Beam Breakup Instabilities in Linear Accelerators:
Transition, Phase Mixing and Nonlinear Focusing

D. G. COLOMBANT AND Y. Y. LAU

Plasma Theory Branch
Plasma Physics Division

December 13, 1988

Approved for public release; distribution unlimited.
The temporal and spatial evolution of the cumulative beam breakup instability (BBU) is analyzed numerically using a continuum model. It is found that neither phase mixing nor linear transverse focusing is sufficient to render BBU stable in a long pulse machine, when external damping is absent. A sufficiently strong nonlinear octupole focusing field may limit the BBU growth, however.
BEAM BREAKUP INSTABILITIES IN LINEAR ACCELERATORS: TRANSITION, PHASE MIXING AND NONLINEAR FOCUSING

The control of beam breakup instabilities\(^1\) remains a major concern for accelerator builders. Various remedies have been examined\(^2\): lowering the quality factor \(Q\) of the deflecting modes, increasing the focal strength, phase mixing, nonlinear focusing, and detuning of the cavities, etc. All of these may readily be incorporated in the continuum models,\(^1-7\) from which asymptotic formulas have been obtained for certain cases. These formulas have frequently been used to compare with experimental observations and with other more elaborate theoretical works.\(^6,8\) At the moment, they are the only ones available to describe the transition of BBU from the cumulative type to the regenerative type.\(^7,9\)

In spite of the versatility in the continuum model, a direct numerical integration of the governing partial differential equations does not seem to have been published, although the evolution of BBU has been calculated in great detail by other means, in some limiting cases.\(^1,3,10\) Here, we analyze the evolution of the cumulative BBU by a direct numerical integration, intending to look into the effects of phase mixing and nonlinear focusing which defies analytic treatment. This work was also motivated by the recent observation\(^7\) that the asymptotic growth of the cumulative BBU is independent of the linear transverse focal strength. It is then of interest to determine in what way nonlinear focusing affects the temporal and spatial evolution of BBU.

To isolate the mechanism of phase mixing and of nonlinear focusing, we ignore the damping associated with finite \(Q\). Setting \(Q\) equal to infinity should not be construed as this damping effect being unimportant. It serves the additional purpose of providing a more stringent test for the numerical scheme. For without a finite \(Q\), the solution grows much more
rapidly, making the accuracy in the numerical integration more demanding. In any case, the effect of finite Q enters only through the well-known decay factor $\exp\left(-\frac{\omega_0 t}{2Q}\right)$ in the amplitude of the solutions, where ω_0 is the breakup mode frequency.

Our numerical results reveal the following. When Q is infinite, the cumulative BBU evolves asymptotically (at a fixed distance from the injector) at a rate which is independent of the linear transverse focal strength.7 The excellent agreement with the analytic formula adds to our confidence in our numerical calculation. [In a separate test, the numerical solution agrees with the analytical results to within 20% over nine orders of magnitude variations in the beam’s transverse displacement.] When the analysis is extended to include a finite spread in the betatron frequency, we find that this finite spread has virtually no effect on the above-mentioned asymptotic behavior. While neither a linear focusing force nor a finite spread in the betatron frequency, by themselves, can provide long-term stabilization of BBU, a sufficiently strong nonlinear focusing force may limit the amplitude of the beam’s transverse displacement, even in the limit $Q \rightarrow \infty$.

For a continuous coasting beam, the evolution of the cumulative BBU is governed by the following normalized equations1,3

\[
(\frac{\partial}{\partial T} + \frac{\partial}{\partial Z})^2 X + \Omega^2 X = A
\]

(1)

\[
\frac{\partial^2 A}{\partial T^2} + A = 2\varepsilon X.
\]

(2)

Here $T = \omega_0 t(>0)$, $Z = \omega_0 z/c(>0)$, $\Omega = k_B c/\omega_0$ where k_B is the betatron wavenumber, ε is the dimensionless coupling constant7 which is proportional to the beam current and shunt impedance but is independent of the focal
strength, $Q(Z,T)$ is a measure of the strength of the deflecting mode which drives the BBU and $X(Z,T)$ is the normalized transverse displacement of the beam. In all numerical calculations, we assume initial rest condition and homogeneous boundary conditions; only one non-trivial boundary condition is imposed at $Z=0$: $X(0,T) = 1$ for $0 < T < 0.2$ and is zero otherwise. Thus, X is normalized to the initial displacement, imparted upon the beam at $Z=0$ for a short time (similar to a delta function excitation).\(^1,3-8\)

Shown in Fig. 1 is the spatial distribution of $X(Z,T)$ at four different times, obtained from a fourth order numerical scheme in space and time. We set $\varepsilon = 0.000413$ and $\Omega = 0.14$. The dotted curves in this figure are obtained from the asymptotic solution\(^7\):

$$
|X(Z,T)| = B \frac{Z^{1/4}}{(T-Z)^{3/4}} \exp \left\{ \frac{2\varepsilon(1-T-Z)}{\Omega} \right\}
$$

where $\tau = \varepsilon(T-Z)/(\Omega^2 Z) > 0$, $B = C/[\text{Max}(1,\tau/2.81)]^{1/12}$,

$$p(\tau) = \begin{cases}
1.1573 \left(1 - \frac{0.21}{\tau^{2/3}}\right) & \text{for } \tau \geq 5 \\
1 - 0.0556\tau + 0.004\tau^2 & \text{for } \tau \leq 5
\end{cases} \quad (4a,b)$$

and C is a constant to be determined by a "one-point fit" with the numerical solution. Equation (3) describes the transition from the strong focusing solution\(^8\) [$p(\tau) \to 1$, Eq. (4b)] to the weak focusing solution\(^1\) [Eq. (4a)] as τ increases.\(^7\) This transition occurs when $\tau = 0.5$. The excellent agreement, over a wide range of τ, between the numerical solution and the analytic theory shown in Fig. 1 may be regarded as a validation for both the numerical scheme and the analytic result that X evolves at a later time as if the linear focusing force were absent.\(^7\) The numerical data shows
that the spatial variation of X is biased toward the "slow beam-cyclotron mode".

The effect of phase mixing due to a spread in the betatron frequency may be examined by pretending that the electron beam consists of N groups of particles, the ith group bearing its individual betatron frequency Ω_i. Thus, we replace Eq. (1) with N equations

$$
(\partial^2/\partial T^2 + \partial^2/\partial Y^2)X_i^2 + \Omega_i^2X_i = A, \quad i = 1, \ldots, N
$$

and the quantity X in the right-hand side of Eq. (2) is replaced by $\langle X \rangle = G_1X_1 + G_2X_2 + \ldots + G_NX_N$ where G_i represents the fraction occupied by the ith group ($G_1 + G_2 + \ldots + G_N = 1$). In the "spread mass" model, $\Omega_i = \Omega(i/N)^{1/2}$ and $G_i = 6i(N - i)/N(N^2 - 1)$. The solution $\langle X \rangle$ is shown in Fig. 2 for $\epsilon = 0.000413$, $\Omega = 0.14$, $N = 8$. A virtually identical figure was obtained when we increased N to 16. From this figure, we see that a finite spread in the betatron frequency has no effect on the long-time growth of the cumulative BBU. This is due to the fact that the cumulative BBU grows asymptotically at a rate independent of the linear focusing force, and a finite spread in the betatron wavelength cannot alter this long-time behavior.

A nonlinear octupole focusing force may be handled also by solving Eqs. (1) and (2), except that the Ω^2X term in Eq. (1) is now replaced by AX^3 in a simplified model. The evolution of X is shown in Fig. 3 for the case $A = 0.0392$. Here, we see that the amplitude of X is limited at large T, in marked contrast to the cases of linear focusing and phase mixing. It is possible that the change in the phase relationship between A and X due to nonlinearity might have contributed to the stabilization shown in Fig. 3, but this issue remains to be examined in the future.
In summary, an accurate numerical scheme was devised to analyze the classic model of cumulative BBU. It is suggested that this line of attack could be fruitfully applied to a great variety of problems in a rather straightforward manner. Interesting areas such as phase mixing and nonlinear focusing were analyzed in this initial study, and some unexpected features reported.

Helpful discussions with S. Zalesak and D. Chernin are gratefully acknowledged. We also thank M. Friedman, C. W. Roberson and P. Sprangle for their support. This work was supported by the Department of Energy, Contract No. DE-AI05-86-ER13585 and by the Office of Naval Research.
References

10. D. Chernin and A. Mondelli, to be published in Particle Accelerators.

Fig. 1 Evolution of $X(Z,T)$ and comparison with the analytic theory (dotted curves).
Fig. 2 Temporal evolution of $\langle X \rangle$ at $Z = 40$, including the effect of phase mixing.
Fig. 3 Evolution and saturation of $X(Z,T)$ in the presence of nonlinear octupole focusing.
DISTRIBUTION LIST*

Naval Research Laboratory
4555 Overlook Avenue, S.W.
Washington, DC 20375-5000

Attn: Code 1000 - Commanding Officer, CAPT V. G. Clautice
1001 - Dr. T. Coffey
1005 - Head, Office of Management & Admin.
1220 - Mr. M. Ferguson
2000 - Director of Technical Services
2604 - NRL Historian
2628 - Documents (22 copies)
2634 - D. Wilbanks
4000 - Dr. W. R. Ellis
4600 - Dr. D. Nagel
4603 - Dr. V. V. Zachary
4700 - Dr. S. Ossakow (26 copies)
4700.1 - Dr. M. Friedman (5 copies)
4700.1 - V. Serlin
4710 - Dr. C. A. Kapetanakos
4730 - Dr. R. Elton
4730 - Dr. B. Ripin
4740 - Dr. V. M. Manheimer
4740 - Dr. S. Gold
4790 - Dr. P. Sprangle
4790 - Dr. C. M. Tang
4790 - Dr. M. Lampe
4790 - Dr. Y. Y. Lau (40 copies)
4790 - Dr. D. G. Colombant
4790 - Dr. G. Joyce
4790 - Dr. I. Haber
4790 - Dr. R. Hubbard
4790 - Dr. R. Fernsler
4790 - Dr. S. Slinker
4790 - Dr. T. Godlove
4790A - W. Brizzi
6840 - Dr. R. K. Parker

* Every name listed on distribution gets one copy except for those where extra copies are noted.
Dr. V. S. Chan
GA Technologies
P.O. Box 85608
San Diego, CA 92138

Dr. D. P. Chernin (3 copies)
Science Applications Intl. Corp.
1720 Goodridge Drive
McLean, VA 22102

Prof. M. V. Chodorow
Ginzton Laboratory
Stanford, University
Stanford, CA 94305

Dr. William Colson
Berkeley Research Asso.
P.O. Box 241
Berkeley, CA 94701

Dr. William Condell
Office of Naval Research
Attn: Code 421
800 N. Quincy St.
Arlington, VA 22217

Dr. Richard Cooper
Los Alamos National Scientific Laboratory
P.O. Box 1663
Los Alamos, NM 87545

Prof. B. Coppi
Dept. of Physics, 26-217
MIT
Cambridge, MA 02139

Dr. Bruce Danly
MIT
NW16-174
Cambridge, MA 02139

Dr. R. Davidson
Plasma Fusion Center
Mass. Institute of Tech.
Cambridge, MA 02139

Dr. John Dawson
Physics Department
University of California
Los Angeles, CA 90024

Dr. V. Fawley
Physics Department
University of California
Los Angeles, CA 90024

Dr. David A. G. Deacon
Deacon Research
Suite 203
900 Welch Road
Palo Alto, CA 94306

Dr. D. P. Chernin
Science Applications Intl. Corp.
1720 Goodridge Drive
McLean, VA 22102

Prof. M. V. Chodorow
Ginzton Laboratory
Stanford, University
Stanford, CA 94305

Dr. William Colson
Berkeley Research Asso.
P. O. Box 241
Berkeley, CA 94701

Dr. William Condell
Office of Naval Research
Attn: Code 421
800 N. Quincy St.
Arlington, VA 22217

Dr. Richard Cooper
Los Alamos National Scientific Laboratory
P.O. Box 1663
Los Alamos, NM 87545

Prof. B. Coppi
Dept. of Physics, 26-217
MIT
Cambridge, MA 02139

Dr. Bruce Danly
MIT
NW16-174
Cambridge, MA 02139

Dr. R. Davidson
Plasma Fusion Center
Mass. Institute of Tech.
Cambridge, MA 02139

Dr. John Dawson
Physics Department
University of California
Los Angeles, CA 90024

Dr. V. Fawley
Physics Department
University of California
Los Angeles, CA 90024

Dr. David A. G. Deacon
Deacon Research
Suite 203
900 Welch Road
Palo Alto, CA 94306

Deputy Under Secretary of Defense for R&AT
Room 3E114, The Pentagon
Washington, D.C. 20301

Dr. W. J. Destler
Dep. of Electrical Engineering
University of Maryland
College Park, MD 20742

Director of Research (2 copies)
U. S. Naval Academy
Annapolis, MD 21402

Dr. Gunter Dohler
Northrop Corporation
Defense Systems Division
600 Hicks Road
Rolling Meadows, IL 60008

Dr. Franklin Dolezal
Hughes Research Laboratory
3011 Malibu Canyon Rd.
Malibu, CA 90265

Dr. A. Drobot
Science Applications Intl. Corp.
1710 Goodridge Road
McLean, VA 22102

Dr. Dwight Duston
Strategic Defense Initiative Org.
OSD/SDIO/IST
Washington, DC 20301-7100

Dr. Luis R. Elias
Quantum Institute
University of California
Santa Barbara, CA 93106

Dr. W. Fawley
L-626
Lawrence Livermore National Laboratory
P. O. Box 808
Livermore, CA 94550

Dr. H. Fleischmann
Cornell University
Ithaca, NY 14850
Dr. Hersch Pilloff
Code 1112
Office of Naval Research
Arlington, VA 22217

Dr. Donald Prosnitz
Lawrence Livermore National Lab.
Attn: L-470
P. O. Box 808
Livermore, CA 94550

Dr. Sidney Putnam
Pulse Sciences, Inc.
600 McCormack Street
San Leandro, CA 94577

Dr. M. Reiser
University of Maryland
Department of Physics
College Park, MD 20742

Dr. C. V. Roberson (5 copies)
Code 1112
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

Dr. Marshall N. Rosenbluth
Physics Dept.
University of California, San Diego
La Jolla, CA 92093

Dr. N. Rostoker
University of California
Department of Physics
Irvine, CA 92717

Dr. E. T. Scharlesmann
L626
Lawrence Livermore National Laboratory
P. O. Box 808
Livermore, CA 94550

Dr. Michael Schlesinger
ONR Code 1112
800 N. Quincy Street
Arlington, VA 22217-5000

Prof. S. P. Schlesinger
Dept. of Electrical Engineering
Columbia University
New York, NY 10027

Dr. Howard Schlossberg
AFOSR
Bolling AFB
Washington, D.C. 20332

Dr. George Schmidt
Stevens Institute of Technology
Physics Department
Hoboken, NJ 07030

Dr. H. Schwettmann
Phys. Dept. & High Energy
Physics Laboratory
Stanford University
Stanford, CA 94305

Dr. Marlan O. Scully
Dept. of Physics & Astronomy
Univ. of New Mexico
800 Yale Blvd. NE
Albuquerque, NM 87131

Dr. A. M. Sessler
Lawrence Berkeley Laboratory
University of California
1 Cyclotron Road
Berkeley, CA 94720

Dr. W. Sharp
L-626
Lawrence Livermore National Laboratory
P. O. Box 808
Livermore, CA 94550

Dr. R. Shefer
Science Research Laboratory
15 Ward Street
Somerville, MA 02143

Dr. Shen Shey (2 copies)
DARPA/DEO
1400 Wilson Boulevard
Arlington, VA 22209

Dr. D. J. Sigmar
Oak Ridge National Laboratory
P. O. Box Y
Oak Ridge, TN 37830

Dr. Jack Slater
Spectra Technology
2755 Northup Way
Bellevue, WA 98004