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Preface

The purpose of the research presented in this paper was to compare

several control variates for queueing network simulation. During the

literature search and review I noted the most promising internal and

external control varlates. I also included a new external control

variate which was calculated using Bell Lab's Queueing Network Analyzer,

a network decomposition algorithm employing two-moment approximations of

the stochastic processes in the network.

The experiment was designed to be general enough to apply to many

queueing networks. The variance ratios of each of the control variates

provides a measure of their efficiency to reduce the variance of the

parameter being estimated. The coverage probabilities of the confidence

intervals formed about the controlled estimates of the mean responses

provide a measure of the accuracy of the variance reduction technique.

That is, a control variate that results in a confidence interval with

poor coverage of the true parameter is not very useful even if the

variance reduction is significant.

I wish to thank my thesis advisor, Major Joseph R. Litko, Ph.D.,

and Major Kenneth W. Bauer, Jr., Ph.D. for their guidance in this

research effort. I also wish to thank Major Anthony P. Sharon for

providing me with a copy of his thesis which was the foundation and

inspiration of this work. Finally, I wish to thank my wife Jamie for

her understanding and support during the many days and nights I was tied

to my computer.

John J. Tomick
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Abstract

The purpose of this as to compare several control variates

for queueing network simulation. The author's goal was to provide the

simulation community with some guidance for selecting control variates

that will lead to significant reductions in the variance of the

estimated responses that do not introduce significant bias.

Both internal and external control variates were examined. The

measures for comparing them were the variance ratios obtained for each

control variate against each of the two response variables and the

coverage of their respective 95Z confidence intervals.

The two response variables selected for this research were the

average sojourn time in the network and the probability that the number

in the fourth queue exceeds twice the mean number in queue at steady-

state. The internal controls included standardized routing controls and

standardized work variables. The external controls included the average

sojourn time in the network and the average number in queue at the

fourth node. The external controls were further classified into two

groups: analytic Jackson controls and analytic approximations. K: )

The analytic Jackson control variates were found by decomposing

the network and using the M/M/I formulas. The analytic approximations

were found using G/G/I formulas, specifically those employed in Bell

Laboratories' Queueing Network Analyzer. The observed values of the

external control variates were found by using the following parameters

observed during a run of the simulation model: the external arrival

rate, the mean service times at each node, the squared coefficient of

x



variation of the service times at each node, and the probabilistic

routing matrix. The "known" means of the external control variates were

found using the values of the above parameters that were input to the

simulation model.

The network of queues studied was an open network with Poisson

external arrivals and exponential servers at the first three nodes. At

the fourth node the service times were generated from the maximum

entropy and the hyperexponential distributions characterized by two

moments.

In general, the external control variates achieved smaller

variance ratios than the internal control variates; however, the

coverages of the confidence intervals about the controlled responses

were worse. The range of the average variance ratios for the internal

control variates was 0.886 to 0.949 with coverages from 0.898 to 0.929

for the 95Z confidence intervals. The range of the average variance

ratios for the external control variates was 0.494 to 0.774 with

coverages from 0.576 to 0.775 for the 951 confidence intervals.
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A COMPARISON OF CONTROL VARIATES
FOR QUEUEING METMORK SIMULATION

I. Introduction

The purpose of this paper is to report the results of the author's

research comparing the effectiveness and the bias of several control

variates for queueing network simulation. For this research, the author

selected some of the most promising control variates found in the

literature. Also, the author included a new external control technique

that makes use of a software package which approximates the performance

measures of a queueing network.

The inspiration and foundation for this research came from the

work done by Sharon (1986). He examined the effectiveness of Jackson

networks as control variates for queueing network simulation. A more

complete discussion of Sharon's work can be found in the review of the

literature presented in Chapter II.

The author's research makes a significant contribution to the

experiential knowledge of control variates in two areas. First, most of

the literature on experimental results of control variates report only

the efficiency of the technique in terms of variance ratios, percent

variance reduction, etc. This research effort also examined the bias

introduced to the estimates through the use of control variates in terms

of the estimated coverage of the 951 confidence intervals about the

controlled responses. Second, this research is the first attempt to
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compare both internal and external control variates. The ultimate goal

of this research was to provide the simulation community with some

guidance for selecting control variates for use in queueing network

simulation.

Following the literature review, the author discusses the

methodology of his approach to the research in Chapter III. Then, the

results of the research are presented in Chapter IV. Finally, the

author's conclusions and recommendations are given in Chapter V.

The rest of this chapter is devoted to introducing the reader to

some of the basic terms, concepts, and notation used in queueing theory

and in simulation modeling, respectively. The reader who is familiar

with these areas may skip to Chapter II.

Queueina Theory

Basic queueing theory involves customers arriving to a service

center. The customers can represent people waiting in line for a bank

teller, cars waiting in line at a toll booth, and so forth. Because

queueing theory has such broad applicability, one will usually see the

the more generic term entity used instead of customer.

A Single Queue. To describe a queueing system we need a

description of the arrival process, a description of the service

mechanism, and a queue discipline.

The arrival process can be deterministic; that is, the time

between arrivals of entities is a constant. It caa also be a random

process described by a probability density function. Traditionally, the

arrival rate (the mean number of entities arriving to a node per unit

time) is denoted by the Greek letter lambda (A). The mean interarrival
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time, or mean time between arrivals, is simply the reciprocal of the

arrival rate.

Similarly, the service mechanism may be deterministic or

probabilistic. Furthermore, the service center may have sore than one

identical server. Traditionally, the service rate (the mean number of

entities that can be serviced per unit time) is denoted by the Greek

letter mu (p). Likewise, the mean service time, or mean tine between

service completions, is the reciprocal of the service rate.

The traffic intensity at a node is defined to be the ratio of the

arrival rate to the product of the service rate and the number of

identical servers, which is denoted by the Greek letter rho (p).

Mathematically, p a A/u , where a denotes the number of identical

servers. If the traffic intensity is greater than one, then entities

are arriving to the queue faster than they can be serviced. Therefore,

the queue grows infinitely long (i.e. the queue is unstable) unless the

calling population is finite or the queue is capacitated with blocking

or balking. When a queue has a finite capacity with blocking, then the

servers that feed the queue stop servicing entities until there is room

for them in the following queue. On the other hand, a queue filled to

capacity that allows balking causes entities arriving to the queue to be

routed to another queue or to leave the system entirely. The research

presented in this paper examined a network of queues with infinite

capacities at equilibrium (or steady state), whict implies a traffic

intensity less than unity.

The traffic intensity is also referred to as the utilization

factor for the service center, since it represents the fraction of the
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server's capacity that is being utilized on the average by arriving

entities.

Finally, the queue discipline indicates how to select the next

entity waiting for service. The most common queue discipline is f irst

in, f irst out (FIFO), which is also referred to as f irst comeW, f irst

served (FCFS). However, one might also specify last in, f irst out

(LIFO) as the queue discipline, or set up some sort of priority

selection based upon the type of entity.

A Network of Queues. Networks of queues are useful models for

describing many real-world systems, such as computer tine-sharing

processes, communication systems, transportation systems, and assembly-

line operations.

A queueing network Is composed of nodes representing a system's

service mechanisms and directed arcs between the nodes representing the

flow of entities through the system. The individual nodes are

conventionally labeled by the distribution of the Interarrival times,

the distribution of the service times, and the number of identical

servers. For example, an K/N/l queue has exponentially distributed

Interarrival times and service times with one server. The "" stands

for Karkovian (memoryless), and the exponential distribution is the only

continuous distribution with the arkovian property. In general, a

queue with many independent input processes that are not necessarily

Narkovian, a non-Narkovian service-time distribution, and many servers

is denoted by Cl/C/n.

There are two broad classifications of queueing networks: open,

and closed. An open queueing network allows for external arrivals to
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the nodes (referred to as exogenous arrivals). In general, entities may

enter or leave the network from any node. Alternatively, a closed

network has a fixed number of entities cycling through it; no additional

entities arrive to the network, and none of the entities in the network

ever leave.

Jackson Networks. A Jackson network is an analytically tractable

queueing network model. Although, it is a fairly restrictive model, it

has found many uses and is a good approximation to many real-world

systems. In a Jackson network, all external arrivals are independent

Poisson processes (that is, their interarrival times are independent and

exponentially distributed), all servers have exponentially distributed

service times, the queue discipline is FIFO, the queue capacity at each

node is infinite, the routing between nodes can be probabilistic but not

conditional, and the time to travel between two nodes is zero.

Burke's theorem states that "the steady-state output of a stable

K/H/m queue with input parameter A and service-time parameter p for each

of the a channels is in fact a Poisson process at the same rate A"

([leinrock, 1975:149). Therefore, given a network of KN/Ki queues, the

input process to any node (i) in the network is a Poisson process with

parameter A,, which is a mixture of the output processes of nodes

feeding into it plus the external arrival process. And, as Jackson

discovered "each node ... in the network behaves as if it were an

independent K/K/ system with a Poisson input rate A," (Ileinrock,

1975:150). This allows a network to be decomposed Into independent

N/N/m queues whose performance measures can be solved for analytically.
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If the queueing network can be represented as a Jackson network,

then the performance measures (such as the average waiting time at a

particular queue, the utilization of a particular server, or the average

time an entity spends in the system) can be solved for analytically. If

we drop the subscript (i) for readability, then the steady-state results

for the N/Him queue at any node can be solved for using the following

equations:

p a A/ap (1.1)

e. [oil (A + 'A/0 (1- (1.2)ni al (I )
(A/p)a

P., if 0 n a

P. = (1.3)

Po., if n a m

P*(A/p)'p
Lq = (1.4)

ml(l - p) 2

W. Lq/A (1.5)

L = L, + (A/p) (1.6)

W • Wq + (Ip) (1.7)

where

A = arrival rate of entities to the node
a = number of identical servers
p a service rate of servers at the node
p a traffic intensity or server utilization
P, a probability that there are 0 entities in the system
P. - probability that there are n entities in the system

L = expected number of entities in the system
Lq w expected queue length (excludes entities in service)
W = expected time in system

Wq a expected waiting time (excludes service time)

1.6



However, there are many systems for which the assumptions of the

Jackson network are grossly violated. This leads to a queueing model

that Is analytically intractable. The performance measures of such

networks can be solved for by methods which use approximations, or by

simulating the model. The reader is referred to Chapter II for the

author's review of analytical approaches to solving queueing networks

using approximations.

Simulation Modeling

Simulation is an experimental technique for analyzing complex

systems which are analytically intractable and usually involve

stochastic processes (indexed collections of random variables). As

such, the output from a simulation experiment is a random variable; and

therefore, the measured response is only an estimate of the true

parameter of interest. The variance of the estimate is a measure of its

precision; and, in most cases, variance reduction techniques provide a

means of obtaining more precise estimates with minimal cost in terms of

computer resources.

Variance Reduction Techniques. In a recent survey of variance

reduction techniques (VRTs), Wilson classified "... all VRT3 into two

major categories--correlation methods and importance methods" (Wilson,

1984:280). In the paper he discusses three correlation methods (common

random numbers, antithetic variates, and control variates) and four

importance methods (importance sampling, conditional Monte Carlo,

stratified sampling, and systematic sampling).

The basic distinction between the two categories is the underlying

principle of the techniques. Correlation methods increase the
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efficiency of a simulation by making use of the linear correlations

among simulation responses, and importance methods use prior knowledge

of the input domain to achieve a variance reduction. For a more

complete discussion of these techniques the reader is referred to

[leijnen (1974), Law and [elton (1982), and Wilson (1984).

Sharon's research and the research presented in this paper use

control variates to achieve a variance reduction in the estimates of the

performance measures of interest. A control variate must have a known

expectation and be correlated with the response.

Methods for Obtainina Control Variates. Law and telton describe

three general methods for obtaining control variates. The first method

uses the correlation between the input random variable(s) and the output

random variable(s). Since these kinds of control variates must be

generated during the simulation they are called internal or concomitant

control variates.

A second method involves the simulation of a similar system that

is analytically tractable. Using common random numbers, the

corresponding output of the second simulation becomes the control

variate for the system under study. These kinds of control variates are

called external control variates. Note that this method assumes that

there is a significant correlation between the results of the two

systems through the use of common random numbers.

The third method makes use of the situations when there are

several unbiased estimators of the mean of the performance measure of

interest. In such cases a new controlled estimator can be formed as a

convex combination of the existing estimators (Law and lelton, 1982:358-

359).
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II. Literature Review

The following discussion is a review of the literature that is

applicable to the author's research into the following two areas: (1)

control variates for queueing network simulation, and (2) two-moment

approximations to performance measures of the GI/G/m queue. The

discussion is presented in a topical format as outlined below.

A. Control Variates
1. Justification for New Research
2. Theory of Control Variates
3. Results of Previous Research

B. Approximations to Point Processes
1. Reed for Approximations
2. Two-Moment Approximations
3. The Queueing Network Analyzer

Control Variates

In the first chapter, the author introduced variance reduction

techniques which are used to provide more precise estimates of the

response from a simulation experiment. This research compared and

contrasted several control variates for their efficiency in reducing the

variance of the estimated responses and for the amount of bias that may

have been introduced to the estimates.

Justification for New Research. As mentioned previously, there

are two major categories of variance reduction techniques--correlation

methods and importance methods. Of all the techniques, "... the method

of control variates is one of the most promising" (Lavenberg and Welch,

1981:322).
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Correlation Methods. The correlation methods Include common

random numbers, antithetic variates, and control variates. A brief

discussion of the uses and drawbacks of these correlation methods are

presented below.

Common Random Numbers. The method of common random

numbers can be used when comparing two or more alternative system

designs, or when designing an experiment for a response surface model.

This method assumes the existence of a positive correlation between the

random number streams driving the simulation and the measured

response(s).

However, in complex simulation models, especially queueing network

models, the correlation tends to be very weak. In some experiments it

may even be negative resulting in a variance increase. Furthermore, the

synchronization of common random number streams may be difficult if not

impossible for some simulation experiments.

Antithetic Variates. The method of antithetic

variates is applicable to the simulation of a single system. This

method tries to induce a negative correlation between pairs of runs of

the simulation model to achieve a variance reduction. According to Law

and Kelton, the method "... dates back at least to 1956 with the paper

of Hammersley and Morton in the context of Monte Carlo simulation" (Law

and [elton, 1962:354). More recently, Schruben and Margolin (1978)

demonstrated the effectiveness of antithetic variates in conjunction

with a 21 factorial experimental design.

But, this method suffers from the same drawbacks as does the

method of common random numbers--the correlation may be weak or opposite
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in sign to that desired, and the synchronization of random number

streams may be a problem. Also, there are some other assumptions that

must be met to use Schruben and Margolin's assignment rule. As with

common random numbers, the method of antithetic variates seems to be

more successful when used with Monte Carlo simulation experiments.

Control Variates. The method of control variates is

applicable to any simulation experiment Involving stochastic processes

with known means. A practitioner may simultaneously collect

observations for several internal controls and select those having a

significant correlation with the response variable(s). Furthermore, the

practitioner can calculate the magnitude of the variance reduction

without further simulation runs. If the practitioner had used common

random numbers or antithetic variates and wanted to know by how much the

variances of the estimates were reduced, it would require additional

simulation runs using independent random number streams.

However, control variates have some drawbacks as well. The

traditional type of external control variates require additional

simulation runs and, the resulting controlled estimator may be biased.

Importance Methods. The importance methods include several

sampling techniques, which have not found much popularity among

simulation practitioners. Furthermore, Pritsker concluded that the

importance methods require further refinement before they can be applied

to complex simulation experiments (Pritsker, 1986:749).

Theory of Control Variates. The fundamental idea behind the

method of control variates is to select a random variable with a known

expectation that is highly correlated with the response variable.
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Univarlate Simulation Resvonse with a Sinle Control. Let Y

be an unbiased estimator of the parameter of interest 0; that is, the

expectation of Y, denoted E(Y), equals 0. Let C be another random

variable with known expectation Me that is highly correlated with Y.

Then, for any constant b (known as the control coefficient), the

controlled estimator Y(b), given by Eq (2.1), is unbiased for 0.

Y(b) = Y - b(C - In) (2.1)

The variance of Y(b) is given by

Var[Y(b)] - Var(Y) + b'Var(C) - 2bCov(Y,C) (2.2)

and a variance reduction will be realized if

2bCov(Y,C) > b'Var(C) (2.3)

That is, if Eq (2.3) is satisfied, then the controlled estimator will

have a smaller variance than the uncontrolled estimator. With a little

calculus it is easy to show from Eq (2.2) that Y(b) has minimum variance

when b is set equal to the optimal control coefficient, 13, which is

given by

B - Cov(Y,C)/Var(C) (2.4)

Substituting Zq (2.4) into Zq (2.1) leads to the optimal

controlled estimator Y(O), which is given by

Y(O) a Y - [Cov(Y,C)/Var(C)j.(C - Me) (2.5)
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Anderson (1984) provides a proof that the variance of the controlled

estimator which is given by

Var(Y(O)] = (I - pye).Var(Y) (2.6)

where p,,' is the square of the correlation coefficient between the

response variable Y and and the control variate C. Because the

correlation coefficient in Eq (2.6) is squared, the sign of the

correlation does not matter; only the size of the correlation is

important. As IPpl 4 1, the correlation between Y and C becomes more

significant, and the size of the variance reduction increases.

Let 0, the parameter of interest, be denoted by V,. Then, we know

that the average of the uncontrolled observations Y, is an unbiased

point estimator of p,. Furthermore, the average of the controlled

observations Y,(8) is also an unbiased estimator of p,. This is

represented mathematically as follows:

Y(O) - (i/K) Y Y,(0) (2.7)

where K is the sample size and

Y'(S) = Y, - O(C' - p.) (2.8)

In practice, Cov(Y,C) and Var(C) are unknown; and therefore, 0 is

unknown and must be estimated. Following Bauer (1987), the intuitive

approach to estimating 0 is to replace the right-hand side of Eq (2.4)

with the appropriate sample statistics, which yields the least-squares

solution. Under the assumption of joint normality between Y and C, the
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least squares solution is also the maximum likelihood solution (Bauer,

1987:6). Then, S can be estimated by

K x

BY, - Y)(C, - Z)/ Dc, - C)' (2.9)

where

N

= X Y,/K (2.10)
a *t

and

K

E C5/K (2.11)
6.1

Furthermore, a point estimate of p., is given by

Y(0) XY,(i)/K (2.12)

or

Y( ) =7 - 0(C - z~,) (2.13)

And, the variance of the point estimator is given by

Var~i(Y)] = Var(Y(0)]/I (2.14)

where

Var[Y(i)1 = (1 - P',,).Var(Y) (2.15)

Bauer (1987) provides the derivation of the interval estimate

under the assumption that Y and C are Jointly normal random variates.
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The resulting lO0(1-a)Z confidence interval is given by the following

equation

Y(0) ± tx.1 (l-/2).{Var[Y().s,,)"' (2.16)

where

sit 2(C, - pX)'/K DC, - C)' (2.17)

and t..(l-a/2) is the 100(1-a/2) percentile of Student's t-distribution

with (K-2) degrees of freedom.

Since 0 must be estimated, we expect to achieve a smaller variance

reduction than that which could have been obtained had we known the

optimal control coefficient. Lavenberg, Moeller and Welch (1982)

quantified this loss by what is known as the loss factor (LF). It is

defined as "the ratio of the variance of the estimator of Py when the

optimal control coefficient is not known to the variance of the

estimator when the coefficient is known" (Bauer, 1987:9). Bauer

provides the derivation of the loss factor, which reduces to

LF - (1-2)/(K-Q-2) (2.18)

where

Q = the number of controls (for the univariate case Q=l)

This "loss factor acts as a multiplier to the minimum variance ratio

(lR)" (Bauer, 1987:10,14) given by

KVR = Var(Y(O)J/Var(Y) (2.19)
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The MVR represents the possible variance reduction when the optimal

control coefficient is known. Multiplying Eq (2.18) and Eq (2.19)

together leads to the variance ratio (VR). The VR represents the

possible variance reduction when 0 is not known.

VR a LF.NVR (2.20)

Univariate Simulation ReaDonse with Nultiple Controls.

IleiJnen (1974) addresses the extensions to multiple control variates.

Also, Bauer (1987) provides a summary of "the development presented by

Lavenberg and Welch (1981) for simulation output analysis based on

independent replications, batch means, and regenerative analysis"

(Bauer, 1987:11).

Let Y be the univariate response with variance U, 2 , C be the (QXl)
iv

vector of controls, U., be the (QXI) vector of covariances between Y and
Aw

C, and E. be the (QXQ) covariance matrix of the controls. Then,

rewriting Eq (2.13) with multiple controls leads to

0 - (2.21

where 0, a, and are (QXI) vectors. The vector of optimal control

coefficients, is then given by

0 a EO'u 6 , (2.22)

Since the covariance matrices are usually unknown, 0 can be estimated by

substituting the sample analogs of Es and ue, into Eq (2.22). This

leads to the following equation:
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I Ow sow (2.23)

where So.' is the inverse of the (QXQ) sample covariance matrix of the

controls, and So, is the (QX1) vector of sample covariances between the

univariate response and the vector of controls.

Under the assumption that Y and C have the Joint multivariate

normal distribution

Woo a'. , 20T (2.24)

Y(M) is unbiased for p,, and an exact 100(l-a)% confidence interval is

given by

Y(O) ± tx.,.,(l-a/2)D.S,.€ (2.25)

where

D' - K- -)'( + ui.SC&'(C - 94) (2.26)

. (K-Q-1)"(S-a)(S, - So,' ." S,) (2.27)

tK..,(i-a/2) is the 100(l-a/2) percentile of Student's t-distribution

with (K-Q-1) degrees of freedom, and Sv' is the sample variance of Y

(Bauer and others, 1988:3-4). Experimental results have shown that the

assumption of Joint multivariate normality is robust (Bauer, 1988).

Multiple Simulation Resonses with Multiple Controll.

Bauer, Venkatraman and Wilson (1987) provide an outline of the

theoretical formulas for the case when there are P response variables

and Q control variables. In terms of the notation, the univariate
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response Y becomes a (PX1) vector of response variables, 0 becomes a

(PXQ) matrix of control coefficients, and the scaler sample standard

deviation S, becomes the sample covariance matrix of the response

vector. Under the assumption that Y and C have the Joint multivariate

normal distribution

JjUfN.a[ ,,, j , JJ (2.28)

(0) is an unbiased estimator of ,, and an exact 100(1-a)% confidence

ellipsoid for E, is given by

ftf)gVfT S,. (fl j I P(I-Q-1)(1-P-Q)-'D.F(1-a;P,K-P-Q) (2.29)

where

D -I" + p.) (2.30)

S.'*(I-Q-1)'(I-1)(S, SW.SC-'SC) (2.31)

and F(-a;I,,mt,) is the 100(1-a) percentile of the F-distribution with

at and m, degrees of freedom (Bauer and others, 1987:335).

The- advantage of the above approach over selecting separate

controls for each response is the capability to form a Joint confidence

region for the response vector, rather than being limited to univariate

confidence intervals.

Results of Previous Research. The following discussion of the

experimental results found in the literature is presented in

chronological order.
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Review of Chena (1978). Cheng (1978) provided

interpretations of statistically well-known formulas used in ordinary

regression analysis to control variates in simulation under the

assumption of normality.

The reader should note that there is an error in Equation (3) of

Cheng's article. The correct equation, which appeared in Chang and

Feast (1980), reads as follows:

o d --(2.32)

Review of Chenx and Feast (1980). Cheng and Feast (1980)

made the statement that "practically all control variables suggested in

the literature are of the form where their mean p is known, but ... (the

covariance matrix] is not" (Cheng and Feast, 1980:51). However, more

recent literature follows their suggestion of using standardized sums

for control variables rather than using sample means or straight sums.

These standardized controls are of the form

U

C =X /(N)412  (2.33)

If the Yj's are n-independent (Y, and Y,., are independent if j I a),

with zero mean and 1(YY,t) finite, then in the limit C is normally

distributed with mean zero and covariance matrix

E = E(YY,' + YYl' + Y.Y,' + ... + YY.' + 1 .1) (2.34)

(Cheng and Feast, 1980:52)
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Review of Lavenbera. Hoeller. and Welch (1982). Lavenberg,

Koeller, and Welch experimented with three internal control variates in

closed queueing networks with more than one class of entities, where a

generic class is denoted by the letter (d). Briefly, the control

variates used were work variables (the sum of service times for type d

entities per type d event), flow variables (the fraction of type d

events at node I), and service-time variables (the sample service times

for type d entities at node I).

They reported achieving the largest variance reductions using work

variables and limited their research accordingly. They also reported

that as the server utilization increased so did the size of the variance

reduction in waiting time. The range of the estimated variance ratios

using six work variables for controls was from 0.30 to 0.85. These

results translate to minimum variance ratios in the range of 0.16 to

0.77, which are obtained by dividing the variance ratios by the

theoretical loss factor.

Review of Wilson and Pritsker (1984). Wilson and Pritsker

experimented with poststratified sampling and standardized work

variables as variance reduction techniques adapted to the estimation

methods of replication analysis (independent replications of a

simulation) and regenerative analysis (independent cycles within a

simulation). The standardized work variables are given by Eq (2.36),

and postatratifled sampling refers to an importance technique which

groups the responses into strata according to a stratification variate.

Wilson and Pritsker reported the following reductions in the variance of

the point-estimators and in the width of the 90% confidence intervals
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that can be obtained with each procedure for several closed and mixed

machine-repair systems:

Table 2.1. Experimental Results of Wilson and Pritsker (1984)

Variance Reduction Variance Confidence-Interval
Technique Reduction Width Reduction

Poststratification 10 - 401 1 - 20Z
Work Variables 20 - 901 10 - 70Z

Review of Sharon (1986). Sharon "investigated two types of

Jackson control variates, external and analytic, for estimating the

utilization factors and waiting times in three different queueing

networks" (Sharon, 1986:35). He obtained control variates for each

network using three different service time distributions (exponential,

Weibull, and uniform) and two different traffic intensities (0.5 and

0.9), which resulted in eighteen experiments.

External Jackson Control Variates. To obtain external

control variates he used a Jackson network approximation to each of the

more general networks he studied. He substituted the exponential

distribution for the service time distributions with the identical mean

service times used in the original model. Of course, this required a

second simulation for each of the three networks. Then, the output of

these second simulations were contrasted with the results derived

analytically to regress out some of the variance of the estimates

obtained from the simulation of the original model.

2.13



For estimating the means of the two response variables at any

given node, the controlled observations were of the form given by Eq

(2.8). For example, in terms of estimating the mean waiting time at any

node in the network

W,(b) a W, - b(C, - PC) (2.35)

where

W,(b) = a controlled observation of the average waiting time
W, = an uncontrolled observation of the average waiting time
b = the control coefficient
C, = an observation of the average waiting time from a second

simulation model of the approximating Jackson Network
PC = the mean waiting time, which is the analytic solution of

an K/K/m queue given by Eq (1.1), using the mean arrival
rates, mean service rates, and probabilistic routing
structure that was input to the simulation model

The controlled observations of the utilization factors were defined in a

similar manner.

Analytic Jackson Control Variates. What Sharon terms

an analytic Jackson control variate is "an amalgam of the internal and

external approaches" (Sharon, 1986:18). Instead of using the input

random variables directly as control variates, Sharon substituted the

known means and the observed averages of the input random variables into

the steady-state equations for an N/M/m queue to derive the desired

control variates. The input random variables included the arrival

rates, the service rates, and the probabilistic routing structure.

Looking back to Eq (2.35), only the definition of C, changes. It

is now the analytic solution of an N/H/m queue using the average arrival

rates, average service rates, and the probabilistic routing observed

from the original simulation.
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Unfortunately, as Sharon indicated, there are two drawbacks to

using his analytic Jackson control variates. First, he was able to

obtain sample values of the arrival rates, the service rates, and

probabilistic routing at the high setting of the traffic intensity (0.9)

such that the derived traffic Intensity using these observed values was

greater than unity (Sharon, 1986:32).

The second drawback of the analytic Jackson control variate is

that the use of "the observed mean arrival rates and service rates in

the Jackson model equations will result in a biased control variate"

(Sharon, 1986:32-33). The severity of this bias was left to future

research.

Results. Sharon's results show favorable variance

reductions in the estimates of the server utilization factors in the

range of 68 to 99 percent. The higher variance reductions were achieved

at the lower setting of the traffic intensity (0.5). However, the

Jackson analytic control variates for the waiting times produced little

or no variance reduction, and in some cases, they produced variance

increases in the estimates of the waiting tines (Sharon, 1986:73-75).

Review of Bauer, Venkatranan and Wilson (1987). Bauer,

Venkatraman and Wilson report a new control variate estimator which

makes use of the cases when the covariance matrix of the controls is

known. For the experiment, they selected the standardized work

variables given by Wilson and Pritaker (1984) and the standardized

routing variables defined by Bauer (1987). Both types of internal

control variates mentioned above have known means and known covariance

matrices.
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Standardized Work Variables. If We assume that the

service tine process at node . is given by the Independent and

identically distributed (lID) sequence {Ug(J): I > 1), J = 1, ... ,

and we define fj to be the number of service times completed at node J

in the period [O,t], then a standardized work variable for node J is

Wi = (fj)''t(fwj)'t E U(J) - P4]/fr (2.36)
I-'

where w, is the frequency with which an entity visits node J and f is

the sum of the f,'s (Bauer and others, 1987:337).

Standardized Routint Variables. Define N1(t) to be

the number of entities exiting from node J in the time interval (O,t].

Define p,, to be the probability that an entity exiting from node j will

go to node k, and define the indicator variable I,,. as follows:

1 if the ith entity leaving node J goes to node k

0 otherwise

Then a standardized routing variable for node J is given by

R, " xT(II. - pl,)/[Nj(t)'(1 - pJ.)pjbI'' 2  (2.37)
i-1

Results. The new control variate estimator yielded a

confidence-region that is somewhat larger than the confidence region

obtained using the usual controlled confidence-region estimator. But,

it also demonstrated more reliable coverage properties. However, the

100(1-)1 confidence ellipsoid for p, is only approximate. Further
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research is being conducted to develop a more refined estimator of the

covariance matrix of the controlled response vector and an improved

confidence-region estimator for p,.

Aproximations to Point Processes

The author investigated the efficiency of applying two-moment

approximations to control variates in a manner similar to Sharon's

analytical controls. In effect, this technique uses approximations of

performance measures of the exact network as external control variates.

In the case of Sharon's analytical controls, his technique uses exact

performance measures of an approximating network as external control

variates.

Need for Approximations. In terms of queueing networks the

arrival and departure processes are point processes. If the arrival

processes are renewal processes, then the congestion measures of the

individual queues and the entire network can be solved for analytically.

In most cases the departure process of a queue is not a renewal process.

And since the departure process of one queue becomes an arrival process

to the next queue in the network, then the congestion measures cannot be

solved for using exact analytic methods.

Whitt (1982) investigated simple approximations for stochastic

point processes. He considered point processes on the positive real

line for which the "total number of points is infinite but the number of

points in any bounded interval is finite" (Whitt, 1982:129). Followine

Whitt (1982), let

S. = the position of the nth point from the origin, n > 0,
and S. = 0
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X. = S. - S..,, a > 1 (the time interval between successive
points)

N(t) a maxin > 0: S. t), t 1 0 (the counting process
recording the number of points in the interval (O,t]

Then, "the stochastic processes (S,), X.), and (K(t)) are three

different representations of the same point process" (Whitt, 1982:129).

Let the points in the point process represent the occurrence of a

certain event, then (t) represents the number of times the event

occurred in the time interval (O,t]. If the time intervals between each

occurrence of the event are independent and identically distributed,

then (M(t)) is called a renewal counting process. The most common

renewal counting process is the Poisson process. Furthermore, (X.) is

called a renewal process, and if (1(t)) is a Poisson process with rate

A, then the X.'s are distributed exponentially with mean I/A.

However, if the point process (M(t)) is not a renewal counting

process, then the interval sequence (X.) is not a renewal process; and

therefore, the model becomes analytically intractable. Under such

circumstances most practitioners will simulate the model. However,

another approach is to approximate the point process by a renewal

process and then solve the model analytically.

Two-Moment Approximations. Whitt (1982) refers to several authors

who

... suggest approximating all the flows (point processes) in

a network of queues by renewal processes characterized by
two parameters. It was discovered that one parameter
(representing the rate of the process) is usually not good
enough, but two parameters (representing the rate and the
variability) often are sufficient (Whitt, 1982:126).
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Review of Whitt (1982). Whitt describes ways to approximate

a single point process by a renewal process in two steps: "first,

properties of the point process are used to specify a few moments of the

interval between renewals; then a convenient distribution is fit to

these moments" (Whitt, 1982:125). There are other appropriate

parameters, but the parameters that he has focused on are "the moments

of the renewal interval in the approximating renewal process" (Whitt,

1982:126). In the paper he outlines two methods for specifying the

first few moments of the renewal interval--the stationary-interval

method and the asymptotic method. Briefly,

the stationary-interval method equates the moments of the
renewal interval with the moments of the stationary interval
in the point process to be approximated. The asymptotic
method, in an attempt to account for the dependence among
successive intervals, determines the moments of the renewal
interval by matching the asymptotic behavior of the moments
of the sums of successive intervals (Whitt, 1982:125).

Review of Whitt (1984). Later, in 1984, Whitt published

methods for approximating the departure process of a single-server

queue. This result is significant because the departure process of one

queue becomes the arrival process to the next queue in a network.

Whitt discusses how to use the two methods above for approximating

the departure process. An interesting note is that

the asymptotic-method approximation for the departure
process is Just the arrival process, provided that the
arrival process is in the class of approximating processes,
e.g. a renewal process. Otherwise, the approximating
process for (the departure process] obtained by the
asymptotic method is the same as the approximating process
for (the arrival process] (Whitt, 1984:502).
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Finally, Whitt and his associates

indicated three ways the approximations might be improved:
(1) using the third moment, (2) using the lag-i correlation
.... and (3) developing a hybrid procedure ... However
(they] examined the last two methods and did not find an
improvement (Whitt, 1984:516).

Review of Albin and Kai (1986). Albin and Kai studied two

queues in series "to identify a renewal process to approximate the

departure process of a EGI,/M/1 queue" (Albin and Kai, 1986:132). The

arrival process to the first queue was a superposition of independent

stationary renewal processes. Each queue had a single server with

exponentially distributed service times, an infinite queue capacity, and

FIFO queue discipline (Albin and Kai, 1986:130). A hybrid method of two

basic methods (the Poisson and the asymptotic) led to an average

absolute error in hybrid approximations of the expected number in the

second queue of 6% compared to the 22-41% error in the basic methods

(Albin and Kai, 1986:131). The Queueing Network Analyzer, discussed

later in this chapter, uses the stationary-interval method to identify

renewal-process approximations for departure processes. Albin and Kai's

hybrid method applies to queues with exponentially distributed service

times.

The squared coefficient of variation for approximating the renewal

departure intervals using the hybrid method is given by

c, = ac,2 + (1 - )c,2 (2.38)

where the squared coefficient of variation for approximating the renewal

departure intervals using the asymptotic method (c.2 ) and the squared
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coefficient of variation for approximating the renewal departure

intervals using the Poisson method (c,2) are given by

U

C, X (A,/A)c,' (2.39)
'-S

c = 1 (2.40)

(A is the total arrival rate) and the weighting coefficient w

u(W* p,p,) is given by

= A + Bat(l - p,)a + C/(i - (,1']-, 2.41)

The symbols in Eq (2.41) are defined as follows:

The coefficients (A,B,C) equal

(1.0, 2.0, 0.05) for calculating the expected
number of entities at the second node,

(1.0, 1.0, 0.05) for calculating the standard
deviation of the number of entities at the
second node, and

(1.7, 2.3, 0.04) for calculating the probability
of an entity being delayed at the second node;

p, and p, are the traffic intensities at the respective nodes; and

11" = 1k/A)2 , is the effective number of component arrival

,L,- i processes.

The weighting function is the result of an experimental design

involving 27 combinations of P,, p2, and q*, where the constants A, 8,

and C were identified using multiple linear regression. "Different

weighting functions are needed for different congestion measures because

of the properties of the basic methods" (Albin and Kai, 1986:138).
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This hybrid method works well when the squared coefficient of variation

of each of the interval renewal processes input to the first queue are

in the range (0,9] (Albin and lai, 1986: 138).

Review of Kimura (1986). Kimura reported on a two-moment

approximation that yields better results than those achieved by the

Queueing Network Analyzer (which is described later in this chapter).

Let KW(GI/G/m) denote the steady-state mean waiting time (until

beginning service) in the GI/G/m queue. The approximation formula he

gives in his paper is

t - c' t c." 2(€,'+c,'-1l)
EW(GI/G/m) % (c.'+c 2 ] (2.42)

(E(M/D/n) 'I(N/N/m)

where c.' and c, are the coefficients of variation of the interarrival

times and service times respectively; p is the traffic intensity; and

RW(D/N/m), EW(N/D/m) and KW(M/M/m) are the steady-state mean waiting

times in the respective queueing systems. Kimura's approximation

formula given by Eq (2.42) "is a weighted harmonic mean of the expected

waiting times for the D/N/i, N/D/m and N/H/m queues and it is exact for

these queueing systems" (Kimura, L986:751).

Note that EW(N/M/m) is equivalent to W, given by Eq (1.5) in the

first chapter. Because of some numerical difficulties in solving for

the exact analytic solutions of EW(D/M/m) and EW(R/D/m), Kimura suggests

using the following approximations:

E (D/N/m) % (1/2)[1-4C(m,p)].exp[-2(1-p)/3p].EW(N/M/m) (2.43)

EW(N/D/1) % (l/2)(l+C(m,p)].EW(M/N/m) (2.44)

where
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C(m,p) - (I-p)(m-l)[(4+5m)'' - 2]/(16mp) (2.45)

Kimura found "that these approximations are fairly accurate unless p is

close to zero" (Kimura, 1986:761).

Substituting the approximations given by Eqs (2.43) through (2.45)

into Eq (2.42) yields a simpler approximation that is more tractable.

This simpler approximation is given by

EV(CI/G/m) % (1/2)(c.' + c.R)k.E1W(/I/m) (2.46)

where the correction factor k a k(GI/G/m) is defined by

k(GI.C/a) + I ' + ' c. +c.'- 1 (2.47)kc/.) [k(D,,/) k(/ )1

and

k(D/N/m) = ax([l-4C(m,p)].exp[-2(1-p)/3p], 10"6) (2.48)

k(N/D/m) - I + C(m,p) (2.49)

The maximum in Eq (2.48) is used to avoid dividing by zero or

meaningless approximations with negative values (Mimura, 1986:761).

The Queueing Network Analyzer. The Queueing Network Analyzer

(QNA) is a commercially available "software package developed at Bell

Laboratories to calculate approximate congestion measures for a network

of queues" (Whitt, 1983a:2779). The first version of QNA operates under

the following assumptions:

Assumption 1. The network is open rather than closed.
Customers come from outside, receive service at one or more
nodes, and eventually leave the system.

Assumption 2. There are no capacity contraints. There is
no limit on the number of customers that can be in the
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entire network and each service facility has unlimited
waiting space.

Assumption 3. There can be any number of servers at each
node. They are identical independent servers, each serving
one customer at a time.

Assumption 4. Customers are selected for service at each
facility according to the first come, first-served
discipline.

Assumption 5. There can be any number of customer
classes, but customers canxot change classes. Noreover,
much of the analysis in QNA Is done for the aggregate or
typical customer.

Assumption 6. Customers can be created or combined at
the nodes, e.g. an arrival can cause more than one
departure.

(Whitt, 1983a:2781-2782)

QUA uses two parameters to characterize the arrival process and the

service times--one to describe the rate and the other to describe the

variability (Whitt, 1983a:2782).

Required Inputs. QNA allows several different formats for

entering the necessary information. In general, the information that

must be supplied is as follows: (1) the number of nodes in the network,

(2) the number of servers at each node, (3) the external arrival rate to

each node, (4) the variability parameter of the external arrival process

to each node, (5) the mean service time at each node, (6) the squared

coefficient of variation of the service-time distribution at each node,

and (7) the Markovian routing of entities within the network.

QNA Outputs. QNA will provide the steady-state congestion

measures for each node in the network. The main congestion measure Is

the mean waiting time (before beginning service), but QNA also generates

an entire probability distribution for the waiting time. QNA will also

2.24



provide the probability that the server is busy at an arbitrary time,

the expected number of entities in the node, the probability that an

entity is delayed, and the conditional delay given that the server is

busy (Whitt, 1983a:2802-2807).

QNA will also calculate the approximate congestion measures for

the network as a whole. It provides congestion measures representing

the system view (e.g. throughput and number of entities in the network)

and congestion measures representing the customer view (e.g. number of

nodes visited and response times) (Whitt, 1983a:2807).

Performance of QNA. Whitt (1983b) describes the performance

of QNA and compares the congestion measures to those obtained through

simulation and the standard Markovian algorithm (which is represented by

the M/H/m equations given in Chapter I). He tested the performance of

QNA on a variety of queueing networks from a single CI/C/l queue to a

packet-switched communication-network model. The results of Whitt's

study demonstrated the importance of the variability parameter used in

QNA to estimate the congestion measures of networks that do not satisfy

the assumptions of the Jackson network. Furthermore, when the Jackson

network assumptions are satisfied, then the approximations used in QNA

yield the exact measures.
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III. Methodology

The objective of this study was to compare several control

variates that have shown promising results for queueing network

simulation. This was done with the ultimate goal in mind of providing

the simulation community with some guidance for selecting control

variates that will lead to significant reductions in the variance of the

estimated responses while not introducing bias to the estimates.

The major obstacle to achieving the stated goal was to design an

experiment that is general enough so that the results are applicable to

a wide range of queueing network models. And, at the same time, the

size of the experiment must be manageable so that it can be completed in

the alloted time.

Description of the Queueing Network

The first step in keeping with the above considerations was to

select a queueing network. The author decided to select a single

network that is small in terms of the number of nodes but complex enough

to incorporate many aspects of queueing networks in general.

The basic form of the network was based upon the third network

that was used by Sharon (1986). It is an open network which consists of

four nodes, each of which has a single server. Entities arrive from

outside the network to the first service center (or node) according to a

Poisson process with arrival rate A = L. At each service center, the

queue capacity is infinite, and the queue discipline is FIFO. From the

first node entities can go to either node 2 or node 3 with given
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probabilities. Entities from nodes 2 and 3 proceed to node 4. Finally,

entities leaving node 4 may loop back to the first node or may exit the

system. The basic structure of the queueing network is illustrated

below in Figure 3.1.

EXTERIM. WlARTUmEI

O DEOOMPOSMTIOWREOoPOM"ON SWITCH

0 ErMa CENTER NOE

Figure 3.1. Diagram of Experimental Queueing Network

Furthermore, the service times at the first three nodes were

distributed exponentially. This decision was made to simplify the

experiment, rather than introduce another variable to the experimental

design. In effect, this does not limit the applicability of the results

because the superposition of independent arrival processes approaches a

Poisson process in the limit no matter how they were originally

distributed.

However, the service time distribution at the fourth node was

varied to obtain the desired variability in the service times, since an

exponential distribution is limited to a coefficient of variation equal
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to one. The coefficient of variation is a measure of the variability of

a distribution and is given by the square root of the variance divided

by the mean. The maximum entropy distribution was chosen to generate

service times with a coefficient of variation less than one and the

hyperexponential distribution was chosen to generate service times with

a coefficient of variation greater than one. There is more detail about

these distributions later in this chapter.

The ResDonse Variables

Next, two response variables were selected for the analysis. One

of then was the average sojourn time for an entity to pass through the

network, which can be approximated by finding the solution to the

approximating Jackson Network. It can also be solved by finding the

approximate solution to the exact network using QNA.

The other response variable selected was a quantile at the fourth

node representing the probability that the number in queue exceeds some

threshhold value. The threshhold value chosen was twice the mean number

in queue at equilibrium. For practical purposes, QNA was used to find

the threshhold value by taking the next highest integer of the following

result: 2 X (EN - p) , where EN is the expected number at the fourth

node, and p is the associated traffic intensity.

Quantiles are not easily estimated, even though knowledge of them

may prove to be important. To illustrate, consider a communication

network where the queues represent buffers for incoming messages. And,

suppose that one proposes to determine the capacity of the buffers in

this network by finding the mean number in queue at equilibrium for a

system with infinite capacity and simply doubling the result. The user
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of the network may then want to know how often the capacity of the

buffers are exceeded to determine whether or not the buffers' capacities

should be increased.

The Control Variables

Next, examples of both types of control variates, internal and

external, were selected. The author picked two different types of

internal control variates (standardized routing controls and

standardized work variables) and two different types of external control

variates (analytic Jackson controls and analytic approximations).

The Internal Control Variates. Two standardized routing controls,

one for each of the two probabilistic branchings In the network, were

selected for this research. For further reference, let R, 3 denote the

routing control for the proportion of entities that took the path from

node 1 to node 3 (as opposed to node 1 to node 2), and let R., denote

the routing control for the proportion of entities that took the path

from node 4 back to node 1. These standardized routing controls are

given by Eq (2.37).

In addition to the two routing controls, four standardized work

variables, one for each of the service nodes, were selected. The four

work variables, denoted by W,, W-, W 3 , and W., are given by Eq (2.36).

The External Control Variates. Also, two external control

variates under each of the two different approaches alluded to earlier

were selcted for this research. These external controls were the

steady-state expected sojourn time for the entire network and the

steady-state expected waiting time in the fourth queue.
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The analytic Jackson control variates and the analytic

approximations were found using Bell Laboratories' Queueing Network

Analyzer (QNA). The following input parameters to the simulation model

were used to generate the "known" means of the external control

variates: the external arrival rate, the mean service times at each

node, the squared coefficient of variation of the service times at each

node, and the probabilistic routing matrix. Under the assumption that

the squared coefficient of variation of the service times are all equal

to one yields the M/M/i (or Jackson Network) results. On the other

hand, using the input squared coefficient of variation for the service-

times at the fourth node (the only one that violates the above

asumption) yields the G/G/1 (or approximate) results.

The observed values of the external control variates were found

using the observed values of these same parameters as inputs to QNA.

The input files to QNA for generating the "known" means at the first

design point are provided in Appendix B, and the "known" means of the

external control variates at all design points are summarized in a table

in Appendix C.

Selectint a Service-Time Distribution

In almost all of the literature examined, there has not been any

rationale specified for selecting a particular distributional form for

the interarrival times or service times. Rather, most researchers

select a few of the more commonly used distributions and include the

type of distribution as a variable in their research. However, in this

case, in keeping with the goal of maintaining enough generality, the

selection of a specific distribution might bias the results. Therefore,
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the maximum entropy distribution was selected for this research because

it is the least biased.

However, because of the difficulties associated with generating

random numbers according to the maximum entropy distribution, the author

decided to use it for generating service times at the fourth service

center only. As indicated earlier, the fourth service center is of

particular interest because of the selection of the quantile

representing the probability that the number in queue at the fourth

service center exceeds twice the expected number under steady-state

conditions.

Unfortunately, the author discovered that the maximum entropy

distribution could not be used to generate a nonnegative random variate

with a coefficient of variation (c.) greater than one. (The author did

not explore whether or not the maximum entropy distribution can have a

coefficient of variation greater than one over the real numbers.)

Instead, the hyperexponential distribution was selected for such cases.

This selection is also suggested from graphical representations of the

distributions. At the lower setting of the coefficient of variation

(0.5) the maximum entropy distribution looks like a normal distribution

that was truncated at the origin (negative times are impossible). As

the coefficient of variation increases to one the graph looks

exponential. In fact, when the coefficient of variation equals one the

maximum entropy distribution reduces to the exponential distribution.

The hyperexponential distribution with coefficient of variation greater

than one takes on an exponential shape but with a longer tail.
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Therefore, the maximum entropy distribution was used to generate

random variates with a coefficient of variation less than one and the

hyperexponential distribution was used to generate random variates with

a coefficient of variation greater than one. The functional forms of

the density functions for these two distributions are given below:

Maximum Entropy: f(x) z exp(-1 - A. - AXx - Xx2) (3.1)

Hyperexponential: f(x) - c,/O,.exp(-x/O,) + c2/0,.exp(-x/0,) (3.2)

Generating Random Variates Using Selected Distributions

The author used the simulation programming language SLAM II to

code up the network model. SLAM II has built-in functions to generate

random variates according to several distributions. However, it does

not have any built-in functions for generating the maximum entropy or

hyperexponential distributions. Therefore, the author had to build

FORTRAN subroutines using well-known techniques to generate the random

variates desired. The SLAM II Network code and FORTRAN subroutines are

provided for the reader in Appendix A.

Maximum Entrovy Distribution. The development of the parameters

(A., At, and A2) for the maximum entropy distribution given the first

two moments (p, and p2) is no trivial matter. All of the automated

search procedures tried have not been successful, but a program using

MINOS is currently being pursued. However, the author was able to find

parameters through a somewhat manual search process using a routine to

numerically evaluate the appropriate integrals to reproduce the desired

moments to within 4 parts in 10,000. Given the density function f(x) as

defined in Eq (3.1) the three integrals are defined below:
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ff(x) dx = 1 (definition of a density function) (3.3)

x-f(x) dx = P, (definition of the first moment) (3.4)

x 2.f(x) dx = P2 (definition of the second moment) (3.5)

However, having found the parameters still leaves the problem of

generating random variates according to the maximum entropy distribution

with those parameters. To generate the random variates according to the

desired maximum entropy distribution the author decided to use the

acceptance-rejection method (Law and [elton, 1982:250-252).

The efficiency of the acceptance-rejection method is determined by

the area between the density fuctions of the majorizing distribution and

the original distribution of interest. As the area decreases the

efficiency of the method increases. If f(x) and g(x) are density

functions of two different distributions, g(x) majorizes f(x) if and

only if g(x) I f(x) at every x where f(x) is defined.

Using MathCAD the author was able to visually fit a majorizing

distribution to each maximum entropy distribution. The majorizing

distributions were developed using the density function of a Normal

distribution that was truncated at the origin. To insure that they

truly majorized the maximum entropy distribution they were checked by

creating a table of values in MathCAD and adjusting them as necessary.

Figures 3.2 through 3.5 are graphical representations of the density

functions for the four maximum entropy distributions that were used in

this research with their respective majorizing distributions.

3.8



2.5

2

1.5

1

Dewftj FUumOtim

- Ru1l IuwbuW Dist .--. NM.jWlzh~f Dist

Figure 3.2. Service-Time Distribution at Node #4
with pi, =0.45 and p. 0.253125

2.5

2

Ch~ 8:5 Ch 10S:50. .S .S2

- Naxm Ubmvu list .-. NaJurizing Dist

Figure 3.3. Service-Time Distribution at Node #4
with j,=0.81 and pi, = 0.820125

3.9



2.5 oi IJARAI

2

1.5

- fmxlimh ' 3Mw I - ~WiuW4g bist

Figure 3.5. Service-Time Distribution at Mode #4
with p, a 0.675 and pt, = 0.159512

2.51



Hyperexuonential Distribution. Given the first two moments, the

parameters of the hyperexponential distribution can be solved for

directly from the four equations given below.

c01, + c20 = P, (first moment) (3.6)

ZctO 2 + Zc, , a p, (second moment) (3.7)

C, + C, = 1 (3.8)

cA, - c,20 (3.9)

Eqs (3.6) and (3.7) were derived from the definitions of the first and

second moments, respectively. Eq (3.8) was derived from the fact that

the integral of any density function equals one. And, Eq (3.9) is added

to provide a unique solution. Simultaneously solving Eqs (3.6) through

(3.9) in terms of the first two moments leads to the following results:

C, a (0.25 - 0.5p,l/ o)'11 + 0.5 (3.10)

C2 I - C, (3.11)

0, = 0.5p,/c, (3.12)

'3 0.5Pg,/c, (3.13)

A hyperexponential distribution that satisifies Eq (3.9) is said to be

balanced. The reader is referred to pages 139-147 of [leinrock (1975)

for more information.

To generate random variates according to the hyperexponential

distribution the author selected the composition method (Law and [elton,

1982:247-249). Figures 3.6 through 3.9 are graphical representations of

the density functions of the four hyperexponential distributions that

were used in this research.
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Figure 3.6. Service-Time Distribution at Node #4
with p,1 = 0.85 and pt a 4.767725
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r~g-tCorrelation of the Interdeparture Times

Prior to any experimentation with the network described earlier,

the author experimented with a single-server queue to test for the

strength of the lag-i correlation of the interdeparture times of a C/C/i

queue. The queue capacity was infinite and the queue discipline was

FIFO. Furthermore, the maximum entropy and hyperexponential

distributions were used to generate the interarrival times and the

service times of the entities. The author assumed a first-order

autoregressive time series model for the autocorrelation function of the

departure process.

xperimnental Deign. Also, the author used a 23 factorial design

to explore the effect of the traffic intensity and the variability of

the interarrival-tie and service-time distributions on the first-order

autoregressive parameter. The levels of the three factors (traffic

intensity, coefficient of variation of the Interarrival times, and

coefficient of variation of the service times) in the experiment are

summarized in the table below.

Table 3.1. Levels of Factors in 2' Experiment
of a G/C/l Queue

Low Value High Value

Parameter (-1) (+1)

p 0.5 0.9
Co 0.5 2.5
Co 0.5 2.5
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To eliminate the initialization bias, the author discarded the

first five thousand observations of the interdeparture times. This

decision was made based upon a visual interpretation of a time-

persistent plot of the average waiting time in the queue. Then, the

next one thousand observations of the interdeparture tines were used to

fit a first-order autoregressive time-series model.

ExDerimentaL Results. Using PROC ARIKA under SAS the resulting

first-order autoregressive parameter ranged from -0.117 to +0.078.

Although these extreme values proved to be statistically significant

(most of the intervening values did not), they are not practically

significant.

This result is significant to the development of analytic

approximations for estimating the performance measures of a network.

That is, since the arrival process to a queue in a network is the

superposition of an external arrival process and the departure processes

of other queues in the network, then this results validates the

assumption that the interarrival tines are independent. Otherwise, the

approximation formulas would have to incorporate the dependency between

the interarrival times of the entities to the queues in the network.

Furthermore, the author's findings provide the reason why Whitt (1984)

did not find any improvement when he incorporated the lag-I correlation

of the interdeparture times in his two-moment approximations.

Experimental Desisn

The experimental design for comparing the control variates over

the network illustrated in Figure 3.1 was a 24 factorial design. The

four factors selected were the traffic intensity of the network, the
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coefficient of variation of the service times at the fourth node, and

the two routing variables (rat and r4,). The levels of these four

factors are given in the table below.

Table 3.2. Levels of Factors in 2"Experiment
of the Qimueing Network

Low Value High Value
Parameter (-1) (+1)

p 0.5 0.9
C' 0.5 2.5
rat 0.2 0.4
r, 0.1 0.25

Given the external arrival rate to the first node (which was set

equal to one) and the routing matrix, the effective arrival rates to

each of the four nodes in the network can be solved for from the traffic

rate equations given by

n
Aj a A*j + Z >,r,, (3.14)

1=1

where

Aj - the effective arrival rate to node J
=,j a the external arrival rate to node J

A, a the effective arrival rate to node I
r,, = the routing probability from node I to node J
a a the number of nodes in the network

Next the mean service time (1) for each node (j) can be solved for by

Y'J = p/l, (3.15)
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Finally, the first two moments of the service-time distribution at the

iourth node can be solved for by

p, 0 1, (3.16)

a , u a'(i + C.') (3.17)

The values of the input parameters to the simulation model at each of

the design points are summarized in Table 3.3.

Table 3.3. Values of the Input Parameters
to the Queueing Network Simulation Model

Design --Factor Settings -- ,-----ean Service Tines ----
Point p ce r,s r,, 'Y' -r Vr.(pt) Pt

1 0.5 0.5 0.4 0.10 0.450 0.75000 1.1250 0.450 0.2531250
2 0.9 0.5 0.4 0.10 0.810 1.35000 2.0250 0.810 0.8201250
3 0.5 2.5 0.4 0.10 0.450 0.75000 1.1250 0.450 1.4681250
4 0.9 2.5 0.4 0.10 0.810 1.35000 2.0250 0.810 4.7567250
5 0.5 0.5 0.2 0.10 0.450 0.56250 2.2500 0.450 0.2531250
6 0.9 0.5 0.2 0.10 0.810 1.01250 4.0500 0.810 0.8201250
7 0.5 2.5 0.2 0.10 0.450 0.56250 2.2500 0.450 1.4681250
8 0.9 2.5 0.2 0.10 0.810 1.01250 4.0500 0.810 4.7567250
9 0.5 0.5 0.4 0.25 0.375 0.67500 0.9375 0.375 0.1757812

10 0.9 0.5 0.4 0.25 0.675 1.12500 1.6875 0.675 0.5695312
11 0.5 2.5 0.4 0.25 0.375 0.67500 0.9375 0.375 1.0195313
12 0.9 2.5 0.4 0.25 0.675 1.12500 1.6875 0.675 3.3032813
13 0.5 0.5 0.2 0.25 0.375 0.46875 1.8750 0.375 0.1757812
14 0.9 0.5 0.2 0.25 0.675 0.84375 3.3750 0.675 0.5695312
15 0.5 2.5 0.2 0.25 0.375 0.46875 1.8750 0.375 1.0195313
16 0.9 2.5 0.2 0.25 0.675 0.84375 3.3750 0.675 3.3032813

Note that at the design points where c. = 0.5. the service-time

distribution at the fourth node was the maximum entropy distribution;

and, at those design points where c. a 2.5, the service-time

distribution at the fourth node was the hyperexponential distribution.
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The parameters for generating the hyperexponential distribution were

derived in a FORTRAN subroutine in the model using Eqs (3.10) through

(3.13). But, the parameters for generating the maximum entropy

distribution were derived outside of the model. These parameters were

then input to the model and are given in Table 3.4 below.

Table 3.4. Parameters for Generating Random Variates
According to the Maximum Entropy Distribution

--- Parameters of the Density Functions ----
----- Moments ----- Maximum Entropy Dist MaJorizing Dist

V%, 1A A, A, X, c 2 r

0.450 0.2531250 -0.028146 -7.000 8.1900 1.12 0.425 0.07
0.810 0.8201250 0.557130 -3.882 2.5265 1.06 0.770 0.20
0.375 0.1757812 -0.210450 -8.400 11.8050 1.13 0.350 0.05
0.675 0.5695312 0.375020 -4.659 3.6385 1.10 0.640 0.15

Collecting Data

Now that we have selected a queueing network, the response

variables, the control variables, the interarrival-time and service-time

distributions, and an experimental design, we need to decide how such

data to collect and how to generate the data. The first question, "how

much data to collect," is related to estimating the bias introduced to

the controlled estimators by forming confidence intervals about them and

counting what percentage of the confidence intervals cover the "known"

value of the response. The second question, "how to generate the data,"

refers to choosing a technique that will yield unbiased independent

observations of the uncontrolled estimators.
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Determining How Much D t to Collect. The author decided to use

twenty observations (that is twenty runs of the simulation model) to

obtain each estimate of the mean controlled responses. Then, about the

estimated controlled mean response a single 95Z confidence interval was

formed. Now, to obtain a reasonable estimate of the actual coverage

percentages of the confidence interval the author decided that this

required a minimum of two hundred confidence intervals. Therefore, four

thousand runs (twenty runs per confidence interval X two hundred

confidence intervals) were required to determine the bias introduced to

the controlled responses at each of the sixteen design points.

Determining How to Generate the Data. Knowing that we need four

thousand runs of the simulation model at each of the sixteen design

points poses some problems in terms of the computer time required to

make all these runs. The two major considerations here are eliminating

the initialization bias and deciding whether to use the method of

independent replications or batch means; and, both of these

considerations are related.

Independent Replications vs Batch Means. The method of

Independent replications will yield independent observations since each

run of the simulation model uses different random numbers. However, the

transient period of the simulation must be discarded for each run. On

the other hand, the transient period is discarded only once for the

batch means approach, but the observations may be autocorrelated. The

practitioner must then determine the appropriate batch size necessary to

pass some statistical tests of independence. Any good text on

simulation modeling should have more information about the batch means
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approach; a few of them are KleiJnen (1974), Law and Kelton (1982), and

Pritsker (1986).

In general, when one is faced with making so many runs of a

simulation model the batch means approach is preferred to independent

replications because of the savings in computer time. But, the effect

of the batch means approach upon the correlation between the response

variable(s) and the control variable(s) has not been studied (or, at

least, the author has not found any literature reporting such a study).

In many situations there is a lag time in the correlation between the

response variable(s) and the control variable(s).

For example, suppose for our queueing network we select the mean

sojourn time for the response variable and the mean service time at the

first node for the control variable. Then, when the observed average

service time at the first node is high compared to its known mean, we

would expect the average sojourn time to be higher than its true mean.

But, we would also expect that the average sojourn time is not affected

imediately by some longer than average service times at the first node.

Therefore, when using the batch means approach, if the batch size is not

large enough to capture the correlation between the response variable(s)

and the control variable(s) we may not achieve a variance reduction, or

bias may be introduced to the controlled estimates.

For these reasons the author decided to use independent

replications instead of the batch means approach.

Eliminating the Initialization Bias. Since we are

interested in steady-state results, the transient (or warm-up) period of

the simulation must be discarded. The author made some trial runs of
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the simulation and plotted a time-persistent average of the sojourn

time. The author made a visual determination that the transient period

was essentially over after about three thousand time units when the

simulation was started at empty and idle conditions. But, this would be

too costly in terms of computer time to discard this much data for each

run of the model. Therefore, the author decided to start the simulation

model essentially at steady state by initializing the number of entities

in each queue to the expected number as given by QNA. Then, in order to

provide some randomization, the observations generated during the first

one hundred time units were discarded.

Weightinz the Observations

Since observations were collected on so many different variables

(two response variables, six internal control variables, and four

external control variables) it was more convenient to make each

simulation run of the same fixed length (which was one thousand time

units) rather than try to obtain the same number of observations for

each variable. That is, each observation simulation run of the

variables under study (resulting from one run of the simulation) are

averages of the individual observations within a simulation run over one

thousand time units; and, although the time interval is constant, the

number of observations during the fixed time interval (within a

simulation) varies from one run to the next. Therefore, to obtain

unbiased estimates of discrete performance variables (such as the mean

sojourn time) we need to weight the observations from each simulation

run accordingly.
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For example, each run of the simulation yields one value of the

average sojourn time, which itself is an average of all the individual

sojourn times of the entities completing the network during the fixed

time interval of one thousand time units. Then, the uncontrolled

estimate of the mean sojourn time is a weighted average of twenty

averages, and the weights were derived from the number of individual

observations that comprised each of the twenty averages respectively.

The weighted average of any random variable X is given by

£ U

- WX/ w, (3.18)

where K is the number of observations (simulation runs) and w, is the

weighting coefficient on the ith observation of X. The weighting

coefficients are given by

U

wt a.n / n, (3.19)
I-'

where n, is the number of individual observations (within a simulation)

that make up the ith observation of X. Similarly, the weighted sample

variance of X is given by

3 [ ,Xi - [w, I'i/[M-1)] (3.20)

Statistics Used to Compare Control Variates

Finally, we need to specify the measures to be used to compare the

results of the different control variables on the response variables.
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First of all, the control variates were compared on the basis of

efficiency (or the size of the variance reduction) as given by the

variance ratio (VR). Recall from Chapter II that the VR is the ratio of

the variance of the controlled estimator when the optimal control

coefficient is unknown (and must be estimated) to the variance of the

uncontrolled estimator.

Secondly, the potential bias introduced to the controlled

estimates was measured by the percentage of the total number of

confidence intervals about the controlled estimates that covered the

grand mean of the 4000 uncontrolled observations.

The Experimental Procedure

In this section, the author traces his steps in running the

programs and generating the data. Recall that four thousand runs of the

simulation model were made at each of the sixteen design points and

that each run of the simulation model was eleven hundred time units in

length.

Because of CPU time limits, one thousand runs of the simulation

model were submitted at a time; therefore, four submissions were

required to complete a single design point. Each of these job

submissions used appro.Lmately one hour of CPU time on a VAX 8650

computer and generated five output files. The four replications of

these output files for each design point were then appended to one

another.

The contents of these five output files are as follows: (1)

JACISON.IN contained the records of the parameters necessary for input

to QNA to solve for the observed values of the two external control
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variates under the assumption that all the service variability

parameters equalled one; (2) QNA.IN was similar to JACKSON.IN except

that the observed values of the service variability parameters were

included; (3) RESPONSE.OUT contained the number of entities completing

the network and the two response variables; (4) ROUTINC.OUT contained

the two standardized routing control variables with their respective

number of observations; and (5) WORY.OUT contained the total number of

service completions and the four standardized work variables. The

reader may examine the FORTRAN code that generated these files in

Appendix A.

Next, the author used a slightly modified version of the QNA

software was to produce the two output files JACKSON.OUT and QNA.OUT

which contained the observations on the external control variates

generated from their respective input files. (The author's

modifications to QNA were to suppress the normal detailed output and to

report the values of the two variables of interest only).

The five files with the ".OUT" extension (along with the two files

M16.OUT and G16.OUT which contained the "known" means of the external

control variates) then became the input files to the program called

CONTROL. The files 16.OUT and G16.OUT are given in table format in

Appendix C, and the FORTRAN code for the program CONTROL is provided in

Appendix A. The program CONTROL was written to calculate the

uncontrolled 4s well as the controlled estimates of the means of the two

response variables against each of the ten control variates. It also

provided the variance ratios and 95% confidence limits about the

controlled responses. Each output record was based on twenty records of
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input data (representing twenty runs of the simulation) and from here is

referred to as a macro-replication; and, there were two hundred macro-

replications at each design point. The output data (macro-replications)

were stored in four files: (1) SOJOURN.VR which contained the

uncontrolled estimates, the controlled estimates, and the variance

ratios for the response variable sojourn time; (2) SOJOURN.CI which

contained the 95% confidence Limits for the response variable sojourn

time; (3) QUATILE.VR which contained the uncontrolled estimates, the

controlled estimates, and the variance ratios for the response variable

representing the probability that the number in queue exceeded twice the

expected number; and (4) QUAMTILE.CI which contained the respective 95%

confidence limits.

Finally, the two SOJOURN files and the two QUARTILE files were

separately Input to the program RESULTS which calculated the minimum,

mean, and maximum values of the uncontrolled estimates, the controlled

estimates, and the variance ratios over the two hundred macro-

replications. RESULTS also counted the number of times the grand

uncontrolled estimate of the mean response fell within the 951

confidence limits of the two hundred macro-replications and reports the

percentage that do so as an estimate of the actual coverage of the

confidence intervals. The output files produced by the program RESULTS

are provided in Appendix D. Also, the FORTRAN code for the program

RESULTS is provided in Appendix A.
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IV. Results

The results of the experimentation with control variates on the

open queueing network described in Chapter III are given in this

chapter. The variance ratios and confidence interval coverages are

reported for ten control variates against two response variables. The

output files from the program RESULTS are provided in Appendix D.

Table 4.1 lists the grand means of the uncontrolled simulation

response of sojourn time and the analytic solutions provided by the

M/N/1 and G/G/1 formulas. Note that the analytic solutions were used as

the "known" means of the external control variate of sojourn time as

given in Appendix C.

Since the N/K/1 analytic results assume that the squared

coefficient of variation of the service times at the fourth node is

equal to one, we would expect a difference between the results obtained

with the M/H/I formulas and the results obtained from the simulation

model. However, it is interesting to note the significant differences

between the simulation results and those obtained using the G/G/I

approximations. These differences are given in terms of percentages in

Table 4.1 below.

The differences between the estimated mean sojourn times for an

entity to complete the network were more pronounced as the traffic

intensity of the network increased; and likewise, these differences

increased as the coefficient of variation of the service times at the

fourth node increased. These findings are summarized in Table 4.2

below.
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Table 4.1. Analytic Results vs. Simulation Results
For Estimating Mean Sojourn Time in Network

Design-------- Analytic Results ------- Simulation
Point N/N/i G/G/I Results % Delta*

1 0.4000001+01 0.3811771.01 0.381331E+01 0.04
2 0.3600001+02 0.329330E+02 0.292945E+02 -11.05
3 0.4000001+01 0.531762E+01 0.521644E+01 -1.90
4 0.360000E+02 0.5746081+02 0.457255E+02 -20.43
5 0.400000E+01 0.3811731+01 0.381449E+01 0.07
6 0.3600001+02 0.3293291+02 0.287763E+02 -12.62
7 0.400000E+01 0.5317921+01 0.5214701+01 -1.94
8 0.3600001+02 0.5746981+02 0.451113E+02 -21.50
9 0.4173911+01 0.398269E+01 0.3988741+01 0.15

10 0.360000E+02 0.327806E+02 0.299427E+02 -8.66
it 0.4173911+01 0.5512371+01 0.530441E+01 -3.77
12 0.3600001+02 0.5853271+02 0.470301E+02 -19.65
13 0.4000001+01 0.380878E+01 0.3810951+01 0.06
14 0.360000E+G2 0.3277971+02 0.292389E+02 -10.80
15 0.4000001+01 0.5338461+01 0.512254E+01 -4.04
16 0.360000E+02 0.5853911+02 0.456687E+02 -21.99

1Delta is the percent difference between the GIG/i results and
the simulation results.

Table 4.2. Effect of p and c. on Z Delta
Between Analytic G/G/i and Simulation Results

Average
p c, % Delta

0.5 0.5 0.08
0.5 2.5 -2.91
0.9 0.5 -10.78
0.9 2.5 -20.89

Because the differences increase as the traffic intensity of the

network increases and as the variability of the service times at the

fourth node increases, this may indicate one of three things, or
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possibly a combination of the three. First, the G/G/I approximations

used in QNA may be less accurate as the traffic intensity increases and

as the coefficient of variation of the service times increases. Or,

there may be significant initialization bias In the simulation results

at the higher traffic intensity and the higher variability of the

service times. Finally, the fixed time interval of the simulation may

have been too short to provide good estimates at the higher traffic

intensity and higher variability of the service times.

The author's first suspicion that the G/G/I approximations used in

QNA might be a significant contributor to these differences seems to be

Justified in light of the findings of Whitt (1983b). As to the

initialization bias, the author started the simulation with the expected

number in each queue. However, these numbers were provided by QNA; and

therefore, under the assumption that QNA's results were less accurate as

the traffic intensity and service variability increased an initial bias

was probably introduced. Although further experimentation with the

simulation model is required to prove any of these suspicions, knowing

these differences exist proved helpful in interpreting the resulting

variance ratios and coverages of the confidence intervals.

The average variance ratios achieved using each control variate

against the first response variable, sojourn time, are given in Table

4.3. At the bottom of each column in Table 4.3 appears the grand

average variance ratio for each control variate across the sixteen

design points. Recall that the smaller the variance ratio, the greater

the variance reduction. Table 4.4 provides the average variance ratios

when the first two factors (traffic intensity and service variability)

are held constant.
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Table 4.3. Variance Ratios Achieved
With Sojourn Time as Response Variable

---Internal Controls ---------------- External Controls ----
--Routing --------- Work Variables ---------N/N/l -------C/I ----

Pt R,3  R4 j W, W, W, W. SOJ Wo SOJ wo

1 0.937 0.868 0.955 0.949 0.949 0.955 0.418 0.768 0.385 0.751
2 0.942 0.907 0.944 0.946 0.951 0.944 0.697 0.645 0.698 0.642
3 0.941 0.925 0.956 0.951 0.954 0.956 0.468 0.386 0.251 0.317
4 0.942 0.933 0.947 0.942 0.943 0.948 0.662 0.615 0.601 0.611
5 0.870 0.886 0.957 0.957 0.954 0.957 0.378 0.797 0.355 0.783
6 0.941 0.917 0.960 0.947 0.951 0.960 0.771 0.650 0.772 0.644
7 0.928 0.914 0.950 0.951 0.949 0.950 0.508 0.422 0.279 0.369
8 0.940 0.946 0.951 0.948 0.939 0.952 0.704 0.620 0.609 0.617
9 0.950 0.762 0.939 0.948 0.943 0.939 0.355 0.662 0.334 0.643

10 0.951 0.859 0.943 0.951 0.948 0.943 0.708 0.604 0.710 0.602
11 0.946 0.874 0.947 0.949 0.945 0.947 0.450 0.416 0.266 0.387
12 0.950 0.917 0.949 0.953 0.946 0.949 0.689 0.672 0.671 0.673
13 0.878 0.777 0.946 0.949 0.942 0.946 0.331 0.712 0.315 0.700
14 0.929 0.858 0.952 0.945 0.948 0.952 0.748 0.633 0.750 0.627
15 0.935 0.899 0.939 0.958 0.948 0.939 0.448 0.404 0.253 0.379
16 0.942 0.929 0.945 0.944 0.951 0.945 0.726 0.624 0.655 0.624

Avg 0.933 0.886 0.949 0.949 0.948 0.949 0.566 0.602 0.494 0.586

Table 4.4. Average Variance Ratios for the First Response
Across Traffic Intensity and Service Variability

Control -Variance Ratios at Factor Levels (p,c,)--
Variate (0.5,0.5) (0.9,0.5) (0.5,2.5) (0.9,2.5)

Ras 0.909 0.941 0.938 0.943
R, 0.823 0.885 0.903 0.931
W, 0.949 0.950 0.948 0.948
W, 0.951 0.947 0.952 0.947
W 0.947 0.949 0.949 0.945
W. 0.949 0.950 0.948 0.948

S(M/N/1) 0.371 0.731 0.469 0.695
W(N/N/1) 0.735 0.633 0.407 0.633
S(G/G/1) 0.347 0.733 0.262 0.634
W(G/G/1) 0.719 0.629 0.363 0.631
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The results listed in Table 4.3 show that among the internal

control variates R,, achieved the smallest variance ratio and the others

were roughly equal. However, the external control variates achieved

significantly greater variance ratios that any individual internal

control variate. Also, among the external control variates, those based

upon the G/C/I formulas achieved smaller variance ratios than those

based upon the M/M/i formulas.

Furthermore, one can see from Table 4.4 that except for R,, the

average variance ratios of the internal control variates are not greatly

affected by changes in the traffic intensity or service variability.

However, the average variance ratios for the external control variates

are greatly affected by both the traffic intensity and service

variability.

In a similar manner, the average variance ratios achieved using

each control variate against the second response variable, the quantile

representing the probability of the number in the fourth queue exceeding

twice the expected number, are given in Table 4.5. Likewise, Table 4.6

provides the average variance ratios when the first two factors (traffic

intensity and service variability) are held constant.

The same general observations hold true for the results of the

variance ratios achieved against the second response variable as for the

first response variable. Additionally, in comparing the variance ratios

between the two response variables, the variance ratios are smaller for

the first response variable.

Next, Tables 4.7 through 4.10 are the respective analogs to Tables

4.3 through 4.6 with the confidence interval coverages as the statistic

for comparison in place of the variance ratios.
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Table 4.5. Variance Ratios Achieved
With Quantile at 4th Node as Response Variable

----------- Internal Controls ---------------- External Controls ----
--Routing ---------Work Variables ---------N/1 -------GIG/1 ----

Pt R13  R*& W, W, W3 W, SOJ Wq SOJ Wq

1 0.939 0.909 0.950 0.946 0.952 0.951 0.705 0.443 0.702 0.421
2 0.945 0.918 0.946 0.944 0.948 0.946 0.918 0.723 0.920 0.721
3 0.946 0.943 0.952 0.951 0.951 0.952 0.580 0.268 0.263 0.233
4 0.951 0.956 0.945 0.947 0.941 0.945 0.837 0.752 0.775 0.748
5 0.947 0.904 0.950 0.953 0.951 0.950 0.779 0.446 0.797 0.418
6 0.951 0.939 0.953 0.950 0.948 0.953 0.940 0.735 0.941 0.732
7 0.943 0.935 0.945 0.948 0.952 0.945 0.669 0.270 0.310 0.243
8 0.944 0.934 0.957 0.951 0.948 0.957 0.864 0.747 0.775 0.746
9 0.943 0.838 0.948 0.952 0.942 0.948 0.612 0.396 0.624 0.374

10 0.953 0.914 0.951 0.955 0.953 0.951 0.900 0.713 0.901 0.711
11 0.947 0.934 0.945 0.946 0.946 0.945 0.611 0.271 0.272 0.239
12 0.946 0.935 0.948 0.950 0.943 0.948 0.849 0.743 0.797 0.740
13 0.948 0.840 0.946 0.944 0.947 0.946 0.691 0.382 0.712 0.359
14 0.946 0.905 0.953 0.949 0.956 0.953 0.923 0.704 0.924 0.700
15 0.947 0.948 0.950 0.955 0.947 0.950 0.653 0.256 0.300 0.238
16 0.947 0.949 0.952 0.947 0.948 0.952 0.852 0.712 0.773 0.707

Avg 0.946 0.919 0.949 0.949 0.948 0.949 0.774 0.535 0.674 0.521

Table 4.6. Average Variance Ratios for the Second Response
Across Traffic Intensity and Service Variability

Control -Variance Ratios at Factor Levels (p,c.)--
Variate (0.5,0.5) (0.9,0.5) (0.5,2.5) (0.9,2.5)

R13 0.944 0.949 0.946 0.947
R4 0.873 0.919 0.940 0.944
W, 0.949 0.951 0.948 0.951
W, 0.949 0.949 0.950 0.949
W, 0.948 0.951 0.949 0.945
W4 0.949 0.951 0.948 0.951

S(1/N/i) 0.697 0.920 0.628 0.850
W(M/K/1) 0.417 0.719 0.266 0.739
S(G/G/1) 0.709 0.922 0.286 0.780
W(G/G/1) 0.393 0.716 0.238 0.735
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Table 4.7. Coverage Percentages of 95% Confidence Interval
About Controlled Estimate of Mean Sojourn Time

----Internal Controls ---------------- External Controls ----
--Routing --------- Work Variables--------- M/M/i------- G/G/ ----

Pt R,, Ro, W, W, W, W, SOJ W, SOJ WQ

1 0.930 0.885 0.920 0.925 0.935 0.920 0.550 0.830 0.545 0.810
2 0.935 0.955 0.940 0.935 0.930 0.940 0.800 0.695 0.800 0.700
3 0.945 0.945 0.950 0.950 0.945 0.950 0.570 0.510 0.365 0.430
4 0.930 0.935 0.910 0.900 0.915 0.910 0.615 0.640 0.580 0.625
5 0.910 0.925 0.935 0.960 0.955 0.935 0.495 0.815 0.475 0.820
6 0.920 0.925 0.945 0.940 0.935 0.945 0.810 0.745 0.810 0.720
7 0.920 0.895 0.930 0.925 0.905 0.925 0.610 0.545 0.420 0.510
8 0.945 0.955 0.945 0.930 0.950 0.945 0.655 0.690 0.590 0.695
9 0.915 0.765 0.895 0.930 0.905 0.895 0.465 0.695 0.440 0.710

10 0.910 0.895 0.890 0.925 0.895 0.890 0.785 0.685 0.780 0.660
11 0.935 0.905 0.930 0.935 0.935 0.930 0.580 0.580 0.465 0.525
12 0.915 0.905 0.925 0.935 0.920 0.925 0.680 0.725 0.685 0.720
13 0.880 0.800 0.895 0.910 0.915 0.895 0.430 0.765 0.435 0.740
14 0.945 0.900 0.945 0.930 0.935 0.945 0.815 0.745 0.815 0.745
15 0.930 0.925 0.915 0.925 0.925 0.915 0.565 0.515 0.385 0.495
16 0.915 0.905 0.895 0.915 0.905 0.890 0.655 0.650 0.630 0.665

Avg 0.924 0.901 0.923 0.929 0.925 0.922 0.630 0.677 0.576 0.661

Table 4.8. Average Coverages for the First Response
Across Traffic Intensity and Service Variabiliy

Control -Variance Ratios at Factor Levels (p,c.)--
Variate (0.5,0.5) (0.9,0.5) (0.5,2.5) (0.9,2.5)

R13 0.909 0.928 0.933 0.926
Rot 0.844 0.919 0.917 0.925
W. 0.911 0.930 0.931 0.919
W, 0.931 0.933 0.934 0.920
W, 0.928 0.924 0.927 0.923
W, 0.911 0.930 0.930 0.918

S(M/M/1) 0.485 0.803 0.581 0.651
W(N/M/1) 0.776 0.717 0.538 0.676
S(G/G/1) 0.474 0.801 0.409 0.621
W(G/G/1) 0.770 0.706 0.490 0.676
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Table 4.9. Coverage Percentages of 95% Confidence Interval
About Controlled Estimate of Fourth Mode Quantile

-Internal Controls ----------------External Controls ----
--Routing--------- Work Variables ---------N/1 -------GIG/I ----

Pt R,3  R4, W, Wi W3  W, SOJ WQ SOJ W.

1 0.905 0.890 0.900 0.910 0.895 0.900 0.750 0.570 0.770 0.560
2 0.940 0.930 0.930 0.920 0.935 0.930 0.915 0.765 0.915 0.760
3 0.940 0.930 0.955 0.940 0.930 0.955 0.660 0.435 0.365 0.375
4 0.850 0.865 0.855 0.840 0.845 0.855 0.735 0.685 0.685 0.675
5 0.910 0.885 0.910 0.905 0.905 0.910 0.780 0.545 0.795 0.510
6 0.925 0.935 0.930 0.92S 0.930 0.930 0.915 0.800 0.915 0.800
7 0.940 0.930 0.925 0.930 0.915 0.925 0.750 0.485 0.485 0.435
8 0.870 0.865 0.865 0.860 0.865 0.865 0.755 0.720 0.670 0.715
9 0.930 0.850 0.910 0.940 0.925 0.910 0.690 0.495 0.690 0.465

10 0.935 0.920 0.930 0.940 0.925 0.930 0.930 0.760 0.930 0.750
11 0.965 0.960 0.935 0.955 0.930 0.935 0.710 0.470 0.485 0.430
12 0.875 0.860 0.880 0.885 0.875 0.880 0.755 0.730 0.745 0.730
13 0.915 0.830 0.905 0.900 0.905 0.905 0.705 0.510 0.715 0.505
14 0.960 0.925 0.935 0.920 0.940 0.935 0.915 0.765 0.915 0.760
15 0.935 0.950 0.905 0.925 0.945 0.905 0.730 0.470 0.500 0.445
16 0.850 0.850 0.855 0.850 0.830 0.855 0.705 0.670 0.655 0.655

Avg 0.915 0.898 0.908 0.909 0.906 0.908 0.775 0.617 0.702 0.598

Table 4.10. Average Coverages for the Second Response
Across Traffic Intensity and Service Variabiliy

Control -Variance Ratios at Factor Levels (p,c.)--
Variate (0.5,0.5) (0.9,0.5) (0.5,2.5) (0.9,2.5)

Ri 0.915 0.940 0.945 0.861
R4, 0.864 0.928 0.943 0.860
W, 0.906 0.931 0.930 0.864
Wi 0.914 0.926 0.938 0.859
W, 0.907 0.933 0.930 0.854
W, 0.906 0.931 0.930 0.864

S(/M/Il) 0.731 0.919 0.713 0.737
W(M/M/1) 0.530 0.773 0.465 0.701
S(G/G/1) 0.743 0.919 0.459 0.689
W(C/G/1) 0.510 0.767 0.421 0.694
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A general statement that can be made about the coverage

percentages of the 95% confidence intervals about the controlled mean

responses is that the coverage worsens as the variance ratio decreases.

This result is not satisfactory, because we would like to be able to

achieve large variance reductions (i.e. small variance ratios) and not

bias the controlled responses (i.e. good coverages of the confidence

intervals).

Finally, another way of examining the same results is presented in

Tables 4.11 through 4.14. Here, these four tables give the average

effects for the four factors. An effect, from regression analysis, is

simply the average value of the response when a factor is at its high

setting minus the average value of the response when the same factor is

at its low setting. The way to interpret these tables is that the

factors with the larger effects in magnitude have a greater impact on

the statistic (variance ratios or coverages of confidence intervals).

From Tables 4.11 through 4.14 one can see that the four factors

have a relatively small effect upon the results using the internal

control variates; however, two factors (the traffic intensity and the

service variability) have a relatively large effect upon the results

using the external control variates.
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Table 4.11. Average Effects of the Four Factors
on the Variance Ratios of the First Response

-----Effects of the Four Factors --------
Control Traffic Cs of 4th r,,r.
Variate Intensity Server Prob. Prob.

R3 0.009 0.008 0.012 0.003
R., 0.023 0.031 -0.005 -0.026
W, 0.000 -0.001 -0.001 -0.004
W, -0.002 0.000 -0.001 0.000
W, 0.000 -0.001 0.000 -0.001
W, 0.000 -0.001 -0.001 -0.004

S(M/M/1) 0.147 0.016 -0.010 -0.009
W(M/M/1) 0.03t -0.082 -0.006 -0.011
S(G/C/1) 0.189 -0.046 -0.005 0.000
W(G/G/1) 0.044 -0.088 -0.007 -0.006

Table 4.12. Average Effects of the Four Factors
on the Variance Ratios ot the Second Response

-----Effects of the Four Factors --------
Control Traffic C. of 4th r,3 r.

Variate Intensity Server Prob. Prob.

Ra 0.001 0.000 0.000 0.001
R[ 0.012 0.023 0.000 -0.011
WS0.001 0.000 -0.001 0.000

V, 0.000 0.000 0.000 0.001
W, 0.000 -0.001 -0.001 -0.001
W, 0.001 0.000 -0.001 0.000

S(M/N/1) 0.111 -0.035 -0.022 -0.013
W(N/m/1) 0.194 -0.033 0.004 -0.013
S(G/G/1) 0.177 -0.141 -0.017 -0.011
W(G/C/1) 0.205 -0.034 0.003 -0.012

d6 -
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Table 4.13. Average Effects of the Four Factors
on the Coverages of the First Response

-----Effects Of the Four Factors --------
Control Traffic Cs of 4th r,3 r.

Variate Intensity Server Prob. Prob.

Rl3  0.003 0.006 0.003 -0.006
R, 0.021 0.020 -0.003 -0.026
W,0.002 0.002 -0.003 -0.012
W, -0.003 -0.003 0.000 -0.004
W, -0.002 0.000 -0.003 -0.008

W, 0.002 0.002 -0.002 -0.012
S(N/m/1) 0.097 -0.014 0.001 -0.008
W(M/1/) 0.020 -0.070 -0.007 -0.007
S(G/G/1) 0.135 -0.061 0.006 0.003
W(G/G/1) 0.031 -0.077 -0.013 -0.003

Table 4.14. Average Effects of the Four Factors
on the Coverages of the Second Response

-----Effects of the Four Factors --------
Control Traffic C, of 4th r,3 r.

Variate Intensity Server Prob. Prob.

---- -0--0--5 -0.012-- 0--002- 0--005-
R3 -0.005 -0.003 0.002 -0.005
R& -0.00 0.011 0.002 -0.005
W, -0.017 -0.011 0.007 -0.005
W, -0.013 -0.011 0.002 0.003

W, -0.010 -0.011 0.004 -0.001
S(m/K/1) 0.053 -0.050 -0.007 -0.008
W(M/M/1) 0.120 -0.034 -0.003 -0.008
S(G/G/1) 0.102 -0.128 -0.004 0.002
W(CG/1) 0.132 -0.041 -0.005 -0.006
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V. Conclusions

The purpose of this study was to compare several control variates

for queueing network simulation. The author's goal was to provide the

simulation community with some guidance for selecting control variates

that will lead to significant reductions in the variance of the

estimated responses that do not introduce significant bias. The

conclusions of this research are important because they add to the body

of knowledge a simulation practitioner can draw upon when selecting a

variance reduction technique. Also, these results indicate that further

research in this area is warranted.

The results of this research are consistent with previous findings

demonstrating the potential variance reduction that can be obtained when

using control variates. However, this research went beyond most of the

previous efforts in measuring the bias introduced to the controlled

estimates by way of the percentage of confidence intervals about the

controlled responses that covered the grand averages of the uncontrolled

responses.

Another novel addition to this research was the use of the maximum

entropy distribution to generate service times, which is the least-

biased distribution when only the first two moments of the distribution

are known. However, finding the parameters to the maximum entropy

distribution was more difficult than expected, and generating random

variates according to the maximum entropy distribution was an involved

process. The author recommends that future research efforts look at

comparing the Erlang distribution (which ii much easier to generate) to
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the maximum entropy distribution for generating random variates with a

coefficient of variation less than one. The hyperexponential

distribution, however, is the recommended distribution for generating

random variates with a coefficient of variation greater than one when

only the first two moments of the distribution are known.

The use of the Queueing Network Analyzer (QNA) to provide external

control variates was also a new approach. However, the results showed

that QNA could yield estimates of the congestion measures as much as

twenty percent in error to the simulation estimates, which might have

been a potential source of bias. Future research is also needed to

determine exactly how these differences can be reduced.

The way to reduce the errors in the estimates of the congestion

measures of QNA is to use better approximations. One suggestion is to

use the approximation for the expected waiting time in the CI/C/m queue

given by Kimura (1986), since he reported achieving better results as

compared to those achieved using QNA (the reader is referred to Chapter

II). The author pursued this suggestion by computing the expected

waiting times at the fourth node over the sixteen design points using

Kimura's formula. However, the largest percentage change from QNA's

result was only -1.29%; therefore, using Kimura's formula in place of

the one in QNA would not have helped In this case. These results are

presented for the reader in Table 5.1.

In general, the external control variates achieved smaller

variance ratios than the internal control variates; however, the

coverages of the confidence intervals about the controlled responses

were worse. The range of the average variance ratios for the internal

control variates was 0.886 to 0.949 with coverages from 0.898 to 0.929
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Table 5.1. Waiting Times at Fourth Node
Computed Using QNA's and imura's Approximations

DESIGN --- EXPECTED WAITING TIMES--- % CHANGE
POINT QNA'S KIMURA'S FROM QNA

1 0.281197E+00 0.281135E+00 0.022
2 0.455585E+01 0.455531E+01 0.012
3 0.163162E+01 0.163416E+01 -0.156
4 0.264290E+02 0.264305E+02 -0.006
5 0.281160E+00 0.261053E+00 0.038
6 0.455572E+01 0.455566E+01 0.001
7 0.163188E+01 0.163623E+01 -0.267
8 0.264300E+02 0.264320E.02 -0.008
9 0.234173E+00 0.233935E+00 0.102

10 0.379484E+01 0.379464E+01 0.005
11 0.136079E+01 0.137057E+01 -0.719
12 0.220362E+02 0.220441E.02 -0.036
13 0.234015E+00 0.233590E+00 0.182
14 0.379416E+01 0.379390E+01 0.007
15 0.136189E+01 0.137946E+01 -1.290
16 0.220409E+02 0.220515E+.02 -0.048

for the 91% confidence Intervals. The range of the average variance

ratios for the external control variates was 0.494 to 0.774 with

coverages from 0.576 to 0.775 for the 95% confidence intervals.

More specifically, smaller variance ratios were achieved against

the first response variable, the average sojourn time for the network,

than for the second response variable, the probability of the number in

the fourth queue exceeding twice the expected number. This was expected

since one would expect the control variates chosen to have a greater

correlation with the first response variable in general.

Also, the standardized routing controls achieved smaller variance

ratios than the standardized work variables. Particularly, any route

which feeds entities back through a portion of the network (thereby
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increasing the congestion) is a good candidate for an internal control

variable.

When comparing the results of the internal control variates to the

external control variates one should keep in mind that the standardized

internal controls are generally independent of one another. Therefore,

multiple internal controls could be used to achieve even larger variance

reductions provided the number of replications is sufficient to overcome

the loss factor. It is also important to recognize that the external

control variates tend to introduce bias to the controlled estimates.

Another area for future research would be into reducing this bias since

the potential for variance reductions is so promising. Some potential

ways to reduce the bias are to use Jacknife estimators or some other

estimators that do not shrink the confidence interval width as much.

Furthermore, future efforts should look into the effect of the

batch means approach on the control variate technique. The batch means

approach provides a means of reducing the cost of obtaining several

thousand observations when trying to estimate the coverage percentages

of the confidence intervals. However, exactly how the batch size

affects the correlation between the response variable(s) and the control

variable(s) is not known; and therefore, the author used the independent

replications approach.

An important observation to note is that the standardized internal

controls were less influenced by the changes ir, the factor settings than

the external controls, which in turn yielded more consistent results

over the experimental design. In particular, the internal controls are

robust for the traffic intensity.
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The author recommends using Internal control variates since they

demonstrated better coverage; however, multiple controls will be

necessary to achieve a significant reduction. The use of external

controls is very promising since a single control can achieve a very

significant variance reduction; however, further research should be done

to determine ways to reduce the bias they introduce to the estimated

responses.

When selecting internal control variates for use in a queueing

network simulation the author recommends the standardized routing

controls over the standardized work variables, especially when there are

probabilistic branches In the network that have a significant effect on

the response(s). For example, in the author's research the entities

completing the fourth node could either exit the system or be fed back

to the first node. Any deviation from the expected number of entities

being fed back has a significant impact upon the estimate of the average

sojourn time in the network; and therefore, the routing control R4

achieved a significantly greater variance reduction than the other

internal control variates.

On a final note, when comparing the control variates the smaller

variance ratios indicate a larger variance reduction. The increased

number of runs that would be required to achieve the same variance

reduction without the control variate(s) can be calculated by rounding

the result given by Eq (5.1) to the next highest integer.

Ko,,,rlo,,L = 'K* (/VR) - 1] (5.1)
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For example, if we made twenty runs of the simulation and achieved a

variance ratio of 0.90, then we would need 3 additional runs. However,

if we achieved a variance ratio of 0.50, then we would need 20

additional runs (for a total of 40 runs) to achieve the same amount of

variance reduction without control variates. Thus, significant savings

in computer time can be realized through the use of control variates.
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Appendix A: Cosauter Source Code

SLAM 11 Network~ Code

GEN,QUEUIING NETWORK,JOHN TOMICX,1O/20/88,1000,N,N,Y/Y,N,N,12;
LINITS,4,2,500;
INTLC,XX(1)=o.5,XX(2).o.5,XX(3)=o.45,XX(4)=o.253125;
INTLC,XX(6).AS,XX(7)=o.75,XX(8)=1.125,XX(9)=100;
INTLC,XX(10)=-O.028146,XX(11)=-7.O,XX(12)=8.198,XX(13).1.12;
INTLC,XX(1'.)=o.425,XX(15)=o.07,XX(2o)=o.4,XX(21)=O.I,XX(22)=I.;
NETWORK;

CREATE,EXPON(1. ,1),O,1;
EVENT, 1; COUNT EXTERNAL ARRIVALS

QIIEl ASSIGN,ATRIB(2)-EXPON(XX(6),2);
EVENT, 2; COUNT ENTITIES ENTERING QUEUE 1
QUEUE(1),1;

ACTIVITY/1,ATRIB(2); SERVER #1
EVENT,3; WORK VARIABLE #1
GOON, 1;

ACTIVITY, ,XX(20) ,QUE3;
ACTIVITY;

QUE2 AS51GN,ATRIB(2)=EXPON(XX(7),3);
QUEUE(2),1;

ACTIVITY/2,ATRIB(2); SERVER #2
EVENT,'.; WORK VARIABLE #2
ACTIVITY, ...QUE4;

QUE3 ASSIGN,ATRIB(2)uEXPON(XX(B),4);
EVENT,5; COUNT ENTITIES ENTERING NODE 3
QUEUE(3),1;
ACTIVITY/3,ATRIB(2); SERVER #3

KVENT,6; WORK VARIABLE #3
QUE. ASSIGN,ATRIB(2)=USERF( 1);

EVENT, 7; COUNT ENTITIES ENTERING NODE 4
QUEUE (4 ),
ACTIVITY/4,ATRIB(2); SERVER #4

EVENT,8; WORK VARIABLE #4
GOON, 1;
ACTIVITY, ,XX(21 ),LOOP;
ACTIVITY;

EVENT,1O; COLLECT SOJOURN TIME
TERMINATE;

LOOP EVENT,9; COUNT ENTITIES LOOPING BACK
ACTIVITY, ...QU91;
ENDNETWORK;

INIT,O, 1100;
FIN;
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FORTRAN Subroutines for Simulation

C XX() VARIABLE DEFINITIONS
C
C XX(1) a TRAFFIC INTENSITY AT EACH NODE IN NETWORK
C XX(2) = COEF OF VAR OF SERVICE-TIMES AT 4TH NODE
C XX(3) = 1ST MOMENT OF SERVICE-TINES AT 4TH NODE
C XX(4) = 2ND MOMENT OF SERVICE-TIMES AT 4TH NODE
C XX(5) = STANDARD DEV OF SERVICE-TINES AT 4TH NODE
C
C XX(6) = MEAN OF SERVICE TIMES AT NODE I
C XX(7) z MEAN OF SERVICE TIMES AT NODE 2
C XX(8) = MEAN OF SERVICE TINES AT NODE 3
C
C XX(9) = TIME TO BEGIN COLLECTING STATISTICS
C
C XX(1O) = LAMBDAO OF MAX ENTROPY DISTRIBUTION
C XX(1I) = LAMBDA1 OF MAX ENTROPY DISTRIBUTION
C XX(12) = LAMBDA2 OF MAX ENTROPY DISTRIBUTION
C XX(13) = COEFFICIENT 'C' IN ACCEPTANCE-REJECTION METHOD
C XX(14) = MEAN OF MAJORIZING DISTRIBUTION
C XX(15) = VARIANCE OF MAJORIZING DISTRIBUTION
C
C XX(16) = COEFFICIENT 'Cl' OF HYPEREXPONENTIAL DISTRIBUTION
C XX(17) a MEAN OF FIRST EXPONENTIAL DISTRIBUTION
C XX(18) = COEFFICIENT 'C2' OF HYPEREXPONENTIAL DISTRIBUTION
C XX(19) = MEAN OF SECOND EXPONENTIAL DISTRIBUTION
C
C XX(20) = PROBABILITY OF AN ENTITY GOING FROM NODE 1 TO NODE 3
C XX(21) = PROBABILITY OF AN ENTITY GOING FROM NODE 4 TO NODE 1
C XX(22) = TWICE MEAN NUMBER IN QUEUE #4 (FOR QUANTILE ESTIMATION)
C
C XX(23) = NUMBER OF ENTITIES COMPLETING NETWORK
C XX(24) = SUN OF SOJOURN TINES
C XX(25) = AVERAGE SOJOURN TIME
C
C XX(26) = FLAG INDICATING NNQ(4) > XX(22) (O=FALSE,1=TRUE)
C XX(27) = LAST TIME WHEN XX(26) WAS SET TO I
C XX(28) = SUM OF TIME INTERVALS WHEN XX(26)=i
C XX(29) = PROPORTION OF TIME WHEN XX(26)=l
C
C XX(30) = NUMBER OF EXTERNAL ARRIVALS TO NODE I
C XX(31) = EXTERNAL ARRIVAL RATE TO NODE I
C
C XX(32) = NUMBER OF ARRIVALS TO NODE 1
C XX(33) = NUMBER OF ARRIVALS TO NODE 3
C XX(34) = STANDARDIZED ROUTING VARIABLE (1,3)
C XX(35) z NUMBER OF ARRIVALS TO NODE 4
C XX(36) = NUMBER OF ARRIVALS TO NODE 1 FROM NODE 4
C XX(37) = STANDARDIZED ROUTING VARIABLE (4,1)
C
C XX(38) = NOT USED
C
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C XX(39) a TOTAL NUMBER OF SERVICE COMPLETIONS AT ALL NODES
C XX(30) = NUMBER OF SERVICE COMPLETIONS AT NODE 1
C XX(41) = INTERMEDIATE SUN FOR WORK VARIABLE #1
C XX(42) = STANDARDIZED WORK VARIABLE #1
C XX(43) a NUMBER OF SERVICE COMPLETIONS AT NODE 2
C XX(44) = INTERMEDIATE SUM FOR WORK VARIABLE #2
C XX(45) a STANDARDIZED WORK VARIABLE #2
C XX(46) = NUMBER OF SERVICE COMPLETIONS AT NODE 3
C XX(47) = INTERMEDIATE SUM FOR WORK VARIABLE #3
C XX(48) = STANDARDIZED WORK VARIABLE #3
C XX(49) u NUMBER OF SERVICE COMPLETIONS AT NODE 4
C XX(50) a INTERMEDIATE SUM FOR WORK VARIABLE #4
C XX(51) = STANDARDIZED WORK VARIABLE #4
C
C XX(52) = SUM OF SERVICE TIMES AT NODE #1
C XX(S3) = SUM OF SQUARED SERVICE TIMES AT NODE #1
C XX(54) = SQUARED COEF OF VAR OF SERVICE TIMES AT NODE #1
C XX(55) = SUM OF SERVICE TIMES AT NODE #2
C XX(56) = SUM OF SQUARED SERVICE TIMES AT NODE #2
C XX(57) = SQUARED COEF OF VAR OF SERVICE TIMES AT NODE #2
C XX(58) = SUM OF SERVICE TIMES AT NODE #3
C XX(59) - SUM OF SQUARED SERVICE TIMES AT NODE #3
C XX(60) = SQUARED COEF OF VAR OF SERVICE TIMES AT NODE #3
C XX(61) • SUM OF SERVICE TIMES AT NODE #4
C XX(62) = SUN OF SQUARED SERVICE TIMES AT NODE #4
C XX(63) 2 SQUARED COEF OF VAR OF SERVICE TIMES AT NODE #4
C

PROGRAM MeAIN
DIMENSION NSET(10000)
COMMON/SCOM1/ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA,MSTOP,NCLNR
I,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX( 10)
COMMON QSET(10000)
EQUIVALENCE(NSET(1),QSET(1))
NNSET= 10000
NCRDR=5
NPRNT=6
NTAPE=7
NPLOT=2
OPEN(UNIT=I,FILE='QNA.IN',STATUS='NEW')
OPEN(UNIT=2,FILE='JACKSON.IN',STATUS='NEW*)
OPEN(UNIT=3,FILE='RESPONSE.OUT',STATUS='NEW')
OPEN(UNIT=4,FILE='ROUTING.OUT',STATUS='NEW')
OPEN(UNIT=8,FILE=*WORK.OUT',STATUS=*NEW')
II = 1000
WRITE (1,1) II
WRITE (2,1) II
CALL SLAM
STOP

1 FORMAT (3X,I6)
END

C
C
C
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SUBROUTINE INTLC
COMMON/SCON1/ATRIB(100),DD(I00),DDL(100),DTNOW,II,MFA,MSTOP,NCLNR
1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100)
XX(5) = XX(4) - XX(3)*XX(3)
IF (XX(2).GT.1.) THEN

XX(16) a0.5 +SQRT(0.25 -0.5*XX(3)*XX(3)/XX(4))

XX(17) a 0.5*XX(3)/XX(16)
XX(18) a 1.0 - XX(16)
XX(19) a 0.S*XX(3)/XX(18)

END IF
DO 10 1-23, 63

XX(I) = 0.0
10 CONTINUE

RETURN
END

C
C
C

FUNCTION USERF(I)
COMMON/SCOM1/ATRIB( 100) ,DD( 100) ,DDL( 100) ,DTNOW,II,NFA,NSTOP,NCLNR
I ,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS( 100) ,SSL( 100) ,TNEXT,TNOW,XX( 100)
INTEGER ACCEPT
REAL F, G, PI, SDEV, U, Y
PARAMETER (PI = 3.1415927)

C
C SELECT DISTRIBUTION FOR SERVICE TIMES
C

IF (XX(2).LT.1.) THEN
C
C GENERATE MAX ENTROPY DISTRIBUTION USING ACCEPT-REJECT
C

ACCEPT = 0
SDEV = SQRT(XX(15))

10 IF (ACCEPT.EQ.0) THEN
Y = RNORM(XX(14),SDEV,9)
IF (Y.GE.0.) THEN

U z DRAND( 10)
F = EXP(-1. - XX(10) - XX(11)*Y - XX(12)*Y**2)
G = (XX(13)/SQRT(2*XX(15)*PI))*

& EXP(-(1/(2.*XX(15)))*(Y-XX(14))**2)
IF (U.LE.F/G) ACCEPT=l

END IF
GO TO 10

END IF
USERF = Y

ELSE
C
C GiNERATE HYPEREXPONENTIAL DISTRIBUTION USING COMPOSITION
C

U = DRAND(9)
IF (U.LE.XX(16)) THEN

USERF = EXPON(XX(17),10)
ELSE
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USERF =EXPOH(XX(19),10)
END IF

END IF
RETURN
END

C
C
C

SUBROUTINE EVENT( I)
CONNON/SCON1/ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA,MSTOP,NCLNR
1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS( 100) ,SSL( 100) ,TNEXT,TNOW,XX( 100)
IF (TNOW.LE.XX(9)) RETURN
GO TO (1, 2, 3, 4, 5, 6, 7, 8, 9, 10), 1

C
C COUNT EXTERNAL ARRIVALS TO NODE 1
C

1 XX(30) = XX(30) +1.
RETURN

C
C COUNT ENTITIES ARRIVING TO NODE 1
C

2 XX(32) =XX(32) + 1.
RETURN

C
C COLLECT WORK VARIABLE #1 DATA
C

3 XX(40) =XX(40) +1.
XX(41) =(ATRIB(2) - XX(6))/XX(6)
XX(52) = XX(52) + ATRIB(2
XX(53) = XX(53) + ATRIB(2)*ATRIB(2)
RETURN

C
C COLLECT WORK VARIABLE #2 DATA
C

4 XX(43) = XX(43) + 1.
XX(44) z (ATRIB(2) - XX(7))/XX(7)
XX(55) = XX(55) + ATRIB(2
XX(56) = XX(56) +ATRIB(2)*ATRIB(2)
RETURN

C
C COUNT ENTITIES ARRIVING TO NODE 3
C

5 XX(33) XX(33) + 1.
RETURN

C
C COLLECT WORK VARIABLE #3 DATA
C

6 XX(46) =XX(46) + 1.
XX(47) z(ATRIB(2) - XX(8))/XX(8)
XX(58) =XX(58) + ATRIB(2
XX(59) :XX(S9) + ATRIB(2)*ATRIB(2)
RETURN

C
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C COUNT ENTITIES ARRIVING TO NODE 4, AND
C SET FLAG IF NNQ(4) > XX(22), STORE TNOW
C

7 XX(35) = XX(35) + 1.
IF ((NNQ(4)+1.GT.XX(22)).AND.(XX(26).EQ.0.)) THEN
XX(26) a1.
XX(27) = TNOW

END IF
RETURN

C
C COLLECT WORK VARIABLE #4 DATA, AND
C COLLECT TIME INTERVAL NNQ(4) > XX(22)
C

8 XX(49) = XX(49) + 1.
XX(50) = (ATRIB(2) - XX(3))/XX(5)
XX(61) = XX(61) + ATRIB(2)
XX(62) =XX(62) + ATRIB(2)*ATRIB(2)
IF ((NNQ(4).LT.XX(22)).AND.(XX(26).EQ.1.)) THEN

XX(26) = 0.
XX(28) = XX(28) + THOW - XX(27)

END IF
RETURN

C
C COUNT ENTITIES LOOPING BACK TO NODE 1
C

9 XX(36) =XX(36) + 1.
RETURN

C
C COLLECT DATA FOR AVERAGE SOJOURN TIME
C

10 XX(23) =XX(23) + 1.
XX(24) XX(24) + TNOW - ATRIBM1
RETURN
END

C
C
C

SUBROUTINE OTPUT
COMMON/SCOMl/ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA,MSTOP,NCLNR
1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100)
INTEGER METHOD, NNODES, OPTION(S), TYPE
REAL RATE(4, ROU-TE(4,4), SERVICE(4

C
C CALCULATE AVERAGE SOJOURN TIME
C

XX(25) - XX(24)/XX(23)
C
C CALCULATE PROPORTION OF TINE NNQ(4) EXCEEDED
C TWICE THE MEAN NUMBER IN QUEUE FROM QNA
C

IF ((NNQ(4).LT.XX(22)).AND.(XX(26).EQ.1.)) THEN
XX(26) = 0.
XX(28) = XX(28) + TNOW - XX(27)
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END IF
XX(29) =XX(28)/1000

C
C CALCULATE OBSERVED EXTERNAL ARRIVAL RATE
C

XX(31) = XX(30)/1000
C
C CALCULATE STANDARDIZED ROUTING CONTROL VARIABLES
C

XX(34) = (XX(33) - XX(32)*XX(2O))/SQRT(XX(32)*(l.-XX(2O))*XX(2O))
XX(37) = (XX(36) - XX(35)*XX(21))/SQRT(XX(35)*(l.-XX(21))*XX(21))

C
C CALCULATE STANDARDIZED WORK VARIABLES
C

XX(39) = XX(40) +XX(43) + XX(46) + XX(49)
XX(42) = 3*SQRT(XX(40))/XX(39)*XX(41)
XX(45) = 3*SQRT(XX(43))/(XX(39)*(l.-XX(33)/XX(32)))*XX(44)
XX(48) - 3*SQRT(XX(46))/(XX(39)*XX(33)/XX(32))*XX(47)
XX(51) = 3*SQRT(XX(49))/XX(39)*XX(41)

C
C CALCULATE OBSERVED MEAN SERVICE TIMES
C

SERVICE(l) = XX(52)/XX(40)
SERVICE(2) = XX(55)/XX(43)
SERVICE(3) = XX(58)/XX(46)
SERVICE(4) = XX(61)/XX(49)

C
C CALCULATE SQUARED COEFFICIENT OF VARIATION OF SERVICE TIMES
C

XX(54) = ((XX(40)**2)*XX(53) - XX(40)*(XX(52)**2))/
&( (XX(40)-I)*XX(52)**2)
XX(57) = ((XX(43)**2)*XX(56) - XX(43)*(XX(55)**2))/

&((XX(43)-I)*(XX(55)**2))
XX(60) = ((XX(46)**2)*XX(59) - XX(46)*(XX(58)**2))/

XX(63) = ((XX(49)**2)*XX(62) - XX(49)*(XX(61)**2))/

C WRITE TO 'QNA.IN'
C

METHOD = 3
NNODES a 4
OPTION(1) - I
OPTION(2) a 2
OPTION(3) = 0
OPTION(4) a -1
OPTION(5) = I
TYPE = 1
ROUTE(l,l) = 0.
ROUTE(1,2) = 1. - XX(33)/XX(32)
ROUTE(1,3) - XX(33)/XX(32)
ROUTE(1,4) 2 0.
ROUTE(2,1) = 0.
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ROUTE(2,2) = 0.
ROUTE(2,3) = 0.
ROUTE(2,4) = I.
ROUTE(3,1) = 0.
ROUTE(3,2) = 0,
ROUTE(3,3) = 0.
ROUTE(3,4) = 1.
ROUTE(4,1) = XX(36)/XX(35)
ROUTE(4,2) = 0.
ROUTE(4,3) = 0.
ROUTE(4,4) = 0.
RATE(1) = XX(31)
RATE(2 = 0.
RATE(3 = 0.
RATE(4 = 0.
WRITE (1,1) METHOD
WRITE (1,2) NNODES, TYPE
WRITE (1,3) OPTION(l), OPTION(2), OPTION(3), OPTION(4), OPTION(5)
DO 10 I=1,4

WlRITE (1,4) ROUTE(I,1), ROUTE(I,2), ROUTE(I,3), ROUTE(I,4)
10 CONTINUE

WRITE (1,4) RATE(1, RATE(2, RATE(3), RATE(4)
WRITE (1,4) SERVICE(1), SERVICE(2, SERVICE(3), SERVICE(4
WRITE (1,4) XX(54), XX(57), XX(60), XX(63)

C
C WRITE TO 'JACKSON.IN'
C

OPTION(l) = I
OPTION(2) = 0
OPTION(3 = 0
OPTION(4) = -1
OPTION(S) = 1
WRITE (2,1) METHOD
WRITE (2,2) NNODES, TYPE
WRITE (2,3) OPTION(l), OPTION(2), OPTION(3), OPTION(4), OPTION(S)
DO 20 I=1,4
WRITE (2,4) ROUTE(I,1), ROUTE(I,2), ROUTE(1,3), ROUTE(I,4)

20 CONTINUE
WRITE (2,4) RATE(1), RATE(2, RATE(3), RATE("'.)
WRITE (2,4) SERVICE(1), SERVICE(2), SERVICE(3), SERVICE(4)

C
C WRITE TO 'RESPONSE.OUT'
C NUMBER OF OBSERVATIONS, AVE SOJOURN TIME, AND P(NNQ(4)>2*EN)
C

WRITE (3,5) XX(23), XX(25), XX(29)
C
C WRITE TO 'ROUTING.OUT'
C ROUTING CONTROLS R13, R14
C WITH RESPECTIVE NUMBER OF OBSERVATIONS ON EACH
C

WRITE (4,4) XX(32), XX(34), XX(3510, XX(37)
C
C WRITE TO 'WORK.OUT'
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c WORK VARIABLES Wl, W2, W3, W4.

C WITH NUMBER OF OBSERVATIONS

c WRITE (8,6) XX(39), XX(42), XX(45), XX(48), XX(51)

RETURN
1 FORMAT(2X,12)
2 FORNAT(2(2X,12))
3 FORNAT(5(2X,I2))
4 FORJ4AT(4(2X,E13.6))
5 FORNAT(3(2X,E13.6))
6 FORMAT(S(2X,E13.6))

END
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FORTRAN Code for Proaram CONTROL

PROGRAM CONTROL
C
C THIS PROGRAM CALCULATES THE VARIANCE RATIO (VR) AND
C THE 95% CONFIDENCE LIMITS (LCL) AND (UCL) ON THE
C CONTROLLED RESPONSES.
C
C THE INPUT DATA IS SUPPLIED BY SEVEN FILES:
C (1) RESPONSE.OUT CONTAINS:
C NUMBER OF OBSERVATIONS OF SOJOURN TIME,
C SOJOURN TIME (UNCONTROLLED RESPONSE), AND
C P(NNQ(4)>2*EN) (UNCONTROLLED RESPONSE).
C (2) ROUTING.OUT CONTAINS:
C NUBER OF OBSERVATIONS ON R13,
C Ri3 (STANDARDIZED ROUTING CONTROL),
C NUMBER OF OBSERVATIONS ON R41, AND
C R41 (STANDARDIZED ROUTING CONTROL).
C (3) WORK.OUT CONTAINS:
C TOTAL NUMBER OF SERVICE COMPLETIONS, AND
C Wi, W2, W3, W4 (STANDARDIZED WORK VARIABLES).
C (4) JACKSON.OUT CONTAINS EXTERNAL CONTROL VARIATES
C USING SHARON'S (1986) METHOD AND M/M/i FORMULAS:
C SOJOURN TIME, AND
C WAITING TIME IN 4TH QUEUE.
C (5) QNA.OUT CONTAINS EXTERNAL CONTROL VARIATES
C USING SHARON'S (1986) METHOD AND G/G/I FORMULAS:
C SOJOURN TIME, AND
C WAITING TIME IN 4TH QUEUE.
C (6) M16.OUT CONTAINS THE MEANS OF THE EXTERNAL
C CONTROL VARIATES USING M/M/i FORMULAS.
C (7) G16.OUT CONTAINS THE MEANS OF THE EXTERNAL
C CONTROL VARIATES USING G/G/i FORMULAS.
C
C THE OUTPUT DATA IS WRITTEN TO FOUR FILES (SOJOURN.VR,
C SOUJOURN.CI, QUANTILE.VR AND QUANTILE.CI) IN THE
C FOLLOWING FORM4AT:
C THE *.VR FILES CONTAIN:
C MEAN OF UNCONTROLLED RESPONSE
C MEAN OF CONTROLLED RESPONSE
C VARIANCE RATIO
C THE *.CI FILES CONTAIN:
C 95% LOWER CONFIDENCE LIMIT
C 95% UPPER CONFIDENCE LIMIT
C
C EACH RECORD IN THE OUTPUT FILES ARE THE RESULT OF
C TWENTY INPUT RECORDS (I.E. TWENTY SIMULATION RUNS).
C EVERY TENTH RECORD IN THE OUTPUT FILES REPRESENTS A
C REPLICATION OF THE RESULTS WITH ONE CONTROL VARIATE.
C
C INPUT VARIABLES
C Y(I,K) m TWO RESPONSE VARIABLES (20 OBS. EA.)
C C(J,K) a TEN CONTROL VARIABLES (20 OBS. EA.)
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C GGI(2,16) = MEANS OF ANALYTIC CONTROLS USING QNA (GIG/i)
C MMt(2,16) = MEANS OF ANALYTIC CONTROLS USING QNA (M/M/1)
C OBSY(K) = NUMBER OF OBSERVATIONS IN SIMULATION MODEL
C OF THE SOJOURN TIME TO YIELD 'ITH' OBSERVATION
C OF AVERAGE SOJOURN TIME
C OBSR(JK) = NUMBER OF OBSERVATIONS IN SIMULATION MODEL
C OF THE ROUTE TAKEN TO COMPUTE THE 'KTH' OBSERVATION
C OF THE ROUTING CONTROL VARIABLES R13 AND R41
C OBSW(K) = TOTAL NUMBER OF SERVICE COMPLETIONS FOR THE
C 'KTH' OBSERVATION OF THE FOUR WORK VARIABLES
C

REAL Y(2,20), C(10,20), GGi(2,16), MMI(2,16)
REAL OBSY(20), OBSR(2,20), OBSW(20)

C
C OUTPUT VARIABLES
C YBAR(I) = GRAND UNCONTROLLED MEAN OF THE TWO RESPONSES
C YCBAR(I,J) = GRAND CONTROLLED MEAN OF THE TWO RESPONSES
C USING THE 'JTH' CONTROL
C VR(I,J) * VARIANCE RATIO OF THE 'ITH' RESPONSE USING THE
C 'JTH' CONTROL
C LCL(I,J) = 95% LOWER CONFIDENCE LIMIT FOR THE CONTROLLED
C MEAN OF THE 'ITH' RESPONSE USING THE 'JTH' CONTROL
C UCL(I,J) = 95% UPPER CONFIDENCE LIMIT ...
C

REAL YBAR(2), YCBAR(2,10), VR(2,10), LCL(2,10), UCL(2,10)
C
C INTERMEDIATE VARIABLES USED IN CALCULATIONS
C BHAT(I,J) = ESTIMATED OPTIMAL CONTROL COEFFICIENT
C FOR THE 'ITH' RESPONSE AND 'JTH' CONTROL
C CBAR(J) = MEAN OF THE 'JTH' CONTROL VARIABLE
C COVYC(IJ) = COVARIANCE BETWEEN 'ITH' RESPONSE AND
C 'JTH' CONTROL
C D2(J) = D SQUARED STATISTIC OF 'JTH' CONTROL
C I,J,K a ITERATION VARIABLES/INDEX VARIABLES
C MU(M) = KNOWN MEAN OF *JTH' CONTROL
C POINT = EXPERIMENTAL DESIGN POINT (INDEX VARIABLE)
C REP = ITERATION VARIABLE (REPLICATION)
C REPS = TOTAL NUMBER OF REPLICATIONS OF EXPERIMENT, WHERE
C AN EXPERIMENT IS 20 OBSERVATIONS OF THE SIMULATION
C MODEL UNDER THE SAME INTIAL CONDITIONS
C RHOYC(I,J) = PEARSON'S PRODUCT-MOMENT CORRELATION STATISTIC
C BETWEEN 'ITH' RESPONSE AND 'JTH' CONTROL
C S2C(J) = SAMPLE VARIANCE OF *JTH' CONTROL
C S2(I) = SAMPLE VARIANCE OF 'ITH' RESPONSE
C S2YC(I,J) = S SQUARED (Y DOT C) STATISTIC OF 'ITH'
C RESPONSE AND 'JTH' CONTROL
C SUMC(j) a SUM OF OBSERVATIONS ON 'JTH' CONTROL
C SUMC2(J) = SUM OF SQUARED OBSERVATIONS ON 'JTH' CONTROL
C SUKY(I) a SUM OF OBSERVATIONS ON 'ITH' RESPONSE
C SUMY2(I) 2 SUM OF SQUARED OBSERVATIONS ON 'ITH' RESPONSE
C TOTOBS a TOTAL NUMBER OF OBSERVATIONS
C TOTOBSR(I) a TOTAL NUMBER OF SIMULATION OBSERVATIONS TO
C PRODUCE THE 20 OBSERVATIONS OF THE TWO ROUTING
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C CONTROLS
C TOTOBSW = TOTAL NUMBER OF SIMULATION OBSERVATIONS OF

C SERVICE COMPLETIONS USED IN COMPUTING THE 20

C OBSERVATIONS ON THE FOUR WORK VARIABLES
C TOTOBSY = TOTAL NUMBER OF SIMULATION OBSERVATIONS TO PRODUCE

C THE 20 OBSERVATIONS OF AVERAGE SOJOURN TIME

C WC(J,K) = WEIGHT OF 'KTH' OBSERVATION ON 'JTH' CONTROL
C WY(I,K) = WEIGHT OF 'KTH' OBSERVATION ON 'ITH' RESPONSE
C ZERO = INITIALIZATION VARIABLE (= 0.0)
C

REAL BHAT(2,10), CBAR(10), COVYC(2,10), D2(10)
REAL MU(10), RHOYC(2,10), S2C(10), S2Y(2), S2YC(2,10)
REAL SMC(10), SUMC2(10), SUMY(2), SUMY2(2)
REAL TOTOBSR(2), TOTOBSY, TOTOBSW
REAL WC(10,20), WY(2,20), ZERO
INTEGER I, J, K, POINT, REP, REPS, TOTOBS

C
C INTERACTIVE USER INPUT
C

WRITE (5,*) 'ENTER TOTAL NUMBER OF OBSERVATIONS'
READ (5,*) TOTOBS
REPS = TOTOBS/20
WRITE (5,*) 'ENTER THE DESIGN POINT NUMBER (I TO 16)'
READ (5,*) POINT

C
C READ ANALYTIC RESULTS
C

OPEN (UNIT=1,FILE='GI6.OUT',STATUS='OLD')
OPEN (UNIT=2,FILE='MI6.OUT',STATUS='OLD')
DO 10 I=1,16

READ (1,1) GG1(1,I), GG1(2,I)
READ (2,L) MM(II), MMI(2,I)

10 CONTINUE
I FORMAT (2(2X,E13.6))
CLOSE (1)
CLOSE (2)

C
C INITIALIZE KNOWN MEANS OF CONTROLS
C

ZERO = O.OE+O0
DO 20 1=1,6

MU(I) = ZERO
20 CONTINUE

MU(7) * 1PI(1,POINT)
MU(8) s MMI(2,POINT)
MU(9) a GG1(1,POINT)
MU(10) a GGI(2,POINT)

C
C EXPERIMENTAL DATA FILES FOR INPUT
C

OPEN (UNIT=1,FILE='RESPONSE.OUT ,STATUS='OLD')
OPEN (UNIT=2,FILE='ROUTING.OUT',STATUS='OLD')
OPEN (UNIT=3,FILE='WORK.OUT',STATUS='OLD')
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OPEN (UNIT=4,FILE='JACKSON.OUT ,STATUS='OLD')
OPEN (UNIT=8,FILE=*QNA.0UT ,STATUS=OLD*)

C
C OUTPUT DATA FILES
C

OPEN (UNIT=9,FILE=&SOJOURN.VR ,STATUS.'NEW*)
OPEN (UNIT=10,FILE='SOJOURN.Cl',STATUS='NEW')
OPEN (UNIT=11,FILE-'QUANTILJ2.VR ,STATIS=NEW')
OPEN (UNIT=12,FILE-QUANTILE.CI' ,STATUSNEW')

C
DO 1000 REP=1,REPS

C
C INITIALIZE SUMMATION VARIABLES
C

TOTOBSY = ZERO
TOTOBSW z ZERO
TOTOBSR(l) = ZERO
TOTOBSR(2) - ZERO

C READ EXPERIMENTAL DATA
C

DO 30 J=1,20
READ (1,2) OBSY(J, Y(1,J), Y(2,J)
TOTOBSY u TOTOBSY + OBSY(J
READ (2,3) OBSR(1,J), C(1,J), OBSRC2,J), C(2,J)
TOTOBSR(1) = TOTOBSR(1) + OBSR(1,J)
TOTOBSR(2) = TOTOBSR(2) + OBSR(2,J)
READ (3,4) OBSW(J), (C(I,J), I=3,6)
TOTOBSW = TOTOBSW + OBSW(J)
READ (4,5) C(7,J), C(8,J)
READ (8,5) C(9,J), C(1O,J)

30 CONTINUE
2 FORMAT (3(2X,E13.6))
3 FORMAT (4(2X,E13.6))
4 FORMAT (5(ZX,E13.6))
5 FORMAT (2(2X,E13.6))

C
C INITIALIZE VARIABLES FOR SAMPLE MEANS,
C VARIANCES, AND COVARIANCES
C

DO 31 Iu1,2
YBAR(I) z ZERO
SUMY(I) = ZERO
SUKY2(I) a ZERO
S2Y(I) = ZERO

31 CONTINUE
DO 32 I=1,10

CBAR(I) a ZERO
SUMC(I) = ZERO
SUMC2(I) a ZERO
S2C(I) a ZERO
COVYC(1,I) z ZERO
COVYC(2,I) m ZERO
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32 CONTINUE
C
C CALCULATE WEIGHTS OF OBSERVATIONS
C

DO 35 3=1,20
WY(1,J) = 20.0*OBSY(J)/TOTOBSY
WY(2,J) = 1.0
WC(1,J) = 20.O*OBSR(1,J)/TOTOBSR(1)
WC(2,J) = 20.0*OBSR(2,J)/TOTOBSR(2)
DO 33 I=3,6

WC(I,J) a 20.O*OBSW(J)/TOTOBSW
33 CONTINUE

DO 34 I=7,10
WC(I,J) = 20.0*OBSY(J)/TOTOBSY

34 CONTINUE
35 CONTINUE

C
C CALCULATE WEIGHTED SUMS
C

DO 42 J=1,20
DO 40 I=1,2

SUMY(I) = SUMY(I) + WY(I,J)*Y(I,J)
SUMY2(I) = SUMY2(I) + WY(I,J)*Y(I,J)**2

40 CONTINUE
DO 41 I=1,tO

SUMC(1) = SUMC(I) + WC(I,J)*C(I,J)
SUMC2(I) = SUMC2(I) + WC(I,J)*C(I,J)**2

41 CONTINUE
42 CONTINUE

C
C CALCULATE WEIGHTED AVERAGES AND WEIGHTED SAMPLE VARIANCES
C

DO 50 1=1,2
YBAR(1) = SUMY(I)/20.O
S2Y(I) = (20.O*SUMY2(I) - SUMY(I)**2)/380.O

50 CONTINUE
DO 51 1=1,10

CBAR(I) = SUMC(1)/20.0
S2C(I) = (20.O*SUMC2(I) - SUMC(I)**2)/380.O

51 CONTINUE
C
C CALCULATE SAMPLE COVARIANCES
C

DO 62 I=1,2
DO 61 J=1,20

DO 60 K=1,10
COVYC(I,K) = COVYC(I,K) + (C(R,J) - CBAR(K))*

&(Y(I,J) - YBAR(I))/19
60 CONTINUE
61 CONTINUE
62 CONTINUE

C
C ESTIMATE OPTIMAL CONTROL COEFFICIENT AND
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C PEARSON'S PRODUCT-MOMENT CORRELATION COEFFICIENT
C

DO 71 J=1,10
DO 70 1=1,2

BHiAT(I,J) =COVYC(I,J)/S2C(J)
RIIOYC(I,J) =COVYC(I,J)/SQRT(S2C(J)*S2Y(I))

70 CONTINUE
71 CONTINUE

C
C CALCULATE CONTROLLED MEANS OF RESPONSE VARIABLES
C

DO 73 J=1,10
DO 72 I=1,2

YCBAR(I,J) = YBAR(I) + DHAT(I,J)*(CBAR(J)-NU(J))
72 CONTINUE
73 CONTINUE

C
C CALCULATE STATISTICS 'D2' AND 5S2YC' TO ESTIMATE
C VARIANCE OF CONTROLLED MEANS
C
C VAREYCBAR(I,J)3 a D2(I,J)*S2YC(I,J)
C

DO 81 J=1,10
D2(J) = O.O5+(1/19)*(CBAR(J)-MqU(J))**2/S2C(J)
DO 80 1=1,2

S2YC(I,J) = (19/18)*S2Y(I)*(1.G - RHOYC(I,J)**2)
80 CONTINUE
81 CONTINUE

C
C ESTIMATE VARIANCE RATIOS AND 95% CONFIDENCE LIMITS
C

DO 91 J=1,10
DO 90 1=1,2

VR(I,J) = (D2(J)*S2YC(I,J))/(52Y(I)/20)
LCL(I,J) = YCBAR(I,J) - 2.101*SQRT(D2(J)*S2YC(I,J))
UCL(I,J) = YCBAR(I,J) +2.101*SQRT(D2(J)*S2YC(I,J))

90 CONTINUE
91 CONTINUE

C
C OUTPUT RESULTS
C

DO 100 J=1,10
WRITE (9,101) YBAR(l), YCBAR(1,J), VR(1,J)
WRITE (10,102) LCL(1,J), UCL(1,J)
WRITE (11,101) YBAR(2), YCBAR(2,J), VR(2,J)
WRITE (12,102) LCL(2,J), UCL(2,J)

100 CONTINUE
101 FORMAT (3(2X,E13.6))
102 FORMAT (2(2X,E13.6))

1000 CONTINUE
END
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FORTRAN Code for Proaram RESULTS

PROGRAM RESULTS
C
C THIS PROGRAM FINDS THE MINIMUM, MAXIMUM AND AVERAGE OF THE THREE
C VARIABLES (YBAR, YCBAR, AND VR) FROM THE OUTPUT FILES OF THE
C PROGRAM 'CONTROL'. IT ALSO COMPUTES THE COVERAGE OF THE 95%
C CONFIDENCE INTERVAL AGAINST THE UNCONTROLLED RESPONSE (YBAR).
C
C INPUT VARIABLES
C Y(1,J) = UNCONTROLLED MEAN OF THE RESPONSE VARIABLE
C Y(2,J) = CONTROLLED MEANS OF THE RESPONSE VARIABLE
C USING 'JTH' CONTROL
C Y(3,J) = VARIANCE RATIO OBTAINED USING 'JTH' CONTROL
C LCL(J) = 95% LOWER CONFIDENCE LIMIT ON CONTROLLED MEAN OF
C THE RESPONSE VARIABLE USING THE 'JTH' CONTROL
C UCL(J) = 95% UPPER CONFIDENCE LIMIT ...
C

REAL Y(3,10), LCL(10), UCL(10)
C
C OUTPUT VARIABLES
C MIN(I,J) = MINIMUM VALUE OF 'ITH' INPUT USING *JTH' CONTROL
C MAX(I,J) = MAXIMUM VALUE OF 'ITH' INPUT USING *JTH' CONTROL
C MEAN(I,J) = MEAN VALUE OF 'ITH' INPUT USING 'JTH' CONTROL
C COVER(J) = COVERAGE PROBABILITIES OF 95% CONFIDENCE INTERVAL
C OF THE CONTROLLED RESPONSE COMPARED TO THE
C GRAND UNCONTROLLED MEAN
C

REAL MIN(3,10), MAX(3,10), MEAN(3,10), COVER(10)
C
C INTERMEDIATE VARIABLES USED IN CALCULATIONS
C COUNT(J) = NUMBER OF TIMES THE MEAN RESPONSE FALLS WITHIN
C THE CONFIDENCE INTERVALS
C INFILE = INPUT FILE TYPE
C I,J = ITERATION/INDEX VARIABLES
C REP = ITERATION VARIABLE (REPLICATION)
C REPS = TOTAL NUMBER OF REPLICATIONS OF THE EXPERIMENT
C L(J) = LABEL OF 'JTH' CONTROL
C N(J) = LABEL OF 'ITH° STATISTIC
C

INTEGER COUNT(1O), INFILE, I, J, REP, REPS
CHARACTER*14 L(10)
CHARACTER*14 N(3)

C
C INTIALIZE MINIMUM VALUES TO A HIGH NUMBER
C

DATA (MIN(1,J), J=1,10) /10*1.OE+10/
DATA (MIN(2,J), J=1,10) /10*I.0E+10/
DATA (MIN(3,J), J=1,10) /10*1.OE+10/

C
C INITIALIZE LABELS
C

L(U) = °ROUTING(1,3)
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L(2) a 'ROUTING(1,4)
L(3) = 'WOR[(1)
L(4) = 'WORI(2)
L(5) = 'WORK(3
L(6) = 'WORK(4)
L(7) = 'SOJOURN(M/M/1)'
L(8) = 'WAIT4(N/M/1)
L(9) = 'SOJOURN(G/G/1)'
L(1O) = WAIT4(G/G/1)
N(l) = 'YBAR
N(2) = 'YBAR(BHAT)
NO3) = 'VARIANCE RATIO'

C
C INTERACTIVE USER INPUT
C

WRITE (5,*) 'ENTER THE NUMBER OF REPLICATIONS'
READ (5,*) REPS
WRITE (5,*) 'INDICATE INPUT FILES (1=SOJOURN, 2=QUANTILE)'
READ (5,*) INFILE

C
C OPEN APPROPRIATE INPUT DATA FILES (CREATED BY PROGRAM 'CVR')
C

IF (INFILE.EQ.1) THEN
OPEN (UNIT=1,FILE='SOJOURN.VR' ,STATUS='OLD*)
OPEN (UNIT=2,FILE='SOJOURN.CI' ,STATUS='OLD')

ELSE
OPEN (UNIT=1,FILE='QUANTILE.VR' ,STATUS='OLD')
OPEN (UNIT=2,FILE='QUANTILE.CI' ,STATUS='OLD')

END IF
C
C OPEN OUTPUT DATA FILE
C

OPEN (Ut$i=3,FILE='kESULTS.DAT ,STATtJS='NEW')
C

DO 30 REP=1,REPS
C
C READ INPUT VARIABLES FROM *.VR FILE
C

DO 10 3=1,10
READ (1,1) (Y(,J), I=1,3)

10 CONTINUE
C
C COMPUTE MIN, MAX, AND MEAN OF THE INPUT VARIABLES
C

DO 21 l=1,3
DO 20 J=1,10

IF (Y(I,J).LT.KIN(I,J)) MIN(I,J) = Y(I,i)
IF (Y(I,J).GT.MAX(I,J)) KAX(I,J) = Y(I,J)
MEAN(I,J) a MEAN(I,J) + Y(I,J)/REPS

20 CONTINUE
21 CONTINUE
30 CONTINUE

C
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C READ CONFIDENCE LIMITS FROM *.CI FILE
C

DO 60 REP=1,REPS
DO 40 i=1,10

READ (2,2) LCL(J), UCL(J)
40 CONTINUE

C
C CALCULATE COVERAGE EST1IMATES OF CONFIDENCE INTERVALS
C

DO 50 J=1,10
IF ((LCL(J).LE.MEAN( 1,J)) .AND. (MEAN( 1,J) .LE.UCL(J))) THEN

COUNT(J = COIJNT(J + 1
END IF

50 CONTINUE
60 CONTINUE

C
DO 70 J=1,10

COVER(J = 1.0*COUNT(J)/REPS
70 CONTINUE

C
C OUTPUT RESULTS
C

IF (INFILE.EQ.1) THEN
WRITE (3,3)

ELSE
WRITE (3,4)

END IF
WRITE (3,S)
WRITE (3,6)
WRITE (3,7)
WRITE (3,8)
DO 80 J=1,10

WRITE (3,5) L(J)
WRITE (3,9) N(1), MIN(1,J), MEAN(1.,J), MAX(1,J), COVER(J
WRITE (3,11) N(2), MIN(2,J), MEAN(2,J), MAX(2,J)
WRITE (3,11) N(3), MIN(3,J), MEAN(3,J), MAX(3,J)
WRITE (3,8)

80 CONTINUE
STOP

1 FORMAT (3(2X,E13.6))
2 FORMAT (2(2X,913.6))
3 FORMAT (15X,'COKTROL VARIATE ANALYSIS ON RESPONSE: SOJOURN TIME*)
4 FORMAT (I0X,'CONTROL VARIATE ANALYSIS ON RESPONSE: '

& 'PROB(NNQ(4) > 2*E[N])')
5 FORMAT (IX, 'USING CONTROL VARIABLE: ',A141
6 FORMAT (3X,' NAME MINIM4UM AVERAGE

I MAXIMUM COVERAGE')
7 FORMAT (3X ---------------- ------------- -------------

-- - - - - - - - - - -
8 FORMAT (MX
9 FORMAT (3X,A14,3(2X,E13.6),3X,F6.4)

11 FORMAT (3X,A14,3(2X,E13.6))
END
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Appendix B: SamDle Input Files to QNA

M/M/ Input File at First Desin Point

1 (indicates 1 network)
3 (indicates single customer class)
4 1 (4 nodes, nonstandard input)
1 0 0 -1 0 (input options)
0.0 0.6 0.4 0.0 (1st row of routing matrix)
0.0 0.0 0.0 1.0 (2nd row of routing matrix)
0.0 0.0 0.0 1.0 (3rd row of routing matrix)
0.1 0.0 0.0 0.0 (4th row of routing matrix)
1.0 0.0 0.0 0.0 (external arrival rates)
0.450 0.750 1.125 0.450 (mean service times)

CIG/i Input File at First Design Point

1 (indicates 1 network)
3 (indicates single customer class)
4 1 (4 nodes, nonstandard input)
1 2 0 -1 0 (input options)
0.0 0.6 0.4 0.0 (1st row of routing matrix)
0.0 0.0 0.0 1.0 (2nd row of routing matrix)
0.0 0.0 0.0 1.0 (3rd row of routing matrix)
0.1 0.0 0.0 0.0 (4th row of routing matrix)
1.0 0.0 0.0 0.0 (external arrival rates)
0.450 0.750 1.125 0.450 (mean service times)
1.000 1.000 1.000 0.250 (service variability parameters)
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Appendix C: K-nown Mean3 of External Control Variates

DESIGN --ANALYTIC JACKSON (M/M/1)- -ANALYTIC APPROX. (GIG/I)--
POINT SOJOURN WAIT(4) SOJOURN WAIT(4

1 0.400000E+01 0.450000E+00 0.381177E+01 0.281197E+00
2 0.360000E+02 0.729000E+01 0.329330E+02 0.455585E+01
3 0.400000E+01 0.450000E+00 0.531762E+01 0.163162E+01
4 0.360000E+02 0.729000E+01 0.574688E+02 0.264290E+02
5 0.400000E+01 0.450000E+00 0.381173E+01 0.281160E+00
6 0.360000E+02 0.729000E+01 0.329329E+02 0.455572E+01
7 0.400000E+01 0.450000E+00 0.531792E+01 0.163188E+01
8 0.360000E+02 0.729000E+01 0.574698E+02 0.264300E+02
9 0.417391E+01 0.375000E+00 0.398269E+01 0.234173E+00

10 0.360000E+02 0.607500E+01 0.327806E+02 0.379484E+01
11 0.417391E+01 0.375000E+00 0.551237E+01 0.136079E+01
12 0.360000E+02 0.607500E+01 0.585327E+02 0.220362E+02
13 0.400000E+01 0.375000E+00 0.3808781+01 0.234015E+00
14 0.360000E+02 0.607500E+01 0.327797E+02 0.379416E+01
15 0.401000E+01 0.375000E+00 0.533846E+01 0.1361891+01
16 0.360000E+02 0.607500E+01 0.585391E+02 0.220409E+02

Note: SOJOURN refers to the expected sojourn time of an entity to

complete the entire network. WAIT(4) refers to the expected waiting

time in the queue at the fourth node In the network.
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Appendix D: Tables of Results

The output files of the program RESULTS are provided as tables in

this appendix. Tables D.1 through D.16 summarize the results of the ten

control variates against the response variable sojourn time at the

sixteen design points. Similarly, Tables D.17 through D.32 summarize

the results of the ten control variates against the response variable of

the probability that the number in queue exceeds twice the expected

number. These files list the minimum, maximum, and mean values of the

uncontrolled response, denoted by YBAR, first. Then for each control

variate the minimum, maximum, and mean values of the controlled

response, denoted by YBAR(BHAT), and the variance ratio are listed.

Also, the percentage of confidence intervals about the controlled

response that cover the mean value of YBAR are given for each control

variate.
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Table D.1. Control Variate Results Against Sojourn Time
at the First Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.369443E+01 0.381331E+01 0.396763E+01

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.369317E+01 0.381367E+01 0.399705E+01 0.9300
VARIANCE RATIO 0.648974E+00 0.936955E+00 0.999987E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.3662351+01 0.3808471+01 0.399742E+01 0.8850
VARIANCE RATIO 0.424270E+00 0.867965E+00 0.999990E+00

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.367848E+01 0.381138E+01 0.393465E+01 0.9200
VARIANCE RATIO 0.621534E+00 0.954747E+00 0.9999991+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.3614161+01 0.3812021+01 0.396768E+01 0.9250
VARIANCE RATIO 0.4913981+00 0.9485151+00 0.100000E+01

USING CONTROL VARIABLE: WORK(3
YBAR(BHAT) 0.367779E+01 0.381282E+01 0.3965151+01 0.9350
VARIANCE RATIO 0.631606E+00 0.949113E+00 0.100000E+01

USING CONTROL VARIABLE: WOR[(4I.YBAR(BHAT) 0.367833E+01 0.381140E+01 0.393472E+01 0.9200
VARIANCE RATIO 0.621459E+00 0.954740E+00 0.9999991+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.360603E+01 0.383068E+01 0.4122331+01 0.5500
VARIANCE RATIO 0.125763E+00 0.418483E+00 0.817554E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.365523E+01 0.381422E+01 0.4027821+01 0.8300
VARIANCE RATIO 0.317536E+00 0.768369E+00 0.999978E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBARCIFIAT) 0.361327E+01 0.382999E+01 0.4125781+01 0.5450
VARIANCE RATIO 0.859748E-01 0.3848181+00 O.'174845E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHIAT) 0.365208E+01 0.381421E+01 0.401822E+01 0.8100
VARIANCE RATIO 0.288632E+00 0.7513091+00 0.9999331+00
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Table D.2. Control Variate Results Against Sojourn Time
at the Second Design Point

NAM4E MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.2533011+02 0.2929451+02 0.340209E+02

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.253703E+02 0.293262E+02 0.343614E+02 0.9350
VARIANCE RATIO 0.629330E+00 0.9419111+00 0.9999921+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.2S2341E.02 0.292181E+02 0.344292E+02 0.9550
VARIANCE RATIO 0.611720E+00 0.9068711+00 0.999988E+00

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.250874E+02 0.292620E+02 0.351617E+02 0.9400
VARIANCE RATIO 0.470587E+00 0.943858E+00 0.999997E+00

USING CONTROL VARIABLE: WOR[(2)
YBAR(BHAT) 0.2403329+02 0.293179E+02 0.3717011+02 0.9350
VARIANCE RATIO 0.673789E+00 0.946194E+00 0.100000E+01

USING CONTROL VARIABLE: WORM()
YBAR(BHAT) 0.2531991+02 0.293383E+02 0.339248E+02 0.9300
VARIANCE RATIO 0.608466E+00 0.9507241+00 0.100000E+01

USING CONTROL VARIABLE: WOR[(4
YBAR(BHAT) 0.250668E+02 0.2925831+02 0.350784E+02 0.9400
VARIANCE RATIO 0.4720881+00 0.944131E+00 0.1000001+01

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.260485E+02 0.307690E+02 0.381936E+02 0.8000
VARIANCE RATIO 0.152546E+00 0.697212E+00 0.100000E+01

USING CONTROL VARIABLE: WAIT4(M/M/i)
YBAR(BHAT) 0.247132E+02 0.305386E+02 0.365465E+02 0.6950
VARIANCE RATIO 0.157891E+00 0.644684E+00 0.999635E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.2604501+02 0.307653E+02 0.383204E+02 0.8000
VARIANCE RATIO 0.1506241+00 0.6983831+00 0.1000001+01

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.2476801+02 0.305323E+02 0.365467E+02 0.7000
VARIANCE RATIO 0.159307E+00 0.641734E+00 0.9956491+00
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Table D.3. Control Variate Results Against Sojourn Time
at the Third Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.477141E+01 0.521644E+01 O.585939E+01

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.473141E+01 0.521239E+01 0.580107E+01 0.9450
VARIANCE RATIO 0.590194E+00 0.940776E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.4780121+01 0.521678E+01 0.590412E+01 0.9450
VARIANCE RATIO 0.537425E+00 0.925474E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(l)
YBAR(BHAT) 0.483237E+01 0.521699E+01 0.582824E+01 0.9500
VARIANCE RATIO 0.416803E+00 0.955932E+00 0.999999E+00

USING CONTROL VARIABLE: WORX(2)
YBAR(BHAT) 0.477196E+01 0.5212191+01 0.617023E+01 0.9500
VARIANCE RATIO 0.446203E+00 0.950714E+00 0.9999801+00

USING CONTROL VARIABLE: WORK(3
YBAR(BHAT) 0.475023E+01 0.521933E+01 0.599340E+01 0.9450
VARIANCE RATIO 0.599295E+00 0.953930E+00 0.9999991+00

USING CONTROL VARIABLE: WORK(4
YBAR(BHAT) 0.4832391+01 0.521705E+01 0.5828381+01 0.9500
VARIANCE RATIO 0.416409E+00 0.955908E+00 0.999997E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.463239E+01 0.528310E+01 0.6553871+01 0.5700
VARIANCE RATIO 0.125285E+00 0.4684081+00 0.8903461+00

USING CONTROL VARIABLE: WAIT4(M/M/i)
YBAR(BHAT) 0.4553331+01 0.5276961+01 0.645269E+01 0.5100
VARIANCE RATIO 0.100617E+00 0.386469E+00 0.7913411+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.4514171+01 0.5275741+01 0.6456151+01 0.3650
VARIANCE RATIO 0.6203101-01 0.2509081+00 0.6675911+00

USING CONTROL VARIABLE: WAIT4(C/G/1)
YBAR(BHAT) 0.4394511+01 0.5264001+01 0.635990E+01 0.4300
VARIANCE RATIO 0.6998151-01 0.3169671+00 0.7038221+00
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Table D.4. Control Variate Results Against Sojourn Time
at the Fourth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.371266E+02 0.457255E+02 0.555158E+02

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.378508E+02 0.457554E+02 0.548320E+02 0.9300
VARIANCE RATIO 0.486904E+O0 0.942278E+00 0.999998E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.373728E+02 0.457098E+02 0.554014E+02 0.9350
VARIANCE RATIO 0.531825E+00 0.932978E+00 0.100000E 01

USING CONTROL VARIABLE: WORK(l)
YBAR(BHAT) 0.375918E+02 0.458027E+02 0.623515E+02 0.9100
VARIANCE RATIO 0.652300E+00 0.947219E+00 0.999990E+00

USING CONTROL VARIABLE: WOR[(2)
YBAR(BHAT) 0.344602E+02 0.456777E+02 0.573404E+02 0.9000
VARIANCE RATIO 0.567247E+00 0.941918E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.349138E+02 0.457327E+02 0.552863E+02 0.9150
VARIANCE RATIO 0.574240E+00 0.943468E+00 0.999986E+00

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.376215E+02 0.457768E+02 0.618071E+02 0.9100
VARIANCE RATIO 0.651065E 00 0.947981E+00 0.999998E+00

USING CONTROL VARIABLE: SOJOURN(M/M/l)
YBAR(BHAT) 0.376422E+02 0.498143E+02 0.691257E+02 0.6150
VARIANCE RATIO 0.160514E+00 0.662006E+00 0.999999E+00

USING CONTROL VARIABLE: WAIT4(M/M/i)
YBAR(BHAT) 0.38055E+02 0.492114E+02 0.671139E+02 0.6400
VARIANCE RATIO 0.101392E+00 0.615236E+00 0.999963E+00

USING CONTROL VARIABLE: SOJOURN(G/G/I)
YBAR(BHAT) 0.376549E+02 0.498277E+02 0.694260E+02 0.5800
VARIANCE RATIO 0.731372E-01 0.600644E+00 0.999975E+00

USING CONTROL VARIABLE: WAIT4(G/G/I)
YBAR(BHAT) 0.382182E+02 0.492173E+02 0.668756E+02 0.6250
VARIANCE RATIO 0.971600E-01 0.610729E+00 0.999952E+00

D.5



Table D.5. Control Variate Results Against Sojourn Tine
at the Fifth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

pYBAR 0.368183E.01 0.381449E+01 0.400045E+0l

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.363501E+01 0.381666E+01 0.401037E+01 0.9100
VARIANCE RATIO 0.407602E+00 0.869664E+00 0.999999E+00

USING CONTROL VARIABLE: ROUTING(l,4)
YBAR(BHAT) 0.3SB449E+01 0.381251E+01 0.406761E+01 0.9250
VARIANCE RATIO 0.388817E+00 0.885916E+00 0.999998E+00

USING CONTROL VARIABLE: WORK(l)
YBAR(BHAT) 0.363304E+01 0.381513E+01 0.401350E+01 0.9350
VARIANCE RATIO 0.732037E+00 0.957379E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.367582E+01 0.381078E+01 0.402608E+01 0.9600
VARIANCE RATIO 0.769947E+00 0.957897E+00 0.999998E+00

USING CONTROL VARIABLE: WORK(3
YBAR(BHAT) 0.358585E+01 0.381085E+01 0.398226E+01 0.9550
VARIANCE RATIO 0.707264E+00 0.954170E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(4
YBAR(BHAT) 0.363303E+01 0.381514E+01 0.401370E+01 0.9350
VARIANCE RATIO 0.731882E+00 0.957361E+00 0.1OOOOOE+01

USING CONTROL VARIABLE: SOJOURN(M/M/l)
YBAR(BHAT) 0.3610669+01 0.384197E+01 0.414274E+01 0.4950
VARIANCE RATIO 0.139045E+00 0.377817E+00 0.881662E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.364710E+01 0.382226E+01 0.408382E+01 0.8150
VARIANCE RATIO 0.335014E+00 0.797228E+00 0.999920E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.361933E.0l 0.384037E+01 0.412813E+01 0.4750
VARIANCE RATIO 0.921910E-01 0.354609E+00 0.767348E+00

USING CONTROL VARIABLE: WAIT4(G/G/I)
YBAR(BHAT) 0.364605E+01 0.382218E+01 0.407732E+01 0.8200
VARIANCE RATIO 0.347844E+00 0.783402E+00 0.999992E+00
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Table D.6. Control Variate Results Against Sojourn Time
at the Sixth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.248461E+02 0.287763E+02 0.332896E+02

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.249434E402 0.287970E+02 0.341161E+02 0.9200
VARIANCE RATIO 0.650989E+00 0.941351E+00 0.999999E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.235258E+02 0.287802E+02 0.348140E+02 0.9250
VARIANCE RATIO 0.541487E+00 0.917009E+00 0.999993E+00

USING CONTROL VARIABLE: WORK(l)
YBAR(BHAT) 0.251509E+02 0.288086E+02 0.346363E+02 0.9450
VARIANCE RATIO 0.663926E+00 0.959623E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.245202E+02 0.287082E+02 0.334179E+02 0.9400
VARIANCE RATIO 0.437341E+00 0.947478E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.243634E+02 0.288033E+02 0.370763E+02 0.9350
VARIANCE RATIO 0.508923E+00 0.951356E+00 0.999982E+00

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.251519E+02 0.288058E+02 0.346073E+02 0.9450
VARIANCE RATIO 0.665197E 00 0.959802E+00 0.100000E+01

USING CONTROL VARIABLE: SOJOURN(M/M/l)
YBAR(BHAT) 0.257135E+02 0.302904E+02 0.382519E+02 0.8100
VARIANCE RATIO 0.236069E+00 0.771186E+00 0.999962E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.241961E+02 0.300718E+02 0.380983E+02 0.7450
VARIANCE RATIO 0.131538E+00 0.649533E+00 0.999407E+00

USING CONTROL VARIABLE: SOJOURN(G/G/l)
YBAR(BHAT) 0.257132E+02 0.302892E+02 0.383264E+02 0.8100
VARIANCE RATIO 0.245796E+00 0.771530E+00 0.999961E+00

USING CONTROL VARIABLE: WAIT4(C/G/1)
YBAR(BHAT) 0.243035E+02 0.300624E+02 0.380028E+02 0.7200
VARIANCE RATIO 0.125844E 00 0.644162E+00 0.999675E+00
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Table D.7. Control Variate Results Against Sojourn Time
at the Seventh Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.473118E+01 0.521470E+01 0.582294E+01

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.475897E+01 0.521184E+01 0.592922E+01 0.9200
VARIANCE RATIO 0.572002E+00 0.927714E+00 0.999996E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.469524E+01 0.521139E+01 0.585067E+01 0.8950
VARIANCE RATIO 0.608010E+00 0.914174E+00 0.999992E+00

USING CONTROL VARIABLE: WORK(l)
YBAR(BHAT) 0.469958E+01 0.521112E 01 0.604592E+01 0.9300
VARIANCE RATIO 0.551904E+00 0,950072E+00 0.999999E+00

USING CONTROL VARIABLE: WORK(Z)
YBAR(BHAT) 0.473291E+01 0.521587E+01 0.576332E+01 0.9250
VARIANCE RATIO 0.474959E+00 0.950610E+00 0.999999E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.476462E+01 0.520558E+01 0.563329E+01 0.9050
VARIANCE RATIO 0.634175E+00 0.948817E+00 0.999996E+00

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.469965E+01 0.521116E+01 0.604597E+01 0.9250
VARIANCE RATIO 0.551983E 00 0.950057E 00 0.999999E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.464045E+01 0.527604E+01 0.620366E+01 0.6100
VARIANCE RATIO 0.968237E-01 0.507894E+00 0.951437E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.456468E+01 0.526524E+01 0.639802E+01 0.5450
VARIANCE RATIO 0.111213E+00 0.422013E 00 0.837698E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.450120E+01 0.526341E 01 0.640132E+01 0.4200
VARIANCE RATIO 0.863734E-01 0.279231E+00 0.658191E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.450152E+01 0.524690E+01 0.646256E+01 0.5100
VARIANCE RATIO 0.934624E-01 0.369244E+00 0.861650E+00
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Table D.8. Control Variate Results Against Sojourn Time
at the Eight Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.368068E+02 0.451113E+02 0.556231E+02

USING CONTROL VARIABLE: ROUTING(l,3)
YBAR(BHAT) 0.367612E+02 O.4S1561E+O2 0.568654E+02 0.9450
VARIANCE RATIO 0.557175E+00 0.939957E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.356995E+02 0.451467E+02 0.553535E+02 0.9550
VARIANCE RATIO 0.640790E+00 0.945581E.00 0.100000E+01

USING CONTROL VARIABLE: WORI(1
YBAR(BHAT) 0.370118E+02 0.451506E+02 0.563468E+02 0.9450
VARIANCE RATIO 0.615958E+00 0.951l95E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.369133E+02 0.452114E+02 0.562391E+02 0.9300
VARIANCE RATIO 0.492479E+00 0.947571E+00 0.999998E+00

USING CONTROL VARIABLE: WORK(3
YBAR(BHAT) 0.369315E+02 0.452633E.02 0.572890E+02 0.9500
VARIANCE RATIO 0.552045E+00 0.939136E+00 0.l00000E+01

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.370132E+02 0.451325E+02 0.562732E+02 0.9450
VARIANCE RATIO 0.613340E+00 0.952044E+00 0.100000E+01

USING CONTROL VARIABLE: SOJOURN(M/M/l)
YBAR(BHAT) 0.363551E+02 0.495517E+02 0.659250E+02 0.6550
VARIANCE RATIO 0.167355E+00 0.703501E+00 0.998401E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.371424E+02 0.483798E+02 0.614534E+02 0.6900
VARIANCE RATIO 0.105631E+00 0.620355E+00 0.999962E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.363782E+02 0.494878E+02 0.635396E+02 0.5900
VARIANCE RATIO 0.100811E+00 0.608829E+00 0.999998E+00

USING CONTROL VARIABLE: WrAIT4(G/C/I)
YBAR(BHAT) 0.372278E+02 0.483759E+02 0.623317E+02 0.6950
VARIANCE RATIO 0.104318E+00 0.617487E.00 0.999963E+00
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Table D.9. Control Variate Results Against Sojourn Time
at the Ninth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.380592E+01 0.398874E+01 0.415140E+01

USING CONTROL VARIABLE: ROUTING(l,3)
YBAR(BHAT) 0.382653E+01 0.398936E+01 0.415606E+01 0.9150
VARIANCE RATIO 0.650857E+00 0.949540E+00 0.999997E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.375724E+01 0.399063E+01 0.420255E+01 0.7650
VARIANCE RATIO 0.376625E+00 0.761644E+00 0.998550E+00

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.380441E+01 0.398905E+01 0.417934E+01 0.8950
VARIANCE RATIO 0.513316E+00 0.938565E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.379973E+01 0.398678E+01 0.416616E+01 0.9300
VARIANCE RATIO 0.587106E+00 0.948372E+00 0.999999E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.375108E+01 0.398441E+01 0.418557E+0i 0.9050
VARIANCE RATIO 0.634476E+00 0.943080E+00 0.999998E+00

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.380442E+01 0.398906E+01 0.417932E+01 0.8950
VARIANCE RATIO 0.513602E+00 0.938575E+00 0.999999E+00

USING CONTROL VARIABLE: SOJOURN(M/M/I)
YBAR(BHAT) 0.371078E+01 0.401222E+01 0.427863E+01 0.4650
VARIANCE RATIO 0.113236E+00 0.355449E+00 0.821358E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.370819E+01 0.399823E+01 0.424922E+01 0.6950
VARIANCE RATIO 0.205460E+00 0.662065E+00 0.999135E+00

USING CONTROL VARIABLE: SOJOURN(G/G/l)
YBAR(BHAT) 0.371430E+01 0.401247E+01 0.428437E+01 0.4400
VARIANCE RATIO 0.114329E+00 0.334087E+00 0.783583E+00

USING CONTROL VARIABLE: WAIT4(G/G/I)
YBAR(BHAT) 0.372064E+01 0.399890E+01 0.426272E+01 0.7100
VARIANCE RATIO 0.238847E+00 0.643083E+00 0.997044E+00
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Table D.10. Control Variate Results Against Sojourn Time
at the Tenth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.246467E+02 0.299427E+02 0.353747E+02

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.247080E+02 0.300389E+02 0.361594E+02 0.9100
VARIANCE RATIO 0.639244E+00 0.951075E+00 0.999996E+00

USING CONTROL VARIABLE: ROUTING(l,4)
YBAR(BHAT) 0.241610E+02 0.299488E+02 0.357995E+02 0.8950
VARIANCE RATIO 0.293134E+00 0.859462E+00 0.999998E+00

USING CONTROL VARIABLE: WORK(l)
YBAR(BHAT) 0.24S217E 02 0.299633E+02 0.363288E+02 0.8900
VARIANCE RATIO 0.609402E+00 0.943036E+00 0.999994E+00

USING CONTROL VARIABLE: WORK(Z)
YBAR(BHAT) 0.236332E+02 0.299989E+02 0.357056E+02 0.9250
VARIANCE RATIO 0.490976E+00 0.951623E 00 0.999996E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.247234E+02 0.299672E+02 0.363240E+02 0.8950
VARIANCE RATIO 0.635769E+00 0.948150E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.245203E+02 0.299608E+02 0.363192E+02 0.8900
VARIANCE RATIO 0.609347E+00 0.943254E+00 0.999999E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.256705E+02 0.314889E 02 0.411867E+02 0.7850
VARIANCE RATIO 0.273576E+00 0.708201E+00 0.100000E+01

USING CONTROL VARIABLE: WAIT4(M/M/I)
YBAR(BHAT) 0.241567E+02 0.314347E+02 0.384832E+02 0.6850
VARIANCE RATIO 0.206467E+00 0.604245E+00 0.999674E+00

USING CONTROL VARIABLE: SOJOURN(G/G/)
YBAR(BHAT) 0.256697E+02 0.314904E+02 0.413126E+02 0.7800
VARIANCE RATIO 0.277785E+00 0.709799E+00 0.999999E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.241370E+02 0.314233E+02 0.384162E+02 0.6600
VARIANCE RATIO 0.200296E+00 0.602308E+00 0.999712E+00
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Table D.11. Control Variate Results Against Sojourn Tine
at the Eleventh Design Point

NAME MINIMUM AVERAGE M4AXIMUM COVERAGE

YBAR 0.490559E+01 0.530441E+01 0.566416E+01

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.490509E+01 0.530760E+01 0.566931E+01 0.9350
VARIANCE RATIO 0.572129E+00 0.946071E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.491179E+01 0.531109E+01 0.575136E+01 0.9050
VARIANCE RATIO 0.4216689+00 0.873746E+00 0.1000001+01

USING CONTROL VARIABLE: WORKM1
YBAR(BHAT) 0.4904781*01 0.530375E+01 0.572119E+01 0.9300
VARIANCE RATIO 0.5589221+00 0.946952E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.440455E+01 0.529597E+01 0.582324E+01 0.9350
VARIANCE RATIO 0.645532E+00 0.949085E+00 0.999978E+00

USING CONTROL VARIABLE: WORK(3
YBAR(BHAT) 0.490411E+01 0.530130E+01 0.623082E+01 0.9350
VARIANCE RATIO 0.516269E+00 0.944746E+00 0.999989E+00

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.4904731+01 0.530378E+01 0.572085E-01 0.9300
VARIANCE RATIO 0.5576601+00 0.946925E+00 0.100000E*01

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.478901E+01 0.536703E+01 0.608927E+01 0.5800
VARIANCE RATIO 0.1360791+00 0.450433E+00 0.9025461+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.4664961+01 0.535122E+01 0.598138E+01 0.5800
VARIANCE RATIO 0.9364131-01 0.415536E+00 0.9798221+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.461028E+01 0.535548E+01 0.6084131+01 0.4650
VARIANCE RATIO 0.6533251-01 0.2664641+00 0.7025941+00

USING CONTROL VARIABLE: W'AIT4(G/G/1)
YBAR(BHAT) 0.4620901+01 0.533501E+01 0.5968141+01 0.5250
VARIANCE RATIO 0.131066E+00 0.3868741+00 0.9306791+00
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Table D.12. Control Variate Results Against Sojourn Time
at the Twelfth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.385956E+02 0.470301E+02 0.590437E+02

USING CONTROL VARIABLE: ROUTING(l,3)
YBAR(BHAT) 0.385054E+02 0.472231E+02 0.595735E+02 0.9150
VARIANCE RATIO 0.678291E+00 0.949828E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.375837E+02 0.468042E+02 0.589178E+02 0.9050
VARIANCE RATIO 0.546805E+00 0.917021E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(l)
YBAR(BHAT) 0.387353E+02 0.471866E+02 0.688168E+02 0.9250
VARIANCE RATIO 0.600185E+00 0.949178E+00 0.999992E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.385828E+02 0.470423E+02 0.596938E+02 0.9350
VARIANCE RATIO 0.615101E+00 0.953366E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.389498E+02 0.471159E+02 0.588525E+02 0.9200
VARIANCE RATIO 0.386973E+00 0.945840E+00 0.999999E+00

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.387146E+02 0.471739E+02 0.679613E+02 0.9250
VARIANCE RATIO 0.595894E+00 0.949470E+00 0.999991E+00

USING CONTROL VARIABLE: SOJOURN(M/M/l)
YBAR(BHAT) 0.393682E+02 0.505069E+02 0.698632E+02 0.6800
VARIANCE RATIO 0.135096E+00 0.689193E+00 0.999557E+00

USING CONTROL VARIABLE: WAIT4(M/M/I)
YBAR(BHAT) 0.386547E+02 0.497819E+02 0.698244E+02 0.7250
VARIANCE RATIO 0.135505E+00 0.671610E+00 0.998631E+00

USING CONTROL VARIABLE: SOJOURN(G/G/l)
YBAR(BHAT) 0.393751E+02 0.502915E+02 0.699491E+02 0.6850
VARIANCE RATIO 0.129665E+00 0.670991E+00 0.999958E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.390337E+02 0.497711E+02 0.699372E+02 0.7200
VARIANCE RATIO 0.143626E+00 0.672896E+00 0.998564E+00
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Table D.13. Control Variate Results Against Sojourn Time
at the Thirteenth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.362597E+01 0.381095E+01 0.398981E+01

USING CONTROL VARIABLE: ROUTING(l,3)
YBAR(BHAT) 0.362032E+01 0.380911E+01 0.400185E+01 0.8800
VARIANCE RATIO 0.335364E+00 0.877644E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.359593E+01 0.381070E+01 0.406907E+01 0.8000
VARIANCE RATIO 0.212558E+00 0.776582E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(l)
YBAR(BHAT) 0.362653E+01 0.381054E+01 0.398310E+01 0.8950
VARIANCE RATIO 0.487505E+00 0.945541E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.362480E+01 0.381052E+01 0.398868E+01 0.9100
VARIANCE RATIO 0.385303E+00 0.949118E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.361801E+01 0.380606E+01 0.399455E+01 0.9150
VARIANCE RATIO 0.476760E+00 0.942032E+00 0.999998E+00

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.362652E+01 0.381054E+01 0.398302E+01 0.8950
VARIANCE RATIO 0.487568E+00 0.945545E+00 0.100000E+01

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.354936E+01 0.383049E+01 0.414142E+01 0,4300
VARIANCE RATIO 0.611835E-01 0.331030E+00 0.881636E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.358877E+01 0.381797E+01 0.403301E+01 0.7650
VARIANCE RATIO 0.179257E+00 0.712198E+00 0.999670E+00

USING CONTROL VARIABLE: SOJOURN(G/G/l)
YBAR(BHAT) 0.354646E+01 0.382954E+01 0.413612E+01 0.4350
VARIANCE RATIO 0.643630E-0l 0.315746E+00 0.865978E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.356530E+01 0.381773E+01 0.404205E+01 0.7400
VARIANCE RATIO 0.191999E+00 0.699534E+00 0.999399E+00
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Table D.14. Control Variate Results Against Sojourn Tine
at the Fourteenth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.250717E+02 0.292389E+02 0.348594E+02

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.244769E+02 0.292682E+02 0.348573E+02 0.9450
VARIANCE RATIO 0.417618E+00 0.928636E+00 0.999999E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.245819E+02 0.293296E+02 0.367279E+02 0.9000
VARIANCE RATIO 0.443243E+00 0.858234E+00 0.999979E+00

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.252217E+02 0.292557E+02 0.361015E+02 0.9450
VARIANCE RATIO 0.506835E+00 0.952300E+00 0.999996E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.231941E+02 0.292391E+02 0.376504E+02 0.9300
VARIANCE RATIO 0.702847E+00 0.945412E+00 0.999991E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.257546E+02 0.293223E+02 0.348498E+02 0.9350
VARIANCE RATIO 0.562071E+00 0.948348E+00 0.999996E+00

USING CONTRO. VARIABLE: WORK(4
YBAR(BHAT) 0.252241E+02 0.292533E+02 0.360774E+02 0.9450
VARIANCE RATIO 0.510453E+00 0.952444E+00 0.999997E+00

USING CONTROL VARIABLE: SOJOURN( M/MI1)
YBAR(BHAT) 0.246920E+02 0.307517E+02 0.384403E+02 0.8150
VARIANCE RATIO 0.173840E+00 0.748431E+00 0.999981E+00

USING CONTROL VARIABLE: WAIT4(M/M/l)
YBAR(BHAT) 0.224575E+02 0.306417E+02 0.385982E+02 0.7450
VARIANCE RATIO 0.205944E+00 0.632572E+00 0.995176E+00

USING CONTROL VARIABLE: SOJOURN(G/C/1)
YBAR(BHAT) 0.244717E+02 0.307440E+02 0,383845E+02 0.8150
VARIANCE RATIO 0.156665E+00 0.750094E+00 0.999974E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.219894E+02 0.306433E+02 0.385125E+02 0.7450
VARIANCE RATIO 0.195685E+00 0.626817E+.00 0.993579E+00
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Table D.15. Control Variate Results Against Sojourn Time
at the Fifteenth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.470558E+01 0.512254E+01 0.545352E+01

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.470723E+01 0.512507E+01 0.545784E+01 0.9300
VARIANCE RATIO 0.539615E+00 0.935454iE+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.464156E+01 0.512207E+01 0.551342E+01 0.9250
VARIANCE RATIO 0.435000E+00 0.899192E+00 0.999996E+00

USING CONTROL VARIABLE: WORK(1
YBAR(BHAT) 0.460887E+01 0.511759E+01 0.548528E+01 0.9150
VARIANCE RATIO 0.491643E+00 0.939493E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.445197E+01 0.511944E+01 0.548606E+01 0.9250
VARIANCE RATIO 0.695184E+00 0.957703E-00 0.999999E+00

USING CONTROL VARIABLE: WORK(3
YBAR(BHAT) 0.463500E+01 0.512162E+01 0.546696E+01 0.9250
VARIANCE RATIO 0.615519E+00 0.947813E+00 0.IOO0OOE+01

USING CONTROL VARIABLE: WORR(4
YBAR(BHAT) 0.460917E+01 0.511760E+01 0.548530E+01 0.9150
VARIANCE RATIO 0.491485E+00 0.939497E+00 0.IO0OOOE+01

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.446228E+01 0.517711E+01 0.578296E+01 0.5650
VARIANCE RATIO 0.123806E+00 0.448358E+00 0.937828E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.455079E+01 0.516825E+01 0.569372E+01 0.5150
VARIANCE RATIO 0.123214E+00 0.404259E+00 0.765727E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.442982E+01 0.517591E+01 0.579209E+01 0.3850
VARIANCE RATIO 0.328271E-01 0.253222E+00 0.724730E+00

USING CONTROL VARIABLE: WAIT4(GIG/1)
YBAR(BHAT) 0.450089E+01 0.516114E+01 0.572054E+01 0.4950
VARIANCE RATIO 0.938772E-01 0.379051E+00 0.778870E+00
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Table D.16. Control Variate Results Against Sojourn Time
at the Sixteenth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.368060E+02 0.456687E+02 0.572155E+02

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.367545E+02 0.455973E+02 0.581674E+02 0.9150
VARIANCE RATIO 0.569230E+00 0.941763E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.361866E+02 0.455062E+02 0.576799E+02 0.9050
VARIANCE RATIO 0.459856E+00 0.928508E+00 0.999994E+00

USING CONTROL VARIABLE: WORK(1
YBAR(BHAT) 0.371077E+02 0.457249E+02 0.600144E+02 0.8950
VARIANCE RATIO 0.608909E+00 0.9447816+00 0.999996E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.370771E+02 0.4570576+02 0.5765336+02 0.9150
VARIANCE RATIO 0.646092E+00 0.9444846+00 0.999998E+00

USING CONTROL VARIABLE: WORR(3)
YBAR(BHAT) 0.370829E+02 0.4567036+02 0.576092E+02 0.9050
VARIANCE RATIO 0.525826E+00 0.951012E+00 0.1000006+01

USING CONTROL VARIABLE: WORK(4
YBAR(BHAT) 0.3710676+02 0.457137E+02 0.5984416+02 0.8900
VARIANCE RATIO 0.6086576+00 0.9452946+00 0.100000E+01

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.374931E+02 0.4913996+02 0.681191E+02 0.6550
VARIANCE RATIO 0.2145106+00 0.725930E+00 0.9999676+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.3226186+02 0.484143E+02 0.5657186+02 0.6500
VARIANCE RATIO 0.2000336-03 0.6237596+00 0.9998696+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.3748656+02 0.4914286+02 0.6889846+02 0.6300
VARIANCE RATIO 0.700837E-02 0.655286E+00 0.9999976+00

USING CONTROL VARIABLE: WAIT4(C/G/1)
YBAR(BHAT) 0.318773E+02 0.483783E+02 0.6632836+02 0.6650
VARIANCE RATIO 0.2000336-03 0.6243826+00 0.999870E+00
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Table D.17. Control Variate Results Against Fourth Node Quantile
at the First Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.108982E+00 0.121346E+00 0.133839E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.107888E+00 0.121325E+00 0.133859E+00 0.9050
VARIANCE RATIO 0.584686E+00 0.939386E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.106945E+00 0.121218E+00 0.133643E+00 0.8900
VARIANCE RATIO 0.332811E+00 0.909225E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.108926E+00 0.121482E+00 0.134308E+00 0.9000
VARIANCE RATIO 0.697780E+00 0.950873E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.108073E+00 0.121293E+00 0.133982E+00 0.9100
VARIANCE RATIO 0.621506E+00 0.946486E+00 0.999983E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.106275E+00 0.121373E+00 0.134094E+00 0.8950
VARIANCE RATIO 0.565127E+00 0.951841E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.108926E+00 0.121483E+00 0.134307E+00 0.9000
VARIANCE RATIO 0.698097E+00 0.950868E+00 0.100000E+01

USING CONTROL VARIABLE: SOJOURN(/M/I1)
YBAR(BHAT) 0.106004E+00 0.122063E+00 0.137733E+00 0.7500
VARIANCE RAILO 0.282425E+00 0.704738E+00 0.999972E+00

USING CONTROL VARIABLE: WAIT4(M/M/I)
YBAR(BHAT) 0.102571E+00 0.121814E+00 0.141884E+00 0.5700
VARIANCE RATIO 0.159547E+00 0.443010E+00 0.837345E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BKAT) 0.106520E+00 0.121954E+00 0.138474E+00 0.7700
VARIANCE RATIO 0.283256E+00 0.720013E+00 0.999996E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.102915E+00 0.121783E+00 0.143014E+00 0.5600
VARIANCE RATIO 0.140546E 00 0.421196E00 0.832287E+00
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Table D.18. Control Variate Results Against Fourth Node Quantile
at the Second Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.800609E-01 0.122987E+00 0.183393E,00

USING CONTROL VARIABLE: ROUTING(l,3)
YBAR(BHAT) 0.796589E-01 0.122874E+00 0.188708E+00 0.9400
VARIANCE RATIO 0.665956E+00 0.944736E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.690142E-01 0.122216E+00 0.187343E+00 0.9300
VARIANCE RATIO 0.505389E+00 0.918495E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.713555E-01 0.123318E+00 0.183295E+00 0.9300
VARIANCE RATIO 0.548735E+00 0.946070E+00 0.999999E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.708987E-01 0.122474E+00 0.188564E+00 0.9200
VARIANCE RATIO 0.520072E+00 0.944244E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.810515E-01 0.123990E+00 0.187336E+00 0.9350
VARIANCE RATIO 0.711601E+00 0.947854E+00 0.999998E+00

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.715930E-01 0.123326E+00 0.183302E+00 0.9300
VARIANCE RATIO 0.550165E+00 0.945971E+00 0.100000E+01

USING CONTROL VARIABLE: SOJOURN(M/M/l)
YBAR(BHAT) 0.767694E-01 0.127122E+00 0.197354E+00 0.9150
VARIANCE RATIO 0.381408E+00 0.918162E+00 0.999999E+00

USING CONTROL VARIABLE: WAIT4(M/M/I)
YBAR(BHAT) 0.803986E-01 0.134137E+00 0.213651E+00 0.7650
VARIANCE RATIO 0.247330E+00 0.723061E+00 0.999982E+00

USING CONTROL VARIABLE: SOJOURN(GIG/i)
YBAR(BHAT) 0.766782E-01 0.126980E+00 0.196664E+00 0.9150
VARIANCE RATIO 0.381622E+00 0.919540E+00 0.999998E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.800893E-01 0.134095E+00 0.215977E+00 0.7600
VARIANCE RATIO 0.251796E 00 0.721281E+00 0.999996E+00
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Table D.19. Control Variate Results Against Fourth Node Quantile
at the Third Design Point

NAM4E MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.117299E+00 0.141142E+00 0.165164E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.114428E+00 0.140852E+00 0.167499E+00 0.9400
VARIANCE RATIO 0.647251E+00 0.946466E+00 0.999999E+00

USING CONTROL VARIABLE: ROUTING(I,4)
YBAR(BHAT) 0.117293E+00 0.141151E+00 0.168151E+00 0.9300
VARIANCE RATIO 0.641702E+00 0.942667E+00 0.100000E+01

USING CONTROL VARIABLE: WORKMl
YBAR(BHAT) 0.119165E+00 0.141217E+00 0.167973E+00 0.9550
VARIANCE RATIO 0.464607E+00 0.951705E+00 0.999995E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.116956E+00 0.140959E+00 0.169834E+00 0.9400
VARIANCE RATIO 0.532538E+00 0.951487E+00 0.999959E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.115201E+00 0.141266E+00 0.167604E+00 0.9300
VARIANCE RATIO 0.555494E+00 0.950901E+00 0.999999E+00

USING CONTROL VARIABLE: WORK(4
YBAR(BHAT) 0.119136E+00 0.141222E+00 0.167956E+00 0.9550
VARIANCE RATIO 0.464179E+00 0.951710E+00 0.999992E+00

USING CONTROL VARIABLE: SOJOURN(M/M/l)
YBAR(BHAT) 0.109585E+00 0.144851E+00 0.193024E+00 0.6600
VARIANCE RATIO 0.152195E+00 0.579707E+00 0.992372E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.939711E-01 0.145167E+00 0.193472E+00 0.4350
VARIANCE RATIO 0.809851E-01 0.268138E+00 0.677336E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.933476E-01 0.144652E+00 0.191033E+00 0.3650
VARIANCE RATIO 0.796989E-01 0.262950E+00 0.661056E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.835182E-01 0.144021E+00 0.187470E+00 0.3750
VARIANCE RATIO 0.822466E-01 0.232744E+00 0.625153E+00
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Table D.20. Control Variate Results Against Fourth Node Quantile
at the Fourth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

WYBAR 0.738233E-02 0.613441E-01 0.141887E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.758367E-02 0.614113E-01 0.136472E+00 0.8500
VARIANCE RATIO 0.637302E+00 0.951017E+00 0.999995E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.732101E-02 0.607389E-01 0.147175E+00 0.8650
VARIANCE RATIO 0.623753E+00 0.956300E+00 0.999985E+00

USING CONTROL VARIABLE: WORR(i)
YBAR(BHAT) 0.486476E-02 0.615487E-01 0.163884E+00 0.8550
VARIANCE RATIO 0.339997E+00 0.944999E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) -0.128170E-01 0.613136E-01 0.144628E+00 0.8400
VARIANCE RATIO 0.485296E+00 0.946526E+00 0.999993E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.530243E-02 0.617015E-01 0.148124E+00 0.8450
VARIANCE RATIO 0.617724E+00 0.940743E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.486544E-02 0.614900E-01 0.163384E+00 0.8550
VARIANCE RATIO 0.339796E+00 0.945119E+00 0.100000E+01

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.826074E-02 0.754763E-01 0.201013E+00 0.7350
VARIANCE RATIO 0.421055E-01 0.837181E+00 0.999949E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.74716BE-02 0.771357E-01 0.201252E+00 0.6850
VARIANCE RATIO 0.162178E-01 0.751506E+00 0.999986E+00

USING CONTROL VARIABLE: SOJOURN(G/G/i)
YBAR(BHAT) 0.829340E-02 0.777838E-01 0.200373E+00 0.6850
VARIANCE RATIO 0.356739E-01 0.774744E+00 0.999996E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.769022E-02 0.771427E-01 0.197136E+00 0.6750
VARIANCE RATIO 0.162676E-01 0.747599E+00 0.100000E+01
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Table D.21. Control Variate Results Against Fourth Node Quantile
at the Fifth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.111325E+00 0.121418E+00 0.132414E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.111788E+00 0.121434E+00 0,131716E+00 0.9100
VARIANCE RATIO 0.581385E+00 0.947085E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.105001E+00 0.121351E+00 0.132163E+00 0.8850
VARIANCE RATIO 0.578932E+00 0.903681E+00 0.999983E+00

USING CONTROL VARIABLE: WORK(l)
YBAR(BHAT) 0.I09514E+00 0.121498E+00 0.133965E+00 0.9100
VARIANCE RATIO 0.702469E+00 0.949806E+00 0.999995E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.107856E+00 0.121264E+00 0.134142E+00 0.9050
VARIANCE RATIO 0.673564E+00 0.953347E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.105744E+00 0.121409E+00 0.134251E+00 0.9050
VARIANCE RATIO 0.627567E+00 0.951125E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.109515E+00 0.121498E+00 0.133964E+00 0.9100
VARIANCE RATIO 0.702539E+00 0.949797E+00 0.999996E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.110182E+00 0.122408E+00 0.136964E+00 0.7800
VARIANCE RATIO 0.303391E+00 0.779417E+00 0.999997E+00

USING CONTROL VARIABLE: WAIT4(M/M/l)
YBAR(BHAT) 0.105685E+00 0.122206E+00 0.140539E+00 0.5450
VARIANCE RATIO 0.130080E+00 0.445908E+00 0.925947E+00

USING CONTROL VARIABLE: SOJOURN(C/G/1)
YBAR(BHAT) 0.110200E+00 0.122268E+00 0.137154E+00 0,7950
VARIANCE RATIO 0.323205E+00 0.796578E+00 0.999815E+00

USING CONTROL VARIABLE: WAIT4(G/C/I)
YBAR(BHAT) 0.105442E+00 0.122140E+00 0.139733E+00 0.5100
VARIANCE RATIO 0.127179E+00 0.418037E+00 0.908348E+00
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Table D.22. Control Varlate Results Against Fourth Node Quantile
at the Sixth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.622885E-01 0.108684E+00 0.168433E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.620325E-01 0.108875E+00 0.170645E+00 0.9250
VARIANCE RATIO 0.513468E+00 0.950657E+00 0.999997E+00

USING CONTROL VARIABLE: ROUTING(I,4)
YBAR(BHAT) 0.676376E-01 0.108407E+00 0.169864E+00 0.9350
VARIANCE RATIO 0.583689E+00 0.939187E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.594641E-01 0.109773E+00 0.172394E+00 0.9300
VARIANCE RATIO 0.612138E+00 0.953165E+00 0.999997E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.622200E-01 0.108051E+00 0.172440E+00 0.9250
VARIANCE RATIO 0.593514E+00 0.949890E+00 0.999988E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.587167E-01 0.108695E+00 0.180395E+00 0.9300
VARIANCE RATIO 0.468669E+00 0.948411E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.595041E-01 0.109778E+00 0.172424E+00 0.9300
VARIANCE RATIO 0.612476E+00 0.953100E+00 0.100000E+01

USING CONTROL VARIABLE: SOJOURN(M/M/l)
YBAR(BHAT) 0.580289E-01 0.110269E+00 0.177221E+00 0.9150
VARIANCE RATIO 0.454583E+00 0.940221E+00 0.999979E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.651024E-01 0.120729E+00 0.223535E+00 0.8000
VARIANCE RATIO 0.264705E+00 0.735405E+00 0.100000E+01

USING CONTROL VARIABLE: SOJOURN(G/G/l)
YBAR(BHAT) 0.579146E-01 0.110227E+00 0.176488E+00 0.9150
VARIANCE RATIO 0.470616E+00 0.940779E+00 0.999979E+00

USING CONTROL VARIABLE: WAIT4(G/G/I)
YBAR(BHAT) 0.647745E-01 0.120575E+00 0.222433E+00 0.8000
VARIANCE RATIO 0.264302E+00 0.731573E+00 0.100000E+01
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Table D.23. Control Variate Results Against Fourth Node Quantile
at the Seventh Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.112569E+00 0.140501E+00 0.185156E+00

USING CONTROL VARIABLE: ROUTING(l,3)
YBAR(BHAT) 0.I13335E+00 0.140270E+00 0.190232E+00 0.9400
VARIANCE RATIO 0.547357E+00 0.942611E+00 0.999999E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.109996E+00 0.140422E+00 0.186807E 00 0.9300
VARIANCE RATIO 0.570730E+00 0.934657E+00 0.999999E+00

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.112687E+00 0.140580E+00 0.201817E+00 0.9250
VARIANCE RATIO 0.607985E+00 0.944603E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.12672E+00 0.140510E+00 0.183614E+00 0.9300
VARIANCE RATIO 0.611688E+00 0.948069E+00 0.999998E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.110439E+00 0.140202E+00 0.171872E+00 0.9150
VARIANCE RATIO 0.660412E+00 0.951762E+00 0.999999E+00

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.112691E+00 0.140583E+00 0.201832E+00 0.9250
VARIANCE RATIO 0.608191E+00 0.944580E+00 0.999999E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.108940E+00 0.143605E+00 0.204380E+00 0.7500
VARIANCE RATIO 0.234856E+00 0.669272E+00 0.997503E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.987313E-01 0.143796E+00 0.217044E+00 0.4850
VARIANCE RATIO 0.848460E-01 0.270045E+00 0.888704E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.984601E-01 0.143404E+00 0.216561E+00 0.4850
VARIANCE RATIO 0.797107E-01 0.309553E+00 0.768329E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.943801E-01 0.142356E+00 0.221662E+00 0.4350
VARIANCE RATIO 0.624765E-01 0.243331E+00 0.717937E+00
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Table D.24. Control Variate Results Against Fourth Node Quantile
at the Eight Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.145248E-01 0.645567E-01 0.177051E+00

USING CONTROL VARIABLE: ROUTING(l,3)
YBAR(BHAT) 0.152320E-01 0.641725E-01 0.177135E+00 0.8700
VARIANCE RATIO 0.709700E+00 0.943849E+00 0.999999E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.137351E-01 0.6S1024E-0l 0.180345E+00 0.8650
VARIANCE RATIO 0.570944E+00 0.933924E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(l)
YBAR(BHAT) -0.429269E-02 0.647223E-01 0.178368E+00 0.8650
VARIANCE RATIO 0.702579E+00 0.956512E+00 0-100000E+01

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.955922E-02 0.649550E-01 0.183485E+00 0.8600
VARIANCE RATIO 0.388151E+00 0.950948E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.145098E-01 0.656369E-01 0.170770E+00 0.8650
VARIANCE RATIO 0.389760E+00 0.948317E+00 0.999971E+00

USING CONTROL VARIABLE: WORK(4
YBAR(BHAT) -0.441317E-02 0.646924E-01 0.178622E+00 0.8650
VARIANCE RATIO 0.711096E+00 0.956903E+00 0.999995E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.123770E-01 0.800651E-01 0.190834E+00 0.7550
VARIANCE RATIO 0.256196E+00 0.863874E+00 0.999977E+00

USING CONTROL VARIABLE: WAIT4(M/M/l)
YBAR(BHAT) 0.139049E-01 0.804204E-01 0.191781E+00 0.7200
VARIANCE RATIO 0.909681E-01 0.747265E+00 0.999910E+00

USING CONTROL VARIABLE: SOJOURN(G/G/l)
YBAR(BHAT) 0.135561E-01 0.82925SE-0l 0.198735E+00 0.6700
VARIANCE RATIO 0.196644E+00 0.775468E+00 0.999973E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.139048E-01 0.804041E-01 0.192440E+00 0.7150
VARIANCE RATIO 0.116133E+00 0.746031E+00 0.100000E+01
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Table D.25. Control Variate Results Against Fourth Node Quantile
at the Ninth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.111008E+00 0.122395E+00 0.132180E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.109439E+00 0.122366E+00 0.133052E+00 0.9300
VARIANCE RATIO 0.497627E+00 0.942552E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.109022E+00 0.122632E+00 0.134885E+00 0.8500
VARIANCE RATIO 0.433837E+00 0.838388E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.110767E+00 0.122497E+00 0.134761E+00 0.9100
VARIANCE RATIO 0.715594E+00 0.948371E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.109774E+00 0.l22348E+00 0.131130E+00 0.9400
VARIANCE RATIO 0.471377E+00 0.951846E+00 0.999999E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.111225E+00 0.122125E+00 0.132695E+00 0.9250
VARIANCE RATIO 0.687864E+00 0.941987E+00 0.999993E+00

USING CONTROL VARIABLE: WORK(4
YBAR(BHAT) 0.110766E+00 0.122497E+00 0.134753E+00 0.9100
VARIANCE RATIO 0.715583E+00 0.948372E+00 0.100000E+01

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.106708E+00 0.123S62EtC0 0.i37i'.0.t00 0.6900
VARIANCE RATIO 0.227410E+00 0.611888E+00 0.999926E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.101738E+00 0.123172E+00 0.139209E+00 0.4950
VARIANCE RATIO 0.104222E+00 0.395685E+00 0.840172E+00

USING CONTROL VARIABLE: SOJOURN(G/G/l)
YBAR(BHAT) 0.106979E+00 0.123520E+00 0.135986E+00 0.6900
VARIANCE RATIO 0.223015E+00 0.624305E+00 0.999225E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.101454E+00 0.123210E+00 0.138830E+00 0.4650
VARIANCE RATIO 0.796724E-01 0.374487E+00 0.844993E+00
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Table D.26. Control Variate Results Against Fourth Node Quantile
at the Tenth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.685479E-01 0.112705E+00 0.177696E+00

USING CONTROL VARIABLE: ROUTING(l,3)
YBAR(BHAT) 0.645306E-01 0.112575E+00 0.179238E+00 0.9350
VARIANCE RATIO 0.639193E+00 0.953142E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(l,4)
YBAR(BHAT) 0.657353E-01 0.112503E+00 0.175888E+00 0.9200
VARIANCE RATIO 0.473448E+00 0.913959E+00 0.999992E+00

USING CONTROL VARIABLE: WORI(1
YBAR(BHAT) 0.648471E-01 0.114017E+00 0.177704E+00 0.9300
VARIANCE RATIO 0.669707E+00 0.951018E+00 0.999992E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.665513E-01 0.112739E+00 0.177008E+00 0.9400
VARIANCE RATIO 0.703021E+00 0.955436E+00 0.999999E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.546768E-01 0.112561E+00 0.182294E+00 0.9250
VARIANCE RATIO 0.678082E+00 0.953411E+00 0.1OOOOOE+01

USING CONTROL VARIABLE: WORK(4
YBAR(BHAT) 0.647503E-01 0.114022E+00 0.177704E+00 0.9300
VARIANCE RATIO 0.668615E+00 0.951008E+00 0.999991E.00

USING CONTROL VARIABLE: SOJOURN(M/M/l)
YBAR(BHAT) 0.668401E-01 0.116957E+00 0.206801E+00 0.9300
VARIANCE RATIO 0.358874E+00 0.899939E+00 0.999996E+00

USING CONTROL VARIABLE: WAIT4(M/M/I)
YBAR(BHAT) 0.561665E-01 0.125670E+00 0.225853E+00 0.7600
VARIANCE RATIO 0.161109E+00 0.713087E+00 0.999976E+00

USING CONTROL VARIABLE: SOJOURN(G/G/l)
YBAR(BHAT) 0.668441E-01 0.116895E+00 0.206502E.00 0.9300
VARIANCE RATIO 0.364805E+00 0.901445E+00 0.999997E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.535490E-01 0.125568E+00 0.224347E+00 0.7500
VARIANCE RATIO 0.160630E+00 0.711324E+00 0.999846E+00
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Table D.27. Control Variate Results Against Fourth Node Quantile
at the Eleventh Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.109092E+00 0.133791E+00 0.156356E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.109037E+00 0.133896E+00 0.153300E+00 0.9650
VARIANCE RATIO 0.717994E+00 0.946812E+00 0.999999E+00

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.109303E+00 0.134058E+00 0.156681E+00 0.9600
VARIANCE RATIO 0.583121E+00 0.933723E+00 0.999992E+00

USING CONTROL VARIABLE: WORKMl
YBAR(BHAT) 0,105861E+00 0.133454E+00 0.160838E+00 0.9350
VARIANCE RATIO 0.595487E+00 0.944692E+00 0.999999E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0,858128E-0l 0.133426E+00 0.l64153E+00 0.9550
VARIANCE RATIO 0.565806E+00 0.946036E+00 0.999998E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.110183E+00 0.133773E+00 0.194814E+00 0.9300
VARIANCE RATIO 0.583655E+00 0.94i6190E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.105856E+00 0.133455E+00 0.160815E+00 0.9350
VARIANCE RATIO 0.595146E+00 0.944685E+00 0.100000E+01

USING CONTROL VARIABLE: SOJOURN(M/M/l)
YBAR(BHAT) 0.103230E+00 0.137180E+00 0.179016E+00 0.7100
VARIANCE RATIO 0.153193E+00 0.610513E+00 0.995094.Ei00

USING CONTROL VARIABLE: WAIT4(M/M/l)
YBAR(BHAT) 0.918101E-01 0.137244E+00 0.180314E+00 0.4700
VARIANCE RATIO 0.740851E-01 0.271448E+00 0.791968E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.906200E-OI 0.137089E+00 0.179633E+00 0.4850
VARIANCE RATIO 0.659187E-01 0.271682E+00 0.650611E+00

USING CONTROL VARIABLE: WAIT4(C/G/1)
YBAR(BHAT) 0.878249E-01 0.135907E+00 0.178790E+00 0.4300
VARIANCE RATIO 0.6.54438E-01 0.238751E+00 0.696407E+00
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Table D.28. Control Variate Results Against Fourth Node Quantile
at the Twelfth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE
-------------------- ------------------------------------
YBAR 0.183013E-01 0.654637E-01 0.151707E+00

USING CONTROL VARIABLE: ROUTING(l,3)
YBAR(BHAT) 0.186208E-01 0.660864E-01 0.162674E+00 0.8750
VARIANCE RATIO 0.438063E+00 0.946059E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(l,4)
YBAR(BHAT) 0.180504E-01 0.647238E-01 0.154406E+00 0.8600
VARIANCE RATIO 0.631840E+00 0.934873E+00 0,999966E+00

USING CONTROL VARIABLE: WORK(l)
YBAR(BHAT) 0.136727E-01 0.662149E-01 0.208152E.00 0.8800
VARIANCE RATIO 0.479767E+00 0.947534E+00 0.999994E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.140515E-0l 0.661724E-01 0.142004E+00 0.8850
VARIANCE RATIO 0.471836E+00 0.950482E+00 0.999997E.00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.154062E-01 0.661085E-01 0.163343E+00 0.8750
VARIANCE RATIO 0.412782E+00 0.942611E+00 O.IOOOOOE+01

USING CONTROL VARIABLE: WORK(4)
YBAR(BHAT) 0.135963E-01 0.662051E-01 0.208216E+00 0.8800
VARIANCE RATIO 0.471930E+00 0.947586E+00 0.999998E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.150423E-01 0.789136E-0l 0.199755E+00 0.7550
VARIANCE RATIO 0.282376E+00 0.849428E+00 0.999994E+00

USING CONTROL VARIABLE: WAIT4(M/M/l)
YBAR(BHAT) 0.134631E-01 0.809273E-01 0.199835E+00 0.7300
VARIANCE RATIO 0.814486E-01 0.742618E+00 0.999995E+00

USING CONTROL VARIABLE: SOJOURN( GIG/i)
YBAR(BHAT) 0.150765E-0l 0.804845E-01 0.202885E+00 0.7450
VARIANCE RATIO 0.107620E+00 0.796594E+00 0.999999E+00

USING CONTROL VARIABLE: WAIT4(G/G/l)
YBAR(BHAT) 0.148620E-01 0.810003E-01 0.200335E+00 0.7300
VARIANCE RATIO 0.813528E-01 0.739736E+00 0.100000E+01
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Table D.29. Control Variate Results Against Fourth Node Quantile
at the Thirteenth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.112617E+00 0.123006E+00 0.133489E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.111830E+00 0.122966E+00 0.133523E+00 0.9150
VARIANCE RATIO 0.608003E+00 0.948123E+00 0.100000E+01

USING CONTROL VARIABLE: ROUTING(1,4)
YBAR(BHAT) 0.112125E+00 0.123066E+00 0.135463E+00 0.8300
VARIANCE RATIO 0.395735E+00 0.839989E+00 O.100000E+01

USING CONTROL VARIABLE: WORK(l)
YBAR(BHAT) 0.112958E+00 0.123095E+00 0.139967E+00 0.9050
VARIANCE RATIO 0.619763E+00 0.945904E+00 0.999999E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.111766E+00 0.122816E+00 0.136052E+00 0.9000
VARIANCE RATIO 0.725878E+00 0.944308E+00 0.999997E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.113695E+00 0.123076E+00 0.140833E+00 0.9050
VARIANCE RATIO 0.475461E+00 0.947033E+00 0.999999E+00

USING CONTROL VARIABLE: WORK(4
YBAR(BHAT) 0.112956E+00 0.123095E+00 0.139963E+00 0.9050
VARIANCE RATIO 0.620128E+00 0.945910E+00 0.999998E+00

USING CONTROL VARIABLE: SOJOURN(M/M/1)
YBAR(BHAT) 0.111110E+00 0.123937E+00 0.138478E+00 0.7050
VARIANCE RATIO 0.165284E+00 0.690984E+00 0.998524E+00

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.109029E+00 0.123774E+00 0.142480E+00 0.5100
VARIANCE RATIO 0.124364E+00 0.382093E+00 0.806462E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.110603E+00 0.123842E+00 0.138925E+00 0.7150
VARIANCE RATIO 0.217436E+00 0.712158E+00 0.995266E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.108567E+00 0.123744E+00 0.143333E+00 0.5050
VARIANCE RATIO 0.109572E+00 0.358926E+00 0.782032EO00

D.30



Table D.30. Control Variate Results Against Fourth Node Quantile
at the Fourteenth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.635066E-01 0.115893E+00 0.172982E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.631326E-01 0.115665E+00 0.174980E+00 0.9600
VARIANCE RATIO 0.428457E+00 0.946227E+00 0.999992E+00

USING CONTROL VARIABLE: ROUTING(l,4)
YBAR(BHAT) 0.634904E-01 0.116603E+00 0.207008E+00 0.9250
VARIANCE RATIO 0.531987E+00 0.904762E+00 0.100000E+01

USING CONTROL VARIABLE: WORKMl
YBAR(BHAT) 0.639428E-01 0.115812E+00 0.187707E+00 0.9350
VARIANCE RATIO 0.568546E+00 0.952948E+00 0.999991E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.627988E-01 0.116558E+00 0.206533E+00 0.9200
VARIANCE RATIO 0.626489E+00 0.948541E+00 0.100000E.01

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.654682E-01 0.117183E+00 0.173880E+00 0.9400
VARIANCE RATIO 0.629324E+00 0.956051E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(4
YBAR(BHAT) 0.639314E-01 0.115819E+00 0.187862E+00 0.9350
VARIANCE RATIO 0.568238E+00 0.952959E.00 0.999996E+00

USING CONTROL VARIABLE: SOJOURN(M/M/l)
YBAR(BHAT) 0.605557E-01 0.119998E+00 0.195994E+00 0.9150
VARIANCE RATIO 0.371597E+00 0.922926E+00 0.IOOOOOE+01

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) 0.60914BE-O1 0.129821E+00 0.220835E+00 0.7650
VARIANCE RATIO 0.224505E+00 0.704063E+00 0.998094E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.606823E-01 0.119896E+00 0.195955E+00 0.9150
VARIANCE RATIO 0.369715E+00 0.923695E+00 0.999985E+00

USING CONTROL VARIABLE: WAIT4(G/G/l)
YBAR(BHAT) 0.577421E-01 0.129756E+00 0.221314E+00 0.7600
VARIANCE RATIO 0.226006E+00 0.700010E+00 0.997459E+00
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Table D.31. Control Variate Results Against Fourth Node Quantile
at the Fifteenth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.107831E+00 0.132848E.00 0.155592E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.108732E+00 0.132963E+00 0.155574E+00 0.9350
VARIANCE RATIO 0.709745E+00 0.946663E+00 0.999999E+00

USING CONTROL VARIABLE: ROUTrNG(1,4)
YBAR(BHAT) 0.106303E+00 0.132818E+00 0.155641E+00 0.9500
VARIANCE RATIO 0.524224E+00 0.947768E.00 0.999997E+00

USING CONTROL VARIABLE: WORK(1)
YBAR(BHAT) 0.108570E+00 0.132973E+00 0.156596E+00 0.9050
VARIANCE RATIO 0.751773E+00 0.949830E+00 0.999998E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.811531E-01 0.132490E+00 0.161033E+00 0.9250
VARIANCE RATIO 0.660564E+00 0.955374E+00 0.999989E+00

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.999523E-01 0.1326B7E*00 0.158323E+00 0.9450
VARIANCE RATIO 0.687302E+00 0.946703E+00 0.999967E+00

USING CONTROL VARIABLE: WORK(4
YBAR(BHAT) 0.108579E+00 0.132973E+00 0.156592E+00 0.9050
VARIANCE RATIO 0.751612E+00 0.949824E+00 0.999999E+00

USING CONTROL VARIABLE: SOJOURN(M/M/l)
YBAR(BHAT) 0.972244E-01 0.135528E+00 0.165982E+00 0.7300
VARIANCE RATIO 0.254447E+00 0.652769E+00 0.997814E+00

USING CONTROL VARIABLE: WAIT4(M/M/I)
YBAR(BHAT) 0.882594E-01l 0.135996E+00 0.173967E+00 0.4700
VARIANCE RATIO 0.586143E-01 0.255615E+00 0.607032E+00

USING CONTROL VARIABLE: SOJOURN(G/G/1)
YBAR(BHAT) 0.884096E-01 0.136073E+00 0.176498E+00 0.5000
VARIANCE RATIO 0.845022E-01 0.300370E+00 0.808305E+00

USING CONTROL VARIABLE: WAIT4(G/G/1)
YBAR(BHAT) 0.895580E-01 0.135318E+00 0.173735E+00 0.4450
VARIANCE RATIO 0.640602E-01 0.237888E+00 0.605448E+00
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Table D.32. Control Variate Results Against Fourth Node Quantile
at the Sixteenth Design Point

NAME MINIMUM AVERAGE MAXIMUM COVERAGE

YBAR 0.136025E-01 0.637900E-01 0.164999E+00

USING CONTROL VARIABLE: ROUTING(1,3)
YBAR(BHAT) 0.140895E-0I 0.637519E-01 0.163840E+00 0.8500
VARIANCE RATIO 0.546540E+00 0.946557E+00 0.999997E+00

USING CONTROL VARIABLE: ROUTING(l,4)
YBAR(BHAT) 0.133346E-01 0.632153E-01 0.165482E+00 0.8500
VARIANCE RATIO 0.588743E+00 0.949309E+00 0.999999E+00

USING CONTROL VARIABLE: WORK(l)
YBAR(BHAT) 0.134627E-01 0.639593E-01 0.192337E+00 0.8550
VARIANCE RATIO 0.661003E+00 0.952177E+00 0.999996E+00

USING CONTROL VARIABLE: WORK(2)
YBAR(BHAT) 0.132382E-01 0.635254E-01 0.180854E+00 0.8500
VARIANCE RATIO 0.549468E+00 0.947156E+00 0.100000E+01

USING CONTROL VARIABLE: WORK(3)
YBAR(BHAT) 0.911578E-02 0.640720E-01 0.165083E+00 0.8300
VARIANCE RATIO 0.36934lE+00 0.948231E+00 0.999989E+00

USING C04ITROL VARIABLE: WOR[(4
YBAR(BHAT) 0.134616E-01 0.639375E-01 0.192181E+00 0.8550
VARIANCE RATIO 0.663000E+00 0.952478E+00 0.999970E+00

USING CONTROL VARIABLE: SOJOURN(M/M/l)
YBAR(BHAT) 0.120263E-01 0.783109E-01 0.226699E+00 0.7050
VARIANCE RATIO 0.200864E+00 0.852099E+00 0.100000E+01

USING CONTROL VARIABLE: WAIT4(M/M/1)
YBAR(BHAT) -0.242423E-02 0.800065E-01 0.234492E+00 0.6700
VARIANCE RATIO 0.362815E-01 0.711689E+00 0.999992E+00

USING CONTROL VARIABLE: SOJOURN(G/G/l)
YBAR(BHAT) 0.121130E-01 0.811965E-01 0.245617E+00 0.6550
VARIANCE RATIO 0.366392E-01 0.773461E+00 0.999999E+00

USING CONTROL VARIABLE: WAIT4(G/C/1)
YBAR(BHAT) -0.367256E-02 0.798992E-01 0.228922E+00 0.6550
VARIANCE RATIO 0.362530E-01 0.706804.Ei00 0.999991E+00
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