
~. ., S.I LE. -

N

~OF

A SOURCE CODE ANALYZER
TO PREDICT COMPILATION TIME

FOR AVIONICS SOFTWARE
USING SOFTWARE SCIENCE MEASURES

Ul THESIS
Volume I Main Report

AFIT/GCS/ENG/88D-7 Eric R. Goepper

DEPARTMENT OF THE AIR FORCE F
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

7mdocsmeaI bm be.

___ __ __89 1 17 182



I

AFIT/GCS/ENG/88D-7

I

A SOURCE CODE ANALYZER
TO PREDICT COMPILATION TIME

FOR AVIONICS SOFTWARE
i USING SOFTWARE SCIENCE MEASURES

THESIS
Volume I Main Report

AFIT/GCS/ENG/88D-7 Eric R. Goepper
Captain, USAF

Approved for public release; distribution unlimited



i -I

* -i
AFIT/GCS/ENG/88D-7

A SOURCE CODE ANALYZER

TO PREDICT COMPILATION TIME

FOR AVIONICS SOFTWARE

USING SOFTWARE SCIENCE MEASURES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements of the Degree of

Master of Science Accession ForI TIS GRA&I
DTIC TAB
Unannounced
Justificatio

By
Eric R. Goepper, B.S. Distribution/

AvallabilitY Code$
Captain, USAF Av a ado -

Dist Special

December 1988 'l

Approved for public release; distribution unlimited



Table of Contents

Page

Preface ...................................... ii

List of Figures ......... ... . ........ ................. iv

List of Tables ........................................... v

Abstract ................................................. vi

I. Introduction and Problem Statement ..................... 1

II. Software Metrics and Software Science Measures ...... 8

III. Design and Construction of the SCA ..................... 22

IV. SCA Implementation Details ............................. 35

V. Testing and Results ................................. 45

VI. Conclusions and Recommendations ........................ 70

Appendix Al: Analysis of Original Compile Time Model .... 79

Appendix A2: Linear Regression .............................. 89

Appendix A3: Analysis of Recalibrated Compile Time Model 109

Appendix B: User's Manual for the SCA ..................... 124

Appendix C: Sample SCA Output .......................... 129

Bibliography.. ............................................. 139

Vita .. ...................................................... 142

I-L



L

Preface

This thesis used existing software tools, metrics theory,

and a prototype model for compile time to build a computer

i program which is simple to use, easily ported, and works as

advertised. The program can be a useful tool for software

metrics researchers as well. What's more, there are no flies in

the ointment. There isn't a command set to learn nor a list of

subtle run-time nuances of which to be aware. If you follow the

installation instructions in the User's Manual, I believe the

program will work reliably in your environment without requiring

any programming changes. The program should be portable to any

mainframe computer system which uses the popular UNIX operating

system, offers a C language compiler, and supports the compiler

generating tools LEX and YACC (they are normally bundled with

UNIX by the vendor). The number of installations meeting these

requirements is already quite large and growing respectably.

I would like to thank my thesis advisor, Major Jim Howatt of

the Air Force Institute of Technology, for his suggestions

regarding the architecture of the program and for his insights

involving software metrics and compiler theory. I would also

like to thank two committee members who are also with the

Institute. Capt Wade Shaw assisted with the statistical analysis

and helped interpret the data and the behavior of the timing

model. Capt Dave Umphress provided an insightful review of the
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draft manuscript which helped improve the overall quality of the

work.

Eric R. Goepper
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Abstract

Thiis thes s describes the construction of an Ada source code

analyzer (SCA) which produces values for the Software Science

measures ni, n', N', and Nr. The measures are used to evaluate a

mathematical model designed to predict the compile time of Ada

modules. The primary goal of this effort was to provide a

software tool to metrics researchers which could automatically

compute Software Science measures foe Ada modules. A secondary

goal was to produce a convenient method for Ada compiler

researchers to predict the amount of time consumed during

compilation of given avionics software modules.

As the SCA was built, we incorporated the rules of a new Ada

token counting strategy designed to yield meaningful results for

entire Ada programs, not just executable code. Once satisfied

the SCA implemented the rules correctly and produced accurate

counts for the Software Science measures, we added the compile

time model to the SCA.

To test the validity of the compile time model, over 200

modules were selected at random from among the Common Ada Missile

Packages (CAMP) software library. For each module chosen, both

the compile time as predicted by the SCA and the actual compile

time using the Verdix Ada compiler were recorded. Finally, the

vi
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prediction error values 1predicted compile time minus actual

compile time) were recorded and analyzed. 6vP) s-
For the test environment we used, in 95% of the test cases

the SCA initially overestimated compile time with an average
m

prediction error of 4.35 seconds. Since the average actual

compile time was only 3.88 seconds, this average error figure was

unacceptable. In addition, the magnitude of the prediction error

increased disproportionately as the size of the module increased.

These results led us to recalibrate the model's parameters. When

the recalibrated model was tested, the average error fell to -.25

seconds. This value was much more respectable in view of the

actual compile time average. Moreover, the curve of the

predicted compile time values now fit the curve of the actual

values nicely.
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A SOURCE CODE ANALYZER
TO PREDICT COMPILATION TIME

FOR AVIONICS SOFTWARE
USING SOFTWARE SCIENCE MEASURES

I. Introduction and Problem Statement

Origin of the Problem

1" Various aspects of the software development process affect

the quality of the software product. The quality of the software

requirements, specifications, and code directly affects the

ultimate value of the software produced. One goal of software

engineering is to produce the "best" software product in the most

efficient and cost-effective manner. Intuitively, we know that

how we put the software together must have a great deal to do

with how well it meets requirements, how hard it is to maintain,

how many errors it has, and so on. One of the most important

determinants in this process is the compilation process.

One of the difficulties faced by military software develop-

ment. agencies is the problem of choosing the best. compiler for a

particular computer software development environment. Generally

these agencies are beset with the following two questions:

1. Since Ada is the mandatory development language, hot
should the most efficient Ada compiler be chosen for an
avionics software development environment?

2. Is it possible to predict the performance of validated
Ada compilers with respect to compilation time for
avionics software?



The validation process mandated by the Department of Defense

(DOD) for Ada compilers does not guarantee the efficiency of the

compiler; in fact, compilation resources such as compile time and

object code size are not criteria in the validation process. For

example, a situation could occur in which one validated compiler

produces a 50 kilobyte (K) object code module in 180 seconds,

while a different validated compiler outputs a 70 K object module

in 150 seconds using the same source program as input. The

dilemma of the development agency is clear: given these widely

varying parameters, which one of these two compilers should be

chosen for a particular development environment?

At the DOD Ada Validation Facility located at Wright-

Patterson AFB, Ohio, the need exists to measure the performance

of validated Ada compilers in the context of avionics software

development. Managers at the Facility are concerned with measur-

ing and predicting the efficiency of Ada compilers for avionics

systems. For example, they would like to know whether or not a

new compiler is faster than established compilers. They would

also like to identify the specific language constructs used in

Ada avionics software which require relatively more overhead to

compile.

The specific question which developers face is: in terms of

(,ompplation time, how can different Ada compilers be evaluated

relative to one another so the best one can be chosen for a

particular software development task? The answer might involve

complexity metrics.
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In its broadest sense the term "software metrics" refers toI
the branch of software engineering which is concerned with

objectively and rigorously quantifying those aspects of the

software development process which affect software quality. In
a

general, researchers in the field of software metrics attempt to

answer the following two questions: Given an observed behavior of

the software product (e.g., error-prone, hard to debug), what is

it about the way the source code was developed that gives rise to

this behavior? How can we measure the phenomenon? Researchers

focus on the ways that software metrics can be used to predict

program behavior based on an analysis of the source code text.

Since the length of time required by compilation is thought

to be an increasing function of the complexity of the software,

researchers believe complexity metrics can be used to predict

compilation time for a given set of source code programs (Howatt,

1988). In other words, if metrics can be used to measure the

complexity of software modules, it should be possible to use them

to help predict the amount of time required to compile a software

module.

Problem Statement and Goals

Currently the DOD Ada Validation Facility does not have an

automated software tool to predict the compilation time of

avionics source code modules. The goal of this thesis is to

produce such a tool, called a source code analyzer (SCA), which

correctly implements a pre-defined counting strategy for Software

3



Science measures, and automatically predicts compile times for

Ada source code modules as well.

Scope

The study is limited to the specific problem of producing a

SCA which implements a model to predict compile times for

syntactically correct software coded in Ada. The only

measurement of the compilation process is compile time. We

define compile time as the Central Processing Unit (CPU) time

which elapses between the start of compilation and the moment

when the resulting object code file has been successfully

produced. Other aspects of the compilation process (e.g.,

number of external references, object code size) are not

addressed in this work.

The SCA can be used only as a tool for the prediction of

compilation time for Ada software modules. The data produced by

the SCA can help researchers evaluate the compilation efficiency

of Ada compilers. However, the SCA does not directly offer

information concerning other characteristics or performance

parameters of avionics software modules or Ada compilers. For

example, neither a prediction of the object code size of modules

output by a compiler nor a prediction of possible run-time errors

is available from the SCA.
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General Approach

To construct the SCA, an Ada source code parser was

generated, and a recently published Ada token counting strategy

together with a prototype compile time model were implemented in

the program. As a test of the validity of the timing model, over

200 software modules (files) were input to the SCA, and the

predicted compile time was compared to the actual compile time

for each module.

The compilation timing model is borrowed from (Miller,

1986). Miller derived this model using Software Science measures

computed from Ada source code. These measures had been manually-

generated using the same token counting strategy as implemented

in the SCA. This counting strategy was developed at the Air

Force Institute of Technology and supports token counting for the

full Ada language (Miller and others, 1987).

Assumptions

The key assumption we made is that Miller's timing model

offers a reasonable theoretical foundation on which to build. We

fully anticipated the necessity for fine tuning or recalibrating

the model. In the planning stage we accepted the risk that the

ability of the SCA to initially predict an accurate range of

compile times would depend for the most part on the validity of

Miller's basic model, and only indirectly on the correctness of

the SCA. Although there was reasonable evidence that the model

5



was valid (Miller, 1986), the model had not been empirically

validated before we implemented it in the SCA.

Sequence of Presentation

Chapter II discusses the applicable topics of Software

Science measures, presents the Ada token counting strategy

developed at AFIT, and overviews the compilation timing model.

Chapter III covers the design and construction of the SCA.

Since the SCA was generated using existing software tools,

background material for these tools is reviewed at the beginning

of Chapter III.

Chapter IV discusses in detail the implementation of the

routines responsible for data structure management and token

counting support in the SCA. In addition, the Software Science

measures tabulation and the timing model computations are

covered.

A discussion of the methods employed for correctness testing

of the SCA begins Chapter V. Considering the token counting

strategy as "design specifications", a few caveats and deviations

from the strategy are discussed next. The results of testing the

SCA compile time predictions and the recalibration of the timing

model are presented and analyzed in Chapter V.

Conclusions regarding the correctness, validity, and the

applicability of the SCA are discussed in Chapter VI. Specific

conclusions regarding compile time models for Ada source code aLre

listed too. Recommendations for enhancement of the SCA and ideas

6
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for further research employing the SCA are also presented in

Chapter VI.

7

-AO



II. Software Metrics and Software Science Measures

The software industry and academia have investigated ways to

determine and measure the various factors which influence

software quality. One of the areas which appears to be highly

active is software complexity metrics. By definition, a

complexity metric is a single number or small set of numbers

derived from an analysis of the source code. These numbers may

represent a measure of the program size, flow of control, flow of

data, structure of the data, or the degree to which the code was

structured. Using such metrics, for example, one could assert

that program "A" is more complex than program "B", in at least

certain respects. (The terms "metric" and "measure" are used

synonymously in the vocabulary of software metrics.)

Software metrics are usually derived from an analysis of

programming language source code. Most of these metrics have a

unique approach or technique to analyze the code. Usually this

takes the form of an algorithm and one or more equations

associated with that algorithm. Characteristics of the code are

analyzed using the algorithm and equations. Based on

calculations from the equations, an output value or metric is

produced. Notice that the term "metric" is used to mean both the

particular technique of measurement as well as the numerical

value produced by that measurement.

For example, the simplest algorithm would be a count of the

lines of source code. The algorithm in this case would be: sum

8



the number of lines of code. This simple metric is still studied

empirically to determine its merit as a measure of software

complexity. The other early algorithms, and the ones upon which

much of current research in complexity metrics is based, involved

counting the lexical elements or counting the number of possible

control (execution) paths in a program.

There are many different types of complexity metrics in the

literature, each metric dealing with one or more aspects of

software complexity. There has not, however, been a great deal

of empirical evidence offered in support of these metrics. Most

of the researchers have relied on the "intuitive appeal" of their

metric, which they usually claim is inherent in the design and

construction of their metric. Indeed, the majority of metrics -

have not been empirically proven valid (Howatt, 1988). Part of

the problem has been the lack of rigor and precision in the

definition of the metrics and their components and/or equations.

Many intuitively appealing metrics lack validation because their

definitions or methodology are vague and imprecise.

One attempt to help mitigate this problem was an effort to

characterize the fundamental concepts and lexicon of control flow

metrics more rigorously (Howatt, 1985). In addition, recently

proposed metrics (e.g., Measure Based On Weights) have been

designed to permit a more credible approach to empirical testing

(Jayaprakash and others, 1987). But despite these advances,

validated metrics are the exception rather than the rule.

9



Software Science Measures

In the early 1970s Maurice Halstead, while working at Purdue

University, originated a body of metrics theory which has become

known as the Software Science Theory of metrics (Halstead, 1977).

His work developed as an outgrowth of research involving the

analysis of software complexity using mathematical algorithms

(Halstead, 1977). Software Science measures are counts of

operators and operands in a software module. The measures are

defined in Table 1.

By definition, a token is an operator or an operand. An

operator is any function, symbol, or group of symbols in the code

that produces an action (e.g.,+, yourfunction(), sqrt(x)). An

operand is any type of constant or variable (e.g., my_count, pi,

3.14159) in the source code. An operator normally acts upon,

modifies, or in some way makes use of an operand. Operands are

generally user-defined; operators are often part of the language

itself. An exception to this rule are user-defined subprograms

which, when invoked in the code, are considered operators.

Table 1. Software Science Measures (Halstead, 1977)

n1 = number of unique operators

n2 = number of unique operands

NI = total occurrences of all operators

N2 total occurrences of all operands

10



Halstead then developed a set of software metrics which are

based on the Software Science measures. These metrics are

defined in Table 2. Some of these metrics are central to

Miller's theoretical development of the compilation timing model.

Table 2. Halstead's Equations (Halstead, 1977)

Vocabulary = n = n1 + n2

Length = N = NI + N2

Est. Length N^ = (nl * log2(nl)) + (n2 * log2(n2))

Volume = V N * log2(n)

Est. Volume = V- = N^ * log2(n)

Potential Volume = V* = (2 + n2*) * log2(2+ n2*)

Level of Implementation = L = V* / V

To compute the metrics of Table 2, the source code of a

module is scanned and analyzed by a manual or automated method.

As the code is scanned, all tokens encountered are counted

according to a pre-defined set of rules called a token counting

strategy. Since a token can be an operator or an operand, the

strategy must arbitrate between instances of operators and

operands depending on the current context. Eventually this

11
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counting process produces the measures n1 , n2 , N1 , and N2 of Table

1. These values are then substituted into the appropriate

equation from Table 2, and the value for a particular metric of

interest is computed. (Note: the term n2* in Table 2 is a

theoretical measure which-requires special handling. For an

explanation of n2*, see Miller, 1986 or Halstead, 1977.)

Evaluation of Software Science Metrics. The literature is

full of criticism of the Software Science theory and methodology

(Levitin, 1986). Although considered by many researchers to be

useful, Software Science measures suffer from many deficiencies.

A few of the allegations against these measures are listed here.

1. They do not measure control flow complexity (Ramamurthy
and Melton, 1986:309).

2. Their credibility suffers from a lack of empirical and
analytical evidence to validate them (Howatt, 1985:40).

3. The counting process does not take into account non-
executable statements (Levitin, 1986:314), despite the
fact that it has been shown that declarations and other
non-executable statements contribute to complexity.

4. It is difficult to separate tokens into disjoint
operator and operand sets (Levitin, 1986:317).

5. The equation for volume is basically flawed in the sense
that it is not additive (Levitin, 1986:317).

6. The counting rules cannot be applied consistently across
several languages (Mehndiratta, 1987:370).

7. The measures do not reflect modularity (Van Verth,
1987:252).

Although some experiments have produced empirical evidence

in support of Software Science measures, researchers agree that

12



for the most part they remain un-validated (Levitin, 1986).

Unquestionably these metrics fail to embrace all the factors

which contribute to program complexity (Van Verth, 1987).

Most of the criticism of Software Science measures is levied

by researchers who are concerned primarily with the psychological

complexity of software modules. In this effort we are not

interested in the psychological aspects of complexity. Instead,

the consumption of resources (specifically time) during

compilation is our focus. Since a compiler processes tokens as

its basic unit of work, it makes sense to apply Software Science

measures in our research.

The Ada Token Counting Strategy

In "A Software Science Counting Strategy for the Full Ada

Language" the authors present a new token counting strategy for

the full Ada programming language (Miller and others, 1987).

This new counting strategy extends Halstead's original method of

counting tokens and adapts it to the full Ada language. The

major tenet of the new rules is to categorize the syntactical

language constructs according to the amount of work or overhead

they cause the compiler. For example, although the Ada construct,

"for ... in ... loop ... end loop" contains 5 tokens, the

compiler handles them as one semantic structure rather than as a

string of 5 independent reserved words. According to the token

counting strategy, these words would be counted as one multi-

13



token operator. In this way, the actual parsing strategy of the

compiler is captured more accurately.

The new token counting strategy features context-based

rules to help differentiate between operators and operands

(Maness, 1986; Miller, 1986). Additionally, Miller and others

extended Halstead's original token counting strategy to include

the count of non-executable source code (Maness, 1986; Miller,

1986). In short, the strategy counts a larger set of Ada source

statements and uses concise, unambiguous, context-based rules for

differentiating operators from operands.

The counting rules are listed below. These rules constitute

the baseline definition of the token counting strategy currently

implemented in the SCA. For explanations of the development and

interpretation of the rules see Miller and others, 1987 or

Maness, 1986. For examples relating to the use of some of these

rules, inspect the sample SCA output listings in Appendix C.

These listings provide the reader with numerous examples

illustrating the token counting strategy and its rules.

1. All entities, except comments, in a module are
considered.

2. Variables, constants, and literals are counted as
operands. Local variables with the same name in different
procedures/functions are counted as unique operands. Global
variables used in different procedure/functions are counted
as multiple occurrences of the same operand.

3. The following pairs of tokens are counted as multi-token
single operators:

FOR USE SELECT END SELECT

DO END DECLARE BEGIN END

14



OR ELSE LIMITED PRIVATE
BODY IS FUNCTION RETURN
ARRAY OF RECORD END RECORD
AND THEN FOR IN LOOP END LOOP
BEGIN END WHILE LOOP END LOOP
SUBTYPE IS CASE IS WHEN END CASE
ELSIF THEN LOOP END LOOP
IF THEN END IF EXCEPTION WHEN
GOTO

4. The following tokens or pairs of tokens are counted as
single operators subject to the accompanying conditions:

+ is counted as either a unary + or a binary +
depending on its function. A unary + is not counted
when it is part of a numeric constant like +2.15.

- is counted as either a unary - or a binary -
depending on its function. A unary - is not counted
when it is part of a numeric constant like -22.5.

is counted as either (I) an expression grouping
operator as in (x+y) / z , (2) an invocation operator,
as in xx := sqrt(a), (3) a declaration operator, as in
PROCEDURE xx(a : in REAL), (4) a subscript operator, as
in x *= i(j), (5) a dimensioning operator, as in
k : array(l..5) of REAL, (6) an aggregate operator, as
in x : f-type := (OTHERS => ' '), (7) an enumeration
operator, as in type color is (red, green, blue), or
(8) a type conversion operator, as in int .=

integer(realvariable).

' (apostrophe) is counted as either (1) an attribute
operator, or (2) an aggregate operator. A pair of
apostrophes used in character constants, such as 'x' is
counted as a single operator.

IN is counted as either (1) a mode operator, or (2) a
membership test operator.

OR is counted as either (1) a boolean operator, or (2)
a alternative operator in SELECT statements.

NULL is counted as either (1) an operator if it
appears in executable code, or (2) an operand when used
as a constant.

PRIVATE and SEPARATE are counted as either declaration
operators or as detail operators.

5. The following tokens are counted as single operators if

they are not used in rules 3 and 4:

15



> < & * /

>= /= => ** < > # # <<> := < > IS AT
ABS REM END XOR AND MOD USE NEW ALL NOT OUT ELSE
TYPE TASK EXIT WHEN RANGE RAISE ABORT OTHERS DELAY
DELTA WITH ENTRY DIGITS GO TO GENERIC ACCEPT RETURN
ACCESS PRAGMA REVERSE EXCEPTION TERMINATE CONSTANT
PACKAGE RENAMES PROCEDURE

6. Procedure and function calls are counted as operators.

7. A type indicator is counted as either (1) an operand in
its own declaration statement, or (2) an operator if it
types a variable, function, or subtype.

8. "Package/Procedure/Function Is New" is called a generic
instantiation operator and is counted as one unique

L: operator.

The Compile Time Model

The compile time model implemented in the SCA is from the --

thesis "Application of Halstead's Timing Model to Predict the

Compilation Time of Ada Compilers" (Miller, 1986). In that work,

Ada source code modules were manually counted according to the

token counting strategy just presented, and the Software Science

measures produced were used to derive the model. For a detailed

account of the derivation of the model, see Miller 1986,

especially pages 32, 35, and 67.

A very brief overview of the derivation is provided now.LI
The theoretical basis of the timing model begins w'th the last

equation in Table 2:

Human Programming Time = T V2 / ( S * V*) (1)

16



V and V* represent volume and potential volume, respectively.

S represents the "discrimination rate" of a typical human

programmer. Miller's working hypothesis asserted that the amount

of time, T, required for a human to program a software module

should be related in some meaningful way to the amount of time

required to compile the same module on a computer (Miller, 1986).

Miller showed that Equation 1 could be expressed in

parametric form as:

T = K * Va * (V)b (2)

In this equation T represents the predicted compile time of the

module, and K plays the role of an environment-specific constant;

K roughly corresponds to the inverse of S in Equation 1. The

exponents a and b are the parameters of Equation 2, where a = 2

and b = -1.

Miller accumulated a data base of values for the Software

Science measures n,, n2, N1 , N2 , N, n, and n2* by manually counting

Ada source code modules. The new measure here, n2*, represents

the number of input/output parameters in a module. n2' is

important because, as a reference to Table 2 will reveal, it is

used in the computation of V*. Seeking a model for compile time,

Miller used the data and the technique of linear regression to

derive and verify new values for the parameters a and b in

Equation 2 (Miller, 1986, 67). These values turned out to be

fractions, differing from one another by a full order of

magnitude as we see in the next equation.
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T Ki, V(. 4839 ) , (V). 0 745 ) (3)

In Equation 3, Ki is further defined as one of four environment-

specific constants for i = 1,2,3 and 4. Both V and V* remain the

same. Obviously, the exponents a = .4839 and b = .0745 are the

parameters for the compile time model. These parameters are not

only environment-specific, but also Ada compiler specific. For

purposes of this study we shall initially accept these exponents

at face value; we're not so much concerned here with the methods

used to obtain them as we are interested in putting them to use

in the SCA.

At this point, it looks as if we can implement Equation 3 in

the SCA without difficulty. But recall that to compute V* we

need a value for n2 *. The SCA does not compute this particular

measure, however. Fortunately, we can make use of the metric for

estimated level, L, in Table 2 as a legitimate substitute for

potential volume V* in Equation 3. This substitution is

motivated by both Miller's work and Halstead's original writings

(Miller, 1986, 35). In fact, Miller actually offered an

"estimated" version of Equation 3 which employs this substitution

(Miller, 1986, 55). The estimated version of Equation 3, shown

in Equation 4 below, also substitutes volume V with the estimated

volume V^. Equation 4 can be used as an approximation to

Equation 3 when the latter cannot be easily computed.

T = Ki * (V,)a * (L')b (4)

18



Since the SCA produces all the measures required to compute

volume V, there is no need for the compile time model to use V^

instead of V itself. Therefore, the basic expression for compile

time implemented in the SCA uses V and L^ as follows:

T = Ki * V' * (L4)3 4
9 (5)

The reader should be aware of the following important fact: the

values of a and b (which Miller found to be .4839 and .0745

respectively), were originally derived for Equation 2, not

Equation 4. The SCA "borrows" the parameters derived for one

expression of the compile time model and uses them as parameters

in a similar, yet different, expression for the same model.

Although this approach was risky, any merits or demerits would be

eventually reflected in the test results. We were reasonably

assured that the substitution of V* by L^ couldn't impact the

magnitude of the predicted compile time a great deal since the

exponent of the V" term, .0745, was small relative to the

exponent .4839 of the unadulterated term V.

To compute Equation 5 in the SCA, we substitute the

definitions for V and L^ from Table 2 appropriately in Equation

5. Since V and L^ are both defined in terms of the Software

Science measures nj, n2, NI, N2, N, and n, the model for predicted

compile time T can also be expressed as shown below in Equation

6. This became the final expression for the compile time model

before it was coded into the SCA.
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T Ki (N * logi(n))' 8 3 ' * ((2 n n2) / (n, N))' °74 5  (6)

As we know, the value of Kj substituted into Equation 6

depends on the particular hardware/software environment in which

the source code module will be compiled. Miller derived four

specific values for Ki corresponding to four different compilers

in four unique computer environments. These values are listed in

Table 3 below (Miller, 1986).

Table 3. Constants

K1 = .3746 (ASC UNIX)
K2 =.2140 (ISL VMS)
K3 = .1924 (CSC VMS)
K4 = .3369 (DG AOS)

The acronyms ASC, ISL, CSC, and DG stand for specific

computer systems operated by the Air Force Institute of

Technology (AFIT) or the DOD Ada Validation Facility. The

remaining acronyms refer to the particular operating system

deployed on that system. The ASC is the primary system of

interest in this work. The Academic Support Computer (ASC) is a

Digital Equipment Corporation VAX-11/785 running the Berkeley 4.3

UNIX operating system. It features 8 megabytes of main memory

and over 1300 megabytes of disk storage. All testing of the

compile time model implemented in the SCA took place on the ASC.

We can view the constant Ki as a performance index for

compiler efficiency; that is, Ki represents the processing or
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translating rate of a particular Ada compiler in the context of a

particular hardware/software environment (Miller, 1986). Since

the SCA implements Equation 6 as the compile time model, the

value of T in Equation 6 is computed for each of the values of Ki

shown in Table 3. These four compile time predictions are also

printed by the SCA for the user.

However, the compile time predictions of the SCA were

evaluated for the ASC environment only. Since this environment

requires the use of Kl:.3746, all predicted and actual compile

time values used for testing use this value of K, in Equation 6.

The SCA was not tested in the other three computer environments.
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III. Design and Construction of the SCA

By way of quick review, the plan to develop the SCA was

organized as follows:

1. Scan the literature and choose the compilation
timing model to implement in the SCA.

2. Build the SCA, implementing and testing both the
token counting strategy and the timing model in the
process.

3. Apply the SCA to over 200 Ada source code files on
the ASC to examine the validity of the timing model and
the behavior of the SCA in that environment.
Recalibrate the model if necessary.

Since the timing model was discussed at length in the last

chapter, only the design and construction of the SCA will be

presented in this chapter after a brief introduction to two

software tools which were key to the development of the SCA. The

correctness testing and behavior of the SCA will be covered in

Chapter IV.

The LEX and YACC Tools

The SCA was developed by combining some original software

with existing, public-domain software. The approach involved the

use of the YACC and LEX software tools which run under the UNIX

operating system. LEX is a program which produces a lexical

analyzer for the source code of a specific programming language.

Called a scanner generator, the LEX program accepts an input file

which must contain regular expressions defining the lexical
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elements (tokens) of the language. For a further discussion of

lexical analysis and regular expressions, see (Fischer and

Leblanc, 1988).

LEX takes a file of regular expressions defining the lexical

constructs of the language and outputs a deterministic finite

automaton (FA) recognizer for any pattern of tokens which can be

generated by those regular expressions (Kernighan and Pike,

1984). Another way to express what LEX does is to say that the

LEX program produces tables (or tabular representations) of the

FA's transition diagrams as well as routines which use these

tables to recognize the tokens of the language (Kernighan and

Pike, 1984). The output file is a source code scanner which

accepts "raw" source code as input and consecutively passes valid

tokens to a parser. The scanner can also be designed to reject

illegal tokens and print an error message.

YACC (Yet Another Compiler Compiler) is a program which

produces a parser for the source code of a specific language.

Called a parser generator, the YACC program accepts an input file

which contains the syntax rules of the language expressed as a

context-free grammar (CFG). For the SCA, the CFG we used is

based on the CFG found in Appendix E of the Ada Language

Reference Manual (Mil-Std-1815A). For a further discussion of

parsing, parser program, or CFG, see (Fischer and Leblanc, 1988).

The output of YACC is a LALR(1) type source code parser.

The "LA" and the "(1)" denote the capability of the parser to

"look ahead" one token at a time in order to best determine the
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correct parse for the sequence of tokens. The "LR" indicates

that the parse will produce a right-most parse (bottom-up), as

opposed to a left-most parse (Fischer and LeBlanc, 1988).

Importantly, YACC offers the user the ability to put C language

source code routines into its input file. These routines are

later copied by YACC verbatim to the generated program. The

copied routines are usually the semantic actions taken when

productions are recognized (reduced). These C routines could be

anything the designer wants the parser to do upon recognition of

a valid syntactic construct (Fischer and Leblanc, 1988).

SCA Design Strategy

Because of time constraints on producing the SCA, a

scanner/parser had to be built quickly. Therefore, we chose to

use the scanner/parser generators LEX and YACC in the interest of

time. Our goal, however, was not simply to build a

scanner/parser. Our primary goal was to build a program to

tabulate Software Science measures and predict compile times for

Ada source code modules. So we used these available tools to

allow the majority of the development time to be spent focusing

on the problem of integrating the token counting strategy within

the parser. In short, since the implementation of the rules was

paramount, it seemed reasonable to use LEX and YACC to our

advantage.
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Figure 1, Design for SCA Development, shows the manner in

which the two software tools LEX and YACC were used in the

[.. development of the SCA.

LEXICAL ADA
DEFINITIONS GRAMMAR

LEX YACC
PROGRAM PROGRAM

C LANGUAGE
COMPILER

SOURCE CODE ANALYZER
(SCA)

Figure 1. Design for SCA Development (Howatt, 1988)

The input files to LEX and YACC which contain the lexical

definitions and Ada grammar respectively, are shown at the top in
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Figure 1. Not shown, however, are the output files from LEX and

YACC which contain the generated scanner and parser. The fact

that the scanner and parser must be compiled is represented by

the arrows into the C compiler. The output files from LEX and

YACC are discussed in the next section.

SCA Construction

Figure 2, SCA Construction Plan, provides a file-level

perspective of the mechanics of the SCA construction. The input

files to LEX and YACC, Ada.l and Ada.y, are of interest here

first. Ada.l contains the lexical definitions for LEX, and Ada.y

contains the Ada grammAr for YACC. Both files were obtained from

the Ada Software Repository. They were originally built by

Herman Fischer of Litton Data Systems in 1984. The documentation

header for the Ada.y indicates that the file contains a "LALR(])

grammar for ANSI Ada" that has been "adapted for YACC inputs".

Original source listings for Ada.l and Ada.y are in Volume II of

this thesis, available through the Department of Electrical and

Computer Engineering at AFIT.

During development of the SCA, some of the regular

expressions in Ada.l and quite a number of the CFGs in Ada.y were

changed in order to implement the counting strategy. However,

only one change was made which rendered the grammar inconsistent

with the Ada LRM (for that one case, see Caveats and Deviations,

Chapter V). Listings of the modified versions of Ada.l and
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u Ada.y, which together constitute the "source code" for the SCA,

are also in Volume II of this work.

Notice that the file lex.yy.c shown in Figure 2 "includes"

the file "y.tab.h". Y.tab.h contains the C language statements

to associate a unique code with each reserved word in the Ada

I lex.yy.c-

ada.l LEX (includes
y.tab.h)

I y. tab. c

ada.y YACC (includes
lex.yy.c)

y.tab.c cc SCA

Figure 2. SCA Construction Plan
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language. This is done because the parser can work more easily

with a numerical code than with the actual token string.

Implementing the Counting Strategy in the SCA. The ability

to invoke semantic actions (or any other tasks) at virtually any

point in the parsing or token recognition process was key to

building the SCA. In fact, inserting C language statements in

the parser's CFG to implement the token counting strategy was the

heart of the development. Specifically, C statements and

subroutine calls were integrated into Ada.y at judiciously chosen

points in the source code text of the CFG where a construct of

interest was recognized by the parser.

The type and purpose of the token counting code to be

integrated at a given point in the text of a CFG depended upon

the particular construct or token which was recognized at that

point in the CFG. In addition, the code was intentionally placed

at a point in the text such that whenever the parser recognized

that particular construct during parsing, the intended statement

or routine would be immediately executed.

There were essentially two types of tasks performed by these

routines. The first simply involved incrementing a counter.

Since this task was relatively simple, a single statement rather --

than a subroutine call was often used. The second type of task

was more complex. It involved storing the name or identifying

phrase belonging to the current syntactic construct in a suitable

28



data structure. We called this data structure the "Identifier

Table", and implemented it logically as a singly linked-list.

This particular implementation was chosen because the amount of

storage required could never be determined in advance (i.e, an

upper limit for the number of tokens in the source modules could

not be set and we considered sequential searching techniques to

be adequate for the SCA). It was important that not only the

name of the identifier, but also other pertinent information

about the identifier be stored as a single entry (record) in the

r Identifier Table.

Modifying the YACC input file, Ada.y, required the bulk of

the programming effort. Often there was a significant amount of

overhead just to determine the correct information pertaining to

an identifier and to get the data properly stored in the

Identifier Table. A sketch of the organization and contents of

Ada.y are displayed in Figure 3. The file contains the following

components: the Ada grammar; code for the token counting

strategy; the Software Science measures tabulation routines; and

Miller's compilation timing model. Notice that Ada.y uses the C

"include" directive for the file lex.yy.c. This is done so that

the parser can call the scanner to get the next token in the

module being analyzed.

The "maino" function shown in Figure 3 is the driver

routine for the SCA. It starts the operation of the SCA by

initially calling the parser, which in turn calls the scanner to

get the "next" token. As parsing proceeds, the code implementing
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the token counting rules is executed. When the end of the Ada

source code file is reached, main() calls the function

"calcmetrics()" to compute the measures n,, n2 , N,, and N2.

Finally main() invokes "compute_timing_model()" to compute and
U

print the compile time predictions.

optional "c" code
YACC variables and setup info

grammar productions
prodl I actionl; funcl; I
prodl { action2; func2; I

prodn I actionn; funcn; }

#include lex.yy'.c
i #include y.tab.h

main()
{
initialize table();
yyparse( );
print measures and table();

I calcmetrics);
compute timingmodel();

I
yyerror()

I

calc metrics()

}
definitions of other functions
compute_timing_model()
{

Figure 3. Contents of Ada.y

The output of YACC is the file named "y.tab.c" which

contains the YACC-generated source code for the parser. The
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organization and contents of y.tab.c are summarized in Figure 4.

The parser is contained within the "yyparse(" function. YACC

constructs all the data structures and variables that the parser

needs. When optional routines, like those which support the

token counting strategy, are encountered in the text of Ada.y,

YACC copies these routines verbatim (and any others found after

the second set of percent signs) to y.tab.c for later

compilation.

"define" stints from y.tab.h .

#include lex.yy.c
main()

initialize table(;
5 yyparse(;

printmiscoperators();
printidenttable(;
calcmetrics();
computetiming model();

I
* yylex()

yyerror()
{

parse tables defines and declarations
/* parser for YACC output */
yyparse(
I

yylex();
yyerror();

I

Figure 4. Contents of Y.tab.c
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SCA Internal Operation. When the SCA is run, the input Ada

source code module is read and analyzed token by token. The

scanner, yylex(, operates as a subroutine to the parser. The

parser invokes yylex() to pass it the code of the next valid

token from the input file. If the scanner finds a lexically

invalid token, it prints a message flagging the lexical error and

continues scanning. But if the next token is valid, LEX passes

the class or type of the token as a code to the parser. In

addition to the token code, yylex() loads a parser-defined global

variable, called "yylval", with the attributes of that particular

token. The attributes of the token may be its value in the case,

say, of a numeric literal, or the attributes may be a pointer to

a location in memory in the case of a string.

Once the next valid token is received, the parser attempts

to recognize or reduce the current syntactic construct of which

the last several tokens passed are constituents. Whenever a

valid construct is recognized, the token counting code associated

with that construct is executed before parsing continues. When

parsing continues, the parsers requests the next valid token.

This cyele continues until, all valid tokens have been processed.

If at any time the parser cannot recognize (reduce) the current

stream of tokens as a valid syntactic construct, the function

call "yyerror(string)" is called, where the "string" parameter is

an error message to the user. When the error function returns,

the parser attempts to recover from the error and continue.
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As tokens and other syntactic constructs are recognized,

various individual counters as well as the Identifier Table are

all continuously updated according to the rules of the token

counting strategy. The Identifier Table eventually contains an
U

entry (record) of every user-defined identifier found in the

input source modules. Also stored in the Table are the type of

each identifier and the number of times it occurred in that

module as an operand or an operator or both.

When the end of the token stream is reached, parsing stops

and the printmisc_operators() function prints a summary of the

count of delimiters and single/multi-token operators. Next, the

function "print ident table(" formats and prints each entry

stored in the Identifier Table. Subsequently, the

"calcmetrics()" function computes values for n,, n2, N1 , and N.

by using the data from both the Identifier Table and each

i variable holding a count for an operator. Finally these values

are input as independent variables into Equation 6 by the

"computetiming_model()" function.

The "computetiming model()" function prints a total of four

environment-specific compile time predictions for the input

module. Expressed in seconds, the values are considered to

represent the time which would elapse if the input module were

compiled in the given environment. The exact meaning of time in

this context is explained later in this report.

In summary, the text of the two input files for the LEX and

YACC programs together form the "source code" for the SCA.

33

" i' aI iA



Included in the YACC input are routines to implement the token

counting strategy, build and update the Identifier Table,

tabulate the Software Science measures, and eventually compute

the compile time predictions. LEX produces a file which is

"included" by YACC's input. YACC outputs a file of source code

implementing the scanner, parser, and any user-defined routines.

This source code is then compiled to produce the executable SCA.

34



IV. SCA Implementation Details

Chapter IV discusses in detail the routines responsible for

data structure management and support of the token counting

strategy. The measures tabulation and the timing model

computations functions are also further detailed. The SCA

driver, main(, and parser's error handling routine, yyerror),

were discussed in Chapter III and won't be discussed again here.

Data Structure Management and Token Counting Functions

The data used by the SCA are maintained in two types of data

structures. The first is a globally-defined, integer variable.

For each type of delimiter, single-token operator, and multi-

token operator defined by the counting rules, an integer variable

is declared to record the number of times that operator occurs in

the source file. Since these variables are globally declared,

any of the various functions implemented in the SCA can

manipulate them. The declarations for the integer variables are

grouped together and appear between the CFG and the main C

function in the text of Ada.y.

The second type of data structure, the Identifier Table,

• " records operand and operator counts. The Table is implemented as

a singly linked-list of records, or structures, with each

structure corresponding to a single entry in the Table. (A

structure in the C language is a heterogeneous data construct

similar to a record in other languages). The Identifier Table
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records each user-defined variable, literal, constant,

subprogram, etc., all of which are collectively called

"identifiers". Other information stored with each identifier

includes the "type" of the identifier (i.e., is the identifier a

variable, constant, literal, or subprogram?) and the number of

times that particular identifier occurred as an operand and/or an

operator in the input file. The C type declaration for an

Identifier Table entry is shown in Figure 5.

struct identtable entry

char id[256];
char ident_typetlil;
int identas operand;
int identas operator;
struct identtableentry *ptrnext;
};

/* POINTERS TO MANAGE THE TABLE
ENTRIES */
struct identtableentry
*ptrfirst,*ptrthis,*ptrnew;

Figure 5. Identifier Table Entry

Table Management Functions. The SCA contains eleven

functions to manage the Identifier Table in support of the token

counting strategy. These functions are called during parsing to

store, update, or search for data in the Table. A list of the

Table management functions appears in Figure 6. The specific
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purpose and operation of these functions are described in the

paragraphs which follow Figure 6.

initializeidenttable()
installident(id,identtype)
increment operandcount(id,ident type)
incrementoperator_count(id,identtype)
install-duplicatename ident(id,ident type)
install duplicatenameident2(id,ident type)
is identstoredas(id,identtype)
decrementoperand_count(id,ident type)
decrementoperator count(id,ident type)
install loopident(id,ident type)
printmiscoperators(
printidenttable()

Figure 6. Table Management Functions

The initialize identtable() routine loads pre-defined Ada

data types (e.g., Integer, String) as identifiers into the Table

and records their type as a "data type". Since these pre-defined

data types are usually not defined explicitly in the Ada source

code, this pre-loading of the Table has the effect of

establishing that certain identifiers (e.g., Integer, String)

definitely occur in the role of data types. This bit of up-front

information simply makes the job of typing any occurrences of

these identifiers somewhat easier for the SCA.

Except for the table initialization and printing routine,

the parser passes each function in Figure 6 a pointer to an

identifier, id, and a pointer to the type of the identifier,
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ident_type. The identifier and its type are then stored as the

next entry in the Table. For example, the function call

installident(my-identifier,my_ident_type)

would store myidentifier in the Identifier Table with

myident type as its type. To record the occurrence of

myidentifier as an operand or an operator, either the

increment operandcount() or increment_operatorcount() function

is immediately called passing both my_identifier and

myidenttype as parameters. In this way, a given identifier

(qualified by a specific type) as well as a record of its

occurrence as an operand or operator are recorded in the Table.

If the identifier/type pair already exists in the Table, the

installident() function wouldn't install it a second time.

However, if one of the install duplicatenameident() functions

were used instead, the identifier/type pair would be

unconditionally installed as the next entry in the Table.

Install duplicatename() sets the operand count to one, and

install duplicatename2() sets the operator count to one during

the installation routine. Flexibility with identifier

installation also permits an identifier or a data type which is

declared more than once in the source file to be recorded as a

distinct entry in the Table.

The context in which the identifier occurs in the text of

the source code normally determines the particular "type" to
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assign to an identifier as well as whether to record its

occurrence as an operand or an operator. However, there are

cases in the Ada grammar where, for reasons having to do with the

way the YACC program works, the SCA cannot determine the correct

way to type and/or count an identifier when it is first

encountered. For example, the SCA may be unable to determine

whether to count an identifier as an operand or an operator at

the particular point where that identifier is first recognized in

the grammar. This problem can occur if the immediate context of

the identifier in the source code gives no clue regarding the

"type" of that identifier. In all such cases, the Identifier

Table must be searched before making any determinations.

Searching the table for the type of an identifier is the function

of the "is ident stored as)" routine. This function returns a

value of 1 if the identifier/type pair passed as parameters are

successfully found in the table. It returns a 0 value otherwise.

Sometimes the SCA is "forced" to guess at whether a

particular token is used as an operand or an operator in a given

context. Now suppose that further along in the "parse" of the

syntactic construct containing that identifier it becomes evident

that the original guess was incorrect, according to the rules.

Tf the token is a delimiter, the integer variable recording its

count can easily be decremented. But if the token is an

identifier, more complex actions are required.

In the case of an identifier, if the SCA cannot correctly

determine whether to increment the identifier's operand or
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operator count until more of the syntactic construct is reduced,

then the SCA initially makes a "best guess" and increments one or

the other of the counts on a tentative basis. Later in the parse

when the SCA can determine the correct count to increment, the

original guess might have to be corrected. To help correct the

counts in the Table, the SCA can employ either

decrement_operand count() or decrement operatorcount() to reduce

the operand or operator count of the original identifier by one.

In this way, the integrity of the counting data in the Table is

ragain preserved.

Concerning integer variables used in looping constructs, the

counting rules stipulate that all such variables be counted as

distinct operands. The installloopident() function

unconditionally installs a variable of this type as a "loop"

variable and sets its operand count to one.

After parsing is complete, "printmiscoperators()" prints

the count of each delimiter to standard output. A sample is

shown in Figure 7.

There were 3 + operators in the module scanned
There were 4 * operators in the module scanned

There were 1 + operators in the module scanned
There were 2 - operators in the module scannedThere were 22 / operators in the module scanned
There were 1 s operators in the module scanned

Figure 7. Sample Output of Delimiter Counts
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Finally, printidenttable() formats the records of the

entire Identifier Table and prints them to standard output. A

portion of a typical Identifier Table is shown in Table 4.

Table 4. Sample Identifier Table

THE SCA IDENTIFIER TABLE FOR THE INPUT FILE

IDENTIFIER TYPE TIMES USED AS
OPERAND OPERATOR

BOOLEAN type 0 2
INTEGER type 0 0
FLOAT type 0 0
STRING type 0 0
NATURAL type 0 0
POSITIVE type 0 0
DURATION type 0 0
INSTRUMENT var/const 2 0
NRPCAI subprgram 2 0
PS CS var/const 2 0
PROCS var/const 2 0
B var/const 15 0
TTRUE var/const 1 0
T type 0 6
T typecony 0 3
TRUE var/const 1 0
TFALSE var/const 4 0
FALSE var/const 1 0
TEST var/const 6 0
IDENT unknownop 0 6
RECURSION var/const 5 0

Measures Tabulation.

The function "calc metricsU" totals the operator/operand

counts for every token contained in the input source file. The
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tabulation of these measures depends on data drawn from both the

Identifier Table and the integer variables which store the

operator counts for delimiters. The resulting values of the

Software Science measures n1, n2, N1 , and N2 are recorded and

printed to standard output. The calcmetrics() function

determines the value of each of the measures according to the

following four algorithms:

1. Set n, = O.

a. Sequence through each entry in the Table.
If the operator count stored there /= 0,
increment n, by one.

b. For each possible delimiter, test the
value of the variable storing the count for
that delimiter. If the value /= 0, then
increment n, by one.

2. Set n2 = 0.

a. Sequence through each entry in the Table.
If the operand count stored there /= 0,
increment n2 by one.

3. Set N, = 0.

a. Sequence through each entry in the Table. Add
the operator count stored there to N1 .

b. For each possible delimiter, add the
value of the variable storing the count for
that delimiter to N1 .

4. Set N2 = 0.

a. Sequence through each entry in the Table. Add
the operand count stored there to N2.
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Timing Model Computation

As mentioned before, the function "compute_timingmodel()"

implements Miller's predicted compile time model which is

repeated here for convenience:

T = Ki (N * log2 (n)) ' 4 3 9  * ((2 * n 2 ) / (n, * N2 )) 0745 (6)

The measures n,, n2 and N2 , N, and n serve as independent

variables in the equation. The length of the module, N, is given

by N = N, + N2 . The vocabulary, n, is n = n1 + n2 . The integer

"2", originating in the definition of L^, is an approximation for

n2, the theoretical minimum number of operators needed to

execute a function.

The term logz(n) causes the only difficulty. The library of

math functions for C under UNIX version BSD 4.2 did not include a

afunction to calculate the logarithm of an argument to the base 2.

So the equality log 2(x) = log1 0 (x) / log1 0 (2) was used to convert

the logarithm to the base 10 to the base 2. Since

c = (log,0(2))' = 3.3219285 (7)

log 2(n) = c * log10 (n) (8)

The right side of Equation 8 is substituted for log 2 (n) in

Equation 6. Once again, since the value of T in Equation 6 is

environment-specific, the value of T for each Ki listed in Table
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3 is computed and printed to standard output. A sample of this

output is shown below in Table 5.

Table 5. Sample Compile Time Predictions

PREDICTION FOR THE UNIX ASC ENVIRONMENT IS: 18.09 SECONDS
PREDICTION FOR THE AOS/VS ENVIRONMENT IS: 16.27 SECONDS
PREDICTION FOR THE VMS ISL ENVIRONMENT IS: 10.33 SECONDS
PREDICTION FOR THE VMS CSC ENVIRONMENT IS: 9.29 SECONDS

Samples of two source code files and their SCA output are

provided in Appendix C.
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V. Testing and Results

A discussion of testing the correctness of the SCA begins

Chapter V. Considering the token counting rules as design

specifications, caveats and deviations to the specifications are

discussed next. The results of an analysis of the predictive

ability of the compile time model is then presented and

interpreted. Finally, a recalibration of the timing model is

performed and the new results are analyzed.

Correctness Testing

The purpose of correctness testing is to verify that the SCA

accurately counts every token in an Ada source module according

to the token counting rules of Chapter II. The most important

criterion of this testing is:

For a given module, the SCA-produced values for the
measures n,, n2, N1 , and N2 should yield the same
results as applying the token counting strategy
manually. This means that the SCA must also type the
tokens in accordance with the counting rules.

For the delimiters and single/multi-token operators,

correctness testing occurred primarily during the development of

the SCA. As a new capability of the SCA was added, it was tested

and, if necessary, modified until it worked as intended. Thus

correctness testing for operators was basically an iterative

process of implementing code to count a specific type of operator
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and then applying the SCA to an input module which contained

instances of that operator. The SCA-produced operator count was

compared to a manual count of that operator in the input file.

If the counts agreed, the next operator was selected for

implementation in the SCA. If the counts disagreed, the cause of

the inconsistency between the counts was discovered and corrected

before continuing. In general, operators were selected in order

from easiest to implement to most difficult.

The approach to correctness testing for identifier typing

and operand/operator counts was more difficult but less -

structured than for delimiters and single/multi-token operators.

This testing could only begin after the Identifier Table and its

basic support routines worked. Testing now involved verifying

that the SCA accurately recorded every identifier, its type, and

its operand/operator counts.

Specifically, the tests involved verifying that the data in

the printed Identifier Table was consistent with results from an

exhaustive manual inspection of the input module conducted

according to the rules of the token counting strategy. Every

identifier was considered with respect to its context in the text

of the source code. The typing and operand/operator counts for

each identifier in the printed Table had to agree with those of

the manual inspection. Since a given identifier can be an

operand in one context and an operator in Rnother, the entry for

such an identifier had to reflect this as well.
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Eighteen test files containing Ada source code were selected

from the public domain for correctness testing. The files ranged

in size from 2 kilobytes (about 100 lines) to 8 kilobytes. They

included sophisticated constructs such as generics, tasking,

entry/accept constructs, exceptions, and pragmas. The files were

inspected and modified until as a group they contained one or

more instances of each type of token and syntactic construct

available in the Ada language (one exception is described in

Caveats and Deviations, below). Every rule and special case in

the token counting strategy was successfully tested and verified.

Therefore, notwithstanding the exception discussed in the next

section, the SCA accurately types and counts tokens according to

the Miller and Maness counting strategy.

Caveats and Deviations

In some instances strict compliance to the token counting

rules could be met marginally, or not at all. Fortunately, these

are few.

Parentheses. Accurate parentheses typing depends on

explicit intra-module declaration of identifiers which use

parentheses. This means that if an identifier is used in an

module but is not declared (defined) in that module, and if the

identifier is used in conjunction with parentheses, then the

specific type which is assigned to that set of parentheses may or

may not be correct. For example, if an array object was imported

from another module and encountered by the SCA as
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imported_arrayobject(i), this set of parentheses may be

incorrectly typed as "invocation" rather than "dimensioning"

parentheses. Regardless, the set of parentheses is counted as an

operator in the usual way. In these cases a "best guess" at

typing is employed. Since the total number of parentheses is

always counted correctly, N, is correct. However, since the SCA

may incorrectly assign parentheses types, it's possible that n,

could be off by a small amount.

Global Variables and Types. Suppose two or more variables

having identical names are declared in the same input module. If

they are declared in separate statements, then each variable is

counted as a distinct operand, as the counting rules stipulate.

The same is true for types (e.g., mytype is String...). This

feature does not apply to subprograms or packages, however. If a

second subprogram or package has the same name as an earlier

declared object of the same type, the second object is treated as

a new occurrence of the original object. This rule extends to

more than two occurrences of subprograms or packages as well.

Regardless, the total occurrences for any object (identifier) is

always accurate.

Families of Entries. The implementation in the SCA of

grammar production 9.5 in Appendix E of the Ada LRM was changed

to permit accurate counting of the identifier for the entry

construct in the following manner. The original rule,

ENTRY_ identifier (discrete range) (formal part) ';'
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was modified to the new form:

ENTRY_ identifier (discrete range] (formal part) ';'

Notice that the parentheses for the discrete range have been

replaced by brackets. Although not shown here, both the

"discrete range" and the "formal part" are optional in the

production. The impact of this change for the SCA is important:

Entry statements which use the discrete range portion
of this construct must be modified to use brackets in
place of the parentheses surrounding the discrete
range.

Otherwise, the identifier of the entry will not be accounted for

in the Identifier Table. Fortunately the discrete range option,

which involves families of entry calls, is not commonly used in

practice. Entry statements without the discrete range are

correctly handled in the usual way. A possible work-around

*solution to this problem will be suggested in the recommendations

of this report.

Generic Instantiations. Ada gives the user the ability to

instantiate generic packages, procedures, and functions. The

syntax of a generic instantiation includes an actual parameter

list as an option. The rules explaining how the SCA categorizes

these actual parameters as operands or operators are presented

n1ow.
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I For generic instantiations which pass actual parameters _

(e.g., ... IS NEW expanded_n(actparameterlist)) the following

rules apply:

1. If an identifier in the act parameterlist is
stored as a type or a subtype in the Identifier Table,
the identifier is counted as an operator.

2. If an identifier in the actparameter list is
stored as any other type the Table, it is counted as an
operand. Obviously, this includes subprograms,
variables, constants, literal, etc.

3. If an identifier in the actparameterlist is not
found in the Table, it is stored as a "var/const" type
and counted as an operand.

Overloading. An identifier can have several alternative

meanings at a given point in the program text; this property is

called "overloading" (Booch, 1983). The effective meaning of an

overloaded identifier is determined by the context (Booch, 1983).

The SCA is not sensitive to overloading; it cannot discern the

meaning or reference of a particular instance of an overloaded

identifier based on the current context.

Nevertheless, every occurrence of an overloaded identifier

will be recorded in some entry in the Identifier Table. If there

are several existing Table entries for an overloaded identifier,

the SCA cannot know which one of these entries to update when it

recognizes an instance of that identifier. It simply updates the

first such entry it finds during a sequential search of the

Table. Consequently, any individual Table entry for an

overloaded identifier may or may not be accurate in terms of its

operand or operator count.
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uFortunately, our strategy considers the data in the
Identifier Table as an aggregate. When the values of the

Software Science measures are tabulated, the correct

operand/operator count for any identifier, overloaded or not, isp

obtained. Remember that the measures are defined in terms of

totals and not in terms of individual identifier counts. Thus

there is no adverse impact on the results.

SCA Testing Environment and Design

r Correctness testing of the SCA is only concerned with how

well the SCA implements the token counting strategy; it does not

reveal any information regarding the accuracy of the tool as a

* predictor of compile time. But what about the predictive ability

of the SCA? How well does the predicted compile time of the SCA

match the actual compile time for a given Ada source code module

*compiled in a given hardware/software environment? These are the

questions that the rest of this chapter will try to answer.

As discussed earlier, the SCA computes a prediction for

compile time with respect to four different compilers in four

unique computer environments. Only one of these four was

selected to conduct compile time testing. We chose the ASC

environment because it offered a familiar operating system (UNIX)

and the Verdix Ada compiler. The UNIX "time" command was used

with the "ada -v filename.a" command to allow the time expended

during compilation to be recorded on a file-by-file basis.
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At this point a brief digression concerning the type of

software used during testing is appropriate. The title of this

thesis states that the SCA is geared towards the prediction of

compile time for avionics source code. The software we chose for

this phase of testing came from a group of flight control and

guidance software collectively called the Common Ada Missile

Packages (CAMP) (User's Manual, 1987). The CAMP software

consists of 250 files (about 16,000 lines of code). Slightly

more than 200 CAMP files ranging in size from four kilobytes to

92 kilobytes were selected at random from the group. These files

largely contained Ada generics designed for reuse in the

development of missile guidance systems.

Because the CAMP constitutes a single system, there are

compilation dependencies among the files; that is, many files

'withed" other files. Therefore, we couldn't empty object code

libraries between compilations. Unfortunately, a large number of

components in the object code libraries increases overall compile

time because the compiler has more information to search through

during dependency checking. Even though Miller and Maness had

used empty libraries in the development of their data base

(Miller, 1986), we could not. The impact of this inconsistency

on the validity of the results will be discussed in the analysis

section of this chapter.

Test Objectives. The specific test objective was to produce

both a value for predicted compile time and actual compile time

for each of the CAMP files selected, and then to compare the
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magnitude of the difference between the two values. Since all

compiling took place on the ASC, all results are ASC-specific.

An executable "shell" file invoked a sequence of steps in support

of our objective. For each CAMP file in the test group, the

shell file:

1. Submitted the CAMP file to the SCA as input and
recorded the SCA's output in a designated output file.

2. Compiled the CAMP file and appended a record of the
amount of time elapsed during compilation to the
designated output file of step 1.

3. Searched the designated output file of steps 1 and
2 for the following information:

a. name of the CAMP file being processed.
b. name and version of the compiler used.
c. date of the test run.
d. the values of n,, n2 , N,, and N 2.
e. the compile time prediction of the SCA.
f. the actual compile time information
recorded in step 2.

4. Copied the information found in step 3 to the next
entry in a file called "Measures". Measures would
eventually contain a similar entry for each CAMP file
processed in the test.

5. (Optional) Deleted the designated output file of
steps 1, 2, and 3, and deleted the current CAMP file
being processed. (This step was necessary due to an
installation-imposed restriction on disk space. Step 5
can be deleted if disk space is plentiful).

The text of the shell file implementing these steps is shown

in Figure 8. All files involved in the test existed in the same

directory on the ASC.
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sca ($1.a >$1.o
time ada -v $1.a >$1.o 2>&l
grep 'File: /enO/gcs88d/egoepper/camp' $1.o >>measures
grep 'Verdix' $1.o >>measures
grep 'Sep ' $1.o >>measures
grep 'number of distinct operands: n2' $1.o >>measures
grep 'number of distinct operators:nl' $1.o >>measures
grep 'total number of operands: N2' $1.o >>measures
grep 'total number of operators: Ni' $1.o >>measures
grep 'UNIX ASC ENVIRONMENT' $1.o >>measures A
grep 'real '$1.o >>measures
rm $1.o
rm $1.a

Figure 8. Shell File for Testing Camp Software

A portion of the file Measures, which contains the results

for the first two CAMP files processed, is shown in Figure 9.

* Notice that the "time" command outputs three types of times.

According to the UNIX on-line manual, "real time" is comparable

to "wall clock" time. "System time" can be viewed as the length

of time the process responsible for compilation remains under

control of the operating system. Finally, "user time" is the

amount of actual CPU time consumed by the coA;.pilation process

(and any sub-processes it spawned). These times are all measu-red

in seconds to two decimal places.

The test ran on the ASC computer overnight when no other

users were on the system in a "time share" mode. The test was

also run during peak daytime hours and, interesting enough, the

values for user and system time did not differ significantly.
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File: /enO/gcs88d/egoepper/camp/S001000.a
Verdix Ada Compiler, Copyright 1984, 1985, 1986
compiled Thu Sep 15 11:48:44 1988
number of distinct operands: n2 = 111
number of distinct operators: nl = 36
total number of operands: N2 = 126
total number of operators: N1 = 541
PREDICTION FOR THE UNIX ASC ENVIRONMENT IS: 18.09
SECONDS
14.5 real 5.0 user 3.0 sys

File: /enO/gcs88d/egoepper/camp/SOO100I.a
Verdix Ada Compiler, Copyright 1984, 1985, 1986
compiled Thu Sep 15 11:49:20 1988
number of distinct operands: n2 = 20
number of distinct operators: nl = 21
total number of operands: N2 = 21
total number of operators: Ni = 78
PREDICTION FOR THE UNIX ASC ENVIRONMENT IS: 6.52
SECONDS

10.5 real 1.8 user 2.5 sysa
Figure 9. Sample Records in the Measures File

Data Aggregation. Selected data was extracted from the

Measures file and used to build a spreadsheet using the

commercially available software package "Quattro" by Borland,

International. The data input into the spreadsheet included:

CAMP filename and size in kilobytes; values of n,, n2, N1, and N2 ;

SCA predicted compile time; and user/system time for actual

compilation. The real time values were not included in the

spreadsheet since they were not of interest in this work.

The spreadsheet, listed in Appendix Al, computes three

additional data items for each CAMP file in the test. These
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Pthree data items, listed in Table 6, were important to the
analysis of the validity of the compile time model. The actual

compile time is computed as the sum of the user and the system

time, to keep consistent with the approach used by Miller and

Maness. The prediction error is the difference between the

predicted compile time and the actual compile time. CAMP file

length, N, is the same as Halstead's definition from Table 2.

Table 6. Three Data Item Definitions

actual compile time z user time + system time
Lerror = SCA predicted compile time - actual compile time

CAMP file (module) length = N = NI + N2

Compile Time Results and Analysis. The spreadsheet lists

both the predicted compile time values and the actual compile

time values in the ASC environment for each CAMP file in the

test. These data points are graphed in Figure 10 as lines. The

predicted compile time is higher than the actual compile time by

an average of roughly 4 seconds. Many different factors may be

the cause of the higher values for predicted compile time.

First, the ASC computer hardware, UNIX memory management, or UNIX

job scheduling algorithms may have been modified during the two

years since Miller published the environment-specific constant,

K1, for the ASC UNIX environment. Throughput improvements in any

or all of these areas could decrease the values of the actual

compile time data. A preliminary investigation indicates that
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there have not been "significant hardware changes" to the ASC

since 1986 (Strovink, 1988).

Another possibility may be the difference between the type

of software used for the current tests and the type of software

used in the derivation of the timing model. The modules which

Miller used came exclusively from the Ada Compiler Validation

Capability (ACVC) test suite. This is a group of compiler test

modules written to specifically evaluate how well a vendor's

compiler adheres to the specifications of the Ada LRM. The ACVC

test suite includes some very large files; they are much larger

than any of the CAMP files used in the test (Shaw, 1988).

* ORIGINAL COMPILE TIMES
SCA PROICTED US ACTUAL
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Figure 10. Predicted and Actual Compile Time

Further, the CAMP modules, which produced all of the
Ig

predicted compile time values in this effort, are "real world",
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production-quality, missile guidance and control software. In

fact, most of the CAMP modules are Ada generics, including

generics nested within generics in many cases. Needless-to-say,

there is probably quite a number of differences in these two

groups of software.

A third possibility involves "compilation dependencies";

that is, the problem of certain compilation units depending on

the previous compilation of other units. Miller could "clean

out" his compilation libraries before each compile time data

point was recorded. For the reasons mentioned earlier, our tests

could not do this. Our non-empty libraries may have decreased

the value for actual compile time in some cases, since certain

parts of the source code in the current file may have been

compiled previously with other CAMP files. This important aspect

of our testing procedures and its impact on the results will be

discussed again in a later section.

Finally, a fourth possibility is the substitution of L^ for

Vs. Recall that this was done to adapt the compile time model to

the measures which the SCA produced. Perhaps it constitutes a

misapplication of the model. That seemingly insignificant change

could indeed throw the predicted versus actual compile time

results off by a constant scaling factor (Shaw, 1988). This

issue too will be revisited.

Whatever the cause of the higher predicted compile times, we

must consider the following possibilities: the model is actually

correct but there have been environmental changes to the ASC
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which explain the average prediction error; and/or the file sizes

of the CAMP software used in the test were not a representative

sample; and/or there were shortcomings in the testing procedures

which introduced error; and/or we misapplied the compile time

model when L^ replaced V*.

Prediction Error. The spreadsheet computes the difference

between the predicted compile time and the actual compile time

for each CAMP file in the test. We'll call this difference the

"compile time prediction error" of the SCA in the ASC environment

for a particular CAMP file, or just "error" when the context is

clear. Statistics for the error values are shown in Table 7.

Table 7. Prediction Error Statistics

mean z z 4.35

variance a**2 = 19.51

standard deviation = a = 4.42

We know from elementary statistics that 95% of the prediction

error values must lie within the interval (p - 2a, p + 2a). That

is, we can be 95% certain that the error of the prediction lies

within the interval (4.35 ± 8.84). This range of values can be

viewed as a confidence interval for the SCA compile time

prediction. In other words, we can be 95% confident that any

error in the SCA's timing prediction must lie within the range

(4.35 ± 8.84).
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There is a "quick fix" for Equation 6 so that compile time

predictions for the ASC environment have an average error close

to zero. Since the average error is positive (4.35), if we

subtract it from the original value of the SCA prediction, then

we could be 95% sure that the error of the modified prediction

is, on the average, very close to zero. Thus the value of the

average error can be used to adjust the SCA compile time model by

subtracting p = 4.35 from the value of T in Equation 6 to produce

a modified SCA compile time prediction, T', as shown below in

Equation 9:

T : [K,(N*log 2(n) ) 139 * ( (2*n2)/(n*N 2) ).074] 4.35 (9)

Impact of the Data Distribution on Error. There were over

200 CAMP files used in the compile time model tests.

Characteristic of most of these files was that the actual and

predicted compile times were relatively low (0 - 7 seconds).

This resulted in the following phenomenon: the majority of data

points representing predicted/actual compile time information are

clustered. Observe in Figure 11 that the data points tend to

fall in the lower left-hand corner of the graph, with very few of

them in the upper right-hand corner. The data point clustering

reflects that most of the test files were relatively small and

had relatively low values for predicted and actual compile time.

Because of the clustering of the data points, the current

values of the parameters a and b in Miller's compile time model
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must be re-adjusted with respect to our data. Miller's original

values of a and b were derived from a data base built using a

better balance of large and small files (the ACVC test suite).

That is, Miller's data represents a more even distribution

between files having short compile times and those having

relatively longer compile times. Our data does not have a

balanced distribution of compile times in this sense. The

difference in the characteristics of the data used in Miller's

work and this effort forms the basis of the strongest argument

for a recalibration of the parameters of the model.

SCATTER PLOT OF COMPILE TIME DATA
PREDICTED US ACTUAL
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Figure 11. Data Point Distribution

The Impact of File Length on Error. Returning to the last

column of the spreadsheet in Appendix Al again, we want now to
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know how the length, N, of the file affects the magnitude of the

prediction error values. Recall that the length of a file is the

sum of the total number of tokens in that file (less comments);

that is, N = N, + N2 . We can observe the impact of file length

on prediction error in Figure 12. The CAMP files, whose lengths

form the x-axis, were sorted in ascending order by size of N

before plotting the corresponding error values. Notice how the

magnitude of the prediction error increases as the value of N

increases. Figure 12 clearly shows that as N increases, the

compile time prediction becomes increasingly inaccurate. Why

does this happen?

One reason the compile time prediction becomes less accurate

as N increases may have to do with a particular shortcoming of

the test procedures already mentioned. Failure to clean out the

compilation dependency and object code libraries could, in fact,

distort the results because Miller based his actual compile time

data on "fresh" libraries (Shaw, 1988).

To understand how this works, suppose a test procedure

allows the library to fill up with the object code of previously

compiled units. Now, suppose a relatively large file "withs" one

or more of these compiled units from the library. During actual

compilation of the large file, any objects encountered which are

specifically made visible by dependency on an earlier compiled

unit need not be recompiled (because the object(s) is already

compiled into object code in the library unit). The SCA,

however, cannot make an allowance for previously compiled objects
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made visible by a "withed" unit. The SCA bases its prediction on

the assumption that every construct in the text of the file

(except comments) has to be compiled in the current compilation.

Obviously, in this case the predicted compile time should be much

higher than the actual, even for a perfect compile time model.

And higher predictions, especially among the larger files, are

exactly what we found.

LENGTH r.Q VS ;zREDICT;Ocr ERF.DR

ERROR = PREDICTED COMPILE TiME - AOTIJL
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CAMP FILES BY SIZE OF N

Figure 12. Prediction Error Versus File Length (N)

Perhaps Miller's model relies heavily on the magnitude of N

for its predictive ability precisely because the object code

libraries were cleaned out between each compilation. That would
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explain why the model is so sensitive to the value of N.

Sensitivity in this sense means that small changes in the value

of N may cause large changes in the value of T. In fact, by

inspection of Equation 6 we can see that the term involving N,

shown below, is the dominant term in the model.

N * log2 (n) ).4839 (10)

Another possibility that may explain the higher predicted

compile time values involves the Ada compiler itself. If a

newer, more efficient version of the Verdix compiler has replaced

the version which was used by Miller, actual compile time values

would change. If this new version is faster than the earlier

version, then the effect of file length on actual compile time

would be considerably less on the ASC today than it was two yearR

ago. A preliminary investigation revealed that there were

upgrades to this compiler since 1986, thus possibly explaining

the behavior in Figure 12 (Strovink, 1988).

If either of the last two explanations for the higher

predicted compile time values has merit, then recalibrating the

compile time model should cause a change in the magnitude of the

exponent a = .4839. The exponent should decrease as a result of

recalibration so that the impact of N on the compile time

prediction T is reduced.

The Impact of File Length on Actual Compile Time. Figure 13

below reveals further evidence that the model should be
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recalibrated. The graph indicates that actual compile time may

not be a strictly increasing function of module length N.

Indeed, the function behaves as if N was a factor in predicting

actual compile time, but not as dominating a factor as Equation 6

expresses.

COMPILE TIME RELATED TO FILE LEt,,tGTH

ACTUAL COMPiLE TIME VS FILE LENGTH ;I
L:
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Figure 13. Actual Compile Time Versus File Length (N)

Let's consider the data points greater than 1500 tokens. The

actual compile time for these modules decreases. Why? If the

data are valid (i.e., the experimenter has not made an error),

then can we conclude that, in some cases, actual compile time is
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more heavily influenced by some factor other than file length?

This is a possibility. But it is also very likely that error was

introduced into the measurement of actual compile time during the

testing process itself. There are several ways this could have

occurred. The UNIX command "time" is known to suffer from

certain inaccuracies and round-off error, and recall that all the

actual compile time values were based on the output of this

command.

Model Recalibration

As the analysis in this chapter suggests, the compile time

model should be recalibrated, meaning that the exponents or

parameters of the terms in Equation 4 should be re-estimated for

the current data and environment of the ASC. After performing

linear regression on the parameters a and b of Equation 4 using

Quattro, the exponents became a = .2683 and b = .2609. Hence,

the timing model can now be expressed as:

T' = e' 3 2
2 * (N*log2 (n) )26

8
3 * ((2*n 2 )/(n1 *N2) ).2609 (i1)

The details of the recalibration can be found in the

spreadsheet in Appendix A2. Notice in Equation 11 that the new

parameters are significantly different from the original ones.

As expected, the magnitude of the exponent for the term involving

N has decreased. Interestingly, the value of the other exponent

has increased almost fourfold.
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Naturally, Equation 11 was examined to see if it would

predict compile time better than Equation 6. The results of this

examination are listed in the spreadsheet found in Appendix A3.

Values for the compile time predictions using the recalibrated

model are plotted against the actual compile times in Figure 14.

Clearly, the recalibrated model fits the actual compile time data

much better than the original model.

COMPILE TIME PREDICTIONS
USING IECflLI9RATED MODEL

7

U MENl MODEL

CAM~ FILES BY LENGTH N

Figure 14. Comparison of Predictive Models

A summary of the results of the linear regression, located

on the last p~age of the Appendix A2, includes other information

about the recalibrated model. Specifically, the goodness of

"fit" index, R-squared, which ranges between zero (poor) and one

(good), is given as .3083. The reason for this relatively low
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value is related to the preponderance of data points clustered

together towards one end of chart in Figure 11. Precisely

because the data is "lop-sided" in this way, it is difficult or

impossible to statistically find an expression for a mathematical

function which reflects the behavior of these data points without

a large margin of error. Thus, for the particular CAMP files

selected in the test, the behavior of the compile time data

precludes a perfect fit for any model we could derive using this

data alone.

This is not to say that the recalibrated model lacks

validity. On the contrary, it fits our data well, as the

statistics in Figure 15 reveal. Since the average error for the

original model is p z 4.35, but the mean error for the

recalibrated model is only p = -.25, it has a great deal of

credibility.

MEAN ERROR = -.25

VARIANCE = 2.03

STND DEV = 1.43

Figure 15. Recalibrated Model Statistics

After substituting Equation Ii for Equation 6 in the code

for the "computetiming model()" function, we can assert. with 95%

confidence that the average difference between the SCA's

recalibrated prediction, T' , and the actual compile time is near

zero. Moreover, the 95% confidence interval now becomes:
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(p - 2a, p + 2a) (12)

= (-.25 - (2*1.43), -. 25 + (2*1.43)) (13)

= -3.11, 2.61) (14)

Therefore, the SCA will predict compile time such that 95%

of the error values will fall in the interval (-3.11, 2.61).

This is what was meant earlier in this report by the phrase

"range of predicted compilation times".

In short, we have observed that recalibration of the

parameters significantly improved the predictive ability of the

compile time model. The small mean error value of the

recalibrated model gives credence to the notion that the model

Urests on a solid theoretical foundation. However, before the low

R-squared value leads us to doubt these assertions, a series of

more realistic and comprehensive tests using more "balanced" data

should be performed. Only then can we begin to draw definitive

conclusions regarding the empirical validity of the basic compile

time model (Equation 4).
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VI. Conclusions and Recommendations

Verification of the SCA

The merits of SCA should be judged according to how well it

implements the token counting strategy of Chapter II and the

criterion on page 45, because the primary goal in building the

SCA was to automate this strategy as completely and accurately as

possible. More precisely, the SCA's main purpose is to

accurately count operators and operands according to the token

counting rules. The only area where the SCA deviated from the

rules was in the grammar for "families of entries" involving

parentheses. In fact, the SCA counts the tokens correctly for

entry families; however, the source code must be slightly altered

prior to scanning.

The impact of other exceptions noted in the section "Caveats

and Deviations" is minor. That section explains where the SCA

does not, or cannot, adhere precisely to the rules. So certain

token counting problems as, for example, identifying the "type"

of a variable which is declared in a "withed" compilation unit,

cannot currently be handled by the SCA. Nonetheless, the SCA

succeeds in correctly computing the Software Science measures ni,

n2 , N1, and N2 according to the token counting strategy of Chapter

IT. This is the most important outcome of this work.
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R Validity of the Recalibrated Timing Model

The recalibrated compile time model was tested in the

context of a unique computer environment (ASC) for a particular

type of software (CAMP) contained in files whose compile time

distribution had specific characteristics (clustered near low

values). In this scenario, the recalibrated model was valid; we

can say with 95% confidence that the average error is close to

zero. Furthermore, we can assert with the same confidence that

all prediction errors should fall inside the interval ( -3.11,

V 2.61).

Applicability of SCA

The SCA is widely applicable; the recalibrated compile time

model implemented in the SCA probably is not. Both the model and

the SCA would be applicable for predicting compile times for a

group of Ada software modules on the ASC having the following two

characteristics:

1. The modules have relatively short compile times.

2. There are compilation dependencies among the
modules.

Unfortunately, the compile time model, as it is currently

calibrated, probably has limited universal applicability. By

"universal applicability" we mean the model would most likely

have to be recalibrated each time the SCA was ported to a new

environment. Porting instructions are listed in the User's
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Manual in Appendix B, and recalibration can be accomplished

exactly as it was done in this report.

There are at least two areas where the SCA could be used in

software research. First, it could be used by software metrics

researchers as an automated token counting tool to compute

Software Science measures. Since it allows researchers to

circumvent painstaking manual counting approaches, a great deal

of metrics data could be accumulated quickly and easily using the

SCA.

The other area where the SCA could prove useful is the

evaluation of Ada compilers. Let's assume that the compilation

timing model has been recalibrated for a specific environment; it

3 predicts compile time with an error near zero over a reasonably

large confidence interval. Let's also assume that the model is

tailored to avionics software; that is, the model was derived

*from and validated against a compile time data base built using

avionics software. Then researchers interested in evaluating the

compile time efficiency of a newly developed Ada compiler on the

market could use the SCA in the following way.

A representative test suite of avionics software could be

submitted both to the SCA and the new Ada compiler. If the

actual compile times for the test suite varied markedly from the

predicted compile times, then the magnitude of the differences

would be a reflection of the relative compile time efficiency, of

the new compiler with respect to the compilers used in the

calibration of the model. In other words, researchers could tell
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if a new compiler was faster or slower on average than the

compilers already in use.

Conclusions

This section discusses some specific conclusions and

conjectures which can be made as a result of this work.

1. The programming task is made much more efficient
using program generation tools like LEX and YACC. The
success of this effort is a direct consequence of using
these tools to help develop the SCA. Programmer
productivity can be increased significantly through
program generation tools of this type.

2. Ada is a language rich in semantic characteristics.
A token counting strategy (like the one implemented in
this work) which depends on semantic context is
necessarily a challenge to automate. The nuances of
the counting rules in a context-based strategy are
difficult to capture in an automated analysis tool. As
a result, human decision-making ability could not
always be emulated in the SCA.

3. Models to predict the compile time of Ada modules
are not independent of the computer environment in
which they are used. Indeed, the predictive ability of
a compile time model is sensitive to changes in the
efficiency of the environment in which it is based.
Any compile time model should be calibrated for the
specific machine and operating system environment, type
of software to be compiled, and particular version of
the compiler to be used. Furthermore, the modules used
in the calibration should be drawn from a set whose
sizes form a uniform distribution over a large range.
Finally, the set of modules used in the calibration
should either include compilation dependencies or not
allow them at all.

I. With the last paragraph in mind, we (-an probably
ay that there is not a single compile time model for
Ada modules which can be univerrally applied in all
applications.
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Recommendations

This section begins with a discussion of ways to expand or

improve the SCA software tool itself. These follow-on

enhancements are concerned with the quality of the SCA per se and

not so much with how the SCA is used. Next, we'll outline some

activities which might use the SCA to explore areas of interest

to developers of avionics software using Ada. Finally, a project

to improve the accuracy and applicability of the SCA's compile

time predictions is outlined. This last effort is fairly

ambitious, but it may be the highly profitable to pursue for

researchers of compilation timing models and Ada software

developers.

SCA Enhancements. The section entitled "Caveats and

Deviations" discussed several areas where the SCA falls short of

a complete and unequivocal implementation of the token counting

strategy. The most important of these areas is the problem with

"Families of Entries", because Ada source code which contains

entry families must be modified prior to processing by the SCA.

A solution for this problem should be found. One

possibility involves reworking the applicable production in the

grammar- to allow the use of parentheses for entry families (as it.

originally did). We could not find a way to do this and still

implement the token counting strategy properly. Another

possibility might be to pre-process the Ada source file checkitm

for the use of entry families. The parentheses in any use of
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entry families would be substituted with brackets. The pre-

processor and SCA could be run consecutively from a command file.

The other topics listed in "Caveats and Deviations" are less

of a problem. In fact some of them, like the parentheses

problem, are probably benign. In any case, the other areas in

that section should be re-examined. Some token counting rules

may not yield to automated methods, however. For example, it may

be impossible for the SCA to handle object overloading as

precisely as the strategy requires. Nevertheless, if strict

F adherence to the letter and spirit of the token counting rules is

the prime objective, the specific areas to begin scrutinizing the

SCA are identified in that section.

Another idea would be to compute the value of n2* in the

SCA. This would permit the use of the canonical version of the

compile time model. Also, computing all the metrics of Table 2,

"Halstead's Equations", would be beneficial to researchers. Like

the compilation timing model implemented in the SCA, these

metrics are based on the Software Science measures n1 , n2, N1 , and

N2. (The current version of the SCA has been enhanced to produce

the following Software Science metrics: total token count N,

volume V, estimated length L, and estimated effort E ).

Implementing other equations for compile time modeling in

the SCA could b( productive. If the model is based on i,, n 2,

N1 , and N2, then it could easily be implemented in the SCA. In

fact, it may be possible to integrate a new compile time model

which was not computed using n1 , n2 , N,, and N2. Such a model may
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r have a different theoretical basis altogether. Specific

procedures for adding new metrics and models are covered at the

end of the User's Manual in Appendix B.

Employing the SCA. One of the disappointing aspects to the

validity testing of the timing model implemented in the SCA was

the lack of authentic avionics software with which to test. It

would be interesting to see if the results would change

significantly if our testing was duplicated using authentic

avionics software in place of the CAMP software. If all other

factors remained constant, significant changes would probably

occur in the test results only if:

1. There are radical differences in the composition of
avionics software and missile guidance software used in

3 the test.

2. The compile time model is sensitive enough to these
differences to alter the value of T.

We conjecture that both conditions 1 and 2 are false. But it

would be simple enough to duplicate our testing procedures using

avionics software to answer this question with certainty.

One of the other issues left unaddressed in this effort

involves the identification of the specific Ada constructs most

responsible for compilation overhead. In other words, we still

do not know to what extent specific programming constructs (e.g.,

tasks, generics, pragmas) of the Ada language affect compile

time. The SCA can be used to help answer this question. The

code in the parser can easily be modified to record the

occurrences of specific language constructs. The counts of these
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constructs could be statistically correlated with compile time

data for the module(s) containing the constructs. In this way,

the impact of these specific Ada constructs on compile time could

be explored and possibly explained using the SCA as an

investigative tool.

Follow-on Project. The last recommendation is an ambitious

follow-on project extending the applicability of the compile time

predictions of the SCA. The goal would be to recalibrate the

compilation timing model, but this time using a much larger and

more varied data base of Ada source code modules.

The first step would be to build a data base of Software

Science measures and actual compile times. The measures n1 , n2,

N1 , and N2 could easily be obtained by scanning a large number of

modules of widely varying lengths with the SCA. Each module

would then be compiled by several different validated Ada

compilers in the context of a single hardware/software

environment. The actual CPU time elapsed during the compilation

process would be automatically recorded for each file. Best

results would be obtained if test modules were drawn from pools

of several different types of "real-world", production-quality

Ada source code (e.g., avionics, data processing, data base

software, etc).A

The data base would be used to derive values for paramete.rs

a and b of the basic theoretical model for compile time (Equation

2). The validity of the new compile time model should be tested

in the same way and for the same reasons Miller's original model
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was in the course of this study. Predicted and actual compile

times must be compared, and any untoward tendencies of the

model's behavior must be examined. If the timing model is well-

behaved and the R-squared value is reasonably close to 1, we

think the model should be retro-fitted into the original SCA.

The final product would be a useful tool for metrics researchers

and software developers alike.
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m Appendix Al: Analysis of Original Compile Time Model

CAMP SIZE LENGTH
FILENAME (K) n2 nl N2 Ni N
--------- 4 3 12 4 14 18
S681240.A 4 3 12 4 14 18
$681230.A 4 3 12 4 14 18

S644001.A 6 3 7 4 15 19
S002B00.A 6 3 15 5 17 22
S001700.A 6 3 15 5 17 22
S682W00.A 12 6 8 7 16 23
S662001.A 4 4 7 5 19 24
S651001.A 4 4 7 5 19 24
S671500.A 6 4 16 6 18 24
S001800.A 8 4 15 7 19 26
S361001.A 8 4 15 7 21 28
S002D00.A 8 4 16 7 21 28
S002E00.A 8 4 16 7 21 28
S671300.A 6 6 18 9 22 31
S671400.A 6 5 15 9 22 31
S002800.A 8 6 16 9 23 32
S001200.A 8 4 16 9 23 32
S001500.A 8 6 17 9 23 32
S002400.A 8 4 16 9 23 32
S671200.A 6 5 16 9 24 33
S361000.A 8 5 16 6 27 33
S644121.A 8 6 16 9 25 34
S671100.A 8 7 17 11 24 35
S002JO0.A 6 7 17 10 26 36
S687E00.A 6 6 18 12 27 39
S687D00.A 6 5 16 12 28 40
S002KOO.A 8 7 18 12 28 40
S001400.A 10 8 18 13 27 40
S615000.A 6 12 9 12 30 42
S661600.A 10 8 20 13 29 12
S661A00.A 10 8 21 13 31 44
S002FOO.A 8 7 16 14 32 46
SO02GOO.A 8 7 16 14 32 46
S687FO0.A 8 8 22 15 31 46
S661810.A 8 8 20 14 34 48
S661820.A 8 8 20 14 34 18
S002COO.A 10 6 20 14 34 48
S661800.A 6 10 15 11 37 48
S682Z00.A 30 11 11 17 33 50

79



CAMP SIZE LENGTH

FILENAME (K) n2 nl N2 Ni N

---------------------------- ------ ----- ----- ----- ----- -------

S001300.A 12 9 22 16 34 50

S002500.A 10 6 20 15 35 50

S002100.A 8 7 20 15 36 51

S002200.A 10 7 20 15 36 51

S682S00.A 8 10 19 19 32 51

S652200.A 8 7 24 16 39 55

S684200.A 8 9 21 17 38 55

S682Q00.A 8 13 19 22 34 56

S687A00.A 8 7 19 15 42 57

S613000.A 6 17 11 17 40 57

S661700.A 8 8 17 17 40 57

S653200.A 8 9 24 17 42 59

S002100.A 8 9 21 19 41 60

S644240.A 12 15 24 21 39 60

S634000.A 10 12 17 19 43 62

S002HOO.A 8 8 18 19 43 62

S652300.A 8 8 24 19 44 63

S682V00.A 10 14 23 25 40 65

S662100.A 20 8 25 16 50 66

S682P00.A 8 14 23 26 41 67

S687C00.A 8 11 31 21 46 67

S644120.A 16 14 21 15 52 67

S686001.A 8 12 12 13 58 71

S684300.A 10 12 23 23 49 72

S002300.A 10 9 22 23 50 73

S651300.A 20 8 23 17 56 73

S684500.A 10 12 24 23 51 74

S653300.A 10 12 29 23 52 75

S002AOO.A 10 9 20 30 45 75

S652100.A 8 10 26 24 51 75

S687300.A 14 10 19 21 55 76

S687400.A 14 10 19 21 55 76

S686200.A 14 9 21 21 56 77

S686300.A 14 9 21 21 56 77

S671001.A 6 16 16 17 63 80

S652600.A 10 10 27 24 56 80

S653600.A 10 11 29 24 58 82

S682N00.A 8 18 23 33 50 83

S682R00.A 8 18 23 33 50 83

S651200.A 22 9 23 20 65 85

S653100.A 10 13 28 29 57 86

S687800.A 16 10 19 23 66 89

S687G00.A 8 13 26 32 58 90

S684001.A 6 18 17 19 73 92

S002900.A 12 15 23 32 62 94

S686400.A 16 10 24 25 69 94

$684100.A 10 15 21 34 60 94
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CAMP SIZE LENGTH
FILENAME (K) n2 n1 N2 N1 N
---------------------------- ------ ----- ----- ----- ----- -------

S682T00.A 8 13 25 38 59 97

S001001.A 8 20 21 21 78 99

S682L00.A 16 15 22 33 66 99
S661400.A 12 16 31 32 70 102

S661320.A 12 19 24 34 71 105
S001100.A 22 15 23 32 75 107

S687500.A 16 13 21 31 78 109

S687600.A 18 11 20 28 82 110

S002600.A 12 14 26 39 71 110

S644170.A 10 9 20 49 61 110

S686100.A 18 13 27 35 81 116

S661001.A 8 23 19 24 93 117

S681500.A 6 12 22 47 70 117

S682E00.A 14 19 31 44 74 118

S671600.A 16 16 27 40 79 119

S687900.A 20 16 23 34 85 119

S622001.A 8 20 23 42 79 121

S682M00.A 18 20 23 45 76 121

S661520.A 14 18 32 44 80 124

S644230.A 16 21 26 47 79 126

S002700.A 14 18 21 49 77 126

S653001.A 6 25 19 26 100 126

S001600.A 32 16 26 36 91 127

S686500.A 20 15 25 36 92 128

S652001.A 6 25 21 26 103 129

S644100.A 8 27 23 28 105 133

S661530.A 14 14 28 46 93 139

S686800.A 24 17 23 43 100 143

S687001.A 6 29 19 30 116 146

S651100.A 32 16 32 39 108 147

S644150.A 16 14 20 67 83 150

S661500.A 14 31 21 32 125 157

S681600.A 6 12 23 68 91 159

S686700.A 24 19 24 49 iI 160

S632000-A 12 39 26 46 115 161

S672000.A 14 34 19 36 126 162

S687700.A 26 16 21 47 127 174

S631000.A 14 42 26 49 125 174

S634001.A 36 16 20 53 122 175

S686600.A 24 21 24 55 122 177

S602000.A 14 40 23 42 138 180

S682C00.A 18 26 35 71 109 180

S682U00.A 12 27 38 72 110 182

S682X00.A 12 35 30 61 122 183

S661300.A 14 35 27 52 131 183

S644220.A 20 31 31 63 120 183

S611000.A 10 34 21 62 126 188
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m CAMP SIZE LENGTH

FILENAME (K) n2 nl N2 NI N

--------------------------- ------ ----- ----- ----- ----- -------

S682B00.A 18 27 36 76 114 190

S612000.A 10 34 21 62 129 191

S652500.A 22 29 37 70 122 192

S $661310.A 14 27 27 65 130 195

S644210.A 12 18 25 79 117 196

S653500.A 24 30 37 72 124 196

S682Y00.A 14 35 31 66 136 202

S682G00.A 30 25 25 70 133 203

S682900.A 18 24 31 74 129 203

S684400.A 18 40 39 70 139 209

S644200.A 24 36 37 72 142 214

S652400.A 20 26 31 82 135 217

S644160.A 16 13 21 101 117 218

S644110.A 18 17 29 92 134 226

t S661510.A 20 28 38 80 147 227

S653400.A 22 27 31 88 141 229

S682700.A 22 24 33 91 138 229

S682001.A 18 48 23 49 188 237

S686900.A 26 24 27 80 157 237

S614000.A 12 45 15 81 158 239

S682FOO.A 18 29 36 106 1,18 254

S682A00.A 20 32 38 110 154 264

S682D00.A 20 32 38 110 154 264

S644130.A 16 14 25 118 147 265

S644180.A 16 19 23 123 163 286

S644122.A 22 18 27 134 175 309

S651000.A 30 51 24 65 253 318

S686A00.A 44 44 48 108 218 326

S632001.A 6 48 38 116 229 345

S002001.A 14 74 25 75 273 348

S681400.A 12 17 26 151 198 349

S631001.A 6 50 38 120 241 361

S682H00.A 38 45 38 133 236 369

S686B00.A 34 48 50 127 245 372

S662300.A 52 58 46 119 260 379

S661900.A 36 48 35 131 250 381

S683000.A 22 65 30 84 297 381

S682100.A 38 33 36 141 243 38,1

S671000.A 42 63 23 71 321 392

S682800.A 24 32 36 173 232 105

S644140.A 14 14 26 182 226 408

S602001.A 14 52 38 132 292 124

S681700.A 8 12 23 206 229 435

S687200.A 24 34 37 177 276 453

S672001.A 56 61 37 146 313 459 -

S687100.A 28 47 43 181 310 491

S623000.A 22 80 48 136 375 511
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* CAMP SIZE LENGTH

FILENAME (K) n2 n1 N2 Ni N

---------- -------- ----------------

S688000.A 80 85 36 106 423 529

S684000.A 46 89 31 104 440 544

S623001.A 12 52 52 146 423 569

S682600.A 80 71 47 195 397 592

S682J00.A 44 45 40 258 406 664

S001000.A 64 111 36 126 541 667

S687H00.A 16 41 44 287 447 734

S681000.A 60 116 44 135 607 742

S681200.A 20 29 28 343 450 793

S662000.A 66 156 38 171 683 854

S686000.A 84 137 27 179 688 867

S682200.A 58 60 42 357 557 914

S682K00.A 52 64 40 381 547 928

S652000.A 60 148 34 170 792 962

S682300.A 54 49 44 402 589 991

S653000.A 70 180 34 217 960 1177

S622000.A 46 149 61 362 855 1217

S682500.A 68 73 47 500 732 1232

S687000.A 92 206 46 253 993 1216

S661000.A 86 224 43 262 1056 1318

S683001.A 78 152 79 431 974 1405

S621000.A 26 207 47 416 1002 1418

S621001.A 26 196 70 672 1615 2287

---------------------------- ----- ----- ----- ----- ----- -------

19.02 29.97 26.16 73.25 163.19 236.44

307 1522 114 9393 51783 100486

18 39 11 97 228 317
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m TIME TIME TIME ACTUAL DIFF
PREDICTED ACTUAL ACTUAL COMPILE PREDICTED

BY SCA (USER) (SYSTEM) TIME - ACTUAL

2.51 1.2 1.0 2.2 0.31
2.51 1.2 1.1 2.3 0.21

- 2.48 0.8 1.0 1.8 0.68
2.76 0.8 1.1 1.9 0.86
2.76 1.5 1.6 3.1 -0.34
2.91 1.6 0.9 2.5 0.41
2.85 2.2 2.5 4.7 -1.85
2.85 1.5 2.0 3.5 -0.65
2.94 2.5 1.7 4.2 -1.26
3.01 1.5 1.6 3.1 -0.09
3.12 1.7 2.2 3.9 -0.78
3.13 0.9 0.9 1.8 1.33
3.13 0.9 0.9 1.8 1.33
3.40 2.5 1.9 4.4 -1.00
3.30 2.6 1.8 4.4 -1.10
3.43 0.9 1.0 1.9 1.53
3.28 1.6 1.7 3.3 -0.02
3.44 1.4 1.7 3.1 0.3,1
3.28 0.9 0.9 1.8 1.48

S3.41 2.5 1.9 4.4 -0.99
3.52 1.6 2,1 3.7 -0.18
3.54 1.0 0.9 1.9 1.64
3.60 2.6 1.8 4.4 -0.80
3.68 0.9 0.9 1.8 1.88
3.72 1.3 1.2 2.5 1.22

* 3.67 1.4 1.2 2.6 1.07
3.83 0.9 0.9 1.8 2.03
3.87 2.1 1.8 3.9 -0.03
4.18 1.7 2.2 3.9 0.28
3.97 2.6 1.9 4.5 -0.53
4.07 2.7 1.9 4.6 -0.53
4.03 0.9 0.9 1.8 2.23
4.03 1.0 0.9 1.9 2.13
4.12 1.4 1.2 2.6 1.52
4.21 2.8 1.9 4.7 -0.49
4.21 2.6 2.0 4.6 -0.39
4.08 1.0 1.0 2.0 2.08
4.38 2.7 1.9 4.6 -0.22
4.37 2.2 1.2 3.4 0.97
4.32 1.9 1.9 3.8 0.52
4.14 1.0 1.0 2.0 2.14
4.25 0.9 1.0 1.9 2.35
4.25 1.0 1.0 2.0 2.25
4.35 1.4 1.1 2.5 1.85
4.41 2.0 1.8 3.8 0.61
4.50 2.8 1.8 4.6 -0.10
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U TIME TIME TIME ACTUAL DIFF
PREDICTED ACTUAL ACTUAL COMPILE PREDICTED

BY SCA (USER) (SYSTEM) TIME - ACTUAL

4.65 1.2 1.0 2.2 2.45
4.48 1.4 1.2 2.6 1.88

. 4.99 2.0 2.2 4.2 0.79
4.49 2.6 2.0 4.6 -0.11
4.67 2.2 2.2 4.4 0.27
4.66 0.9 0.9 1.8 2.86
4.93 1.1 1.0 2.1 2.83
4.89 1.5 1.6 3.1 1.79
4.65 1.0 0.9 1.9 2.75
4.72 1.9 1.8 3.7 1.02
5.01 1.4 1.1 2.5 2.51
4.90 2.9 2.0 4.9 0.00
5.07 1.3 1.1 2.4 2.67

17 5.03 1.5 1.1 2.6 2.43
5.28 1.1 1.0 2.1 3.18
5.36 3.7 2.6 6.3 -0.94

5.20 2.8 1.9 4.7 0.50
5.05 1.0 0.9 1.9 3.15
5.11 2.1 1.6 3.7 1.111
5.27 2.9 1.9 4.8 0.47
5.32 2.4 1.8 4.2 1.12
5.01 1.0 1.0 2.0 3.01
5.19 1.9 1.8 3.7 1.49
5.24 1.5 1.1 2.6 2.64
5.24 1.6 1.2 2.8 2.44

* 5.21 3.3 1.9 5.2 0.01
5.21 3.2 2.1 5.3 -0.09

5.80 2.6 205 5 0.0
5.36 2.1 1.8 3.9 1.46
5.49 2.4 1.7 4.1 1.39
5.71 1.3 1i. 2.4 3.31
5.71 1.3 1.0 2.3 3.41
5.50 2.0 1.6 3.6 1.90
5.64 2.5 1.9 4.4 1.24
5.61 1.7 1.1 2.8 2.81
5.71 1.4 1.2 2.6 3.11
6.26 2.8 2.6 5.4 0.86
5.93 1.0 1.0 2.0 3.93
5.76 3.6 2.0 5.6 0.16
5.90 2.8 1.9 4.7 1.20
5.85 1.3 1.1 2.4 3.15
6.52 1.7 2.3 4.0 2.52
6.07 1.5 1.1 2.6 3.47
6.23 2.9 1.9 4.8 1.43
6.42 1.3 1.3 2.6 3.82

6.32 2.2 1.7 3.9 2.42
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P TIME TIME TIME ACTUAL DIFF

PREDICTED ACTUAL ACTUAL COMPILE PREDICTED

BY SCA (USER) (SYSTEM) TIME - ACTUAL
6.27---7-7------------------ -------- ---------

6.27 1.7 1.2 2.9 3.37

6.21 1.7 1.2 2.9 3.31

6.26 1.1 1.0 2.1 4.16

5.81 1.0 0.9 1.9 3.91

6.42 3.4 2.0 5.4 1.02

7.15 2.8 2.5 5.3 1.85

6.23 1.4 1.2 2.6 3.63

6.67 1.5 1.1 2.6 4.07

6.60 3.3 1.9 5.2 1.40

6.67 1.8 1.2 3.0 3.67

6.82 1.0 1.1 2.1 4.72

6.79 1.5 1.1 2.6 4.19

6.79 3.6 2.0 5.6 1.19

6.94 1.2 1.0 2.2 4.74

6.78 1.1 1.1 2.2 4.58

7.46 2.4 2.5 4.9 2.56

6.86 2.6 1.6 4.2 2.66

6.83 3.8 2.0 5.8 1.03

7.53 2.1 2.4 4.5 3.03

7.67 1.0 0.9 1.9 5.77

I 6.93 3.0 2.0 5.0 1.93

7.22 3.8 2.1 5.9 1.32

8.10 4.2 1.4 5.6 2.50

7.33 2.6 1.8 4.4 2.93

6.97 1.3 1.0 2.3 4.67

8.41 3.0 2.1 5.1 3.31

7.04 1.3 1.2 2.5 4.54

7.67 4.2 2.0 6.2 1.47

8.52 1.5 1.2 2.7 5.82

8.61 3.0 2.5 5.5 3.11

7.83 2.0 1.4 3.4 4.43

8.90 1.7 1.1 2.8 6.10

7.78 2.8 1.8 4.6 3.18

8.09 4.4 2.0 6.4 1.69

9.12 2.1 2.2 ..3 4.82

8.20 1.6 1.1 2.7 5.50

8.27 1.6 1.1 2.7 5.57

8.71 1.4 1.0 2.4 6.31

8.84 2.5 1.6 4.1 4.74

8.55 1.3 1.0 2.3 6.25

8.86 1.5 1.0 2.5 6.36

8.41 1.7 1.1 2.8 5.61

8.92 1.5 1.1 2.6 6.32

8.58 3.7 2.2 5.9 2.68

8.65 1.5 1.3 2.8 5.85

8.10 1.2 0.9 2.1 6.00
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TIME TIME TIME ACTUAL DIFF

PREDICTED ACTUAL ACTUAL COMPILE PREDICTED

BY SCA (USER) (SYSTEM) TIME - ACTUAL
------------- --------- -------- ------- ---------

8.69 4.2 2.1 6.3 2.39

9.08 1.5 1.1 2.6 6.48

8.69 1.9 1.2 3.1 5.59

8.59 1.7 1.0 2.7 5.89

9.31 4.8 2.2 7.0 2.31

9.28 1.4 1.0 2.4 6.88

8.89 3.9 2.1 6.0 2.89

8.03 1.3 1.1 2.4 5.63

8.53 1.3 1.0 2.3 6.23

9.17 4.7 2.1 6.8 2.37

9.12 4.6 1.9 6.5 2.62

8.96 1.7 1.1 2.8 6.16

10.59 1.7 1.0 2.7 7.89

9.21 4.5 1.8 6.3 2.91

10.32 2.2 1.1 3.3 7.02

9.53 1.7 1.0 2.7 6.83

9.80 1.9 1.1 3.0 6.80

9.80 1.7 1.2 2.9 6.90

8.82 1.4 1.0 2.4 6.42

9.48 1.3 1.0 2.3 7.18

9.71 1.5 1.1 2.6 7.11

12.04 2.9 2.2 5.1 6.94

11.27 4.7 1.5 6.2 5.07

11.72 1.1 0.8 1.9 9.82

13.15 1.1 1.0 2.1 11.05

10.13 1.7 1.2 2.9 7.23

12.01 1.0 1.0 2.0 10.01

11.88 2.3 1.0 3.3 8.58

11.99 4.7 1.5 6.2 5.79

12.49 5.2 1.8 7.0 5.49

12.21 3.7 1.5 5.2 7.01

13.25 2.2 1.1 3.3 9.95

11.59 2.3 1.1 3.4 8.19

13.69 4.5 2.7 7.2 6.49

11.66 1.9 1.1 3.0 8.66

10.53 1.4 1.0 2.4 8.13

12.96 2.9 2.4 5.3 7.66

10.54 1.6 1.1 2.7 7.84

12.38 2.2 1.2 3.4 8.98

13.68 4.4 1.8 6.2 7.48

13.37 2.3 1.3 3.6 9.77

14.90 2.5 1.1 3.6 11.30

15.75 3.6 1.2 4.8 10.95

16.21 5.3 2.7 8.0 8.21

14.71 1.5 0.9 2.4 12.31

15.33 3.8 1.3 5.1 10.23
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TIME TIME TIME ACTUAL DIFF
PREDICTED ACTUAL ACTUAL COMPILE PREDICTED

BY SCA (USER) (SYSTEM) TIME - ACTUAL

15.00 2.8 1.3 4.1 10.90
18.09 5.0 2.7 7.7 10.39
15.41 2.1 1.2 3.3 12.11
18.88 6.4 3.0 9.4 9.48
15.20 2.3 1.2 3.5 11.70
20.90 6.5 3.0 9.5 11.40
20.98 7.8 3.0 10.8 10.18
17.74 3.2 1.2 4.4 13.34
17.98 3.0 1.3 4.3 13.68
22.11 5.7 2.7 8.4 13.71
17.78 3.2 1.2 4.4 13.38
24.65 6.5 2.8 9.3 15.35
22.73 4.0 1.5 5.5 17.23
20.46 3.7 1.2 4.9 15.56

25.11 9.2 3.0 12.2 12.91
26.15 7.9 2.9 10.8 15.35
23.83 4.3 1.3 5.6 18.23
25.74 6.3 1.4 7.7 18.04
30.39 2.9 1.1 4.0 26.39

MEAN 8.24 2.36 1.52 3.88 4.35
VARIANCE 27.02 2.04 0.31 3.50 19.51
STND DEV 5.20 1.43 0.55 1.87 4.42

P STATISTICS FOR ORIGINAL MODEL

MEAN PREDICTION ERROR = 4.35

VARIANCE PREDICTION ERROR = 19.51

STANDARD DEVIATION PREDICTION ERROR = 4.42
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Appendix A2: Linear Regression

FILE FILE
CAMP SIZE LENGTH

FILENAME (K) n2 nl N2 Ni N

$681240.A 4 3 12 4 14 18
S681230.A 4 3 12 4 14 18

S644001.A 6 3 7 4 15 19
S002BOO.A 6 3 15 5 17 22
S001700.A 6 3 15 5 17 22
S682W00.A 12 6 8 7 16 23
S662001.A 4 4 7 5 19 24
S651001.A 4 4 1 5 19 24
S671500.A 6 4 16 6 18 24
S001800.A 8 4 15 7 19 26
S361001.A 8 4 15 7 21 28
S002D00.A 8 4 16 7 21 28
S002EOO.A 8 4 16 7 21 28
S671300.A 6 6 18 9 22 31
S671400.A 6 5 15 9 22 31
S002800.A 8 6 16 9 23 32
S001200.A 8 4 16 9 23 32
S001500.A 8 6 17 9 23 32
S002400.A 8 4 16 9 23 32
S671200.A 6 5 16 9 24 33
S361000.A 8 5 16 6 27 33
S644121.A 8 6 16 9 25 34
S67.1100.A 8 7 17 11 24 35
SOO2JOO.A 6 7 17 10 26 36
S687EOO.A 6 6 18 12 27 39
S687DO0.A 6 5 16 12 28 40
SOO2KOO.A 8 7 18 12 28 40
S001400.A 10 8 18 13 27 40
S615000.A 6 12 9 12 30 42
S661600.A 10 8 20 13 29 42
S661A00.A 10 8 21 13 31 44
S002FOO.A 8 7 16 14 32 46
SO02GOO.A 8 7 16 14 32 46
S687FO0.A 8 8 22 15 31 46
S661810.A 8 8 20 14 34 48
S661820.A 8 8 20 14 34 48
S002COO.A 10 6 20 14 34 48
S661800.A 6 10 15 11 37 48
S682ZO0.A 30 11 11 17 33 50
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FILE FILE
CAMP SIZE LENGTH

FILENAME (K) n2 nl N2 NI N

S001300.A 12 9 22 16 34 50
S002500.A 10 6 20 15 35 50
S002100.A 8 7 20 15 36 51
S002200.A 10 7 20 15 36 51
S682S00.A 8 10 19 19 32 51
S652200.A 8 7 24 16 39 55
S684200.A 8 9 21 17 38 55
S682Q00.A 8 13 19 22 34 56
S687A00.A 8 7 19 15 42 57
$613000.A 6 17 11 17 40 57
S661700.A 8 8 17 17 40 57

S653200.A 8 9 24 17 42 59
S002100.A 8 9 21 19 41 60
S644240.A 12 15 24 21 39 60
S634000.A 10 12 17 19 43 62
S002HOO.A 8 8 18 19 43 62
S652300.A 8 8 24 19 44 63
S682V00.A 10 14 23 25 40 65
S662100.A 20 8 25 16 50 66
S682P00.A 8 14 23 26 41 67
S687C00.A 8 11 31 21 46 67
S644120.A 16 14 21 15 52 67
S686001.A .8 12 12 13 58 71
S684300.A 10 12 23 23 49 72
S002300.A 10 9 22 23 50 73
S651300.A 20 8 23 17 56 73
S684500.A 10 12 24 23 51 74
S653300.A 10 12 29 23 52 75
SOO2AOO.A 10 9 20 30 45 75
S652100.A 8 10 26 24 51 75
S687300.A 14 10 19 21 55 76

*S687400.A 14 10 19 21 55 76
S686200.A 14 9 21 21 56 77
S686300.A 14 9 21 21 56 77
S671001.A 6 16 16 17 63 80
S652600.A 10 10 27 24 56 80
S653600.A 10 11 29 24 58 82
S682N00.A 8 18 23 33 50 83
S682R00.A 8 18 23 33 50 83
S651200.A 22 9 23 20 65 85
S653100.A 10 13 28 29 57 86
S687800.A 16 10 19 23 66 89
S687G00.A 8 13 26 32 58 90
S684001.A 6 18 17 19 73 92
S002900.A 12 15 23 32 62 9,4
S686400.A 16 10 24 25 69 94
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FILE FILE
CAMP SIZE LENGTH

FILENAME (K) n2 n1 N2 NI N

S684100.A 10 15 21 34 60 94
S682T00.A 8 13 25 38 59 97

S001001.A 8 20 21 21 78 99
S682L00.A 16 15 22 33 66 99
S661400.A 12 16 31 32 70 102
S661320.A 12 19 24 34 71 105
S001100.A 22 15 23 32 75 107
S687500.A 16 13 21 31 78 109

S687600.A 18 11 20 28 82 110
S002600.A 12 14 26 39 71 110
S644170.A 10 9 20 49 61 110
S686100.A 18 13 27 35 81 116
S681001.A 8 23 19 24 93 117
S681500.A 6 12 22 47 70 117
S682E00.A 14 19 31 44 74 118
S671600.A 16 16 27 40 79 119
S687900.A 20 16 23 34 85 119
S622001.A 8 20 23 42 79 121
S682M00.A 18 20 23 45 76 121
S661520.A 14 18 32 44 80 124
S644230.A 16 21 26 47 79 126

S002700.A 14 18 21 49 77 126
S653001.A 6 25 19 26 100 126
S001600.A 32 16 26 36 91 127
S686500.A 20 15 25 36 92 128

S652001.A 6 25 21 26 103 129
S644100.A 8 27 23 28 105 133
S661530.A 14 14 28 46 93 139
S686800.A 24 17 23 43 100 143
S687001.A 6 29 19 30 116 146
S651100.A 32 16 32 39 108 147
S644150.A 16 14 20 67 83 150
S661500.A 14 31 21 32 125 157
S681600.A 6 12 23 68 91 159
S686700.A 24 19 24 49. il 160
S632000.A 12 39 26 46 115 161
S672000.A 14 34 19 36 126 162
S687700.A 26 16 21 47 127 174
S631000.A 14 42 26 49 125 174
S634001.A 36 16 20 53 122 175
S686600.A 24 21 24 55 122 177
S602000.A 14 40 23 42 138 180
S682C00.A 18 26 35 71 109 180
S682U00.A 12 27 38 72 110 182
S682X00.A 12 35 30 61 122 183 -

S661300.A 14 35 27 52 131 183
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FILE FILE
CAMP SIZE LENGTH

FILENAME (K) n2 nl N2 Ni N

S644220.A 20 31 31 63 120 183
S611000.A 10 34 21 62 126 188
S682B00.A 18 27 36 76 114 190
S612000.A 10 34 21 62 129 191
S652500.A 22 29 37 70 122 192
S661310.A 14 27 27 65 130 195
S644210.A 12 18 25 79 117 196
S653500.A 24 30 37 72 124 196
S682Y00.A 14 35 31 66 136 202
S682G00.A 30 25 25 70 133 203
S682900.A 18 24 31 74 129 203
S684400.A 18 40 39 70 139 209
S644200.A 24 36 37 72 142 214
$652400.A 20 26 31 82 135 217
S644160.A 16 13 21 101 117 218
S644110.A 18 17 29 92 134 226
S661510.A 20 28 38 80 147 227
S653400.A 22 27 31 88 141 229
S682700.A 22 24 33 91 138 229
S682001.A 18 48 23 49 188 237
S686900.A 26 24 27 80 157 237
S614000.A 12 45 15 81 158 239
S682F00.A 18 29 36 106 148 254
S682A00.A 20 32 38 110 154 264
S682D00.A 20 32 38 110 154 264
S644130.A 16 14 25 118 147 265
S644180.A 16 19 23 123 163 286
S644122.A 22 18 27 134 175 309

S651000.A 30 51 24 65 253 318

S686A00.A 44 44 48 108 218 326
S632001.A 6 48 38 116 229 345
S002001.A 14 74 25 75 273 348

S681400.A 12 17 26 151 198 349
S631001.A 6 50 38 120 241 361
S682H00.A 38 45 38 133 236 369
S686B00.A 34 48 50 127 245 372
S662300.A 52 58 46 119 260 379
S661900.A 36 48 35 131 250 381
S683000.A 22 65 30 84 297 381
S682100.A 38 33 36 141 243 38.1
S671000.A 42 63 23 71 321 392
S682800.A 24 32 36 173 232 405
S644140.A 14 14 26 182 226 408
S602001.A 14 52 38 132 292 424
S681700.A 8 12 23 206 229 435
S687200.A 24 34 37 177 276 453
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FILE FILE
CAMP SIZE LENGTH

FILENAME (K) n2 ni N2 NI N

S672001.A 56 61 37 146 313 459
S687100.A 28 47 43 181 310 491
S623000.A 22 80 48 136 375 511
S688000.A 80 85 36 106 423 529
S684000.A 46 89 31 104 440 544
S623001.A 12 52 52 146 423 569
S682600.A 80 71 47 195 397 592
S682J00.A 44 45 40 258 406 664
SOO1000.A 64 ill 36 126 541 667
S687H00.A 16 41 44 287 447 734
S681000.A 60 116 44 135 607 742
S681200.A 20 29 28 343 450 793
S662000.A 66 156 38 171 683 854
S686000.A 84 137 27 179 688 867
S682200.A 58 60 42 357 557 914
S682K00.A 52 64 40 381 547 928
S652000.A 60 148 34 170 792 962
S682300.A 54 49 44 402 589 991
S653000.A 70 180 34 217 960 1177
S622000.A 46 149 61 362 855 1217
S682500.A 68 73 47 500 732 1232
3687000.A 92 206 46 253 993 1246
S661000.A 86 224 43 262 1056 1318
S683001.A 78 152 79 431 974 1405
S621000.A 26 207 47 416 1002 1418
S621001.A 26 196 70 672 1615 2287

MEAN 19 30 26 .73 163 236
VARIANCE 307 1522 114 9393 51783 100486
STND DEV 18 39 11 97 228 317
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POTEN VOL T = TIME TIME

VOCAB VOLUME V* PREDICTED ACTUAL
n V (L^) BY SCA (USER)

15 70.32 0.125 2.51 1.2
15 70.32 0.125 2.51 1.2

10 63.12 0.214 2.48 0.8
18 91.74 0.080 2.76 0.8
18 91.74 0.080 2.76 1.5
14 87.57 0.214 2.91 1.6
11 83.03 0.229 2.85 2.2
11 83.03 0.229 2.85 1.5
20 103.73 0.083 2.94 2.5
19 110.45 0.076 3.01 1.5
19 118.94 0.076 3.12 1.7
20 121.01 0.071 3.13 0.9
20 121.01 0.071 3.13 0.9
24 142.13 0.074 3.40 2.5
20 133.98 0.074 3.30 2.6
22 142.70 0.083 3.43 0.9
20 138.30 0.056 3.28 1.6
23 144.75 0.078 3.44 1.4
20 138.30 0.056 3.28 0.9
21 144.95 0.069 3.41 2.5
21 144.95 0.104 3.52 1.6
22 151.62 0.083 3.54 1.0
24 160.47 0.075 3.60 2.6
24 165.06 0.082 3.68 0.9
24 178.81 0.056 3.72 1.3
21 175.69 0.052 3.67 1.4
25 185.75 0.065 3.83 0.9
26 188.02 0.068 3.87 2.1
21 184.48 0.222 4.18 1.7

28 201.91 0.062 3.97 2.6
29 213.75 0.059 4.07 2.7

23 208.08 0.063 4.03 0.9
23 208.08 0.063 4.03 1.0
30 225.72 0.048 4.12 1.4

28 230.75 0.057 4.21 2.8
28 230.75 0.057 4.21 2.6
26 225.62 0.043 4.08 1.0
25 222.91 0.121 4.38 2.7
22 222.97 0.118 4.37 2.2

31 247.71 0.051 4.32 1.9
26 235.02 0.040 4.14 1.0
27 242.50 0.047 4.25 0.9
27 242.50 0.047 4.25 1.0

29 247.76 0.055 4.35 1.4
31 272.48 0.036 4.41 2.0
30 269.88 0.050 4.50 2.8
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POTEN VOL T = TIME TIME
VOCAB VOLUME V* PREDICTED ACTUAL

n V (L^ ) BY SCA (USER)

32 280.00 0.062 4.65 1.2
26 267.93 0.049 4.48 1.4
28 274.02 0.182 4.99 2.0
25 264.70 0.055 4.49 2.6
33 297.62 0.044 4.67 2.2
30 294.41 0.045 4.66 0.9
39 317.12 0.060 4.93 1.1
29 301.19 0.074 4.89 1.5
26 291.43 0.047 4.65 1.0
32 315.00 0.035 4.72 1.9
37 338.61 0.049 5.01 1.4
33 332.93 0.040 4.90 2.9
37 349.03 0.047 5.07 1.3

L 42 361.29 0.034 5.03 1.5
35 343.66 0.089 5.28 1.1
24 325.53 0.154 5.36 3.7
35 369.31 0.045 5.20 2.8
31 361.66 0.036 5.05 1.0
31 361.66 0.041 5.11 2.1
36 382.57 0.043 5.27 2.9
41 401.82 0.036 5.32 2.4
29 364.35 0.030 5.01 1.0
36 387.74 0.032 5.19 1.9
29 369.21 0.050 5.24 1.5
29 369.21 0.050 5.24 1.6
30 377.83 0.041 5.21 3.3
30 377.83 0.041 5.21 3.2
32 400.00 0.118 5.80 2.6
37 416.76 0.031 5.36 2.1
40 436.40 0.032 5.49 2.4
41 444.68 0.047 5.71 1.3
41 444.68 0.047 5.71 1.3
32 425.00 0.039 5.50 2.0
41 460.75 0.032 5.64 2.5
29 432.36 0.046 5.61 1.7
39 475.69 0.031 5.71 1.4
35 471.89 0.111 6.26 2.8

38 493.31 0.041 5.93 1.0
34 478.22 0.033 5.76 3.6
36 485.97 0.042 5.90 2.8
38 509.05 0.027 5.85 1.3
41 530.40 0.091 6.52 1.7
37 515.74 0.041 6.07 1.5
47 566.57 0.032 6.23 2.9
43 569.76 0.047 6.42 1.3
38 561.53 0.041 6.32 2.2
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POTEN VOL T = TIME TIME

VOCAB VOLUME V* PREDICTED ACTUAL
n1 V (L-) BY SCA (USER)

------------------------- ------- ------- --------- ---------

34 554.53 0.040 6.27 1.7
31 544.96 0.039 6.21 1.7

40 585.41 0.028 6.26 1.1

29 534.38 0.018 5.81 1.0

40 617.34 0.028 6.42 3.4
42 630.90 0.101 7.15 2.8

34 595.23 0.023 6.23 1.4

50 665.98 0.028 6.67 1.5
43 645.73 0.030 6.60 3.3

39 628.96 0.041 6.67 1.8
43 656.58 0.041 6.82 1.0

43 656.58 0.039 6.79 1.5
50 699.84 0.026 6.79 3.6

C47 699.88 0.034 6.94 1.2

39 665.96 0.035 6.78 1.1
44 687.89 0.101 7.46 2.4

42 684.82 0.034 6.86 2.6

40 681.21 0.033 6.83 3.8

46 712.54 0.092 7.53 2.1

50 750.63 0.084 7.67 1.0

42 749.53 0.022 6.93 3.0

40 761.04 0.034 7.22 3.8
48 815.40 0.102 8.10 4.2

48 820.99 0.026 7.33 2.6
34 763.12 0.021 6.97 1.3

*52 894.97 0.092 8.41 3.0
35 815.56 0.015 7.04 1.3
43 868.20 0.032 7.67 4.2
65 969.60 0.065 8.52 1.5

53 927.92 0.099 8.61 3.0
37 906.44 0.032 7.83 2.0

68 1059.22 0.066 8.90 1.7

36 904.74 0.030 7.78 2.8
45 972.06 0.032 8.09 4.4

63 1075.91 0.083 9.12 2.1
61 1067.53 0.021 8.20 1.6
65 1096.07 0.020 8.27 1.6

65 1102.09 0.038 8.71 1.4

62 1089.62 0.050 8.84 2.5

62 1089.62 0.032 8.55 1.3
55 1086.90 0.052 8.86 1.5
63 1135.68 0.020 8.41 1.7

55 1104.24 0.052 8.92 1.5
66 1160.52 0.022 8.58 3.7

54 1122.20 0.031 8.65 1.5

43 1063.55 0.018 8.10 1.2
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POTEN VOL T = TIME TIME
VOCAB VOLUME V* PREDICTED ACTUAL

n V (L^ ) BY SCA (USER)

67 1188.95 0.023 8.69 4.2
66 1220.97 0.034 9.08 1.5
50 1145.70 0.029 8.69 1.9
55 1173.62 0.021 8.59 1.7
79 1317.49 0.029 9.31 4.8
73 1324.62 0.027 9.28 1.4
57 1265.74 0.020 8.89 3.9
34 1109.07 0.012 8.03 1.3
46 1248.33 0.013 8.53 1.3
66 1372.08 0.018 9.17 4.7
58 1341.48 0.020 9.12 4.6
57 1335.73 0.016 8.96 1.7
71 1457.49 0.085 10.59 1.7
51 1344.36 0.022 9.21 4.5
60 1411.75 0.074 10.32 2.2
65 1529.68 0.015 9.53 1.7
70 1618.13 0.015 9.80 1.9
70 1618.13 0.015 9.80 1.7
39 1400.63 0.009 8.82 1.1
42 1542.20 0.013 9.48 1.3
45 1696.98 0.010 9.71 1.5
75 1980.76 0.065 12.04 2.9
92 2126.68 0.017 11.27 4.7
86 2217.06 0.022 11.72 1.1
99 2307.02 0.079 13.15 1.1
43 1893.77 0.009 10.13 1.7
88 2331.86 0.022 12.01 1.0
83 2352.39 0.018 11.88 2.3
98 2460.67 0.015 11.99 4.7

104 2539.47 0.021 12.49 5.2
83 2428.89 0.021 12.21 3.7
95 2503.12 0.052 13.25 2.2
69 2345.67 0.013 11.59 2.3
86 2519.10 0.077 13.69 4.5 -:

68 2465.42 0.010 11.66 1.9
40 2171.35 0.006 10.53 1.4
90 2752.55 0.021 12.96 2.9
35 2231.24 0.005 10.54 1.6
71 2785.84 0.010 12.38 2.2
98 3036.15 0.023 13.68 4.4
90 3187.50 0.012 13.37 2.3
128 3577.00 0.025 14.90 2.5
121 3660.08 0.045 15.75 3.6
120 3757.35 0.055 16.21 5-1
104 3812.55 0.014 14.71 1.5
118 4074.53 0.015 15.33 3.8
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POTEN VOL T = TIME TIME

VOCAB VOLUME V* PREDICTED ACTUAL

n V (L^ ) BY SCA (USER)

------ ------- ------- --------- ---------

85 4255.84 0.009 15.00 2.8

147 4802.18 0.049 18.09 5.0

85 4704.49 0.006 15.41 2.1

160 5432.87 0.039 18.88 6.4

57 4625.48 0.006 15.20 2.3

194 6490.33 0.048 20.90 6.5

164 6379.00 0.057 20.98 7.8

102 6098.60 0.008 17.74 3.2

104 6218.01 0.008 17.98 3.0

182 7222.50 0.051 22.11 5.7

93 6480.31 0.006 17.78 3.2

214 9111.71 0.049 24.65 6.5

210 9388.24 0.013 22.73 4.0

120 8509.29 0.006 20.46 3.7

252 9939.69 0.035 25.11 9.2

267 10624.00 0.040 26.15 7.9

231 11031.71 0.009 23.83 4.3

254 11327.96 0.021 25.74 6.3

266 18422.43 0.008 30.39 2.9

-------- ---------------------------
56 1534.23 0.050 8.24 2.36

2210 5950085.02 0.002 27.02 2.04

47 2439.28 0.040 5.20 1.43
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TIME ACTUAL DIFF Ln(V) Ln(L-)

ACTUAL COMPILE PREDICTED INDEPENDENT INDEPENDENT

(SYSTEM) TIME - ACTUAL VARIABLE VARIABLE

1.0 2.2 0.31 4.25 -2.08
1.1 2.3 0.21 4.25 -2.08

1.0 1.8 0.68 4.14 -1.54
1.1 1.9 0.86 4.52 -2.53

1.6 3.1 -0.34 4.52 -2.53
0.9 2.5 0.41 4.47 -1.54
2.5 4.7 -1.85 4.42 -1.48
2.0 3.5 -0.65 4.42 -1.48

1.7 4.2 -1.26 4.64 -2.48
1.6 3.1 -0.09 4.70 -2.57
2.2 3.9 -0.78 4.78 -2.57
0.9 1.8 1.33 4.80 -2.64

0.9 1.8 1.33 4.80 -2.64

1.9 4.4 -1.00 4.96 -2.60

1.8 4.4 -1.10 4.90 -2.60
1.0 1.9 1.53 4.96 -2.48

1.7 3.3 -0.02 4.93 -2.89
1.7 3.1 0.34 4.98 -2.55
0.9 1.8 1.48 4.93 -2.89

1.9 4.4 -0.99 4.98 -2.67

2.1 3.7 -0.18 4.98 -2.26

0.9 1.9 1.64 5.02 -2.48

1.8 4.4 -0.80 5.08 -2.59
0.9 1.8 1.88 5.11 -2.50
1.2 2.5 1.22 5.19 -2.89

1.2 2.6 1.07 5.17 -2.95
0.9 1.8 2.03 5.22 -2.74 --

1.8 3.9 -0.03 5.24 -2.68

2.2 3.9 0.28 5.22 -1.50
1.9 4.5 -0.53 5.31 -2.79
1.9 4.6 -0.53 5.36 -2.84

0.9 1.8 2.23 5.34 -2.77
0.9 1.9 2.13 5.34 -2.77

1.2 2.6 1.52 5.42 -3.03

1.9 4.7 -0.49 5.44 -2.86
2.0 4.6 -0.39 5.44 -2.86

1.0 2.0 Z.08 5.42 -3.15
1.9 4.6 -0.22 5.41 -2.11

1.2 3.4 0.97 5.41 -2.14

1.9 3.8 0.52 5.51 -2.97
1.0 2.0 2.14 5.46 -3.22
1.0 1.9 2.35 5.49 -3.06
1.0 2.0 2.25 5.49 -3.06
1.1 2.5 1.85 5.51 -2.89

1.8 3.8 0.61 5.61 -3.31

1.8 4.6 -0.10 5.60 -2.99
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TIME ACTUAL DIFF Ln(V) Ln(L^)

ACTUAL COMPILE PREDICTED INDEPENDENT INDEPENDENT

(SYSTEM) TIME - ACTUAL VARIABLE VARIABLE

1.0 2.2 2.45 5.63 -2.78

1.2 2.6 1.88 5.59 -3.01
2.2 4.2 0.79 5.61 -1.70

2.0 4.6 -0.11 5.58 -2.89

2.2 4.4 0.27 5.70 -3.12

0.9 1.8 2.86 5.68 -3.10

1.0 2.1 2.83 5.76 -2.82

1.6 3.1 1.79 5.71 -2.60

0.9 1.9 2.75 5.67 -3.06

* 1.8 3.7 1.02 5.75 -3.35

1.1 2.5 2.51 5.82 -3.02

2.0 4.9 0.00 5.81 -3.22

1.1 2.4 2.67 5.86 -3.06

1.1 2.6 2.43 5.89 -3.39

1.0 2.1 3.18 5.84 -2.42

2.6 6.3 -0.94 5.79 -1.87

1.9 4.7 0.50 5.91 -3.09

0.9 1.9 3.15 5.89 -3.34

1.6 3.7 1.41 5.89 -3.20

1.9 4.8 0.47 5.95 -3.14

1.8 4.2 1.12 6.00 -3.32

1.0 2.0 3.01 5.90 -3.51

1.8 3.7 1.49 5.96 -3.44

1.1 2.6 2.64 5.91 -2.99

1.2 2.8 2.44 5.91 -2.99

1.9 5.2 0.01 5.93 -3.20

2.1 5.3 -0.09 5.93 -3.20

2.5 5.1 0.70 5.99 -2.14

1.8 3.9 1.46 6.03 -3.48

1.7 4.1 1.39 6.08 -3.45

1.1 2.4 3.31 6.10 -3.05

1.0 2.3 3.41 6.10 -3.05

1.6 3.6 1.90 6.05 -3.24

1.9 4.4 1.24 6.13 -3.44

1.1 2.8 2.81 6.07 -3.08

1.2 2.6 3.11 6.16 -3.47

2.6 5.4 0.86 6.16 -2.19

1.0 2.0 3.93 6.20 -3.20

2.0 5.6 0.16 6.17 -3.40

1.9 4.7 1.20 6.19 -3.17

1.1 2.4 3.45 6.23 -3.60

2.3 4.0 2.52 6.27 -2.40

1.1 2.6 3.47 6.25 -3.19

1.9 4.8 1.43 6.34 -3.43

1.3 2.6 3.82 6.35 -3.07

1.7 3.9 2.42 6.33 -3.20
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7d

TIME ACTUAL DIFF Ln(V) Ln(L ^ )
ACTUAL COMPILE PREDICTED INDEPENDENT INDEPENDENT
(SYSTEM) TIME - ACTUAL VARIABLE VARIABLE

1.2 2.9 3.37 6.32 -3.22
1.2 2.9 3.31 6.30 -3.24

1.0 2.1 4.16 6.37 -3.59
0.9 1.9 3.91 6.28 -4.00
2.0 5.4 1.02 6.43 -3.59
2.5 5.3 1.85 6.45 -2.29
1.2 2.6 3.63 6.39 -3.76
1.1 2.6 4.07 6.50 -3.58
1.9 5.2 1.40 6.47 -3.52
1.2 3.0 3.67 6.44 -3.20
1.1 2.1 4.72 6.49 -3.18
1.1 2.6 4.19 6.49 -3.25
2.0 5.6 1.19 6.55 -3.67
1.0 2.2 4.74 6.55 -3.37
1.1 2.2 4.58 6.50 -3.35
2.5 4.9 2.56 6.53 -2.29
1.6 4.2 2.66 6.53 -3.38
2.0 5.8 1.03 6.52 -3.40
2.4 4.5 3.03 6.57 -2.39
0.9 1.9 5.77 6.62 -2.48
2.0 5.0 1.93 6.62 -3.83
2.1 5.9 1.32 6.63 -3.37
1.4 5.6 2.50 6.70 -2.29
1.8 4.4 2.93 6.71 -3.66
1.0 2.3 4.67 6.64 -3.87
2.1 5.1 3.31 6.80 -2.38
1.2 2.5 4.54 6.70 -4.18
2.0 6.2 1.47 6.77 -3.43
1.2 2.7 5.82 6.88 -2.73
2.5 5.5 3.11 6.83 -2.31
1.4 3.4 4.43 6.81 -3.43
1.1 2.8 6.10 6.97 -2.72
1.8 4.6 3.18 6.81 -3.50
2.0 6.4 1.69 6.88 -3.45
2.2 4.3 4.82 6.98 -2.49
1.1 2.7 5.50 6.97 -3.87
1.1 2.7 5.57 7.00 -3.93
1.0 2.4 6.31 7.00 -3.26
1.6 4.1 4.74 6.99 -3.00
1.0 2.3 6.25 6.99 -3.45
1.0 2.5 6.36 6.99 -2.95
1.1 2.8 5.61 7.03 -3.93
1.1 2.6 6.32 7.01 -2.95
2.2 5.9 2.68 7.06 -3.80
1.3 2.8 5.85 7.02 -3.48 --

0.9 2.1 6.00 6.97 -4.00
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I TIME ACTUAL DIFF Ln(V) Ln(L ^ )

ACTUAL COMPILE PREDICTED INDEPENDENT INDEPENDENT

(SYSTEM) TIME - ACTUAL VARIABLE VARIABLE

2.1 6.3 2.39 7.08 -3.79

1.1 2.6 6.48 7.11 -3.38

1.2 3.1 5.59 7.04 -3.56

1.0 2.7 5.89 7.07 -3.87

2.2 7.0 2.31 7.18 -3.53

1.0 2.4 6.88 7.19 -3.61

2.1 6.0 2.89 7.14 -3.89

1.1 2.4 5.63 7.01 -4.40

1.0 2.3 6.23 7.13 -4.36

2.1 6.8 2.37 7.22 -3.99

1.9 6.5 2.62 7.20 -3.92

1.1 2.8 6.16 7.20 -4.14

1.0 2.7 7.89 7.28 -2.46

1.8 6.3 2.91 7.20 -3.81

1.1 3.3 7.02 7.25 -2.60

1.0 2.7 6.83 7.33 -4.19

1.1 3.0 6.80 7.39 -4.18

1.2 2.9 6.90 7.39 -4.18

1.0 2.4 6.42 7.24 -4.66

1.0 2.3 7.18 7.34 -4.31

1.1 2.6 7.11 7.44 -4.61

2.2 5.1 6.94 7.59 -2.73

1.5 6.2 5.07 7.66 -4.08

0.8 1.9 9.82 7.70 -3.83

1.0 2.1 11.05 7.74 -2.54

1.2 2.9 7.23 7.55 -4.75
n1.0 2.0 10.01 7.75 -3.82

1.0 3.3 8.58 7.76 -4.03

1.5 6.2 5.79 7.81 -4.19

1.8 7.0 5.49 7.84 -3.85

1.5 5.2 7.01 7.80 -3.87

1.1 3.3 9.95 7.83 -2.96

1.1 3.4 8.19 7.76 -4.34

2.7 7.2 6.49 7.83 -2.56

1.1 3.0 8.66 7.81 -4.58

1.0 2.4 8.13 7.68 -5.13

2.4 5.3 7.66 7.92 -3.88

1.1 2.7 7.84 7.71 -5.29

1.2 3.4 8.98 7.93 --4.57

1.8 6.2 7.48 8.02 -3.79

1.3 3.6 9.77 8.07 -4.42

1.1 3.6 11.30 8.18 -3.71

1.2 4.8 10.95 8.21 -3.11

I_ 2.7 8.0 8.21 8.23 -2.90

0.9 2.4 12.31 8.25 -4.29

1.3 5.1 10.23 8.31 -4.17
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TIME ACTUAL DIFF Ln(V) Ln(L ^ )

ACTUAL COMPILE PREDICTED INDEPENDENT INDEPENDENT

(SYSTEM) TIME - ACTUAL VARIABLE VARIABLE

1.3 4.1 10.90 8.36 -4.74

2.7 7.7 10.39 8.48 -3.02

1.2 3.3 12.11 8.46 -5.04

3.0 9.4 9.48 8.60 -3.24

1.2 3.5 11.70 8.44 -5.11

3.0 9.5 11.40 8.78 -3.04

3.0 10.8 10.18 8.76 -2.87

1.2 4.4 13.34 8.72 -4.83

1.3 4.3 13.68 8.74 -4.78

2.7 8.4 13.71 8.88 -2.97

1.2 4.4 13.38 8.78 -5.20

2.8 9.3 15.35 9.12 -3.02

1.5 5.5 17.23 9.15 -4.31

1.2 4.9 15.56 9.05 -5.08

3.0 12.2 12.91 9.20 -3.34

2.9 10.8 15.35 9.27 -3.22

1.3 5.6 18.23 9.31 -4.72

1.4 7.7 18.04 9.34 -3.85

1.1 4.0 26.39 9.82 -4.79

1.52 3.88 4.35

0.31 3.50 19.51

0.55 1.87 4.42
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Ln(T)
DEPENDENT
VARIABLE

0.79
0.83
0.59
0.64
1.13
0.92
1.55
1.25
1.44
1.13
1 .36
0.59
0.59
1 .48

LU 1.48
0.64
1.19
1.13
0.59
1.48
1.31
0.64
1.48
0.59
0.92
0.96

al 0.59
1.36
1.36
1.50
1.53
0.59
0.64
0.96
1.55
1.53
0.69
1.53
1.22
1.34
0.69
0.64
0.69
0.92
1.34
1.53
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Ln(T)
DEPENDENT
VARIABLE

0.79
0.96
1.44
1.53
1.48
0.59
0.74
1.13
0.64
1.31
0.92
1 .59
0.88
0.96
0.74

t 1.84
1.55
0.64
1.31
1.57
1.443 0.69

1.31
0.96
1.03
1.65
1.67
1.63
11.36
1.41
0.88
0.83
1.28
1.48
1.03
0.96
1.69
0.69
1.72
1.55
0.88
1.39
0.96
1.57
0.96
1.36

105

1.



Ln(T)
DEPENDENT
VARIABLE

- 1. 06
1.06
0.74

0.64
1.69
1.67
0.96
0.96
1.65
1.10
0.74
0.96
1.72
0.79
0.79
1.59
1.44
1.76
1.50
0.64
1.61
1.77
1.72
1.48
0.83
1.63
0.92
1.82
0.99
1.70
1.22
1.03
1.53
1.86
1.46
0.99
0.99
0.88
1.41
0.83

0.92
1.03
0.96
1.77
1.03
0.74
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Ln(T)
DEPENDENT
VARIABLE

1.84
0.96
1.13
0.99
1.95
0.88
1.79
0.88

U 0.83
1.92
1.87
1.03
0.99
1.84
1.19
0.99
1.10
1 .06
0.88
0.83
0.96
1.63
1.82
0.64
0.74
1.06
0.69

0 1.19
1.82
1.95
1.65
1.19
1.22
1.97
1.10
0.88
1.67
0.99
1.22
1.82
1.28
1 .28
1.57
2.08
0.88
1.63
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L

Ln(T)
DEPENDENT
VARIABLE

1.41
2.04
1.19
2.24
1.25
2.25
2.38
1 .48
1 .46
2.13
1 .48
2.23
1 .70
1 .59
2.50
2.38
1.72
2.04
1.39

3 Linear
Regression Output:

Constant 0.3522

Std Err of Y Est 0.3650

R Squared 0.3083

No. of Observations 203.0000

m Degrees of Freedom 200.0000

X Coefficient(s) 0.2683 0.2609

Std Err of Coef. 0.0285 0.0448

[
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Appendix A3: Analysis of Recalibrated Compile Time Model

FILE
CAMP SIZE LENGTH

FILENAME (K) n2 ni N2 NI N

--------- 4--- 3- - 12-- 4- - 14-- 18---
S681230.A 4 3 12 4 14 18
S64420.A 6 3 72 4 15 19
S644001.A 6 3 15 5 17 22
S001700.A 6 3 15 5 17 22
S6820O.A 1 6 8 157 16 23
S662001.A 42 4 7 5 19 24
S662001-A 4 4 7 5 19 24
S65100.A 6 4 16 6 18 24
S001500.A 8 4 15 6 19 26
S361001.A 8 4 15 7 19 28

LS3600 .A 8 4 16 7 21 28
S002D00.A 8 4 16 7 21 28
S671300.A 6 6 18 9 22 31
S671400.A 6 5 15 9 22 31
S671400-A 8 6 16 9 23 32
S00200.A 8 4 16 9 23 323S001500.A 8 6 17 9 23 32
S002400.A 8 4 16 9 23 32
S6002400A 6 5 16 9 24 33
S67100.A 8 5 16 6 27 33
S364121.A 8 6 16 9 25 34
S64411A 8 7 17 11 24 35
SOO2JOO.A 6 7 17 10 26 36
S087E00.A 6 6 18 12 27 39
S687D00.A 6 6 16 12 28 40
SOO2KOO.A 8 7 18 12 28 40
S001400.A 10 8 18 13 27 40
S6150O.A 60 12 98 12 30 42
S615000A 60 82 20 13 29 42
S661A00.A 10 8 21 13 31 44
SOO2FOO.A 1 8 7 21 14 32 46
S002FOO.A 8 7 16 14 32 46
S687F00.A 8 8 22 15 31 46
S66810O.A 8 8 20 14 34 48
S661820.A 8 8 20 14 34 48
SOO12O.A 10 6 20 14 34 48
S661800.A 60 10 15 14 37 48

S682Z00.A 30 11 11 17 33 50
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p u u g II ** . I l *. . * m ii I ... . ...

FILE
CAMP SIZE LENGTH

FILENAME (K) n2 nl N2 NI N

S001300.A 12 9 22 16 34 50
S002500.A 10 6 20 15 35 50
S002100.A 8 7 20 15 36 51
S002200.A 10 7 20 15 36 51
S682S00.A 8 10 19 19 32 51
S652200.A 8 7 24 16 39 55
S684200.A 8 9 21 17 38 55
S682Q00.A 8 13 19 22 34 56
S687A00.A 8 7 19 15 42 57
S613000.A 6 17 11 17 40 57
S661700.A 8 8 17 17 40 57
S653200.A 8 9 24 17 42 59
S002100.A 8 9 21 19 41 60
S644240.A 12 15 24 21 39 60

f S634000.A 10 12 17 19 43 62
S002HOO.A 8 8 18 19 43 62
S652300.A 8 8 24 19 44 63
S682V00.A 10 14 23 25 40 65
S662100.A 20 8 25 16 50 66
S682P00.A 8 14 23 26 41 67
S687C00.A 8 11 31 21 46 67
S644120.A 16 14 21 15 52 67
S686001.A 8 12 12 13 58 71
S684300.A 10 12 23 23 49 72
S002300.A 10 9 22 23 50 73

S651300.A 20 8 23 17 56 73
S684500.A 10 12 24 23 51 74
$653300.A 10 12 29 23 52 75
S002AOO.A 10 9 20 30 45 75
S652100.A 8 10 26 24 51 75
S687300.A 14 10 19 21 55 76
S687400.A 14 10 19 21 55 76
S686200.A 14 9 21 21 56 77
S686300.A 14 9 21 21 56 77
S671001.A 6 16 16 17 63 80
S652600.A 10 10 27 24 56 80
S653600.A 10 11 29 24 58 82
S682N00.A 8 18 23 33 50 83
S682R00.A 8 18 23 33 50 83
S651200.A 22 9 23 20 65 85
S653100.A 10 13 28 29 57 86
S687800.A 16 10 19 23 66 89
S687G00.A 8 13 26 32 58 90
S684001.A 6 18 17 19 73 92
S002900.A 12 15 23 32 62 94
S686400.A 16 10 24 25 69 94
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FILE
CAMP SIZE LENGTH

U FILENAME (K) n2 nl N2 Ni N

------------------------- ------ ----- ----- ----- ----- -------

S684100.A 10 15 21 34 60 94

S682T00.A 8 13 25 38 59 97

S001001.A 8 20 21 21 78 99

S682L00.A 16 15 22 33 66 99

S661400.A 12 16 31 32 70 102

S661320.A 12 19 24 34 71 105

SOO11OO.A 22 15 23 32 75 107

S687500.A 16 13 21 31 78 109

S687600.A 18 II 20 28 82 110

S002600.A 12 14 26 39 71 110

S644170.A 10 9 20 49 61 110

S686100.A 18 13 27 35 81 116

S661001.A 8 23 19 24 93 117

S681500.A 6 12 22 47 70 117

S682E00.A 14 19 31 44 74 118

S671600.A 16 16 27 40 79 119

r S687900.A 20 16 23 34 85 119

S622001.A 8 20 23 42 79 121

S682M00.A 18 20 23 45 76 121

S661520.A 14 18 32 44 80 124

S644230.A 16 21 26 47 79 126

S002700.A 14 18 21 49 77 126

S $653001.A 6 25 19 26 100 126

S001600.A 32 16 26 36 91 127

S686500.A 20 15 25 36 92 128

S652001.A 6 25 21 26 103 129

S644100.A 8 27 23 28 105 133

S661530.A 14 14 28 46 93 139

S686800.A 24 17 23 43 100 143

S687001.A 6 29 19 30 116 146

S651100.A 32 16 32 39 108 147

S644150.A 16 14 20 67 83 150

S661500.A 14 31 21 32 125 157

S681600.A 6 12 23 68 91 159

S686700.A 24 19 24 49 ill 160

S632000.A 12 39 26 46 115 161

S672000.A 14 34 19 36 126 162

S687700.A 26 16 21 47 127 174

$631000.A 14 42 26 49 125 174

S634001.A 36 16 20 53 122 175

S686600.A 24 21 24 55 122 177

S602000.A 14 40 23 42 138 180

S682CO0.A 18 26 35 71 109 180

S682U00.A 12 27 38 72 110 182

S682X00.A 12 35 30 61 122 183

S661300.A 14 35 27 52 131 183

ill



FILE
CAMP SIZE LENGTH

FILENAME (K) n2 nl N2 NI N

S644220.A 20 31 31 63 120 183
S611000.A 10 34 21 62 126 188
S682B00.A 18 27 36 76 114 190
S612000.A 10 34 21 62 129 191
S652500.A 22 29 37 70 122 192
S661310.A 14 27 27 65 130 195
S644210.A 12 18 25 79 117 196
S653500.A 24 30 37 72 124 196
S682Y00.A 14 35 31 66 136 202
S682G00.A 30 25 25 70 133 203
S682900.A 18 24 31 74 129 203
S684400.A 18 40 39 70 139 209
S644200.A 24 36 37 72 142 214
S652400.A 20 26 31 82 135 217
S $644160.A 16 13 21 101 117 218
S644110.A 18 17 29 92 134 226
S661510.A 20 28 38 80 147 227
S653400.A 22 27 31 88 141 229
S682700.A 22 24 33 91 138 229
S682001.A 18 48 23 49 188 237
S686900.A 26 24 27 80 157 237
S614000.A 12 45 15 81 158 239
S682F00.A 18 29 36 106 148 254
S682A00.A 20 32 38 110 154 264
S682D00.A 20 32 38 110 154 264
S644130.A 16 14 25 118 147 265
S644180.A 16 19 23 123 163 286
S644122.A 22 18 27 134 175 309
S651000.A 30 51 24 65 253 318
S686A00.A 44 44 48 108 218 326
S632001.A 6 48 38 116 229 345
S002001.A 14 74 25 75 273 348
S681400.A 12 17 26 151 198 349
S631001.A 6 50 38 120 241 361
S682H00.A 38 45 38 133 236 369
S686B00.A 34 48 50 127 245 372
S662300.A 52 58 46 119 260 379
S661900.A 36 48 35 131 250 381
S683000.A 22 65 30 84 297 381
S682100.A 38 33 36 141 243 384
S671000.A 42 63 23 71 321 392
S682800.A 24 32 36 173 232 405
S644140.A 14 14 26 182 226 408
S602001.A 14 52 38 132 292 424
S681700.A 8 12 23 206 229 435
S687200.A 24 34 37 177 276 453
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FILE
CAMP SIZE LENGTH

FILENAME ({K) n2 nl N2 NI N

S672001.A 56 61 37 146 313 459

S687100.A 28 47 43 181 310 491
S623000.A 22 80 48 136 375 511
S688000.A 80 85 36 106 423 529
S684000.A 46 89 31 104 440 544
S623001.A 12 52 52 146 423 569
S682600.A 80 71 47 195 397 592

S682J00.A 44 45 40 258 406 664
S001000.A 64 il 36 126 541 667
S687H00.A 16 41 44 287 447 734
S681000.A 60 116 44 135 607 742
S681200.A 20 29 28 343 450 793

S662000.A 66 156 38 171 683 854
S686000.A 84 137 27 179 688 867
S682200.A 58 60 42 357 557 914
S682K00.A 52 64 40 381 547 928
S652000.A 60 148 34 170 792 962
S682300.A 54 49 44 402 589 991
S653000.A 70 180 34 217 960 1177
S622000.A 46 149 61 362 855 1217
S682500.A 68 73 47 500 732 1232
S687000.A 92 206 46 253 993 1246
S661000.A 86 224 43 262 1056 1318
S683001.A 78 152 79 431 974 1405
S621000.A 26 207 47 416 1002 1418
S621001.A 26 196 70 672 1615 2287

19 30 26 73 163 236
307 1522 114 9393 51783 100486
18 39 11 97 228 317
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RECALIBRATED
POTEN VOL COMPILE TIME TIME

VOCAB VOLUME V* PREDICTION ACTUAL
n V (L-) MODEL (T) (USER)

15 70.32 0.125 2.59 1.2
15 70.32 0.125 2.59 1.2

10 63.12 0.214 2.89 0.8
* 18 91.74 0.080 2.47 0.8

18 91.74 0.080 2.47 1.5
14 87.57 0.214 3.16 1.6
11 83.03 0.229 3.17 2.2
11 83.03 0.229 3.17 1.5
20 103.73 0.083 2.58 2.5
19 110.45 0.076 2.57 1.5
19 118.94 0.076 2.62 1.7
20 121.01 0.071 2.59 0.9
20 121.01 0.071 2.59 0.9
24 142.13 0.074 2.73 2.5
20 133.98 0.074 2.68 2.6
22 142.70 0.083 2.81 0.9
20 138.30 0.056 2.51 1.6
23 144.75 0.078 2.78 1.4
20 138.30 0.056 2.51 0.9
21 144.95 0.069 2.70 2.5
21 144.95 0.104 3.00 1.6
22 151.62 0.083 2.86 1.0
24 160.47 0.075 2.82 2.6
24 165.06 0.082 2.92 0.9
24 178.81 0.056 2.69 1.3
21 175.69 0.052 2.63 1.4
25 185.75 0.065 2.83 0.9
26 188.02 0.068 2.88 2.1
21 184.48 0.222 3.89 1.7
28 201.91 0.062 2.85 2.6
29 213.75 0.059 2.86 2.7
23 208.08 0.063 2.89 0.9
23 208.08 0.063 2.89 1.0
30 225.72 0.048 2.76 1.4
28 230.75 0.057 2.90 2.8
28 230.75 0.057 2.90 2.6
26 225.62 0.043 2.68 1.0
25 222.91 0.121 3.50 2.7
22 222.97 0.118 3.47 2.2
31 247.71 0.051 2.87 1.9
26 235.02 0.040 2.66 1.0
27 242.50 0.047 2.79 0.9
27 242.50 0.047 2.79 1.0
29 247.76 0.055 2.93 1.4
31 272.48 0.036 2.70 2.0
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RECALIBRATED
POTEN VOL COMPILE TIME TIME

VOCAB VOLUME V* PREDICTION ACTUAL
n V (L) MODEL (T) (USER)

30 269.88 0.050 2.93 2.8
32 280.00 0.062 3.12 1.2
26 267.93 0.049 2.90 1.4
28 274.02 0.182 4.11 2.0
25 264.70 0.055 2.99 2.6
33 297.62 0.044 2.90 2.2
30 294.41 0.045 2.91 0.9
39 317.12 0.060 3.19 1.1
29 301.19 0.074 3.34 1.5
26 291.43 0.047 2.93 1.0
32 315.00 0.035 2.78 1.9
37 338.61 0.049 3.08 1.4
33 332.93 0.040 2.92 2.9
37 349.03 0.047 3.08 1.3
42 361.29 0.034 2.85 1.5
35 343.66 0.089 3.62 1.1
24 325.53 0.154 4.12 3.7
35 369.31 0.045 3.10 2.8
31 361.66 0.036 2.89 1.0
31 361.66 0.041 3.00 2.1
36 382.57 0.043 3.09 2.9
41 401.82 0.036 2.98 2.4
29 364.35 0.030 2.77 1.0
36 387.74 0.032 2.87 1.9
29 369.21 0.050 3.18 1.5
29 369.21 0.050 3.18 1.6
30 377.83 0.041 3.03 3.3
30 377.83 0.041 3.03 3.2
32 400.00 0.118 4.06 2.6
37 416.76 0.031 2.90 2.1
40 436.40 0.032 2.95 2.4
41 444.68 0.047 3.30 1.3
41 444.68 0.047 3.30 1.3
32 425.00 0.039 3.10 2.0
41 460.75 0.032 3.00 2.5
29 432.36 0.046 3.24 1.7
39 475.69 0.031 3.01 1.4
35 471.89 0.111 4.19 2.8
38 493.31 0.041 3.26 1.0

34 478.22 0.033 3.07 3.6
36 485.97 0.042 3.27 2.8
38 509.05 0.027 2.96 1.3
41 530.40 0.091 4.09 1.7
37 515.74 0.041 3.31 1.5
47 566.57 0.032 3.18 2.9
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RECAL BRATED

UPOTEN VOL COMPILE TIME TIME
L VOCAB VOLUME V* PREDICTION ACTUAL

n V (L) MODEL (T) (USER)

43 569.76 0.047 3.51 1.3
38 561.53 0.041 3.37 2.2
34 554.53 0.040 3.34 1.7
31 544.96 0.039 3.31 1.7
40 585.41 0.028 3.08 1.1
29 534.38 0.018 2.70 1.0
40 617.34 0.028 3.12 3.4

42 630.90 0.101 4.41 2.8
34 595.23 0.023 2.96 1.4
50 665.98 0.028 3.20 1.5
43 645.73 0.030 3.22 3.3
39 628.96 0.041 3.48 1.8

43 656.58 0.041 3.53 1.0
43 656.58 0.039 3.47 1.5
50 699.84 0.026 3.17 3.6
47 699.88 0.034 3.42 1.2
39 665.96 0.035 3.39 1.1
44 687.89 0.101 4.52 2.4
42 684.82 0.034 3.40 2.6
40 681.21 0.033 3.37 3.8
46 712.54 0.092 4.44 2.1
50 750.63 0.084 4.40 1.0
42 749.53 0.022 3.09 3.0

40 761.04 0.034 3.50 3.8
48 815.40 0.102 4.73 4.2
48 820.99 0.026 3.31 2.6
34 763.12 0.021 3.08 1.3
52 894.97 0.092 4.73 3.0
35 815.56 0.015 2.89 1.3
43 868.20 0.032 3.57 4.2
65 969.60 0.065 4.41 1.5
53 927.92 0.099 4.87 3.0
37 906.44 0.032 3.61 2.0
b8 1059.22 0.066 4.53 1.7
36 904.74 0.030 3.54 2.8
45 972.06 0.032 3.66 4.4
63 1075.91 0.083 4.83 2.1
61 1067.53 0.021 3.37 1.6
65 1096.07 0.020 3.34 1.6
65 1102.09 0.038 3.98 1.4
62 1089.62 0.050 4.25 2.5
62 1089.62 0.032 3.78 1.3
55 1086.90 0.052 4.30 1.5
63 1135.68 0.020 3.37 1.7
55 1104.24 0.052 4.31 1.5
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RECALIBRATED
POTEN VOL COMPILE TIME TIME

VOCAB VOLUME V* PREDICTION ACTUAL
n V (L) MODEL (T) (USER)

66 1160.52 0.022 3.51 3.7
54 1122.20 0.031 3.77 1.5
43 1063.55 0.018 3.25 1.2
67 1188.95 0.023 3.53 4.2
66 1220.97 0.034 3.97 1.5
50 1145.70 0.029 3.72 1.9
55 1173.62 0.021 3.45 1.7
79 1317.49 0.029 3.89 4.8
73 1324.62 0.027 3.81 1.4
57 1265.74 0.020 3.50 3.9
34 1109.07 0.012 2.96 1.3
46 1248.33 0.013 3.09 1.3
66 1372.08 0.018 3.48 4.7
58 1341.48 0.020 3.53 4.6
57 1335.73 0.016 3.33 1.7
71 1457.49 0.085 5.28 1.7
51 1344.36 0.022 3.64 4.5
60 1411.75 0.074 5.05 2.2
65 1529.68 0.015 3.41 1.7
70 1618.13 0.015 3.47 1.9
70 1618.13 0.015 3.47 1.7
39 1400.63 0.009 2.95 1.4
42 1542.20 0.013 3.31 1.3
45 1696.98 0.010 3.14 1.5
75 1980.76 0.065 5.35 2.9
92 2126.68 0.017 3.84 4.7

m 86 2217.06 0.022 4.14 1.1
99 2307.02 0.079 5.86 1.1
43 1893.77 0.009 3.12 1.7
88 2331.86 0.022 4.20 1.0
83 2352.39 0.018 3.99 2.3
98 2460.67 0.015 3.87 4.7

104 2539.47 0.021 4.26 5.2
83 2428.89 0.021 4.20 3.7
95 2503.12 0.052 5.36 2.2
69 2345.67 0.013 3.67 2.3
86 2519.10 0.077 5.96 4.5
68 2465.42 0.010 3.50 1.9
40 2171.35 0.006 2.93 1.4
90 2752.55 0.021 4.33 2.9
35 2231.24 0.005 2.83 1.6
71 2785.84 0.010 3.63 2.2
98 3036.15 0.023 4.55 4.4
90 3187.50 0.012 3.91 2.3
128 3577.00 0.025 4.85 2.5
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RECALIBRATED
POTEN VOL COMPILE TIME TIME

VOCAB VOLUME V* PREDICTION ACTUAL
n V (L') MODEL (T) (USER)

121 3660.08 0.045 5.71 3.6
120 3757.35 0.055 6.08 5.3
104 3812.55 0.014 4.24 1.5
118 4074.53 0.015 4.46 3.8
85 4255.84 0.009 3.88 2.8
147 4802.18 0.049 6.29 5.0
85 4704.49 0.006 3.69 2.1
160 5432.87 0.039 6.13 6.4
57 4625.48 0.006 3.61 2.3

194 6490.33 0.048 6.79 6.5
164 6379.00 0.057 7.06 7.8
102 6098.60 0.008 4.18 3.2
104 6218.01 0.008 4.26 3.0
18? 7222.50 0.051 7.10 5.7
93 6480.31 0.006 3.86 3.2

214 9111.71 0.049 7.47 6.5
210 9388.24 0.013 5.38 4.0
120 8509.29 0.006 4.28 3.7
252 9939.69 0.035 7.03 9.2
267 10624.00 0.040 7.38 7.9

* 231 11031.71 0.009 5.05 4.3
254 11327.96 0.021 6.37 6.3
266 18422.43 0.008 5.69 2.9

56 1534.23 0.050 3.63 2.36
2210 5950085.02 0.002 1.03 2.04

n 47 2439.28 0.040 1.02 1.43
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TIME ACTUAL DIFF
ACTUAL COMPILE PREDICTED
(SYSTEM) TIME - ACTUAL

1.0 2.2 0.39
1.1 2.3 0.29
1.0 1.8 1.09
1.1 1.9 0.57
1.6 3.1 -0.63
0.9 2.5 0.66
2.5 4.7 -1.53
2.0 3.5 -0.33
1.7 4.2 -1.62
1.6 3.1 -0.53
2.2 3.9 -1.28
0.9 1.8 0.79
0.9 1.8 0.79
1.9 4.4 -1.67
1.8 4.4 -1.72
1.0 1.9 0.91
1.7 3.3 -0.79
1.7 3.1 -0.32
0.9 1.8 0.71
1.9 4.4 -1.70
2.1 3.7 -0.70
0.9 1.9 0.96
1.8 4.4 -1.58
0.9 1.8 1.12
1.2 2.5 0.19
1.2 2.6 0.03
0.9 1.8 1.03
1.8 3.9 -1.02
2.2 3.9 -0.01
1.9 4.5 -1.65
1.9 4.6 -1.74
0.9 1.8 1.09
0.9 1.9 0.99
1.2 2.6 0.16
1.9 4.7 -1.80
2.0 4.6 -1.70
1.0 2.0 0.68
1.9 4.6 -1.10
1.2 3.4 0.07
1.9 3.8 -0.93
1.0 2.0 0.66
1.0 1.9 0.89
1.0 2.0 0.79
1.1 2.5 0.43
1.8 3.8 -1.10
1.8 4.6 -1.67
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TIME ACTUAL DIFF
ACTUAL COMPILE PREDICTED
(SYSTEM) TIME - ACTUAL

1.0 2.2 0.92
1.2 2.6 0.30
2.2 4.2 -0.09
2.0 4.6 -1.61
2.2 4.4 -1.50
0.9 1.8 1.11

1.0 2.1 1.09
1.6 3.1 0.24
0.9 1.9 1.03
1.8 3.7 -0.92
1.1 2.5 0.58
2.0 4.9 -1.98
1.1 2.4 0.68
1.1 2.6 0.25
1.0 2.1 1.52
2.6 6.3 -2.18
1.9 4.7 -1.60
0.9 1.9 0.99
1.6 3.7 -0.70
1.9 4.8 -1.71
1.8 4.2 -1.22
1.0 2.0 0.77
1.8 3.7 -0.83
1.1 2.6 0.58
1.2 2.8 0.38
1.9 5.2 -2.17
2.1 5.3 -2.27

S2.5 5.1 -1.04
1.8 3.9 -1.00
1.7 4.1 -1.15
1.1 2.4 0.90
1.0 2.3 1.00
1.6 3.6 -0.50
1.9 4.4 -1.40
1.1 2.8 0.44
1.2 2.6 0.41
2.6 5.4 -1.21
1.0 2.0 1.26
2.0 5.6 -2.53
1.9 4.7 -1.43
1.1 2.4 0.56
2.3 4.0 0.09
1.1 2.6 0.71
1.9 4.8 -1.62
1.3 2.6 0.91
1.7 3.9 -0.53
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TIME ACTUAL DIFF
ACTUAL COMPILE PREDICTED
(SYSTEM) TIME - ACTUAL

1.2 2.9 0.44
1.2 2.9 0.41
1.0 2.1 0.98
0.9 1.9 0.80
2.0 5.4 -2.28
2.5 5.3 -0.89
1.2 2.6 0.36
1.1 2.6 0.60
1.9 5.2 -1.98
1.2 3.0 0.48
1.1 2.1 1.43
1.1 2.6 0.87
2.0 5.6 -2.43
1.0 2.2 1.22
1.1 2.2 1.19
2.5 4.9 -0.38
1.6 4.2 -0.80
2.0 5.8 -2.43
2.4 4.5 -0.06
0.9 1.9 2.50
2.0 5.0 -1.91
2.1 5.9 -2.40
1.4 5.6 -0.87
1.8 4.4 -1.09
1.0 2.3 0.78
2.1 5.1 -0.37
1.2 2.5 0.39
2.0 6.2 -2.63
1.2 2.7 1.71
2.5 5.5 -0.63
1.4 3.4 0.21
1.1 2.8 1.73
1.8 4.6 -1.06
2.0 6.4 -2.74
2.2 4.3 0.53
1.1 2.7 0.67
1.1 2.7 0.64
1.0 2.4 1.58
1.6 4.1 0.15
1.0 2.3 1.48
1.0 2.5 1.80
1.1 2.8 0.57
1.1 2.6 1.71
2.2 5.9 -2.39
1.3 2.8 0.97
0.9 2.1 1.15
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TIME ACTUAL DIFF
*ACTUAL COMPILE PREDICTED

(SYSTEM) TIME - ACTUAL

2.1 6.3 -2.77
1.1 2.6 1.37
1.2 3.1 0.62
1.0 2.7 0.75
2.2 7.0 -3.11
1.0 2.4 1.41
2.1 6.0 -2.50
1.1 2.4 0.56
1.0 2.3 0.79
2.1 6.8 -3.32
1.9 6.5 -2.97
1.1 2.8 0.53
1.0 2.7 2.58
1.8 6.3 -2.66
1.1 3.3 1.75
1.0 2.7 0.71
1.1 3.0 0.47
1.2 2.9 0.57
1.0 2.4 0.55
1.0 2.3 1.01
1.1 2.6 0.54

3 2.2 5.1 0.25
1.5 6.2 -2.36
0.8 1.9 2.24
1.0 2.1 3.76
1.2 2.9 0.22
1.0 2.0 2.20

* 1.0 3.3 0.69
1.5 6.2 -2.33
1.8 7.0 -2.74
1.5 5.2 -1.00
1.1 3.3 2.06
1.1 3.4 0.27
2.7 7.2 -1.24
1.1 3.0 0.50
1.0 2.4 0.53
2.4 5.3 -0.97
1.1 2.7 0.13
1.2 3.4 0.23
1.8 6.2 -1.65
1.3 3.6 0.31
1.1 3.6 1.25
1.2 4.8 0.91
2.7 8.0 -1.92
0.9 2.4 1.84

L 1.3 5.1 -0.64
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TIME ACTUAL DIFF
ACTUAL COMPILE PREDICTED
(SYSTEM) TIME - ACTUAL

1.3 4.1 -0.22
2.7 7.7 -1.41
1.2 3.3 0.39
3.0 9.4 -3.27
1.2 3.5 0.11
3.0 9.5 -2.71
3.0 10.8 -3.74
1.2 4.4 -0.22
1.3 4.3 -0.04
2.7 8.4 -1.30
1.2 4.4 -0.54
2.8 9.3 -1.83
1.5 5.5 -0.12
1.2 4.9 -0.62
3.0 12.2 -5.17
2.9 10.8 -3.42
1.3 5.6 -0.55
1.4 7.7 -1.33
1.1 4.0 1.69

1.52 3.88 -0.25
0.31 3.50 2.03
0.55 1.87 1.43

NEW STATISTICS FOR COMPILE TIME MODEL

FROM BOTTOM OF LAST COLUMN)

MEAN ERROR = - .25

VARIANCE r 2.03

STDRD DEV = 1.43
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Appendix B: User's Manual for the SCA

Target SCA Environment

The SCA was developed in a UNIX environment on a VAX 11/785

minicomputer. The SCA is written in the C programming language,

hence the target environment must support a C language compiler

with the standard library routines and "header" files available

(e.g., ctype.h, stdio.h, math.h). All input/output operations

use standard C function calls. The SCA always uses standard file

input/output for the input Ada source module and all printed

output, including the compilation predictions.

Porting the SCA to a New Environment

To port the SCA to a new environment, the software

development tools LEX and YACC must also be available in the

target environment, and the allocation of data structures and

memory space provided for LEX and YACC must be sufficient for the

size of the Ada.l and Ada.y input files. To use the SCA in a new

hardware or software environment, the SCA should first be

installed according to the following procedure:

1. Load the files Ada.l, Ada.y, and y.tab.h
in a directory on the target machine.

2. In that directory, type the command "Lex
Ada.l". This will produce the file
"lex.yy.c".

3. Next, type the command "yacc ada.y".
Ada.y "includes" lex.yy.c so the latter must
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exist prior to this step. The file "y.tab.c"
is the output from the YACC program.

4. Now the file y.tab.c must be compiled
with the C language compiler. To do so, type
the command and parameters:

cc y.tab.c -11 -ly -1m

This will invoke the C compiler on UNIX-based
machines. The parameters inform the linker
to look in particular C language libraries to
resolve external references (function calls).

5. Step 4 produces the executable SCA which,
in a UNIX-based environment, is the file
"a.out". You can rename "a.out" to "sca"
with the "mv" command if desired.

6. To predict a range of compilation times
for a given Ada input module, proceed as
follows:

a. Load the file(s) containing the
Ada input module(s) into the
directory containing a.out (or
whatever you named it). We
recommend the Ada "package" as the
ideal unit to analyze with the SCA,
although any compilation unit will
work just fine.

b. Using the input/output
redirection facility of your target
machine, invoke the executable SCA
file from the command line and
redirect the input. to be one Ada
source file. It is a good idea to
also redirect the output to a file,
but it is not necessary. You can
name the output file whatever you
desire.

c. If output is not redirected to
a file, the SCA will echo each line
of the Ada source file to the
screen. When the end of the Ada
file is reached, the SCA will
scroll the screen with data
pertaining to the counting of the
Software Science measures. You may
stop the screen and inspect this
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information if you wish.
Eventually the results of the
compilation timing model
computations will appear on the
screen. The range of compilation
times will be shown for each of
four distinct computer
environments. Copy the appropriate
information for later reference.

d. If output is redirected to a
file, the same information as in
step "c" above is saved to a file.
To quickly obtain the timing
prediction, open this file (use any
editor) and scroll to the end. The
predicted compilation ranges are
shown there just as in step "c"
above.

e. Example for a UNIX-based

environment:

SCA <source.ada >source.out

Source.ada is the Ada source file.UThe "<" redirects standard input
from the keyboard to the file
11source.ada". Similarly, "<"
redirects output from the terminal
to the file "source.out".
Source.out contains all the

Pinformation which the SCA produces
with respect to the Ada input file,
including the compilation range
predictions.

Implementing Other Models

There are other Software Science measures which may be

computed based on n1 , n2, N1 , and N2. Indeed, any other metrics

which are derived from these elementary measures could also be

implemented in the SCA. Table 2, Halstead's Equations, show a

few immediate candidates. However, regardless of which new model

is considered for implementation in the SCA, it must adopt the
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token counting strategy rules of Chapter II as a given. These

rules, for all intents and purposes, are fixed in the SCA.

Modification of the token counting rules requires an intimate

understanding of the development of the SCA and should not be

attempted without careful consideration.

Nevertheless, it is easy to augment the SCA with a new

metric. As mentioned above, the metric must be derivable from

nl, "2, N1, and N2 , and must adopt the SCA's token counting

strategy. The following procedures will integrate a new

complexity metric with the SCA:

1. Implement the new metric as a function
call in the C language. There are no
parameters to pass, and the function may
return an integer (default) value only.
Remember that n1 , n2 , N1 , and N2 are global
variables and can be accessed by any function
in the SCA. Print your results to standard
output (i.e., printf() function is fine).

2. Insert the code for the function call
just after the function "calcmetrics()" in
the file "y.tab.c". Place a call to your new
function as the last line in the function
"main()" also in y.tab.c.

3. Re-compile y.tab.c according to the
instructions in the last section. Any
library calls the new function uses (apart
from the libraries already referenced during
linking) must be added to the command line to
compile y.tab.c.

4. Run the SCA as usual. Your results will
appear as the last printed output on the
terminal screen or in the output file. Don't
forget to document your modifications and
additions to the SCA.

127



The ADA Input Modules and Errors

The SCA can only process one Ada input source file at a

time. The source code should be syntactically correct with

respect to the Ada Language Reference Manual (LRM). Some syntax

errors cause the SCA to abort, and some do not. The facility

embedded in the SCA to recover from syntax errors is crude at

best. If the SCA aborts, the program just stops, all open files

are closed, and the SCA output stream ends where the error

occurred. On the other hand, if the syntax error is minor, the

SCA may be able to recover. In that case, the SCA will issue a

syntax error message to the UNIX-environment specific file,

1"stderror", before processing continues. Stderror defaults to

your terminal screen. Our experience shows that the compilation

timing predictions are not adversely effected by minor,

recoverable syntax errors. However, errors which cause the SCA

to abort must, of course, be corrected before any results at all

can be obtained from the file containing the error. In this case

you must delete the original output file (if redirection is

used), correct the syntax error, and re-run the SCA.
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Appendix C: Sample SCA Output

nrpcal.o

Starting SCA scanning of input Ada file

with INSTRUMENT;
[21 use INSTRUMENT;
[3
[4) procedure NRPCAI is
[5)
[6) package PS_CS is new PROCS(BOOLEAN);
[7] use PS_CS;
[8] package B is new PROCS(BOOLEAN);
[9] TTRUE : B.T := B.T(TRUE);
[101 TFALSE : B.T := B.T(FALSE);
[il] TEST : B.T := B.Ident(TFALSE);
[12] Recursion : B.T := B.T(test);
[131 procedure NestedRecursiveProcedure is
[141
[151 Local I : T;
[161 Local_2 : T;
[171
[181 procedure Nested is
[19] begin --Nested
[201 if BOOLEAN(Recursion) then
[21] B.Let(Recursion, B.Ident(TFALSE));
[22] NestedRecursiveProcedure;
[23) else
[241 B.Let(Test, B.Ident(TFALSE));

* [25] if BOOLEAN(Test) then
[26] Nested RecursiveProcedure;
[27] end if;
[28] end if;
[29] end Nested;
[30)
[31] begin --NestedRecursiveProcedure
[321 if BOOLEAN(Recursion) then
[33] Let(Local l, Ident(Init));
[341 Nested;
[351 elsif not BOOLEAN(Test) then
[361 Let(Local_2, Ident(Init));
[371 Nested;
[381 end if;
[39] end NestedRecursiveProcedure;
[401
[411 begin -- NRPCA1
[421 START("NRPCAI","Nested Recursion Procedure Call (Control)");

[43] for I in 1..100000 loop
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[441 B.let(recursion, B.ident(test));
[45] NestedRecursiveProcedure;

[46] end loop;
[471 STOP;
[48]
[491 end NRPCAI;
(501 --- ) SCA analysis complete: 0 syntax errorls) <---

THIS IS THE LIST OF DELIMITER OPERATORS FOR THE MODULE SCANNED

There were 0 * operators in the module scanned
There were 0 + operators in the module scanned

There were 0 + operators in the module scanned

There were 0 - operators in the module scanned
There were 0 & operators in the module scanned
There were 0 add unary operators

There were 0 minus unary operators

There were 30 ; operators in the module scanned
There were 0 > operators in the module scanned
There are 0 >= operators in the module scanned
There were 0 < operators in the module scanned
There were 0 <= operators in the module scanned
There were 0 operators in the module scanned
There were 0 / operators in the module scanned
There were 0 attribute apostrophes
There were 0 aggregate apostrophes
There were 0 operators in the module
There were 0 operators in the module

There were 0 # # operators in the module
There were 2 operators in module
There were I operators in the module
There were 0 .. operators in the module
There are 4 ** operators in the module
There were 0 => operators in the module
There were 0 < > operators in the module
There were 0 <<> operators in the module
There were 14 operators in the module
There were 6 < operators in the module
There were 6 . operators in the module
There are 0 declaration parentheses
There are 12 invocation parentheses
Also 0 dimensioning parentheses
There are 0 subscript parentheses
There are 2 aggregate parentheses

There are 0 enumeration parentheses
There are 0 expression parentheses
Also 7 type convert parentheses
Also 0 dimensioning brackets
There are 0 subscript brackets
The number of do end operators is 0
The number of body is operators is 0
The number of or else operators is 0
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The number of goto operators is 0
The number of for use operators is 0
The number of and then operators is 0
The number of array of operators is 0
The number of subtype is operators is 0
The number of elsif then operators is I
The number of loop end loop operators is 0
The number of limited private operators is 0
The number of if then end if operators is 3
The number of begin end operators is 3
Number of record end record operators: 0
Number of exception when operators: 0
Number of select end select operators: 0
Number of function return operators: 0
Number of for in loop end loop operators: 1
Number of case is when end case operators: 0
Number of declare begin end operators: 0
Number of while loop end loop operators: 0
Number of at single-word operators: 0
Number of when single-word operators: 0
Number of use single-word operators: 2
Number of and single-word operators: 0
Number of mod single-word operators: 0
Number of end single-word operators: 0
Number of not single-word operators: 1
Number of all single-word operators: 0
Number of new single-word operators: 0
Number of out single-word operators: 0
Number of rem single-word operators: 0
Number of abs single-word operators: 0
Number of else single-word operators: 0
Number of type single-word operators: 0
Number of task single-word operators: 0

Number of with single-word operators: 0
Number of xit single-word operators: 1
Number of exit single-word operators: 0
Number of raise single-word operators: 0
Number of abort single-word operators: 0
Number of delta single-word operators: 0
Number of entry single-word operators: 0
Number of accet single-word operators: 0
Number of anel single-word operators: 0
Number of raeg single-word operators: 0
Number of otges single-word operators: 0
Number of dtgis single-word operators: 0
Number of rets single-word operators: 0
Number of acern single-word operators: 0Number of generic single-word operators: 0

Number of private (declaration) single-word operators: 0
Number of pragma single-word operators: 0
Number of reverse single-word operators: 0
Number of renames single-word operators: 0
Number of constant single-word operators: 0
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Number of separate (detail) single-word operators: 0
Number of package single-word operators: 0
Number of procedure single-word operators: 3
Number of terminate single-word operators: 0
Number of exception (declaration) single-word operators: 0
Number of separate (declaration) single-word operators: 0

*. Number of private (detail) single-word operators: 0
Number of or boolean single-word operators: 0
Number of or alternative single-word operators: 0
Number of is single-word operators: 3
Number of in mode single_word operators: 0
Number of in membership singleword operators: 0
Number of xor singlesword operators: 0
Number of generic instantiation operators for packages: 2
Number of generic instantiation operators for functions: 0

- Number of generic instantiation operators for procedures: 0

THE SCA IDENTIFIER TABLE FOR THE INPUT FILE

IDENTIFIER TYPE TIMES USED AS
OPERAND OPERATOR

BOOLEAN type 0 2
INTEGER type 0 0
FLOAT type 0 0
STRING type 0 0
NATURAL type 0 0
POSITIVE type 0 0
DURATION type 0 0
INSTRUMENT var/const 2 0
NRPCA1 subprgram 2 0

* PSCS var/const 2 0
PROCS var/const 2 0
B var/const 15 0
TTRUE var/const 1 0
T type 0 6
T typecony 0 3
TRUE var/const 1 0
TFALSE var/const 4 0
FALSE var/const 1 0
TEST var/const 6 0
IDENT unknownop 0 6
RECURSION var/const 5 0
NESTEDRECURSIVEPROCEDURE subprgram 2 3
LOCAL_1 var/const 2 0
LOCAL_2 var/const 2 0
NESTED subprgram 2 2
BOOLEAN type conv 0 4
LET unknownop 0 5
INIT var/const 2 0
START subprgram 0 1
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"NRPCAI" strglit 1 0
"NESTED RECURSION PROCEDURE CALL (CONTROL)" strglit 1 0
I loopvar 1 0
I numrlitrl 1 0
100000 numrlitrl 1 0
STOP subprgram 0 1

THE SOFTWARE SCIENCE MEASURES ARE AS FOLLOWS:
number of distinct operands: n2 = 21
number of distinct operators: n1 = 30
total number of operands: N2 = 56
total number of operators: NI = 136

A SAMPLE OF HALSTEAD'S SOFTWARE SCIENCE EQUATIONS FOLLOWS
The length N of the module is 192.00
The volume V of the module is 1089.11
The estimated level of implementation of the module is 0.0250
The estimated effort to program the module is 43564.23
Note: You must have a basic knowledge of Software Science
theory to interpret this data.

MILLER'S ORIGINAL COMPILE TIME MODEL PREDICTIONS ARE:

Prediction for UNIX ASC environment is: 4.04 seconds

Prediction for the AOS/VS environment is: 7.55 seconds
Note: last prediction not calibrated for AOS/VS environment
Prediction for the VMS ISL environment is: 4.79 seconds
Note: last prediction not calibrated for VMS ISL environment
Prediction for the VMS CSC environment is: 4.31 seconds
Note: last prediction not calibrated for VMS CSC environment

RESULTS OF UNIX ASC CALIBRATED COMPILE TIME MODEL ARE:

Prediction for UNIX ASC environment is: 3.55 seconds

Prediction for AOS/VS environment is: 3.55 seconds
Note: last prediction not calibrated for AOS/VS environment
Prediction for VMS ISL environment is: 3.55 seconds
Note: last prediction not calibrated for VMS ISL environment
Prediction for VMS CSC environment is: 3.55 seconds
Note: last prediction not calibrated for VMS CSC environment
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Starting SCA scanning of input Ada file

--THIS IS A TEST FILE FOR THE SCA
[2]
[31 with INSTRUMENT;
i4l use INSTf'LU'.ENT;
[5)
[6) procedure OPCEA1 is
[7] package NEW_PROCS is new~ PROCS(INTEGER);
[8] use NEWPROCS;
[9] Global _ 1 T
[10] Global_-2 T;
[11) Global3 3 ;
11 Global 4 T;
[13]
[14] function Function_1 (Input T) return T is
[15] begin
[161 if Input = mit then
[17] return Init/Init;
[18] end if;
[19] return Function_1(Init);
[20] end Function_1;
(21]
[22] function Function_2 (Input T) return T is
[23] begin
[241 if Input /= Init then
[25] return Function_2(Init);
[261 end if;
[27) return Init/Init;
[28] end Function_2;
[29)
[30] begin --OPCEA1
[31] START("OPCEAl',"Optimization Perf., Call Elin.(ControlV");

[32] for I in 1..100 loop
[331 Let (Globall1, Ident(InitH);
[34) Let (Global_2, Ident(Init));
(35] Let (Global_3, Ident(Init));
[36] Let (Global_4, Ident(Init));
(37]
[381 if Ident(Init) = Init then
[39] Global 1 T(T(Function_2(Init) * Global-4) /
Function_1(Init));
[40] else
[41] Global_2 T(T(Function_1(Init) *Global-4) /
Function_1(Init));
[42] end if;
[43] Let (Global_1, Ident(Init));
[44] Let (Global_2, Ident(Init));
[45] Let (Global_3, Ident(Init));
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[461 Let (Global 4, Ident(Init));
[47] end loop;
[48] STOP;
[491 end OPCEAI;
[501 --- > SCA analysis complete: 0 syntax error(s) <---

THIS IS THE LIST OF DELIMITER OPERATORS FOR THE MODULE SCANNED

There were 2 * operators in the module scanned
There were 0 + operators in the module scanned
There were 0 - operators in the module scanned
There were 4 / operators in the module scanned
There were 0 & operators in the module scanned
There were 0 add unary operators
There were 0 minus unary operators
There were 31 ; operators in the module scanned
There were 0 > operators in the module scanned
There are 0 >= operators in the module scanned
There were 0 < operators in the module scanned
There were 0 <= operators in the module scanned
There were 2 = operators in the module scanned
There were 1 /= operators in the module scanned
There were 0 attribute apostrophes
There were 0 aggregate apostrophes
There were 0 operators in the module
There were 0 ' ' operators in the module
There were 0 #* operators in the module
There were 2 .... operators in module
There were 1 operators in the module
There were 0 ** operators in the module
There are 2 := operators in the module
There were 0 => operators in the module
There were 0 < > operators in the module
There were 0 <<>> operators in the module
There were 0 operators in the module
There were 6 : operators in the module
There were 9 , operators in the module
There are 2 declaration parentheses
There are 24 invocation parentheses
Also 0 dimensioning parentheses
There are 0 subscript parentheses
There are 1 aggregate parentheses
There are 0 enumeration parentheses
There are 0 expression parentheses
Also 4 type convert parentheses
Also 0 dimensioning brackets
There are 0 subscript brackets
The number of do end operators is 0
The number of body is operators is 0
The number of or else operators is 0
The number of goto operators is 0
The number of for use operators is 0
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The number of and then operators is 0
The number of array of operators is 0
The number of subtype is operators is 0
The number of elsif then operators is 0
The number of loop end loop operators is 0
The number of limited private operators is 0
The number of if then end if operators is 3
The number of begin end operators is 3
Number of record end record operators: 0
Number of exception when operators: 0
Number of select end select operators: 0
Number of function return operators: 2
Number of for in loop end loop operators: 1
Number of case is when end case operators: 0
Number of declare begin end operators: 0
Number of while loop end loop operators: 0
Number of at single-word operators: 0
Number of when single-word operators: 0
Number of use single-word operators: 2
Number of and single-word operators: 0
Number of mod single-word operators: 0
Number of end single-word operators: 0
Number of not single-word operators: 0
Number of all single-word operators: 0
Number of new single-word operators: 0
Number of out single-word operators: 0
Number of rem single-word operators: 0
Number of abs single-word operators: 0
Number of else single-word operators: 1
Number of type single-word operators: 0
Number of task single-word operators: 0
Number of with single-word operators: I
Number of exit single-word operators: 0
Number of raise single-word operators: 0
Number of abort single-word operators: 0
Number of delta single-word operators: 0
Number of entry single-word operators: 0
Number of accept single-word operators: 0
Number of delay single-word operators: 0
Number of range single-word operators: 0
Number of others single-word operators: 0
Number of digits single-word operators: 0
Number of return single-word operators: 4
Number of access single-word operators: 0
Number of generic single-word operators: 0
Number of private (declaration) single-word operators: 0
Number of pragma single-word operators: 0
Number of reverse single-word operators: 0
Number of renames single-word operators: 0
Number of constant single-word operators: 0
Number of separate (detail) single-word operators: 0
Number of package single-word operators: 0
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Number of procedure single-word operators: 1
Number of terminate single-word operators: 0
Number of exception (declaration) single-word operators: 0
Number of separate (declaration) single-word operators: 0
Number of private (detail) single-word operators: 0
Number of or boolean single-word operators: 0
Number of or alternative single-word operators: 0
Number of is single-word operators: 3
Number of in mode singleword operators: 0
Number of in membership singleword operators: 0
Number of xor single_word operators: 0
Number of generic instantiation operators for packages: 1
Number of generic instantiation operators for functions: 0
Number of generic instantiation operators for procedures: 0

THE SCA IDENTIFIER TABLE FOR THE INPUT FILE

IDENTIFIER TYPE TIMES USED AS
OPERAND OPERATOR

BOOLEAN type 0 0
INTEGER type 0 1
FLOAT type 0 0
STRING type 0 0
NATURAL type 0 0
POSITIVE type 0 0
DURATION type 0 0
INSTRUMENT var/const 2 0
OPCEA1 subprgram 2 0
NEW PROCS var/const 2 0
PROCS var/const 1 0
GLOBAL_1 var/const 4 0
T type 0 8
GLOBAL_2 var/const 4 0
GLOBAL_3 var/const 3 0
GLOBAL_4 var/const 5 0
FUNCTION_] subprgram 2 4
INPUT var/const 3 0
INIT var/const 22 0
FUNCTION_2 subprgram 2 2
INPUT var/const 1 0
START subprgram 0 1
"OPCEA1" strglit 1 0
"OPTIMIZATION PERF., CALL ELIM.(CONTROL)" strglit 1 0
I loopvar 1 0
1 numrlitrl 1 0
100 numrlitrl 1 0
LET subprgram 0 8
IDENT subprgram 0 9
T typeconv 0 4
STOP subprgram 0 1
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* THE SOFTWARE SCIENCE MEASURES ARE AS FOLLOWS:
number of distinct operands: n2 = 18
number of distinct operators: n1 = 33
total number of operands: N2 = 58
total number of operators: N1 = 149

A SAMPLE OF HALSTEAD'S SOFTWARE SCIENCE EQUATIONS FOLLOWS
The length N of the module is 207.00
The volume V of the module is 1174.19
The estimated level of implementation of the module is 0.0188
The estimated effort to program the module is 62427.88
Note: You must have a basic knowledge of Software Science
theory to interpret this data.

MILLER'S ORIGINAL COMPILE TIME MODEL PREDICTIONS ARE:

Prediction for UNIX ASC environment is: 4.17 seconds

Prediction for the AOS/VS environment is: 7.66 seconds
Note: last prediction not calibrated for AOS/VS environment
Prediction for the VMS ISL environment is: 4.87 seconds
Note: last prediction not calibrated for VMS ISL environment
Prediction for the VMS CSC environment is: 4.38 seconds
Note: last prediction not calibrated for VMS CSC environment

RESULTS OF UNIX ASC CALIBRATED COMPILE TIME MODEL ARE:

Prediction for UNIX ASC environment is: 3.36 seconds

Prediction for AOS/VS environment is: 3.36 seconds
Note: last prediction not calibrated for AOS/VS environment
Prediction for VMS ISL environment is: 3.36 seconds
Note: last prediction not calibrated for VMS ISL environment
Prediction for VMS CSC environment is: 3.36 seconds
Note: last prediction not calibrated for VMS CSC environment
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