the code word:',cr,1f,'$’
msg3 db 10,8
msg4 db '0','s$!
msg5 db cr,lf,'$!
msgé db 'Enter the value of n-k:','$!

112

Akl AL et T # L 2 s v e e T T

GEN db 00h

CODE dw 000Ch
MWORD dw 0000h
NK db ooh
data_area ends

LA A2 222 s 2222222222222 X2 2222222222222 2222222222222 222222

“g me we we

LAB_1 segment ;define segment area for
;program
main proc far
assume cs:LAB 1, ds:data_area,

ss:stack_area

°
’

:set all register to zero (makes it easier to debugq)

begin: sub ax,ax iset ax to zero
sub bx,bx :set bx to zero
sub cxX,cx ;1set cx to zero
sub dx,dx :set dx to zero

set DS reg to point to the current data area

“e wg we

mov ax,data_area ;point to data_area
mov ds,ax ;DS now points to
data_area
; Initialize the DART to x16 clock, 1 stop bit, 8 Tx/Rx ;
bits, nu parity, and no interrupts (polled mode).
: AL contains the control byte to the DART
: DX contains the control byte address
push ax ;save ax
push dx ;save dx
mov dx,port2 ;output port address
mov al,1l8h ;channel reset command
out dx,al ‘;issue command
out dx,al ;again, just to be sure
WR1l: mov al,o0i1h ;point to WR1
out dx,al :load pointer into WRO
mov al,ooh ;disable all interrupts
out dx,al : issue command
WR2: mov al,o2h ;point to WR2
out dx,al :load pointer into WRO
mov al,o0h ;disable all interrupts
out dx, al ; issue command
WR3: mov al,o3h ;point to WR3
out dx,al :load pointer into WRO
mov al, o0clh :Rx enable, 8 bits,
113

s;auto enable off

out dx,al ;issue command
WR4: ROV al,04h ;point to WR4
out dx,al :load pointer into WRO
mOV al,44h ;%16 clk, no parity, 1 stop
bit
out dx,al :issue command
WR5: mov al,osh ;point to WRS
out dx, al :load pointer into WRO
nov al,6ah :Tx enable, 8 Tx bits,RTS
senable
out dx,al :issue command
; Disable the DART receiver and transmitter, so that
: the BCH encoder can be used without affecting ;
transmissions.
mov al,o03h ;point to WR3
out dx,al :load pointer into WRO
mov al,ocih :Rx disabled, 8 bits,
sauto enable off
mov al,o5h ;point to WRS
out dx,al ;load pointer into WRO
mov al,6ah :Tx disabled, 8 Tx bits,
out dx,al :RTS disabled

Prompt for the generator polynomial:

we ws we

mov dx,offset msqgl sload dx with add msqgl
nmov ah, 0%h

int 21h

mov ah,01h :Read char and echo
int 21h ;Char in al

sub al,30h ;convert to binary
mov GEN,al ;store char in bl

mov dx,offset msg5 ;to cr and 1f

mov ah,09h

int 21h

Prompt for value of n-k:

~s we weo

mov dx,offset msgé6 sprompt for n-k

mov ah,09h

int 21h

mov ah,01h sread char and echo

int 21h in-k in al

sub al,30h ;convert to binary
114

SRS IRTI VS VAL SRPART I STIPIARCART VRIS BN

wy we wp

Loopl:

we we

display

multiplication):

CcontM:

Skip:

we we “we

Prompt for the code word:

Multilply code word with generator polylnomial and :

Now generate the encoded word using the BCH encoder

Rnov NK,al sstore n-k in NK

ROV dx,offset msg5 ;to cr and 1f
nov ah, 0%h
int 21h

mov dx,offset msg2 ;1load dx with add msg2
nov ah,0%h

int 21h

mov ah,01h sRead char and echo
int 21h ;Char in al

sub bx,bx ;clear bx

mov bl,al :put code word in bl
mov CODE, bx :store code word
mov dx,offset msg5 sload cr and 1f

mov ah,0%h

int 21h

the result (Note, this is not binary ;

sub bx,bx ;iclear bx

sub ax,ax :clear ax (holds ans)

mov dx, CODE ;code word in dx

mov bh, GEN ;put gen poly in bh

mov cx,0008h scount 8 bits

shr bx,1 ;shift bit into bx

and bl,80h ;mask for high bit

cmp bl,00h :is bit 0 or 1

je Skip :yes, skip xor

xor ax,dx ;answer in ax

shl dx,1 ;get ready for next xor

dec cX sdecrease count

cmp cx,0000h ;all done?

jg ContM ;no, continue
;smultipling

mov bx,ax ;answer in bx

call Prnt

115

nov bx,CODE :bx has code word

mov cl,NK scl loaded with n-k

shl bx,cl ;add zero padding

ROV CODE, bx ;sstore padded code

nov dx,8000h :to clear the encoder

mov al,oo0h

out dx,al

nov cx,000fh ;cx counts 15 bits
LOOP3: mov bx, CODE :bx has code char

mov dx, 4000h ito clock data into

¢BCH encoder

mov al,bh ;mov bh into al

out dx,al soutput high bit

shl bx,1 ;shift bx left 1 bit

mov CODE, bx ;store code word

; Get the encoded word

LOOP4: mov dx,0c000h s;to input a bit
sub bx,bx :clear bx
in al,dx ;al has low order bit
and al,olh ;strip off low bit
mov bl,al :bl has low order bit
nov ax,MWORD ;:al has encoded word
or ax, bx ;append new bit
mov bx, ax :Prnt prints bx
cmp ¢cx,0001h ;all done?
je GoPrnt ;yes, Print result
shl ax,1 ;shift al left 1 bit
mov MWORD, ax ;8tore result in MWORD
dec cx ;cx holds count
Jmp LOOP3 :finish getting result
GoPrnt: call Prnt
sub ax,ax ;Clear ax
nov MWORD, ax :clear MWORD
Jmp Loopl

i3 2222222222 222222222222 2 22223 2222222232232 2222222322

Subroutine to print the result
Word to be printed must be in bx

e we We we wo o

22323222 222222222222 2222222 233222 X223 2223222222 22222222 22 2]

Prnt proc near

mov cx,0010h ;cx counts 16 bits

116

Loop2:

Zero:

Cont:

Go:

Prnt

e %o wo

i ~.
x
(oS
t

nov
and

cmp
je

mov
Rmov
int

Jmp

mov
mov
int

dec
cmp
je

shl
Jmp

mov
mov
int
ret
endp

mov
int

endp
ends
end

ax,bx
ax,8000h

ax,0000h

2ero
dx,offset msg3
ah,0%h

21h

Cont

dx,offset msg4
ah, 0%h
21h

cx
cx,0000h
Go

bx,1
Loop2

dx,offset msg5
ah, 0%h
21h

All do, so exit from program

sput ansver in ax
:mask for high order

:bit

:is bit a zero?

soutput a "1*

;output a "o"

:decrease counter
;all done?
:yes, exit
;get next bit and
scontinue

:cr and 1f

2222222322222 2222223222222 2223222222233 2222232222223

ax,4coo0h ;suse DOS function 4c
21h ;to exit from program
main ;end assy

117

Appendix F: BCH Decoder Single Character Software

22223222222 2222222222222 3222223222222 2232222322222 22222 2]

DECODE . ASM

e W N9 We Ny

DECODE.ASM is a test routine for the BCH decoder.
DECODE.ASM will prompt the user for a multiplier polynomial
(up to eight bits) which it stores in a one character word.

-e

NOTA BENE: The BCH decoder must be set to the
generator polynomial choosen by the user above.

DECODE.ASM then prompts the user for a code word which
can be any ASCII character. The code word is multiplied by
the multiplier polynomial and displayed on the screen.
once the results has been displayed, BCH.ASM sends the
encoded word through the BCH decoder for decoding. The
decoded word is displayed on the screen for easy comparison
to the original code word.

L2222 22222222222 2222222222222 2222222222 222222222 X22 2222

WO WE WO WS N WE WY WE VY MG Ve Wg Wy Wy Oy

Define constants

bell equ 07h ;ASCII char for bell

cr equ 0dh $ASCII char for carriage
;return

1f equ 0ah ;ASCII char for line feed

portl equ 0000h ;joutput port, data

port2 equ 0001h joutput port, control

(2230222222222 2222222222 223222 2222222322 222222 322222222222

tack_area segment stack :define the stack area
db 40 dup(?) :1set aside room for
stack
stack_area ends
data_area segment ;define data area
msgl ab cr,1lf
db 'Enter the generator polynmial (-30h):°',
db cr,lf,'$!
msg2 db cr,1f£,1¢
db tEnter the code word:',cr,lf,'$!
msg3 éb 110,08
msg4 dab 10! ,'$?
mnsgS db cr,lf,'$!
msg6 db 'Enter the value of n-k:','S$’

118

LI P A TP S . SR S T e i T LA

nsg? db 'Enter the value of k:','S$!
GEN db oo0h

CODE dw o0oo0h

MWORD dw 0000h

NK db oo0h

K ab ooh

RESULT db ooh

data_area ends

2223222222222 22222222 2222222222222 2222222322232 2222X2 2]

-y wp we wp

LAB_1 segment ;define segment area for
;program
main proc far
assume cs:LAB_1, ds:data_area,

ss:stack_area

*

’
;set all register to zero (makes it easier to debuqg)

begin: sub ax,ax ;set ax to zero
sub bx,bx :set bx to zero
sub cxX,cx sset cx to zero
sub dx,dx ;set dx to zero

set DS reg to point to the current data area

mov ax,data_area ;point to data_area
mov ds,ax ;DS now points to
data_area

Initialize the DART to x16 clock, 1 stop bit, 8 Tx/Rx ;
its, no parity, and no interrupts (polled mode).

AL contains the control byte to the DART
DX contains the control byte address

we we “wo UQ. «e we

push ax ;save ax
push dx ;save dx
mov ax,port2 ;soutput port address
mov al,1ish ;channel reset command
out dx,al ;issue command
out dx,al sagain, just to be sure
WR1l: mov al,01h ;point to WR1
out dx,al :load pointer into WRO
mov al,oon ;disable all interrupts
out dx,al ; issue commanad
WR2: mov al,o02h spoint to WR2
out dx,al :load pointer into WRO
nov al,o0h ;disable all interrupts

out dx,al :issue command

R I L A N I

WR3: mov al,o3n ;point to WR3

out dx,al :1load pointer into WRO
nov al,oclh iRx enable, 8 bits,
sauto enable off
out dx,al ;issua command
WR4: mov al,04h spoint to WR4
out dx,al ;load pointer into WRO
mov al,44h ;x16 clk, no parity, 1 stop
sbit
out dx,al ;issue command
WR5: mov al,osh ;spoint to WRS
out dx,al ;load pointer into WRO
mov al,6ah ;Tx enable, 8 Tx bits,RTS
senable
out dx,al ;issue command
; Disable the DART receiver and transmitter, so that
; the BCH decoder can be used without affecting ;
transmissions.
mov al,o3n ;point to WR3
out dx,al 1load pointer into WRO
mov al,ocih sRx disabled, 8 bits,
;auto enable off
mov al,osh ;point to WRS
out dx,al sload pointer into WRO
mov al, 6ah :Tx disabled, 8 Tx bits,
out dx,al ;RTS disabled

Prompt for the generator polynomial:

s we we

mov dx,offset msgl 1load dx with add msgl
mov ah,0%h

int 21h

mov ah,01h ;Read char and echo
int 21h :Char in al

sub al,30h sconvert to binary
mov GEN,al ;store char in bl

mov dx,offset msgS ;to cr and 1f

mov ah,0%h

int 21h

Prompt for value of n-k:

we wp we

mov dx,offset msgé :prompt for n-k
mov ah,09h
int 21h

nov ah,01h

int 21h

sub al,3oh
mov NK,al

nov dx,offset
mov ah,o0%h
int 21h

Prompt for value of k:

we we W

nov dx,offset
mov ah,0%h
int 21h

mov ah,01h
int 21h

sub al,30h
mov K,al

mov dx,offset
mov ah,0%h
int 21h

Prompt for the code word:

we we wo

Loopl: nov dx,offset
mov ah,09h
int 21h
nov ah,01h
int 21h
sub bx,bx
mov bl,al
mov CODE, bx
mov dx,offset
nov ah,09h
int 21h
mov bx,CODE
call Prnt

we wo

msg5s

msg?7

msg5

msqg2

mnsgs

;read char and echo
in=k in al

;convert to binary
;store n-k in NX

;to cr and 1f

iprompt for k

;read char and echo
sk in al

;convert to binary
;store k in K

sto cr and 1f

;load dx with add msg2

;Read char and echo
sChar in al

1Clear bx

sput code word in bl
;store code word

s1lcad cr and 1f

Multilply code word with generator polylnomial and ;

display the result (Note, this is not binary ;

multiplication):

sub bx,bx
sub ax,ax

;Clear bx
;clear ax (holds ans)

W B o WO N IR I G Frtar e

nov
nov
Bov

contM: shr

and
cmp
je

Xor

Skip: shl

“e we wo

we ws W

dec
cmp
jg

mov
mov
call

B RN e T PR

dx, CODE
bh,GEN
cx,0008h

bx,1
bl,80h
bl,00h
Skip
ax,dx
dx,1

cX
cx,0000h
ContM

MWORD, ax
bx,ax
Prnt

;code word in dx
:put gen poly in bh
scount 8 bits

;shift bit into bx
:mask for high bit

:is bit 0 or 1

:yes, skip xor

;answer in ax

;get ready for next xor

rdecrease count
;rall done?
:sno, continue

smultipling

;store answer in MWORD
sanswer in bx

Now decode the encoded word using the BCH decoder

mov
mov
out

Clock in

mov

BHigh: mov

mov
add
mov
sub
shl

sub
nov
nov

LOOP3: nov

out
shl
dec
cmp

dx,0000h
al,ooh
dx,al

n~k data bits

bx , MWORD

al,NK
dl,kK
al,dl
cl,lé6d
cl,al
bx,cl

cx,cx
cl,NK
dx,4000h

al,bh
dx,al
bx,1

cx
cx,0000h

122

:to clear the decoder

;encoded word in bx

:al has n-k

;dl has k

:ral has n

;cl has 16

:cl has # of zeros
:shift out zeros

iclear cx

:cx counts n-k bits
;to clock data into
:BCH decoder

shigh order bit in A7
;joutput high bit
;shift bx left once
scount down n-k

:all done?

je DEC

s:yes, finish decoding

jmp LOOP3 ;finish loading bits
’
: Next k bits are the decoded word
’
DEC: mnov cl,K :to count k bits
nov RESULT, 00h iclear result
LOOP4: mov dx, 0c000h sinput a bit into CPU
in al,dx :bit is in A0
and al,o01h ;mask for DO (AO)
mov d1l,RESULT ;decoder word in 4l
shl dl,1l ishift deocded word
tleft 1
xor dl,al ;add bit to decoded
;word
mov RESULT,dl ;store result
mov dx,4000h ito output a bit
mov al,bh shigh order bit in A7
out dx,al soutput the bit
shl bx,1 :shift encoded word
left 1
dec cl :decrease count
cmp cl,o0h ;all done?
je ouT ;yes, go to OUT
jmp 1LOOP4 ;finish decoding
OUT: sub bx, bx ;clear bx
mov bl,RESULT :place result in bl
call Prnt :Print result

we ws we

Output the character to the screen

mov dl,RESULT ;character in dl

mov ah,02h :DOS call to prnt char
int 21h

jmp Loopl

LA 22X RS2 A2 2222222222222 2222 2222222222222 2222222222222

Subroutine to print the result
Word to be printed must be in bx

we we Wg Wy Ne we

2222222222223 2222222223222 2 222222222222 22222222 2222222223

Prnt proc near

mov cx,0010h :cx counts 16 bits

sput answer in ax

Loop2: mov ax,bx

Zero:

Cont:

Prnt

and

crp
e

mov
nov
int

Jmp

mov
mov
int

dec
cmp
je

shl
jmp

mov
mov
int
ret
endp

ax,8000h

ax,0000nh

Zero
dx,offset msg3
ah,0%h

21h

Cont

dx,offset msg4
ah,09%h
21h

cx
cx,0000h
Go

bx,1
Loop2

dx,offset msgb
ah,0%h
21h

;smask for high order

1bit

;i bit a zero?

soutput a "1"

joutput a "o"

:decrease counter
;all done?
iyes, exit
;get next bit and
scontinue

scr and 1f

SRRRRARRAARRKRAREAARRARRRAAARAR AR A AR R AN A AR A A kb hh bk dr

All do, so exit from program

nov
int

endp
ends
end

ax,4cO0h
21h

main

sjuse DOS functiocn 4c
:to exit from program

;end assy

Appendix G: BCH Decoder Syndrome Software

2222222222222 222222222222 2232222222222 3222222222222 22222 £

DEC1.ASM generates the syndromes for the (15,7) two
error 'corrﬁcting‘ BCH code using the generator polynomial
X + %X + %X + %X + 1. All error polynomials and
syndromes are generated in software and sent to the printer
for a hard copy display of the results.

L2222 22222 22222222222 2222222222 22222 222X 222222 2222222222

Define constants

® e N WE Wg e WY We Ve Ve “p VN

bell equ 07h ;ASCII char for bell

cr equ 0dh ;ASCII char for carriage
sreturn

1f equ Oah ;ASCII char for line feed

portl equ 0000h soutput port, data

port2 equ 0001h ;output port, control

2222222222222 222 222 X222 222222 X2 222 X222 2222222223223 2222222

wp We We W

stack_area segment stack ;define the stack area
db 40 dup(?) ;set aside room for

stack

stack_area ends

data_area segment ;idefine data area

GEN dw 01d1h

CODE aw 0000h

MWORD aw 0000h

NK db 0o8h

K dab 07h

N db 0fh

T db 02h

Base dw 0001h

Drv dw 0002h

RESULT db 00h

MSK dw 0000h

Count db ooh

LIST db 300 dup (' ")

Extr db 10 dup (' ')

data_area ends

L 2222222222222 222222222322 22322 2222232222222 2222222222 2]

w-e W W

LAB 1 segment ;define segment area for

125

program
main proc
assunme cs:LAB_1, ds:data_area,

ss:stack_area

set all register

we we we

sub
sub
sub
sub

we we we

mov
mov
data_area

call
call

jmp

.o %o ws we N

structure.

enerate proc

we we %o) we Se N we v e e

push
push
push
push

«e wp wo

sub
nov
mov

Rpt: nov
add
mov

far

to zero (makes it easier to debug)

ax,ax ;set ax to
bx,bx :;set bx to
cX,CcXx ;set ¢cx to
dx,dx :iset dx to

set DS reg to point to the current data area

ax,data_area ;point to data_area
ds,ax ;DS now points to

Generate
LST
Exit

near

Generate single error polynomials

ax
bx
cx
ax

Clear LIST to all Zeros

zero
zero
Zero
zero

hhkhhkhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhkhhkhhhhkhhhhhkkhhkhhkhhhhkhk

Generate is a subroutine that generates the syndroms for
all possible error conditions allowed by the given code

Note that cx contains the length of the encoded word
and dx contains the number of correctable errors

RRRRA IR AR AR AR AR AR R AR R A AR Rk kb khkhhhkhhkhhkhkhhhhkhhk

bx,bx :bx has all zeros
8I,offset LIST ;S1 points to LIST
cx,300d :cx has number of
;records

{S1I],bx soutput zeros
SI,02h ;point to next record
[SI]),bx soutput zeros

126

add
dec
cmp
je

Jmp

SI,02h
cx
cx, 00h
Sta
Rpt

Compute single errors:

H

H

Sta: mov
mov

mov

Goopl: mov
call
add
shl

dec
cmp
je

jmp

SI,offset LIST
bx,0001h

¢cl,N

[SI],bx
SYNDROME
SI,02h
bx,1

cl
cl,01h

Gext
Goopl

;point to next record

sall done?

;SI points to LIST

:bx used to generate
;error

;polynomials

:cx has length of
;polynomial

;store bx in LIST
;calculate the syndrom
:SI points to next pos
:generate next error
;poly

scount down number of
;errors

;all done?

;sdo double errors

;no, finish single
;jerrors

Compute double errors if number of errors = 2

;

H

Gext: mov
cmp
jne
mov

mov

dec
mnov
mov

mov
Goop2: xor

mov
call
add
mov
shl
dec

cl,T
cl,02h

Gxit
cl,N
dl, N
dl

Count,dl
bx,Base

ax,drv
bx,ax

[SI],bx
SYNDROME
8I,02h
bx,Base
ax,1

dl

;number of errors in cl
;double errors
s;indicated?

;no, skip double errors

scx has length of
;polynomial

;dx has length of
:polynmoial

;dx has N-1

;store N~1 in Count
:bx used to generate
;error

;plynomials

;sax has 02h

:bx contains double
;error

sstore bx in LIST
;jcalculate the syndrome
;SI points to next pos
sreinitialize bx

:shift ax left once

sto count shifts

cnp dl,00h ;all done yet
je Chang ;:yes change bx and ax
Jmp Goop2 :no continue

Chang: dec cl ;decrease length by one
cmp cl,01h ;all combinations done

syet?

je Gxit ;all done, exit
mov bx,Base ;load bx with Base
shl bx,1 ;shift base left once
mov Base,bx ;store bx in Base
mov ax,Drv ;ax has driver
shl ax,1 ;shift ax left once
mov Drv,ax ;store new driver in Drv
mov dl,Count ;put Count in dl
dec dl
mov Count,dl :store Count-1 in Count
jmp Goop2

Gxit: pop dx
pop cx
pop bx
pop ax
ret

Generate endp

2222222822222 2222222 222222222222 22222222222 2222222

SYNDROME is a subroutine to calculate the syndrome of
an error polynomial given the generator polynomial.

Note: The error polynomial must be in bx, the
generator polynomial is stored as a global variable
in GEN. SI has been initialzed to point to LIST by
subroutine Generate.

WO We WS WO Ws Ve Ve Ve We "y Wy

L AR X R R RS 222 R 222222 X222 222222 2222 2222222222222

SYNDROME proc near

push ax
push bx
push cx
push dx

Place generator polynomial in ax to use as the divisor
and intialize ax by shifting the high order bit as far
left as possible

we we wo

nov dx,8000h smask for high order bit

128

ROV ax,GEN ;ax load with gen poly

Soopl: and dx,ax ;test for high order bit
cmp dx,8000h shigh order bit set?
je Sext :yes, procede
shl ax,1 sno, shift ax left once
nov dx,8000h ireinitialize dx
Jmp Soopl

; Ready to calculate the Syndrome

Sext: mov cl,16d4 ;number of bits in a
iregister
sub cl,NK :cl has # of shifts needed
;to divide error polynmial
mov dx,8000h ;to mask high bit
mov MSK,dx ;store mask in MSK
Soop2: and dx, bx ;is bit high?
cmp dx, 0000h ;test for bit high.
je Shft sno, shift registers
xor bx,ax ;xor (divide by steps)
sbx/ax
Shft: cmp cl,01h :all done?
je Stor ;store syndrome
mov dx,MSK :load dx with mask
shr dx,1 ;shift mask right once
mov MSK,dx ;store new mask in MSK
shr ax,1 :shift gen poly right once
dec cl ;decrease count by one
jmp Soop2 srepeat the process

; Store the syndrome

Stor: add S§I,02h :point to storage location
mov [SI),bx ;syndrome (remainder)
;stored

; Restore registers

Pop dx
pop cx
pop bx
pop ax
ret

SYNDROME endp

RRRRRRRRRRRRRRRRRRARRRARRRARRRARAARRRR AR A AR R RN AR AR R AR kR

Subroutine to print the result
Word to be printed must be in bx

e We We we We “o

RRRRRRRRRRRRRRRERRRRRRARARRRARRRARRERRRASARRARNARRAA R A AR AR AR

129

LAl R S, LA veas AN A s DA i 2A RIS SO e ¥ors - w

Prnt proc near
push ax
push bx
push cx
push dx
nov cx,0010h ;cx counts 16 bits
Loop2: nov ax, bx sput answer in ax
and ax,8000h smask for high order
:bit
cmp ax,0000h :is bit a zero?
je Zero
mov dl,31h soutput a 1
mov ah,05h
int 21h
jmp Cont
Zero: mov d1,30h soutput a 0
mov ah,05h
int 21h
Cont: dec cx s;decrease counter
cmp cx,0000h :all done?
je Go ;yes, exit
shl bx, 1 ;get next bit and
jmp Loop2 ;continue
Go: pop dax
pop cx
pop bx
pop ax
ret
Prnt endp

L2 2222222232222 2222222222222 2222222222 22222222 2222222 2]

H CRLF is a subroutine to output a carriage return
srand a line feed.

L2222 2233222 222222222222 2222222222232 2222222222222 2222

CRLF Proc near
mov dl,0dh ;jcr
nov ah,05h
int 21h
nov dl,0ah :1f
nov ah,05h

W WA W

int 21h

ret
CRLF endp

LA i A2 A2 X222 2R a2 22222222223 222222212223 222232222222]

BLNK is a subroutine to output four blanks

we we wg we ¢

RRRRRRRRRRRRRRA AR R R R R AR AR RA R R AR R AR AR A AR R AR AR A AR ARk hkd

BLNK proc near
mov dx,20h ;four blanks
mov ah,05h
int 21h
ret
BLNK endp

IRRRRRRRRRARRRRARAARRRRRR RN AR SRR AR A AR h R kb h bk dhk
LST is a subroutine to list the contents of memory in
a binary format:;

Note: will only list the contents of memory stored in
memory location LIST

NS We We %o Wy Np e Wy

RRRRRRRRRRARRRR AR RRRRRRRARRARAARRARR AR AR AR Ak h A dd

LST proc near
mov SI,offset LIST :SI points to LIST

;Calculate length of list to display

mov al,T sax has number of errors
cmp al,o2h itwo errors?
je Two
sub cx,cx ;1Clear cx
mov cl,N ;n single errors
Jmp Show
Two: sub cx,cx iclear cx
sub bx, bx ;iclear bx
mov cl,N ;length of polynomial
mov bl,N ;length of polynomial
dec bx :bx has N-1
Agn: adad cx,bx scx has # of error polys
cmp bx,000h ;all done?
131

je Show iyes, print the results
dec bx snext number to add
Imp Agn

;Display the list

Show: nov bx, [SI] ;polynomial to be
;displayed
call Prnt ;print the results
call BLNK ;add some blanks
inc SI
inc SI ;point to next record
mov bx, [SI] ;load bx with next record
call Prnt ;print the next record
call CRLF ;Cr and Lf
inc S1
inc SI ;point to next record
dec cx ;decrement counter
cmp cx,00h sall done?
je DN ;yes, exit
jmp Show sno, get next record
DN: ret
LSsT endp

SRARRRRRRRRRRRA R ERRRR AR AR R AR AR A RRRRAR R AR AR R A kAR Rk ke h

;All do, so exit from program

Exit: mov ax,4co0h suse DOS function 4c
int 21h ;to exit from program
main endp
LAB_1 ends
end main ;end assy
*2

ARRRRRRRRRRRRRRR AR A RRRRRRR AR RRRARN AR AR AR R AR AR ARk ke k k&

we wo wo

DEC2.ASM tests the BCH decoder by generating all the
;sydromes for the (15,7) ch two error correcting code using
:the generator polynomial x° + x + x®* + x* + 1. Each
;possible error polynomial along with the generated syndrome
;is sent to the printer for a hard copy of the results.
:The results of this program are to be compared witht the
;results of DEC1.ASM (which generates the correct syndromes
:in software). When the results of DEC2.ASM match the
sresults of DEC1.ASM, the BCH decoder is working properly.

~e

A A2 22 AR 2 222 L2322 22 22 2 2222222222222 22222222

Define constants

we we wo =

132

bell equ 07h ;ASCII char for bell

cr equ 0dh ;ASCII char for carriage

return

1f equ Oah ;ASCII char for line feed

portl equ 0000h soutput port, data

port2 equ 0001h ;soutput port, control

SRRRRRRRRRRRARRAARRRRR R AR R AR AR AR R RN AR A AN R AR AR A A AR AR AR R bk k

stack_area segment stack ;define the stack area
40 dup(?) :set aside room for

stack

stack_area ends

data_area segment ;define data area

GEN dw 01dih

CODE daw 0000h

MWORD dw 0000h

NK db o8h

K db 07h

N db 0fh

T db 02h

Base dw 0001h

Drv dw 0002h

RESULT db 00Oh

MSK dw 0000h

Count db o0h

LIST db 300 dup (' ")

Extr db 10 dup (' ")

data_area ends

LA 22232222222 2202222222222 22 2222222222222 2222222322222 22

«e wg we W

LAB_1 segment :define segment area for
;program
main proc far
assume cs:LAB_1, ds:data_area,

ss:stack_area

e

set all register to zero (makes it easier to debug)

e wao

sub ax,ax :set ax to zero
sub bx,bx iset bx to zero
sub cx,cx ;set cx to zero
sub dx,dx :1set dx to zero

set DS reg to point to the current data area

we we wo

mOV ax,data_area ;point to data_area
nov ds,ax ;DS now points to

133

;data_area

call Generate
call LST
Imp Exit

tructure.

enerate proc near

Ne S0 %o) Ve e we we e we we we we %6 W we

push ax
push bx
push cx
push dx

Clear LIST to all Zeros

we Wo

sub bx,bx
mov SI,offset LIST
mov cx,3004
Rpt: mov [SI],bx
add sI,02h
mov {SI],bx
adad SI,o02h
dec cx
cmp cx,00h
je Sta
jmp Rpt
; Compute single errors:
Sta: mov SI,offset LIST
mov bx,0001h
nov cl,N
Goopl: mov (SI],bx
call DECODE

Generate single error polynomials

RERRAE AR AR AR R AR R R R ARR R AR R AR AR AR A AR RN NN AA NN IRk hkk

Generate is a subroutine that generates the syndroms for
11 possible error conditions allowed by the given code

Note that cx contains the length of the encoded word
and dx contains the number of correctable errors

RARRRRARRRRRR AR AR AR R AN AR R R R R R R AR AR AR R R AR R AR A ARk A Ak kok

;:bx has all zeros
:SI points to LIST
;cx has number of
srecords

soutput zeros
:point to next record
;output zeros
:point to next record

sall done?

;SI points to LIST

:bx used to generate
;error

:polynomials

;cx has length of
spolynomial

;store bx in LIST
;calculate the syndrom

add
shl

dec
cmp

je
jmp

SI,02h
bx,1

cl
cl,01h

Gext
Goopl

:SI points to next pos
;generate next error
;poly

scount down number of
;errors

sall done?

;do double errors

sno, finish single
;errors

Compute double errors if number of errors = 2

H
H
Gext:

Goop2:

Chang:

mov
cmp

jne
mov
mov

dec
mov
mov

nmov
Xor

mov
call
ada
nov
shl
dec
cmp
je
jmp

dec
Cnp

je

mov
shl
mov
BOV
shl
mov

mnov

cl,T
cl,02h

Gxit
cl,N
dl,N

dl
Count,dl
bx,Base

ax,drv
bx,ax

[SI).bx
DECODE
§I,02h
bx,Base
ax,1

dl
dl,o0h
Chang
Goop2

cl
¢cl,01h

Gxit
bx, Base
bx,1
Base,bx
ax,Drv
ax,1
Drv,ax

dl,Count

snumber of errors in cl
sdouble errors
sindicated?

ino, skip double errors

scx has length of
;polynomial

;dx has length of
;polynmoial

:dx has N-1

;store N-1 in Count
:bx used to generate
serror

;plynomials

;ax has 02h

:bx contains double
;error

:store bx in LIST
;calculate the syndrome
:SI points to next pos
;reinitialize bx
;shift ax left once
:to count shifts

;all done yet

;yes change bx and ax
:no continue

;jdecrease length by one
sall combinations done
jyet?

;all done, exit

:1load bx with Base
;shift base left once
:store bx in Base

sax has driver

;shift ax left once
;store new driver in Drv

;put Count in dl

dec al

mov Count,dl ;store Count-1 in Count
mp Goop2
Gxit: pop ax
pop cx
pop bx
pop ax
ret
Generate endp

RRRRRRABRRRARR AR ERRRRRNRARAASRARR AR A AR R R AR AR AR A AR ARk hdhhd

DECODE will find the syndrom for each error polynmial
using the BCH decoder.

we W W WE We e

The error polynomial must be in bx when DECODE is ;
called. SI points to LIST (initialized by the calling ;
routine)

SRRRRRRRRRRRRRRRRARRRRRRRRRARR AR AR AR R AR A AR ARk kkkd

DECODE proc near
push ax
push bx
push cxX
push dx
mov dx,0000h s1to clear the decoder
mov al,ooh
out dx,al

: Clock in n-k data bits

BHigh: mov al,NK :al has n-k
mov dl,K :dl has k
add al,dl ;al has n
mov cl,16d :cl has 16
sub cl,al :cl has # of zeros
shl bx,cl ;shift out zeros
sub cx,cx iClear cx
mov cl,NK ;Ccx counts n-k bits
mov dx,4000h sto clock data into

:BCH decoder

DOOP3: nov al,bh thigh order bit in A7
out dx,al ;output high bit
shl bx,1 :shift bx left once
dec cx scount down n-k

136

cmp cx,0000h :all done?
je DEC ;yes, finish decoding
Imp DOOP3 ;finish loading bits

; Next k bits are the decoded word

DEC: mov cl,K ;to count k bits
mov RESULT, 00Oh ;Clear result
DOOP4 : mov dx, 0c000h ¢:input a bit into CPU

in al,dx :bit is in a0

and al,01h smask for DO (AO0)

mov dl,RESULT sdecoder word in 4l

shl dl,1 ;shift deocded word
;left 1

xor dl,al ;add bit to decoded
sword

mov RESULT,dl ;store result

dec cl :decrease count

cmp cl,00h ;all done?

je SYND ;yes, get syndrome

mov dx,4000h :to output a bit

mov al,bh shigh order bit in A7

out dx,al soutput the bit

shl bx,1 ishift encoded word
sleft 1

jmp DOOP4 :finish decoding

; Syndrome (remainder) is in the n-k registers forming
sthe generator polynmial

SYND: mov dx,8000h joutput a bit, gate
;open

mov al,bh ;to output last bit
mov cl,08h :to count NK bits

: One more time with gate closed.
mov dx,4000h ;joutput, gate open
out dx,al ;clock in last bit
mov al,ooh soutput zeros now
sub bx, bx ;make sure bx clear

; Get syndrome bits and continue to clock in bits with the
;igate open.

DOOP: mov dx,0c000h ;to input a bit
in al,dx tbit in A0
and al,o01lh ;smask for low bit
xor bl,al :bx has syndrome
dec cl :1decrease bit count
137

cmp cl,00h ;all done?
je Dstr ;store the syndrome
© shl bx,1 ;ready for next bit
mov dx,8000h soutput a bit, gate
;open
mov al,o00h ;to output a zero
out dx,al ;joutput, gate closed
Jmp DOOP ;repeat
Dstr: add SI,02h ;SI points to loc in
sLIST
mov [S1],bx :store syndrome
; Restore registers
pop dx
pop cx
pop bx
pop ax
ret
DECODE endp

I Z X 22222222222 2222222222222 2 2222222222 2222222222322 22 222 X2

Subroutine to print the result
Word to be printed must be in bx

®e WO W N W w

 ZZ 2222 X222 2222222 222222222 22222022222 2333222223222 822222

Prnt proc near
push ax
push bx
push cx
push dx
mov cx,0010h ;cx counts 16 bits
Loop2: mov ax,bx sput answer in ax
and ax,8000h ;mask for high order
sbit
cmp ax,0000h ;is bit a zero?
je Zero
nov dl,31h soutput a 1
mov ah,05h
int 21h
imp Cont
Zero: nov dl,30h soutput a 0
mnov ah,05h
int 21h

138

Cont: dec cX ;decrease counter

cmp cx,0000h sall done?
je Go ;yes, exit
shl bx,1 :get next bit and
Imp Loop2 ;continue
Go: pop dx
pop cx
pop bx
pop ax
ret
Prnt endp

A2 X2 2222222222 2222222222222 22 2222222222222 222222222 2]

CRLF is a subroutine to output a carriage return
and a line feed.

we wg Wws Wg Ne we

2232222222222 2220 22222222222 2222222 22222222 2222222228 %]

CRLF Proc near
mov dl, 0dh ;er
mov ah,05h
int 21h
mov dl, 0ah s1f
mov ah,05h
int 21h
ret
CRLF endp

2222222222222 2222222222222 222222222222 22222222222 d] L]

BLNK is a subroutine to output four blanks

we Wy we Wy wp

2222222222222 2222222222222 22222 2 2222232222222 22z E]

BLNK proc near
mov dx,20h :four blanks
mov ah, 05h
int 21h
ret
BLNK endp

IRRRRARRRARARRARRAR AR AR AR AR AR A A AR AR A R ARk h kA kb hhh kR

139

panditsiulE pelk valis
B . TN o e

ST EPINGERIRE

LST is a subroutine to list the contents of memory in
a binary format;

Note: will only list the contents of memory stored in
memory location LIST

AR RBARARRR R R AR R RN RN AR R R AR AR A AR R R R R R R AR R R ARk Rk khkkk

e Mo we We NG We "y o

LsT proc near
mov SI,offset LIST :SI points to LIST

;Calculate length of list to display

mov al,T sax has number of errors
cmp al,o2n ;two errors?
je Two
sub cX,cx sclear cx
mov cl,N :n single errors
jmp Show

Two: sub cx,cx ;iclear cx
sub bx,bx ;clear bx
mov cl,N slength of polynomial
mov bl,N :length of polynomial
dec bx ;bx has N-1

Agn: add cx,bx ;cx has # of error polys
cmp bx,000h rall done?
je Show iyes, print the results
dec bx next number to add
jmp Agn

;Display the list

Show: mov bx, [SI] ipolynomial to be

;displayed

call Prnt ;print the results

call BLNK ;add some blanks

inc sI

inc SI spoint to next record

mov bx, (SI] iload bx with next record

call Prnt ;print the next record

call CRLF ;Cr and Lf

inc SI

inc SI ;point to next record

dec cx ;decrement counter

cmp cx,00h sall done?

je DN :yes, exit

jmp Show :no, get next record

140

DN: ret
LsT endp

AR A A2 s R R 2 2 s 2222222 2222222222222 X222 222222222

:All do, so exit from program

Exit: mov ax,4c00h ;use DOS function 4c
int 21h ;to exit frou program
;
main endp
LAB_1 ends
end main ;end assy

“2

Appendix H: Demonstration Software

t 2222222222322 222222 23322222322 222222222222 2222222222222 2 2]

FDEMOENC.ASM

we we Wg we wo

FDEMOENC.ASM is the software needed to run the final
;demonstration of the BCH encoder/decoder system.

s FDEMOENC.ASM stands for Final DEMO ENCoder.ASeMbly
:language, and is meant to run the encoder portion of the
;encoder/decoder system.

il

FDEMOENC.ASM will initialize the 2-80 DART to 9600
;baud, one stop bit, no parity, and x16 clock. The user
;will be prompted for any ASCII character which will be sent
;to the encoder for multiplication by the generator
;polynomial. The resulting code word is displayed on the
iscreen, and the user prompted with the message "Do you wish
sto enter an error polynomial?®.

If the user answers no, the code word is sent to the
decoder without modification. When the user answers yes,
FDEMOENC.ASM will prompt the user for the error polynomial
which is subsequently entered by the user into the
computer. The error polynomial is exclusive-ored to the
code word to produce the transmitted code word. The
transmitted code word is finally sent to the decoder for
decoding.

L2 2222222222222 28222222 X222 X222 222222222222 2222222222222

Define constants

® WE Wy WO We WH We W WH Ve We Vs W "o

bell equ 07h :ASCII char for bell

cr equ 0dh ;:ASCII char for carriage
;return

1f equ oah ;ASCII char for line feed

portl equ 0000h sjoutput port, data

port2 equ 0001h soutput port, control

L2223 222222222222 2222222232 2222222222222 222222222222 2R}

wp %o wa wp

stack_area segment stack ;define the stack area
db 400 dup(?) ;set aside room for
stack
stack_area ends
;
data_area segment ;define data area
141

nsgl db cr,lf
db 'Do you wish to enter an error
polynomial?','$!
db cr,1f,'$!
msg2 db cr,1f,1£f
db 'Enter the code word:',cr,1f,'$"
msg3 db 'Please enter the error polynomial:','S$'
msg4 db 'OK!','$!
msg5 db ! Encoded word is: ','S$!
msg6 db 'Error polynomial is: *,'S$’
msg7 db ‘Transmitted word is: ','$!
GEN aw 01d1ih
CODE daw 0000h
MWORD dw 0000h
TWORD db 0o0h
TRCD dw 0000h
ERRP dw 0000h
NK db 08h
data_area ends

1222222222 222222222 2222222222 X 223222222222 2212 2232222222222

e we Wy we

LAB_1 segment ;define segment area for
program
main proc far
assume cs:LAB_1, ds:data_area,
ss:stack_area

set all register to zero (makes it easier to debug)

we we wo

begin: sub ax,ax :1set ax to zero
sub bx,bx iset bx to zero
sub cx,cx ;set cx to zero
sub dx,dx :set dx to zero

set DS reg to point to the current data area

we w8 wp

mov ax,data_area ;point to data_area
mov ds,ax ;DS now points to
;data_area
Call I_DART
Tloop: Call Get_WORD
Call Code_WORD
Call TErr
Call Send_WORD
Jmp Tloop

L2232 22222222222 2222222222223 222222222222 22222222222 222 22}

e W6 wo

I_DART is a subroutine to initialize the DART to 9600

142

P A R SR N N TSGR A SR PR AT

;baud, one stop bit, no parity, and x16 clock

SRRRRARRRRRRARR AR AR R AR AR AR AR RN AR A AR AR R AR AR SRR R Ak Ak kk

I_DART proc
push
push
push
push

we Wy Ne We Ng W

mov
nov
out
out
WR1l: mov
out
mov
out
WR2: mov
out
nov
out
WR3: mov
out
mov

out
WR4: mov
out
mov

out
WRS: mov
out
mov

out

near
ax
bx
cxX
dx

dx, port2
al,ish
dx,al
dx,al
al,o0lh
dx,al
al,ooh
dx,al
al,o2h
dx,al
al,oonh
dx,al
al,o3h
dx,al
al,ocih

dx,al
al,04h
dx,al
al,44h

dx,al
al,0s5h
dx,al
al, 6ah

dx,al

Initialize the DART to x16 clock, 1 stop bit, 8 Tx/Rx
bits, no parity, and no interrupts (polled mode).

AL contains the control byte to the DART
DX contains the control byte address

;output port address
;channel reset command
;issue command

sragain, just to be sure
spoint to WR1

sload pointer into WRO
;disable all interrupts
:issue command

spoint to WR2

;load pointer into WRO
;disable all interrupts
:issue command

spoint to WR3

:load pointer into WRO
:Rx enable, 8 bits,
;auto enable off

:issue command

;point to WR4

;:load pointer into WRO
:x16 clk, no parity, 1 stop
;bit

;issue command

;point to WRS

:load pointer into WRO
:Tx enable, 8 Tx bits,RTS
;enable

;issue command

;finished intializing, so restore registers

pop
pop
pop
pop
ret

ax
cx
bx
ax

143

@RS YIS TAENR RS NA S AR A AT R

I_DART endp

LA i 222 22 2222 22222 222221 22222223 222 2222222322222 222)

Get_Word is a subroutine that gets the source word as
a user input and stores that word in WORD.

222 2222222222222 2222222222322 2222222223222 2222222222)

e WO WNE "y Wy W

Get_WORD proc near
push ax
push bx
push cxX
push dx
mov TWORD, 0Ch ;clear word buffer
mov dx,offset msg2 ;point to string
mov ah,09h :print string function
int 21h
nov ah,01h ;read char and echo
int 21h
mov TWORD, al ;store char in WORD
call CRLF
pop dx
pop cx
pop bx
pop ax
ret
Get_WORD endp

2322222 2222222222 2222222222222 2222222222223 2232222222222 22

Code_WORD is a subroutine that encodes the source word
and stores the result in MWORD

RRRRRRRRRERRRRRRRARRAARARRARRAARER AR AR AR R A A bbb h Ak ks

we we Ne we wg we

Code_WORD proc near

push ax
push bx
push cx
push dx

Disable the DART receiver and transmitter, so that
the BCH encoder can be used without affecting ;
ransmissions.

wo (F ~¢ w0 v

144

ws we W

nov
RBOV
out
nov
out

mnov
out
mov
out

Generate

mov
sub
nmov
mov
inc
shl
mov

mov
nov
out

nov

CLOOP: mov

nov

mov
out
shl
mov

dx, port2
al,o3hn
dx,al
al,ooh
dx,al

al,o5h
dx,al
al,oo0h
dx,al

MWORD, 0000h

bx,bx
bl, TWORD
cl,NK

cl

bx,cl
CODE, bx

dx,8000h
al,ooh
dx,al

cx,000fh
bx,CODE
dx, 4000h

al,bh
dx,al
bx,1
CODE, bx

Get the encoded word

nov
sub
in

and
nov
mov
or

mov
cmp

je

shl
nov

dx, 0c000h

bx,bx
al,dx
al,01h
bl,al
ax,MWORD
ax,bx

MWORD, ax
cx,0001h
Cxit

MWORD, ax

;control port

;point to WR3

:load pointer into WRO
:Rx disabled, 8 bits,
;auto enable off

;point to WRS

;load pointer into WRO
;Tx disabled, 8 Tx bits,
;RTS disabled

the encoded word using the BCH encoder

iclear word buffer
iCclear bx

:bx has code word
;cl loaded with n-k
sone more shift req
sadd zero padding
;store padded code

sto clear the encoder

:cx counts 15 bits
:bx has code char
:to clock data into
+BCH encoder

:mov bh into al
soutput high bit
:shift bx left 1 bit
;store code word

:to input a bit
:Clear bx

:al has low order bit
;strip off low bit
:bl has low order bit
ral has encoded word
sappend new bit

:1store code word
sall done?
;yes, Print result

:shift al left 1 bit
;store code word in
sMWORD

dec cx :cx holds count

jmp CLOOP ;finish getting result
cxit: nov dx,offset msg5 sencoded word msg

nov ah,09h

int 21h

mov bx, MWORD ;encoded word in bx

call Prnt

pop dx

pop cx

pop bx

pop ax

ret

Code_WORD endp

RERERARARRARARRIARRARRER AR AR RS AR RS AR RN R AR AR AR AR AR h ko h

Subroutine to print the result
Word to be printed must be in bx

RERKRRRRRRRRARRRRRRRAN R AR AR AR R RN AR AR AR AR AR AR TR AR Rk hkkk

-e we we wo wp N

Prnt proc near
push ax
push bx
push (o34
push dx
mov cx,0010h ;cx counts 16 bits
Loop2: mov ax,bx ;put answer in ax
and ax,8000h smask for high order
sbit
cmp ax, 0000h ;is bit a zero?
je Zero
mov dl,31h joutput a "1
mov ah,02h
int 21h
jmp Cont
Zero: mov dl,30h soutput a "o
mov ah,02h
int 21h
Cont: dec cx rdecrease counter
cmp cx,0000h ;all done?
je Go :yes, exit
shl bx,1 sget next bit and
Jmp Loop2 ;continue

146

e P

Go: call CRLF

pop dx
pop cx
pop bx
pop ax
ret

Prnt endp

RERRRRERRRRRRRRRAREAARARRRAR SRR AR AR SRR AR AR ARtk Ak hk

:

H

; CRLF is a subroutine to print a CR and LF

:

AR S R A st X2 i a2 2222222222222 322222222322

CRLF proc near
push ax
push bx
push cX
push dx
mov ah,02h :print character
mov dl,odh ;CR
int 21h
mov dl,0ah ;LF
mov ah,02h
int 21h
pop dx
pop cx
pop bx
pop ax
ret
CRLF endp
shhkhhhhh

;subroutine to check

CK proc near

push ax
push bx
push cx
push dx

nov dx,offset msg4
mov ah,09h
int 21h
pop dx

pop cx

PoP bx

pop ax

147

ret
endp

CK

we we we

sword is stored in MWORD

L 228322222222 2222222222 222222422 2322332232223 333 22382322 8]

TErr is a subroutine that gets the error polynomial from
ithe user and exclusive-ors it to the code word.

The code

SRRAARRRRARRRRRA RN R RRAR AN R AR AR AR AR AAAR AN AN A N AR bk kb hk

TErr proc

push
push
push
push

: Prompt for
mov

mov
int

mov
int
cmp
je

cmp
je

mov
mov

jmp

call
mov
nmov
int
call

Rever:

: Get

sub
mov
int

JC:

cmp

je

cmp

je

near

ax
bx
cxX
dx

user intent
dx,offset msgl

ah, 09h
21h

ah,01lh
21h
al,7%h
Rever
al,59%n
Rever
ax,MWORD
TRCD, ax
Edone

CRLF
dx,offset msg3
ah,0%h

21h

CRLF

bx,bx
ah,01h
21h

al,3oh
JZero
al,31ih
One

error poly and process

148

;does user want an error
spoly?
;print string call

:get character and echo
'y typed?

;yes, get error poly

;Y typed?

;yes, get error poly
;encoded word is TRCD
;no exit

:"Enter error poly"
;print string call

;clear bx
s:read keyboard and echo

:1is it a zero?

:is it a one?

cnp al,o0dh
je JXor
Jmp JC
JZero: shl bx,1
jmp Jc
One: mov ax,0001
shl bx,1
or bx, ax
jmp Jc
JXor: mov ERRP, bx
mov dx, MWORD
xor dx, bx
mov TRCD, dx
mov bx,dx
call CRLF
call Prnt
Edone: call CRLF
pop dx
pop cx
pop bx
pop ax
ret
TErr endp

.
’
.
’
.
’
.
’
L]
’
.
’
.
[

Send_WORD proc

;is it a CR

;put 0 in bx

sto add one to bx
sposition poly
;add one to bx

;store error in bx
;code poly in dx
;Xor error poly
;store trans poly
itrans poly in bx

RRRERRRRERRERRRERRRRR SRR R ARRRACR AR AR SRR R AR RN AR kA h ok dokd

Send_WORD will send the final code word to the decoder
Note that Send_WORD waits for a request prior to sending
the code wvord.

Display
word on

22X A2 2 22 s 2 2222222222222 22222222 X222 2222222

encoded word, error polynomial, and transmitted

near
push ax
push bx
push cX
push dx
the screen
mov

mov ah,09h
int 21h
mov bx ,MWORD
call Prnt
mov

dx,offset msg5

dx,offset msgé

149

mov ah,0%h
int 21h

nov bx, ERRP
call Prnt

mov dx,offset msqg7
mov ah,0%h
int 21h

mov bx, TRCD
call Prnt

; Enable DART transmissions

mov dx, port2 ;icontrol port

mov al,o3n :point to WR3

out dx,al :load pointer into WRO
mov al,ocilh ;Rx enabled, 8 bits
out dx,al ;autoenable off

mov al,os5h ;point to WRS

out dx,al :load pointer into WRO
mov al,6ah ;Tx enabled, 8 tx bits
out dx,al sRTS enabled

; Get a request to send from the decoder

Soopl: mov dx,01h ;control port
in al,dx srec buffer full?
and al,01h ;smask for 1st bit
cmp al,ooh ;rec buffer full?
jz Soopl sno, wait for word
mov dx, 00h ;sdata port of DART
in al,dx ;word in al
cmp al,52h ;capital R sent?
je Sextl :go send code word
Jmp Soopl :ino, wait for R

: Send the code word

Sextl: mov bx, TRCD scode word in bx
mov ah,04h tAux output call
mov dl,bh shigh byte first
int 21h
nov dl,bl ;low byte next
int 21h

: Clear buffers
mov MWORD, 0000h

150

gl B OB
B N NP NP PV A N

J N SRS SR - ST s . - PR R S 1 2

mov ERRP, 0000h
mov TRCD, 0000h

pop dx
pop cx
pop bx
pop ax
ret
Send_WORD endp

;
SRRRRRAARRERARRRR R AR kbbb kb AR A NN R R Ak hhh bbbk hhkhhk

:All do, so exit from program

Exit: mov ax,4c00h suse DOS function 4c
int 21h ito exit from program
main endp
LAB_ 1 ends
end main ;end assy
“Z

22222222222 22 222222222222 222222 X222 2222222222222 22 222222

FDEMODEC.ASM is the software for the final demonstration
of the decoder.

«e %o we Wy %o wo

FDEMODEC.ASM begins by building a table for all the
;sydromes for the (15,7) BC y two error correcting code using
:the generator polynomial x° + xX +x*+ x*+ 1. Then

sit initializes the 2-80 DART to 9600 baud, x16, one stop
;bit and no parity.

~e

H FDEMODEC.ASM will accept a 16 bit binay bit stream as
;the received encoded word. An ASCII "R" (symbolizing ready
ito receive) is outputted through the auxilliary port to the
itransmitter. After the transmitter has received the "R",
sthe transmitter sends the transmitted word via its
sauxilliary port to the decoders Z-80 DART. The received
;encoded word is sent to the decoder for decoding.

-

If the transmitted word had no errors, the transmitted
iword and the final result (ASCII character) are displayed
;on the screen for the user. If the transmitted word has
;jone or two errors, the transmitted word, syndrome
:polynomial, corrected transmitted word, and final result
sare displayed on the screen for the user. In the advent
sthat three or more errors are transmitted in the encoded
;word and the decoder is unable to resolve the error, it
;will display an uncorrectable error message.

-e

151

122222322 2222222 2222222223222 232222 2222222222222 22322222 E)

e we we wp

Define constants

bell equ 07h ;ASCII char for bell
cr equ odh ;ASCII char for carriage
;return

if equ Oah $ASCII char for line feed

portl equ 0000h ;output port, data

port2 equ 0001h soutput port, control

SRRRRARRRARRRRRRRA AN A RRRARR AR R AR RN AR AR AR A ARk h kb hdhdhdddd

stack_area segment stack ;define the stack area
db 80 dup(?) :set aside room for

stack

stack_area ends

data_area segment ;define data area

msg9 db 'Uncorrectable error transmitted'’,'$®

msgl db 'Transmitted word is:','$!

msg2 db 'Syndrome is: LR -

msg3 db 'Error polynomial is:','$’

msg4 db ‘Correct code word: !','s$!

msg5 db 'Final Result is: VL8

GEN dw 01dih

CODE aw 0000h

MWORD dw 0000h

NK db o8h

K db 07h

N db 0fh

T db 02h

Base dw 0001h

Drv dw 0002h

RESULT db o0h

MSK dw 0000h

MSYND dw 0000h

TRCD dw 0000h

Count db 00h

LIST db 300 dup (°* ')

Extr db 10 dup (' ')

data_area ends

AT E 22 SR 2 2 2 R 222222 22 2222222222 22 2222222222222 22222

we ®wme "

LAB_1 segment ;define segment area for
program
main proc far

assume cs:LAB_1, ds:data_area,

ss:stack_area

152

e O T A TS SR e s e e sy

r._“., I P T A S e PR R

set all register to zero (makes it easier to debug)

ST
we we weo

sub ax,ax :set ax to zero
sub bx,bx :set bx to zero
1 sub cx,Ccx ;set cx to zero
sub dx,dx ;set dx to zero

set DS reg to point to the current data area

“e we wa

mov ax,data_area ;point to data_area
mov ds, ax ;DS now points to
;data_area
call I_DART
call Generate
H call LST
MyLp: call Get_WORD
call Dec_Code
Jmp MyLp

A X222 2222222222 22222 222222222222 2222222222222 222222222 X2

I_DART is a subroutine to initialize the DART to 9600
baud, one stop bit, no parity, and x16 clock

e we we wp W wp

2R 2232322 222222222 2222222222222 2222222222222 22222 ¢ 2]

I_DART proc near
push ax
push bx
push cx
push dx
Initialize the DART to x16 clock, 1 stop bit, 8 Tx/Rx ;
its, no parity, and no interrupts (polled mode).

AL contains the control byte to the DART
DX contains the control byte address

we wa wg w\o “e

mov dx,port2 soutput port address
nov al,ls8h :channel reset command
out dx,al :issue command
out dx, al ;agairn, just to be sure
WR1: mov al,01h ;spoint to WR1 i
out dx,al ;load pointer into WRO l
nov al,ooh ;disable all interrupts
out dx,al ;issue command
WR2: mov al,o02h ;point to WR2 i
out dx,al :load pointer into WRO
153

mov al,oo0h
out dx,al
WR3: mov al,o03h
out dx,al
mov al,oOcilh
out dx,al
WR4: mov al,04h
out dx,al
mov al,44h
out dx,al
WR5: mov al,o5h
out dx,al
mov al,6ah
out dx,al

;disable all interrupts
;issue command

;point to WR3 _
:load pointer into WRO
:Rx enable, 8 bits,

;auto enable off

;issue command

spoint to WR4

:load pointer into WRO
;x16 clk, no parity, 1 stop
:bit

:issue command

spoint to WR5

:load pointer into WRO
:Tx enable, 8 Tx bits,RTS
senable

:issue command

;finished intializing, so restore registers

pop dx
pop cx
pop bx
pop ax
ret

I_DART endp

we we Wwe we “o

Get_WORD proc near

push ax
push bx
push cX
push dx

LA A AR SRR 2222 3222222222222 2222222222222 222222222

Get_WORD will get the final code word for the decoder

kkkhhkhhhhkhhhhhkhhhhkhhhrhhhhhhhthhhhhhhhhhhhhhhhhhhhhhhhhhdhk

: Output a ready to receive (ASCII "R")

Glp: mov dl,52h
mov ah,04h
int 21h

; Enable DART transmissions

nov dx,port2

mov al,o3hn
out dx,al
mov al,oclh

out dx,al

;ASCII "R"
sAUX output call

;control port

spoint to WR3

sload pointer into WRO
;Rx enabled, 8 bits
;autoenable off

nov al,o5h ;point to WRS
out dx,al sload pointer into WRO
mov al, 6ah :Tx enabled, 8 tx bits
out dx,al sRTS enabled

; Check input buffer:

mov dx,01h ;control port

in al,dx srec buffer full?

and al,o0lh :mask for 1st bit
cmp al,ooh ;rec buffer full?

jz Glp ino, send ready again

; Get high byte

mov dx, 00h sdata port of DART
in al,dx ;word in al
mov bh,al shigh bits in bh

: Wait for low byte

GGlp: mov dx,01h ;scontrol port
in al,dx ;rec buffer full?
and al,o01lh ;smask for 1lst bit
cmp al,ooh :rec buffer full?
jz GGlp ;wait for word

;7 Get low byte

mov dx, 00h ;data port of DART

in al,dx ;sword in al

mov bl,al ;low bits in bl

mov TRCD, bx :store transmitted word

: Disable DART transmissions:

mov dx,port2 scontrol port
mov al,o03n ;point to WR3
out dx,al :load pointer into WRO
mov al,o0h :Rx disabled
out dx, al :Issue command
mov al,o5h ;point to WRS
out dx,al :load pointer into WRO
mov al,oon :Tx disabled
out dx,al ;Issue command
pop dx
pPop cx
pop bx

pop ax

ret
endp

Get_WORD

no

tructure.

enerate proc near

~e se me Q) Ve ws Ne we me %o Se we we “e Ne e N

push ax
push bx
push cxX
push dx

Clear LIST to all Zeros

.e wg wo

sub bx,bx
mnov SI,offset LIST
mov cx,300d4
Rpt: mov [SI]),bx
add SI,02h
mov (SI],bx
add SI,02h
dec cx
cmp cx,00h
je Sta
jmp Rpt
; Compute single errors:
Sta: mov SI,offset LIST
mov bx,0001h
mov cl,N
Goopl: mov {SI],bx
call DECODE
add SI,02h

nov ax,MSYND

Generate single error polynomials

2 X2 L2 a2 2222222222222 2222222222222 2222222222222

Generate is a subroutine that generates the syndroms for
11 possible error conditions allowed by the given code

Note that cx contains the length of the encoded word
and dx contains the number of correctable errors

22X RS2 RS R R 2 2 222 2222222222222 2222222223222 2222 S

:bx has all zeros
;SI points to LIST
;cx has number of
:records

soutput zeros
;spoint to next record
joutput zeros
;point to next record

:all done?

;SI points to LIST

:bx used to generate
;error

;polynomials

;cx has length of
;polynomial

;store bx in LIST
;calculate the syndrom
:SI points to next pos

Compute double errors if number of errors

Goop2:

Chang:

mov
add
shl

dec
cmp

je
Jmp

mov

‘cmp

jne
mov
mov

dec
nov
nov

mov
xor

mov
call
add
mov
mov
add
mov
shl
dec
cmp

Jmp

dec
cmp

je

nov
shl
nov
mov

(SI],ax
81,02h
bx,1

cl

cl,o01h
Gext
Goop1l

cl, T
cl,o2h

Gxit
cl,N
dl,N

dl
Count,dl
bx,Base

ax,drv
bx,ax

(SI],bx
DECODE
SI,02h
bx,MSYND
{SI]},bx
SI,02h
bx,Base
ax,1

dl
dl,o00h
Chang
Goop2

cl
cl,01h

Gxit
bx,Base
bx,1
Base, bx
ax,Drv

157

:store syndrome

;point to next position
;generate next error
;poly

;count down number of
serrors

;all done?

;do double errors

ino, finish single
serrors

2

snumber of errors in cl
sdouble errors
sindicated?

:no, skip double errors

icx has length of
ipolynomial

:dx has length of
;polynmoial

:dx has N-1

:store N-1 in Count
:bx used to generate
serror

splynomials

;ax has 02h

:bx contains double
serror

sstore bx in LIST
;icalculate the syndrome
:SI points to next pos

istore syndrome in LIST
sinc SI

sreinitialize bx

:shift ax left once

sto count shifts

tall done yet

:yes change bx and ax
:no continue

idecrease length by one
;all combinations done
ryet?

;all done, exit

1load bx with Base
:shift base left once
sstore bx in Base

rax has driver

shl ax,1 ;shift ax left once

mov Drv, ax :store new driver in Drv
mov dl,Count sput Count in dl
dec dl
mov Count, dl ;8tore Count-1 in Count
Jmp Goop2
Gxit: pop dx
pop cx
pop bx
pop ax
ret
Generate endp

REARRRR R AR AR AR R A SRR AR AR A RRANRRR AR A AR RN NI RRR R AR AR AR ARk Ak kK

DECODE will find the syndrom for each error polynmial
using the BCH decoder.

e W5 We e we wo

The error polynomial must be in bx when DECODE is
;called. SI points to LIST (initialized by the calling
;routine)

L3
’

FRRRRRRRRRRAARR R AR RRRRN AR AR R R AR R AR AR R IR Rk R R ARk hhkhhhhkhhkk

DECODE proc near
push ax
push bx
push cx
push dx
mov dx,0000h :to clear the decoder
mov al,ooh
out dx,al
: Clock in n-k data bits
BHigh: mov al,NK ;al has n-k
mov dl,K :dl has k
add al,dl ;al has n
mov cl,1l6d ;cl has 16
sub cl,al :cl has # of zeros
shl bx,cl :shift out zeros
sub cXx,CcXx sclear cx
mov cl,NK scx counts n-k bits
mov dx,4000h :to clock data into

+BCH decoder

DOOP3: mov al,bh thigh order bit in A7

.o wo wp

out dx,al soutput high bit

shl bx,1 ;shift bx left once
dec cx ;count down n-k

cmp cx,0000h ;all done?

je DEC :yes, finish decoding
Jmp DOOP3 :finish loading bits

Next k bits are the decoded word

DEC: mov cl,K ito count k bits
mov RESULT, 00h ;Clear result
DOOP4 : mov dx, 0c000h ;input a bit into CPU

in al,dx :bit is in A0

and al,0lh :smask for DO (AO)

mov dl,RESULT ;decoder word in dl

shl dl,1l :shift deocded word
sleft 1

xor dl,al sradd bit to decoded
sword

mov RESULT,dl ;store result

dec cl :1decrease count

cmp cl,00h ;all done?

je SYND :yes, get syndrome

mov dx,4000h :to output a bit

mov al,bh shigh order bit in A7

out dx,al ;output the bit

shl bx,1 :shift encoded word
sleft 1

jmp DOOP4 :finish decoding

; Syndrome (remainder) is in the n-k registers forming
;the generator polynmial

SYND: mov dx,8000h ;output a bit, gate
;open
mov al,bh :to output last bit
mov cl,08h ;to count NK bits

; One more time with gate closed.

mov dx,4000h soutput, gate open
out dx,al ;clock in last bit
mov al,ooh soutput zeros now

sub bx,bx ;make sure bx clear

: Get syndrome bits and continue to clock in bits with the
srgate open.
DOOP: mov

dx, 0c000h sto input a bit

159

in

and
xXor
dec
cmp

shl
mov

mov
out

jmp

Dstr: mov

;i Restore registers
pop
pop
pop
pop
ret

DECODE endp

~e we we ws we wp

g
2]
3
t

proc

push
push
push
push

mov

Loop2: mov
and

Ccmp
je

nov
nov
int

Jmp

Zero: mov

al,dx
al,o0lh
bl,al

cl
cl,00h
Dstr
bx,1
dx,8000h

al,ooh
dx,al
DOOP

MSYND, bx

dx
cx
bx
ax

Subroutine to print the result
Word to be printed must be in bx

near

ax
bx
cx
ax

cx,0010h

ax,bx
ax,8000h

ax,0000h
Zero
dl,31hn
ah,02h
21h

Cont

dl,3oh

;bit in A0

smask for low bit
;bx has syndrome
;decrease bit count
;all done?

;store the syndrome
;ready for next bit
soutput a bit, gate
;jopen

ito output a zero
soutput, gate closed
;repeat

;store syndrome in SYND

AR 222222 222 2222222 232222222222 2322222322233 222X 2

RARRRRKRRRRRARRRARRRRRRR AR RRARRARAR AR AR ARA R R A AR R AR A Rk

;cx counts 16 bits
;put answer in ax
smask for high order
:bit

:is bit a zero?

;output a 1

soutput a 0

nov
int

cont: dec
cmp
je
shl
Imp

MGo: call
pop
pop
pop
pop

ret
Prnt endp

we wWe Wg w9 we we

CRLF Proc

mov
mov
int

mov
mov
int

ret
CRLF endp

we we Wwe we %o

w
>
=

proc

Mov
mov
int

ret
BLNK endp

ah,02h

21h

cx sdecrease counter
cx,0000h ;all done?

MGo ;yes, exit

bx,1 ;get next bit and
Loop?2 scontinue

CRLF

ax

cx

bx

ax

L 22 s 22 222222 222222222 22X 22 2222222222222 2222222222222

CRLF is a subroutine to output a carriage return
and a line feed.

LA RS AR 222222222222 222222222 2222222222222 2222222222233

near

dl, o0dn ;cr
ah,02h
21h

dl, 0ah ;1f
ah,02h
21h

KRRRARRERRRRRRARARERRRRARERRRRAR AR SRR ARA R AR AR AR SRR AR

BLNK is a subroutine to output four blanks

LA 2222222222222 2222222222 2222222222222 2222222222222 22

near
dx,20h ; four blanks

ah, 02h
21h

161

RRRRRRRRARRRRRRRRARRRAASARAR AR AR AR h bbbk h Ak h bk hhhhhhdkk
»

LST is a subroutine to list the contents of memory in
a binary format;

Note: will only list the contents of memory stored in
memory location LIST

e Wy e We W2 We B We W

RRARRRR AR RR AR A AR R AR AR R AR RN R RN AR RN R AR R R AR AR R R AR Rk hx

LST proc near
mov SI,offset LIST ;SI points to LIST

;Calculate length of list to display

mov al,T sax has number of errors
cmp al,o2h ;two errors?
je Two
sub cx,cx ;clear cx
mov cl,N ;n single errors
jmp Show

TwWO: sub cx,cx :clear cx
sub bx,bx ;clear bx
mov cl,N :length of polynomial
mov bl,N :length of polynomial
dec bx :bx has N-1

Agn: adad cx,bx :cx has # of error polys
cmp bx,000h ;all done?
je Show ;yes, print the results
dec bx snext number to add
jmp Agn

:Display the list

Show: mov bx, [SI] ;polynomial to be
;displayed

call Prnt :print the results
call BLNK ;add some blanks
inc sI
inc SI ;point to next record
mov bx, [SI) :load bx with next record
call Prnt ;print the next record
call CRLF ;Cr and Lf
inc SI
inc SI ;point to next record
dec cx sdecrement counter
cmp cx,00h sall done?

je DN ;yes, exit

jmp
DN: ret
LST endp

e WE Wy Np M We Wy

Dec_Code proc
push
push
push

push

mov
mov
mov
int
call
call
mov
cmp
je
mov
mov
int
call

transmitted code word.
code word is in TRCD

Show

near
ax
bx
cx
dx

bx,TRCD
dx,offset msgl
ah,09h
21h

Prnt
DECODE
bx,MSYND
bx,0000h
DCR
dx,offset msg2
ah,09h
21h
Prnt

:no, get next record

ARRARRRRRRRRRRRRRER AR R R AR A RRR AR AR AR AR AR AR AR kR Ak kR Ak hkkk

Dec_Code is a subroutine that decodes the received
Note that the transmitted

LA A2 222222222222 222222222222 2222222222222 32222322222 222

stransmitted word in bx

sbut syndrome in bx
;syndrome = 0?
igo print result

;print syndrome

; Now search list for correct error polynomial

mov
add
nmov
mov
mov
cmp
je

add
dec
cmp
je

jmp

Clop:

SynM: mov
sub
mov

mov

SI,offset LIST
SI,02h
dl,8ch
ax, [(SI)
bx,MSYND
bx,ax
SynM
SI,04h
dl
dl,o00h
Ermsg
Clop

ax,SsI
ax,0002h
SI,ax
bx, [SI]

163

;point to LIST
;point to syndrome
;search list
;syndromes match?

:iget next record

sall done

;point to error poly
;1load error poly

mov
mov
int
call
mov
xor
mov
mov
int
call
call
mov
cmp
je
Ermsg: mov
mov
int
call
jmp
DCR: mov
mov
int

mov
mov
int
call
mov
int
call
NL: Pop
pop
pPop
pop
ret
Dec_Code

endp

dx,offset msg3
ah,09h
21h
Prnt
dx, TRCD
bx,dx
dx,offset msg4
ah,09h
21h

Prnt
DECODE
bx,MSYND
bx,0000h
DCR

dx,offset msg9
ah,09h

21h

CRLF

NL

dx,offset msg5
ah,0%h
21h

dl1,RESULT
ah,02h
21h

CRLF
dl,ozh
21h

CRLF

dax
cx
bx
ax

stransmitted word in TRCD
;correct trans word in bx

ssyndrome in bx
;syndrome = 07?

;yes, print result

;error msg
;print string

;Final Reuslt msg

;display char function

FRRRRRRRRRRARARRARRARAARR AR AR ARAR AR AR AR RN Ak hhhhhhhhdk

:All do, so exit from program

’
Exit:

mov
int
main endp
LAB_1 ends
end
‘Z

ax,4c00h ;use DOS function 4c
21h ;to exit from program
main ;end assy

164

A

REPORT DOCUMENTATION PAGE .

—

Te. RE URITY CLASSIFICAT
UNCLASSIFIED

6 RESTRICTIVE MARKINGS

28. SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION/AVAILABILITY OF REPORT

TS OTC AT FCATION / COWNGRADING SCNTBULE

Approved for public release;
Distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
AFIT/GE/ENG/88D~20

§. MONITORING ORGANIZATION REPORT NUMBER(S)

Air Force Institute of Technology
Wright-Patterson AFB, OH. 45433

o
6s. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
(1f applicable)
School of ineeri AFIT/ENG
6c ADORESS (Clty, State, and ZiP Code)

7b. ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION () applicable)
Foreign Technology Division FID/SDIC
e ~e———,——
8¢ ADDRESS (City, State, and 2IP Code) 10. SOURCE OF FUNDING NUMBERS
FID PROGRAM PROJECT TASK WORK UNIT
11, TITLE (nclude Security Classification)
See box 19
. e
12. PERSONAL AUTHOR(S)
Norman R. leClair, . USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
MS Thesis FROM 10 1988 December 166

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue On reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP BCH E 3 , BCH D 3 , Asymchrmn:s Serial
Interface, Exrror Detection and Correction
19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Title: HARDWARE IMPLEMENTATION OF A BCH ENOODER, DECCDER, AND INTERFACE

Thesis Advisor: Glenn E. Prescott, Capt, USAF
Professor of Electrical Engineering

30

Nt Lo

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT ' 21. ABSTRACT SECURITY CLASSIFICATION
O UNCLASSIFIEDUNLIMITED [SAME AS RPT. {3 oTiC USERS WCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) | 22¢c. OFFICE SYMBOL
(513) 255-3576 AFTT/ENG
DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

& UNCLASSIFIED

Abstract

A BCH encoder and decoder are implemented in hardware
with special emphasis given to the encoder and decoder
interfaces. The pitfalls of using a 7474 D flip flop as the
basis of building the interface is discussed. The
advantages of using a UART for the interface are outlined
and the circuit diagrams to implement the UART interface in
hardwvare are provided.

Finite impulse response linear tilters are chosen to
implement both the BCH encoder and decoder. A basic
theoretical understanding of the BCH encoder and decoder
function is given. Design decisions made for the hardware
implementation of the encoder and decoder are discussed, and
schematics detailing the final hardware configurations are

provided. Software to run and test all of the above is

documented in the appendices.

