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Preface

The purpose of the research presented in this paper was to compare
several control variates for queueing network simulation. During the
literature search and review I noted the moat promising internal And
external control variates. I also included a new external control
varfate which was calculated using Bell Lab's Queueing Network Analyzer,
a network decomposition algorithm employing two-moment approximations of
the stochastic processes in the network.

The experiment was designed to be general enough to apply to many
queueing networks. The variance ratios of each of the control variates
provides a measure of their efficiency to reduce the variance of the
parameter being estimated. The coverage probabilities of the confidence
intervals formed about the controlled estimates of the mean responses
provide a measure of the accuracy of the variance reduction technique.
That is, a control variate that results in a confidence interval with
poor coverage of the true parameter is not very useful even if the
variance reduction is significant.

1 wish to thank my thesis advisor, Major Joseph R. Litko, Ph.D.,
and Major Kenneth W. Bauer, Jr., Ph.D. for their guidance in this
research effort. I also wish to thank Major Anthony P. Sharon for
providing me with a copy of his thesis which was the foundation and
inspiration of this work. Finally, I wish to thank my wife Jamie for
her understanding and support during the many days and nights I was tied
to my computer.

John J. Tomick
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\\ Abstract

\a|<
) The purpose of th;§j:;jg;/:as to compare several control variates
for queueing network simulation. The author's goal was to provide the
simulation community with some guidance for selecting control variates
that will lead to significant reductions in the variance of the
estimated responses that do not introduce significant bias.

Both internal and external control variates were examined. The
measures for comparing them were the variance ratios obtained for each
control variate against each of the two response variables and the
coverage of their respective 95X confidence intervals.

The two response variables selected for this research were the
average sojourn time in the network and the probability that the number
in the fourth queue exceeds twice the mean number in queue at steady-
state. The internal controls included standardized routing controls and
standardized work variables. The external controls included the average
sojourn time in the network and the average number in queue at the
fourth node. The external controls weres further classified into two
groups: analytic Jackson controls and analytic approximations. ~f(j« )

The analytic Jackson control variates were found by decomposing
the network and using the M/M/1 formulas. The analytic approximations
were found using G/G/1 formulas, specificaliy those employed in Bell
Laboratories' Queueing Network Analyzer. The observed values of the
external control variates were found by using the following parameters
observed during a run of the simulation model: the external arrival

rate, the mean service times at each node, the squared coefficient of

4
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variation of the service times at each node, and the probabilistic
routing matrix. The "known" means of the external control variates were
found using the values of the above parameters that were input to the
simulation model.

The network of queues studied was an open network with Poisson
external arrivals and exponential servers at the firat three nodes. At
the fourth node the service times were generated from the maximum
entropy and the hyperexponential distributions characterized by two
noments.

In general, the external control variates achieved smaller
variance ratios than the internal control variates; however, the
coverages of the confidence intervals about the controlled responses
were worse. The range of the average var{ance ratios for the internal
control variates was 0.886 to 0.949 with coverages from 0.898 to 0.929
for the 95X confidence intervals. The range of the average variance
ratios for the external control variates was 0.494 to 0.774 with

coverages from 0.576 to 0.775 for the 95X confidence intervals.
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A COMPARISON OF CONTROL VARIATES
FOR QUEUEING NETWORK SIMULATION

1. Introduction

The purpose of this paper is to report the results of the author's
research comparing the effectiveness and the bias of several control
variates for queueing network simulation. For this research, the author
selected some of the most promising control variates found in the
literature. Also, the author included a new external control technique
that makes use of a software package which approximates the performance
measures of a queueing network.

The inspiration and foundation for this research came froam the
work done by Sharon (1986). He exanln@d the effectiveness of Jackson
networks as control variates for queueing network simulation. A more
complete discussion of Sharon's work can be found in the review of the
literature presented in Chapter 1I.

The author's research makes a significant contribution to the
experiential knowledge of control variates in two areas. First, most of
the literature on experimental results of control variates report only
the efficiency of the technique in terms of variance ratios, percent
variance reduction, etc. This research effort also examined the bias
fntroduced to the estimates through the use of control variates in terms
of the estimated coverage of the 95X confidence intervals about the

controlled responses. Second, this research is the first attempt to
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compare both internal and external control varjates. The ultimate goal
of this research was to provide the simulation community with some
guldance for selecting control variates for use in queueing network
simulation.

Following the literature review, the author discusses the
nethodology of his approach to the research in Chapter III. Then, the
results of the research are presented in Chapter IV. Finally, the
author's conclusions and recommendations are given in Chapter V.

The rest of this chapter is devoted to introducing the reader to
some of the basic terms, concepts, and notation used in queueing theory
and in simulation modeling, respectively. The resder who is familiar

with these areas may skip to Chapter II.

ueuei heor

Basic queueing theory involves customers arriving to a service
center. The customers can represent people waiting in line for a bank
teller, cars waiting in line at a toll booth, and so forth. Because
queueing theory has such broad applicability, one will usually see the
the more generic term entity used instead of customer.

A Single Queue. To describe a queusing system we need a
description of the arrival process, a description of the service
mechanism, and a queue discipline.

The arrival process can be deterministic; that is, the time
between arrivals of entities is a constant. It can also be a random
process deacribed by a probability density fumction. Traditionally, the
arrival rate (the mean number of entities arriving to a node per unit

time) is denoted by the Greek letter lambda (A). The mean interarrival
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time, or mean time between arrivals, is simply the reciprocal of the
arrival rate.

Similarly, the service mechanism muy be deterministic or
probabilistic. Furthermore, the service center may have more than one
identical server. Traditionally, the service rate (the mean number of
entities that can be serviced per unit time) is denoted by the Greek
letter mu (). Likewise, the mean service time, or mean time between
service completions, is the reciprocal of the service rate.

The traffic intensity at a node is defined to be the ratio of the
arrival rate to the product of the service rate and the number of
identical servers, which is denoted by the Greek letter rho (p).
Mathematically, p = A/mp , where m denotes the number of identical
servers. If the traffic intensity is greater than one, then entities
are arriving to the queue faster than they can be serviced. Therefore,
the queue grows infinitely long (i.e. the queus is unstable) unless the
calling population is finite or the queue is capacitated with blocking
or balking. When a queue has a finite capacity with blocking, then the
servers that feed the queue stop servicing entities until there is room
for them in the following queue. On the other hand, a queue filled to
capacity that allows balking causes entities arriving to the queus to be
routed to another queus or to leave the system eantirely. The ressarch
presented in this paper examined a network of queues with infinite
capacities at equilibrium (or steady state), whicl implies a traffic
intensity less than unity.

The traffic intensity is also referred to as the utilization

factor for the service center, since it represents the fraction of the
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server's capacity that is being utilized on the average by arriving
entities.

Finally, the queue discipiine indicates how to select the next
entity waiting for service. The most common queue discipline is rirst
in, tirst out (FIFO), which is also referred to as first come, first
served (FCFS). However, one might also specify /ast in, first out
(LIFO) as the queue discipline, or set up some sort of priority
selection based upon the type of entity.

A Network of Queues. Networks of queues are useful models for
describing many real-world systems, such as computer time-sharing
processes, communication systeams, transportation systeas, and assembly-
line operations.

A queueing network is composed of nodes representing a system's
service mechanisms and directed arcs between the nodes representing the
flow of entities through the system. The individual nodes are
conventionally labeled by the distribution of the {nterarrival times,
the distribution of the service times, and the number of identical
servers. For example, an M/M/1l queue has exponentially distributed
interarrival times and service times with one server. The "M" stands
for Markovian (memoryless), and the exponential distribution is the only
continuous distribution with the Markovian property. In general, a
queus with many independent input processes that are not necessarily
Markovian, a non-Markovian service-time distribution, and many servers
{s denoted by CI/C/m.

There are two broad classifications of queueing networks: open,

and closed. An open queueing network allows for external arrivals to
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the nodes (referred to as exogenous arrivals). In general, entities may
enter or leave the network from any node. Alternatively, a closed
network has a fixed number of entities cycling through it; no additional
entities arrive to the network, and none of the entities in the network
ever leave.

Jackson Networks. A Jackson network is an analytically tractable
queueing network model. Although, it is a fairly restrictive model, it
has found many uses and is a good approximation to many real-world
systems. In a Jackson network, all external arrivals are independent
Poisson processes (that is, their interarrival times are independent and
exponentially distributed), all servers have exponentially distributed
service times, the queue discipline is FIFO, the queue capacity at each
node is infinite, the routing between nodes can be probabilistic but not
conditional, and the time to travel between two nodes is zero.

Burke's theorem states that "the steady-state output of a stable
M/M/u queue with input parameter A and service-time parameter p for each
of the m channels is in fact a Poisson process at the same rate A"
(Kleinrock, 1975:149). Therefore, given a network of M/M/m queues, the
input process to any node (i) in the network is a Poisson process with
parameter A,, which is a mixture of the output processes of nodes
feeding into it plus the external arrival process. And, as Jackson
discovered "each node ... in the network behaves as if it were an
independent M/M/m system with a Poisson input rate A," (Kleinrock,
1975:150). This allows a network to be decomposed into independent

M/M/m queues whose performance measures can be solved for analytically.
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If the queueing network can be represented as a Jackson network,
then the performance measures (such as the average waiting time at a
particular queue, the utilization of a particular server, or the average

time an entity spends in the system) can be solved for analytically. If

we drop the subscript (i) for readability, then the steady-state results

for the M/M/m queue at any node can be solved for using the following

expected time in system
expected waiting time (excludes service time)

equations:
P 3 ANmp (1.1)
et v w1 ]
Py = + 1.2
¢ ..g. n! 1 (1 - p)] ¢ )
[(A/u)*
) 9 if0<ng¢n
al
P, = 1 (1.3)
(AMu)*®
— Pe, ifn)n
R!m
o
Po(A/u)%p
Ly = ——— (1.4)
ni(l - p)
We = L/A (1.5)
L=L,+ (Ap) (1.6)
e
L W=W,+ (1/0) (1.7
’ where
A = arrival rate of entities to the node
m = numnber of identical servers
u = service rate of servers at the node
p = traffic intensity or server utilization
Po = probability that there are 0 entities in the system
P, = probability that thers are n entities in the system
3 L = expected number of entities in the system
L, = expected queus length (excludes entities in service)
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However, there are many aystems for which the assumptions of the
Jackson network are grossly violated. This leads to a queueing model
that is analytically intractable. The performance measures of such
networks can be solved for by methods which use approximations, or by
simulating the model. The reader is referred to Chapter Il for the
author's review of analytical approaches to solving queueing networks

using approximations.

imulatio elin

Simulation is an experimental technique for analyzing complex
systems which are analytically intractable and usually involve
stochastic processes (indexed collections of random varjables). As
such, the output from a simulation experiment is a random variable; and
therefore, the measured response is only an estimate of the true
parameter of interest. The variance of the estimate is a measure of its
. precision; and, in most cases, variance reduction techniques provide a
means of obtaining more precise estimates with minimal cost in terms of
computer resources.

Variance Reduct echniques. In a recent survey of variance
reduction techniques (VRTs), Wilson cliassified "... all VRTs into two
major categories--correlation methods and importance methods" (Wilson,
r 1984:280). In the paper he discusses three correlation methods (common

randos numbers, antithetic variates, and control variates) and four

importance methods (importance sampling, conditional Monte Carlo,
stratified sampling, and systematic sampling).
The basic distinction between the two categories is the underlying

principle of the techniques. Correlation methods increase the
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efficiency of a simulation by making use of the linear correlations
among simulation responses, and importance methods use prior knowledge
of the input domain to achieve a variance reduction. For a more
complete discussion of these techniques the reader is referred to
Kleijnen (1974), Law and Kelton (1982), and Wilson (1984).

Sharon's research and the research presented in this paper use
control variates to achieve a variance reduction in the estimates of the
performance measures of interest. A coatrol variate must have a known
expectation and be correlated with the response.

Methods for Obtaiping Control Varistes. Law and Kelton describe
three general methods for obtaining control variates. The first method
uses the correlation between the input random variable(s) and the output
random variable(s). Since these kinds of control variates must be
generated during the simulation they are called internal or concomitant
control variates.

A second method involves the simulation of a similar system that
is analytically tractable. Using common random numbers, the
corresponding output of the second simulation becomes the control
variate for the system under study. These kinds of control variates are
called external control variates. Note that this method assumes that
there is a significant correlation between the results of the two
systeas through the use of common random numbers.

The third method makes use of the situations when there are
several unbiased estimators of the mean of the performance measure of
interest. In such cases a new controlled estimator can be formed as a
convex combination of the existing estimators (Law and Kelton, 1982:358-

359).

1.8




II. Literature Review

The following discussion is a review of the literature that is
applicable to the author's research into the following two areas: (1)
control variates for queueing network simulation, and (2) two-moment
approximations to performance measures of the GI/G/m queue. The
discussion is presented in a topical format as outlined below.

A. Control Variates

1. Justification for New Research

2. Theory of Control Variates

3. Results of Previous Research
B. Approximations to Point Processes

1. Need for Approximations

2. Two-Moment Approximations

3. The Queueing Network Analyzer

Control Variate

In the first chapter, the author introduced variance reduction
techniques which are used to provide more precise estimates of the
response from a simulation experiment. This research compared and
contrasted several control variates for their efficiency in reducing the
variance of the estimated responses and for the amount of bias that may
have been introduced to the estimates.

Justificati r New Research. As mentioned previously, there
are two major categories of variance reduction techniques--correlation
methods and importance methods. Of all the techniques, "... the method

of control variates is one of the most promising"” (Lavenberg and Welch,

1981:322).
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Correlation Methods. The correlation methods include common
random numbers, antithetic varjates, and control variates. A brief
discussion of the uses and drawbacks of these correlation methods are
presented below.

Common Random Numbers. The method of common random
numbers can be used when comparing two or more alternative systea
designs, or when designing an experiment for a response surface model.
This method assumes the existence of a positive correlation between the
random number streams driving the simulation and the measured
response(s).

However, in complex simulation models, especially queueing network
models, the correlation tends to be very weak. In some experiments it
may even be negative resulting in a variance increase. Furthermore, the
synchronization of common random number streams may be difficult if not
impossible for some simulation experiments.

Antithetic Variates. The method of antithetic
variates is applicable to the simulation of a single systea. This
method tries to induce a negative correlation between pairs of runs of
the simulation model to achieve a variance reduction. According to Law
and Kelton, the method "... dates back at least to 1956 with the paper
of Hammersley and Morton in the context of Monte Carlo simulation" (Law
and Kelton, 1982:354). More recently, Schruben and Margolin (1978)
demonstrated the effectiveness of antithetic variates in conjunction
with a 2" factorial experimental design.

But, this method suffers from the same drawbacks as does the

method of common random numbers--the correlation aay be weak or opposite
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in sign to that desired, and the synchronization of random number
streams may be a problem. Also, there are some other assumptions that
must be met to use Schruben and Margolin‘s assignment rule. As with
common random numbers, the method of antithetic variates seems to be
more successful when used with Monte Carlo simulation experiments.

Contro]l Varjates. The method of control variates is
applicable to any simulation experiment involving stochastic processes
with known means. A practitioner may simultaneously collect
observations for several internal controls and select those having a
significant correlation with the response variable(s). Furthermore, the
practitioner can calculate the magnitude of the variance reduction
without further simulation runs. I[f the practitioner had used coamon
random numbers or antithetic variates and wanted to know by how much the
variances of the estimates were reduced, it would require additional
simulation runs using independent random number streams.

However, control variates have some drawbacks as well. The
traditional type of external control variates require additional
simulation runs and, the resulting controlled estimator may be biased.

tapnce . The importance methods include several
sampling techniques, which have not found much popularity among
simulation practitioners. Furthermore, Pritsker concluded that the
importance methods require further refinement before they can be applied
to complex simulation experiments (Pritsker, 1986:749).
heor Control Variates. The fundamental idea behind the
method of control variates is to select a random varjable with a known

expectation that is highly correlated with the response variable.
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Univgriate Simulation Response with a Single Control. Let Y

be an unbiased estimator of the parameter of interest @; that is, the
expectation of Y, denoted E(Y), equals 4. Let C be another random
variable with known expectation u. that is highly correlated with Y.
Then, for any constant b (known as the control coefficient), the

controlled estimator Y(b), given by Eq (2.1), is unbiased for 6.
Y(b) = ¥ - b(C - p.) (2.1)
The variance of Y(b) is given by
Var[Y(b)] = Var(Y) + b*Var(C) - 2bCov(Y¥,C) (2.2)
and a variance reduction will be realized if
2bCov(Y,C) > b'Var(C) (2.3)

That is, if Eq (2.3) is satisfied, then the controlled estimator will
have a smaller variance than the uncontrolled estimator. With a little
calculus it is easy to show from Eq (2.2) that Y(b) has minimum variance
when b is set equal to the optimal control coefficient, 8, which is

given by
8 = Cov(Y,C)/Var(C) (2.4)

Substituting Eq (2.4) into Bq (2.1) leads to the optimal

controlled estimator Y(8), which is given by

Y(B) = ¥ - [(Cov{(Y,C)/Var(C)1-(C - p¢) (2.5)
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Anderson (1984) provides a proof that the variance of the controlled

estimator which is given by
Var(Y(8)] = (1 - pye’)-Var(Y) (2.6)

where p,.’ is the square of the correlation coefficient between the
response variable Y and and the control variate C. Recause the
correlation coefficient in Eq (2.6) is squared, the sign of the
correlation does not matter; only the size of the correlation is
important. As ip,c| * 1, the correlation between Y and C becomes more
significant, and the size of the variance reduction increases.

Let @, the parameter of interest, be denoted by u,. Then, we know
that the average of the uncontrolled observations Y, is an unbiased
point estimator of pu,. Furthermore, the average of the controlled
observations Y,(8) is also an unbiased estimator of u,. This is

represented mathematically as follows:

Y(8) = (1/K) T Y.(8) (2.7)

where K is the sample size and
Yl(e) = Y. - 8(c| - llc) (2.9)

In practice, Cov(Y,C) and Var(C) are unknown; and therefore, 8 is
unknown and must be estimated. Following Bauer (1987), the intuitive
approach to estimating 8 is to replace the right-hand side of Eq (2.4)
Wwith the appropriate sampls statistics, which yields the least-squares

solution. Under the assumption of joint normality between Y and C, the
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least squares solution is also the maximum likelihood solution (Bauer,

1987:6). Then, B can be estimated by

~ & —— - o -_—
B = Y(Y, - Y)(C, -C) ¥C, - O)?

where

(S]]

x
=Y Y, /K

teot

and

(2]

= i C./K

Furthermore, a point estimate of u, is given by

- ~ ' ~
Y(8) = ¥ Y.(B)/K
fet
or

YB) = ¥ - 8(C - ue)

And, the variance of the point estimator is given by

var(Y(8)] = Var(Y(8)1/K

where

Var{Y(8)} = (1 - p?y¢) -Var(Y)

(2.9)

(2.

(2.

(2.

(2.

(2.

(2.

Bauer (1987) provides the derivation of the interval estimate

under the assumption that Y and C are jointly normal random variates.

2.6

10)

11)

12)

14)

15)



The resulting 100(1-a)X confidence interval is given by the following

equation

T(8) & ty..(1-a/2)- (Var(¥(B)]-=,,}'"* (2.16)
where
x « _

814 =|§Ec. - ue)'/l‘)_:sc. -0 (2.17)
and t,.,(1-a/2) is the 100(1-a/2) percentile of Student‘'s t-distribution
with (K-2) degrees of freedom.

Since 8 must be estimated, we expect to achieve a smaller variance
reduction than that which could have been obtained had we known the
optimal control coefficient. Lavenb?rg, Moeller and Welch (1982)
quantified this loss by what is known as the loss factor (LF). It is
defined as “the ratio of the variance of the estimator of u, when the
optimal control coefficient is not known to the variance of the
estimator when the coefficient is known" (Bauer, 19687:9). Bauer

provides the derivation of the loss factor, which reduces to

LF = (K-2)/(k-Q-2) (2.18)
where

Q = the number of controls (for the univariate case Q=1)

This "loss factor acts as a multiplier to the minimum variance ratio

(MVR)“ (Bauer, 1987:10,14) given by

MVR = Var{Y(8)]1/Var(Y) (2.19)
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The MVR represents the possible variance reduction when the optimal
control coefficient is known. Multiplying Eq (2.18) and Eq (2.19)
together leads to the variance ratio (VR). The VR represents the

possible variance reduction when 8 is not known.

VR = LF-MVR (2.20)

Univariste Simulation Response with Multiple Controls.

Klei jnen (1974) addresses the extensions to multiple control variates.
Also, Bauer (1987) provides a summary of "the development presented by
Lavenberg and Welch (1981) for simulation output analysis based on
independent replications, batch means, and regenerative analysis"
(Bauer, 1987:11).

Let Y be the univariate response with variance c,’, 5 be the (QX1)
vector of controls, Dev be the (QX1) vector of covariances batween Y and
S' and 5, be the (QXQ) covariance matrix of the controls. Then,
rewriting Eq (2.13) with multiple controls leads to

Y(8) = ¥ - 87(C - pe) (2.21)

where é, g, and Pe are (QX1) vectors. The vector of optimal control

coefficients, {s then given by
8 = 5,"3,, (2.22)

Since the covariance matrices are usually unknown, 8 can be estimated by
substituting the sample analogs of 5, and Doy into Eq (2.22). This

leads to the following equation:
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B = S 'S (2.23)

where g," is the inverse of the (QXQ) sample covariance matrix of the
controls, and is' is the (QX1) vector of sample covariances between the
univariate response and the vector of controls.

Under the assumption that Y and E have the joint multivariate

B 2

Y(g) is unbiased for py, and an exact 100(1-a)X confidence interval is

normal distribution

given by
Y(B) & te.e.i(1-a/2)D-S,. (2.25)
where
D* = k™' # (R-1)""(C - pe)"Se" (€ - po) (2.26)
Svoe” = (R-Q-1)"'(E-1)(5," - S¢v"Se7"Scr) (2.27)

te-q-1(1-/2) is the 100(1-a/2) percentile of Student's t-distridbution
with (K-Q-1) degrees of freedom, and S,* is the sample variance of Y
(Bauer and others, 1988:3-4). Experimental results have shown that the
assumption of joint multivariate normality is robust (Bauer, 1988).
Myitiple Simulatijon Regponses with Multiple Controls.
Bauer, Venkatraman and Wilson (1987) provide an outline of the
theoretical formulas for the case when there are P response variables

and Q control variables. In terms of the notation, the univariate
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response z becomes a (PX1) vector of response variables, g becomes a
(PXQ) matrix of control coefficients, and the scaler sample standard
deviation S, becomes the sample covariance matrix of the response

vector. Under the assuamption that ! and E have the joint multivariate

- E. 2 v

(é) is an unbiased estimator of Brs and an exact 100(1-«)X confidence

normal distribution

[x B ]y

H !

ellipsoid for By is given by

[X(8)-y1"Sy- e "(X(B)-pty] < P(R-Q-1)(R-P-Q) *D-F(1-a;P,K-P-Q) (2.29)

where

D* = K™' 4 (R-1)""(C - pe)"Se ™' (C - po) (2.30)
Svee’ = (K-Q-1)""(R-1)(Sy - SyeSc ™ 'Sev) (2.31)

and F(l-a;m,,m,) is the 100(1-a) percentile of the F-distribution with
n, and m, degrees of freedom (Bauer and others, 1987:335).

The- advantage of the above approach over selecting separate
controls for each response is the capability to form a joint confidence
region for the response vector, rather than being limited to univariate
confidence intervals,

egult viou earch: The following discussion of the
experimental results found in the literature is presented in

chronological order.
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Review of Che 978). Cheng (1978) provided
{nterpretations of statistically well-known formulas used in ordinary
regression analysis to control variates in simulation under the
assumption of normality.

The reader should note that there is an error in Equation (3) of
Cheng's article. The correct equation, which appeared in Cheng and

Feast (1980), reads as follows:

a=Y-8YX-p (2.32)

view of Che d Feast (1980). Cheng and Feast (1980)
made the statement that “"practically all control variables suggested in
the literature are of the form where their mean p is known, but ... [the
covariance matrix] is not” (Cheng and Feast, 1980:51). However, more
recent literature follows their suggestion of using standardized sums
for control variables rather than using sample means or straight sums.
These standardized controls are of the form

C=F 1/ (2.33)

yer™

1f the x,'s are m-independent (x. and z.., are independent if j > m),
with zero mean and E(!,!.') finite, then in the limit E is normally

distributed with mean zero and covariance matrix
£ = g(x.x,' + x.x.' + g.x.' t ee. # g.g,' + x.g'.') (2.34)

(Cheng and Feast, 1980:52)
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Review of Lavepberg, Moeller, and Welch (1982). Lavenberg,

Moeller, and Welch experimented with three internal control variates in
closed queueing networks with more than one class of entities, where a
generic class is denoted by the letter (d). Briefly, the control
variates used were work variables (the sum of service times for type ¢
entities per type 4 event), flow variables (the fraction of type d
events at node i), and service-time variables (the sample service times
for type d entities at node i).

They reported achieving the largest variance reductions using work
variables and limited their research accordingly. They also reported
that as the server utilizatjon increased so did the size of the variance
reduction in waiting time. The range of the estimated variance ratios
using six work variables for controls was from 0.30 to 0.85. These
results translate to minimum variance ratios in the range of 0.16 to
0.77, which are obtained by dividing the variance ratios by the
theoret{cal loss factor.

Review of Wilson and Pritsker (1984). Wilson and Pritsker
experimented with poststratified sampling and standardized work
variables as variance reduction techniques adapted to the estimation
methods of replication analysis (independent replications of a
simulation) and regenerative analysis (independent cycles within a
simulation). The standardized work variables are given by Eq (2.36),
and poststratified sampling refers to an importance technique which
groups the responses into strata according to a stratification variate.
Wilson and Pritsker reported the following reductions in the variance of

the point-estimators and in the width of the 90X confidence intervals
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that can be obtained with sach procedure for several closed and mixed

machine-repair systems:

Table 2.1. Experimental Results of Wilson and Pritsker (1984)

Variance Reduction Variance Confidence-Interval
Technique Reduction Width Reduction

Poststratification 10 - 40% 1 - 20X

Work Variables 20 - 90X 10 - 70%

Review of Sharo 986). Sharon "investigated two types of
Jackson control variates, external and analytic, for estimating the
utilization factors and waiting times in three different queueing
networks” (Sharon, 1986:35). He obtained control variates for each
network using three different service time distributions (exponential,
Wejbull, and uniform) and two different traffic intensities (0.5 and
0.9), which resulted in eighteen experiments.

External Jackson Control Varjates. To obtain external
control variates he used a Jackson network approximation to each of the
more general networks he studied. He substituted the exponential
distribution for the service time distributions with the identical mean
service times used in the original model. Of course, this required a
second simulation for each of the three networks. Then, the output of
these second simulations were contrasted with the results derived
analytically to regress out some of the variance of the estimates

obtained from the simulation of the original model.




For estimating the means of the two response variables at any
given node, the controlled observations were of the form given by Eq
(2.8). For example, in terms of estimating the mean waiting time at any

node in the network

W, (D) = W, - b(C, -~ ) (2.35)
where

a controlled observation of the average waiting time

an uncontrolled observation of the average waiting time
the control coefficient

an observation of the average waiting time from a second
simulation model of the approximating Jackson Network
the mean waiting tiwe, which is the analytic solution of
an M/M/a queue given by Eq (1.1), using the mean arrival
rates, mean service rates, and probabilistic routing
structure that was input to the simulation model

o
W

=
o
n

The controlled observations of the utilization factors were defined in a
similar manner.

Analytic Jackson Control Variates. What Sharon terms
an analytic Jackson control variate is “"an amalgam of the internal and
external approaches” (Sharon, 1986:18). Instead of using the {nput
random variables directly as control variates, Sharon substituted the
known means and the observed averages of the input random variables into
the steady-state equations for an M/M/m queue to derive the desired
control variates. The input random variables included the arrival
rates, the service rates, and the probabilistic routing structure.

Looking back to Eq (2.35), only the definition of C, changes. It
is now the analytic solution of an M/M/m queue using the average arrival
rates, average service rates, and the probabilistic routing observed

from the original simulation.

2.14




Unfortunately, as Sharon indicated, there are two drawbacks to

using his analytic Jackson control variates. First, he was able to
obtain sample values of the arrival rates, the service rates, and
probabilisiic routing at the high setting of the traffic intensity (0.9)
such that the derived traffic intensity using these observed values was
greater than unity (Sharon, 1986:32).

The second drawback of the analytic Jackson control variate is
that the use of "the observed mean arrival rates and service rates in
the Jackson model equations will result in a biased control variate"
{(Sharon, 1986:32-33). The severity of this bias was left to future
research.

Results. Sharon's results show favorable variance
reductions in the estimates of the server utilization factors in the
range of 68 to 99 percent. The higher variance reductions were achieved
at the lower setting of the traffic intensity (0.5). However, the
Jackson analytic control variates for the waiting times produced little
or no variance reduction, and in some cases, they produced variance
increases in the estimates of the waiting times (Sharon, 1986:73-75).

Review of Bauer, Venkatraman and Wilson (1987). Bauer,
Venkatraman and Wilson report a new control variate estimator which
makes use of the cases when the covariance matrix of the controls is
known. For the experiment, they selected the standardized work
variables given by Wilson and Pritsker (1984) and the standardized
routing variables defined by Bauer (1987). Both types of internal
control variates mentioned above have known means and known covariance

matrices.
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Standardized Work Varjables. If we assume that the

service time process at node ] is given by the independent and
identically distributed (IID) sequence {U,(j): i > 1}, §=1, ..., g,
and we define f, to be the number of service times completed at node }J

in the period [0,t), then a standardized work variable for node | is

¢,
W, = (£,)""(te )" T (U, (D) - u,)/0, (2.36)

where @, is the frequency with which an entity visits node § and £ is
the sum of the f,'s (Bauer and others, 1987:337).

Standardized Rou Variables. Define N,(t) to be
the number of entities exiting from node j in the time interval (0,t].
Define p,, to be the probability that an entity exiting from node j will

g0 to node k, and define the indicator variable I,,, as follows:

{ 1 1if the ith entity leaving node j goes to node k
PP

0 otherwise
Then a standardized routing variable for node j is given by

I‘(Q)

R, = 2 (Iign = Psa)/IN,(E)- (1 - P:.)PJ:]II: (2.37)
to}

Results. The new control variate estimator yielded a
confidence-region that is somewhat larger than the confidence region
obtained using the usual controlled confidence-region estimator. But,
[t also demonstrated more reliable coverage properties. However, the

100(1-«)X confidence ellipsoid for u, is only approximate. Further
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research is being conducted to develop a more refined estimator of the
covariance matrix of the controlled response vector and an improved

confidence-region estimator for p,.

Approximations to Point Processes

The author investigated the efficiency of applying two-moment
approximations to control variates in a manner similar to Sharon's
analytical controls. 1In effect, this technique uses approximations of
performance measures of the exact network as external coatrol variates.
In the case of Sharon's analytical controls, his technique uses exact
performance measures of an approximating network as external control
variates.

Need for Approximations. In terms of queueing networks the
arrival and departure processes are point processes. I[f the arrival
processes are renewal processes, then the congestion measures of the
individual queues and the entire network can be solved for analytically.
In most cases the departu&e process of a queue is not a renewal process.
And since the departure process of one queue becomes an arrival process
to the next queue in the network, then the congestion measures cannot be
solved for using exact analytic methods.

Whitt (1982) investigated simple approximations for stochastic
point processes. He considered point processes on the positive real
line for which the "total number of points is infinite but the number of
points in any bounded interval is finite"” (Whitt, 1982:129). Followine
Whitt (1982), let

S. = the position of the nth point from the origin, n ) 0,
and S, = 0
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X, =S, - S.-;,, n>1 (the time {nterval between successive
points)

N(t) = max{n > 0: S, ( t}, t > 0 (the counting process

recording the number of points in the interval (0,t]

Then, "the stochastic processes {5,}, {X,}, and {N(t)} are three
different representations of the same point process” (Whitt, 1982:129).

Let the points in the point process represent the occurrence of a
certain event, then N(t) represents the number of times the event
occurred in the time interval (0,t]. If the time intervals between each
occurrence of the event are independent and identically distributed,
then {N(t)} is called a renewal counting process. The most common
renewal counting process i{s the Poisson process. Furthermore, (X,} is
called a renewal process, and if {(N(t)} is a Poisson process with rate
A, then the X,'s are distributed exponentially with mean 1/A.

However, if the point process {N(t)} is not a renewal counting
process, then the interval sequence {X,} is not a renewal process; and
therefore, the model becomes analytically intractable. Under such
circumstances most practitioners will simulate the model. However,
another approach is to approximate the point process by a renewal
process and then solve the model analytically.

Iwo-Moment Approximations. Whitt (1982) refers to several authors
who

. suggest approximating all the flows (point processes) in

a network of queues by renewal processes characterized by

two parameters. It was discovered that one parameter

(representing the rate of the process) is usually not good

enough, but two parameters (representing the rate and the
variability) often are sufficient (Whitt, 1982:126).
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Review of Whitt (1982). Whitt describes ways to approximate

a single point process by a renewal process in two steps: “first,
properties of the point process are used to specify a few moments of the
interval between renewals; then a convenient distribution is fit to
these moments" (Whitt, 1982:125). There are other appropriate
parameters, but the parameters that he has focused on are “the moments
of the renewal interval in the approximating renewal process” (Whitt,
1982:126). In the paper he outlines two methods for specifying the
first few moments of the renewal interval--the stationary-interval
method and the asymptotic method. Briefly,

the stationary-interval method equates the moments of the

renewal interval with the moments of the stationary interval

in the point process to be approximated. The asymptotic

method, in an attempt to account for the dependence among

successive intervals, determines the moments of the renewal

interval by matching the asymptotic behavior of the moments
of the sums of successive intervals (Whitt, 1982:125).

Review of Whitt (1984). Later, in 1984, Whitt published
methods for approximating the departure process of a single-server
queue. This result is significant because the departure process of one
queue becomes the arrival process to the next queue in a network.

Whitt discusses how to use the two methods above for approximating
the departure process. An interesting note is that

the asymptotic-method approximation for the departure

process is just the arrival process, provided that the

arrival process is in the class of approximating processes,

e.g. a renewal process. Otherwise, the approximating

process for [the departure process] obtained by the

asymptotic wethod is the same as the approximating process
for (the arrival process} (Whitt, 1984:502).
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Finally, Whitt and his associates

indicated three ways the approximations might be improved:
(1) using the third moment, (2) using the lag-1 correlation
..., and (3) developing a hybrid procedure ... However
{they) examined the last two methods and did anot find an
improvement (Whitt, 1984:516).

Review of Albin and Kaji (1986). Albin and Kai studied two

queues in series "to ideatify a renewal process to approximate the
departure process of a EGI,/M/1 queue"” (Albin and Kai, 1986:132). The
arrival process to the first queue was a superposition of independent
stationary renewal processes. Each queue had a single server with
exponentially distributed service times, an infinite queue capacity, and
FIFO queue discipline (Albin and Kai, 1986:130). A hybrid method of two
basic methods (the Poisson and the asymptotic) led to an average
absolute error in hybrid approximations of the expected number in the
second queue of 6% compared to the 22-41X error in the basic methods
(Albin and Kai, 1986:131). The Queueing Network Analyzer, discussed
later in this chapter, uses the stationary-interval method to identify
renewal-process approximations for departure processes. Albin and Kai's
hybrid method applies to queues with exponentially distributed service
times.

The squared coefficient of variation for approximating the renewal

departure intervals using the hybrid method is given by

ce! =we,? + (1 - we,’ (2.38)

where the squared coefficient of variation for approximating the renewal

departure intervals using the asymptotic method (c,’) and the squared
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coefficient of variation for approximating the renewal departure

intervals using the Poisson method (c,?) are given by

n
c.? = ¥ (A/N)e,? (2.39)

te}

c,>=1 (2.40)

(A is the total arrival rate) and the weighting coefficient w =

©(n’,p,,Ps) is given by
o(h°,p,,Pa) = [A + BA*(1 - py)? 4 C/(1 - p)"17! (2.41)
The symbols in Eq (2.41) are defined as follows:

The coefficients (A,B,C) equal

(1.0, 2.0, 0.05) for calculating the expected
number of entities at the second node,

(1.0, 1.0, 0.05) for calculating the standard
deviation of the number of entities at the
second node, and

(1.7, 2.3, 0.04) for calculating the probability
of an entity being delayed at the second node;

p, and p, are the traffic intensities at the respective nodes; and

-t
]
LI ) (A./A)’] , is the effective number of component arrival

1ot processes.

The weighting function is the result of an experimental design
involving 27 combinations of p,, P, and f°, where the constants A, B,
and C were identified using multiple linear regression. "Different
weighting functions are needed for different congestion measures because

of the properties of the basic methods" (Albin and Rai, 1986:138).
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This hybrid method works well when the squared coefficient of variation
of each of the interval renewal processes input to the first queue are
in the range (0,9} (Albin and Kai, 1986: 138).

Review 986). Ximura reported on a two-momeat
approximation that ylelds better results than those achieved by the
Queueing Network Analyzer (which {s described later in this chapter}.
Let EW(GI/G/m) denote the steady-states mean waiting time (until
beginning service) in the GI/G/m queue. The approximation formula he

gives in his paper is

1 -e¢,.? t -¢,.? z(c.’+c.’-1)]

EW(CI/G/m) % (c.+c.*)/ — ¢ +
EW(D/M/n) ~ EW(M/D/m)  EW(M/M/m) |

(2.42)

where c, and c,” are the coefficients of variation of the interarrival
times and service times respectively; p is the traffic intensity; and
EW(D/M/m), EW(M/D/m) and EW(M/M/m) are the steady-state mean waiting
times in the respective queueing systems. Kimura's approximation
formula given by BEq (2.42) "is a weighted harmonic mean of the expected
waiting times for the D/M/m, M/D/m and M/M/m queues and it i{s exact for
these queusing systems” (Kimura, 19686:751).

Note that EW(M/M/m) is equivalent to W, given by Eq (1.5) in the
first chapter. Because of some numerical difficulties in solving for

the exact analytic solutions of EW(D/M/m) and EW(M/D/m), Kimura suggests

using the following approximations:

BW(D/M/m) % (1/2)[1-4C(m,p)]-exp[~-2(1-p)/3p)-EW(M/M/m) (2.43)
EW(M/D/m) % (1/2)(1+C(m,p)]-EW(M/M/nm) (2.44)

where
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C(m,p) = (1-p)(m-1)[(4+5m)''" - 21/(16mp) (2.45)

Kimura found "that these approximations are fairly accurate unless p is
close to zero™ (Ximura, 1986:761).

Substituting the approximations given by Eqs (2.43) through (2.45)
into Bq (2.42) yields a simpler approximation that is more tractabls.

This simpler approximatjon is given by
EW(CI/G/m) % (1/2)(c,” + ¢, ")k -EN(M/M/m) (2.46)

where the correction factor k = k(GI/G/m) is defined by

KCL/G/m) = Sy LS e ) (2.47)
m) = +c,tee,t- .
k(O/M/m)  E(M/o/m) | C

and
k(D/M/m) = max{[1-4C(m,p))-exp[-2(1-p)/3p], 10°*%) (2.48)
k(M/D/m) = 1 + C(m,p) (2.49)

The maxiwum in Eq (2.48) {s used to avoid dividing by zero or
meaningless approximations with negative values (Kimura, 1986:761).

The Queueing Network Analyzer. The Queueing Network Analyzer
(QNA) is a commercially available “"software package developed at Bell
Laboratories to calculate approximate congestion measures for a network
of queues"” (Whitt, 1983a:2779). The first version of QNA operates under
the following assumptions:

Assumption 1. The network is open rather than closed.

Customers come from outside, receive service at one or more

nodes, and eventually leave the systenm.

Assumption 2. There are no capacity contraints. There is
no limit on the number of customers that can be {n the
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entire network and each service facility has unlimited
waiting space.

Assumption 3. There can be any number of servers at each
node. They are identical independent servers, each serving
one customer at a time.

Assumption 4. Customers are selected for service at each
facility according to the first come, tirst-served
discipline.

Assumption 5. There can be any number of customer
classes, but customers cannot change classes. Moreover,
much of the analysis in QNA is done for the aggregate or
typical customer.

Assumption 6. Customers can be created or combined at
the nodes, e.g. an arrival can cause more than one
departure.

(Whitt, 1983a:2781-2782)

QNA uses two parameters to éharacterize the arrival process and the
service times--one to describe the rate and the other to describe the
variability (Whitt, 1983a:2782).

Required Inputs. QNA allows several different formats for
entering the necessary information. In general, the information that
must be supplied is as follows: (1) the number of nodes in the network,
(2) the number of servers at each node, (3) the external arrival rate to
each node, (4) the variability parameter of the external arrival process
to each node, (5) the mean service time at each node, (6) the squared
coefficient of variation of the service-time distribution at each node,
and (7) the Markovian routing of eantities within the network.

QNA OQutputs. QNA will provide the steady-state congestion
measures for each node in the network. The main congestion measure is
the mean waiting time (before beginning service), but QNA also generates

an entire probability distribution for the waiting time. QNA will also
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provide the probability that the server {s busy at an arbitrary time,
the expected number of entities in the node, the probability that an
entity is delayed, and the conditional delay given that the server f{s
busy (Whitt, 1983a:2802-2807).

QNA will also calculate the approximate congestion measures for
the network as a whole. It provides congestion measures representing
the system view (e.g. throughput and number of entities in the network)
and congestion measures representing the customer view (e.g. number of
nodes visited and response times) (Whitt, 1983a:2807).

Performance of QNA. Whitt (1983b) describes the performance
of QNA and compares the congestion measures to those obtained through
simulation and the standard Markovian algoritha (which is represented by
the M/M/m equations given in Chapter I). He tested the performance of
QNA on a variety of queueing networks from a single GI/G/1 queue to a
packet-switched communication-network model. The results of Whitt's
study demonstrated the importance of the variability parameter used in
QNA to estimate the congestion measures of networks that do not satisfy
the assumptions of the Jackson network. Furthermore, when the Jackson
network assumptions are satisfied, then the approximations used in QNA

yield the exact measures.
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I1I. Methodolo

The objective of this study was to compare several control
variates that have shown promising results for queueing network
simulation. This was done with the ultimate goal in mind of providing
the simulation community with some guidance for selecting control
variates that will lead to significant reductions in the variance of the
estimated responses while not introducing bias to the estimates.

The major obstacle to achieving the stated goal was to design an
experiment that is general enough so that the results are applicable to
a wide range of queueing network models. And, at the same time, the
size of the experiment must be manageable so that it can be completed in

the alloted time.

Description of the Queueing Network

The first step in keeping with the above considerations was to
select a queueing network. The author decided to select a single
network that is small in terms of the number of nodes but complex enough
to incorporate many aspects of queueing networks in general.

The basic form of the network was based upon the third network
that was used by Sharon (1986). It is an open network which consists of
four nodes, each of which has a single server. Entities arrive from
outside the network to the first service center (or node) according to a
Poisson process with arrival rate A = 1. At each service center, the
queus capacity is infinite, and the queue discipline is FIFO. Froam the

first node entities can go to either node 2 or node 3 with given
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probabilities. Entities from nodes 2 and 3 proceed to node 4. Finally,
entities leaving node 4 may loop back to the first node or may exit the
system. The basic structure of the queueing network is illustrated

below in Figure 3.1.

—O—D—0 o O-

A 4
EXTERNAL DEPARTURES

O DECOMPOSITIOCN/REOCOMPOBITION 8WITCH

(O eERVICE CENTER NODE

Figure 3.1. Diagram of Experimental Queueing Network

Furthermore, the service times at the first three nodes were
distributed exponentially. This decision was made to simplify the
experiment, rather than introduce another variable to the experimental
design. In effect, this does not limit the applicability of the results
because the superposition of independent arrival processes approaches a
Poisson process in the limit no matter how they were originally
distributed.

However, the service time distribution at the fourth node was
varied to obtain the desired variability in the service times, since an

exponential distribution is limited to a coefficient of variation equal
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to one. The coefficient of variation is a measure of the variability of

a distribution and is given by the square root of the variance divided
by the mean. The maximum entropy distribution was chosen to generate
service times with a coefficient of variation less than one and the
hyperexponential distribution was chosen to generate service times with
a coefficient of variation greater than one. There is more detafl about

these distributions later in this chapter.

The Response Variables

Next, two response variables were selected for the analysis. One
of them was the average sojourn time for an entity to pass through the
network, which can be approximated by finding the solution to the
approximating Jackson Network. It can also be solved by finding the
approximate solution to the exact network using QNA.

The other response variable selected was a quantile at the fourth
node representing the probability that the number in queue exceeds some
threshhold value. The threshhold value chosen was twice the mean number
in queue at equilibrium. For practical purposes, QNA was used to find
the threshhold value by taking the next highest integer of the following
result: 2 X (EN - p) , where EN is the expected number at the fourth
node, and p is the associated traffic intensity.

Quantiles are not easily estimated, even though knowledge of them
may prove to be important. To illustrate, consider a communication
network where the queues represent buffers for incoming messages. And,
suppose that one proposes to determine the capacity of the buffers in
this network by finding the mean number in queue at equilibrium for a

system with infinite capacity and simply doubling the result. The user
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of the network may then want to know how often the capacity of the

buffers are exceeded to determine whether or not the buffers' capacities

should be increased.

The Control Variables

Next, examples of both types of control variates, internal and
external, were sslected. The author picked two different types of
internal control variates (standardized routing controls and
standardized work variables) and two different types of external control
variates (analytic Jackson controls and analytic approximations).

The Internal Control Variates. Two standardized routing controls,

one for each of the two probabilistic branchings in the network, were
selected for this research. For further reference, let R,; denote the
routing control for the proportion of entities that took the path from
node 1 to node 3 {(as opposed to node 1 to node 2), and let R,, denote
the routing control for the proportion of entities that took the path
from node 4 back to node 1. These standardized routing controls are
given by Eq (2.37).

In addition to the two routing controls, four standardized work
variables, one for each of the service nodes, were selected. The four
work variables, denoted by W,, W,, W;, and W,, are given by Eq (2.36).

The External Control Variates. Also, two external control
variates under each of the two different approaches alluded to earlier
were selcted for this research. These external controls were the
steady-state expected sojourn time for the entire network and the

steady-state expected waiting time in the fourth queue.
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The analytic Jackson control variates and the analytic
approximations were found using Bell Laboratories' Queueing Network
Analyzer (QNA). The following input parameters to the simulation model
were used to generate the "known" means of the external control
variates: the external arrival rate, the mean service times at each
node, the squared coefficient of variation of the service times at each
node, and the probabilistic routing matrix. Under the assumption that
the squared coefficient of variation of the service times are all equal
to one yields the M/M/1 (or Jackson Network) results. On the other
hand, using the input squared coefficient of variation for the service-
times at the fourth node (the only one that violates the above
asumption) yields the G/G/1 (or approximate) results.

The observed values of the external control variates were found
using the observed values of these same parameters as inputs to QNA.
The input files to QNA for generating the "known" means at the first
design point are provided in Appendix B, and the “known" means of the
external control variates at all design points are summarized in a table

in Appendix C.

Selecting a Service-Time Distribution

In almost all of the literature examined, there has not been any
rationale specified for selecting a particular distributional form for
the interarrival times or service times. Rather, most researchers
select a few of the more commonly used distributions and include the
type of distribution as a variable in their research. However, in this
case, in keeping with the goal of maintaining enough generality, the

selection of a specific distribution might bias the results. Therefore,

3.5




the maximum entropy distribution was selected for this research because
it is the least biased.

However, because of the difficulties associated with generating
random numbers according to the maximum entropy distribution, the author
decided to use it for generating service times at the fourth service
center only. As indicated earlier, the fourth service center is of
particular interest because of the selection of the quantile
representing the probability that the number in queue at the fourth
service center exceeds twice the expected number under steady-state
conditions.

Unfortunately, the author discovered that the maximum entropy
distribution could not be used to generate a nonnegative random variate
with a coefficient of variation (c,) greater than one. (The author did
not explore whether or not the maximum entropy distribution can have a
coefficient of variation greater than one over the real numbers.)
Instead, the hyperexponential &istribution was selected for such cases.
This selection is also suggested from graphical representations of the
distributions. At the lower setting of the coefficient of variation
(0.5) the maximum entropy distribution looks like a normal distribution
that was truncated at the origin (negative tiqg? are impossible). As
the coefficient of variation increases to one the graph looks
exponential. In fact, when the coefficient of variation equals one the
maximum entropy distribution reduces to the exponential distribution.
The hyperexponential distribution with coefficient of variation greater

than one takes on an exponential shape but with a longer tail.
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Therefore, the maximum entropy distribution was used to generate
random variates with a coefficient of variation less than one and the
hyperexponential distribution was used to generate random variates with
a coefficient of variation greater than one. The functional forms of

the density functions for these two distributions are given below:

Maximum Entropy: f£(x) = exp(~1 - Ay = A.X = A,x?) (3.1)

Hyperexponential: £(x) = c,/8,-exp(-x/8,) + c,/B,-exp(-x/B,) (3.2)

Generating Random Variates Using Selected Distributions
The author used the simulation programming language SLAM II to

code up the network model. SLAM II has built-in functions to generate
random variates according to several distributions. However, it does
not have any built-in functions for generating the maximum entropy or
hyperexponential distributions. Therefore, the author had to build
FORTRAN subroutines using well-known techniques to generate the random
variates desired. The SLAM II Network code and FORTRAN subroutines are
provided for the reader in Appendix A.

Maximum Entropy Distribution. The development of the parameters
(Ao, Ay, and A,) for the maximum entropy distribution given the first
two moments (4, and H,) is no trivial matter. All of the automated
search procedures tried have not been successful, but a program using
MINOS is currently being pursued. However, the author was able to find
parameters through a somewhat manual search process using a routine to
numerically evaluate the appropriate integrals to reproduce the desired
moments to within 4 parts in 10,000. Given the density function f(x) as

defined in Eq (3.1) the three integrals are defined below:
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I.f(x) dx = 1 (definition of a density function) (3.3)
°
J.x'f(x) dx = p, (definition of the first moment) (3.4)
[ ]
I.x'-f(x) dx = u, (definition of thes second moment) (3.5)

However, having found the parameters still leaves the problem of
generating random variates according to the maximum entropy distribution
with those parameters. To generate the random variates according to the
desired maximum entropy distribution the author decided to use the
acceptance-rejection method (Law and Kelton, 1982:250-252).

The efficiency of the acceptance-rejection method is determined by
the area between the density fuctions of the majorizing distribution and
the original distribution of interest. As the area decreases the
efficiency of the method increases. If f(x) and g(x) are density
functions of two different distributions, g(x) majorizes f(x) if and
only if g(x) > f(x) at every x where f(x) is defined.

Using MathCAD the author was able to visually fit a majorizing
distribution to each maximum entropy distribution. The majorizing
distributions were developed using the density function of a Normal
distribution that was truncated at the origin. To insure that they
truly majorized the maximum entropy distribution they were checked by
creating a table of values in MathCAD and adjusting them as necessary.
Figures 3.2 through 3.5 are graphical representations of the density
functions for the four maximum entropy distributions that were used in

this research with their respective majorizing distributions.
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Figure 3.2. Service-Time Distribution at Node #4
with g, = 0.45 and uy, = 0.253125
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Figure 3.3. Service-Time Distribution at Node #4
with y, = 0.81 and u, = 0.820125
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Figure 3.4. Service-Time Distribution at Node #4
with u, = 0.375 and 4, = 0.1757812
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Figure 3.5. Service-Time Distribution at Node #4
with g, = 0.675 and p, = 0.5695312
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Hyperexponential Distribution. Civen the first two moments, the

parameters of the hyperexponential distribution can be solved for

directly from the four equations given below.

CiB, + C48,; = 4, (first moment) (3.6)
2¢,8,” + 2c,8;" = y, (second moment) (3.7)
C, + Cy =1 (3.8)
c,8, = C,8, (3.9)

Eqs (3.6) and (3.7) were derived from the definitions of the first and
second moments, respectively. Eq (3.8) was derived from the fact that
the integral of any density function equals one. And, Eq (3.9) is added
to provide a unique solution. Simultaneously solving Eqs (3.6) through

(3.9) in terms of the first two moments leads to the following results:

c, = (0.25 - 0.5p,"/u)"'’* + 0.5 (3.10)
ca =1 ~¢, (3.11)
B, = 0.54,/¢, (3.12)
B8, = 0.5u,/c, (3.13)

A hyperexponential distribution that satisifies Eq (3.9) is said to be
balanced. The reader is referred to pages 139-147 of Kleinrock (1975)
for more information.

To generate random variates according to the hyperexponential
distribution the author selected the composition method (Law and Kelton,
1982:247-249). Figures 3.6 through 3.9 are graphical representations of
the density functions of the four hyperexponential distributions that

were used in this research.
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Figure 3.6. Service-Time Distribution at Node #4
with 4, = 0.45 and u, = 1.468125
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Figure 3.7. Service-Time Distribution at Node #4
with g, = 0.81 and p, = 4.756725
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Figure 3.8. Service-Time Distribution at Node #4
with p, = 0.375 and p, = 1.0195313
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Figure 3.9. Service-Time Distribution at Node #4
with p, = 0.675 and pu, = 3.3032813




Lag-1 Correlation of the Interdeparture Times

Prior to any experimentation with the network described earlier,
the author experimented with a single-server queue to test for the
strength of the lag-1 correlation of the interdeparture times of a G/G/1
queue. The queue capacity was infinite and the queue discipline was
FIFO. PFurthermore, the maximum entropy and hyperexponential
distributions were used to generate the interarrival times and the
service times of the entities. The author assumed a first-order
autoregressive time series model for the autocorrelation function of the
departure process.

Experimenta) Design. Also, the author used a 2* factorial design
to explore the effect of the traffic intensity and the variability of
the interarrival-time and service-time distributions on the first-order
autoregressive parameter. The levels of the three factors (traffic
intensity, coefficient of variation of the interarrival times, and
coefficient of variation of the service times) in the experiment are
sumnarized in the table below.

Table 3.1. Levels of Factors in 2® Experiment
of a G/G/1 Queue

Low Value High Value

Parameter (-1) (+1)
P 0.5 0.9
C. 0.5 2.5
Ce 0.5 2.5




To eliminate the initialization bias, the author discarded the
first tive thousand observations of the interdeparture times. This
decision was made based upon a visual interpretation of a time-
persistant plot of the average waiting time in the queue. Then, the
next one thousand observations of the interdeparture times were used to
fit a first-order autoregressive time-series model.

Experimental Resuits. Using PROC ARIMA under SAS the resulting
first-order autoregressive parameter ranged from -0.117 to +0.078.
Although these extreme values proved to be statistically significant
(most of the intervening values did not), they are not practically
significant.

This result is significant to the development of analytic
approximations for estimating the performance measures of a network.
That is, since the arrival process to a queue in a network is the
superposition of an external arrival process and the departure processes
of other queues in the network, then this results validates the
assumption that the interarrival times are independent. Otherwise, the
approximation formulas would have to incorporate the dependency between
the interarrival times of the entities to the queues in the network.
Furthermore, the author's findings provide the reason why Whitt (1984)
did not find any improvement when he incorporated the lag-1 correlation

of the interdeparture times in his two-moment approximations.

Experimental Design

The experimental design for comparing the control variates over
the network illustrated in Figure 3.1 was a 2° factorial design. The

four factors selected were the traffic intensity of the network, the
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coefficient of variation of the service times at the fourth node, and
the two routing variables (r,, and r,,). The levels of these four
factors are given in the table below.
Table 3.2. Levels of Factors in 2°Experiment
of the Queueing Network

W
Low Value High Value

Parameter (-1) (+1)
P 0.5 0.9
Ce 0.5 2.5
T3 0.2 0.4
) P 0.1 0.25

‘ Given the external arrival rate to the first node (which was set
equal to one) and the routing matrix, the effective arrival rates to
each of the four nodes in the network can be solved for from the traffic

rate equations given by

n

3 Ay 2 Ay, + Y AT, (3.14)
i=l
b
F where
A, = the effective arrival rate to node j
t Ao, = the external arrival rate to node j
A, = the effective arrival rate to node i
l r,, = the routing probability from node { to node j
n = the number of nodes in the network

Next the mean service time (v) for each node (Jj) can be solved for by

1, = p/A, (3.15)
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Finally, the first two moments of the service-time distribution at the

tourth node can be solved for by

By =T,

Ha = B, 7(1 ¢+ ¢,%)

(3.16)
(3.17)

The values of the input parameters to the simulation model at each of

the design points are summarized in Table 3.3.

Table 3.3.

Values of the Input Parameters
to the Queusing Network Simulation Model

Design --Factor Settings--

Point f ]
1 0.5
2 0.9
3 0.5
4 0.9
S 0.5
6 0.9
7 0.5
8 0.9
9 0.5

10 0.9
11 0.5
12 0.9
13 0.5
14 0.9
15 9.5
i6 0.9
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0.10 0.75000 1.1250
0.10 1.35000 2.0250
0.10 0.75000 1.1250
0.10 1.35000 2.0250
0.10 0.56250 2.2500
0.10 1.01250 4.0500
6.10 0.56250 2.2500
0.10 1.01250 4.0500
0.25 0.67500 0.9375
0.25 1.12500 1.6875
0.25 0.67500 0.9375
0.25 1.12500 1.6875
0.25 0.46875 1.8750
0.25 0.84375 3.3750
0.25 0.46875 1.8750
0.25 0.84375 3.3750

0.2531250
0.8201250
1.4681250
4.7567250
0.2531250
0.8201250
1.4681250
4.7567250
0.1757812
0.5695312
1.0195313
3.3032813
0.1757812
0.5695312
1.0195313
3.3032813

Note that at the design points where c, = 0.5. the service-time

distribution at the fourth node was the maximum entropy distribution;

and, at those design points where c, = 2.5, the service-time

distribution at the fourth node was the hyperexponential distribution.
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The parameters for generating the hyperexponential distribution were
derived in a FORTRAN subroutine in the model using Eqs (3.10) through
(3.13). But, the parameters for generating the maximum entropy
distribution were derived outside of the model. These parameters were
then input to the model and are given in Table 3.4 below.
Table 3.4. Parameters for Generating Random Variates
According to the Maximum Entropy Distribution

----- Parameters of the Density Functions-----
----- MomentS—---- Maximum Entropy Dist Majorizing Dist
B, He A A, A, c B o!

0.450 0.2531250 -0.028146 -7.000 8.1980 1.12 0.425 0.07
0.810 0.8201250 0.557130 -3.882 2.5265 1.06 0.770 0.20
0.375 0.1757812 -0.210450 -8.400 11.8050 1.13 0.350 0.05
0.675 0.5695312 0.375020 -4.659 3.6385 1.10 0.640 0.15

Collecting Data

Now that we have selected a queueing network, the response
variables, the control variables, the interarrival-time and service-time
distributions, and an experimental design, we need to decide how much
b data to collect and how to generate the data. The first question, “how
much data to collect,” is related to estimating the bias introduced to
j the controlled estimators by forming confidence intervals about them and
1 counting what percentage of the confidence intervals cover the “known"
value of the response. The second question, "how to generate the dats,”
f refers to choosing a technique that will yield unbjased independent

observations of the uncontrolled estimators.
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Determining How Much Data to Collect. The author decided to use

twenty observations (that is twenty runs of the simulation model) to
obtain each estimate of the mean controlled responses. Then, about the
estimated controlled mean response a single 95% confidence interval was
formed. Now, to obtain a reasonable estimate of the actual coverage
percentages of the confidence interval the author decided that this
required a minimum of two hundred confi{dence intervals. Therefore, four
thousand runs (twenty runs per confidence interval X two hundred
confidence intervals) were required to determine the bias introduced to
the controlled responses at each of the sixteen design points.

Determining How to Generate the Data. Knowing that we need four
thousand runs of the simulation model at each of the sixteen design
points poses some problems in terms of the computer time required to
make all these runs. The two major considerations here are eliminating
the initialization bias and deciding whether to use the method of
independent replications or batch means; and, both of these

considerations are related.

Independent Replications vs Batch Means. The method of

independent replications will yield independent observations since each
run of the simulation model uses different random numbers. However, the
transient period of the simulation must be discarded for each run. On
the other hand, the transient period is discarded only once for the
batch means approach, but the observations may be autocorrelated. The
practitioner must then determine the appropriate batch size necessary to
pass some statistical tests of independence. Any good text on

simulation modeling should have more information about the batch means
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approach; a few of them are Kleijnen (1974), Law and Relton (1982), and
Pritsker (19686).

In general, when one is faced with making so many runs of a
simulation model the batch means approach is preferred to independent
replications because of the savings in computer time. But, the effect
of the batch means approach upon the corrslation between the response
variable(s) and the control variable(s) has not been studied (or, at
least, the author has not found aay literatures reporting such a study).
In many situations there is a lag time in the correlation between the
response variable(s) and the control variable(s).

For example, suppose for our queueing network we select the mean
sojourn time for the response variable and the mean service time at the
first node for the control variable. Then, when the observed average
service time at the first node is high compared to its known mean, we
would expect the average sojourn time to be higher than its true mean.
But, we would also expect that the average sojourn time is not affected
imediately by some longer than average service times at the first node.
Therefore, when using the batch means approach, if the batch size is not
large enough to capture the correlation between the response variable(s)
and the control variable(s) we may not achieve a variance reduction, or
bias may be introduced to the controlled estimates.

For these reasons the author decided to use independent
replications instead of the batch means approach.

Elimipating the Initialization Bias. Since we are
interested in steady-state results, the transient {(or warm-up) period of

the simulation must be discarded. The author made some trial runs of
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the simulation and plotted a time-persistent average of the sojourn
time. The author made a visual determination that the transient period
was essentially over after about three thousand time units when the
simulation was started at empty and idle conditions. But, this would be
too costly in terms of computer time to discard this much data for each
run of the model. Therefore, the author decided to start the simulation
nodel essentially at steady state by initializing the number of entities
in each queue to the expected number as given by QNA. Then, in order to
provide some randomization, the observations generated during the first

one hundred time units were discarded.

Weighting the Observations

Since observations were collected on so many different variables
(two response variables, s{x internal control variables, and four
external control varjables) it was more convenient to make each
simulation run of the same fixed length (which was one thousand time
units) rather than try to obtain the same number of observations for
each variable. That is, each observation simulation run of the
variables under study (resulting from one run of the simulation) are
averages of the individual observations within a simulation run over one
thousand time units; and, although the time interval is constant, the
number of observations during the fixed time i{nterval (within a
sinulation) varies from one run to the next. Therefore, to obtain
unbiased estimates of discrete performance variables (such as the mean
sojourn time) we need to weight the observations from each simulation

run accordingly.
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For example, each run of the simulation yields one value of the
average sojourn time, which itself is an average of all the individual
sojourn times of the entities completing the network during the fixed
time interval of one thousand time units. Then, the uncontrolled
estimate of the mean sojourn time is a weighted average of twenty
averages, and the weights were derived from the number of individual
observations that comprised each of the twenty averages respectively.

The weighted average of any random variable X is given by

4 4
X=FwuX/ 3w (3.18)
(eg i=st
where K is the number of observations (simulation runs) and w, is the
weighting coefficient on the ith observation of X. The weighting

coefficients are given by

L
w, = K0, / } 1, (3.19)

[}
where n, is the number of individual observations (within a simulation)
that make up the ith observation of X. Similarly, the weighted sample

variance of X is given by

s? = [x iu.x.’ - [iu.x.]’}lll(l-l)] (3.20)

Statistics Used to Compare Control Variates

Finally, we need to specify the measures to be used to compare the

results of the different control variables on the response variables.
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First of all, the control variates were compared on the basis of
efficiency (or the size of the variance reduction) as given by the
variance ratio (VR). Recall from Chapter II that the VR is the ratio of
the variance of the controlled estimator when the optimal control
coefficient is unknown (and must be estimated) to the variance of the
uncontrolled estimator.

Secondly, the potential bias introduced to the controlled
estimates was measured by the percentage of the total number of
confidence intervals about the controlled estimates that covered the

grand mean of the 4000 uncontrolled observationms.

The Experimental Procedure

In this section, the author traces his steps in running the
programs and generating the data. Recall that four thousand runs of the
simulation model were made at each of the sixteen design points and
that each run of the simulation model was eleven hundred time units in
length.

Because of CPU time limits, one thousand runs of the simulation
model were submitted at a time; therefore, four submissions were
required to complete a single design point. Each of these job
submissions used appro. imately one hour of CPU time on a VAX 8650
computer and generated five output files. The four replications of
thess output files for each design point were then appended to one
another.

The contents of these five output files are as follows: (1)
JACXSON.IN contained the records of the parameters necessary for input

to QNA to solve for the observed vaiues of the two external contiol
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variates under the assumption that all the service variability
parameters equalled one; (2) QNA.IN was similar to JACKSON.IN except
that the observed values of the service variability parameters were
included; (3) RESPONSE.OUT contained the number of entities completing
the network and the two response variables; (4) ROUTING.OUT contained
the two standardized routing control variables with their respective
number of observations; and (5) WORK.OUT contained the total number of
service completions and the four standardized work variables. The
reader may examine the FORTRAN code that generated these files in
Appendix A.

Next, the author used a slightly modified version of the QNA
software was to produce the two output files JACKSON.OUT and QNA.OUT
which contained the observations on the external control variates
generated from their respective input files. (The author's
modifications to QNA were to suppress the normal detailed output and to
report the values of the two variables of interest only).

The five files with the ".0UT" extension (along with the two files
M16.0UT and G16.0UT which contained the "known" means of the external
control variates) then became the input files to the program called
CONTROL. The files M16.0UT and G16.0UT are given in table format in
Appendix C, and the FORTRAN code for the program CONTROL is provided in
Appendix A. The program CONTROL was written to calculate the
uncontrolled «s well as the controlled estimates of the means of the two
response variables against each of the ten control variates. It also
provided the variance ratios and 95X confidence limits about the

controlled responses. Each output record was based on twenty records of
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input data (representing twenty runs of the simulation) and from here is
referred to as a macro-replication; and, there were two hundred macro-
replications at each design point. The output data (macro-replications)
were stored in four files: (1) SOJOURN.VR which contained the
uncontrolled estimates, the controlled estimates, and the variance
ratios for the response variable sojourn time; (2) SOJOURN.CI which
contained the 95X confidence limits for the response variable sojourn
time; (3) QUANTILE.VR which contained the uncontrolled estimates, the
controlled estimates, and the variance ratios for the response variable
representing the probability that the number in queue exceeded twice the
expected number; and (4) QUANTILE.CI which contained the respective 95%
confidence limits.

Finally, the two SOJOURN files and the two QUANTILE files were
separately input to the program RESULTS which calculated the minimum,
mean, and maximum values of the uncontrolled estimates, the controlled
estimates, and the variance ratios over the two hundred macro-
replications. RESULTS also counted the number of times the grand
uncontrolled estimate of the mean response fell within the 95%
confidence limits of the two hundred macro-replications and reports the
percentage that do so as an estimate of the actual coverage of the
confidence intervals. The output files produced by the program RESULIS
are provided in Appendix D. Also, the FORTRAN code for the program

RESULTS is provided in Appendix A.
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IV. Results

The results of the experimentation with control variates on the
open queueing network described in Chapter III are given in this
chapter. The variance ratios and confidence interval coverages are
reported for ten control variates against two response variables. The
output files from the program RESULTS are provided in Appendix D.

Table 4.1 lists the grand means of the uncontrolled simulation
response of sojourn time and the analytic solutions provided by the
M/M/1 and G/G/1 formulas. Note that the analytic solutions were used as
the "known" means of the external control variate of sojourn time as
given in Appendix C.

Since the M/M/1 analytic results assume that the squared
coefficient of variation of the service times at the fourth node is
equal to one, we would expect a difference between the results obtained
with the M/M/1 formulas and the results obtained from the simulation
model. However, it is interesting to note the significant differences
between the simulation results and those obtained using the G/G/1
approximations. These differences are given in terms of percentages in
Table 4.1 below.

The differences between the estimated mean sojourn times for an
entity to complete the network were more pronounced as the traffic
intensity of the network increased; and likewise, these differences
increased as the coefficient of variation of the service times at the
fourth node increased. These findings are summarized in Table 4.2

below.
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Table 4.1. Analytic Results vs. Simulation Results
For Estimating Mean Sojourn Time in Network

Design ------ Analytic Results----- Simulation
Point M/M/1 G/G/1 Results % Delta’
1 0.4000008+01 0.381177E+01 0.381331E+01 0.04
2 0.360000E402 0.329330E+02 0.292945E+02 -11.05
3 0.400000E+01 0.531762E+01  0.521644E+01 -1.90
4 0.360000E+02 0.574688E+02 0.457255E+02 -20.43
S 0.400000E+01 0.381173E+01  0.381449E+01 0.07
6 0.360000E+02 0.329329E+02 0.287763E+02 -12.62
7 0.400000E+01 0.531792E+01 0.521470E+01 -1.94
8 0.360000E+02 0.574698E+02 0.451113E+02 -21.50
9 0.417391E+01  0.398269E+01  0.398874E+01 0.15
10 0.360000E+02 0.327806E+02  0.299427E+02 -8.66
11 0.417391E+01  0.551237E+01  0.530441E+01 -3.717
12 0.360000E+02 0.585327E+02 0.470301E+02 -19.65
13 0.400000E+01 0.380878E+01  0.381095E+01 0.06
14 0.360000E+02 0.327797E+02  0.292389E+02 -10.80
15 0.400000E+01  0.533846E+01  0.512254E+01 -4,04
16 0.360000E+02 0.585391E+02 0.456687E+02 -21.99

‘% Delta is the percent difference between the G/G/1 results and
the simulation results.

Table 4.2. Effect of p and ¢, on ¥ Delta
Between Analytic G/G/1 and Simulation Results

Average
X Delta

Because the differences increase as the traffic intensity of the
network increases and as the variability of the service times at the

fourth node increases, this may indicate one of three things, or
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possibly a combination of the three. First, the G/G/1 approximations
used in QNA may be less accurate as the traffic intensity increases and
as the coefficient of variation of the service times increases. Or,
there may be significant initialization bias in the simulation results
at the higher traffic intensity and the higher variability of the
service times. Finally, the fixed time interval of the simulation may
have been too short to provide good estimates at the higher traffic
intensity and higher variability of the service times.

The author's first suspicion that the G/G/1 approximations used in
QNA might be a significant contributor to these differences seeams to be
justified in light of the findings of Whitt (1983b). As to the
initialization bias, the author started the simulation with the expected
numsber in each queue. However, these numbers were provided by QNA; and
therefore, under the assumption that QNA's results were less accurate as
the traffic intensity and service variability increased an initial bias
was probably introduced. Although further experimentation with the
simulation model is required to prove any of these suspicions, knowing
these differences exist proved helpful in interpreting the resulting
variance ratios and coverages of the confidence intervals.

The average variance ratios achieved using each control variate
against the first response variable, sojourn time, are given in Table
4.3. At the bottom of each column in Table 4.3 appears the grand
average variance ratio for each control variate across the sixteen
design points. Recall that the smaller the variance ratio, the greater
the variance reduction. Table 4.4 provides the average variance ratios
when the first two factors (traffic intensity and service variability)

are held constant.
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Table 4.3.
With Sojourn Time as Response Variable

Variance Ratios Achieved
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Table 4.4.

Across Traffic Intensity and Service Variability

Control
Variate

S(M/M/1)
W(M/M/1)
3(G/G/1)
W(G/G/1)

N ]

Ws

Ws

----External Controls

——-M/M/] e
s0J W,
0.418 0.768
0.697 0.645
0.468 0.386
0.662 0.615
0.378 0.797
0.771 0.650
0.508 0.422
0.704 0.620
0.355 0.662
0.708 0.604
0.450 0.416
0.689 0.672
0.331 0.712
0.748 0.633
0.448 0.404
0.726 0.624
0.566 0.602

---G/G/1----

soJ

Average Variance Ratios for the First Response

-Variance Ratios at Factor Lasvels (p,c,)--
(0.9,0.5) (o0

(0.5,0.5)

4.4

.5,2.5)
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(0.9,2.
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The results listed in Table 4.3 show that among the internal
control variates R,, achieved the smallest variance ratio and the others
were roughly equal. However, the external control varjates achieved
significantly greater variance ratios that any individual internal
control variate. Also, among the external contrcl variates, those based
upon the G/G/1 formulas achieved smaller variance ratios than those
based upon the M/M/1 formulas.

Furthermore, one can see from Table 4.4 that except for R,, the
average variance ratios of the internal control variates are not greatly
affected by changes in the traffic intensity or service variability.
However, the average variance ratios for the external control variates
are greatly affected by both the traffic intensity and service
variability.

In a similar manner, the average variance ratios achieved using
each control variate against the second response variable, the quantile
representing the probability of the number in the fourth queue exceeding
twice the expected number, are given in Table 4.5. Likewise, Table 4.6
provides the average variance ratios when the first two factors (traffic
intensity and service variability) are held constant.

The same general observations hold true for the results of the
variance ratios achieved against the second response variable as for the
first response variable. Additionally, in comparing the variance ratios
between the two response variables, the variance ratios are smaller for
the first response variable.

Next, Tables 4.7 through 4.10 are the respective analogs to Tables
4.3 through 4.6 with the confidence interval coverages as the statistic

for comparison in place of the variance ratios.
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Avg 0.946

Table 4.6.

Variance Ratios Achieved

Table 4.5.
With Quantile at 4th Node as Response Variable

Sy Y —
50J W,

SoJ

LB

Ras

W,

Across Traffic Intensity and Service Variability

Control -Variance Ratios at Factor Levels (p,c,)--
Variate (0.5,0.5) (0.9,0.5) (0.5,2.5) (0.9,2.5)
R.s 0.944 0.949 0.946 0.947
Res 0.873 0.919 0.940 0.944
W, 0.949 0.951 0.948 0.951
W, 0.949 0.949 0.950 0.949
W 0.948 0.951 0.949 0.945
W, 0.949 0.951 0.948 0.951
S(M/M/1) 0.697 0.920 0.628 0.850
W(M/M/1) 0.417 0.719 0.266 0.739
S(G/G/1) 0.709 0.922 0.286 0.780
W(G/G/1) 0.393 0.716 0.238 0.735

Average Variance Ratios for the Second Response

o
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Table 4.7.
About Controlled Estimate of Mean Sojourn Time

Coverage Percentages of 95X Confidence Interval

~--Routing---

Pt Res Rau
1 0.930 0.885
2 0.935 0.955
3 0.945 0.945
4 0.930 0.935
S 0.910 0.925
6 0.920 0.925
7 0.920 0.895
8 0.945 0.955
9 0.915 0.765
10 0.910 0.895
11 0.935 0.905
12 0.915 0.905
13 0.880 0.800
14 0.945 0.900
15 0.930 0.925
16 0.915 0.905
Avg 0.924 0.901
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Table 4.8.

Across Traffic Intensity and Service Variabiliy

Control
Variate

W,
S(M/M/1)
W(M/M/L)
S(G/G/1)
W(G/G/1)

Average Coverages for the First Response

-Variance Ratios at Factor Levels (p,c,)--
(0.5,0.5) (0.9,0.5) (0.5,2.5) (0.9,2.5)

0.909
0.844
0.911
0.931
0.928
0.911
0.485
0.776
0.474
0.770

.928
.919
.930
.933
.924
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Table 4.9.
About Controlled Estimate of Fourth Node Quantile

- -y ———

Coverage Percentages of 95X Confidence Interval

-~Routing---

Pt Ry, Ras
1 0.905 0.890
2 0.940 0.930
3 0.940 0.930
4 0.850 0.865
5 0.910 0.885
6 0.925 0.935
7 0.940 0.930
8 0.870 0.865
9 0.930 0.850
10 0.935 6.920
11 0.965 0.960
12 0.875 0.660
13 0.915 0.830
14 0.960 0.925
15 0.935 0.950
16 0.850 0.850
Avg 0.915 0.898

Table 4.10.

<
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----- Work Variables------ —--M/M/1---- ---G/G/1----
W, W, Ws We S0J L S0J
900 0.910 0.895 0.900 0.750 0.570 0.770
930 0.920 0.935 0.930 0.915 0.765 0.915
955 0.940 0.930 0.955 0.660 0.435 0.365
855 0.840 0.845 0.855 0.735 0.685 0.685
910 0.905 0.905 0.910 0.780 0.545 0.795
930 0.925 0.930 0.930 0.915S 0.800 0.915
925 0.930 0.915 0.925 0.750 0.485 0.485
865 0.860 0.865S 0.865 0.755S 0.720 0.670
910 0.940 0.925 0.910 0.690 0.495 0.690
930 0.940 0.925 0.930 0.930 0.760 0.930
935 0.955 0.930 0.935 0.710 0.470 0.485
.880 0.885 0.875 0.880 0.755 0.730 0.745
.905 0.900 0.905 0.905 0.705 0.510 0.715
.935 0.920 0.940 0.935 0.915 0.765 0.915
.905 0.925 0.945 0.905 0.730 0.470 0.500
.855 0.850 0.830 0.855 0.705 0.670 0.655
.908 0.909 0.906 0.908 0.775 0.617 0.702

Average Coverages for the Second Response

Across Traffic Intensity and Service Variabiliy

Control
Variate

- e e

S(M/M/1)
W(M/M/1)
3(6/G/1)
W(G/G/1)

-Variance Ratios at Factor Levels (p,c,)--

(0.5,0.5) (0.9,0.5) (0.5,2.5) (0.9,2.5)
0.915 0.940 0.945 0.861
0.864 0.928 6.943 0.860
0.906 0.931 0.930 0.864
0.914 0.926 0.938 0.859
0.907 0.933 0.930 0.854
0.906 0.931 6.930 0.864
0.731 0.919 0.713 0.737
0.530 0.773 0.465 0.701
0.743 0.919 0.459 0.689
0.510 G6.767 0.421 0.694
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A general statement that can be made about the coverage
percentages of the 95% confidence intervals about the controlled mean
responses is that the coverage worsens as the variance ratio decreases.
This result is not satisfactory, because we would like to be able to
achieve large variance reductions (i.e. small variance ratios) and not
bias the controlled responses (i.e. good coverages of the confidence

intervals).

Finally, another way of examining the same results is presented in

Tables 4.11 through 4.14. Here, these four tables give the average
effects for the four factors. An effect, from regression analysis, is
simply the average value of the response when a factor is at its high
setting minus the average value of the response when the same factor is
at its low setting. The way to interpret these tables is that the
factors with the larger effects in magnitude have a greater impact on
the statistic (variance ratios or coverages of confidence intervals).
From Tables 4.11 through 4.14 one can see that the four factors
have a relatively small effect upon the results using the internal
control variates; however, two factors (the traffic intensity and the
service variability) have a relatively large effect upon the results

using the external control variates.
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Table 4.11.
on the Variance Ratios of the First Response

Control
Variate

W,
S(M/M/1)
W(M/M/1)
$(G/G/1)
W(G/G/1)

Traffic Cq of 4th
Intensity Server
0.009 0.008
0.023 0.031
0.000 -0.001
-0.002 0.000
0.000 -0.001
0.000 -0.001
0.147 0.016
0.031 -0.082
0.189 -0.046
0.044 -0.088

Table 4.12.

Control
Variate

S(M/M/1)
W(M/M/1)
3(G/G/1)
W(G/G/1)

Traffic C, of 4th
Intensity Server
0.001 0.000
0.012 0.023
0.001 0.000
0.000 0.000
0.000 -0.001
0.001 0.000
0.111 -0.035
0.194 -0.033
0.177 -0.141
0.205 -0.034

Average Effects of the Four Factors

P

T,s
rob.

Average Effects of the Four Factors
on the Variance Ratios of the Second Response

4.
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Prob.
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Table 4.13.

Control
Variate

S(M/M/1)
W(M/M/1)
5(G/G/1)
W(G/G/1)

Traffic Cs of 4th
Intensity Server
0.003 0.006
0.021 0.020
0.002 0.002
-0.003 -0.003
-0.002 0.000
0.002 0.002
0.097 -0.014
0.020 -0.070
0.135 -0.061
0.031 -0.077

Table 4.14.

Control
Variate

W,
S(M/M/1)
W(M/M/1)
S(G/G/1)
W(G/G/1)

Traffic Ce of 4th
Intensity Server
-0.015 -0.012
-0.005 0.003
-0.010 -0.011
-0.017 -0.011
-0.013 -0.014
-0.010 -0.011
0.053 -0.050
0.120 -0.034
0.102 -0.128
0.132 -0.041

Average Effects of the Four Factors
on the Coverages of the First Response

T3

Prob.

Average Effects of the Four Factors
on the Coverages of the Second Response

4.
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V. Conclusions

The purpose of this study was to compare several control variates
for queueing network simulation. The author's goal was to provide the
simulation community with some guidance for selecting control variates
that will lead to significant reductions in the variance of the
estimated responses that do not introduce significant bias. The
conclusions of this research are important because they add to the body
of knowledge a simulation practitioner can draw upon when selecting a
variance reduction technique. Also, these results indicate that further
research in this area is warranted.

The results of this research are consistent with previous findings
demonstrating the potential variance reduction that can be obtained when
using control variates. However, this research went beyond most of the
previous efforts in measuring the bias introduced to the controlled
estimates by way of the percentage of confidence intervals about the
controlled responses that covered the grand averages of the uncontrolled
responses.

Another novel addition to this research was the use of the maximum
entropy distribution to generate service times, which is the least-
biased distribution when only the first two moments of the distribution
are known. However, finding the parameters to the maximum entropy
distribution was more difficult than expected, and generating random
variates according to the maximum entropy distribution was an involved
process. The author recommends that future research efforts look at

comparing the Erlang distribution (which is much easier to generate) to
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the maximum entropy distribution for generating random variates with a
coefficient of variation less than one. The hyperexponential
distribution, however, is the recommended distribution for generating
random variates with a coefficient of variation greater than one when
oniy the first two moments of the distribution are known.

The use of the Queueing Network Analyzer (QNA) to provide external
control variates was also a new approach. However, the results showed
that QNA could yield estimates of the congestion measures as much as
twenty percent in error to the simulation estimates, which might have
been a potential source of bias. Future research is also needed to
determine exactly how these differences can be reduced.

The way to reduce the errors in the estimates of the congestion
measures of QNA is to use better approximations. One suggestion is to
use the approximation for the expected waiting time in the GI/G/m queue
given by Kimura (1986), since he reported achieving better results as
compared to those achieved using QNA (the reader is referred to Chapter
II). The author pursued this suggestion by computing the expected
waiting times at the fourth node over the sixteen design points using
Kimura's formula. However, the largest percentage change from QNA's
result was only -1.29%; therefore, using Kimura's formula in place of
the one in QNA would not have helped in this case. These results are
presented for the reader in Table 5.1.

In general, the external control variates achieved smaller
variance ratios than the internal control variates; however, the
coverages of the confidence intervals about the controlled responses
were worse. The range of the average variance ratios for the internal

control variates was 0.886 to 0.949 with coverages from 0.898 to 0.929
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Waiting Times at Fourth Node

Table 5.1.
Computed Using QNA's and Kimura's Approximations

DESIGN ---EXPECTED WAITING TIMES--~ X CHANGE
POINT QNA‘S KIMURA'S FROM QNA
1 0.281197E+00 0.281135E+00 0.022

2 0.455585E+01 0.455531E+01 0.012

3 0.163162E+01 0.163416E+01 -0.156

4 0.264290E+02 0.264305E+02 -0.006

5 0.281160E+00 0.281053E+00 0.038

6 0.455572E+01 0.455566E+01 0.001

7 0.163188E+01 0.163623E+01 -0.267

8 0.264300E+02 0.264320E+02 -0.008

9 0.234173E+00 0.233935E+00 0.102

10 0.379484E+01 0.379464E+01 0.005
11 0.136079E+01 0.137057E+01 -0.719
12 0.220362E+02 0.220441E+02 -0.036
13 0.234015E+00 0.233590E+00 0.182
14 0.379416E+01 0.379390E+01 0.007
15 0.136189E+01 0.137946E+01 -1.290
16 0.220409E+02 0.220515E+02 -0.048

for the 95% confidence intervals. The range of the average variance
ratios for the external control variates was 0.494 to 0.774 with
coverages from 0.576 to 0.775 for the 95X confidence intervals.

More specifically, smaller variance ratios were achieved against
the first response variable, the average sojourn time for the network,
than for the second response variable, the probability of the number in
the fourth queue exceeding twice the expected number. This was expected
since one would expect the control variates chosen to have a greater
correlation with the first response variable in general.

Also, the standardized routing controls achieved smaller variance
ratios than the standardized work variables. Particularly, any route

which feeds entities back through a portion of the network (thereby
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increasing the congestion) is a good candidate for an internal control
variable.

When comparing the results of the internal control variates to the
external control variates one should keep in mind that the standardized
internal controls are generally independent of one another. Therefore,
multiple internal controls could be used to achieve even larger variance
reductions provided the number of replications is sufficient to overcome
the loss factor. It is also important to recognize that the external
control variates tend to introduce bias to the controlled estimates.
Another area for future research would be into reducing this bias since
the potential for variance reductions is so promising. Some potential
ways to reduce the bias are to use jacknife estimators or some other
estimators that do not shrink the confidence interval width as much.

Furthermore, future efforts should look into the effect of the
batch means approach on the control variate technique. The batch means
approach provides a means of reducing the cost of obtaining several
thousand observations when trying to estimate the coverage percentages
of the confidence intervals. However, exactly how the batch size
affects the correlation between the response variable(s) and the control
variable(s) is not known; and therefore, the author used the independent
replications approach.

An important observation to note is that the standardized internal
controls were less influenced by the changes in the factor settings than
the external controls, which in turn yielded more consistent results
over the experimental design. In particular, the internal controls are

robust for the traffic intensity.




The author recommends using internal control variates since they
demonstrated better coverage; however, multiple controls will be
necessary to achieve a significant reduction. The use of external
controls is very promising since a single controi can achieve a very
significant variance reduction; however, further research should be done
to determine ways to reduce the bias they introduce to the estimated
responses.

When selecting internal control variates for use in a queueing
network simulation the author recommends the standardized routing
controls over the standardized work variables, especially when there are
probabilistic branches in the network that have a significant effect on
the response(s). For example, in the author's research the entities
completing the fourth node could either exit the system or be fed back
to the first node. Any deviation from the expected number of entities
being fed back has a significant impact upon the estimate of the average
sojourn time in the network; and therefore, the routing control R,,
achieved a significantly greater variance reduction than the other
internal control variates.

On a final note, when comparing the control variates the smaller
variance ratios indicate a larger variance reduction. The increased
number of runs that would be required to achieve the same variance
reduction without the control variate(s) can be calculated by rounding

the result given by Eq (5.1) to the next highest .nteger.

Kassrrrona = K-[(1/VR) ~ 1] (5.1)
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For example, if we made twenty runs of the simulation and achieved a
variance ratio of 0.90, then we would need 3 additional runs. However,
if we achieved a variance ratio of 0.50, then we would need 20
additional runs (for a total of 40 runs) to achieve the same amount of
variance reduction without control variates. Thus, significant savings

in computer time can be realized through the use of control variates.
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Appendix A: Computer Source Code

SLAM II Network Code

CEN,QUEUEING NETWORK,JOHN TOMICK,10/20/88,1000,N,N,Y/Y,N,N,72;
LIMITS,4,2,500;
INTLC, XX(1)=0.5,XX(2)=0.5,XX(3)=0.45,XX(4)=0.253125;
INTLC, XX(6)=0.45,XX(7)=0.75,XX(8)=1.125,XX(9)=100;
INTLC,XX(10)=-0.028146,XX(11)=-7.0,XX(12)=8.198,XX(13)=1.12;
INTLC, XX(14)=0.425,XX(15)=0.07,XX(20)=0.4,XX(21)=0.1,XX(22)=1.;
NETWORK ;
CREATE,EXPON(1.,1),0,1;
EVENT,1; COUNT EXTERNAL ARRIVALS
QUEL ASSIGN,ATRIB(2)=EXPON(XX(6),2);
EVENT, 2; COUNT ENTITIES ENTERING QUEUE 1
QUEVE(1),1;
ACTIVITY/1,ATRIB(2); SERVER #1
EVENT, 3; WORK VARIABLE #1
GOON,1;
ACTIVITY,,XX(20),QUE3;
ACTIVITY;
QUE2 ASSIGN,ATRIB(2)=EXPON(XX(7),3);
QUEUE(2),1;
ACTIVITY/2,ATRIB(2); SERVER #2
EVENT, 4; WORK VARIABLE #2
L ACTIVITY,,,QUE4;
QUE3 ASSIGN,ATRIB(2)=EXPON(XX(8),4);
EVENT, 5; COUNT ENTITIES ENTERING NODE 3
QUEUE(3),1;
ACTIVITY/3,ATRIB(2); SERVER #3
, EVENT, 6; WORK VARIABLE #3
QUE4 ASSICN,ATRIB(2)=USERF(1);
! EVENT,7; COUNT ENTITIES ENTERING NODE 4
QUEUE(4),1;
' ACTIVITY/4,ATRIB(2); SERVER #4
EVENT, 8; WOREK VARIABLE #4
GOON,1;
ACTIVITY,,XX(21),LOOP;
‘ ACTIVITY;
EVENT, 10; COLLECT SOJOURN TIME
TERMINATE;
LOOP EVENT,9; COUNT ENTITIES LOOPING BACK
ACTIVITY,,,QUEL;
ENDNETWORK ;
INIT,0,1100;
FIN;
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FORTRAN Subroutines for Simulat .

c XX() VARIABLE DEFINITIONS

C

c XX(1) = TRAFFIC INTENSITY AT EACH NODE IN NETWORK

c XX(2) = COEF OF VAR OF SERVICE-TIMES AT 4TH NODE

c XX(3) = 1ST MOMENT OF SERVICE-TIMES AT 4TH NODE

C XX(4) = 2ND MOMENT OF SERVICE-TIMES AT 4TIH NODE

C XX(5) = STANDARD DEV OF SERVICE-TIMES AT 4TH NODE

c

c XX(6) = MEAN OF SERVICE TIMES AT NODE 1

c XX(7) = MEAN OF SERVICE TIMES AT NODE 2

c XX(8) = MEAN OF SERVICE TIMES AT NODE 3

c

C XX(9) = TIME TO BEGIN COLLECTING STATISTICS

C

c XX(10) = LAMBDAO OF MAX ENTROPY DISTRIBUTION

c XX(11) = LAMBDA1 OF MAX ENTROPY DISTRIBUTION

c XX(12) = LAMBDA2 OF MAX ENTROPY DISTRIBUTION

C XX(13) = COEFFICIENT 'C’' IN ACCEPTANCE-REJECTION METHOD
c XX(14) = MEAN OF MAJORIZING DISTRIBUTION

c XX(15) = VARIANCE OF MAJORIZING DISTRIBUTION

c

c XX{16) = COEFFICIENRT 'C1' OF HYPEREXPONENTIAL DISTRIBUTION
c XX(17) = MEAN OF FIRST EXPONENTIAL DISTRIBUTION

c XX(18) = COEFFICIENT °'C2' OF HYPEREXPONENTIAL DISTRIBUTION
c XX(19) = MEAN OF SECOND EXPONENTIAL DISTRIBUTION

c

C XX(20) = PROBABILITY OF AN ENTITY GOING FROM NODE i TO NODE 3
C XX(21) = PROBABILITY OF AN ENTITY GOING FROM NODE 4 TO NODE 1
c XX(22) = TWICE MEAN NUMBER IN QUEUE #4 (FOR QUANTILE ESTIMATION)
C

c XX(23) = NUMBER OF ENTITIES COMPLETING NETWORK

c XX(24) = SUM OF SOJOURN TIMES

c XX(25) = AVERAGE SOJOURN TIME

c

c XX(26) = FLAG INDICATING NNQ(4) > XX(22) (0=FALSE,1=TRUE)
c XX(27) a LAST TIME WHEN XX(26) WAS SET TO !

c XX(28) = SUM OF TIME INTERVALS WHEN XX(26)=1

C XX(29) = PROPORTIION OF TIME WHEN XX(26)=1

c

C XX(30) = NUMBER OF EXTERNAL ARRIVALS TO NODE 1

c XX(31) = EXTERNAL ARRIVAL RATE TO NODE 1

c

c XX(32) = NUMBER OF ARRIVALS TO NODE 1

c XX(33) = NUMBER OF ARRIVALS TO NODE 3

c XX(34) = STANDARDIZED ROUTING VARIABLE (1,3)

c XX{35) = NUMBER OF ARRIVALS TO NODE 4

c XX(36) = NUMBER OF ARRIVALS TO NODE 1 FROM NODE &

c XX(37) = STANDARDIZED ROUTING VARIABLE (4,1)

C

c XX(38) = NOT USED

c
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XX(39) = TOTAL NUMBER OF SERVICE COMPLETIONS AT ALL NODES

XX(40) = NUMBER OF SERVICE COMPLETIONS AT NODE 1

XX(41) = INTERMEDIATE SUM FOR WORK VARIABLE #1

XX(42) = STANDARDIZED WORK VARIABLE #1

XX(43) = NUMBER OF SERVICE COMPLETIONS AT NODE 2

XX(44) = INTERMEDIATE SUM FOR WORK VARIABLE #2

XX(4S) = STANDARDIZED WORK VARIABLE #2

XX(46) = NUMBER OF SERVICE COMPLETIONS AT NODE 3

XX(47) = INTERMEDIATE SUM FOR WORK VARIABLE #3

XX(48) = STANDARDIZED WORK VARIABLE #3

XX(49) = NUMBER OF SERVICE COMPLETIONS AT NODE 4

XX(50) = INTERMEDIATE SUM FOR WORK VARIABLE #4

XX(51) = STANDARDIZED WORK VARIABLE #4

XX(52) = SUM OF SERVICE TIMES AT NODE #1

XX(53) = SUM OF SQUARED SERVICE TIMES AT NODE #1

XX(54) = SQUARED COEF OF VAR OF SERVICE TIMES AT NODE #1

XX(55) = SUM OF SERVICE TIMES AT NODE #2

XX(56) = SUM OF SQUARED SERVICE TIMES AT NODE #2

XX(57) = SQUARED COEF OF VAR OF SERVICE TIMES AT NODE #2

XX(58) = SUM OF SERVICE TIMES AT NODE #3

XX(59) = SUM OF SQUARED SERVICE TIMES AT NODE #3

XX(60) = SQUARED COEBF OF VAR OF SERVICE TIMES AT NODE #3

XX(61) = SUM OF SERVICE TIMES AT NODE #4

XX(62) = SUM OF SQUARED SERVICE TIMES AT NODE #4

XX(63) = SQUARED COEF OF VAR OF SERVICE TIMES AT NODE #4
PROGRAM MAIN

DIMENSION NSET(10000)
COMMON/SCOM1/ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA,MSTOP,NCLNR
1,NCRDR, NPRNT , NNRUN, NNSET ,NTAPE,SS(100),5SSL(100), TNEXT, TNOW, XX(100)
COMMON QSET(10000)
EQUIVALENCE(NSET(1),QSET(1))

NNSET=10060

NCRDR=5

NPRNT=6

NTAPE=7

NPLOT=2
OPEN(UNIT=1,FILE="QNA.IN',STATUS="'NEW')
OPEN(UNIT=2,FILE="JACKSON.IN',STATUS="NEW')
OPEN(UNIT=3,FILE='RESPONSE.OUT' ,STATUS="NEW')
OPEN(UNIT=4,FILE='ROUTING.OUT' ,STATUS="'NEW")
OPEN(UNIT=8,FILE="WORK.OUT',STATUS="NEW")

Il = 1000

WRITE (1,1) II

WRITE (2,1) II

CALL SLAM

STOP

FORMAT (3X,16)

END
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SUBROUTINE INTLC
COMMON/SCOM1/ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA ,MSTOP,NCLNR
1,NCRDR,NPRNT , NNRUN,NNSET ,NTAPE,SS(100),SSL(100) ,TNEXT, TNOW,XX(100)
XX(5) = XX(4) - XX(3)*XX(3)
IF (XX(2).GT.1.) THEN
XX(16) = 0.5 + SQRT(0.25 - 0.5+*XX(3)*XX(3)/XX(4))
XX(17) S*XX(3)/XX(16)
XX(18) 0 - XX(16)
XX(19) 5#XX(3)/XX(18)
END IF
DO 10 I=23, 63
XX(I1) = 0.0
CONTINUE
RETURN
END

0
0.
1
0.

FUNCTION USERF(I)

COMMON/SCOM1 /ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA,MSTOP,NCLNR
1,NCRDR, NPRNT ,NNRUN, NNSET ,NTAPE,S5(100),SSL(100), TNEXT, TNOW, XX(100)
INTEGER ACCEPT

REAL F, G, PI, SDEV, U, Y

PARAMETER (PI = 3.1415927)

SELECT DISTRIBUTION FOR SERVICE TIMES
IF (XX(2).LT.1.) THEN
GENERATE MAX ENTROPY DISTRIBUTION USING ACCEPT-REJECT

ACCEPT = 0
SDEV = SQRT(XX(15))
IF (ACCEPT.EQ.0) THEN
Y = RNORM(XX(14),SDEV,9)
IF (Y.GE.0.) THEN
U = DRAND(10)
F = EXP(-1. - XX(10) - XX(11)#*Y - XX(12)*Y#**2)
G = (XX(13)/SQRT(2#XX(15)*PI))*

& EXP(-(1/(2.#XX(15)))*(Y-XX(14))**2)

IF (U.LE.F/G) ACCEPT=1
END IF
GO TO 10
END IF
USERF = ¥
ELSE

GENERATE HYPEREXPONENTIAL DISTRIBUTION USING COMPOSITION
U = DRAND(9)
IF (U.LE.XX(16)) THEN

USERF = EXPON(XX(17),10)
ELSE
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GO

USERF = EXPON(XX(19),10)
END IF
END IF
RETURN
END

SUBROUTINE EVENT(I)
COMMON/SCOM1/ATRIB(100),DD(100),DDL(100),DTNOW,1I,MFA,MSTOP,NCLNR
1,NCRDR,NPRNT , NNRUN,NNSET,NTAPE,SS(100),SSL(100) , TNEXT, TNOW, XX(100)
IF (TNOW.LE.XX{(9)) RETURN

GO TO (1, 2, 3, 4, 5,6, 7,8,9,10), I

COUNT EXTERNAL ARRIVALS TO NODE 1

1 XX(30) = XX(30) + 1.
RETURN

COUNT ENTITIES ARRIVING TO NODE 1

2 XX(32) = XX(32) + 1.
RETURN

COLLECT WORK VARIABLE #1 DATA

3 XX(40) = XX(40) + 1.
XX(41) = (ATRIB(2) - XX(6))/XX(6)
XX(52) = XX(52) + ATRIB(2)
XX(53) = XX(53) + ATRIB(2)*ATRIB(2)
RETURN

COLLECT WORK VARIABLE #2 DATA

4 XX(43) = XX(43) + 1.
XX{44) = (ATRIB(2) - XX(7))/XX(7)
XX(55) = XX(55) + ATRIB(2)
XX(56) = XX(56) + ATRIB(Z)*ATRIB(2)
RETURN

COUNT ENTITIES ARRIVING TO NODE 3

5 XX(33) = XX(33) + 1.
RETURN

COLLECT WORK VARIABLE #3 DATA

6 XX(46) = XX(46) + 1.
XX(47) = (ATRIB(2) - XX(8))/XX(8)
XX(58) = XX(58) + ATRIB(2)
XX(59) = XX(59) + ATRIB(2)*ATRIB(2)
RETURN
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COUNT ENTITIES ARRIVING TO NODE 4, AND
SET FLAG IF NNQ(4) > XX{22), STORE TNOW

XX(35) = XX(35) + 1.

IF ((NNQ(4)+1.GT.XX(22)).AND.(XX(26).EQ.0.)) THEN
XX(26) = 1.
XX(27) = TNOW

END IF

RETURN

COLLECT WORK VARIABLE #4 DATA, AND
COLLECT TIME INTERVAL NNQ(4) > XX(22)

XX(49) = XX(49) + 1.

XX(50) = (ATRIB(2) - XX(3))/XX(5)

XX(61) = XX(61) + ATRIB(2)

XX(62) = XX(62) + ATRIB(2)*ATRIB(2)

IF ((NNQ(4).LT.XX(22Z)).AND.(XX(26).EQ.1.)) THEN
XX(26) = 0.
XX(28) = XX(28) + TNOW - XX(27)

END IF

RETURN

COUNT ENTITIES LOOPING BACK TO NODE 1

XX(36) = XX(36) + 1.
RETURN

COLLECT DATA FOR AVERAGE SOJOURN TIME

XX(23) = XX(23) + 1.

XX(24) = XX(24) + TNOW - ATRIB(1)
RETURN

END

SUBROUTINE OTPUT

COMMON/SCOM1/ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA,MSTOP,NCLNR
1,NCRDR, NPRNT , NNRUN, NNSET,NTAPE,SS(100),SSL(160) ,TNEXT, TNOW, XX(100)

INTEGER METHOD, NNODES, OPTION(S), TYPE
REAL RATE(4), ROUTE(4,4), SERVICE(4)

CALCULATE AVERAGE SOJOURN TIME
XX(25) = XX(24)/XX(23)

CALCULATE PROPORTION OF TIME NNQ(4) EXCEEDED
TWICE THE MEAN NUMBER IN QUEUE FROM QNA

IF ((NNQ(4).LT.XX(22)).AND.(XX(26).EQ.1.)) THEN

XX(26) = 0.
XX(28) = XX(28) + TNOW -~ XX(27)
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END IF
XX(29) = XX(28)/1000

CALCULATE OBSERVED EXTERNAL ARRIVAL RATE
XX(31) = XX(30)/1000
CALCULATE STANDARDIZED ROUTING CONTROL VARIABLES

(XX(33) - XX(32)*XX(20))/SQRT(XX(32)*(1.-XX(20))*XX(20))
(XX(36) - XX(35)*XX(21))/SQRT(XX(35)*(1.~XX(21))*XX(21))

XX(34)
XX(37)

CALCULATE STANDARDIZED WORK VARIABLES

XX(39) = XX(40) + XX(43) + XX(46) + XX(49)

XX(42) = 3*SQRT(XX(40))/XX(39)*XX(41)

XX(45) = 3I«SQRT(XX(43))/(XX(39)*(1.-XX(33)/XX(32)))*XX(44)
XX(48) = 3+SQRT(XX(46))/(XX(39)*XX(33)/XX(32))*XX(47)
XX(51) = 3*SQRT(XX(49))/XX(39)*XX(41)

CALCULATE OBSERVED MEAN SERVICE TIMES

SERVICE(1) = XX(52)/XX(40)
SERVICE(2) = XX(55)/XX(43)
SERVICE(3) = XX(58)/XX(46)
SERVICE(4) = XX(61)/XX(49)

CALCULATE SQUARED COEFFICIENT OF VARIATION OF SERVICE TIMES

XX(54) = ((XX(40)**2)*XX(53) - XX(40)*(XX(52)%%2))/
&((XX(40)-1)*XX(52)%+2)

XX(57) = ((XX(43)**2)*XX(56) - XX(43)*(XX(55)**2))/
&((XX(43)-1)*(XX(55)**2))

XX(60) = ((XX(46)*+2Z)*XX(53) ~ XX(46)*(XX(58)%*2))/
&((XX(46)-1)*(XX(58)**2))

XX(63) = ((XX(49)**2)*XX(62) ~ XX(49)*(XX(61)*%2))/
&((XX(49)-1)#(XX(61)**2))

WRITE TO 'QNA.IN'

METHOD = 3

NNODES = 4

OPTION(1) = §

OPTION(2) = 2

OPTION(3) = 0

OPTION(4) = -1

OPTION(5) = 1

TYPE = 1

ROUTE(1,1) = 0.

ROUTE(1,2) = 1. - XX(33)/XX(32)

ROUTE(1,3) = XX(33)/XX(32)

ROUTE(1,4) = G.

ROUTE(2,1) = 0.
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ROUTE(2,2)
ROUTE(Z,3)
ROUTE(2,4)
ROUTE(3,1)
ROUTE(3,2)
ROUTE(3,3)
ROUTE(3,4)
ROUTE(4,1)
ROUTE(4,2)
ROUTE(4,3)
ROUTE(4,4)
RATE(1)
RATE(2)
RATE(3)
RATE(4) .
WRITE (1,1) METHOD
WRITE (1,2) NNODES, TYPE
WRITE (1,3) OPTION(1), OPTION(Z), OPTION(3), OPTION(4), OPTION(S)
DO 10 I=1,4

WRITE (1,4) ROUTE(I,1), ROUTE(I,2), ROUTE(I,3), ROUTE(I,4)
CONTINUE
WRITE (1,4) RATE(1), RATE(2), RATE(3), RATE(4)
WRITE (1,4) SERVICE(1), SERVICE(Z), SERVICE(3), SERVICE(4)
WRITE (1,4) XX(54), XX(57), XX(60), XX(63)

X(36)/XX(35)
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WRITE TO *JACKSON.IN®

OPTION(1)
OPTION(2)
OPTION(3)
OPTION(4)
OPTION(S) = 1
WRITE (2,1) METHOD
WRITE (2,2) NNODES, TYPE
WRITE (2,3) OPTION(1), OPTION(Z), OPTION(3), OPTION(4), OPTION(S)
DO 20 I=1,4

WRITE (2,4) ROUTE(I,1), ROUTE(I,2), ROUTE(I,3), ROUTE(I,4)
CONTINUE
WRITE (2,4) RATE(1), RATE(2), RATE(3), RATE(4)
WRITE (2,4) SERVICE(1), SERVICE(2), SERVICE(3), SERVICE(4)

OO r

i

WRITE TO 'RESPONSE.OUT'
NUMBER OF OBSERVATIONS, AVE SOJOURN TIME, AND P(NNQ(4)>2+EN)

WRITE (3,5) XX(23), XX(25), XX(29)

WRITE TO ‘'ROUTING.OUT'

ROUTING CONTROLS R13, R14

WITH RESPECTIVE NUMBER OF OBSERVATIONS ON EACH
WRITE (4,4) XX(32), XX(34), XX(35}, XX(37)

WRITE TO ‘'WORK.OUT®

A.8




AN E W

WORK VARIABLES Wi, W2, W3, Wa4
WITH NUMBER OF OBSERVATIONS

WRITE (8,6) XX(39), XX(42), XX(45), XX(48), XX(51)

RETURN
FORMAT(2X,12)
FORMAT(2(2X,12))
FORMAT(5(2X,12))
FORMAT(4(2X,E13.6))
FORMAT(3(2X,E13.6))
FORMAT(S(2X,E13.6))
END
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PROGRAM CONTROL

THIS PROGRAM CALCULATES THE VARIANCE RATIO (VR) AND
THE 95% CONFIDENCE LIMITS (LCL) AND (UCL) ON THE
CONTROLLED RESPONSES.

THE INPUT DATA IS SUPPLIED BY SEVEN FILES:
(1) RESPONSE.OUT CONTAINS:
NUMBER OF OBSERVATIONS OF SOJOURN TIME,
SOJOURN TIME (UNCONTROLLED RESPONSE), AND
P(NNQ(4)>2%EN) (UNCONTROLLED RESPONSE).
(2) ROUTING.OUT CONTAINS:
NUMBER OF OBSERVATIONS ON R13,
R13 (STANDARDIZED ROUTING CONTROL),
NUMBER OF OBSERVATIONS ON R41, AND
R41 (STANDARDIZED ROUTING CONTROL).
(3) WORK.OUT CONTAINS:
TOTAL NUMBER OF SERVICE COMPLETIONS, AND
Wi, W2, W3, W4 (STANDARDIZED WORK VARIABLES).
(4) JACKSON.OUT CONTAINS EXTERNAL CONTROL VARIATES
USING SHARON'S (1986) METHOD AND M/M/1 FORMULAS:
SOJOURN TIME, AND
WAITING TIME IN 4TH QUEUE.
(5S) QNA.OUT CONTAINS EXTERNAL CONTROL VARIATES
USING SHARON'S (1986) METHOD AND G/G/1 FORMULAS:
SOJOURN TIME, AND
WAITING TIME IN 4TH QUEUE.
(6) M16.0UT CONTAINS THE MEANS OF THE EXTERNAL
CONTROL VARIATES USING M/M/1 FORMULAS.
(7) G16.0UT CONTAINS THE MEANS OF THE EXTERNAL
CONTROL VARIATES USING G/G/1 FORMULAS.

THE OUTPUT DATA IS WRITTEN TO FOUR FILES (SOJOURN.VR,
SOUJOURN.CI, QUANTILE.VR AND QUANTILE.CI) IN THE
FOLLOWING FORMAT:
THE «.VR FILES CONTAIN:
MEAN OF UNCONTROLLED RESPONSE
MEAN OF CONTROLLED RESPONSE
VARIANCE RATIO
THE ».CI FILES CONTAIN:
95% LOWER CONFIDENCE LIMIT
95X UPPER CONFIDENCE LIMIT

EACH RECORD IN THE OUTPUT FILES ARE THE RESULT OF
TWENTY INPUT RECORDS (I.E. TWENTY SIMULATION RUNS).
EVERY TENTH RECORD IN THE OUTPUT FILES REPRESENTS A
REPLICATION OF THE RESULTS WITH ONE CONTROL VARIATE.

INPUT VARIABLES

Y(I,K) = TWO RESPONSE VARIABLES (20 OBS. EA.)
C(J,k) = TEN CONTROL VARIABLES (20 OBS. EA.)
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GG1(2,16) = MEANS OF ANALYTIC CONTROLS USING QNA (G/G/1)
MM1(2,16) = MEANS OF ANALYTIC CONTROLS USING QRA (M/M/1)
OBSY(X) = NUMBER OF OBSERVATIONS IN SIMULATION MODEL
OF THE SOJOURN TIME TO YIELD °‘KTH' OBSERVATION
OF AVERAGE SOJOURN TIME
OBSR(J,K) = NUMBER OF OBSERVATIONS IN SIMULATION MODEL
OF THE ROUTE TAKEN TO COMPUTE THE °'KTH' OBSERVATION
OF THE ROUTING CONTROL VARIABLES R13 AND R4l
OBSW(K) = TOTAL NUMBER OF SERVICE COMPLETIONS FOR THE
*KTH* OBSERVATION OF THE FOUR WORK VARIABLES

REAL Y(2,20), C(10,20), GG1(2,16), MM1(Z,16)
REAL 0BSY(20), OBSR(2,20), OBSW(20)

OUTPUT VARIABLES
YBAR(I) = GRAND UNCONTROLLED MEAN OF THE TWO RESPONSES
YCBAR(I,J) = GRAND CONTROLLED MEAN OF THE TWO RESPONSES
USING THE 'JTH' CONTROL
VR(I,J) = VARIANCE RATIO OF THE 'ITH' RESPONSE USINGC THE
*JTH* CONTROL
LCL(I,J) = 95X LOWER CONFIDENCE LIMIT FOR THE CONTROLLED
MEAN OF THE °'ITH' RESPONSE USING THE 'JTH®' CONTROL
UCL(I,J) = 95X UPPER CONFIDENCE LINMIT ...

REAL YBAR(2), YCBAR(2,10), VR(2,10), LCL(Z,10), UCL(Z2,10)

INTERMEDIATE VARIABLES USED IN CALCULATIONS
BHAT(I,J) = ESTIMATED OPTIMAL CONTROL COEFFICIENT
FOR THE 'ITH' RESPONSE AND 'JTH' CONTROL
CBAR(J) = MEAN OF THE 'JTH' CONTROL VARIABLE
COVYC(I,J) = COVARIANCE BETWEEN 'ITH' RESPONSE AND
*JTH' CONTROL

D2(J) = D SQUARED STATISTIC OF 'JTH' CONTROL
[,J,K = ITERATION VARIABLES/INDEX VARIABLES

MU(J) = KNOWN MEAN OF 'JTH' CONTROL

POINT = EXPERIMENTAL DESIGN POINT (INDEX VARIABLE)

REP = ITERATION VARIABLE (REPLICATION)
REPS = TOTAL NUMBER OF REPLICATIONS OF EXPERIMENT, WHERE
AN EXPERIMENT IS 20 OBSERVATIONS OF THE SIMULATION
MODEL UNDER THE SAME INTIAL CONDITIONS
RHOYC(1,J) = PEARSON'S PRODUCT-MOMENT CORRELATION STATISTIC
BETWEEN 'ITH' RESPONSE AND 'JTH' CONTROL
S2C(J) = SAMPLE VARIANCE OF ‘JTH' CONTROL
S2Y(I) = SAMPLE VARIANCE OF 'ITH' RESPONSE
S2YC(I,J) = S SQUARED (Y DOT C) STATISTIC OF 'ITH’
RESPONSE AND 'JTH' CONTROL
SUMC(J) = SUM OF OBSERVATIONS ON 'JTH' CONTROL
SUMC2(J) = SUM OF SQUARED OBSERVATIONS ON 'JTH' CONTROL
SUMY(I) = SUM OF OBSERVATIONS ON ‘'ITH' RESPONSE
SUMY2(I) = SUM OF SQUARED OBSERVATIONS ON 'ITH' RESPONSE
TOTOBS = TOTAL NUMBER OF OBSERVATIONS
TOTOBSR(I) = TOTAL NUMBER OF SIMULATION OBSERVATIONS TO
PRODUCE THE 20 OBSERVATIONS OF THE TWO ROUTING
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20

CONTROLS
TOTAL NUMBER OF SIMULATION OBSERVATIONS OF
SERVICE COMPLETIONS USED IN COMPUTING THE 20
OBSERVATIONS ON THE FOUR WORK VARIABLES

TOTOBSW

TOTOBSY = TOTAL NUMBER OF SIMULATION OBSERVATIONS TO PRODUCE
THE 20 OBSERVATIONS OF AVERAGE SOJOURN TIME

WC(J,K) = WEIGHT OF °*KTH' OBSERVATION ON 'JTH' CONTROL

WY(I,K) = WEIGHT OF 'KTH' OBSERVATION ON ‘ITH® RESPONSE

ZERO = INITIALIZATION VARIABLE (= 0.0)

REAL BHAT(2,10), CBAR(10), COVYC(2,10), D2(10)

REAL MU(10), RHOYC(2,10), S2C(10), S2Y(2), S2YC(Z,10)
REAL SUMC(10), SUMC2(10), SUMY(2), SUMY2(2)

REAL TOTOBSR(2), TOTOBSY, TOTOBSW

REAL WC(10,20), WY(2,20), ZERO

INTECER I, J, K, POINT, REP, REPS, TOTOBS

INTERACTIVE USER INPUT

WRITE (5,*) 'ENTER TOTAL NUMBER OF OBSERVATIONS'
READ (S,+) TOTOBS

REPS = TOTOBS/20

WRITE (5,+) 'ENTER THE DESIGN POINT NUMBER (1 TO 16)'
READ (5,*) POINT

READ ANALYTIC RESULTS

OPEN (UNIT=1,FILE='G16.0UT’,STATUS="'0LD")
OPEN (UNIT=2,FILE='M16.0UT",STATUS='0LD")
DO 10 I=1,16

READ (1,1) GG1(1,I), GG1(2,I)

READ (2,1) MM1(L,I), MM1(2,D)
CONTINUE
FORMAT (2(2X,E13.6))
CLOSE (1)
CLOSE (2)

INITIALIZE ENOWN MEANS OF CONTROLS

ZERO = 0.0E+00
DO 20 I=1,6

MU(1) = ZERO
CONTINUE
MU(7) = MM1(1,POINT)
MU(8) = MM1(2,POINT)
MU(9) = GG1(1,POINT)
MU(10) = GG1(2,POINT)

EXPERIMENTAL DATA FILES FOR INPUT
OPEN (UNIT=1,FILE='RESPONSE.OUT',STATUS='OLD')

OPEN (UNIT=2,FILE="ROUTING.OUT',STATUS='OLD")
OPEN (UNIT=3,FILE='WORK.OUT',STATUS='0OLD")
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OPEN (UNIT=4,FILE='JACKSON.OUT',STATUS='OLD"')
OPEN (UNIT=8,FILE='QNA.OUT',STATUS='0OLD')

OUTPUT DATA FILES

OPEN (UNIT=9,FILE='SOJOURN.VR',STATUS='NEW')

OPEN (UNIT=10,FILE='SOJOURN.CI',STATUS="'NEW')
OPEN (UNIT=11,FILE='QUANTIL".VR',STATUS='NEW')
OPEN (UNIT=12,FILE='QUANTILE.CI',STATUS='NEW')

DO 1000 REP=1,REPS
INITIALIZE SUMMATION VARIABLES

TOTOBSY = ZERO
TOTOBSW = ZERO
TOTOBSR(1) = ZERO
TOTOBSR(2) = ZERO

READ EXPERIMENTAL DATA

DO 30 J=1,20
READ (1,2) OBSY(J), Y(1,)), Y(2,))
TOTOBSY = TOTOBSY + 0BSY(J)
READ (2,3) OBSR(1,J), C(1,J), OBSR(2,J), C(2,J)
TOTOBSR(1) = TOTOBSR(1) + OBSR(1,J)
TOTOBSR(2) = TOTOBSR{2) + OBSR(2,J)
READ (3,4) OBsSW(J), (C(I,J), I=3,6)
TOTOBSW = TOTOBSW + OBSW(J)
READ (4,5) C(7,J), C(8,J)
READ (8,5) C(9,J), C(10,))

CONTINUE

FORMAT (3(2X,E13.6))

FORMAT (4(2X,E13.6))

FORMAT (5(2X,E13.6))

FORMAT (2(2X,E13.6))

INITIALIZE VARIABLES FOR SAMPLE MEANS,
VARIANCES, AND COVARIANCES

DO 31 I=1,2
YBAR(I) = ZERO
SUMY(I) = ZERO
SUMY2(1) = ZERO
S2Y(1) = ZERO

CONTINUE

DO 32 I=1,10
CBAR(I) = LERO
SUMC(I) = ZERO
SUMC2(I) = ZERO
S2C(I) = ZERO
COVYC(1,I) = ZERO
COvYC(2,I) = ZERO
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32

33

34
35

40

41

42

50

51

CONTINUE
CALCULATE WEIGHTS OF OBSERVATIONS

DO 35 J=1,20
WY(1,J) = 20.0+0BSY(J)/TOTOBSY
WY(z,J) = 1.0
WC(1,J) = 20.0+*0BSR(1,J)/TOTOBSR(1)
WC(2,J) = 20.0+0BSR(2,J)/TOTOBSR(2)
DO 33 1=3,6

WC(I,J) = 20.0%0BSW(J)/TOTOBSHW
CONTINUE
DO 34 I=7,10
WC(I,J) = 20.0+0BSY(J)/TOTOBSY
CONTINUE
CONTINUE

CALCULATE WEIGHTED SUMS

DO 42 J=1,20
DO 40 I=1,2
SUMY(I) = SUMY(I) + WY(I,J)*Y(I,J)
SUMYZ2(I) = SUMY2(I) + WY(IL,J)#Y(I,J)#*#2
CONTINUE
DO 41 I=1,10
SUMC(I) = SUMC(I) + WC(I,J)*C(I,J)
SUMC2(I) = SUMC2(I) + WC(I,J)*C(I,J)*x2
CONTINUE
CONTINUE

CALCULATE WEIGHTED AVERAGES AND WEIGHTED SAMPLE VARIANCES

DO 50 I=1,2

YBAR(I) = SUMY(I)/20.0

52Y(I) = (20.0+SUMY2(I) - SUMY(I)*+2)/380.0
CONTINUE
DO 51 I=1,10

CBAR(I) = SUMC(I)/20.0

S2C(I) = (20.0+SUMC2(I) - SUMC(I)*+2)/380.0
CONTINUE

CALCULATE SAMPLE COVARIANCES

DO 62 I=1,2
DO 61 J=1,20
DO 60 K=1,10
COVYC(I,K) = COVYC(I,K) + (C(K,J) - CBAR(K))+*

&(Y(I,J) - YBAR(I))/19

60
61
62

CONTINUE
CONTINUE
CONTINUE

ESTIMATE OPTIMAL CONTROL COEFFICIENT AND
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PEARSON'S PRODUCT-MOMENT CORRELATION COEFFICIENT

DO 71 J=1,10
DO 70 I=1,2
BHAT(I,J) = COVYIC(I,J)/52C(J)
RHOYC(I,J) = COVYC(I,J)/SQRT(S2C(J)*S2Y(I))

CONTINUE
CONTINUE
CALCULATE CONTROLLED MEANS OF RESPONSE VARIABLES
DO 73 J=1,10
D0 72 I=1,2
YCBAR(I,J) = YBAR(I) + BHAT(I,J)*(CBAR(J)-MU(J))
CONTINUE
CONTINUE
CALCULATE STATISTICS ‘D2' AND ‘S2YC’' TO ESTIMATE
VARIANCE OF CONTROLLED MEANS
VAR[YCBAR(I,J)) = D2(I,J)*52YC(I,J)
DO 81 J=1,10
D2(J) = 0.05+4(1/19)*(CBAR(J)-MU(J))**2/52C(J)
DO 80 I=1,2
S2YC(I,J) = (19/18)*S2Y(I)*(1.6 - RHOYC(I,J)#*x2)
CONTINUE
CONTINUE
ESTIMATE VARIANCE RATIOS AND 95X CONFIDENCE LIMITS
DO 91 J=1,10
DO 90 I=1,2
VR(I,J) = (D2(J)*S2YC(I,J))/(52¥(1)/20)
LCL(I,J) = YCBAR(I,J) - 2.101#SQRT(D2(J)*S2YC(I,J))
UCL(I,J) = YCBAR(I,J) + 2.101#SQRT(D2(J)*S2YC(I,J))
CONTINUE
CONTINUE
OUTPUT RESULTS
DO 100 J=1,10
WRITE (9,101) YBAR(1), YCBAR(1,J), VR(1,J)
WRITE (10,102) LCL(1,J), UCL(1,J)
WRITE (11,101) YBAR(Z), YCBAR(2,J), VR(2,J)
WRITE (12,102) LCL(2,J), UCL(2,J)
CONTINUE
FORMAT (3(2X,E13.6))
FORMAT (2(2X,E13.6))
CONTINUE _
END
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FORTRAN Code for Program RESULTS
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PROGRAM RESULTS

THIS PROGRAM FINDS THE MINIMUM, MAXIMUM AND AVERAGE OF THE THREE
VARIABLES (YBAR, YCBAR, AND VR) FROM THE OUTPUT FILES OF THE
PROGRAM 'CONTROL'. IT ALSO COMPUTES THE COVERAGE OF THE 95X
CONFIDENCE INTERVAL AGAINST THE UNCONTROLLED RESPONSE (YBAR).

INPUT VARIABLES
Y(1,J) = UNCONTROLLED MEAN OF THE RESPONSE VARIABLE
Y(2,J) = CONTROLLED MEANS OF THE RESPONSE VARIABLE
USING *JTH' CONTROL
Y(3,J) = VARIANCE RATIO OBTAINED USING 'JTH' CONTROL

LCL(J) = 95% LOWER CONFIDENCE LIMIT ON CONTROLLED MEAN OF
THE RESPONSE VARIABLE USING THE ‘JTH' CONTROL
UCL(J) = 95X UPPER CONFIDENCE LIMIT ...

REAL Y(3,10), LCL(10), UCL(10)

OUTPUT VARIABLES
MIN(I,J) = MINIMUM VALUE OF 'ITH' INPUT USING 'JTH' CONTROL
MAX(I,J) = MAXIMUM VALUE OF 'ITH' INPUT USING 'JTH' CONTROL
MEAN(I,J) = MEAN VALUE OF 'ITH' INPUT USING 'JTH' CONTROL
COVER(J) = COVERAGE PROBABILITIES OF 95X CONFIDENCE INTERVAL
OF THE CONTROLLED RESPONSE COMPARED TO THE
GRAND UNCONTROLLED MEAN

REAL MIN(3,10), MAX(3,10), MEAN(3,10), COVER(10)

INTERMEDIATE VARIABLES USED IN CALCULATIONS
COUNT(J) = NUMBER OF TIMES THE MEAN RESPONSE FALLS WITHIN
THE CONFIDENCE INTERVALS
INFILE = INPUT FILE TYPE
I,J = ITERATION/INDEX VARIABLES
REP = ITERATION VARIABLE (REPLICATION)

REPS = TOTAL NUMBER OF REPLICATIONS OF THE EXPERIMENT
L(J) = LABEL OF 'JTH' CONTROL
N(J) = LABEL OF 'ITH' STATISTIC

INTEGER COUNT(10), INFILE, I, J, REP, REPS
CHARACTER*14 L(10)

CHARACTER*14 N(3)

INTIALIZE MINIMUM VALUES TO A HIGH NUMBER
DATA (MIN(1,J), J=1,10) /10%1.0E+10/

DATA (MIN(2,J), J=1,10) /10%1.0E+10/

DATA (MIN(3,J), J=1,10) /10%1.0E+10/
INITIALIZE LABELS

L(1) = 'ROUTING(1,3)
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L(2) = 'ROUTING(1,4) '
L(3) = 'WORK(1) )
L(4) = 'WORK(2) '
L(5) = 'WORK(3) )
L(6) = 'WORK(4) '
L(7) = 'SOJOURN(M/M/1)'
L(8) = 'WAIT4(M/M/1) '
L(9) = 'SOJOURN(G/G/1)'
L(10) = 'WAIT4(G/G/1) '
N(1) = 'YBAR !
N(2) = 'YBAR(BHAT) )
N(3) = 'VARIANCE RATIO'

INTERACTIVE USER INPUT

WRITE (5,*) 'ENTER THE NUMBER OF REPLICATIONS®

READ (S5,*) REPS

WRITE (5,*) 'INDICATE INPUT FILES (1=SOJOURN, 2=QUANTILE)'
READ (5,+) INFILE

OPEN APPROPRIATE INPUT DATA FILES (CREATED BY PROGRAM ‘'CVR')
IF (INFILE.EQ.1) THEN
OPEN (UNIT=1,FILE='SOJOURN.VR',STATUS='0LD')
OPEN (UNIT=2,FILE='SOJOURN.CI',STATUS='OLD')
ELSE
OPEN (UNIT=1,FILE='QUANTILE.VR',6STATUS='0OLD')
OPEN (UNIT=2,FILE="QUANTILE.CI',STATUS='0LD')
END IF
OPEN OUTPUT DATA FILE
OPEN (UN1T=3,FILE='RESULTS.DAT',STATUS='NEW")
DO 30 REP=1,REPS
READ INPUT VARIABLES FROM #.VR FILE
DO 10 J=1,10
READ (1,1) (Y(I,J), I=1,3)
10 CONTINUE

COMPUTE MIN, MAX, AND MEAN OF THE INPUT VARIABLES

DO 21 Ia1,3
DO 20 J=1,10
IF (Y(I,J).LT.MINCI,J)) MIN(I,J) = Y(I,7)
IF (Y(I,J).GT.MAX(I,J)) MAX(I,J) = Y(I,J)

MEAN(I,J) = MEAN(I,J) + Y(I,J)/REPS
20 CONTINUE
21 CONTINUE
30 CONTINUE
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c READ CONFIDENCE LIMITS FROM #.CI FILE

DO 60 REP=1,REPS

DO 40 Jsl
READ (
40 CONTINUE

,10
2,2) LCL(J), UCL(J)

c CALCULATE COVERAGE ESTIMATES OF CONFIDENCE INTERVALS

DO 50 J=1

IF ((LCL(J).LE.MEAN(1,J)).AND.(MEAR(1,J).LE.UCL(J))) THEN

coul
END IF
50 CONTINUVE
60 CONTINUE

DO 70 J=1,10
COVER(J)
70 CONTINUE

,10
NT(J) = COUNT(J) + 1

= 1.0*COUNT(J)/REPS

c OUTPUT RESULTS

IF (INFILE.E

WRITE (3,
ELSE

WRITE (3,
END IF
WRITE (3,8)
WRITE (3,6)
WRITE (3,7)
WRITE (3,8)
DO 80 J=1,10

WRITE (3,

Q.1) THEN
3

4)

5) Lih

WRITE (3,9) N(1), MIN(1,J), MEAN(1,J), MAX(1,J), COVER(J)
WRITE (3,11) N(2), MIN(2,J), MEAN(2,J), MAX(2,J)
WRITE (3,11) N(3), MIN(3,J), MEAN(3,J), MAX(3,J)

AVERAGE

- -

WRITE (3,8)
80 CONTINUE
STOP

1 FORMAT (3(2X,E13.6))

2 FORMAT (2(2X,E13.6))

3 FORMAT (15X, 'CONTROL VARIATE ANALYSIS ON RESPONSE:
4 FORMAT (10X, 'CONTROL VARIATE ANALYSIS ON RESPONSE: °,

& "PROB(NNQ(4) > 2+E[N])")

5 FORMAT (1X,'USING CONTROL VARIABLE: ',Al4)

6 FORMAT (3X,' NAME MINIMUM

& ' MAXIMUM COVERAGE')

7 FORMAT (3X,'=mm-ommmmmemm=  —cecemec————-

& o e — e - ——— o)

8 FORMAT (1X)

9 FORMAT (3X,A14,3(2X,E13.6),3X,F6.4)

11 FORMAT (3X,A
END

14,3(2X,E13.6))
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Appendix B: Sample Input Files to QNA

M/M/1 Input File at First Design Point

(indicates 1 network)
(indicates single customer class)
1 (4 nodes, nonstandard input)
{input options)
0 (1st row of routing matrix)
0 (2nd row of routing matrix)
.0 (3rd row of routing matrix)
] (4th row of routing matrix)
0 (external arrival rates)
L750 1.125 0.450 (mean service times)

O~ OO0 O B Wk

G/G/) Input File at First Design Point

(indicates 1 network)
(indicates single customer class)
i (4 nodes, nonstandard input)
(input options)
0 (1st row of routing matrix)
0 (2nd row of routing matrix)
0 (3rd row of routing matrix)
.0 (4th row of routing matrix)
0 (external arrival rates)
25 0.450 (mean service times)
00 0.250 (service variability parameters)

-0 r+ 0000 = & WwWre

osro—o00o

B.1




e e P e = e e e
-ANALYTIC APPROX.

DESIGN
POINT

Appendix C:

Kaown Means of External Control Variates

--ANALYTIC JACKSON (M/M/1)-

.400000E+01
.360000E+02
.400000E+01
.360000E+02
.400000E+01
.360000E+02
.400000E+01
.360000E+02
.417391E+01
.360000E+02
.417391E+01
.360000E+02
.400000E+01
.360000E+02
.40U000E+01
.360000E+02

OCOO0OO0OOO0OO0OOLOLOOLOODOLOUOoOOOO

SOJOURN

.450000E+00
.729000E+01
.450000E+00
.729000E+01
.450000E+00
.729000E+01
.450000E+00
.729000E+01
.375000E+00
.607500E+01
.375000E+00
.607500E+01
.375000E+00
.607500E+01
.375000E+00
.607500E+01

OCOO0OO0O0OOOOODOO0OOO O

WAIT(4)

.381177E+01
.329330E+02
.531762E+01
.5T4688E+02
.381173E+01
.329329E+02
.531792E+01
.5T4698E+02
.398269E+01
.327806E+02
.351237E+01
.585327E+02
.380878E+01
.327797E+02
.533846E+01
.585391E+02

OCOO0OO0OO0DODO0COOCOOO0OO0O0OCO0 O

SOJOURN

-

.281197E+00
.455585E+01
.163162E+01
.264290E+02
.281160E+00
.455572E+01
.163188E+01
.264300E+02
.234173E+00
.379484E401
.136079E+01
.220362E+02
.234015E+00
.379416E+01
.136189E+01
.220409E+02

COO0OOOOCODOOCDOOCOLOOOO0O0O0 O

(G/G/1)--
WAIT(4)

- - - - -

Note: SOJOURN refers to the expected sojourn time of an entity to

complete the entire network.

WAIT(4) refers to the expected waiting

time in the queue at the fourth node in the network.
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Appendix D: Tables of Results

The output files of the program RESULTS are provided as tables in
this appendix. Tables D.1 through D.16 summarize the results of the ten
control variates againat the response variable sojourn time at the
sixteen design points. Similarly, Tables D.17 through D.32 summarize
the results of the ten control variates against the response variable of
the probability that the number in queue exceeds twice the expected
number. These files list the minimum, maximum, and mean values of the
uncontrolled response, denoted by YBAR, first. Then for each control
variate the minimum, maximum, and mean values of the controlled
response, denoted by YBAR(BHAT), and the variance ratio are listed.
Also, the percentage of confidence intervals about the controlled

response that cover the mean value of YBAR are given for each control

variate.
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Table D.1. Control Variate Results Against Sojourn Time
at the First Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.369443E+01  0.381331E+01  0.396763E+01

USING CONTROL VARIABLE: ROUTING(!,3)
YBAR(BHAT) 0.369317E+01  0.381367E+01  0.399705E+01  0.9300
VARIANCE RATIO 0.648974E+00 0.936955E+00 0.999987E+GO

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.366235E+01  0.380847E+01  0.399742E+01 0.8850
VARIANCE RATIO 0.424270E+00 0.867965E+00  0.999990E+00

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.367848E+01  0.381138E+01  0.393465E+01  0.9200
VARIANCE RATIO 0.621534E+400 0.954747E+00 0.999999E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.361416E+01  0.381202E+01  0.396768E+01 0.9250
VARIANCE RATIO 0.491398E+00 0.948515E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.367779E+01  0.381282E+01  0.396515E+01  0.9350
VARIANCE RATIO 0.631606E+00 0.949113E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.367833E+01  0.381140E+01  0.393472E+01  0.9200
VARIANCE RATIO 0.621459E+00 0.954740E+00 0.999999E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.360603E+01  0.383C68E+0! 0.412233E+01 0.5500
VARIANCE RATIO 0.125763E+00 0.418483E+00 0.817554E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.365523E+01  0.381422E+01 0.402782E+01 0.8300
VARIANCE RATIO 0.317536E+400 0.768369E+00 0.999978E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.361327E+01  0.382999E+01  0.412578E+01  0.5450
VARIANCE RATIO 0.859748E-01  0.384818E+00  0.774845E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)

YBAR(BHAT) 0.365208E+01  0.381421E+01 0.401822E+01 0.8100
VARIANCE RATIO 0.288632E+00 0.751309E+00 0.999933E+00

D.2




Table D.2.

Control Variate Results Against Sojourn Time
at the Second Design Point

NAME MININUM AVERAGE MAXIMUM COVERAGE

YBAR 0.253301E+02 0.292945E+02 0.340209E+02

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.253703E+02 0.293262E+02 0.343614E+02 0.9350
VARIARCE RATIO 0.629330E+00 0.941911E+00 0.999992E+GO

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.252341E4+02 0.292181E+02  0.344292E+02 0.9550
VARIANCE RATIO 0.611720E+00 0.906871E+00 0.999988E+00

USING CONTROL VARIABLE: WORK(1)
YBAR( BHAT) 0.250874E+02 0.292620E+02 0.351617E+0Z 0.9400
VARIANCE RATIO 0.470587E+00 0.943858E+00 0.999997E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.240332E+02 0.293179E+02 0.371701E+02 0.9350
VARIANCE RATIO 0.673789E+00 0.946194E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.253199E+02 0.293383E+02 0.339248E+02 0.9300
VARIANCE RATIO 0.608466E+00 0.950724E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.250668E+02 0.292583E+02 0.350784E+02  0.9400
VARIANCE RATIO 0.472088E+00 0.944131E+00 0.100000E+01

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.260485E+02 0.307690E+02 0.381936E+02 0.8000
VARIANCE RATIO 0.152546E+00 0.697212E+00 0.100000E+01

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.247132E+02 0.305386E+02 0.365465E+02 0.6950
VARIANCE RATIO 0.157891E+00 0.644684E+00 0.999635E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.260450E+02 0.307653E+02 0.383204E+02 0.8000
VARIANCE RATIO 0.150624E+00 0.698383E+00 0.100000E+01

USING CONTROL VARIABLE: WAIT&(G/G/1)
YBAR(BHAT) 0.247680E+02 0.305323E+02 0.365467E+02 0.7000
VARIANCE RATIO 0.159307E+00 0.641734E+00 0.995649E+00
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Table D.3. Control Variate Results Against Sojourn Time
at the Third Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.477141E+01  0.521644E+01  0.585939E+01

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.473141E401 0.521239E+01 0.580107E+01  0.9450
VARIANCE RATIO 0.590194E+00 0.940776E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.478012E+01  0.521678E+01
VARIANCE RATIO 0.537425E+00  0.925474E+00

.590412E+01  0.9450
.100000E+01

oo

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.483237E+01  0.521699E+01  0.582824E+01  0.9500
VARIANCE RATIO 0.416803E+00 0.955932E+00 0.999999E+00

USING CONTROL VARIABLE: WORK(2)

YBAR(BHAT) 0.477196E+01  0.521219E+01 0.617023E+01 0.9500
VARIANCE RATIO 0.446203E+00 0.950714E+00 0.999980E+00
USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.475023E+01 0.521933E+01  0.599340E+01  0.9450
VARIANCE RATIO 0.599295E+00 0.953930E+00 0.999999E+00
{ USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.483239E+01  0.521705E+01 0.582838E+01  0.9500
VARIANCE RATIO 0.416409E+00 0.955908E+00 0.999997E+00
USING CONTROL VARIABLE: SOJOURN(M/M/1)
3 YBAR(BHAT) 0.463239E+01 0.528310E+01 0.655387E+01 0.5700
VARIANCE RATIO 0.12528S5E+00 0.468408E+00 0.890346E+00

| USING CONTROL VARIABLE: WAIT4(M/M/})
YBAR(BHAT) 0.455333E+01 0.527696E+01 0.645269E+01 0.5100
VARIANCE RATIO 0.100617E+00 0.386469E+00 0.791341E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)

YBAR(BHAT) 0.451417E+01  0.527574E+01  0.645615E+01  0.3650
VARIANCE RATIO 0.620310E-01 0.250908E+00 0.667591E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.439451E4+01  0.526400E+01 0.635990E+01 0.4300
VARIANCE RATIO 0.699815E-01 0.316967E+00 0.703822E+00
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Table D.4. Control Variate Results Against Sojourn Time
at the Fourth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

- - - - - — - - - - — - - - - - —

YBAR 0.371266E+02 0.457255E+02 0.555158E+02

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.378508E+02  0.457554E+02
VARIANCE RATIO 0.486904E+00 0.942278E+00

.548320E4+02 0.9300
.999998E+00

oo

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.373728E+02 0.457098E+0Z2 0.554014E+02 0.9350
VARIANCE RATIO 0.53182SE+00 0.932978E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(1)

YBAR(BHAT) 0.375918E+02 0.458027E+02 0.623515E+02 0.9100
VARIANCE RATIO 0.652300E+00 0.947219E+00 0.999990E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.344602E+02 0.456777E+02  0.573404E+02 0.9000
VARIANCE RATIO 0.567247E+00 0.941918E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(3)

YBAR(BHAT) 0.349138E+402 0.457327E+02 0.552863E+02 0.9150
VARIANCE RATIO 0.574240E+00 0.943468E+00 0.999986E+00

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.376215E+02 0.457768E+02 0.618071E+02 0.9100
VARIANCE RATIO 0.65106SE+00 0.947981E+00  0.999998E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.376422E+02 0.498143E+02 0.691257E+02 0.6150
VARIANCE RATIO 0.160514E+00 0.662006E+00 0.999999E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.380585E+02 0.492114E+02 0.671139E+02 0.6400
VARIANCE RATIO 0.101392E+00 0.615236E+00 0.999963E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)

YBAR(BHAT) 0.376549E+02 0.498277E+02 (0.694260E+02 0.5800
VARIANCE RATIO 0.731372E-01 0.600644E+00  0.999975E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.382182E+02 0.492173E+402 0.668756E+02 0.6250
VARIANCE RATIO 0.971600E-01 0.610729E+00  0.999952E+00
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Table D.S.

- - -

YBAR(BHAT)
VARIANCE RATIO

YBAR(BHAT)
VARIANCE RATIO

YBAR(BHAT)
VARIANCE RATIO

YBAR( BHAT)
VARIANCE RATIO

YBAR(BHAT)
VARIANCE RATIO

YBAR(BHAT)
VARIANCE RATIO

YBAR(BHAT)
VARIARCE RATIO

YBAR(BHAT)
VARIANCE RATIO

YBAR( BHAT)
VARIANCE RATIO

YBAR(BHAT)
VARIANCE RATIO

Control Variate Results Against Sojourn Time
at the Fifth Design Point

MINIMUM AVERAGE MAXIMUM COVERAGE

- - - - - - - o - - - - - -

0.368183E+01  0.381449E+01  0.400045E+01

USING CONTROL VARIABLE: ROUTING(1,3)

0.363501E+01  0.381666E+01  0.401037E+01
0.407602E+00 0.869664E+00  0.999999E+0D0

USING CONTROL VARIABLE: ROUTING(1,4)

USING CONTROL VARIABLE: WORK(1)

USING CONTROL VARIABLE: WORK(2)

0.358449E+01 0.361251E+01  0.406761E+01
0.388817E+00 0.885916E+00 0.999998E+00
0.363304E+01 0.381513E+01  0.401350E+01
0.732037E400 0.957379E+00 0.100000E+01
0.367582E+01 0.381078E+01 0.402608E+01
0.769947E+00 0.957897E+00  0.999998E+00

USING CONTROL VARIABLE: WORK(3)

.381085E+01 .398226E+01
.954170E+00 0.100000E+01

o

0.358585E+01
0.707264E+00

oo

USING CONTROL VARIABLE: WORK(4)

0.363303E+01  0.381514E+01  0.401370E+01
0.731882E+00 0.957361E+00 0.100000E+01

USING CONTROL VARIABLE: SOJOURN(M/M/1)

0.361066E+01  0.384197E+01  0.414274E+01
0.139045E+00 0.377817E+00 0.881662E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)

USING CONTROL VARIABLE: SOJOURN(G/G/1)

0.364710E4+01  0.382226E+01 0.408382E+01
0.335014E+00 0.797228E+00 0.999920E+00
0.361933E+01  0.384037E+01  0.412813E+01
0.921910E-01  0.354609E+00 0.767348E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)

0.364605E+01 0.382218E+01  0.407732E+01
0.347844E+00 0.783402E+00  0.999992E+00
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Table D.6. Control Variate Results Against Sojourn Time
at the Sixth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

- v —— - - - - - -~ - - - - - - - - — - - > -

YBAR 0.248461E+02 0.287763E+02 0.332896E+02
USING CONTROL VARIABLE: ROUTING(1,3)

YBAR(BHAT) 0.249434E+02 0.287970E+02 0.341161E+02 0.9200
VARIANCE RATIO 0.650989E+00 0.941351E+00 0.999999E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.235258E+02 0.287802E+02 0.348140E+02 0.9250
VARIANCE RATIO 0.541487E+00 0.917009E+00 0.999993E+00

USING CONTROL VARIABLE: WORK(1)

YBAR(BHAT) 0.251509E+02 0.288086E+02 0.346363E+02 0.9450
VARIANCE RATIO 0.663926E+00 0.959623E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.245202E+02 0.287082E+02 0.334179E+02 0.9400
VARIANCE RATIO 0.437341E+00 0.947478E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.243634E+02 0.288033E+02 0.370763E+02 0.9350
VARIANCE RATIO 0.508923E+00 0.951356E+00 0.999982E+00

USING CONTROL VARIABLE: WORK(4)

YBAR(BHAT) 0.251519E+02 0.288058E+02  0.346073E+02 0.9450
VARIANCE RATIO 0.665197E+00 0.95980ZE+00 0.100000E+01

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.257135E+02 0.302904E+02 0.382519E+02 0.8100
VARIANCE RATIO 0.236069E+00 0.771186E+00 0.999962E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.241961E+02 0.300718E+02
VARIANCE RATIO 0.131538E+00 0.649533E+00

.380983E+02 0.7450
.999407E+00

(=N =

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.257132E+02  0.302892E+02 0.383264E+02 0.8100
VARIANCE RATIO 0.245796E+00 0.771530E+00 0.999961E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.243035E+02 0.300624E+02
VARIANCE RATIO 0.125844E+00 0.644162E+00

.380028E+02 0.7200
.899675E+00

[~
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Table D.7. Control Variate Results Against Sojourn Time
at the Seventh Design Point

I

NAME MINIMUM AVERAGE MAXTIMUM COVERAGE

YBAR 0.473118E+01  0.521470E+01  0.582294E+01

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.475897E+01  0.521184E+01  0.592922E+01 0.9200
VARIANCE RATIC 0.572002E+00 0.927714E+00  0.999996E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.469524E+01  0.521139E+01 0.585067E+01  0.8950
VARIANCE RATIO 0.608010E+00 0.914174E+00  0.999992E+00

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.469958E+0L 0.521112E+01  0.604592E+01  0.9300
VARIANCE RATIO 0.551904E+00 0.950072E+00 0.999999E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.473291E+01  0.521587E+01 0.576332E+01 0.9250
VARIANCE RATIO 0.474959E+00 0.950610E+00  0.999999E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.476462E+01  0.520558E+01 0.563329E+01  0.9050
VARIANCE RATIO 0.634175E+00 0.948817E+00 0.999996E+00

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.469965E+01 0.521116E+01 0.604597E+01  0.9250
VARIANCE RATIO 0.551983E+00 0.950057E+00 0.999999E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.464045E+01 0.527604E+01 0.620366E+01 0.6100
VARIANCE RATIO 0.968237E-01  0.507894E+00 0.951437E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.456468E+01 0.526524E+61 0.639802E+01  0.5450
VARIANCE RATIO 0.111213E+00 0.422013E+00 0.837698E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.450120E+01  0.526341E+01  0.640132E+01 0.4200
VARIANCE RATIO 0.863734E-01 0.279231E+00 0.658191E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.450152E+01  0.524690E+01 0.646256E+01 0.5100
VARIANCE RATIO 0.934624E-01 0.369244E+00 0.861650E+00
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Table D.8. Control Variate Results Against Sojourn Time
at the Eight Design Point

B .
NAME MINIMUM AVERAGE MAXIMUM COVERAGE

- e - - - —— - - - - - - — - - —— -

YBAR 0.368068E+02 0.451113E+02 0.556231E+02

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.367612E+02 0.451561E+02 0.568654E+02  0.9450
VARIANCE RATIO 0.557175E+00 0.939957E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4)

YBAR(BHAT) 0.356995E+82 0.451467E+02 0.553535E+02 0.9550
VARIANCE RATIO 0.640790E+00 0.945581E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.370118E+02 0.451506E+02 0.563468E+02 0.9450
VARIANCE RATIO 0.615958E+00 0.951195E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.369133E+02 0.452114E+02 0.562391E+02 0.9300
VARIANCE RATIO  0.492479E+00 0.947S571E+00  6.999998E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.369315E+02 0.452633E+02 0.572890E+02 0.9500
VARIANCE RATIO 0.552045E+00 0.939136E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.370132E+02 0.451325E+02 0.562732E+02 0.9450
VARIANCE RATIO 0.613340E+00 0.952044E+00 0.100000E+01

USING CONTROL VARIABLE: SOJOURN(M/M/1)

YBAR(BHAT) 0.363551E+02 0.495517E+02  0.659250E+02 0.6550
VARIANCE RATIO 0.167355E+60 0.703501E+00 0.998401E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.371424E+02 0.483798E+02 0.614534E+02 0.6900
VARIANCE RATIO 0.105631E+00 0.620355E+00 0.999962E+00

USING CONTROL VARIABLE: SOJQURN(G/G/1)
YBAR(BHAT) 0.363782E+02 0.494878E+02 0.635396E+02  0.5900
VARIANCE RATIO 0.100811E+00 0.608829E+00 0.999998E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.372278E+02 0.483759E+02 0.623317E+0Z2 0.6950
VARIANCE RATIO 0.104318E+00 0.617487E+00 0.999963E+00
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Table D.9. Control Variate Results Against Sojourn Time

at the Ninth Design Point

B e =
MINIMUM AVERAGE MAXIMUM COVERAGE

P e - ——— - - - — - - - -

0.380592E+01  0.398874E+01 0.415140E+01L

- o -

USING CONTROL VARIABLE:
YBAR(BHAT) 0.382653E+01
VARIANCE RATIO 0.650857E+00

ROUTING(1,3)
0.398936E+01  0.415606E+01 0.9150
0.949540E+00  0.999997E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.375724E+01  0.399063E+01 .420255E+01  0.7650
VARIANCE RATIO 0.37662SE+00 0.761644E+00 .998550E+00

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.380441E+01  0.398905E+01 .417934E+01  0.8950
VARIANCE RATIO 0.513316E+00 0.938565E+00 .100000E+01

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.379973E+01  0.398678E+01 .416616E+01  0.9300
VARIANCE RATIO 0.587106E+00 0.948372E+00 .999999E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.375108E+01  0.398441E+01 .4185STE+0t 0.9050
VARIANCE RATIO 0.634476E+00 0.943080E+00 .999998E+00

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.380442E+01  0.398906E+01 .417932E4+01  0.8950
VARIANCE RATIO 0.513602E+00 0.93857SE+00 .999999E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR( BHAT) 0.371078E+01  0.401222E+01 .427863E+01  0.4650
VARIANCE RATIO 0.113236E+00 0.355449E+00 .821358E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.370819E+01  0.399823E+01 .424922E+01  0.6950
VARIANCE RATIO 0.205460E+00 0.662065E+00 .999135E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.371430E+01  0.401247E+01 L428437E4+01  0.4400
VARIANCE RATIO 0.114329E+00 0.334087E+00 .783583E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.372064E+01  0.399890E+01 .426272E+01 0.7100

VARIANCE RATIO 0.238847E+00 0.643083E+00

.997044E+00



Table D.10.
at the Tenth Design Point

Control Variate Results Against Sojourn Time

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.246467E+02  0.299427E+02 0.353747E+02

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.247080E+02 0.300389E+02 0.361594E+02 0.9100
VARIANCE RATIO 0.639244E+00 0.95107SE+00 0.999996E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.241610E+02  0.299488E+02 0.357995E+02  0.8950
VARIANCE RATIO 0.293134E+00 0.859462E+00 0.999998E+00

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.245217E+02  0.299633E+02 0.363288E+0Z2 0.8900
VARIANCE RATIO 0.609402E+00 0.943036E+00 0.999994E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.236332E+02 0.299989E+02 0.357056E+02  0.9250
VARIANCE RATIO 0.490976E+00 0.951623E+00 0.999996E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.247234E+02 0.299672E+02  0.363240E+02 0.8950
VARIANCE RATIO 0.635769E+00 0.948150E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.245203E+02 0.299608E+02 0.363192E+02 0.8900
VARIANCE RATIO 0.609347E+00 0.943254E+00  0.999999E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR( BHAT) 0.256705E+02 0.314889E+02 0.411867E+02 0.7850
VARIANCE RATIO 0.273576E+00 0.708201E+00 0.100000E+01

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.241567E+02  0.314347E+02  0.384832E+02 0.6850
VARIANCE RATIO 0.206467E+00 0.604245E+00 0.999674E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.256697E+02 0.314904E+02 0.413126E+02 0.7800
VARIANCE RATIO 0.277785E+00 0.709799E+00 0.999999E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.241370E+02 0.314233E+02 0.384162E+02 0.6600
VARIANCE RATIO 0.200296E+00 0.602308E+00 0.999712E+00
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Table D.11. Control Variate Results Against Sojourn Time
at the Eleventh Design Point

e
NAME MINIMUM AVERAGE MAXIMUM COVERAGE

- - ——— - - - - - - - - - = - - - - - -~ —— - - - - —

YBAR 0.490559E+01  0.530441E+01 0.566416E+01

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.490509E+01  0.530760E+01
VARIANCE RATIO 0.572129E+00 0.946071E+00

.566931E+01  0.9350
.100000E+01

[ =¥}

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.491179E+0%  0.531109E+01 0.575136E+01  0.9050
VARIANCE RATIO 0.421668E+00 0.873746E+00 0.100000E+0!

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.490478E+01  0.530375E+01  0.572119E+01 0.9300
VARIANCE RATIO 0.558922E+00 0.946952E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(2)

YBAR(BHAT) 0.440455E+01  0.529597E+01  0.582324E+01  0.9350
VARIANCE RATIO 0.645532E+00 0.949085E+00 0.999978E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.490411E+01  0.530130E+01 0.623082E+01  0.9350
VARIANCE RATIO 0.516269E+00 0.944746E+00 (0.999989E+00

USING CONTROL VARIABLE: WORK(4)

YBAR(BHAT) 0.490473E+01  0.530378E+01  0.57208SE+01  0.9300
VARIANCE RATIO 0.557668E+00 0.946925E+00 0.100000E+01

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR( BHAT) 0.478901E+01 0.536703E+01 0.608927E+0! 0.5800
VARIANCE RATIO 0.136079E+00 0.450433E+00 0.902546E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)

YBAR(BHAT) 0.466496E+01 0.535122E+01 0.59813BE+401  0.5800
VARIANCE RATIO 0.936413E-01 0.415536E+00 0.97982ZE+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.461028E+01  0.535548E+01 0.608413E+01  0.4650
VARIANCE RATIO 0.653325E-01  0.266464E+00  0.702594E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.462090E+01  0.533501E+01
VARIANCE RATIO 0.131066E+00 0.386874E+00

.596814E+01  0.5250
.930679E+00
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Table D.12. Control Variate Results Against Sojourn Time

at the Twelfth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.385956E+02 0.470301E+02 0.590437E+02

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.385054E+02 0.472231E+02 0.59573SE+02 0.9150
VARIANCE RATIO 0.678291E+00 0.949828E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.375837E+02 0.468042E+0Z 0.589178E+02 0.9050
VARIANCE RATIO 0.546805E+00 0.917021E+00 0.100000E+0!

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.387353E+02 0.471866E+02 0.688168E+02 0.9250
VARIANCE RATIO 0.600185E+00 0.949178E+00  0.999992E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.385828E+02 0.470423E+02 0.59693BE+02 0.9350
VARIANCE RATIO 0.615101E+00 0.953366E+00 0.100000E+0!

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.389498E+02 0.471159E+02 0.588525E+02 0.9200
VARIANCE RATIO 0.3B6973E+00  0.945840E+00  0.999999E+00

USING CONTROL VARIABLE: WORK(4)
YBAR( BHAT) 0.387146E+02 0.471739E+02 0.679613E+02  0.9250
VARIANCE RATIO 0.595894E+00 0.949470E+00  0.999991E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.393682E+02 0.505069E+02 0.698632E+02 0.6800
VARIANCE RATIO 0.135096E+00 0.689193E+00 0.999557E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.386547E+02 0.497819E+02 0.698244E+02 0.7250
VARIANCE RATIO 0.135S0SE+00 0.671610E+00 0.998631E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.393751E+02 0.502915E+02 0.699491E+02 0.6850
VARIANCE RATIO 0.129665E+00 0.670991E+00  0.999958E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.390337E+02 0.497711E+02  0.699372E+02 0.7200

VARIANCE RATIO 0.143626E+00 0.672896E+00 0.998564E+00
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Table D.13. Control Variate Results Against Sojourn Time

at the Thirteenth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.362597E+01  0.381095E+01  0.398981E+01

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.362032E+01  0.380911E+01 .400185E+01  0.8800
VARIANCE RATIO 0.335364E+00 0.877644E+00 .100000E+01

USING CONTROL VARIABLE: ROUTING(1,4);
YBAR(BHAT) 0.359593E+01 0.381070E+01 .406907E+01  0.8000
VARIANCE RATIO 0.212558E+00 0.776582E+00 .100000E+01

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.362653E+01  0.381054E+01 .398310E+01  0.8950
VARIANCE RATIO 0.487505E+00 0.945541E+00 .100000E+01

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.362480E+01  0.381052E+01 .398868E+01  0.9100
VARIANCE RATIO 0.385303E+00 0.949118E+00 .100000E+01

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.361801E+01  0.380606E+01 .399455E+01  0.9150
VARIANCE RATIO  0.476760E+00 0.942032E+00 .999998E+00

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.362652E+01  0.381054E+01 .398302E+01  0.8950
VARIANCE RATIO 0.487568E+00 0.945545E+00 .100000E+01

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.354936E+01  0.383049E+01 .414142E+01  0.4300
VARIANCE RATIO 0.611835E-01 0.331030E+00 .881636E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.356877E+01  0.381797E+01 .403301E+01 0.7650
VARIANCE RATIO 0.1792S7E+00 0.712198E+00 .999670E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.354646E+01  C.382954E+01 .413612E+01  0.4350
VARIANCE RATIO 0.643630E-01 0.315746E+00 .865978E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR( BHAT) 0.356530E+01  0.381773E+01 .404205E+01  0.7400
VARIANCE RATIO 0.191999E+00 0.699534E+00 .999399E+00
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Table D.14. Control Variate Results Against Sojourn Time
at the Fourteenth Design Point

B
NAME MINIMUM AVERAGE MAXIMUM COVERAGE

é YBAR 0.250717E+02  0.292389E+02  0.348594E+02

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.244769E+02  0.292682E+0Z  0.348573E+02 0.9450
VARIANCE RATIO 0.417618E+00 0.928636E+00 0.999999E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.245819E+02  0.293296E+02 0.367279E+02 0.9000
VARIANCE RATIO 0.443243E+00 0.858234E+00  0.999979E+00

USING CONTROL VARIABLE: WORK(1)

YBAR(BHAT) 0.252217E+02 0.292557E+02 0.361015E+02 0.9450
VARIANCE RATIO 0.506835E+00 0.952300E+00 0.999996E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.231941E+02  0.292391E+0Z 0.376504E+02 0.9300

VARIANCE RATIO 0.702B47E+00 .945412E+00  0.999991E+00

o

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.257546E+02
VARIANCE RATIO 0.562071E+00

.293223E+02  0.34849BE+02  0.9350
.948348E+00  0.999996E+00

oo

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.252241E4+02 0.292533E+02 0.360774E+02  0.9450
VARIANCE RATIO 0.510453E+00 0.952444E+00 0.999997E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.246920E+02 0.307517E+02 0.384403E+0Z 0.8150
VARIANCE RATIO 0.173840E+00 0.748431E+00 0.999981E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.224575E+02  0.306417E+02  0.385982E+02  0.7450
VARIANCE RATIO  0.205944E+00 0.632572E+00 0.995176E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.244717E+02  0.307440E+02  0.383845E+02 0.8150
VARIANCE RATIO 0.156665E+00 0.750094E+00 0.999974E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.219894E+02 0.306433E+02 0.385125E+02 0.7450
VARIANCE RATIO 0.195685E+00 0.626817E+00 0.993579E+00




Table D.15.

Control Variate Results Against Sojourn Time
at the Fifteenth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.470558E+01  0.512254E+01  0.545352E+01

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.470723E+01  0.512507E+01  0.545784E+01 0.9300
VARIANCE RATIO 0.539615E+00 0.935454E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.464156E+01  0.512207E+01  0.551342E+01 0.9250
VARIANCE RATIO 0.435000E+00 0.899192E+00 0.999996E+00

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.460887E+01 0.511759E+0t  0.548528E+01 0.9150
VARIANCE RATIO 0.491643E+00 0.939493E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.445197E+01  0.511944E+01  0.548606E+01  0.9250
VARIANCE RATIO 0.695184E+00 0.957703E+00 0.999999E+00 '

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.463500E+01  0.512162E+01  0.546696E+01  0.9250
VARIANCE RATIO 0.615519E+00 0.947813E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.460917E+01 0.511760E+01  0.548530E+01 0.9150
VARIANCE RATIO 0.491485E+00 0.939497E+00  0.100000E+0!

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.446228E+01 0.S517711E+01 0.578296E+01 0.5650
VARIANCE RATIO 0.123806E+00 0.448358E+00 0.937828E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.455079E+01  0.516825E+01 0.569372E+01 0.5150
VARIANCE RATIO  0.123214E+00 0.404259E+00 0.765727E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.442982E+01 0.517591E+01 0.579209E+01  0.3850
VARIANCE RATIO  0.328271E-01  0.253222E+00 0.724730E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.450089E+01  0.516114E+01  0.572054E+01  0.4950
VARIANCE RATIO 0.938772E-01  0.3790S1E+00 0.778870E+00
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Table D.16.

AVERAGE

0.456687E+02

MINIMUM

0.368060E+02

USING CONTROL VARIABLE:
YBAR(BHAT) 0.367545E+02
VARIANCE RATIO 0.569230E+00

ROUTING(1,3)
0.455973E+02
0.941763E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.361866E+02  0.455062E+02
VARIANCE RATIO 0.4598S56E+00 0.928508E+00

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.371077E+02  0.457249E+02
VARIANCE RATIO 0.608909E+00 0.944781E+00
USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.370771E+02  0.457057E+02
VARIANCE RATIO 0.646092E+00  0.944484E+00
USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.370829E+02 0.456703E+02
VARIANCE RATIO 0.525826E+00 0.951012E+00

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.371067E+02 0.457137E+02
VARIANCE RATIO 0.608657E+00 0.945294E+00

USING CONTROL VARIABLE:
YBAR (BHAT) 0.374931E+02
VARIANCE RATIO 0.214510E+00

SOJOURN(M/M/1)
0.491399E+02
0.725930E+00

USING CONTROL VARIABLE:
YBAR(BHAT) 0.322618E+02
VARIANCE RATIO 0.200033E-03

WAIT4(M/M/1)
0.484143E+02
0.623759E+00

USING CONTROL VARIABLE:
YBAR(BHAT)
VARIANCE RATIO

SOJOURN(G/G/1)
0.374865E+02  0.491428E+02
0.700837E-02 0.655286E+00

USING CONTROL VARIABLE:
YBAR(BHAT) 0.318773E+02
VARIANCE RATIO 0.200033E-03

WAIT4(G/G/1)
0.483783E+02
0.624382E+00
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MAXIMUM

572155E+02

.581674E+02
.100000E+01

.576799E+02
.999994E+00

.600144E+02
.999996E+00

.576533E+02
.999998E+00

.576092E+02
.100000E+01

.598441E+02
.100000E+01

.681191E+02
.999967E+00

.565718E+02
.999869E+00

.688984E+02
.999997E+00

.663283E+02
.999870E+00

Control Variate Results Against Sojourn Time
at the Sixteenth Design Point

COVERAGE

0.9150

0.9050

0.8950

0.9150

0.9050

0.8900

0.6550

0.6500

0.6300

0.6650



Table D.17. Control Variate Results Against Fourth Node Quantile
at the First Design Point

PERRISRRSRSRRREEEAREE S R S e e e R e
NAME MINIMUM AVERAGE MAXIMUM COVERAGE

- -~ — - - - - - - - - - — - - -

YBAR 0.108982E+00 0.121346E+00 0.133839E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.107888E+00 0.121325E+00
VARIANCE RATIO 0.584686E+00 0.939386E+00

.133859E+00 0.90S0
.100000E+01

[

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.106945E+00 0.121218E+00 0.133643E+00 0.8900
VARIANCE RATIO 0.332811E+00 0.909225E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.108926E+00 0.121482E+00
VARIANCE RATIO 0.697780E+00 0.950873E+00

.134308E+00 0.9000
.100000E+01

oo

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.108073E+00 0.121293E+00 0.133982E+00 0.9100
VARIANCE RATIO 0.621506E+00 0.946486E+00 0.999983E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.106275E+00 0.121373E+00
VARIANCE RATIO 0.565127E+00 0.951841E+00

.134094E+00 0.8950
.100000E+01

[ =¥ =]

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.108926E+00 0.121483E+00 0.134307E+00 0.9000
VARIANCE RATIO 0.698097E+00 0.950868E+00 0.100000E+0!

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.106004E+00 0.122063E+00 0.137733E+00 0.7500
VARIANCE RAL.0  0.282425E+00 0.704738E+00  0.999972E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.102571E+00  0.121814E+00
VARIANCE RATIO 0.159547E+00 0.443010E+00

.141884E+00 0.5700
.837345E+00

[ —]

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.106520E+00 0.121954E+00 0.138474E+00 0.7700
VARIANCE RATIO 0.283256E+00 0.720013E+00  0.999996E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.10291SE+00 0.121783E+00
VARIANCE RATIO 0.140546E+00 0.421196E+00

.143014E+00 0.5600
.832287E+00

[~= =]
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Table D.18. Control Variate Results Against Fourth Node Quantile

at the Second Design Point

MAXIMUM

- - ———— - - - - - - - - - ———— - - -

YBAR 0.800609E-01  0.:22987E+00

USING CONTROL VARIABLE: ROUTING(1,3)

0.796589E-01
0.665956E+00

0.122874E+00
0.944736E+00

YBAR(BHAT)
VARIANCE RATIO

USING CONTROL VARIABLE: ROUTING(1,4)

0.690142E-01
0.505389E+00

0.122216E+00
0.918495E+00

YBAR(BHAT)
VARIANCE RATIO

USING CONTROL VARIABLE: WORK(1)

0.713555E-01  0.123318E+00
0.548735E+00  0.946070E+00

YBAR(BHAT)
VARIANCE RATIO

USING CONTROL VARIABLE: WORK(2)

0.708987E-01  0.122474E+00
0.520072E+00 0.944244E+00

YBAR(BHAT)
VARIANCE RATIO

USING CONTROL VARIABLE: WORK(3)

0.810515E-0f  0.123990E+00
0.711601E+00 0.947854E+00

YBAR(BHAT)
VARIANCE RATIO

USING CONTROL VARIABLE: WORK(4)

0.715930E-01 0.123326E+00
0.550165E+00 0.945971E+00

YBAR(BHAT)
VARIANCE RATIO

USING CONTROL VARIABLE: SOJOURN(M/M/1)

0.767694E-01
0.381408E+00

YBAR(BHAT)
VARIANCE RATIO

0.127122E+00
0.918162E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)

YBAR(BHAT)
VARIANCE RATIO

0.803986E-01
0.247330E+00

0.134137E+00
0.723061E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)

YBAR(BHAT)
VARIANCE RATIO

0.766782E-01
0.381622E+00

0.126980E+00
0.919540E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)

0.800893E-01
0.251796E+00

0.134095E+00
0.721281E+00

YBAR(BHAT)
VARIANCE RATIO

0.
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183393E+00

.188708E+00
.100000E+01

.187343E+00
.100000E+01

.183295E+00
.999999E+00

.188564E+00
.100000E+01

.187336E+00
.999998E+00

.183302E+00
.1060000E+01

.197354E+00
.999999E+00

.213651E+00
.999982E+00

.196664E+00
.999998E+00

.215977E+00
.999996E+00

COVERAGE

0.9400

0.9300

0.9300

0.9200

0.9350

0.9300

0.9150

0.7650

0.9150

0.7600
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Table D.19. Control Variate Results Against Fourth Node Quantile

at the Third Design Point

NAME MINIMUM AVERAGE

MAXIMUM

YBAR 0.117299E+00 0.141142E+00

USING CONTROL VARIABLE: ROUTING(1,3)

0.114428E+00
0.647251E+00

0.140852E+00
0.946466E+00

YBAR(BHAT)
VARIANCE RATIO

USING CONTROL VARIABLE: ROUTING(1,4)

0.117293E+00
0.641702E+00

0.141151E+00
0.942667E+00

YBAR(BHAT)
VARIANCE RATIO

USING CONTROL VARIABLE: WORK(1)

YBAR(BHAT) 0.119165E+00 0.141217E+00

VARIANCE RATIO 0.464607E+00 0.951705E+00
USING CONTROL VARIABLE: WORK(2)

YBAR(BHAT) 0.116956E+00  0.140959E+00

VARIANCE RATIO 0.532538E+00 0.951487E+00
USING CONTROL VARIABLE: WORK(3)

YBAR(BHAT) 0.115201E+00 0.141266E+00

VARIANCE RATIO  0.555494E+00 0.950901E+00
USING CONTROL VARIABLE: WORK(4)

YBAR (BHAT) 0.119136E+00 0.141222E+00

VARIANCE RATIO 0.464179E+00 0.951710E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)

0.109585E+00
0.152195E+00

YBAR(BHAT)
VARIANCE RATIO

0.144851E+00
0.579707E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)

YBAR(BHAT)
VARIANCE RATIO

0.939711E-01
0.809851E-01

0.145167E+00
0.268138E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)

YBAR( BHAT)
VARIANCE RATIO

0.933476E-01
0.796989E-01

0.144652E+00
0.262950E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)

YBAR(BHAT)
VARIANCE RATIO

0.835182E-01
0.822466E-01

0.144021E+00
0.232744E+00

oo

[ =

(=N =]

.165164E+00

.167499E+00
.999999E+00

.168151E+00
.100000E+01

.167973E+00
.999995E+00

.169834E+00
.999959E+00

.167604E+00
.999999E+00

.167956E+00
.999992E+00

.193024E+00
.992372E+00

.193472E+00
.677336E+00

.191033E+00
.661056E+00

.187470E+00
.625153E+00

COVERAGE

0.9400

0.9300

0.9550

0.9400

0.9300

0.9550

0.6600

0.4350

0.3650

0.3750



Table D.20.

Control Variate Results Against Fourth Node Quantile

at the Fourth Design Point

MINIMUM AVERAGE

- - - - - - ——— - - - -

0.738233E-02 0.613441E-01

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT)
VARIANCE RATIO

0.614113E-01
0.951017E+00

0.758367E-02
0.637302E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT)
VARIANCE RATIO

0.732101E-02
0.623753E+00

0.607389E-01
0.956300E+00

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT)
VARIANCE RATIO

0.486476E-02 0.615487E-01
0.339997E+00  0.944999E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT)
VARIANCE RATIO

-0.128170E-01
0.485296E+00

.613136E-01
.946526E+00

oo

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT)
VARIANCE RATIO

0.530243E-02 0.617015E-01
0.617724E4+00 0.940743E+00

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT)
VARIANCE RATIO

0.486544E-02 0.614900E-01
0.339796E+00 0.945119E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT)
VARIANCE RATIO

0.826074E~02
0.421055E-01

0.754763E-01
0.837181E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT)
VARIANCE RATIO

0.747168E-02
0.162178E-01

0.771357E-01
0.751506E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT)
VARIANCE RATIO

0.829340E-02
0.356739E-01

0.777838E-01
0.774744E400

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT)
VARIANCE RATIO

0.769022E-02
0.162676E-01

0.771427E-01
0.747599E+00

D.21

MAXIMUM

- o e e

0.141887E+00

.136472E+00
.999995E+00

oo

.147175E+00
.999985E+00

[ = =}

.163884E+00
.100000E+01

[ 2 = ]

.144628E+00
.999993E+00

(= =]

.148124E+00
.100000E+01

oo

0.163384E+00
0.100000E+01

G.201013E+00
0.999949E+00

0.201252E+00
0.999986E+00

.200373E+00
.999996E+00

oo

0.197136E+00
0.100000E+01

COVERAGE

0.8500

0.8650

0.8550

0.8400

0.8450

0.8550

0.7350

0.6850

0.6850

0.6750



Table D.21. Control Variate Results Against Fourth Node Quantile
at the Fifth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

- — - - - - — - - - — - - - - ——— - - ———

YBAR 0.111325E+00 0.121418E+00 0.132414E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.111768E+00 0.121434E+00 (.131716E+00 0.9100
VARIANCE RATIO 0.58138SE+00 0.947085E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.105001E+00 0.121351E+00 0.132163E+00 0.8850
VARIANCE RATIO 0.578932E+00 0.903681E+00 0.999983E+00

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.109514E+00 0.121498E+00 0.133965E+00 0.9100
VARIANCE RATIO 0.702469E+00 0.949806E+00 0.999995E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.107856E+00 0.121264E+00 0.134142E+00 0.9050
VARIANCE RATIO 0.673564E+00 0.953347E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.105744E+00 0.121409E+00 0.134251E+00 0.9050
VARIANCE RATIO 0.627567E+00 0.951125E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.109515E+00 0.121498E+00 0.133964E+00 0.9100
VARIANCE RATIO 0.702539E+00  0.949797E+00  0.999996E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.110182E+00 0.122406E+00 0.136964E+00 0.7800
VARIANCE RATIO 0.303391E+00 0.779417E+00 0.999997E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.105685E+00 0.122206E+00 0.140539E+00 0.5450
VARIANCE RATIO 0.130080E+00 0.445908E+00 0.925947E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.110200E+00 0.122268E+00 0.137154E+00 0.7950
VARIANCE RATIO 0.323205E+00 0.796578E+00  0.999815E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.105442E4+00 0.122140E+00 0.139733E+00 0.5100
VARIANCE RATIO 0.127179E+00 0.418037E+00 0.908348E+00
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Table D.22.

NAME MINIMUM AVERAGE
YBAR 0.622885E-01 0.108684E+00
USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.620325E-01 0.10887SE+00
VARIANCE RATIO 0.513468E+00 0.950657E+00
USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.676376E-01  0.108407E+00
VARIANCE RATIO 0.583689E+00 0.939187E+00
USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.594641E-01  0.109773E+00
VARIANCE RATIO 0.612138E+00 0.953165E+00
USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.622200E-01  0.108051E+00
VARIANCE RATIO 0.593514E+00 0.949890E+00
USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.587167E-01  0.108695E+00
VARIANCE RATIO 0.468669E+00 0.948411E+00
USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.595041E-01  0.109778E+00
VARIANCE RATIO 0.612476E+00 0.953100E+00
USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.580289E-01 0.110269E+00
VARIANCE RATIO 0.454583E+00 0.940221E+00
USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR( BHAT) 0.651024E-01  0.120729E+00
VARIANCE RATIO 0.26470SE+00 0.735405E+00
USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.579146E-01  0.110227E+00
VARIANCE RATIO 0.470616E+00 0.940779E+00
USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.647745E-01  0.120575E+00
VARIANCE RATIO 0.264302E+00 0.731573E+00

D.
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0.

oo

oo

[~ ] oo

(=~}

o

[=X =]

MAXIMUM

168433E+00

.170645E+00
.999997E+00

.169864E+00
.100000E+01

.172394E+00
.999997E+00

.172440E+400
.999988E+00

.180395E+00
.100000E+01

.172424E+00
.100000E+01

.177221E+00
.999979E+090

.223535E+00
.100000E+01

.176488E+00
.999979E+00

.222433E+00
.100000E+0!

Control Variate Results Against Fourth Node Quantile
at the Sixth Design Point

COVERAGE

0.9250

0.9350

0.9300

0.9250

0.9300

0.9300

0.9150

0.8000

0.9150

0.8000



Table D.23. Control Variate Results Against Fourth Node Quantile
at the Seventh Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

- ——— - - - - = - - - - - —————

YBAR 0.112569E+00 0.140501E+00 0.185156E+00

USING CONTROL VARIABLE: ROUTING(:,3)
YBAR(BHAT) 0.113335E+00 0.140270E+00 0.190232E+00 0.9400
VARIANCE RATIO 0.547357E+00 0.942611E+00 0.999999E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.109996E+00 0.140422E+00 .186807E+00  0.9300
VARIANCE RATIO 0.57073CE+00 0.934657E+00  0.999999E+00

o

USING CONTROL VARIABLE: WORK(1)

YBAR(BHAT) 0.112687E+00 0.140580E+00 0.201817E+00 0.9250
VARIANCE RATIO 0.607985E+00 0.944603E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.112672E+00 0.140510E+00 0.183614E+00  0.9300
VARIANCE RATIO 0.611688E+00 0.948069E+00 0.999998E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.110439E+00
VARIANCE RATIO 0.660412E+00

.140202E+00
.951762E+00

.171872E+00 0.9150
.999999E+00

oo
oo

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.112691E+00 0.140583E+00 0.201832E+00 0.9250
VARIANCE RATIO 0.608191E+00  0.944580E+00  0.999999E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.108940E+00 0.143605E+00 .204380E+00 0.7500
I VARIANCE RATIO 0.234856E+00 0.669272E+00 0.997503E+00

o

L USING CONTROL VARIABLE: WAITA4(M/M/1)

YBAR(BHAT) 0.987313E-01  0.143796E+00 0.217044E+00 0.4850
VARIANCE RATIO  0.848460E-01  0.270045E+00  0.888704E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.984601E-01  0.143404E+00 0.216561E+00  0.4850

VARIANCE RATIO 0.797107E-01  0.309553E+00 0.768329E+00
USING CONTROL VARIABLE: WAIT4(G/G/1)

YBAR(BHAT) 0.943801E-01  0.142356E+00 0.221662E+00 0.4350
VARIANCE RATIO 0.62476SE-01  0.243331E+00 0.717937E+00
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Table D.24.

AVERAGE

0.645567E-01

MINIMUM

0.145248E-01

- = - -

USING CONTROL VARIABLE:
YBAR(BHAT) 0.152320E-01
VARIANCE RATIO 0.709700E+00

ROUTING(1,3)
0.641725E-01
0.943849E+00

USING CONTROL VARIABLE:
YBAR(BHAT) 0.137351E-01
VARIANCE RATIO  0.570944E+00

ROUTING(1,4)
0.651024E-01
0.933924E+00

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) -0.429269E-02 0.647223E-01
VARIANCE RATIO 0.702579E+00 0.956512E+00
USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.955922E-02 0.649550E-01
VARIANCE RATIO 0.388151E+00 0.950948E+00
USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.145098E-01 0.656369E-01
VARIANCE RATIO 0.389760E+00 0.948317E+00
USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) -0.441317E-02 0.646924E-01
VARIANCE RATIO 0.711096E+00 0.956903E+00
USING CONTROL VARIABLE: SOJOURN(M/M/1)

0.800651E-01
0.863874E+00

YBAR(BHAT)
VARIANCE RATIO

0.123770E-01
0.256196E+00

USING CONTROL VARIABLE:
YBAR(BHAT)
VARIANCE RATIO

WAIT4(M/M/1)
0.139049E-01  0.804204E-01
0.909681E-01 0.747265E+00

USING CONTROL VARIABLE:
YBAR(BHAT)
VARIANCE RATIO

SOJOURN(G/G/1)
0.135561E-01 0.829255E-01
0.196644E+00 0.775468E+00

USING CONTROL VARIABLE:
YBAR(BHAT) 0.139048E-01
VARIANCE RATIO 0.116133E+00

WAIT4(G/G/1)
0.804041E-01
0.746031E+00

D.25

6.

o

[ ==}

oo o

o

MAXIMUM

177051E+00

.177135E+00
.999999E+00

.180345E+00
.100000E+01

.178368E+00
.100000E+01

.183485E+00
.100000E+01

.170770E+00
.999971E+00

.178622E+00
.999995E+00

.190834E+00
.999977E+00

.191781E+00
.999910E+00

.198735E+00
.999973E+00

.192440E+00
.100000E+01

Control Variate Results Against Fourth Node Quantile
at the Eight Design Point

COVERAGE

0.8700

0.8650

0.8650

0.8600

0.8650

0.865C

3.7550

0.7200

0.6700

0.7150
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Table D.25. Control Varijate Results Against Fourth Node Quantile

at the Ninth Design Point

NAME MINIMUM AVERAGE

-t > -~ - - - ——— - ——

YBAR 0.111008E+00 0.122395E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.109439E+00 0.122366E+00
VARIANCE RATIO 0.497627E+00 0.942552E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.109022E+00 0.122632E+00
VARIANCE RATIO 0.433837E+00 0.838388E+00

USING CONTROL VARIABLE: WORK(1)

YBAR(BHAT) 0.110767E+00  0.122497E+00

VARIANCE RATIO 0.715594E+00 0.948371E+00
USING CONTROL VARIABLE: WORK(2)

YBAR(BHAT) 0.109774E+00 0.122348E+00

VARIANCE RATIO 0.471377E+00 0.951846E+00
USING CONTROL VARIABLE: WORK(3)

YBAR(BHAT) 0.111225E+00 0.122125E+00

VARIANCE RATIO 0.687864E+00 0.941987E+00

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.110766E+00  0.122497E+00
VARIANCE RATIO 0.715583E+00 0.948372E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.106708E+00 0.12356Z2E+00
VARIANCE RATIO 0.227410E+00 0.61188B8E+00

USING CONTROL VARIABLE: WAITA4(M/M/1)
YBAR(BHAT) 0.101738E+00 0.12317ZE+00
VARIANCE RATIO 0.104222E+00 0.395685E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.106979E+00  0.123520E+00
VARIANCE RATIO 0.223015E+00 0.624305E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.101454E+00 0.123210E+00
VARIANCE RATIO 0.796724E-01  0.374487E+00

D.26

MAXIMUM

- - ——

.132180E+00

.133052E+00
.100000E+01

.134885E+00
.100000E+01

.134761E+00
.100000E+01

.131130E+00
.999999E+00

.132695E+00
.999993E+00

.134753E+00
.100000E+01

L137140p+00
.999926E+00

.139209E+00
.840172E+00

.135986E+00
.999225E+00

.138830E+00
.844993E+00

COVERAGE

0.9300

0.8500

0.9100

0.9400

0.9250

6.9100

0.6900

0.4950

0.6900

0.4650
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Table D.26. Control Variate Results Against Fourth Node Quantile
at the Tenth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

-——— o —— - - ——— - - e ———————— ——— e ———

YBAR 0.685479E-01 0.112705E+00 0.177696E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.645306E-01 0.11257SE+00 0.179238E+00 0.9350
VARIANCE RATIO 0.639193E+00 0.953142E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.657353E-01 0.112503E+00 0.175888E+00  0.9200
VARIANCE RATIO 0.473448E+00 0.913959E+00 0.999992E+00

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.648471E-01 0.114017E+00 0.177704E+00 0.9300
VARIANCE RATIO 0.669707E+00 0.951018E+00 0.999992E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.665513E-01 0.112739E+00 0.177008E+00 0.9400
VARIANCE RATIO 0.703021E+00 0.955436E+00  0.999999E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.546768E-01  0.112561E+00  0.182294E+00 0.9250
VARIANCE RATIO 0.678082E+00 0.953411E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(4)
YBAR( BHAT) 0.647503E-01 0.114022E+00 0.177704E+00 0.9300
VARIANCE RATIO 0.66861SE+00 0.951008E+00  0.999991E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.668401E-01 0.116957E+00 0.206801E+00 0.9300
VARIANCE RATIO 0.358874E+00 0.899939E+00 0.999996E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.561665E-01 0.125670E+00 0.225853E+00 0.7600
VARIANCE RATIO 0.161109E+00 0.713087E+00 0.999976E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.668441E-01 0.11689SE+00 0.206502E+00 0.9300
VARIANCE RATIO 0.364805E+00 0.901445E+00  0.999997E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR ( BHAT) 0.535490E-01 0.125568E+00  0.224347E+00 0.7500
VARIANCE RATIO 0.160630E+00 0.711324E+00  0.999846E+00
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Table D.27.

Control Variate Results Against Fourth Node Quantile

at the Eleventh Design Point

MINIMUM AVERAGE

0.133791E+00 0.

0.109092E+00

USING CONTROL VARIABLE: ROUTING(1,3)

YBAR(BHAT)
VARIANCE RATIO

0.109037E+00
0.717994E+00

USING CONTROL VARIABLE: ROUTING(t,4)

YBAR(BHAT)
VARIANCE RATIO

0.109303E+00 0.134058E+00 0.
0.583121E+00 0.933723E+00 0

USING CONTROL VARIABLE: WORK(1)

YBAR(BHAT)
VARIANCE RATIO

o

0.105861E+00
0.595487E+00

o

USING CONTROL VARIABLE: WORK(2)

YBAR(BHAT)
VARIANCE RATIO

0.858128E-01
0.565806E+00

o o

USING CONTROL VARIABLE: WORK(3)

YBAR(BHAT)
VARIANCE RATIO

0.110183E+00
0.583655E+00

oo

USING CONTROL VARIABLE: WORK(4)

YBAR(BHAT)
VARIANCE RATIO

0.105856E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)

YBAR(BHAT)
VARIANCE RATIO

0.103230E+00
0.153193E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)

YBAR(BHAT)
VARIANCE RATIO

0.918101E~01
0.740851E-01

USING CONTROL VARIABLE: SOJOURN(G/G/1)

YBAR(BHAT)
VARIANCE RATIO

0.906200E-01
0.659187E-01

USING CONTROL VARIABLE: WAIT4(G/G/1)

YBAR(BHAT)
VARIANCE RATIO

0.878249E-01
0.654438E-01

D.28

0.133896E+00 0.
0.946812E+00 0.

.133454E+00 0.
.944692E+00 0.

.133426E+00 0.
.946036E+00 0.

.133773E+00 0.
.946190E+00 0.

0.133455E+00  O.
0.595146E+00  0.944685E+00 0.

0.137180E+00 0.
0.610513E+00 0.

0.137244E+00 0.
0.271448E+00 O.

0.137089E+00 0.
0.271682E+00 0.

0.135907E+00 0.
0.238751E+00 O

MAXIMUM

156356E+00

153300E+00
999999E+00

156681E+00

.999992E+00

160838E+00
999999E+00

164153E+00
999998E+00

194814E+00
100000E+01

160815E+00
100000E+01

179016E+00
995094E+00

180314E+00
791968E+00

179633E+00
650611E+00

178790E+00

.696407E+00

COVERAGE

0.9650

0.9600

0.9350

0.9550

0.9300

0.93590

0.7100

0.4700

0.4850

0.4300




Table D.28. Control Variate Results Against Fourth Node Quantile
at the Twelfth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

* YBAR 0.183013E-01 0.654637E-01 0.151707E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.186208E-01  0.660864E-01 0.162674E+00 0.8750
VARIANCE RATIO 0.438063E+00 0.946059E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(L,4)
YBAR(BHAT) 0.180504E-01  0.647238E-01  0.154406E+00 0.8600
VARIANCE RATIO 0.631840E+00 0.934873E+00 0.999966E+00

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.136727E-01 0.662149E-01  0.208152E+00 0.8800
VARIANCE RATIO 0.479767E+00  0.947534E+00  0.999994E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.140515E-01 0.661724E-01  0.142004E+00 0.8850
VARIANCE RATIO 0.471836E+00 0.950482E+00  0.999997E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.154062E-01 0.661085E-01 0.163343E+00 0.8750
VARIANCE RATIO 0.412782E+00 0.942611E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.135963E-01 0.662051E-01 0.208216E+00 0.8800
VARIANCE RATIO 0.471930E+00 0.947586E+00  0.999998E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.150423E-01 0.789136E-01  0.199755E+00 0.7550
VARIANCE RATIO 0.282376E+00 0.849428E+00 0.999994E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.134631E-01  0.809273E-01 0.199835E+00 0.7300
VARIANCE RATIO 0.814486E-01 0.742618E+00  0.999995E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.150765E-01  0.804845E-01 0.20288SE+00  0.7450
VARIANCE RATIO 0.107620E+00 0.796594E+00  0.999999E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.148620E-01 0.810003E-01  0.20033SE+00 0.7300
VARIANCE RATIO 0.813528E-01  0.739736E+00 0.100000E+01

e



Table D.29. Control Variate Results Against Fourth Node Quantile
at the Thirteenth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.112617E+00  0.123006E+00 0.133489E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.111830E+00 0.122966E+00 0.133523E+00 0.9150
VARIANCE RATIO 0.608003E+00 0.948123E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4) .
YBAR ( BHAT) 0.112125E+00 0.123066E+00 0.135463E+00 0.8300
VARIANCE RATIO 0.395735E+00 0.839989E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(1)

YBAR(BHAT) 0.112958E+00 0.123095E+00 .139967E+00  0.9050
VARIANCE RATIO 0.619763E+00 0.945904E+00 .999999E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.111766E+00 0.122816E+00 .136052E+00 0.9000
VARIANCE RATIO 0.725878E+00 0.944308E+00 .999997E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.113695E+00 0.123076E+00 .140833E+00 0.9050
VARIANCE RATIO 0.475461E+00 0.947033E+00 .999999E+00

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) C.112956E+00 0.123095E+00 .139963E+00 0.9050
VARIANCE RATIO 0.620128E+00 0.945910E+00 .999998E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.111110E+Q0 0.123937E+00 .138478E+00 0.7050
VARIANCE RATIO 0.165284E+00 0.690984E+00 .998524E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.109029E+00 0.123774E+00 .142480E+00 0.5100
VARIANCE RATIO 0.124364E+00 0.382093E+00 .806462E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.110603E+00 0.123842E+00 .138925E+00 0.7150
VARIANCE RATIO 0.217436E+00 0.712158E+00 .995266E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.108567E+00  0.123744E+00 0.143333E+00 0.5050
VARIANCE RATIO 0.109572E+00 0.358926E+00 0.782032E+00
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Table D.30. Control Variate Results Against Fourth Node Quantile
at the Fourteenth Design Point

B
NAME MINIMUM AVERAGE MAXIMUM COVERAGE

-t o > e o - — o - —— ——— ———— - o —— - - - -

YBAR 0.635066E-01  0.115893E+00 0.172982E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.631326E-01  0.115665E+00 0.174980E+00 0.9600
VARIANCE RATIO 0.428457E+00 0.946227E+00 0.999992E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.634904E-01 0.116603E+00 0.207008E+00 0.9250
VARIANCE RATIO 0.531987E+00 0.904762E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(1)

YBAR(BHAT) 0.639428E-01 0.115812E+00 0.187707E+00 0.9350
VARIANCE RATIO 0.568546E+00 0.952948E+00 0,999991E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.627988E-01  0.116558E+00 0.206533E+00 0.9200
VARIANCE RATIO 0.626489E+00 0.948541E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.654682E-01 0.117183E+00 0.173880E+00 0.9400
VARIANCE RATIO 0.629324E+00 .956051E+00 0.100000E+01

o

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.639314E-01

0.115819E+00 0.187862E+00 0.9350
VARIANCE RATIO 0.568238E+00 O

.952959E+00  0.999996E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.6055S7E-01  0.11999B8E+00 0.195994E+00 0.9150
VARIANCE RATIO 0.371597E+00 0.922926E+00 0.100000E+01

USING CONTROL VARIABLE: WAIT4(M/M/1)

YBAR(BHAT) 0.609148E-01  0.129821E+00 0.220835E+00 0.7650
VARIANCE RATIO 0.224505E+00 0.704063E+00 0.998094E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.606823E-01 0.119896E+00 0.19595S5E+00 0.9150
VARIANCE RATIO 0.369715E+00 0.923695E+00 0.999985E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.577421E-01  0.129756E+00
VARIANCE RATIO 0.226006E+00 0.700010E+00

.221314E+00 0.7600
.997459E+00

[~ ]
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Table D.31. Control Variate Results Against Fourth Node Quantile
at the Fifteenth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE
% YBAR 0.107831E+00 0.132848E+00 0.155592E+00
USING CONTROL VARIABLE: ROUTING(1,3)
YBAR({BHAT) 0.108732E+00 0.132963E+00 .155574E+060  0.9350
VARIANCE RATIO 0.709745E+00 0.946663E+00 .999999E+00
: USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.106303E+00 0.132818E+00 .155641E+00 0.9500
VARIANCE RATIO  0.524224E+00 0.947768E+00 .999997E+00
USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.108570E+00  0.132973E+00 .156596E+00 0.9050
VARIANCE RATIO 0.751773E+00 0.949830E+00 .999998E+00
USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.811531E-01  0.132490E+00 .161033E+00 0.9250
VARIANCE RATIO 0.660564E+00 0.955374E+00 .999989E+00
USING CONTROL VARIABLE: WORK(3)
YBAR( BHAT) 0.999523E-01  0.132687E+00 .15B8323E+00  0.9450
! VARIANCE RATIO 0.687302E+00 0.946703E+00 .999967E+00
USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.108579E+00 0.132973E+00 .156592E+00 0.9050
VARIANCE RATIO 0.751612E+00 0.949824E+00 .999999E+00
USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.972244E-01  0.135528E+00 .165982E+00 0.7300
VARIANCE RATIO 0.254447E+400 0.652769E+00 .997814E+00
USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.882594E-01  0.135996E+00 .173967E+00 0.4700
VARIANCE RATIO 0.586143E-01  0.255615E+00 .607032E+00
USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.884096E-01  0.136073E+00 .176498E+00 0.5000
VARIANCE RATIO 0.845022E-01 0.300370E+00 .808305E+00
USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.895580E~01  0.135318E+00 .173735E+00  0.4450
VARIANCE RATIO 0.640602E-01 0.237888E+00 .605448E+00
b . .. _____________________________________________ ]
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Table D.32. Control Variate Results Against Fourth Node Quantile
at the Sixteenth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.136025E-01  0.637900E-01 0.164999E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.140895E-01 0.637519E-01 0.163840E+00 0.8500
VARIANCE RATIO 0.546S540E+00 0.946557E+00 0.999997E+00

USING CONTROL VARIABLE: ROUTING(!,4)
YBAR(BHAT) 0.133346E-01 0.632153E-01 0.165482E+00 0.8500
VARIANCE RATIO 0.588743E+00 0.949309E+00  0.999999E+00

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.134627E-01 0.639593E-01  0.192337E+00 0.8550
VARIANCE RATIO 0.661003E+00 0.952177E+00 0.999956E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.132382E-01  0.635254E-01  0.180854E+00 0.8500
VARIANCE RATIO  0.549468E+00 0.947156E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.911578E-02 0.640720E-01 0.16S5S083E+00 0.8300
VARIANCE RATIO 0.369341E+00 0.948231E+00 0.999989E+00

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.134616E-01  0.639375E-01  0.192181E+00 0.8550
VARIANCE RATIO 0.663000E+00 0.952478E+00 0.999970E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.120263E-01  0.783109E-01  0.226699E+00 0.70S0
VARIANCE RATIO 0.200864E+00 0.852099E+00 0.100000E+01

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) ~-0.242423E-02 0.800065E-01  0.234492E+00 0.6700
VARIANCE RATIO 0.362815E-01 0.711689E+00 0.999992E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.121130E-01 0.811965E-01  0.245617E+00 0.6550
VARIANCE RATIO 0.366392E-01  0.773461E+00 0.999999E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) -0.367256E-02 0.798992E-01  0.228922E+00 0.6550
VARIANCE RATIO 0.362530E-01 0.706804E+00  0.999991E+00
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