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1

Electric propulsion is a viable alternative to chemical

propulsion for orbit transfers. The difference between

present day chemical rockets and the near term electric

rockets is similar to the difference between a Lamborghini

Countach and a moped. Both will get you to where you want to

*go but the moped is much more efficient and considerably

slower. Electric rockets could be the moped of transfer

*vehicles.

Electric propulsion will improve the cost efficiency for

payloads, thereby making this endeavor more profitable. As

budget constraints mount, the space industry must look for

more cost efficient, yet safe, systems for deploying payloads

to various orbits. Electric rockets may be the solution to

this system search. However, this solution hinges on one

notion: transfer time is not important. The slogan for a

NASA/USAF/Industry electric rocket could be: if you've got

the time, we've got the rocket.

I would like to thank my advisor Dr. William Wiesel for

Introducing me to this up and coming technology and for his

patience during my learning curve. I would also like to

Ithank my committee members Capt James Planeaux and Capt

Rodney Bain. A special thanks is due to Capt Bain for his

advise and guidance while I was a part-time AFIT student

prior to my full-time acceptance.
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a semi-major axis

B orbital latitude of the anti-sun point

DU distance unit (6378 km or 2.092567 x 107 ft)

e eccentricity

I f true anomaly

F° earth-sun related constant

g angle between shadow exit point and next shadow entry

G universal gravitation constant

G earth-sun related constant
0

H Hamiltonian

I orbital inclination

J performance index

L position angle of anti-sun point

m one-half actual shadow angle

M 0 one-half actual shadow angle at initial conditions

m specific mass flow rate

M 0 mass of the earth

n mean motion

R0 angular semi-diameter of the sun

s angle between ascending node and shadow exit point

t time

T total acceleration

T initial To

TU time unit (806.8 seconds) (2:429)

u control variable (u - X a)

vii



I

I U radial acceleration

i V tangential acceleration

W normal acceleration

* a thrust angle in orbit plane

a right ascension of the sun

* 60 declination of the sun

r thrust angle out of orbit plane

X a  Lagrange multiplier for minimum time solution

K Lagrange multiplier for minimum time solution

X Lagrange multiplier for optimal control law

X z  Lagrange multiplier for optimal control law

P gravitational parameter

W c argument of perigee

0) longitude of the ascending node

n parallax of the satellite

T 0 parallax of the sun

a one-half of the maximum shadow angle

T total accumulated velocity change

I
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I This study searches for the optimal launch time of a

discontinuous, low thrust transfer between non-coplanar,

circular orbits. The spacecraft is assumed to be a

solar-powered rocket that cannot provide thrust in the

earth's shadow.

Two timescales are used to calculate a minimum time

trajectory. The fast timescale produces a control law which

maximizes a change in orbital elements for a single orbit.

The slow timescale incorporates the control law so that the

final boundary conditions are met in minimum time. Minimum

transfer times are determined between winter and summer.

Ix
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OPTIMAL LAUNCH TIME FOR A DISCONTINUOUS,

LOW THRUST, ORBIT TRANSFER

I1. INTRODUCTION

The orbit transfer condsidered in this study is between a

200 km circular orbit (a % 1.03 DU) with an inclination of

28.5 degrees and a geosynchronous orbit (a % 6.6 DU). The

launch time is broken into two components: time of day

(i.e., ascending node) and time of year. The optimal launch

time is determined by minimizing the transfer time.

Discontinuous low thrust is possible using a certain type of

electric propulsion. An overview of electric propulsion is

given below.

Propulsion systems may be classified into two basic

categories:

1. Edognu, which use energy stored within the

I propellants to create thrust. Solid rockets and liquid

rockets are common examples of endogenous systems.

2. Exogenous, in which the energy is supplied to the

propellant from an outside power source. All electric

propulsion systems are exogenous, although some can be a

combination of the two.

The most significant advantage of an exogenous system is

that, if external energy is available for accelerating a

propellant, the resulting specific impulse can be much more

than that of an endogenous system. For example, an ion

I 1
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S thruster system with a specific impulse of 3000 seconds would

require only 2000 kg of ion propellant as compared to 15,000

kg of chemical propellant for a liquid oxygen-liquid hydrogen

upper stage rocket with the same total impulse. The dry

weights of the two systems are also similar, resulting in a

significant advantage for the ion thruster system (7:xii).

Electric propulsion devices are low thrust devices. This

Iallows very fragile large space structures to be transported

from low earth orbit to geosynchronous orbit. In addition,

since the propellant is a small fraction of the overall

system mass, weight growth of the payload during the

construction phase of the project can easily be accommodated

by thrusting for a longer period of time (7:xiii). Payload

mass is not a constraint as in chemical systems, it merely

requires longer transfer times. Other benefits include

better cost efficiency (lower dollar/kg of payload) and less

complex engine design.

I There are three classes of electric propulsion devices,

all of which are capable of high specific impulse.

1. Electromagnetic. The electromagnetic thruster is

often called the plasma thruster. In this thruster, the

propellant gas is Ionized to form a plasma, which is then

Iaccelerated rearward by electric and magnetic fields.
2. Electrostatic. The best known type of electrostatic

thruster is the ion thruster. As in the plasma thruster,

propellant atoms are ionized by removing an electron from

each atom. In the electrostatic thruster, however, the

I
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Ielectrons are removed from the ionization region at the same

rate as Ions are accelerated rearward.

3. Electrothermal. The electrothermal thruster is the

thruster which fueled this study. In this thruster, electric

power or solar radiation is used to heat the propellant to a

high temperature. The heating may be done by producing an

electric discharge through the propellant gas (arcJet) or by

Iflowing the propellant gas over surfaces heated using

electricity (resistojet) or reflected sunlight. If reflected

sunlight is used to heat the propellant, then this would

result in discontinuous low thrust. Discontinuous because

the spacecraft might enter the earth's shadow during an orbit

I(3:1-9, 7:xiii-xvi).
A discontinuous, low-thrust orbit transfer between two

non-coplanar, circular orbits may soon be accomplished by a

3spacecraft currently being developed at the Air Force

Astronautics Laboratory. The spacecraft is a solar-powered

I rocket capable of transferring large payloads from low earth

orbit to geosynchronous orbit. The booster will likely

employ two solar collectors which concentrate reflected

sunlight and focus it to an area on the engine. The hydrogen

propellant is heated and then expelled through a nozzle.

IUsing solar-heated liquid hydrogen as the propellant, the low
thrust, high specific impulse engine may evolve into an

efficient powerplant for space transportation by the end of

3the century (11:119-120).
The concept of a solar powered boost vehicle is not new.

I3I
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IThe current Air Force development program is an outgrowth of

solar engine research that originated in the early 1960's

(11:119). The revival of this concept is brought about by

new materials and new control techniques for the solar

collectors. A solar powered booster could be an important

component in the USAF space inventory.

Previous work on low thrust transfers between non-

coplanar circular orbits revealed an outward spiral Is the

optimal trajectory (1,6:1, 10:150-154). Cass later derived a

control law for a discontinuous, low thrust transfer between

non-coplanar circular orbits (6:18). That is, a constraint

was added such that the eccentricity equals zero. This study

was conducted to locate the optimal launch time by minimizing

3transfer time using the control law derived by Cass.
The derivation is divided into two problems of differing

timescales. The fast timescale problem optimizes the changes

in the semi-major axis and inclination over one orbit with

vehicle mass held constant. The result is an optimal control

law for one orbit. The slow timescale problem uses the

optimal control law to determine how much to change the

*semi-major axis and inclination on each orbit so that the

final boundary conditions are met in minimum time. The mass

Uand acceleration are updated after each orbit.

I
1
1
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A control law was previously derived by Cass for the

discontinuous low thrust orbit transfer problem(6). The

purpose of this study is to use the control law to find the

optimal launch time. The optimal launch time minimizes

transfer time. To avoid duplication of effort, Cass's work

will not be rederived. However, the pertinent concepts,

equations, and optimization algorithm will be fully

described.

The derivation was divided into two problems of differing

timescales; the fast timescale and the slow timescale. The

fast timescale problem optimizes the changes in semi-major

axis and Inclination during one orbit of the central body

(earth) with vehicle mass held constant. The slow timescale

problem incorporates the fast timescales results and

determines how much to change the semi-major axis and

inclination on each orbit so that the final boundary

conditions are reached in minimum time. Vehicle mass was

recomputed after each orbit to account for propellant loss.

EAST TIM J E PR&BLEM (6:3-18)

The solution of the fast timescale problem will yield the

optimum thrust control law for one orbit. The thrust control

law maximizes a change in either inclination or semi-major

axis when a particular change in the other is specified. The

derivation assumes two-body motion with the earth as the

5
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I central body. Also, since electric engines produce low

thrust, the change in orbital elements for one orbit is

assumed to be very small (i.e., da % Aa). Therefore, the

U orbital elements are considered constant during each orbit.

The spacecraft mass is also considered constant for one orbit

3 since propellant loss is very small.

Lagrange's planetary equations In their acceleration

component form are used to find the optimal thrust control

law. The planetary equations are (12:35):

df W (1-eZ) /' z sin(w+f)

dt- n a sin(i) (1 + e cos(f))

I
di W (1-ez) /z cos(w+f)
Sa-- + e cos(f)) (2)

I
dt n a (1 e cos(f))

S+ V (1-e)" / sin(f) (2 + e cos(f))

n a e (1 + e cos(f))

3 de U (l-e')1/3 sin(f)

dt n aU
(1-c') 1/2 1 + e cos(f) - (1-eZ) (4)

n a e l+e cos(f)

I
I
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da 2 U e sin(f) 2 V (1 + e cos(f))_ + (5)

dt n (1-e') / Z  n (1-e'). / Z

3 where D is the longitude of the ascending node, w is the

argument of perigee, I Is the spacecraft inclination, e is

I the orbit eccentricity, a is the semi-major axis, and f is

the true anomaly. These orbital elements are shown in Figure

1. The variables U,V, and W are the radial, tangential, and

3normal acceleration component, respectively, and n is the

mean motion which is given by:

n = (p/a ) /z  (6)

3where
= G MO (7)

and G is the universal gravitation constant and M is the

mass of the earth.

For this problem, the initial and final orbits are

defined to be circular (e = 0). In addition to these

boundary conditions, the eccentricity for each orbit is set

equal to zero throughout the entire orbit transfer. That is,

a constraint is introduced which requires the change In

eccentricity between each orbit be equal to zero. This

constraint greatly simplifies the planetary equations, as

shown below:

dO W sin(w+f)

dt n a sin(i) (8)

7
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I di V cos(W+f)
(9)

dt n a

dw

dt - undefined for a circular orbit (10)

I
de U sin(f) + 2 V cos(f)

dt na na

I da 2 V
dtn (12)

3 In general, w is undefined for a circular orbit. Thus,

the new reference point for f is the ascending node as shown

3 in Figure 1. For continuous thrust vehicles, f is the

vehicle's angular displacement with the engines on. In this

I problem, thrust is posjible only in the sunlight.

3 Accordingly, angle f is redefined as the angular displacement

of the spacecraft in the sunlight measured with respect to

3 the earth's shadow exit point. A new angle, s, is introduced

to give the angular displacement between the ascending node

I and the shadow exit point. Now, there is a complete

definition of the spacecraft's position with respect to the

ascending node as shown in Figure 2. Thus, the angle (w+f)

3 in Egs (8) and (9) is replaced by (s+f). Also, the angle g

is measured between the shadow exit to the next shadow entry

I
I
I
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3 and m is one-half of the shadow angle. See Figure 2 for a

depiction of these angles. Uses of angles g and m are

Udiscussed later in this section.

3 Additional modifications to the planetary equations

include changing the independent variable from t to f (using

l n = df/dt) and replacing n with (ji/aa)" (Eq (6)). The

planetary equations are now:
I2

dO W az sin(f+s)

3 df = sin(i) (13)

di W az cos(f+s)
- = (14)Idf
de a
d-- =U sin(f) + 2 V cos(f)] (15)

m da 2 V a'
df (16)

To determine the changes in the orbital elements for one

m orbit, Eqs (13) through (16) should be integrated from 0 to

3 2n; but U, V, and W are zero when the vehicle is in the

earth's shadow. Therefore, these equations are integrated

3 from 0 to g, where g is measured from the shadow exit to the

next shadow entry.I
g9= 2n - 2m = 2(n - m) (17)

l where m is one-half of the shadow angle(see Figure 2).

1 11
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The accelerations U, V, and W are modeled as functions of

f. From Figure 3:

U = T cosr cosa (18)

V = T cosr sin (19)

W = T sinr (20)

where

r = r(f) (21)

a = a(f) (22)

and T is the total acceleration due to the thrust.

Substituting Eqs (18) through (20) into Eqs (13) through (16)

and integrating between 0 and g, the change in orbital

elements become:

Ta2  g

M % dO = s sin(r) sin(f+s) df (23)

0

Ta g

Ai % di = J sin(r) cos(f+s) df (24)

0

Ta2  gTa2

Ae % de = J (cos(r) cos() sin(f)

0

+ 2 cos(r) sin(s) cos(f)) df (25)

12
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U

2Ta

Ia - da - J cos(r) sin(a) df (26)

The following conditions are used to find the optimal

3 thrust control law for one orbit: Ai is maximized for a

given &a, subject to the constraint Ae = 0. The performance

index with constraint relationships is:

9 Ta 2
J(a,r) = sin(r) cos(f+s) df

0

+ 2 cos(r) sin(a) df - Aa

g0

+ XJ (cos(r) cos(i) sin(f) + 2cos(r) sin(ct) cos(f)) df

0
(27)

where X and X are Lagrange multipliers. The goal is to
* 2

find the functions r and a that produce a stationary value of

J. The solution of this problem was done by Cass and is

patterned after an optimization scheme given by Bryson and Ho

(4:48-49). The optimal thrust control law is:

a = tan-' [2(X Ia + Xcos(f)) (28)
L X asin(f) -

- tan - [ .. + (29)

(kz sin1(f) + 4(XIa + XaCOS(f))z1 s/ z

14



Substituting Eqs (28) and (29) Into Eqs (24) through (26)

yields:

T a2  gcos 2 (f+s) df

0 [X: sinZ(f) + 4(X a + X cos(f))
z + cosZ(f+s)] 12

(30)

Ta g (a sinz(f) + 4cos(f) (X a + X cos(f)) dfTar 2 1 z

Ae = -Id J [Kz sinz(f) + 4(X a + X cos(f))2 + cos2(f+s)]1X
0 2 1 +

(31)

4 g [a a + X cos(f)) df4Ta r • 2

Aa =I
a[ sinz(f) + 4(k a + X cos(f)) z + cosZ(f+s)] 1 z

0 2 1 z

(32)

Assuming a sperical earth, AO is neglected and will not be

considered in this problem. For convenience, let:

u = Ia (33)

and

D = X sinz(f) + 4(u + X cos(f)) z + cosZ(f+s). (34)
2 2

Substitution yields:

is



I
T a" Cos2 (f +s) df3 Ai=(35)

T a z  g [Kz sin Z(f) + 4cos(f) (u + X Zcos(f)] df

Ae (36)t /

0

I 4 T a g [ u + X cos(f)] dfAa - DI * 37

0 0

Eqs (35) through (37) represent changes in i, e, and a

for one orbit using the optimal thrust control law.

Actually, this control law will maximize &i for a given Aa,

3subject to the constraint Ae = 0. Eqs (35) and (37) will be

used in the slow timescale problem to ensure optimal control

3 during each orbit and to define the amount of change possible

for Al and Aa on a given orbit. The Ae=O constraint Is

solved numerically to determine u and X2(further use of Eq

U(36) is given in the next section).

However, before these equations are implemented the

3 angles m and s must be calculated. Recall m is one-half of

the shadow angle and s is an angle in the orbit plane between

3 the ascending node and the point where the spacecraft exits

3the earth's shadow. Sun-earth geometrical relationships are

used to determine m and s. According to Link (9:122-127),

1
16

1



the following sun-earth geometrical relationships are used to

calculate m (see Figure 4):

cos('
0

cos(m) = cos(B) (38)

where B and a are angles shown in Figures 4 and 5 and a is

half of the maximum shadow possible for a given altitude.

Link also gives expressions for the angles B and a :
0

cos(B) = [1 - (cos(6 )sin(i)sin(aO-0) - sin(6,)cos(i))z2 i/'z

(39)

and

a= r + n -R (40)

or

cos(a ) = F II - a-z I ' + [G /a1 (41)

where ooand 60 are the right ascension and declination of the

sun in earth centered coordinates and F and G are constants
0 0

depending on the size of the earth and sun and the distance

between them.

F = 0.99994668 G = 0.00462295360 0

Link also has an expression for s:

s = (n/2) - L + m (42)

where

cos(60)

L = -cos(ao-fl) cos(B) (43)

17
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Figure 5. Sun-Earth Shadow Geometry
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All ingredients should now be available for the slow

timescale problem.

SLOW TIESCALE PROBLEM (6:26-37)

The purpose of solving the slow timescale problem is to

determine how much to change the semi-major axis and

inclination on each orbit such that final boundary conditions

are met In minimum time. Fast timescale results for &a, AI,

and Ae are used to ensure optimal control during each orbit

and to define the amount of change possible for Aa and Ai on

a given orbit. Mass is recomputed for each orbit to

compensate for propellant loss.

Before the minimum time control problem Is solved, a few

preliminary steps are taken. An expression is needed for

da/dt and dI/dt for the slow timescale problem. Since the

orbital elements change very little on each orbit, these

rates are approximated by:

da ba

a- 2t z- (44)

di AL
- i tt- (45)

where At is the orbital period. For a circular orbit,

At - 2n [a /MJ1 2. (46)

However, the elements a and I only change when the spacecraft

is in sunlight. Therefore, At must be altered to only cover

20



that portion of the orbit. The new At is:

At = 2'- (orbital period) = 2(n-m)la /)J (47)

Dividing Eqs (35) and (37) by At yields:

s/ 9g (u + k cos(f) dfda 2 Ta r z

j (48)
dt Ia (n-m) D i

1-

g

di Ta r Cosz (f+s) df

dt 21A (n-m) 0  D

Since the goal is to find a minimum thrusting time, only the

time in which the spacecraft is in the sunlight is

considered. The total thrusting time for the entire orbit

transfer is the summation of tbruting time for each orbit.

As previously stated, the spacecraft's mass is recomputed

for each orbit to account for propellant loss. The

propellant loss causes an increase In acceleration. For a

constant thrust Ion rocket, propellant flow is constant.

Acceleration can be modeled as a function of time:

T
0

T(t) = . (50)
1-mt

P

where T is the initial spacecraft acceleration, t is the
0

time, and m is the specific mass flow rate(mass flow rate
p

21



divided by initial spacecraft mass).

Eqs (48) and (49) can be solved more easily if there is

no time dependence. To eliminate the time dependence, a

change of variable is made. The new independent variable T

Is defined by:

r T
dT = T(t) dt = 1- ]dt (51)i 1 - m PtI

where T is the total accumulated velocity change. The units

of T are DU/TU. Minimizing T will minimize the thrusting

time and fuel expended. Using T as the independent variable

will not yield the number of orbits and total thrusting time

(in seconds) when the final boundary conditions are met.

These values depend on the engine performance parameters (To,

m ,etc...). The solution using T as the independentp

variable will give the change in velocity needed to reach the

final boundary conditions for any type of low thrust engine.

By integrating Eq (51), an expression relating the engine

performance parameters and time to T is found. With T = 0

when t = 0

T= -(T / m ) in (1 - m t) (52)o p p

Substituting Eq (51) into Eqs (48) and (49) gives:

22



S2 ,s/z g (u + x cos(f)) df

da 2g 2

-=J (53)
dT i (n-m) 0D l /

di a r cos (f+s) df-- = ,/"; -- ](54)
dT 2M (n-m) 0 D

Eqs (53) and (54) are essential in finding the minimum

time solution. Cass provides the derivation to the minimum

time problem using the minimum time solution given In Bryson

and Ho (4:87-89).

Bryson and Ho have shown a minimum time solution

satisfies the following three conditions:

H(tf) = 0 (55)

OH
- 0 k = 1,2,3,...,r (56)uk

-OH
X. = 1,2 3,...,q (57)

where H is the Hamiltonian, X's are Lagrange multipliers,J

x's are the state variables, and the uk's are the controlJ

variables. The prime indicates differentiation with respect

to T. In this problem, r = 1 (u = u) and q = 2 (xI = a and

x= i). Eqs (55) through (57) will now be applied to this

specific problem.

23
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For this problem, the Hamiltonian is

da diH. - + 1 (58)%dr . d'

Since t does not appear explicitly in H,

H = 0 (59)

Therefore, H(t) = 0 implies

H(t) = 0 (60)

for all t 2! 0. So Eq (58) becomes

da di
- + . - + 1= 0 (61)adT ,. dr

for all time. Substituting Eqs (53) and (54) into (61)

gives:

r 2 a3/2 (U + X cos(f) df

[ -, z (n-m) D I
0

g

a cos (f+s) df
2p 10 z (n-m) 0

(62)

For this problem, Eq (56) becomes

0 [ ] + X (di2 0 (63)

24



Solving for the partial derivative yields

[ 2 z  (X sin (f) + coso(f+s)J df
12 ai-n a

2 a [ /2 (u + X 2COSMfLc05 (f+s) df] 0L I.-, (.-Ml °  D910

(64)

For this problem, Eq (57) becomes

- (65)Ga

- H
~ = i (66)

Expanding Eq (65)

H a da 10 [dl
a -= a [ ] + - [ - (67)

Recalling that s is a function of m and m is a function of

both a and I,

a r da 1 d. da 1 .
_ ] + [HJ (68)

and

a [di 1 0 dii [Odi 1 0
° [ ] [°a dr [d (69)
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Cass derives the contents of Eqs (68) and (69). Substituting

Eqs (67) through (69) Into (65) yields

XF a 2 (e 3(n-m) + 2 X a] (u + X Kcos(f)) df
CL -x I I.,z2fD .,

2 X a*" (u + X acos(f)) sin(f'~s) cos(f+s) df

.-(n-rn)z D a'2e

4 X as (u + X 2cos(2rn))

12(n-rn) Ix sinz(2m) + 4(u+X cos(2m)) + cos 2(9-2m)J"2

r nm 2 Xa Cos 2 (fts) df

L4 p 02 a1/2 (n-rn) 0J D 11

X_____ al/ sin(f+s) cos(f+s) df

+ X a"ea j sin(f+s) cos a(f+s) df

2 2 (nr-r) 0fD /

X a~e cos2(s-2m)

a 2

(70)

where

G F (a2 -1)--
0 0

a a[(cos (B) - cos2( ()J" (1
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I In a similar manner, X' can be found to be

-X c 2 Ya f (u + X zcos(f)) df

2 Y as-' 2__ (u + Xzcos(f)) sin(f+s) cos(f+s) df
+ I.Ir a(n-rn) 1Da.4Z

4 , YCs' u + Azcos(2m))

1 (n-rn) (Xzsin (2rn) +4(u+X cos(2rn))z COB (s-2))2]

Y al g cos 2(f+s) d

L 11  (nr)2

Y a sin(f+s) cos(f+s) df

le(n-rn) fD1.0

3 a I.a , z sin(f+s) Cos a(f+s) df

2 1.." (-rn) J 1 DsUz

Y al*'z cosa(s-2rn)

1le2 (n-rn) (Xzsin2 (2rn) + 4(u.X cos(2rn))z2 coz2ml

(72)

where

Y -cos(o' sin(D) cos(6-i) (3

cos a()(cos 2 (B) - co1.(2)),
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I

I Now, Eqs (62) and (64) can be solved simultaneously for k

and X in terms of integrals containing the state and control

variables. From Eq (64),

I 0
Aa j IN. sin Mf + cosa(f+s)] df

0 D sa zz

A. : (74)
~g

( S Cu + cos(f)) CosZ (f+s) df

0 DI /Z

Substituting this result into Eq (62) gives

- ] 2 Mi/z (f-m) 9 (U + X cos(f)) cos (f+s) df

Q(us) aJea D a/1

3| (75)
where

I g g
4(u + X cos(f)) df (u + X cos(f)) cosa(f+s) dfQ(u,s)=f 1a- .,

cos,(fs) df Ex a sin2 (f) + cosZ(f+s)] df

+ D

(76)

Eqs (74) and (75) can be substituted Into either Eq (70) or

I (72) to also produce an integral equation in terms of the

state and control variables. Using the new expression for

Eqs (70) or (72), the two state Eqs (53) and (54), and

equating Eq (36) to zero to find Xz, the minimum time problem

can be solved.
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I
I III. SOLUTION A£GRTHM

3 The solution to the minimum time problem uses

dimensionless parameters. For Instance, a Is measured In

I DU's, T is measured in DU's and TU's, the gravitational

parameter p is equal to 1 DU2/TU , and all angles are

measured in radians.

Choose either Eq (70) or (72) to use in the solution. In

this solution, equation (70) is used. It might appear Eq

(72) is less complicated since it has fewer terms and Y is a

factor in all terms. Notice, K is a constant when m = 0 andI%
Y = 0. Cass revealed that in the range of interest for X, u

is double-valued (6:39). It was also found X. varied

dramatically for different values of a and i. See Figures

(6) and (7). Notice the X curve maintains its shape and

only changes slightly between initial and final conditions.

The X. curve is not as well behaved. The fact u is

double-valued for K. causes the search scheme to diverge.

That is, for a particular value of X , there could be two

values of u. Which value of u is better and how can one use

a numerical search scheme to find that u? To avoid this

complication, equation (70) is used. Now, for a particular

A, there is only one value of u.
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1

IThe minimum time solution is calculated in the following

*way:

1. Input initial boundary conditions.

initial a = 1.03 DU

initial i = 0.4974 rad (28.45 degrees)

3 2. Pick an initial value for X (KX(0)). See Figures 8

through 12 for X (0) during the analyzed dates.

3. Determine sun-earth parameters

3 n2ut: a, i, Q, day

uit2ut: m, B, L, ao. Then calculate s and g.

4. Iterate equation (75) in order to find what u would

produce that X . See step 4a concerning X in equation

(75). NOTE: Simpson's rule was used to evaluate the

integrals (5:165). Bisection method was used for the

iteration of u (5:29).

i2=.: , s, g, m, a

4a. X was calculated for each guess of u using the

constraint Ae = 0 (Eq (36)). The bisection method was

used to determine X
Z

inu: u, s. g

output: XZ
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I

1 5. Since small changes In orbital elements:

3 new a -a + Aa

new I I - Al

3 where Aa and Ai are calculated using Eqs (53) and (54),

respectively. These equations were not integrated since

I the changes are very small. To approximate the

integration, AT was fixed at 0.01.

inpja: u , 2, a, m, s, g

3outut: Aa, Ai

6. Use Eq (70) to find the new X)

I newX = +

CL CL

I where

dX AX
X = -- !A& P rhs(right hand side) of Eq (70)

~then

AX = (rhs) AT

3The rhs of Eq (70) uses the current value of a (not the

new a calculated In step 5). AT = 0.01.

UDput: X. kit a, a, s g, kz Vo, For B a 2 u

outnut: new XC

7. Check if met final boundary conditions where:

3 final a - 6.6 DU

final I - 0.0 radians

I
I
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I

I Use the flowchart for checking final boundary conditions:

UCONTINUE RUN. YS N E

increment ai, 1 2: 0
CL. Go to

step 3. NO

I STOP THE RUN I!
Increase V (0) and try
again.I

linear Interpolation to find

i and Tat a =6.6

III>tol NO0D RUN It
S " Found min T

S >0 1NO o STOP THE RUN It
IIIncrease X (0)

and try again.
Yze

STOP THE RUN I1
Decrease X (0) and
try again.

where tol - 0.001 radian
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RX. ESULTS ADIjSCUSIO

This study analyzes the transfer times for key dates

3during one-half of a year from the first day of winter to the
first day of summer. The transfer times for the other half

U of the year are assumed to be similar to those of the

analyzed dates. The analyzed dates are: first day of

winter(21 DEC), midway between winter and spring(4 FES),

first day of spring(21 MAR), midway between spring and

summer(6 MAY), and the first day of summer(21 JUN). The

3reference day used In the computer program is the vernal

equinox, resulting In the analyzed day numbers to be 274,

320, 0, 46, and 91, respectively. A point should be made

concerning the number of data points. The number of data

points per day is chosen to yield general characteristics of

3the data and is not designed to give exact numerical

quantities.

I All transfers required the same change in the semi-major

3 axis and inclination. The initial bounday conditions are a.=

200 km = 1.03 DU and I.= 28.5 degrees = 0.4974 radians (a

possible shuttle orbit). The final boundary conditions are

a, = 6.6 DU and If = 0.0 radians. Recall the total

1 accumulated velocity change (T) is minimized rather than the

actual transfer time. If one minimizes T then transfer time

is also minimized.

5Figures 13 through 17 show how T varied with C) during

each of the five analyzed days. Each plot of T is a
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I

I "sinusoid" of sorts and varies in a predictable manner. The

g plot for spring (Figure 15) is symmetric for T. The minimum

T on each day in Figures 13 through 17 is plotted versus the

day in Figure 18. The ascending node at which the minimum

T'5 occurred are also plotted versus the day in Figure 19.

I The following paragraphs will examine Figures 13 through 19.

An important trend arises concerning the optimal

ascending node in Figures 13 through 17. Note: the optimal

3 ascending node is defined as the ascending node where T is a

minimum. The line of nodes (a line connecting the ascending

I and descending node) for the minimum T orbit on each day is

perpendicular to, or nearly perpendicular to, the earth-sun

line. A comparison of Figures 13 through 17 and 20 through

5 24 indicates the optimal launch time (i.e., acsending node)

is the one which minimizes the time in the earth's shadow.

5 Figures 20 through 24 show the ascending node for the

quickest escape of the earth's shadow occurred at, or very

near, the ascending node for the minimum T orbit. The

ascending node for the minimum initial shadow half-angle (m)

also corresponds to the minimum T orbit. Obviously, the less

3 time spent in the earth's shadow allows more thrusting time

per orbit. More thrusting time per orbit yields smaller

I transfer times.

Assuming the minimum T orbit requires the line of node to

be perpendicular to the earth-sun line, the question remains

I
I
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as to which node is the ascending node. If the northern

hemisphere is between fall and spring, then the ascending

node Is (cO - n/2). If the northern hemisphere is between

spring and fall, then the ascending node is (a0 + n/2). For

the first day of spring and fall, the optimal ascending node

is both (a. ± n/2). These orientations will minimize m. ,

thereby minimizing T. Figure 19 shows how the ascending node

at minimum T changed with respect to the day of the year.

The right ascension of the sun is also included in Figure 19

for comparison purposes. The two optimal ascending nodes for

spring is due to the symmetric lighting conditions.

Another trend in the data is the change in semi-major

axis (Aa) is greater than the change in inclination (Ai)

during the initial phase of the transfer. Figure 25 displays

a typical profile for Aa and Ai. This agrees with the fact

that plane changes require much more energy than coplanar

changes when gravity is a major factor (1, 2:169-170). This

profile is also the path needed by the spacecraft to minimize

or eliminate (depending on the time of year) the time in the

earth's shadow.

Figure 18 shows the overall minimum T orbit occurring at

both the first day of summer and the first day of winter.

This corresponds with the overall minimum m which is plotted

In Figure 26. The difference between the T's in Figure 6 is

only 1.21%. Whereas the change in m 's in Figure 26 is0

10.91%. However, these differences in T and m are not
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consistent on any particular day (Figures 13 through 17 and

20 through 24). For instance, T varied from 4.7% to 5.9% on

any of the analyzed dates. Whereas m varied from 2.6% to

13.8%. The upper limit of these changes for T and m

occurred simultaneously; as did the lower limit. Table I

contains the minimum and maximum values of T and m for the

analyzed dates.

TABLE I. Changes in T and m.

Date mi mm % change % change
(day#) max max in T in m

(DU/TU) (radians)

21 DEC 0.77232 1.163663 5.80 13.80
(274) 0.81745 1.324214

4 FEB 0.77865 1.222310 4.83 8.32
(320) 0.81628 1.324079

21 MAR 0.78165 1.290653 4.71 2.60
(0) 0.81850 1.324239

6 MAY 0.77683 1.220574 5.07 8.49
(42) 0.81626 1.324144

21 JUN 0.77268 1.163673 5.90 13.80
(91) 0.81823 1.324218
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Y, CONCLUSIONS AHQ RECOMMENDATIONS

This study determined the optimal launch time for a

discontinuous, low thrust orbit transfer. The optimal launch

times are the first day of winter and summer and occurred

simultaneously with minimum m (smallest initial shadow half-

angle). The actual transfer time in seconds is not

calculated because the independent variable was changed from

t to T (the accumulated velocity change). This was done in

order to analyze the entire class of low thrust rockets. If

one wants to calculate the transfer time in seconds for a

specific rocket, then use Eq (51) or (52) to change the

independent variable from T to t. If the independent

variable is t, then the changes in ot and 6. during the

transfer should be taken into account.

The following is a rough calculation for converting from

T to t. Solve for t using Eq (52)

t Z [1 -exp(-T M / T 0 ]

where

thrust force F
T z =o vehicle mass MvOh

propellant mass flow m
m =p vehicle mass Mve h
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3 As an example, use the engine parameters given in Ref 11:

F = 0.8 lb

; = 0.001 lb/sec

with a payload of 10,000 lb (a large payload). Assume the

total vehicle weight (including payload) is 14,000 lb. Then

F 0.8 lb
T = = 1.84x10-s ft/seczUm V h 14000 lb / 32.2 ft/secz

. m 0.001 lb/sec
M - = - 7.14 x 10-" /sec

p mV*I 14000 lb

2.093x107 ft 1 TU
T * =0.77232 DU/TU 1 DUTm~n1 OU806.8 sec

= 20,035 ft/sec

Substituting yields t - 7,568,926 sec = 2102 hr = 88 days.

I Using T# of 0.8185 DU/TU yields t - 91 days; a 3.9%

increase in transfer time.

As a continuation to this study, one could find the

optimal launch time without constraining Ae to be equal to

zero. Another topic of interest Is to take Into account a

I non-spherical earth, thereby causing a regression in the line

of nodes and r tatton of the line of apsides (if orbit Is

eccentric).
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