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Preface

The purpose of this study was to verify the

mathematical corrcctness and to determine some of the

limitations of the monostatic-histatic radar cross section
{(RCS) relationship developed by Robert E. Kell.
Potentially,the Radar Target Scattering Facility, Holloman
AFR, NM, could apply this relationship to reduce testing
time Aand costs.

\ detailed mathematical formulation is provided. It
begins with the monostatic-bistatic equivalence theorem
(MRET). The MBET is a physical optics approximation
relating monostatic and bistatic RCS. The derivation of

Ke:ll's relationship is built upon the MBET and is

mathematically sound withia the prescribed bounds.

Kell's relationship was tested using computer

models. The results of the testing show Kell’'’s method of

determining bistatic RCS from monostatic RCS measurements
has some merit. Measurements are needed to establish the
limits to which Kell's method may be applied. Also, the
complexity of the targets must be increased in order to gage
the accuracy of Kell's method under a variety of conditions.
In performirg this study 1 have received help from
others. Of course, 1 am indebted to my faculty advisor,
Major Harry Barksdale, whose insight and guidance kept me

moving in the right direction. T would also like to thank
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.

Captain Bill Qetting who never failed to respond positively
to my panicked cries for help and Captain Dennis Tackett who
devoted a great deal of time and effort in the actual
production of this thesis. And, finally, a special

thanks to myv wife, Debbie, who endured it all with a smile.
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Abstract

Robert Kell developed a relationship between monostatic
radar cross section (RCS) and bistatic RCS vhereby bistatic
RCS can be predicted from monostatic RCS measurement.s under
certain conditions. This study Found Kell's relationship to
be mathematically sound given certain assumptions. Kell's
relationship was then tested by comparing computer generated
bistatic and monostatic cross sections for simple shapes;
Four parameters were varied during testing in order to
discern possible limitations of Kell’s method: bistatic
angle, angle of incidence, electrical siz of the target,
and continuity. Results of the testing show Kell's method
has some merit. The difference between the bistatic RCS and
its related monostatic RCS for electrically larg: spheres is
less than 1-dB up to bhistatic angles of 80“%’-;;:”~$““ﬁ£1\‘{fzé?
electrically large flat and singly ocurved surfaces the

monostatic and bistatic cross sections were within 3-dB for

p— N e e .

angles of incidence up to 30° from broadside and bistdtie .v(%

angles ubvto ?E\. Finally, the accuracy of Kell's 15f¢-

relationship proved to be polarization dependent when

surface discontinuities in the form of 90° wedges were
present. >kh
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VERTFTCATION AND LTMITATIONS OF THE MONOSTATTC-BTISTATIC
RADAR CROSS SECTION RELATTONSHTP DERIVED BY KELL

1. Introduction

Overview

One method used to reduce the detectability of an
aircraft by radar is to shape it so the energy from the
radar is reflected away from the radar’s receiver. By
reflecting the incident energy away from the receiver the

aircraft presents a smaller radar cross section (RCS) and,

therefore, is more difficult to detect. Monostatic radar, a
radar in which the radar's transmitter and receiver antennas 1
are collocated, is more common than bistatic radar, a radar
with separated transmitter and receiver antennas. For this
reason, most aircraft designed to present a low RCS reflect
energy away from the direction of the transmitting source.
However, reducing the RCS in one direction using shaping

techniques results in an increased RCS in another direction

(Knott, 1985:10). Thus, even today’s most stealthy
aircraft, those designed to hinder detection by radar at
common flight aspects, may still be detectablelby bistatic
radar receivers (Adams, 1988:27).

For military planners to project a weapon system's
ability to penetrate enemy air defenses, it is necessary to
perform both monostatic and bistatic RCS analyses.

1
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Unfortunately, however, the evolution of bistatic RCS
prediction and measurement techniques has not kept pace with
that of monostatic techniques (Hunka, 1978:243). Because of,
the threat bistatic radars pose for even stealth aircraft
and the need to plan for and reduce that threat, methods

need to be developed that accurately predict bistatic RCS.

Background

The earliest radars were bistatic, but with the
appearance of manostatic radar in the 1930’s bistatic radar
faded from prominence. Bistatic radar interest surfaced
again in the mid 1950's leading to bistatic radar
applications in satellite tracking systems and guidance
control in low altitude cruise missiles (Skolnik, 1961:20;
Biggs and McMillen, 1979:1). However, the development of
bistatic RCS prediction and measurement techniques did not
receive the attention monostatic RCS techniques enjoyed

until later.

Bistatic RCS measurements. Bistatic RCS measurements
are inherently more difficult and complex than monostatic
measurements simply because the receiving antenna must be
moved 7or each measurement (Hunka,1977:é43). The Air Force
Radar Target Scatter Facility (RATSCAT), an outdoor radar
range at Holloman AFB, New Mexico, uses a bistatic mobile
receiver van to =2nhance the mobility of their receiving
antenna (Dynalectron Corp., 1985:43). However, they must

still deal with the complexities involved in bistatic RCS
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measurements not suffered by monostatic measurements. Fach
repositioning of the receiver calls for recalibration. This
means the target of interest must be replaced with a
calibration target so that background returns can be
jidentified. Multiprath scattering must also be accounted for
with each position change. And, when all is ready, the
target, sometimes as'large.as a full scale model of a B1-R,
must bhe remounted. All of this takes a great deal more time
and costs considerably more than monostatic measurements
{Tomko, 1988).

Bistatic RCS prediction Before the 1950’s, the

scientific community in general felt the theoretical

calculation of a complex target’'s RCS was beyond the
capabilities of the known technology. By the early 1950's, .
approximation techniques began evolving that allowed the

estimation of the RCS for such complex shapes as airplanes,

missiles, and satellites, Through experience and the

appearance of high speed computers the theoretical

estimation of an average monostatic cross section circa 1958

was within 4 dB of measured values (Crispin and others,

1968:v). Bistatic prediction methods were also developed

during this period, but there was no experimental data with

which to compare their accuracy (Siegel and others,
1955:305). ]

One could easily speculate that the previously

(4} ]




ment.ioned problems regarding bistatic RCS measurements were
the reason why histatic RCS experimental data was in short
supply. Because monostatic RCS measurements are much easier
to perform than bistatic measurements, if a means of
predicting bistatic RCS from monostatic measurements

were possible, it would be less costly and faster than
performing bistatic RCS measurements. This approach to
bistatic RCS prediction would be beneficial to operations

such as the RATSCAT.

Statement. of the Problem

Tn 1965, Robert Kell presented a relationship between
monostatic and bistatic radar cross section which appears to
offer a means of predicting bistatic RCS using monostatic
measurements under certain conditions. The purpose of this
thesis is to verify the theoretical accuracy of Kell's
relationship and to determine the physical limitations with

which Kell’s method has practical application.

Scope

The basis for Kell’s method is developec first. This
development begings with a description of the monostatic-
bistatic equivalence theorem (MBET), the foundation of
Kell's method. Following this is the mathematical
formulation of Kell’s hypothesis.

The results from an investigation in which Kell’e

method is theoretically applied to specific shapes whose
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bistatic cross section can be accurately modeled are
presented. The accuracy of Kell'’s method when subjected to
rchanges in either bistatic angle, electrical sige, or

surface discontinuity will then be discussed.

Approach

The limitations of Kell's method can he found
theoretically by comparing computer generated bistatic radar
cross sections to the equivalent monostatic cross sections
produced using Kell’s hypothesis., Computer programs either
in use by Air Force agencies or developed from proven
monostatic and bistatiec RCS models will be used.

Kell suggests his method is most accurate in the high
frequency regime to about 10°* of bistatic angle using
targets dominated by specular returns (Kell, 1965:987).

This investigation will apply Kell's method to targets
meeting these conditions in order to verify the accuracy oaf
this method. The parameters of bistatic angle, electrical
size, angl2 of incidence, and surface continuity will then
be varied sn some of the limitations of Kell’s method might
be brought out. In the case of surface continuity, a target
with 90° wedges will be used to determine the limitations of
Kell’s relationship when surface discontinuities are

present.




Summary of Remaining Chapters
Chapter 1T ir a development of Kell’s method. Tt

begins with a description of the monostatic-bistatic
equivalence theorem (MBET). A review of the literature
regarding the MBET is taen provided. This is followed by
the mathematical formulation of Kell’s methnd.

Chapter TT] describes RCS models for the sphere, flat
plate, and cylinder for both the bistatic case and Kell's
equivalent monostatic case. Chapter TIT then presents the
results from the comparison of the two cases.

Chapter TV contains the conclusions reached from this

study and recommendations for further research in this area.




1I. Theory

Rackground

Robert Kell implies his method extends the monostatic
bistatic equivalence theorem (MRET) to include more general
cases (Kell, 1965:983). 1In an effort to offer a more
complete development of Kell’'s method, this chapter first
presents the MBET and documentation supporting the concept
of predicting bistatic RCS from monostatic RCS.
Unfortunately, there has been little research performed in
this area. Tt will be seen that the MBET relies upon
physical optics approximations, and therefore, it is
applicable to only those targets fitting into the
limitations set by physical optics techniques. The
development. of Kell's methad shows his approach relies upon
the interaction between individual scattering centers. Kell
wses the concept of reradiation lobe patterns of the
individual scattering centers to define the bistatic
scattering pattern in terms of the monostatic pattern and

bistatic angle (Kell, 1965:983).

Monostatic-Bistatic Equivalence Theorem

In general, discussions of bistatic RCS are divided
into two areas. The first is concerned with bistatic angles
less than 180°. The second case takes intc account bistatic

angles approximately equal to 180°. This is known as




forward scattering. Tt has significantly differen' behavior

than biatatic scattering and is not addressed in this study.
In considering the case where the bistatic angle is

less than 1R0°, Crispin and others developed what has come

to be known as the monostatic-bistatie equivalence theorenm

(MBEFT). Referring to Figure 1, this theorem claims as the
wavelength becomes small compared to target size the

bistatic cross sention obtained with a transmitter directjon R
and a receiver direction fi, approaches the RCS obtained wher
the transmitter and receiver are collocated at R + fi,

assuming the target is sufficiently smooth (Crispin and
others, 196R:158). More succinctly, the MBET is saying the
bistatic RCS is equal to the monostatic RCS in the direction
of the bisector nf the bistatic angle as the wavelength

becomes very small.

>

A
k+n,

hat X

Figure 1. Bistatic Scattering Geometry Depicting the
Bistatic-Monostatic Relationship
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Proof. Crispin offera the following proof for the MBET
(Crispin and others, 196R:158), Radar Cross Section as a
function of transmitter and receiver pesition is derived as
follows (Siegel and others, 19558:10). Assuming the surface
of the scattering body is perfectly conducting the equation
for the scattered magnetic field is given hy

: _ L-ikR

=~
1]

where H_. = scattered magnetic field

>
"

the unit vector normal to the surface

H; = tangential component of the magnetic field
on the target's surface

o
H

distance between the receiver and the
integrat on point

k = 2n/% (wave number)

4]
it

region of integration (target’s surface)

Ry assuming the incident field is an infinite plane wave, it
can be approximated as twice the tangential component of the
incident megnetic field on the illuminated side. Letting
the inc.dent magnetic field have a magnitude ﬁs and

direction & 8llows ﬁt to be written as

H, = 2TlHoe'ik(f - T7)

on the target's (2)
illuminated side

"
o

on the target'’s shadow side
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where R =2 a unit vector directed from the Lransmitter,
asnsumed to be in the far field, to the origin of
the coordinate ayatenm

T’ 2 radius vector from origin to any point aon the
target's surface

ft=ﬁ-(ﬁoﬁ)ﬂ

Using far field approximation=s

~ikR

2 (e kR o lik.e T (%a)
=
and
R = R’ - Cosa, {3b)

where R’ = Jdistance from the origin to the receiver.

i, = a unit vector directed from the receiver to the

° origin

i, * ¥’

Cosno sz - —o_
|7

Letting H, = 1, substituting eqs.(2) and (3) into (1) gives

L-ikRT _

Hge = R F (4)

where F=ikia, « 6T - (8, + DA (5a)
_ ikT o (Ag+R) |
and f = fie ds (5b) ‘
s’ i

-

8 = illuminated region of the target

10
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The RCS can now be expressed as (Crispin and others,

1968:138)
o= an[[F ]2+ |F ]2+ |F,12) (6)

In Figure 1, the tranamitter is placed on the 2 axis
and the receiver js constrained to lie in the y-» plane.

With this configuration the monostatic case is defined by

fi, = §Sin® - %Cosne (Ta)
R = $#5in® - 2Cose (7b)
A = RCase + $SineCos® + £SineSine® {Tc)

while in the bhistatic case

A, = §Sin2e - 2Cos2e (8u)
R = -% (8b)
& = RCose + $Sine {8c)

Considering the vector f as the wavelength becowmes small

compared to the target

(A +R) -
= - -_O— I[eikr . (ﬁOQR,hS (9)
la,+r| Js”

For the monostatic case, eq. (9) becomes

T=5 J‘[?ik?‘ " (RotRly, (10)
8

11




And in the bistatic case, eq. (9)tbﬁchnes

s'

where fi = $Sin® - RCos®
Evaluating eqa.(10) and (11) by atationary phase yields

T

[§ASin® - 2AC0x®] exp(ikC) (monoatatic case) (12)

-
"

[SATAan® - 2A] exp(ikC Coae) (bistatic case) {(13)

Subhstituting eqs. (7) and (10) for the monoatatic case into

eq. (5)
F - ik [Aaikc(§C039 + 9SineCon® + BSineSine] (14)
Zn

Applying eq. (14) to eq. (6) gives the monostatic RCS

op =(kA)Z/x (15)

Now, substituting eqs.(8) and (11) for the bistatic caae

into eq. (5)

F = %% [A exp(ikC Cos®)][(Sin®Sin20)(9Tane® - %)

- (Tan®Sin20® + Cos20)(RCose + $Sine)] (16)

Again, applying eq. (16) to (6) gives the bistatic RCS

op = (kA)3/x (17)

12
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Comparing eqa. (15) and (17), it can be seen that an
wavelength becomes amall compared to target sige the
monoztatic RCS taken on the bimector of the histatic angle
is equivalent to the biatatic RCS.

The equations the MRET ia developed from, eqs. (1) and
(2), are derived using physincal optica techniques (Siegel
and otherg, 1983:10). Therefore, the MBET is valid only if
the reatrictions required by physical aoptics are satisfied.
Those restrictions are given bhelow {(Skinner and Jost,
1988:2):

1. e target must have a large enough RCS that higher
order effects do not make a significant differenne.

2. The target must he significantly larger than a
wavelength.

3. A significant amount of the target's surface should
be within approximately 45° of the normal of the bizector of
the transmitter and receiver,

4. The target must be perfectly conducting.

These restriction limit the applicability of the MBET. Two
studies were found, however, in which the MBET was used to
determine bistatic RCS.

Documentation supporting the ET. Biggs and McMillen,
in their efforts to formulate the bistatic RCS of a prolate
spheroid, found the MBET returned accurate results. The two
discrepancies these researchers noted when comparing

measured data with data obtained using the MBET were within

13
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one percent and were attributed to the fact the MBET
requires the target be infinitely reﬁnved from the
traﬁsmitter and the receiver. When it is not, the bistatic
receiver is not looking at the exact same spot as the
monostatic receiver (Biggs and McMillen, 1979:13).

Coleman, while testing an aircraft RCS computer
prediction method, MISCAT TT1T1, against mea§Ured;aaha of the
F-5 aircraft, fnund‘histatic angles Qp to 16°* had iittlﬁ’

effect on the RCS. This made the MBET aﬁtractive. By

taking advantage of this‘hpproximation he was able to reduce =

program running time for the bistatic case for small
bistatic angle to that of the monostatic case. . At'the.same
time, he was able to resolve some inaccuracies by avoiding
certain elements within the bistatie RCSsderigation

{(Coleman, 1977:34).

Tn the process of applying the MBET, Coleman developed -

error estimates for parallel, perpendicular;_and cross
polarizations. His intéfpretﬁtion of'ﬁhe error egtimatgs
reach the same conclusions that Kell does in theAdevelopmeﬁt
of his approach. First, the RCS is determined by the |
relationships between scattering center. The second, that
the equivalent monostatic RCS includes the factor Cos(£/2)
where B is the bistatic anglé (Coleman, 1977:45). ‘

Kell'’s Method

_——

Kell developed a method to obtain bistatic RCS using

monostatic RCS measurements. His method uses the concept of

14
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reradiation lobe patterns from individual scattering centers
to define the bistatic RCS in terms of monostatic patterns
and the bistatic angle. Kell's approach uses the MBET by

relating the bistatic RCS to the monostatic RCS viewed on

[ , S

the bisector of the bistatic angle by a factor of Cos(B/2)

(Kell, 1965:983).

Mathematical formulation. The geometry Kell used is

given in Figure 2.

TRANSMITTER X

TARGET
CENTROID

RECEIVER

Figure 2. Bistatic Coordinate System with Antennas
‘ in the x-z Plane

It can be seen in Figure 2 that Kell aligns the bisector of i

the the bistatic angle, B, and the centroid of the target

along the z axis. Applying the Stratton-Chu equation for

15
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the scattered magnetic field to this geometry, Kell arrives

at the following expression for the bistatic RCS (Kell,

1965:985)
x 2

o= — T(z) exp[ik2zCos(B8/2)] d= (18a)
X

where

T(z) =I[(ﬁ x hg) x Fo(d®) + (Ashg)(e®)f

0

- (A x §)e'®] x p(e,z) de (18b)

The derivation of eq. (18) can be found in appendix A.

Kell made the following observations regarding eq. (18)
(Kell, 1965:985):

a) I{(z) is an exact description of the surface
geometry, illuminating and observing ray geometry, and
surface wave propagation effects

b) While eq. (18) has the form of a physical optics
expression it is not a physical optics expression because
I(z), in this case, is exact as opposed to a physical optics
approximation

c) Eq. (18) can be divided into a sum of subintegrals
whose end points correspond to scattering centers. The end
points of each subintegral are determined by the range in 2z

over which the respective integrands are continuous.

16




According to Kell, the phase of a given scattering
center plays a large role in the contribution that
scattering center makes to the total RCS. The magnitude of
the contributrion of an individual scattering center to the
overall return is directly related to the area covered by
the scattering center. The size of the area of the
scattering center is directly related, in turn, to the phase
of the scattering center, All points with phases within =n/2
of the scattering center’s phase contribute positively with
the scattering center’'s returé. The greater the area within
n/2 of the scattering center’'s phase the greater the
contribution from that scattering center. This concept
applies equally to both monostatic and bistatic RCS
(Kell, 1965:985).

Differences will often arise between bistatic RCS and
monostatic RCS viewed on the bisector of the bistatic angle
as the bistatic angle changes. Kell relates these
differences to the following changes in the scattering
centers (Kell, 1965:985):

a) Changes in the phase of scattering centers relative
to other centers

b) Changes in strength of the radiation from a given
scattering center

c) Change in the number of scattering centers.

Looking at eq. (18), phase is clearly dependent on the

bistatic angle by a factor of Cos(B/2). Kell couples this

17
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factor with the wave number k and then views a change in
bistatic angle as a change in wavelength. As the relative
wavelength changes with bistatic angle the area within n/2
wavelengths of the scattering centers also changes (kell,
1965:985) .

The radiation strength of a scattering center is
dependent on the strength of the surface current, among
other things, at that location. With changes in the
bistatic angle there can be changes in the tangerntial
components of the incident field reshlting in a change 1.
the surface currents.

Kell describes the appearance and disappearance of
scattering centers as aspect angle and target geometry
deperdent and declines further explanation (Kell, 1965:985).

The determination of bistatic RCS. Kell approximates

the target by breaking it into a collection of discrete
scattering centers. Those centers directly illuminated by
the incident wave are termed simple centers while those
illuminated by reflections from other parts of the target
are termed reflex centers. Kell's addresses only the simple
scattering centers. Using the concept of discrete
scattering centers, Kell then derives the total RCS by
summing the product of the individual center’'s RCS and a

relative phase term (hell, 1965:986):

M 2
o = lzluo,,,)l/z explisgy)] (19)
ms=

18




total RCS

where o
M = number of discrete scatterers

RCS of the m"h scattering center

Q
n

phase of field scattered by the mth center
relative to that scattered by the first center,
and where o, is evaluated for the desired
polarization,

ITn examining the relations between the monostatic and

bistatic RCS for a given aspect angle ®, Kell expresses the -

individual scattéring center’'s phase in eq. (19) as a two-

term sum (Kell, 1965:986):

om = 2kz2(@)Cos(8/2) + & (20)
where z, (@) = distance between the mth and the first phase .
center, projected on the bistatic bisector
axis :
£, = residual phase contributions of the mth

center

The bistatic RCS for scattering centers that do not move
with changes in bistatic angle can now be written as (Kell,
1965:986)

M 2
a(e) =|3 (0,12 expli2kzy(@)Cos(B/2) + ik] (21)
m=1

Kell uses eq. (21) to make a statement for monostatic-
bistatic equivalence and the conditions required for its
occurrence.

If for a chosen aspect angle, the following conditions
hold:

19




1) The RCS may be written as a squared sum of fields
from discrete scattering centers, and

2) The amplitude o, , position z,, and residual phase
€, are insensitive to the bistatic angle B over the
range of B considered, for those centers which are
significant members in this sum;

it then follows that the histatic cross section of
aspect angle © and bistatic angle P is equal to the
monostatic cross section measured on the bisector at a
frequency by the factor Cos(B8/2) [Kell, 1965:987].

Implementing Kell's method. The step-by-step process

to employ Kell’s method calls for first measuring the
monostatic cross section as a function of aspect angle and
at a frequency higher than the one desired for the histatic
data by a factor of Secant(B/2). The reason Kell raises the
frequency can be seen in eq. (18). As previously explained,
phase changes are indicated by the factor Cos(B8/2)
accompanying the wave number k. This can be considered a
change in wavelength or frequency corresponding to a change
in bistatic angle. The measured monostatic data is then
translated along the aspect angle axis B/2 degrees and the
measurement frequency is reduced by Cos(B8/2) (Kell,

1965:987).

Summary
It was demonstrated theoretically that the MBET

provides a relationship between monostatic and bistatic RCS
when physical optics approximations are valid. The utility
of the MBET for small bistatic angles was shown in the work

performed by Coleman.

20




Kell's method approaches the problem of equating
bistatic RCS and monostatic RCS in much the same way as the
MBET in that it uses the same scattering geometry and is in
the high frequency regime. Unlike the MBET which
approximates surface currents to determine RCS, the
theoretical basis for Kell’'’s method lies in the summation of
the contributions from individual scattering centers. His
mathematical formulation of this hypothesis is exact up to
the point where he makes far field approximations and
evaluates the histatic RCS integral using stationary phase
mehtods. According to Kell, the change in the contributions
from the scattering centers with changing bistatic angle is
due in large part to changes in the relative phase of each
scattering center. For small bistatic angles, Kell reports
phase will change by a factor of Cos(B8/2). Kell noticed
that the Cos(8/2) factor occurs with the wave number k.
Viewing this as a change in frequency, Kell hypothesizes
that monostatic RCS is equal to bistatic RCS when the
frequency of the monostatic case is increased by a factor of
Sec(B/2).

Kell’s method could be tested theoretically by
romparing computer predicted monostatic cross sections to

bistatic RCS predictions.

21
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I11. Results

There are proven RCS prediction methods that can
accurately approximate bistatic RCS as well as monostatic
RCS for certain shapes. Kell's hypothesis can be tested by
comparing data derived from bistatic prediction methods with
that obtained from monostatic approximations at
appropriately adjusted frequencies and aspect angles. Three
simple shapes are used to prove the accuracy and limitations
of Kell's hypothesis. These are the sphere, square flat
plate, and right circular cylinder. An exact soslution is
used to predict the RCS of a sphere, physical optics methods
are applied to approximate the RCS of a square flat plate,
and, finally, the RCS of a right circular cylinder is

obtained using geometrical theory of diffraction techniques.

Testing Kell's Hypothesis

Kell’s hypothesis can be tested theoretically by
comparing the predicted bistatic RCS to the predicted
monostatic cross section at the bisector of the bistatic
angle. The bistatic RCS is calculated for each target at
designated angles of incidence with the bistatic angle
varying from 0° to 60° in 1° increments for the square flat
plate and the cylinder while the range of bistatic angles
for the sphere is 0° to 90° in 1° increments. All bistatic
RCS predictions are made at a constant frequency.

Monostatic RCS predictions are made at aspect angles equal

22
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to the designated angle of incidence plus half the bistatic
angle. The monostatic RCS prediction frequency is increased
by a factor of secant(8/2) (B = bistatic angle) above the
frequency used for the bhistatic case.

The accuracy of Kell's theory can be determined by
comparing the data obtained from each method. A plot of
bistatic RCS and monostatic RCS versus bistatic angle at a
given angle of incidence shows how closely Kell'’s equivalent
monostatic RCS coincides with the bistatic RCS as bistatic

angle increases.

Sphere

Approach. In the case of a perfectly conducting
sphere, the exact solution for the bistatic cross section of
a plane electromagnetic wave is taken from the Mie series.

It is (Bowman, 1969:400)

ole,s) = 1% [IS](O)!2C052(¢) + |82(o)|28in2(¢)] (22)
k
where,
® (-1)" 2n+1 aP;(CosO) P;(Cose)
§y = -1 %% nin+l) [bn a6 ~ 8,7 Sine ,] (23)
= (-1)"(2ns1) [, Pn(CoS®) ap! (Cose)
Sp = igg% n(n+l) [bn Sine _ 2*n~ Je ] (24)
23




® z bistatic angle

¢ ¢ angle hetween plane of sgattering and the plane
containing the incident E field and the direction
of incidence

and (Knott, 1985:90)

jn(ka)

a_ = (25)
n hil,(ka)

kajn_l(ka) - njn(ka)

b = (26)
1 ]
n kah;-:(kn) - nh: )(ka)
with
jn(ka) = spherical Bessel function
h;l)(ka)= spherical Hankel function of the first kind
k = 2r/» (the wave i1:umber)
a = sphere radius
For the monostatic case, eq. (22) reduces to (Bowman,
1969:401)
_4x < (1-)"2n+1 2
o= =5 2.- n(n+l) (b —a)) (27)

The geometry describing scattering from a sphere is

given in Figure 3.

24
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Figure 3. Scattering Geowmetry for a Sphere
(Knott, 1985:89)

Two computer programs given in Appendix B were used to
derive the RCS of various sized spheres. One program, a
product of Ohio State University that is used on the Wright-
Patterson AFB indoor radar range for calibration purposes,
gives an exact solution for the radar cross section of a
sphere for any number of
bistatic angles. For this study, the bistatic angle was
varied from 0° to 90° in increments of 1°. The second
program is a modified version of the first program. It
computes the monostatic RCS of a sphere over a range of
discrete frequencies with each frequency increased by a
factor of secant(8/2) over the previous frequency. B8 is the

bistatic angle and ranges from 0° to 90° in increments of




1°. Varying the frequency in this way directly relates the
equivalent monortatic RCS data in a one-to-one
correapendence to the bistatic RCS obtained for each
bistatic angle. A

Figures 4 through 27 gshow the relationaship between
bintatic RCS and the RCS obtained using Kell's method. Six
sphere gizes of ka eqﬁnl to 1, 3, §, 10, 30, and 50 at 10
GH2 were examined using hori:on\ai and vertical
polarizations.

Near resonant sjze gpherg.:g!glss. A comparison of
Figures 5 and 7 sﬁou there is a significant difference
between vertically and horizontally polarized bistatic RCS

and between bistatic and monostatic RCS for an electrically

~ small sphere (ka = 1). The differences are caused by

creeping ugvéa. For a vertically polarized field as shown
in Figure 4, boundary conditions for a perfectly conducting
surface require the tangential odnponent of the surface

electric field to be zero in the x-y plane.

L.+

Figure 4. Creeping Wave Scattering in the x-y Plane




Therefore, vertically polarized creeping waves
contribute to the monostatic RCS, but as the bistatic angle
increases in the x-y plane, creeping waves no longer acatter
in the x-y plane and the bhiastatic RCS decreasesa.

For horizontal polarization, Figure 7 demonstratea the
creeping wave continues to contribute az the biatatic angle
increases. In the case of ka =1 (Figure 7), the phase of
the creeping wave i) relatively insensitive to changes in
bistatic angle. This allows the creeping wave contribution
to equal that of the monostatic case at bhistatic angles
greater than 45°.

The effects of creeping waves can also he seen in the
RCS data for spheres ka = 3 (Figureas 9 and 11) and ita = §
{Figures 13 and 13)., The horizontally polarized crecping
wave continues to contribute to the RCS, however, creeping
wave phase is becoming more sensitive to changes in bistatic
angle as the sphere becomes larger. Bistatic and monostatic
RCS are in agreement to approximately 35° of bistatic angle
for ka = 3 and only 8° of bistatic angle for ka = §. For
the case of vertical polarization, the bistatic and
monostatic RCS begin to diverge at 1 to 2 degrees of
bistatic angle for ka=3,5.

This data demonstrates Kell'’s relationship cannot
account for creeping waves that are polarization dependent

and, therefore, is not suitable for electrically small

%

targets.
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Large sphere results. The equivalent monostatic cross

section values are very close to those predicted for the
bistatic case. Muchrof the slight differences between the
two cases are caused by creeping waves. This can be seen in
Figures 17, 19, 21, 23, 25, and 27. Attenuation due to the
larger electrical path lengths cof these larger sphéres
causes the reduction in creeping wave effects. Looking at
Figures 18, 20, 22, 24, 26, and 28, Kell’s method is very
good well beyond 10°* for doubly curved surfaces with no

surface discoatinuities and at high frequencies.
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Bictatic RCS and Equivalent Monostatic RCS

8.9 4
9.0 o
8.7 «
.8 o
03 -
0.4 4
8.3
0.2 o
0.4 =

L AR
-8.8
-$.3 4
-$.4 o
-0.9 «
-2.8
2.7
-$.8 <
-0.0 4
-t

- » » « - = ”» ) w
SIRTATIC ANILE COETA) dog

Figure 22.

Sphere (ka=30; Vertical Polarization):
Difference in RCS (Bistatic - Monostatic)




I N e

«44.0
-ty ? 4
«qe B o
-9 o
I ..
-0
-9%.2 -
-%.3 «
." b L) A LS L] A i\J v L ] E
® » » » -« » «» » [ ] [
OISTATIC AR CUETAY 9%y
8 WITTATIC S + WDGETATIC A

Figure 23. Sphere (ka=30; Horimontal Polariszation):
Bistatic RCS and Equivalent Monostatic RCS

%
84
|

T 0w ® W e ®» =
BISWTIC ELE COITD) v

Figure 24. 8phere (ka=30; Horizontal Polariszation):
Difference in RC8 (Bistatic - Monostatic)




-y o

-8 «

(3

"~ ¢

\] v Al . i A . v v .
[} - » » -« » » » L] -
BISTATIC MER.E COETA) @0
0 EHTIC S + UWDOEWTIC uE

Figure 25. Sphere (ka=50; Vertical Polariszation):
Bistatic RCS and Equivalent Monostatic RCS

. - ®» W @ ®wW ®w ®W w =
SIGTATIC MR COITA} @ig

Figure 26. Sphere (kaz350; Vertiocal Polarisation):
Difference in RCS (Bistatic - Monostatice)

40




.
- o
B
-3 4
- o

o8 o

s (awy

-§ o

o8 =

-8 -

w ® W ® W e n ®» w
SWEWTIC NRR CUET) w0
®m WTWriC e MMEETATIC RER

Figure 27.
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Approach, Using the geometry given in Figure 29, the
bistatic RCS for a perfectly conducting square flat plate is

expressed as

2
2
. a’ .y Sin{(ka/2)(Sin® + Sin(0+
0z 4r [k Cos(®45) Tha/2)(Sine + n(6d ] {28)
where
® & angle of incidence
f = bistatic angle
a = length of side

Figure 29. Bistatic Scattering Geometry for a
Square Flat Plate

The equivalent monostatic cross section uses a
diffcrent geometry, shown in Figure 30, because Kell's
method requires the monostatic aspect angle bisect the

bistatic angle. This changes eq. (28) to

42
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Figure 30. Equivalent Monostatic Scattering Geometry
for a Square Flat Plate

The derivation of eqs.(28) and (29) can be found in
appendix C. These are physical optics approximations.
Using physical optics to compute the RCS of a flat plate
limits the size of the angle of incidence that can be
accurately modeled to about 40° from broadside (Knott,
1985:174). This is because physical optics does not account

for edge effects (Skinner and Jost, 1988:8).

Only one polarization is used, E field in the x-2
plane. Because edge effects are not considered and the
plate is square as opposed to rectangular, Kell’s method can

be adequately described with one polarization.
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Flat plate results.

incidence moves away from broadside.
incidence,

Tt can be seen in Figures 31
through 42 that Kell'’'s method degrades as the angle of
angle.,

Figure 31, broadside
shows Kell’s method holds beyond 20°* of bistatie

When the angle of incidence is between 8° and 24°
nulls,

from broadside, Figures 33, 35, and 37, the lobe maximums
however,

are in close agreement to about 16° of bistatic angle.

are significantly different.

The large

20° of bistatic angle in the plots showing the difference

The
differences in nulls cause the oscillation between 0° and
between bistatic and equivalent monostatic RCS,

and 38.

Figures 34,
The agreement between bistatic and equivalent

Figures 39 and 41,

monostatic RCS breaks down before 10° of bistatic angle as
the angle of incidence from bros:dside becomes large.

From

the first null as was seen at smaller angles of incidence;

significant differences begin to occur at
the second lobes, however, do not agree.

g T T T T T . [ e . . [
o I ! i . Py I . PR
. W : I ¥ i . ; ! N |
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Figure 31. Square Flat Plate (© = 0°): Bistatic RCS o
and Equivalent Monostatic RCS
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Figure 32. 8Square Flat Plate (® = 0°)
Difference in RC8 (Bistatic - Monostatic)
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Figure 34. Square Flat Plate (0 = 8°):
Difference in RCS8 (Bistatic - Monostatic)
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Figure 35. 8quare Flat Plate (© = 16°): Bistatic RCS
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Figure 36. 8Square Flat Plate (0 = 16°):
Difference in RC8S (Bistatic - Monostatioc)
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Figure 38.

S8quare Flat Plate (0 = 24°):
Difference in RC8 (Bistatic - Monostatic)
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Figure 42. 8Square Flat Plate (® = 40°):
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Cylinder

Approach. The RCS of a perfectly conducting right
circular cylinder is dominated by diffraction at most aspect
angles. For this reason, the geometrical theory of
diffraction (GTD) is used to calculate its cross section
{Anderson, 1965:3-21). According to GTD, the illuminated
edges of the cylinder shown in Figure 43 as Sy, Sp, and Sj

are the major contributors to the cylinder's RCS (Anderson,

1965:3-21).

Figure 43. Cylinder Geometry

The directions of incidence and reflection are constrained
to lie in the x-y plane. The electrical polarization is
vertical when in the z direction and horizontal when in the
x-y plane (Anderson, 1965:3-21).

The RCS of a perfectly conducting right circular

cylinder is expressed in eq. (30) (Anderson, 1965:3-22).
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o = 4n |PedPl 4 PPz o P3er3| 2 (30)
where
pedPl 2 52 ei“/43in(2n/3)[_ a ]1’2
1 - '3 (2“)1/5 Siné + Sin(e+58)

x exp{-i2k[a(Sin® + Sin(6+8))
+ h(Cos® 4+ Cos{6+8))1]}
x {[Cos(2n/3) - Cos(28/3)]"]

¥ [Cos(2r/3) - Cos(2(n+20+8)/3)1°1} (31a)

Pz"jpz = *ga e1“/4Sin(12/12t/3) [Sine n ;in(e+8)]1/2 :
(2rk)
x exp{-i2k[a(Sin® + Sin(e+8))
- h(Cos® + Cos(®+8))1)
x {[Cos(2nr/3) - Cos(28/3)]1"!
¥ [Cos(2r/3) - Cos(2(26+8)/3)171} (31b)
PaedPf3 = 1723 e-i“MSirll(/i“/a) [Sine n gin(ew)] e

(2rk)
x exp{i2k[a(Sin® + Sin(e+8))
- h(Cos® + Cos({6+8))])
x {[Cos(2m/3) - Cos(28/3)1}
T [Cos(2nr/3) - Cos(2(n-26-8)/3)]"1}) (31c)

@ = angle of incidence in degrees from end-on :
B = bistatic angle

h = half the cylinder's length
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cylinder’s radius

=
"

2n/» (wave number)

Analytic sinzularities occur att © = 0* and e = 90°
in eqs. (31a)-(31c). Therefore, at © = 0', the RCS is

computed using eq. (32) (Anderson, 1965§:3-29).
o = nlka2Cos(8/2)1% (32)

At © = 90°, because only edges S; and Sy are illuminated,

eq. (30) reduces to (Anderson, 1965:3-2%)
o = 4kah%Cos(8/2) (33)

The derivations of eqs. (31a,c,b), (32),and (33) are given
in appendix D. Computer data generated from eqs. (31)-(33)
Was compared to measured data for the monostatic and
bistatic case (B = 10°*). The predicted monstatic case was
within 3-dB of the measured data between 4° and 86° of end-
on while the predicted bistatic case was within 5-dB over
the same range of aspect angles.

Cylinder results. It’s obvious something is amiss when

viewing Figures 44 and 45 in which the angle of incidence is
end-on. The disparity arises from how the two cross
sections are calculated. In the bistatic case, eq. (32) is
used for all bistatic angles. The equivalent monostatic
case calls for eq. (32) when the monostatic angle of
incidence is equal to 0°, but when beta does not equal 0° it

uses eq. 30. In doing this, the bistatic RCS is calculated
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as if the target is a disc which allows the use of the
physical optics approximation given by eq. (32). The
equivalent monostatic RCS is calculated the same way when
the angle of incidence is end-on, but once the equivalent
monostatic angle of incidence is no longer exactly end-on
the target becomes a cylinder and GTD approximations are
applied. Tn short, scattering for the equivalent monostatic
case is being modeled as either purely specular or purely
diffraction. Neither of these conditions is likely at small
angles from end-on. For this reason, no conclusions can be
drawn regarding the accuracy of Kell's method when either

the angle of incidence or bhistatic bisector are end-on.
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It can be seen in Figures 47-65 that Kell's method is
polarization dependent. Vertically polariszed cross sections
are smooth curves while horisontal polariszation produces
rapid fluctuation with deep nulls. This results from the
fact that the scattered fields from a right-circular

cylinder are polarization dependent.This is demonstrated in
Figure 46.

otirite i

%

r . s
1
g 7 e
1881000 T-FLARE r 4
Voge. a BAVE ' -

yErvigar Potaiigavion NQRI2GETAY PLANITATIR

b7
-
[ -
-
[
L

o
e

0.0! .9 y
[

[ ]
‘
-
[]
[ J
e
g

———t

00048 CPOBS SECTION OF Scavitnins cntas T (1.2
RASR €O0SS SECTION OF SCATICHING CONTERS S3- (4 )

\ [ ]
N/
s.con /xk 9.¢00! — -
® 10 20 20 W $0 63 70 80 80 ® 10 20 2 W $9 0 0 20 9

A2INgTH SSPECT Basil - (BECRELS)

Figure 46. GTD Applied to Right-Circular Cylinder to Show
Contributions froa Illusinated Edges
(Anderson, 1965:3-28)
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The plots shown in Figure 46 depict the RCS magnitude of
each of the major scattering centers with respect to aépéct
angle. The vertically polarized RCS is dominated by the
return from S; except at end-on and broadside. Therefore,
the fluctuations in the cylinder’s vertically polarized RCS
are governed by changes in phase from S; as the aspect angle
changes. This results in relativelyvsmooth curves whid%ﬂcan
be seen in Figures 47, 51, 55, 59, and 63.

When the polarization is in the horizontal direction,
Figure 46 shows that the RCS is no longer dominated by one
scattering center but is a combination of two or three
scattering centers at all aspect angles. With each change
in aspect angle there will be a change in the phase of the
scattered fie.ds from each scattering center. Combining the
hases from each scattering center produces an overall phase
that is sens!tive to aspect angle changes. This results in
rapid fluctuations in RCS which can be seen in Figures 49,
53, 57, 61, and 65. Because of the sensitivity to aspect
angle, the equivalent monostatic case does not track the
bistatic case well.

Kell’s relationship holds up better for vertical
polarization because the relative phase between the
cylinder's scattering centers is less sensitive to changes

in aspect angle than the horizontal case.
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When the angle of incidence from end-on is 30°, Figures
49-52, the vertically polarized cross sections are in close
agreement through 10° of bistatic angle as before. The
lobes of the horizontally polarized cross sections have
about a 1-2 dB difference to about 10° of bistatic angle,

however, the nulls are significantly different at 5°

bistatic angle.

Another observation can be made regarding Figures 47-
65: as the angle of incidence apbroaches broadside the
bistatic angle for which the bistatic and equivalent
monostatic RCS agree becomes larger. This concurs with the
data obtained for the square flat plate. For both vertical
and horizontal polarizations near broadside, the
contribution from scattering center S3 is negligible while
S1 and Sy have similar diffraction coefficients and phase.
This results in low sensitivity to changes in aspect angle
and good agreement between bistatic and equivalent

monostatic RCS.
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Cylinder (® = 15°; Vertical Polarization):
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Cylinder (©=15°; Horizontal Polarization):
Bistatic RCS and Equivalent Monostatic RCS
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Cylinder (0=15°; Horizontal Polarization):
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Cylinder (@ = 30°; Vertical Polarigation):
Bistatic RCS and Equivalent Monostatic RCS
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Cylinder (o= 30°; Horizontal Polarization):
Bistatic RCS and Equivalent Monostatic RCS
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Figure 59. Cylinder (® = 60°; Vertical Polarisation):
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Figure 61. Cylinder (®=60°;Horisontal Polarization):
Bistatic RCS and Equivalent Monostatic RCS8
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Figure 63. Cylinder (® = 75°; Vertical Polarization):
Bistatic RCS and Equivalent Monostatic RCS
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It can be seen in Figures €67 and 68 that the same

problems occurring at end-on also occurred at broadside.

The only difference between the two is that broadside

bistatic RCS umes eq. (33) while end-on uses eq. (32).
There is little difference, though, in these equations and

the overall effect in the same.
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IV, Conclusion

The purposc of this study was to investigate the

appliccbility of Robert Kell’'’s method under varying}J

conditions. ‘The mathemathical formulation of Kell’s_w

relationship was first examined. This was done by

prpqentlng the proof. for the monostatlc blqtat1c equ1Va1enoe

theorem (MBET), the foundation of Ke]l's methnd, and
research supporting the MBET. It was brought out that thélQ ;AiE
MBET is a physical optics approx1mat10n and therefore, iﬁcf

is limited by physical optics requlrements. -The

ma .nematical formulat:on of. kell’s method was. then ,.l : 7

rresented. With this formulatian it was shown Kell’s method

does not rely on approximations of the scattered fields but

upon the scattering centers .of the ﬁarget. The accuracy of

I A R i = — T T BT . K3
R - SRR R e " T o . o '
: ; e ) i

15

Kell’s method is depéndentuupqn the behavior:bf the

individual scattering centers relative to euch other as the

;
ty

histatic angle changes ‘
Kell'’'s method was tbeoretlcally applied to three shapes

of varying complexity to determine some "of its limitations.

e 7 T T
e “prp—— -

The sphere was used to show how weil Kell’s method predicted
bistatic RCS for clectrically small targets as compared to
large targets. Also,‘the effects of creeping waves were
examined. A square flat p]ate was analyvzed to investigate
the effects angle of incidencaz have uporn the accuracy of

Kell's method. Finally, a right circular cylinder was
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studied to determine what success Kell'’s method would have

predicting the bistatic RCS of a target containing surface

discontinuities. T

Conclusions

This investigation was conducted to determine the o

applicability of Kell’'s method as certain parameters were "

changed. These parameters are bistatic angle, electrical f
size of the target, angle of incidence, and surface B
continuity. The following conclusions were reached.

Bistatic Angle., Kell claims his relationship works

best when the écattering centers are insensitive to changes
in bistatic angie. The scattering centers of an
eiectrica]iy large sphere are insensitive to changes in

‘ bistatic angle relative to one another at high frequencies.
As a result Kell's relationship proved to be quite accurate
for spheres a£ high frequenoies beyond bistatic angles of

80°. The scattering center of the flat plate and circular

cyvlinder are least sensitive to changes in bistatic angle at
high frequencies near broadside incidence. Under these
condition, Kell’s relationship was accurate (less than 2-dB
difference between bistatic and equivalent monostatic RCS)
to 20° of bistatic angle for the square flat plate and 30°
for the cylinder.

Electrical size. The sphere was the target shape used

to predict the accuracy of Kell’'s method when the electrical
size of the target is varied. It can be seen in the data
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that good accuracy, less than 1-dB difference for both
horizontal and vertical polarization did not oceur until tﬁe
sphere became large (ka = 10). Much of the inaccuracy for
smaller spheres can be attributed to the inability of Kell's
method to account for creeping waves which have small effect
on the RCS of electrically large spheres.

Angle of incidence. It can be seen in both the flat

plate and cylinder data that the bistatic angles for which
the bistatic and equivalent monostatic RCS agree decreases
as the angle of incidence increases from broadside. For the
flat plate some of the degradation in agreement between the
bistatic and equivalent monostatic RCS is attributable to
the inability of physical optics to accurately model RCS as
the angle of incidence from broadside becomes larger than
45°*., TIn the case of the cylinder using horizontal
polarization, the difference between bistatic and monostatic
RCS is due to the interaction of the diffracted fields from
the scattering centers. As the aspect angle approaches end-
on to the cylinder the diffracted field becomes more
sensitive to changes in aspect angle and Kell’'s relationship
loses accuracy.

Surface continuity. The agreement between bistatic and
monostatic RCS becomes polarization dependent when surface
discontinuities in the form of 90° wedges are present. The
relative phase between scattering centers was sensitive to

changes in aspect angle when horizontal polarization was
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utilized. This resulted in poor agreement between the
bistatic and equivalent monostatic RCS. Because one
scattering center dominated the RCS when vertical

polarization was employed,‘the relative phase between

scattering centers was insensitive to changes in aspect

angle giving better agreement between the bistatic and

equivalent monostatic cases. Overall, Kell’s relationship L
produced better agreement between bistatic and monostatic <:{
RCS when the surface was electrically large and free of any
surface discontinuities such as a sphere’s than when
significant discontinuities such as 90° wedges are present.

Recommendations for Further Study

Other avenues of study to determine the limits of
Kell’'s method include:

1. A comparison of measured bistatic RCS data with
measured monostatic RCS data at appropriately adjusted
frequencies is a required step in the process of verifying
Kell's relationship. Initially, electrically large, simple,

and continuous shapes should be measured. These shapes

reduce higher order effects and their RCS is not affected by
diffraction from discontinuities. The complexity of the
shape can then be increased to include edges such as on
plates, discontinuous surfaces such as the mating of a
spheroid and cylinder, and multiple reflections like those
found in a hollow cylinder or corner reflector. Also,

various materials and polarizations could be measured using
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the same approach.

2. Using the approach this study followed, éiﬁher more
rigorous computer modeling of the simple shapes used in this
investigation or computer modeling of shapes resembling
aircraft such as cylinders with hemispherical or spheroidal
end—éaps could be examined. The RATSCAT has some bistatic
RCS measurement data of such shapes. Comparing their data
with data derived using Kell's relationship using computer
modeling would give a good indication of the accuracy of
Kell’s relationship.

3. Study the corresponding behaviors of the monostatic
and bistatic RCS keeping the bisector of the bistatic angle
oriented at a constant aspect angle to the target as the
bistatic angle increases. This approach could be used to
study the accuracy of Kell’s relationship when viewing a
particular surface discontinuity or to present the data

provided in a study such as this one in a different light.
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Appendix A

The following derivation presents the mathematical
formulation Kell employed in an effort to relate bistatic RCS ‘?3
to monostatic RCS.

Radar cross section can be expressed in terms of the
Poynting vector (Kerr, 1951:33):

¢

o = 4nR? l_?:Tll . (34) -

o = radar cross section
SS = back scattered Poynting vector

S! = jincident Poynting vector

For |§' = |ﬁ|(uo /eo)“/z) and taking the time average ]

value of S, eq. (34) becomes

s = (1/2)|E||H] (35)
av

and, therefore,

[(u./€,)(172) |78 212
o = 4nRZ ——2 | ,l (36)
[ (noy€0) 1/2) 1 12) /2

Reducing and assuming far field gives the starting !

point for Kell’s formulation:

0 = 4x lim Ry, —
Ro—>e I |2

(37)
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where Hp = H® = reradiated magnetic field
R, = distance to observer
Solve for ﬁﬁ using the Stratton-Chu eq?qtion (Stratton,

1941:466):
fip = 1[(i~eﬁ+3x Vv + =) _Ty)av
R ﬁ. v um
-Tj‘f[(ﬁxﬁs)wi+(ﬁxﬁs)vw

)

~iwe(fi x Eg)vl da (38)

M = magnetic current density

&l
n

electric current density
m = magnetic charge
Hg = magnetic vector on target surface

E. = electric vector on target surface

¥ = free space Green's function (elkrolro;
r. = distance from elemental area to observer)

o
If we assume there are no sources within the target volume
then Stratton’s equation can be reduced to give the right

hand side of Kell’s equation (2) given below (Kell,

1965:983):

f'.)_HR = - &J-S[(ﬁ x is) X ‘Zeikro + (A x ﬁs)yreikro
o

Ty

~iwe(f x Bg)(d%Fo)/r ] da  (39)

HR = magnetic vector amplitude of reradiated field

phase of reradiated field relative to chosen
reference
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da element of area on surface of target

>
"

unit vector normal to target surface and
pointing inward

Figure 69 relates the target to the incident and scattered
fields.

TRANSMITTER T"

/

_/,L de

KecENER

Figure 69. Bistatic Coordinate System with Antennas
in the x-z Plane (Kell, 1965:984)

Kell gives the relation between rijs Tor» Ry Ry, 2 and

B as

(ri¢+r,) = 22Cos(8/2) + 2(R{+R,) (40)
This is incorrect. The correct relationship is

(ri#r,) = 2zCos(8/2) + (R;+R,) as R; and R, == (41)
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Kell normalizes the surface fields by dividing by the

absolute magnetude of the incident field.

for illumination phase delay at each elemental area hy

dividing by e

(43).

For |§§
;|
|Eg|
7|

where
€g
Fs

¢

Using far

(44)

i(kri+¢)

'ikl o 1(krite)
|Hil

Loilkrgre) o

eg and

= Tg|E;| explilkrj+s))

= Es lil' exp{i(krite)])

= normalized electric vector

= normalized magnetic vector

He then accounts

This is summarized in eqs (42) and

(42)
(43)

= phase difference between the incident field
(either electric or magnetic) and the local

field at da

field approximations

o ik gikrg) o

Toa

And recognizing

|E; |

Equations

give

#, Hp = -&L [(A x F,|ii|ei(kri+’)) x £, (ike

= [H | (ng/€) (1/2)

(42)-(45) can be substituted into (39) to

ikro)/ro

+ (Ashg|T;le 1XTi*®))p (ke 1KTo0)/r,

- iwlug/€g)
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Rearranging the above equation gives
Pofp = - lH| ] (A x Rae M (*T*®)) » o (1ke*To)/r,
S
+ (Ahg e KTi*®) )0 (ixelkTo)/r,

- iwlngleg) A x g0 1IKTI*®) ) (e KT p Jaa  (47)

Knowing that w(uolto)llz 2 k and making the far field

approximation r, ~ R, , eq. (47) can be written

- |IH| j- - i
- . k(r;+r,.) ie
foHR : s [i(h x hge 170" ) x fo(e )

+ i(ARgeiK(FitTo) ) (d¥ )

- i(h x Tgelk(Ti*To) ) 44 (48)

Using the relationship given in eq. (41), the phase term

in eq. (48) can be rewritten as

eik(rjtry) _ i2kzCos(8/2) Jk(R{+R,) (49)

in/2

By writing the imaginary expression i as e and using eq.

(49), eq. (48) becomes

- |13 . - ;
#.Hp = -2—12:—; e WK(Ri*Ro)AR/Z | (8 x By x £,(d%)

+ (ﬁ-il-s)(ei')!‘o - (A x 5.)0“1

x eikZzCos(B/Z) da (50)

Any specific geometry will be dependent on ® and g,

therefore, eq. (50) can be rewritten using p(e,z), a
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conversion factor relating the surface element da, to the
differential coordinate product dedz to yield Kell'’s eq. (6)
with one difference, the e; s2 term:
= i ik(R;+R,) _in/2 = ie
f‘onz—ﬁ-(;;\-e 1o’ @ ff[(ﬁxha)xf‘o(e )
+ (Ashg)(ei®p, - (A x Tg)e 1Y

ik2z2Cos(B8/2) dedz

x pl®,z) e (51)

Using eq. (51) in (37) yields

o= 2 JiK(Rj*R,) _in/2 J‘f“ﬁ x By x Bole 19
kN

+ (Ashg)(el®)py - (A x Tgle ¥

ik22Cos(B8/2) dedz

x pl®,z) e (52)

By allowing the magnitude squared of elk(niﬂzO) e“‘/2 to
equal 1 and integrating eq. (52) with respect to ©, the RCS

is given by

g = —% IJ;(z) eizszos(B/Z)dz 2 (53)
DN

where

I(z) = Iuﬁ x g) x Bo(el? + (f.hg) (%2,

ik2zCos (B8/2) de

- (A x §)e’*) ple,z) e (54)
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The following comments can be made regarding eq. (53):

a) It has the form of physical optics.

b) The difference between eq. (53) and physical
optics lies in the fact that eq. (53) is exact. Rowever,
the T(2z) term in eq. (53) is not precisely known.

c) T(z) is a composite of surface geomet.ry,
illuminating and observing ray geometry, and surface wave
propagation effects.

d) The analytic continuity of T(z) significantly
effects 0 since eq. (53) may be subdivided into a sum of
integrals, each subintegral taken over a range of z withing
which its integrand is continuous.

e) Approximations of I(z) yield contributions
dependent only on the integral’s endpoints.

: f) The endpoints are the scattering centers.

From this logic, Kell proposes that RCS can be

computed from discrete scattering centers as shown below:
M : ) 2
o = IE: (om)l/zel’ml (55)
m=1

M = numher of scattering centers
o, = RCS of nth acattering center
*n = phase of field scattered by mtP center
relative to the phase of the first
scattering center
According to Kell, eq. (55) is used to determine the

relation between monostatic and bistatic RCS for a given

aspect angle ©. Expanding the phase term in eq. (55)
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"

2kz,Con(8/2) + &, (56)

distance between 1%t and mth acattering center

residual phase contributions (creeping waves,
ete,.)

ituting eq. (56) into (&5):

M on 2
o = if: (0,)1/2 iZkznCos(8/2) (57)
m=1

Kell uses eq. (57) to make a statement for monostatic-
tic equivalence and the conditions required for its
rence:

Tf for a chosen aspect angle, the following
conditions haold:

1) The RCS may be written as a squared sum of fields
from discrete scatteri? centers, and

2) The amplitude (o.) 2, position z,, and residual
phase £ are insensitive to the bistatic angle B over
the range of B considered, for those centers which are
significant members in this sum;

it then follows that the bistatic cross section of
aspect angle 6 and bistatic angle B is equal to the
monostatic cross section measured on the bhisector at a
frequency lower by the factor Cos(B8/2) [Kell,1865:987].
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Appendix R

This appendix presents the computer programs used to
calculate the bistatic and equivalent monostatic RCS of a
sphere. These programs were developed by Ohin State
Universit) in 1978, They were then modified by AFWAL for
use on the indoor radar range at Wright-Patterson AFB. The
first program, BISPH.FOR, computes the bistatic RCS.
MONOSPH.FOR is a modification to BISPH.FOR. It calculates
monostatic RCS at a frequency adjusated by a factor of
Sec(B/2) (8 = bistatic angle) to give a one-to-one

correspondence hetween bhistatic RCS and monostatic RCS.

THIS PROGRAM GENERATES SPHERE CALIBRATION DATA FOR
THE SWEPT FREQUENCY SYSTEM

OUTPUT---MAGNITUDE: 10LOG(RCS)-40; RCS IN SQUARE CM
PHASE: RADTANS; FROM SPHERFE CENTER

MODIFICATIONS: THIS PROGRAM WAS MODIFIED FOR USE ON A
PDP-11/23. OUTPUT IN NOW STORED IN ONE
2-DIMENSTIONAL ARRAY YM. THE PHASE IS
GIVEN IN RADIANS. OUTPUT GOES TO AN
UNFORMATTED FILE.

ioRoReoNoRoNoRoRe RoNo e Re Re Re |

COMMON BUFF,NDIM,ANST,AINC
COMPLEX ETH,EPH
charactert20output_file
REAL KA

DIMENSION AM(2000),PH(2000)
INTEGFR#2 INFILE(15)

BYTE BUFF(35000)

LOGICAL VHP,LBK

*DATA PI/3.141593/

DATA LT,LF/-1,0/
CONST=2.*PI*1.E9/300.E6
RTD=180./PI

s===DEFINE RANGE GEOMETRY
SPHERICAL SCATTERING

(2 ReoNoRe
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C

C====

WRITE(S,¥) 'INPUT T FOR VER POL AND F FOR HOR POL'
ACCEPT *, VHP

WRITE(6,%) 'INPUT ANTENNA START SEPARATION IN DEGKEES'
ACCEPT %, ASD

asdp=asd

write(6,%) 'TNPUT ANTENNA STOP SEPARATION IN DEGREES'
accept ¥, asdl

THR=180.-ASD

THBp=thb

PHB=-80.

IF(VHP) FHB=180.

write(6,%) 'ANTENNA SEPAPATION INCREMENT >z 1 DEG’
accept ¥,dela

nba=(asdl-asd)/dela+1.01

WRTTE(6,%) 'INPUT SPHERE DIAMETER IN INCHES'’
ACCEPT x,SDT

WRITE(6,*%) 'INPUT MIN FREQ. (GHZ): !
ACCEPT %, FMIN

ANST=FMIN%1000.

WRITE(6,%*) ’'INPUT MAX FREQ. (GHZ): !
ACCEPT x, FMAX

WRITE(6,*%) ’'FREQUENCY INCREMENT (GHZ): !
ACCEPT *, DELF

write(6,¥) 'Type in output filename'’
read(5,15) output_file

format{(a20)

NFz= (FMAX-FMIN) /DELF+1.1

NDIM=NF

SRCM=8SDT#*2.54/2.
SRM=SRCM/100.
AREACM=4.*PI*SRCM% %2
AINC=DELF*1000.
CKA=CONST*SRM
FREQ=FMIN-DELF

START OF LOOP==z===

FUNCTION CATANZ2(2Z)
COMPLEX Z

RZ=REAL(Z)
FIZ=AIMAG(Z)
CATAN2=ATAN2(FIZ,RZ)
RETURN

END
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C

SUBROUTINE GPS(VHP,KA,EV,ETH,EPH)
COMPLEX ETH,EPH,ETHT,EPHT,ETHI,EPHT

-REAL KA

- v En e e FR M e SR SR S TR Mm em e M ey Gh Gm Ep S e G G G En o GG Gm SR SR e SR mn e G En G Am W Gm R ER AR AR AR W VR Ep Em Em e S e
o o - e mm G o Gt An A A ER R M Sn v M e Em e TR SR R M P WD R GG G En S RE Em An m G T AR e Gm e R e e e R em R e e en am e e S R

LOGTCAL VHP

IF(VHP) THEN

THT=180.

PHT=180.

CALIL. FIELD(1.,KA,THT,PHT,ETHT,EPHT,TER)
ETH=ETHT

THT=180.-2%EV

PHT=180.

CALL FTELD(1.,KA,THI,PHT,ETHIT,EPHI,1ER)
ETH=ETH+ETHI

ELSE

THT=180.

PHT=-90,

CALL FIELD(1.,KA,THT,PHT,ETHT,EPHT, IER)
EPH=EPHT

THI=180.-2.%EV

PHI=90.

CALL. FIELD(1.,KA,THTI,PHT,ETHT,EPHT,TFR)
EPH=EPH+EPHI

ENDTF

RETURN

END

BISTATIC-BACKSCATTERED FTELD OF A SPHERE
SUBROUTINE FIELD(TIMCON,KA,THE,PHI,GTHE,GPHI, TER)

TIMCON=TIME CONVENTION=+1,0 FOR HARRINGTON (-JWT)
-1.0 FOR STRATTON (+JWT)

COMPLEX J,GTHE,GPHI,SGTHE,SGPHI,BN,CN

DTMENSION SJ(150),8Y(150),DSJ(150),DSY(150),DP(150)
DOUBLE PRECISION TPCERR,ANGDIF,P(151),DEF

DOUBLE PRECISTION U,DCOS,DSIN,V

REAL KA

DEFINE CONSTANTS

J=SQRT(-1)

TPCERR=TOTAL % CHANGE ERROR ALLOWABLE BETWEEN
SUCCESSIVE ITERATIONS TO DEVINE CONVERGENCE

TPCMAG=TOTAL ¥ CHANGE IN MAGNITUDE ACTUALLY
OCCURRING BETWEEN SUCCESSIVE LOOPS.

DATA PI,J/3.141593,(0.,1.)/
DATA TPCERR,ANGDIF/1.0D-20,1.0D-2/
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30
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GTHE=CMPLX(0.,0.)
GPHI=CMPLX(0.,0.)
SGTHE=CMPLX(0.,0.)
SGPHI=CMPLX(0.,0.)

MO=150 .
CALL. SPHEBES(KA,S8J,SY,DSJ,DSY,M0,MAXN)

==LLTMINATE ZFRO ORD:tR TERMS FROM THTY ARRAYS

MAX=MAX -1

DO & L=1,MAX
LL=L+1
SJ(L)=SJ(LL)
SY(L)=SY(LL)
DSJ ( 1. ) =DSJ ( I:]:)
DSY(L)=DSY(LL)
CONTINUE

CHRTHE=ABS(180.-THE)

IF (CHKTHE .LT. ANGDIF) GOTO 20
TF (ABS(THE) .LT. ANGDIF) GOTO 15
U=DCOS(DBLE(THE*PI/180.))
V=DSTIN(DBLE{THE%*PT/180.))
MAXN=MAX+1

M=1

DEF=-1.D0O

CALL POLY2(DEF,U,M,MAXN,P)

DO 10 N=1,MAYX
DP{(N)=(FLOAT(N+1)*U*P(N)-FLOAT(N-M+1)*P(N+1)
&¥V/1.-Ux%2)

P(N)=P(N)/V

CONTINUE

GOTO40

DO 16 N=1,MAX

FN=FLOAT(N)

DP(N)=.5%FNx (FN+1.)
P(N)=(-1.)%DP(N)

CONTINUE

GOTO 40

DO 30 N=1,MAX

FN=FLOAT(N)
P(N)=O.5%FN*(FN+1)%(-1.)%%N
DP(N)=P(N)

CONTINUE

DO 50 N=1,MAX
AN=(-1.)%FLOAT(2%N+1)/FLOAT(N**%2+N)
BAN=AN%(SJ(N)+KA*SDJ(N)/(SJ(N)+KAXDSJ(N)-J*
& (SY{N)+KAXDSY(N)))
CNz=ANXSJ(N)/(SJ(N)-J%*SY(N))
GTHE=GTHE+BN*DP(N)-CN¥P(N)
GPHI=GPHI+BN*P(N)~-CN%*DP(N)

87

i o



S e % a mm s VD m Em YD SR GE EE AR SR SE WE MR MR SR TE G0 L G Sm G Sm R GE e S AR e GRS Sk W YD M R N Am Em Wm G AR S B o WR Sm R G e SR

ioEoRoNoNoRoNeoRoRo RoNo Ro N

AA=CABS (GTHE-SGTHE)
BB=CABS (GTHE)
CC=CABS(GPHI-SGPHT)
DD=CABS(GPHI)

IF (BB .NE. 0.) GOTO 44
AA=0.,

BB=1.

IF (DD .NE. 0.) GOTO 45
cC=0. .

DD=1.
TPCMAG=AA/BBR+CC/DD
TER=N

TF (TPCMAG .LE. TPCERR) GOTO 60
SGTHE=GTHE

SGPHT=GPHT

CONTINUE

TER=0

GTHE=TIMCON*GTHE*J*COS(PHI%PI/180.) /KA
GPHT=TIMCON*BPHTI*JX*SIN(PHT*PI/180.) /KA
RETURN

END

SUBROUTINE SPHEBES(X,BJ.BY,BP,YP, TDM,MAX)

X=ARGUMENT

BJ=SPHERICAI. BESSEL FUNCTION ARRAY
BY=SPHERICAL NEUMAN FUNCTION ARRAY
BP=PRTMED BESSEL FUNCTTON ARRAY

YP=PRIMED NEUMAN FUNCTION ARRAY

IDM=MAX NUMBER OF ORDERS TO BE COMPUTED
MAX=MAX NUMBER OF ORDERS ACTUALLY COMPUTED

COMPUTATION IS STOPPED WHEN THE VALUE OF A NEUMAN
FUNCTION MAGNTTUDE IS GREATER THAN FMAX WHICH IS
DEFINED INTERNALLY TO THE PROGRAM.

DIMENSION BJ(1),BY(1),BP(1),YP(1)
FMAX=1.E35
FMIN=1.E-38
SX=SIN(X)/X
CX=C0S(X)/X
FF1=8X
FF2=SX/X-CX
YY1=-CX
YPr2=-(CX/X+SX)
BY(1)=YY1
BY(2)=Y72
BYB=YY1
BYC=YY2

1=2
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BYA=BYR

BYB=BYC
BYC=(2.%I-1.)*BYB/X-BYA
L=T+1

IF (L .LLE. IDM) BY(L)=BYC
AY1=ABS(BYC)

I=1+1

IF (AY1 .LT. FMAX) GOTO 20
MAX=T-1

BJB=0.

BJA=FMIN

I=MAX

I=1-1

BJC=BJB

BJR=RJA
BJA=(2.¢I+3)%BJB/X-BJC
L=T+1

IF (L .LE. IDM) BJ(L)=BJA
IF (T .GT. 0) GOTO 50
ALF=BJ(2)/FF2 A
IF (ABS(FF1) .GT. ABS(FF2)} ALF=BJ(1)/FF1
ALF=1,/ALF '
K=MAX

IF (K .GT. IDM) K=IDM

DO 60 I=1,K
BJ(T1)=BJ(I)*ALF
BP(1)=-BJ(2)

YP(1)==BY(2)

DO 80 I=2,K

IM=2T-1

FAC=I/X
BP(I)=BJ(IM)-FAC*BJ(1)
YP(I)=BY(IM)-FAC%BV(1I)
RETURN

END

ASSOCITIATED LEGENDRE POLYNOMIAL SUBROUTINE

FOR HARRINGTON'S DEFINITION OF THE ASSOCIATED

LEGENDRE PLOYNOMTAL DEF=-1.

FOR THE OTHER DEFINITION OF THE ASSOCIATED
LEGENDRE POLYNOMIAL DEF=1.

SUBROUTINE POLYZ(DEL ,Y,M,MAXN,P)

DOUBLE PRECISION DEF,X,P(1),SQ,DSQRT,DBLE
DOUBLE PRECISION FL1,FLZ2,FLR
SQ=DSQRT(1.0D0-X%%2)

P(1)=1.D0

IF (M .EQ. 0) GOTO 1

DO 2 L=1,M
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P(1)=DEF*DBLE(FLOAT(2%L-1))%*SQ*P(1)
2 CONTINUE
P{2)=DBLE(FLOAT(2¢tM+1) )*X*P(1)
DO 3 K=3,MAXN
I=K-1
J=K-2
N=M+K-1
FL1=DBLE(FLOAT(N+N-=1))
FL2=DLBE(FLOAT{(M+N-1))
FL3=DBLE{FLOAT(N=M))
P(K)=(FL1#X*P(1)-FL2%*P(J))/FL3

b

3 CONTINUE
RETURN
END
C
Cmmmc e e et cccc e mm e r e —crd e cr e m e m e ———————
C

FUNCTION ACOS(X)
DOUBLE PRECISION DSQRT
DATA PI/3.141593/
IF (X .GE. 1.) GOoTO 1
IF (X .LE. -1.) GOTO 2
ACOS=(PI/2.)-ATAN(X/DSQRT(1.D0-X*X))
RETURN :
1 ACOCS=0.
RV {:RN
2 ACOS=PI
3 RETURN
END

C:::::::::======:=====:==============:=‘-’::::::::::::I::::::::

The following routine is the difference between

BISPH.FOR and MONOSPH.FOR.

C szz=zszs=z=zz=zsz=z=z==2¢<{<¢ MONOSPH.FOR)>)>)====z==s=======zcz==

C

C BISTATIC SCATTERING FROM A SPHERE

C
open(unit=10,%tatus="NEW',filesoutput_file,err=100)
write(10,%) 'sph. Sep. Angle freq Mono.'
write(10,%) 'size (deg) (GHz) RCS'

write(10,%) '(in)’

DO 45 jj=1,nba
asd=asdp+jj-1
+hb=180.
fren:fmin%l1/(cos(.5¢tasd/rtd))
KA=CKALFREQ
CALL FIELD{1.,KA,THB,PHB,ETH,EPH, IER)
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RCS FOR HORTZONTAL POLARIZATION

00

TF(VHP) THEN
RCS=AREACM2CABS (ETH) **2
PH(T)sCATAN2(ETH) *RTD

RCS FOR VERTICAL POLARIZATION

o000

ELSE
RCS=AREACMR®CABS (EPH) * %2
PH(I)=CATAN2{EPH)*RTD
ENDIF
AM(T)=10.%ALOGI10(RCS)-40
write(10,50) =sdi,asd,freq,AM(T)
45 cont.inue
close{unit=10)
gaoto 101
100 write(6,%) 'Filename already exists!!!’
50 FORMAT (f5.2,2X,F10.4,2X,F10.4,2X,F10.4)
101 coniinue
STOP
END
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Appendix C
This appendix presents the derivation of the
mathematical mode) for the RCS of a aquare flat plate using
physicol optics approximations. Following the derivation is
the computer programs used to calculate the bistatic and
equivalent monostatic cross sections for a flat plate.

The geometry utilized in this derivation is given in

Figure 70.

Figure 70. Scattering Geometry for a Square Flat Plate

The incident and acattered propagation vectors are
constrained to lie in the x-y plane.
The incident electric field can be expressed as

(Harrington, 1961:140)

Ei = B eJk(xCosO + ySine)

1 =g, (58)
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The acattered electric field can be expreased aes
(Harrington, 1961:140)
¢ kB adelkr Sin(k(a/2)(3in® ¢+ Sine))

Ey= Cose (69)
Jarr kia/2)(Sin®+ Sine)

From eqs. (35) and (36), RCS is given by

E®
o= 4x 1lim ' :l
r—se lel

(60)

Substituting eqs. (58) and (59) into eq. (60) yields

2 2
- a< Sin(k(a/2)(Sin® ¢+ Sine
© = dx [ x Cons _JF(L./LE')'(""S*'.n—o + Sine) ] (61)
From Figure (70), it can be gseen ¢ = ®+8. Substituting
this relationship into eq. (61) gives the expression for
bistatic RCS in terms of angle of incidence and bistatic
angle:

2 3 . e
o = 4= [2§ Cos(84+8) Sin[k(a/2)(Sin® + Sin50+l))]] (62)

k(a/2)(Sin® + Sin(6+8))

In accordance with Kell's hypothesis, the aspect angle for
the equivalent monostatic case is equal to the angle of
incidence plus half the bistatic angle. Applying this

concept to eq. (61) gives the equivalent monostatic RCS as

(63)

Sin[ka Sin(e+8/2)] ]2

2
a
4 [:‘ Cos(e+8/2) ka Bin(6+8/%)
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The computer programs calculating the bistatic and
equivalent monoatatic RCS follow. These programs are
written in BASIC and run on a Zenith 2-100 conputer using an

B-hit CP/M operating ayatem.

1 "R RRRNRRBRRARRLRTISTATIC RCSESTERRAEBLARAEEBRRNNED
2 "THTS PROGRAM CALCULATES THR BISTATIC RCS OF A SQUARE
3 'FLAT PLATE

4 14

§ 'OUTPUT: 10*:LOG({RCS); RCS TN SQUARE METERS
’

10 OPEN "O",1,"B:FPRCSB.DAT"
»

12 'DEFINE VARTABLES
13 'l. = LENGTH OF ONE SIDE IN METERS
14 WL = WAVELENGTH IN METERS
15 'THETA = ANGLE OF INCIDENCE
16 'BETA = BISTATIC ANGLE
’

20 L=0.3048

30 PT=3.141593

40 DIM RCS{181)
’

44

45 'T = ANGLES OF INCIDENCE

46 !

50 FOR I=0 TO 40 STEP 8

60 A$ = "ANGLE OF INCIDENCE="

70 PRINT#1,AS8;1T

T4 !

75 'N = BISTATIC ANGLE

76 !

80 FOR N = 0 TO 60

90 THETA = PI%I/180

100 BETA = NtPI/180

110 WL=0.03

140 J = L®PI%¥(SIN(THETA)+SIN(THETA+BETA))/WL
150 IF J = O THEN 16< ELSE 160

160 RCS(N)=4*PI%(L"2%COS(THETA+BITA)*SIN(J)/(JsWL))“2
161 GO TO 170

162 RCS(N) = 4¥PI#(L"2%COS(THETA+BETA)/WL)"2

170 NEXT N

190 FOR K=0 TO 60

210 RCS(K)=10*LOG(RCS(K))/2.3025851

220 PRINT#1,USING"##4#. 448 " K,RCS(K)

230 NEXT K

235 NEXT I

240 CLOSE#!

250 STOP

260 "REXSXXERERREARETBELRRRRRRRRAR R RN EEERLEREEREREREARY
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140
150
160
161
162
170
190
210
220
230
235
240
250
260

fttlt!ttttttt‘lllQUlVALBNT MONOSTATIC RCS:¥stizixgires

"THIS PROGRAM CALCULATES THE MONOSTATIC RCS OF A SQUARR
'FLAT PLATE AS A FUNCTION OF FREQUENCY IN ACCORDANCE
'WITH KELL'S HYPCTESIS

]

'OUTPUT: 10:LOG(RCS8); RCS IN SQUARE METERS
’

OPEN "0",1,"B:FPRCSF.DAT"

]

'DEFINE VARIABLES

'L = LENGTH OF SIDE IN MEBTERS
'Wl. = WAVELEWGTH IN METERS
'THETA = MONOSTATIC ASPECT ANGLE
"BETA 2 BISTATIC ANGLE

’

L=0.3048
PI=3.141893
DIM RCS({181)
DIM FREQ(100)
’

'I = ANGLE OF INCIDENCE FOR BISTATIC CASE
1

FOR I=0 TO 40 STEP 8
AS = "ANGLE OF INCIDENCE="
PRINT#1,AS$;1
v

'N = BISTATIC ANGLE IN DEGREES
»

FOR N = 0 70 60
THETA = PI®*{(I+N/2)/180
BETA = N3PI/180
WL=0.03%COS{BETA/2)
FREQ(N) = 3RB8/(WL%1E9)
J = L3PI®2:SIN(THETA)/WL
IF J = 0 THEN 162 ELSE 160
RCS(N)=4*PI#(L"28COS{THETA)$SIN(J)/(JsWL)) "2
GO TO 170
RCS(N) = 43PI%(L"2%COS(THETA)/WL)"2
NEXT N
FOR K=0 TO 60
RCS(K)=103LOG(RCS(K))/2.3025851
PRINT#1,USING" #8382 .848¢ " FREQ(K) ,RCS(X)
NEXT K
NEXT I
CLOSE#1
STOP
'SERERALLRERRALEEERREEXLRIL R LE XXX RELERLNERRRR
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This appendix presents the derivation of the RCS model
for a right ecircular eylinder and theAcoapnter psrogrums used
to caiculate jts bfatatie and equivalent monoztatic RCS.

The derivation of the RCS js taken from "Project DISTRACT--
Distributed Radar Conrcepts and Techniques," Appcndix A,
Cornell Aeranautinal Laboratory, Inc.

The RCS of a finite cylinder is dominated by diffracted
returns. For this reason, geometrical theory of diffraction
(GTD) ix used to compute the RCS. A general diffraction

coefficient is written as

in/d_.
nSine’(2nk) ,
¥ (Cos(a/n)-Cos((0‘+¢'*R)/ﬂ))-1] (64)
where a’° = angle of incidence

®° = angle of diffraction

n = 7/%x (Y = exterior wedge angle)

*
"

angle between the incident ray and the posaitive
tangent to the edge (¢’ = x/2 in this ;ppendix)}

k = 2»r/X\ (wave number)
Pclarization determines the choice of signs used in eq.(64).

Vertical polarization (ﬁ parallel to the edge of the wedge)
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uses the upper sign. Horizontal polarization uses the
lower. Angles 9' and a’ are decined graphically in Figure

71. Because a right circular cylinder has ¥ = 270°,

n = 3/2. With ¢’ = »/2, eq.(64) becomes
in/4., .
D = %e S'",‘%‘/a) [(Cos(2n/3)-Cos(®’~a’))"]
' (2nk)
7 (Cos(zn/s)-Cos(2(9'+a'+n)/3))'1] (65)
INCIDENT RAY DIFFRACTED RAY

‘Fizure 71. Diff;action at Edge of Coﬁd;cting Wedge
{Anderson, 1965:A-3)

The diffraction coefficients for the cylinder shown in
Figure 72 can now be derived in terms of the incident and
diffracted fields angles of incidence and diffraction;
¥; and vy, respectively. The edges contributing to the RCS
are labelled 81, Sg, and 8j. The fourth corner is not
illuminated and does not effect RCS if the cylinder is large
compared to a wavelength. Conver“:ional references for ¥

and y; are shown at the center of ‘he cylinder.
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INCIDENT RAY

DIFFRACTE
RAY

L KT OXL ZTRY 45 20

Figure 72. Diffraction by a Right Circular Cflinder
(Anderson, 1965:A-4)
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The diffraction coefficierts resulting from each illuminated

edge in Figure 72 are

v _ 2 ei™igin(2r/3) -1
D s = | (Cos{(2nr/3)-Cos (v -v;))
v =3 (2nk) 172 &0
T (Cos(2n/3)-Cos(2(n+w +w)/3)) 1) (66a)
v 2 e'™lgin(2n/3) -1
D =z < L [(Cos(2nr/3)-Cos{w_-v:))
2H 3 (2ﬂk)1/2 s ")
% (Cos(2n/3)-Cos(2(vg+¥;)/3)) 1 (86b)
v _ 2 ei™d5in(2n/3) -1
DSH 3 (2“k)]/2 [(Cos(2xr/3)-Cos(vg¥;))

T (Cos(2x/3)-Cos(2(n-pg-v;)/3)) 11 (66c)

The diffraction coefficients given in eq. (66) are for
two~dimensional right-angle edges. Because a cylinder has
curved edges it is three dimensional. The curvature is
accounted for with a geometrical spreading factor used as a
weighting function. Letting s be the distance from the edge
to the receiver along the scattered ray and 1 be the radius
of curvature of the of the diffracted wave front, the

weighting function can be written as

[s(1 + pyley)~1/2 (67)

Because s >> p{ , eq.(67) can be written

(p)1/2/s as  py/s ~» 0 (68)
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The curvature of the diffracted wavefront, 1» is related to
the angles of incidence and diffraction and the cylinders

curvature by

i P |
Py = Cos® + Cosb (69)

where p is the cylinder’s radius and © and 6 are defined in

Figure 73.

| | %
' g

% %
() = ’
f r] V4
PRINCIPAL RotuaL S PRINCIPAL ROPGL
S04, ‘ S(0atp-9,4%-5)a,
oW e ',)

PRINCIPAL ROMAL

Figure 73. Angular Relationships for Geometric Factors
(Anderson, 1965:A-7)
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From this, the geometrical spreading factors for each edge

are

[(P1)1/2)/8

[(P1,)1/21/8 = (la/Sinw+Sinvg)11/2) /s (70a)

[(P1x)1/21/s = (la/(-Siny; - Sinw)11/2)/s (70b)

The minus sign occurs in eq. (70b) because the edge at Sq
curves in the opposite direction when compared to S, and S,.
The phase angle associated with a diffraction point is
related to the distances the incident and scattered fields
travel. With s defined as the distance from the point of ~
diffraction with respect to a fixed reference plane and b
the distance the incident field travels relative to a fixed
reference plane, then from Figure 74, s = r_ - dg , and

bs=r;- d; , for edge S1.

Figure 74. Phase of a Diffracted Ray
{Anderson, 1965:A-8)
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Tt can be derived from Figure 74 that

~di1= aSiny; + hCosv; (71a)

and

ds1 = aSinvg +hCosvs (71bh)

lising this logiec, the phase terms can be written

aik(sitby) eik[Zr-a(Sintg+Sintb)—h(Cosﬁq+Cosu§)]

(72a)
eik(32+b2) - eik[2r—a(Sin¥q+Sinys)+h(Cos£3+Cosws)] (72b)
Pik(33+b3) - eik[2r+a(Simbi+Sinvs)—h(Coswi+Cosws)] (72¢)

By GTD, RCS as a function of the angles of incidence

and diffraction is given by

2
M
olvj vg) = 4nr? | LOTA (73)
A
where Mi{ota] = Sum of all rays diffracted toward the

receiver
Combining eqs. (66), (70), and (72), diffraction at

each illuminated edge is given by
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2 Ae' ™ ’Sin(2n/3) [a/(SinwSiny,))1/2
Hey = ¥3 172 s

(2rk)

x explik[2r-a{Siny;+Sinvg) —h(Cosvl-d»Cosa_os) 1)
x [(Cos(2nr/3)-Cos{vg-w;))")

3 (Cos(2r/3)-Cos(2(mtvg+y;)/3))" 1  (74a)

2 Ae'™4sin(2n/3) [a/(Sinw+Sineg) 1172
M S ¥
sz 73 (2nk) /2 s
x expl{ik[2r-a(Siny;+Sipwg) +h(Cosw+Cosyg)])
x [(Cos('21t,/3)-Cos(i-"s--vi))-1
* (Cos(2n/3)-Cos(2(vgtw;)/3))" 0  (74b)
2 ae' ™ %sin(2n/3) [a/(-Sinw-Siny,)]1/2
M s W3
£3 3 (2nk)1/2 s

x explik[2r-a(Siny;+Sinyg)-h(Cosw+Cosw¥g)]])
x [(Cos(2n/3)-Cos(vg-¥;))" ]

¥ (Cos(2ﬂ/3)-Cos(2(ﬂ+va+\.0,-)/3))—]] (T4c)

where s = r in the far field,.

From Figure 72 it can be seen vg = v + B . To remain
consistent with other derivaticns in this study let ¥, = 06,
Using the relationship ¥vg = ® ¢+ B, bistatic RCS can be
computed as a function of the angle of incidence and the

bistatic angle. Eq. (74) is now
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2 Apia/4

Sin(2r/3) [a/(Sive+Sin(e+8)]1/2
1/2 r

(2xk)

x exp{-ik[a(Sine+Sin(e+8))+h(Casd+Cos(0+8))1])}

x [(Cos(2r/3)-Cas(28/3)) )

¥ (Cos(2n/3)-Cos(2(n+29+8)/3))_1]

2 ael™3gin(2x/3) [a/(Sine+Sin(e+8)]1/2
M = ¥
2 3 (2nk)1/2 r
x exp{-ik{a(Sine+Sin!{e+f))-h(Cose+Cos(0+8))]]
x [(Cos(2nr/3)-Cos(28/3))"}
F (Cos(2n/3)-Cos(2(26+8)/3)) 1]
2 Ae'™dgin(2n/3) [a/(Sine+Sin(e+8)]1/2
M s I
s3 = ¥3 2172 r

(75a)

(75b)

x exp(ik[a{(Sine+Sin(6+8))-h(Cos6+Cos{©+8))]1-in/2}

X [(Cos(2n/3)-CoS(23/3))-]

3 (Cos(2n/3)-Cos(2(R—ZO-B)/3))—1]

(75¢c)

Summing eqs.(75a), (75b), and (75¢c) and inserting this sum

in eq.(73) gives the bistatic RCS. For the equivalent

monostatic RCS, w; and vy are equal to @ + B/2.

Substituting this into eq.(74) gives
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2 Ae!™4sin(2x/3) [a/(2Sin(e+8/2))1/2
M 2 ¥ W
81 (2nk)1/2 r
x exp(-i2k[aSin(®+8/2)+hCos(®+8/2)])
x [((Tcm(21!/3)-(709(20/3))"1
¥ (Cos(2n/3)-Cos(2(n+2048)/3))" 11 (76a)
2 ael™3gin(2n/3) [as(2Sin(e+n/2)]1/2
M S ¥ "
£2 3 (2Rk)1/2 r
x exp{-i2k[aSin{(e+8/2)-hCos(0+8/2)}]}
x [(Cos(2n/3)-Cos(28/3)) !
¥ (Cos(2r/3)-Cos(2(20+48)73))"}] (76b)
2 Ael™%sin(2x/3) [a/(2Sin(e+8/2)]1/2
M = ¥
83 (2nk; 172 r

x exp(i2k[aSin(®+8/2)-hCos(0+B8/2)]1~-in/2}
x [(Cos(2%/3)-Cos(28/3)) ]

¥ (Cos(2n/3)-Cos(2(n-20-8)73))"11 (76e)

Monostatic RCS is then counjguted by summing eqs. (76a),

(76b), and (76c) in eq. (73).
In eqs. (75¢c) and (76c; the phase contains the term
(~-ix/2). This comes from (-Sinvi-Sian) in the

denominator of the geometrical spreading factor.
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Computer programs written in FORTRAN 77 to calculate

the biatatic and equivalent monostatic RCS are liated helow,

S B TSRS

S .E O

CRRRRXXRRR 22222322 <<C<C BICYL.FOR 33 %822 2258820 08222222202

C
c THTS PROGRAM COMPUTES THE BISTATIC RCS OF A
C RIGHT CTRCULAR CYLINDRR, HORTZONTAL POLARIZATTON.
C
c OUTPUT: 10%2LOG(RCS/1.E4); RCS IN SQUARE CM
C
CRERRXRRTRRL RRRRRARARRRARLRARTERLLL LR LRRRL LR R RRRRRRXRKED
C

REA]‘ A.H,F'G,K,U.\’,X,ALPH(451 ) "AAMBDA

RFEAL BETA,PI,RC(451),81,82,%3,11,Q,Q1,Q2,Q3

COMPLEX J,Y,P1,P2,P3

J = {(0.,1.)

PT = 3.141593
C
c DEFTNE VARTABLES
C
c A = RADIUS OF CYLINDER LIN CM
c H = HALF CY. INDER'S LENGTH IN CM
C ILAMBDA = WAVELENGTH IN CM
c THETA = ANGLE OF INCIDENCE (END-ON = 0°)
C BETA = BISTATIC ANGLE
C ,

A = 7.50

H = 30.0

OPEN (1,STATUS='NEW',FILE="B:SIGMA_BRV.DAT’)
C
c T = ANGLE OF INCIDENCE
C

DO 40 1 = 0,90,15

THWETA = PIXFLOAT(T)/18C.
WRITE(1,%) 'THETA =',1

C
C N = BISTATIC ANGLE
Cc

DO 30 N = 0,60
WRITE(%,%) I,N
BETA = FLOAT(N)xPI/180.
LAMBDA = J.0
K = 2.%PI/LAMBDA
F = 2,%SIN(2.%P1/3.),(3.*SQRT(2.¥PI*K))
X = 1./7(COS(2.3%PI/3.)-COS(2.%BETA/3.))
L1 180-N-1
Q = COS(2.3*PI1/3.)

Ql = COS(2.%(PI+2.*THETA+BETA)/3.)
Q2 = COS(2.%(2.%THETA+BETA)/3.)
Q3 = COS(2.%(PI-2.%THETA-BETA)/3.)

IF (I1.EQ.0) THEN
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RCS = PIS(A®*2¢K2COS(BRTA/2.))222
ELSEIF (1.EQ.90) THEN
RCS = “1XsA*H¥22%COS(BRETA/2.)

DIVIDE BY 0 RRRORS OCCUR IN THE DIFFRACTION
COEFFICIENT. THE FOLLOWING INSTRUCTIONS GIVE THE
RCS FOR THE FREVIOUS BISTATIC ANGLE WHEN THIS OCCURS.

0NN

ELSETF (Q1.EQ.Q) THEN
GO TO 20

ELSETS (Q2.EQ.Q) THEN
GO TO 20

FELSEIF (Q3.EQ.Q) THEN
GO TO 20

RLSETF (T.FQ.L1) THEN
GO TO 20 '

EL.SE
G = SQRT{A/(SIN(ALPHA)+SIN(ALPHA+BETA)))
Ul = AR(SIN(ALPHA)+SIN(ALPHA+RETA))
& +H2 (COS(ALPHA)+COS{ALPHA+BETA))
V 2 AT(SIN(ALPHA)+SIN(ALPHA+RBETA))
& -H* (COS{ALPHA ) +COS {(ALPHA+BETA))
7'z X+1./7(Q-Q1)
S2= X+1./7(Q-Q2)
S3= X+1./7(Q-Q3)
Pl= F2GXS13CEXP(J%(PI/4.-K*U))
P2= FRG¥S2*CEXP(J®{(PI/4.-K2V))
Pi= FeGRSICEXP(Jx(~-1.8PI/4.4+K?V))
Y = P1+P2+P3
RCS = 4.*PISCARS(Y)#*22
ENDIF
RC(N) = 10.®ALOG10(LCS/1.E%)
GO TO 30
20 M = N-1
RC(N) = RC(M)
30 CONTINUE

3
c
c OUTPUT THE BISTATIC ANGLE AND THE CORRESPONDING RCS
Cc

DO 35 M = 0,60
WRITE(1,32) M,RC(M)

a2 FORMAT(I3,F12.4)
35 CONTINUE
40 CONTINUE

CLOSE (UNIT=1)

END
c
CERREREBBAREEEE SR RERERBREBRER LR XA ERREBRARA B R RRIRLRERAES

CRERXXEXXIXXXAEREERCCC MONOCYL.FOR > > %3 XXX RXXRERRE2 2SR
o
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THTS PROGRAM CALCULATRS THE MONOSTATIC RCS,
HORIZONTAL POLAARTZATION, CORRESPONDING TO A GTVEN
BISTATIC GROMETRY ACCORDING TO KFLL'S MONOSTATIC c

BISTATIC RELATIONSHIP.

OUTPUT: 10*LOG(RCS/1.E4); RCS IN SQUARE CM

AR R SR R R e R R R e R TR RS T Y

RFAL A,H,F,G,K,U,V,X,FREQ(451),LAMBDA

REAL BETA,PT,RC(451),81,82,83,171,Q,Q1,Q2,Q2
COMPLEX J,Y,P1,P2,P3

J = ‘00'1;)

PT = 3.141593

DEFINE VARTABLES

A RADIUS OF CYLINDER IN CM

H HALF CYLTNDER’S LENGTH IN CM

LAMBDA = WAVELENGTH IN CM

THETA = ANGLE OF INCIDENCE (END-ON = 0°)
RETA = BISTATIC ANGLE

A 7.50
H 30.0
OPEN (1,STATUS='NEW’,FILE="B:SIGMA_FV.DAT’)

I = ANGLE OF INCIDENCE

DO 40 1 = 0,90,15
WRITE(1,%) 'ALPHA =',1

N = BISTATIC ANGLE
DO 30 N = 0,60
THETA = PI¥(FLOAT(T)+FLOAT(N)/2.)/180.
WRITE(%,%) I,N
BETA = FLOAT(N)*PI/180.

FREQUENCY TS ADJUSTED ACCORDING TO KELL'S
RELATTONSHIP.

LAMBDA = 3,0%COS(BETA/2.)

K = 2.%PI/LAMBDA
F = 2.%SIN(2.%PI1/3.)/(3.%SQRT(2.%PIZK))
X = 1./7(C0S(2.3P1/3.)-1.)

THET = FLOAT(I)+FLOAT(N)/2.
TERH = THET + FLOAT(I)

Q = COS(2.%P1/3.)

Ql = COS(2.%(PI+2.*THETA)/3.)
Q2 = COS(2.%(2.3%THETA)/3.)
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10

32
35
40

Q2 = COS(2.8(P1-2.3%THRTA)/3.)
I+ (THET.BQ.O0.) THEN

RG3 = PIS(A$#328K*COS(BETA/2.)) %22

G

\J;

ELSETF (N.EQ.0) THEN
GO TO 10
ELSEIF (THET.EQ.90) THEN
RCS = 4tK$*AtH:$23COS(BETA/2.)
ELSEIF (TERM.EQ.210.) THEN
GO TO 30
ELSE
SQRT(A/ (SIN(THETA) +STN(THETA)))
A*(SIN(THETA)+SIN(THETA))

& +H2 (COS{THETA ) +COS (THETA))
Vv 2 AR(SIN{THRTA)+STN(THERTA))
& -H2 (COS{THETA)+COS (THETA))
Slz X+1./(Q-Q1)
S2= X+1./71(Q-Q2)
S3= X+1./7(Q-Q3)
Pl= FsGeS1SCRXP(J*(PI/4.-KtU))
P2:= FRG2S2:CEXP(J*(PI/4.-K2V))
P33z FRGESIECEXP(JE(-1.2PI/4.+K2V))
Y = P1+P2+P3
RCS = 4,.8PIXCAES(Y)*22

ENDIF

RC(N) = 10.*ALOG10(RCS/1.E4)

CON'TINUE

OUTPUT THE BISTATIC ANGLE AND CORRESPONDING RCS
DG 35 M = 0,60

WRITE(1,32) M,RC(M)
FORMAT(I3,F12.4)

CONTINUE

CONTINUE
CLOSE(UNIT=1)
END
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Abstract

Robert Kell developed a relationship between monostatic radar cross section
(RCS) and bistatic RCS whereby bistatic RCS can be predicted from monostatic RCS
measurements under certain conditions. This study tound Kell's relationship to
be mathematically sound given certain assumptions. Kell's relationship was then
tested by camparing camputer generated bistatic and monostatic cross sections for
simple shapes. Four parameters were varied during testing in order to discern ‘
possible limitations of Kell's method: bistatic angle, angle of incidence,
electrical size of the target, and continuity. Results of the testing show Kell's
method has same merit. The difference between the bistatic RCS and its related
monostatic RCS for electrically large spherec is less than 1-dB up to bistatic
angles of 80°. For electrically large flat and singly curved surfaces the mono-
static and bistatic cross sections were within 3-dB for angles of incidence up
to 30° from broadside and bistatic angles up to 15°. Finally, the accuracy of
Kell's relationship proved to be polarization dependent when surface discontinuities
in the form of 90° wedges were present.
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