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ABSTRACT

) We develop computationally efficient iterative algorithms for finding the Maximum Likelihood

estimates of the delay and spectral parameters of a noise-like Gaussian signal radiated from a

common point source and observed by two or more spatially separated receivers. We first consider

the stationary case in which the source is stationary (not moving) and the observed signals are mod-

eled as wide sense stationary processes. We then extend the scope by considering a non-stationary

(moving) source radiating a possible non-stationary stochastic signal. In that context, we address the

practical problem of estimation given discrete-time observations. We also present efficient methods

for calculating the log-likelihood gradient (score), the Hessian, and the Fisher's information matrix

under stationary and non-stationary conditions. / . r ' ( -.
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I. INTRODUCTION

Estimation of the time delay between signals radiated from a common point source and

observed at two or more spatially separated receivers is a problem of considerable practical interest

(e.g. see [11). Assuming that the source signal and the additive receiver noises are mutually inde-

pendent wide sense stationary Gaussian processes with known spectra, and that the observation in-

terval is long compared with the correlation time (inverse bandwidth) of the signal and the noises,

the Maximum Likelihood (ML) estimate of the pairwise differential delay is obtained by pre-filter-

ing and cross-correlating the received signals, and searching for the peak of the cross-correlator

output [2] [3]. Under the stated assumptions, the ML delay estimate is optimal in the sense that it is

asymptotically unbiased and its error variance approaches the Cramer-Rao iower bound.

In practice, the signal and noise spectra are not precisely known. One is unlikely to have accu-

rate prior information about signal bandwidth, center frequency, or power level, and the statistical

description of the noise field is similarly incomplete. In [4] it has been shown that lack of knowl-

edge of the spectral parameters does not affect the quality (mean square error) of the delay estimate.

However, this is true only if the joint ML estimation of the delay and the unknown spectral param-

eters is carried out, and the estimation errors are made sufficiently small.

Unfortunately, for most cases, the joint ML estimation of the delay and spectral parameters in-

volves a complicated multi-dimensional optimization, and therefore it has not been attempted in

practice. A common ad-hoc approach [3] consists of estimating the signal and noise spectra (or,

alternatively, the coherence function) prior to the cross-correlation operation. However, this proce-

dure is only sub-optimal, and its inherent accuracy critically depends on the method employed for

spectral estimation.

A further complication in the delay estimation problem arises if the signal source is moving rel-

ative to the receivers, causing to a time-varying delay. Measurement of the delay derivative, that is

the Doppler time-compression, provides important additional information concerning source location
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and track. However, the time-varying delay causes the signals observed at different receivers to be

jointly non-stationary, even if the signal at each receiver output is stationary. An approximate ML

scheme, under the assumption of linearly time-varying delay (constant Doppler) was developed by

Knapp and Carter [5]. Basically, it forms the cross-correlation of one receiver output with respect

to a time-delayed and time-scaled version of the other receiver output, and obtain the joint ML est-

imate of the delay and Doppler parameters by maximizing the cross-correlation response. An alter-

native scheme that does not depend on the constant Doppler assumption, and by-pass the need for

the complicated time-scaling operation was developed in [6]. It basically consists of partitioning the

observation interval into time segments, obtain the estimate of the average delay at each time seg-

ment, and then apply a least-squares procedure to convert these estimates to the estimate of the

delay, Doppler and higher order derivatives. If the duration of each time segment is long compared

with the correlation time of the signal and the noises, this estimation procedure is nearly optimal in

the sense that it yields an asymptotically unbiased minimum variance estimate of the delay parame-

ters. As pointed out before, if there are unknown spectral parameters, they must be included in the

estimation process in order to maintain the asymptotic efficiency of the delay estimates, and this

may drastically complicate the procedures in [51 and in [6].

If the signal and noise processes are not stationary over the observation interval, the delay esti-

mation problem is significantly more complicated, and most of the analyses (e.g., [21-[6]) cannot be

applied. In a recent paper [7], Stuller derives the log-likelihood function under the conditions of

time-varying delay and possibly non-stationary source signal contaminated by additive white Gaus-

sian noises. Basically, it involves the solution to an integral equation for each value of the unknown

parameters (delay, Doppler, amplitude attenuations, spectral parameters) in the a-priori domain.

Therefore, the full multi-dimensional search for the ML parameter estimates tends to be computa-

tionally complex and time consuming. In a subsequent paper [8), Namazi and Stuller take a differ-

ent approach; they view the two-channel time delay estimation as a demodulation problem, where

the time varying delay is modeled as a realization from a stochastic process. They propose iterative
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algorithms, based on the ML, Maximum-A-Posteriori (MAP), and Minimum-Mean-Square-Error

(MMSE) criteria, for simultaneous estimation of the source signal and the delay process. Each itera-

tion cycle requires the solution of an integral equation to obtain the up-dated estimate of the signal,

and an integral equation to obtain the up-dated estimate of the time-varying delay. In addition to

being numerically tedius, there is no proof of convergence of these algorithms, and if they converge

it is unclear where they converge to. Another limitation of these algorithms is that they assume

prior knowledge of the covariance functions of the signal and the delay processes.

A practical problem that has been overlooked in most of the analyses, is the use of sampled

data. If the received signals are first sampled and then processed, the cross-correlation function can

be calculated only at a discrete set of time-lags, and the delay estimate is subject to the sampling

period. A common numerical solution is to apply a polynomial fitting procedure to interpolate

between adjacent values of the cross-correlation function, and then maximize ,ith respect to a con-

tinuous delay. An alternative approach [9] is to assume that the signal and the noises are strictly

bandlimited, and to use sinc(.) functions to interpolate. However, these approaches are ad-hoc, they

can be applied only under constant sampling rates, and they do not necessarily improve the quality

of the delay estimate.

In this paper we develop computationally efficient algorithms for the joint estimation of the

delay and spectral parameters, based on the Estimate-Maximize (EM) method. The proposed algo-

rithms are optimal in the sense that they converge iteratively to a stationary point of the likelihood

function, where each iteration increases the likelihood of the estimated parameters.

The organization of the paper is as follows: In section II we consider the stationary case in

which the differential delay is assumed to be constant over the observation interval (stationary

source), and the signal and noise statistics are assumed to be stationary. In section III we extend the

scope by considering non-stationary sources, and possibly non-stationary signals. We also address

the problem of discrete-time observations in a natural way by making an essential use of the con-

tinuous-time signals propagating through the medium. In section IV we present an efficient method
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to compute the log-likelihood gradient (score), the Hessian, and the Fisher's information matrix

(FIM) of the underlying stochastic system. These results can be used for efficient implementation

of gradient-search algorithms, and to assess the mean square errors of the ML parameter estimates.

Finally, in section V we summarize the results.

II. DELAY ESTIMATION - STATIONARY CASE

A. Problem Formulation and Existing Results

Signals radiated from a stationary (non-moving) point source and observed in the presence of

additive noise by a pair of spatially separated receivers can be mathematically modeled as

zi(t) = s(t) + 0(t) (I)

z 2(t) = C's(t-r) + v2(t) (2)

where r is the time difference of arrival (TDOA) of the signal wavefront between the receivers.

Suppose that s(t), v1(t), and v2(t) are sample functions from mutually independent, wide sense

stationary (WSS), zero-mean Gaussian processes with the spectral densities Ps(w;f), Pv 1 (w;f), and

Pv 2(w;O), respectively. The vector 0 represents possibly unknown spectral parameters such as signal

bandwidth, center frequency, noise spectral levels, etc.

Given continuous-time observations of z,(t) and z2(t) T i < t < Tf, we want to find the ML est-

imate of r. Since the amplitude attenuation c and the spectral parameters 0 are also unknown, they

must be included in the estimation process. We denote by

= a (3)



-6-

the vector unknown parameters to be estimated.

Fourier analyzing z1(t) and Z2(t),

Tf jw t ~
Zi(wn) zi Jz(t) e- dt wn = y.n (4)

where T = Tf - Ti. Assuming that the observation interval T is long compared with the correlation

time (inverse bandwidth) of the signal and the noises (i.e., WT/27r >> 1), the Z(wn)=

[Z1(wn) Z2(wn)] ni = 1,2,... are statistically uncorrelated zero-mean and Gaussian with the covari-

ance matrix

P(wn ;f) = -(Z(wn )Z())

[Ps(Uwn;G) + Pvq(wn,7) ae jnrPs (wn;f)

[ ceiwn p (wn ;9) a 2PS (wn9f) + Pv 2(wn;O) J(5)
Therefore, the probability density of Z(wn) is

=~n) - 1 - Z* (Wn)P_'(wn;C)Z(wn) (6)
qz~w~)1 detqlrP(wn *0I

and the log-likelihood function is

LZ (C) = log flZ(WnA)

n
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=-Z (log det[rP(wn ;C)J + Z(wn) P '(wn ;0)Z(wn)) (7)
n

Substituting (5) into (7) and carrying out the indicated matrix manipulations,

LZ (C) =- log 7rA(wn ;ct,)

n

;,)([C2Ps(Wn;O) + Pv(Wn;o)1IZ(wn)II
n

+[jP5 (wn ;9) + Pv,(wn ;o)] IZ(wn M~2 - 2cRe[ejwnT rps(wn ;O)Z*'(wn )Zz(wn )]) (8)

where Re[-] stands for the real part of the bracketed quantity, and

A(wn~cf,) = a 2Pv (COn; 9 + Pv,(wn;f)] Ps(wn;f)+Pv,(wn 9O)Pv (wn;f) (9)

The ML estimates of the unknown parameters require the maximization of LZ (C) with respect

to f, that is

Max LZ(f) ===>C(10)

For most cases, this is a complicated multi-parameter optimization problem and therefore it has

not been attempted.

Following the considerations in [3], we observe that the log-likelihood as a function of r can be

rewritten in the form
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LZ (r) = c + 2Re ( W(wn ;a,f) 4 (wn) Z2(wn) eJtn r}

n

C + TRe { W(wn;ca,#)Zl*(wn) Z2(wn) ejnA)
ir

n

c + Re({ WJW;a,) Z*(w)Z,(w)eJ( rr d()
WT/2r>> I T R

where c is a constant independent of r, and

aPs (w;9)WCIPSoW;6) 0 12)[W 2Pv1 (w;o)+Pv2 (W;6)] Ps (w;#)+Pv1 (w;@)Pv2 (W;)

The integral in (1I), that is the inverse Fourier transform of W(w;c,O)Zi*(w)Z2(W), is termed the

Generalized Cross Correlation (GCC) [3]. Thus, if we have had exact prior knowledge of of and 0,

the ML estimate of the delay parameter would be obtained by plotting the real part of the GCC as

a function of delay, and search for its peak, that is

JRe{ W(;C,9)Z*(W)Z2(W)e j a r dw) ====> r (13

As pointed out by Knapp and Carter [31, the ML estimator is identical to the estimation scheme

developed by Hannan and Thomson [10] (see also Hamon and Hannan [1 1]). Other delay estimation

techniques ([12]-[131) have the same format as (13), where the weighting function W(w;ot,O) is chosen

to optimize a selected criterion (e.g., signal to noise ratio, detection index, etc.). These methods are

expected to outperform the conventional cross-correlation instrumentation (W(w))=I) by taking full

advantage of the spectral details of the signal and the noises.

In practice, we do not have prior knowledge of at, and the spectral description of the signal and

the noises is incomplete. Therefore, it has been suggested first to estimate the selected weighting
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function, ar, d then use it in (13) (e.g., see [31, [9], [11], [141). However, this approach is only sub-

optimal, and its inherent performance critically depends on the method employed for spectral esti-

mation.

The Cramer-Rao lower bound (CRLB) on the error variance of any unbiased estimator of the

delay is given by (e.g., see [151, Chapter 2)

VAR(T)> J-()1 (14)

where J(C) is the Fisher's information matrix (FIM) associated with all the unknown parameters in

the problem. In [41 it has been shown that the FIM processes the following block-diagonal form

10 JT 
(15)

where

J, = E([aLz()/&j]2)

T w-P(WO;) dw (16)

= Jo [ca2PvI(WO;)+Pv 2 (w;o)]P5 (W)+Pv1(w;)Pv (w;)

Therefore,

VAR() I /J (17)

Invoking the asymptotic efficiency and lack of bias of the ML estimator, the lower bound in

(17) is attainable. However, this is true only if the ML estimation of all the unknown parameters

(that is, the solution to (10)) is performed. If we first estimate the spectral weighting function and
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then substitute it in (13), we may obtain a biased estimate whose error variance may be significantl

larger than the lower bound.

In the next sub-section, we develop a computationally efficient iterative algorithm for finding

the joint ML estimate of the delay and spectral parameters without the need to solve the compli-

cated multi-parameter optimation indicated in (10).

B. Development of the Algorithm

In this section we apply the Estimate-Maximize (EM) algorithm [16] to the two-channel time-

delay estimation problem. The EM algorithm is an iterative method for finding the ML parameter

estimates given incomplete data. It works with a complete data specification, and iterates between

estimating the log-likelihood of the complete data using the observed (incomplete) data and the cur-

rent parameter estimates, and maximizing the estimated log-likelihood function to obtain the new

parameter estimates.

If we have had the observation of the source signal s(t) in addition to z(t) = [zI(t) z2(t)]T, the

estimation problem would be relatively easy. Therefore, we choose as the complete data y(t) the

vector

Fz1(t) 1 rz(t)1
z(t) Ti  t 5 Tf (18)

Fourier analyzing y(t),

Z(Wn) Z(w) n)

Y(""n) Z2(wn) =(19

S(w n) S(W) (19)



where Zi(wn) =1,2 are defined by (4), and

I T f - w 7
S(wn)=±Jf~s(t)eJ dt ,2w= (20)

We note that

Zl(Wn) = S(wn) + Vl(wn) (21)

Z(wn) =ote-jn S(wn) + V(wn) (22)

where Vj(wn) i = 1,2 are the Fourier coefficients of vi(t) i = 1,2. We further note that given S(wn),

Z1(wn) and Z2(wn) are conditionally independent. Therefore, under the large WT assumption, the

log-likelihood of the complete data is

Ly(f) = ogqlY(wn)]

n

= (ogf[S(wu)) + iogf[Z1(wn )/S(wn )J + Iogf[Z2(wn )/S(wn) (23)
n

where

logf[S(wn)] =-logwrP 5 (wn ;9) - IS(Wn )A 2 /PS (wn ;9) (24)
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logf[Z 1(wn )/S(wn)] = - l°1rPv (Wn ;) - Zi (wn)S(wn) (25)P (w 9)

IZ2(ton )-ae -jwn S(wn )
logf[Zz(wn )/S(wn )] = - logrPv (wn ;O) - (26)

To simplify the exposition, we suppose that the noise spectra Pvi (w;) = Pvi (w) i = 1,2 are per-

fectly known. The vector 0 affects only the spectral density of the signal. In that case, substituting

(24) - (26) into (23) and following straightforward algebraic manipulations, we obtain

Ly(f) = c + 2aRe{ >7 e-jwnTS(wn) Z:(wn)/Pv (w}n)

6n

V' IS(wn A - I S(wn)# 2.

E P [logPs (wn,;) + Ps(n; ) (27)Pv(&n) (*9
n n

where c is a constant independent of e.

We are now ready to apply the EM algorithm. Denote by

[A(t)1

A ) (28)

the current estimate of f after t iterations of the algorithm. Then, the next iteration cycle is speci-

fied in two steps as follows:
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E-step: Compute

Q, () = EA(1 ) (Ly()/Z(w),Z(w),.") (29)

M-step:

MaxQ(,(,)) - (V+l) (30)

where E(t) {./Z(), Z(),...} denotes the conditional expectation given the observed data Z(W),

Z(w),..., evaluated using the current parameter estimate (t).

Under the continuity of Q(Cf') in both C and C' (see [17]), the algorithm converges to a station-

ary point of LZ(f), the log-likelihood of the observed data, where each iteration cycle increases the

likelihood of the estimated parameters. Of course, as in all "hill climbing" algorithms, the conver-

gence point may not be the global maximum of the objective function, and thus several starting

points (or, alternatively, a grid search to roughly locate the global maximum) may be needed.

Now, substituting (27) into (29)

Q(f,e('M) = c + G() (r,a) + H()(0) (31)

where

G() (r,a) - 2aRe -e-JWn r(wn)(e)Z*(wn)/Pv (wn)) - cCt 7 S(Wn A 2(l) /PV (W n) (32)Y Sw )2 z()p2 ( n ) (

n n

and

!11Hhe (9) [0 Ps (wn ;) + s(wn)I(33)

n -

where
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(Wn)(P) - E (M) (S(Wn)/Z(w.d , .. (34)

and

IS(Wn A2(l) = EA(1 ) (IS(wn)iZ(W),Z((),"'

= I(Wn)(t)12 + VARt (S(wn)/Z({xw) Z(w),"") (35)

We now recall the following well-known theorem (e.g., [18], Chap. 2): If S and Z, Z2,...ZN

are jointly Gaussian zero-mean random variables, and Z., Z2 ... Z N are statistically independent,

then

N

E(S/Zl,Z2 ,...ZN) = E(S/Zk) (36)

k-i

N

VAR(S/Z,,ZZ,...ZN = VAR(S/Zk) - (N-I)VAR(S) (37)

k=I

Therefore,

E (e) (S(wn)/Z(W),Z( 2)'...

- EA ( (S(n)/Z (wn)) + Z Et 1t (S(wn)/Z(wk))

k#n

= tt (Sw n)IZ(wn)) (38)

VARt (S(wn)/Z(w),Z( w2 ),..)

- VAR(t (S(wn)/_.(wn)) + I VARt(t) (S(wn)/Z(k)) - (I-) VARt(t) {S(wn))
k#n k#n

= VARt (S(wn)/-Z(wn)) (39)

where in the transition to the third line of (38) and (39), we invoked the statistical independence
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between S(wn) and Z(wk) for k#n. Hence, the conditional expectations in (34) and (35) reduce to:

(an )(t) - E, t() {(An)/Z(on)} (40)

IS(wn A 2(t) = E,(, (IS(WnA 2/Z((on))

= Ig (Wn)(t) 12 + VARt (t) (S(wn)/-Z(wn)) (41)

Since S(wn) and Z(Wn ) are jointly Gaussian, then using well-known results (e.g., [18], Chap. 2)

E ( ('wn)/Z(wn)) =
-1

E t() (S(Wn )Z(wn) ) ZE( n)) Z(wn ) (42)
EA n)) [ (t) lTwn C~n Z )(2

VAR t) (S(wn )/Z((on)) =

VAR (C) (S(wn)) -E t(C) ([Ew (, ) (ZOn)Z_.(n)) -E(Z(wn)S*(wn)) (43)

In view of (21), (22), and (5)

E~A ( C)(wn)) = Ps (n ; ())[1 1(:) ejwn (C)] (44)

E (C) Z(wn )Z*(wn)) - P(Wn ;w (C)) =

PS (Wn; (C))+Pv (wn) aM() eJn Ps() P(wn; ( 1) )

a(C)e_jwn (C "P( ; (C)) a(w)2 P5 ((n;D (t) )+pv (wn) (45)

Substituting (44) and (45) into (42) and (43) and following straightforward matrix manipulations,
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E (S(wn)/Z(wn)) =

A (t(P v )n .
Ps (wn ;# (t)) Z w n )a(t)eJlnl (1) ( nI (wn) )-n

(46)

,A P1 1)
P (wn) (1o

VAR (t) (S(wn)/Z(wn)) = l (n) ]  "'t" (47)

1 ()2 V1 s(Wtn;")')+Pv1 (wn)

I " 2 (n) 1j

Now, in view of (31), the maximization in (30) is decomposed into

Max G(t) (r,ct)-------A (e+I) a(e+l) (48)
T'a

MaxH(t)(0) ,=> Y(e+1) (49)

We observe that G()(r,a) (Eq.(32)) is a quadratic function of a, and the a that maximizes

G()(r,a) (for any pre-specified r) is given by

R e j (wn)(t )Z(wn )/Pv (wn)

(r) =(50)

iS(wnA2(t)/Pv2 (Wn)

n

Therefore, the two-parameter maximization in (48) can be carried out in two steps as follows:

MaxG(t) (r,a (r)) --- > (t+) (51)
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(52)

where we note that

2

Re -~ Z _n" ,(w)P W
n

Incorporating all the above considerations, the algorithm assumes the form:

E-step: Compute

PylI ("'n)

UPS (w ;5 (1)) [Z,(wn ).&(t) ejwn F -1 ~ 2 (e Z(f)

9 ( ) = (ww (C1  0 1 ( )P5 (w Z(wn)(4

S Pv I(Wn)Ps(wn; (t))

M-step:

Max [Re{ e nrl 9 (wn)(t) Z(Wn~)I/P 2 (Wn )} === r (t+ 1) (56)
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>(wn)(1) Z(wn )/Pv2 (wn)

(1l) = {((57)
- IS(winA ) /pv 2 (wOn)

n

Min o Ps (wn ;9) +ISf)(t) (58)

n

Perhaps the most striking feature of the algorithm is that it decomposes the spectral parameter

optimization from the delay optimization, resulting in a considerable simplification in the computa-

tions involved. Since the algorithm is based on the EM method, it must converge to the solution of

(10) or, at least, to a stationary point of LZ(C).

We note that Eqs.(56) and (57) are the solution to the ML problem of estimating r and a assum-

ing that the source signal is known to the observer, where S(wn ) and IS(wn)I 1 are substituted by their

current estimates 9(wn)(P) and IS(Wn)2(t), respectively. Similarly, the optimization in (58) yields the

solution to the ML problem of estimating the spectral parameters, where the sufficient statistic

IS(Wn)12 is substituted by its current estimate. Thus, the algorithm iterates back and forth, using the

current parameter estimates to improve the signal estimate and thus to improve the next parameter

estimate. The algorithm is illustrated in Figure 1. We note that 9(wn)(O and IS(Wn )Iz(t) are, in

fact, the outputs of the (non-causal) Wiener filter applied to the two-channel data.

As indicated by (15), the quality of the delay estimate is unaffected by lack of exact knowledge

of the signal spectral parameters. Therefore, if we are essentially interested in the delay estimation

and we are close to the point of convergence, we may consider performing a partial M-step, leaving

the spectral estimates at their current value and updating only the estimates of r and a. By that we

may save in computations with only insignificant effect on the rate of convergence of the algorithm

and the quality of the resulting delay estimate.
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An initial estimate may be obtained by first estimating the spectral parameters of the signal at

one receiver output, and then use these estimates to construct the initial estimate of the amplitude

attenuation and the delay parameters.

C. Simulation Results

Consider the following example taken from 1141: The observed data are generated by sampling

(1)-(2) at a constant rate that is sufficiently high to preserve the spectral structure of the continuous

waveforms. The additive noises are assumed to be spectrally white with

Pv1 (w) = Pv 2 (w) = - i/At 5 w : i/At

and the source signal is modeled as an all-pole process of order 3, with the spectral density

Ps (w) = -12'1 l+0 1expjwAt+02 expj2w4t+03expj3 iAtI - 1 - i/At :5 w :5 _/At

where At = T/N is the sampling period.

Suppose that -j2 and az are known constants. The unknown parameters are e=(rcI,)T where

0=(0 10203)T.

The algorithm has been tested using the following set of numerical values

N = 1024

,Y2 = I

a2 = 8.97995 (SNR=1)

r/At = 10.5

8 1 =1

01 = 1.77,90=1.593, 9=0.7047
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In Tables I and 2 of Figure 2, we have tabulated the outcomes of the algorithm for two initial

guesses of the delay 8()/At = 10.0, 11.0. The initial guess of the amplitude and spectral parame-

ters is: a(o) 0.7, 9 1(o) -1.8, 9 2(0) = 1.7, 9 3()= -0.8. For reference, we have also calculated

the log-likelihood LZ (f) (Eq.(8)), normalized by the number N of data points, along the iterations.

The CRLB (Eq. (16)) on the rms error of the delay estimate is o( /At) = 0.07. We see that after

few iterations, the algorithm converges within the CRLB to the ML estimate of the delay and spec-

tral parameters.

In Tables 3 and 4, we have tabulated the results using the same r (o) /At = 10.0, 11.0, and the

following choice of initial estimates: (o) = 0.7, 9 1(o) = -2.2, 9 1(o) = 2.2, 9 3(o) = - 1.5. As we see,

after few iterations, the algorithm converges within the CRLB to the ML delay estimate, although

the amplitude and spectral estimates exhibit large errors (perhaps due to slow converge rate, or the

convergence to a stationary point of the likelihood function).

D. Generalization to Multi-Receivers

Consider the generalization of the proposed algorithm to the estimation of vector delays obta-

ined with an array of M spatially distributed receivers. The observed signals are

zi(t) = ai s(t-ri) + vi(t) i=l .... (M-I) (59)

ZM(t) = s(t) + VM(t) (60)

where ri's are the TDOA's relative to the M'th receiver.

We suppose that s(t), v(t),...vM(t) are sample functions from mutually independent, WSS zero-

mean Gaussian processes with the spectral densisties Ps((,r), Pv (a),...PvM(w), respectively. To

simplify the exposition, we have assumed that Pvi (w) i=l ,...M are perfectly known.
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Given continuous-time observation of z(t)-(z(t),...zM(t)T Ti _ t !5 Tf, we want to find the ML

estimate of the vector delays r-Q'i,...TM _ I )T jointly with the amplitude attenuations cr- Ox...OM _ I )T

and the unknown signal spectral parameters 0. Denote by

= (i) (61)

the vector unknown parameters to be estimated.

Even if 0 and cr are known, the search for the ML estimation of r is a relatively complicated

maximization in (M-1) unknowns. If our ultimate objective is to estimate source location parame-

ters (i.e., bearing and range), we can either estimate the vector delays and convert it to bearing and

range estimate, or to maximize the log-likelihood function directly with respect to bearing and

range, see [19120.

Consider the application of the EM algorithm. In analog with the two-receiver case, let the

complete data be

z1(t)

zt Ti _< t _< Tf

ZM(t)
s(t) (62)

In the frequency domain,
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z1(wn)

Z(Wn)I

Y(wn) =  ZM(n) = S(Wn)J

S(wn ) (63)

where

Zi(wn) = ej S(wn ) + Vi(wn) (64)

ZM(Wn) = S(wn ) + VM(wn) (65)

For large WT, the Y(wn ) are uncorrelated and thus, in the Gaussian case, statistically indepen-

dent. Therefore, the log-likelihood of the complete data is

M

Ly(C) log f[S(wn)J + > log f[Zi(wn)/S(wn) ]  (66)

n n i=n

where log fIS(wn ) ] is given by (24),

.-jwn ri
I Zi (wn )-a i e _n iS(wn A'

log fIZi(wn )/S(wn )] = - log -pv i (wn ) (67)

log f[ZM(wn)/S(wn )] = - log PvM (wn ) - IM( o n ) A2 (68)

Fl (wn )

Following the derivation in Section Il-B, we obtain the following algorithm:
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E-Step: Compute

Ps (wn;# ))ZM(wnl) + ja ~ Vtw) ei fl
E IP Zi(wn)

M- (69)

alPv (w)j Ps (wo;i (t )) + PvM (wn)

PvM ((sn)Ps (wni#(t))
I Swn A (t) (t I(wnl 2 + M1(70)

A)2 PM 1P(W D() +PM)n

M-Step:

Delay and amplitude optimization:

For i-l,...M-I

Max) ReAjnTi( (t+ 1) (1Mx ~ (wn) ==== (71)Pi )

nn
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Spectral optimization:

S S(n )I I( t )  (t+ 1) (73)Min log Ps (wSn;) +I.. >(3
a0T Ps (wn :0)

n

(as in (58)).

The algorithm is illustrated in Figure 3. Once again we see that the spatial parameter

optimization is decoupled from the spectral parameter optimization. However, the most

striking feature of the algorithm is that it decomposes the complicated multi-dimensional

optimization associated with the (M-1) pairs of delay and amplitude parameters into the

(M-1) optimizations with respect to each parameter pair separately. We therefore suggest to

substitute the direct ML optimization that requires either the joint maximization of (M-1)

weighted cross-correlators, or the separate maximization of all M(M-1)/2 combinations of

cross-correlators (see [21]), with the iterative maximization that only employs (M-1) cross-

correlators in parallel.
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E. Time-Varying Delays

If there is relative motion between source and receivers the observed differential delay is time-

varying. Suppose there is only a small change in array-source geometry during the observation in-

terval so that the differential delay is essentially linearly time-varying, that is

1(t) = r + r . t (74)

where r is the differential delay at t=O, and r is the differential Doppler time compression.

The observed signals are

zi(t) = s(t) + v1(t) (75)

z2(t) = a s(t-r(t)) + v2(t) (76)

where, as before, s(t) is modeled as a sample function from a WSS zero-mean Gaussian process with

the spectral density Ps(w;), v1(t) and v2(t) are assumed to be independent spectrally white with

known power level of No/2.

We note that each receiver output is stationary, but they are not jointly stationary. This is why

the delay estimation problem in thi5 case is significantly more complicated (see Knapp and Carter

[5]).

We want to extend our algorithm to the estimation of the vector parameters

-- , (77)
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The complete data are still given by

[z1(t)1
y(t)u z,(t) ITi:5t :5Tf

SMt (78)

Given s(t), z,(t) and z,(t) are statistically independent. Therefore, the log-likelihood of y(t)

Ti StgTf is given by

Ly(f) = log f~s(t) Ti5tsTf ] + log flzI(t) Ti~st:Tf /s(t) Ti:5t5Tf]

+ log fIZ2(t) Ti:5t:5Tf/sQ) Ti:5t:Tf] (79)

where

log fIzI(t) Ti:5t:Tf /s(t) Ti:St:TfJ c, ~- [z1(t)-s(t)]2 dt (80)

log fqz 2(t) Ti 5Tf /s(t) Ti:5t:TfI

= 2 - f i fz(t) - S(t-r-rt)]z dt (81)

where c. and c. are independent of f, and log f~s(t), Ti st:5Tf I is the log-likelihood of s(t) Ti 5ts5Tf,

which is given, under large WT assumption by

log f[s(t), Ti:5tsTf] = log 7r Ps(wn;f) + IS(wn)I 2/Ps(wn;9)) (82)
n

The E-step of the algorithm requires the conditional expectation of Ly (f) given the observed

z1(t) and z2(t) at the current parameter estimate (i. Since z,(t) and z3(t) are jointly non-stationary,



- 27 -

this computation seems complicated at first glance. However, since (t) = (), () ... ) is

given to us, we could take instead the conditional expectation with respect to z1(t) and

zt)(t) ' z(-' t] (83)

Since z,(t) and 4t)(t) can be obtained from one another by a time-scale (reversible) operation,

then ignoring end effects it should make no difference.

Now, at the current estimate (i, z1(t) and 4t)(t) are jointly stationary and the required condi-

tional expection is easily carried out.

We observe that the expression in (80) is independent of C, the expression in (81) depends only

on a,r and r, and the expression in (82) depends only on 0. Therefore, the algorithm takes the

form:

E-step: Compute

[ A

AJw~ n r (t)l(i r (M))Ps(wn;#(t)) Z(wn)+ (t) e -()n
2[(t)(Zn) [ (84)

[1 + a(t)]ps(wn; s ()) + N/2

IS(wn) 2 ( t ) = It (t)(wn)12 + P(;() + N/2 (85)[I + M(t)1Ps (U~() ) No/

A -1 ((t))( )1  (86)

/s tJ~ = I- Ps ( M( )([s(t)12(t) = [A (t) (t)12 2r I 1 +81(02-JPs iM)No/2 dw (87)
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M-step:

Delay, Doppler and amplitude optimization

[ Tf rTfA
Ma .2 " ^ ". ~ t==dt= M t (t+ 1) (y+1

Max (t) s (1 )(t-r-rt~dt - i[s (e) (t-r-t)]2 dt r , (88)
J tTi JtTi

T,r

f zTIf2(t) ^(t) (t_A(&])_ (1+0)t) at
JT iz~t

A(t+l) = (89)

Spectral optimization

[ "/ ' s')I_
Min(wn ,~) , j(t+l1)

Mn 1log Ps(wn;) + ==> (90)

n

where Z1) (wn) is the Fourier coefficient of 4)(t) at frequency wn and -1(.) denotes the inverse

Fourier transform operation.

The algorithm is illustrated in Figure 4. We note that s()(t) is the time-domain output of the

Wiener filter.

We observe that the E-step of the algorithm is essentially unaffected by the non-stationary in-

troduced by the time-varying delay.

The spectral parameter optimization is identical to the stationary case and it is carried out sep-

arately.
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The joint optimization of the delay and Doppler basically consists of correlating z2(t) with tie-

scaled and shifted version of the Wiener filter output s(t)(t).

We point out once again that the algorithm is guaranteed to converge monotonically to a sta-

tionary point of the log-likelihood function.

The extension to the M-receiver case is straightforward. The algorithm decomposes the compli-

cated multi-dimensional optimization associated with the (M-1) triples of delay, Doppler and ampli-

tude parameters into (M-1) optimizations with respect to each parameter triple separately. Thus, the

complexity of the algorithm is only linearly affected by the number of unknown delay and Doppler

parameters.

III. DELAY ESTIMATION - THE NON-STATIONARY CASE.

In this section, we extend the scope by postulating a moving source travelling along some unk-

nown trajectory and radiating a possibly non-stationary noise-like stochastic signal.

A. Problem Formulation

The continuous-time waveforms observed at the receiver outputs are

z(t) = s(t) + v(t) (91)

z2(t) = as[t-r(t)] + v2(t) (92)

Let the signal s(t) be modeled using the following continuous-time linear dynamic stochastic

state equation
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x(t) = F(t9#)x(t) + G(t)w(t) -oo<t<oo (93)

s(t) hTx(t) (94)

where x(t) is the qxl state vector, w(t) is the rxl vector independent normalized white Gaussian

noise, and 6 is the pxl vector unknown system (spectral) parameters. This model covers a -vide

range of signals including continuous-time all-pole and zero-pole processes, transient phenomena,

etc.

As suggested in [4] [22], the differential time-varying delay r(t) is parametrized using Taylor

series expansion

r(t) = r o + i1 ~t + r 2 .t 2 + ... + (95)

which identifies the coefficients rj as

dIr!!) I (96)j =j! It t=O

The rj's have direct physical meaning: r. is the differential delay at t=o, rx is the differential

Doppler time compression at t=0. Higher order coefficients correspond to successive Doppler deri-

vatives, all evaluated at t=0. If the observation time is short, so that r(t) varies essentially linearly,

the differential Doppler is constant and the series terminates after two terms. By carrying more

terms in the series one allows either longer observation periods or more complex source manuevers.

For practical reasons, the actual data are generated by sampling the time functions in (91) and

(92). The resulting discrete-time signals satisfy the following model

Zik = s(tk) + Vik (97)

Zak = 0S4tk - r(tk ) +v2k (98)
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We suppose that Vik and v2k are statistically independent zero-mean white Gaussian sequences

with unknown spectral levels of a.2 and a2
2, respectively.

Given the discrete time observations

Zk Zik j  k-= 1,2,...N (99)

we want to find the ML estimate of the vector parameters

= v,2 
(100)

where r = (r,r=...)T are the delay parameters.

The direct ML problem is significantly more complicated because of the source motion, the

non-stationary of the signal, and the continuous-discrete nature of the problem.

B. Development of the Algorithm

We want to apply the EM algorithm to solve the problem. Motivated by the considerations in

[23], we choose as the complete data the continuous-time state x(t) T i < t < Tf jointly with the

observations zZ, ... z N .* The log-likelihood of the complete data is therefore given by
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N

Ly(f) = LX(P) + > logf(z1k/x(t) Ti !5 t _5 Tf)

k=l

+ logf(z 2 k/x(t) Ti _< t _< Tf) (101)

k=1

where

logf(zlk /x(t) Ti < t _5 Tf) =

= - g 2 l [Zik - S( tk)]2 (102)
21i

1 lo (1r2)

logf(z2k /x(t) T i _5 t __ Tf) = og(27r 2) - IZ2k - 'sttk - 7(tk )]] (103)

and LX(O) is the log-likelihood of the continuous state x(t) Ti < t < Tf given by (e.g., see [24][251)

rTfLX (0) =c +.J~ x(t)TF (t;0) T [G(t)G(t)T] #  xt

2 iTr (F(t;#)T [G(t)G(t)T] # F(tz9)x(t X )d (104)

where c is a constant independent of 0. The symbols (.)* and Tr(.) denote the pseudo-inverse and

the trace operations, respectively. Substituting (102)-(104) into (101) and taking the conditional

expectation given zXZ,,...zN at a parameter value e ()

Q(f;e ()) A EA (t) (Ly(0)/z,zN)

= ci + G(V)(ra, 1 ,, 2) + H(l)(0) (105)

where cx is a constant independent of ,
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G(e) (i-,cr,a,2,c 2 
2)

N ~NA
2 - oga72 - 2a- 2 [i - 2zik S (t)(tk) + S200)I

k=1I
-o -~ N A 16

N log a 2 2Iz 2k 2 - 2 'fzzk s' ") (tk ;r) + Q2sZ(tk;r)(t)(16

k= I

H(0() =fi X(t)TF(t;9)T [G(t)G(t)T]# dx(t)(t)

Tf

2 f Ti Tr {F(t;O)T [G(tyj(t)T]* F(t;0)x(t)x(t)T) )dt (107)

where we have denoted for convenience s(4;T) =- sft-ir(t)].

In view of (29), (30) and (105), the algorithm assumes the form:

E-Step: Compute

G(0)(r,.o 1
2, 2 ), H(t) (9) (108)

M-Step:

2' 2) (t+l) &(t~l)
Max G(l)(,t,c12o2 rt') 1)

T,a,C1 a,2  1,I~ 2(+o (109)

Max H()-------==> 0(1+1) (110)
9

As in the stationary case, we observe that the spectral parameter optimization (Eq.(l 10)) is dec-

oupled from the optimization with respect to the other parameters. Now, for a pre-specified r, the
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a, a? and a,2 that maximize GV)(.) can easily be found by differentiation. Therefore, following

straightforward algebraic manipulations, we obtain the following algorithm:

E-Step: Compute

X~)t f E() (x(t)/zjqzN) (111 )

x(t)x(t)Tt) = EA(e) [x(t)x()T/zl,...zN 1 (112)

fTf. t)( Tf

J dx(t)(1) EA&) JT x(t)TF(t9O)T [G(t)G(t)T]#dx(t)/zi,...zN) (113)

M-Step:

N
z~k  (l) (tk ;r)]

Max krl> (t+1) (114)r N /
T sl(tk;r)(1)

k=l

N

Z (tk
A(t+i= k=l

W N (115)

Z s(tk; r(+1))(I)

k=I

N
a[t+1) N Z [Z1k2 - 2 Zik s (t)(tk) + s2(tk)(t)l (116)

k=I



- 35 -

N
A i(t+1) = 1 Z a(t+l) Z (l)(tk;;(t~l))j (117)N Zk L 2~k ()t;(~

k=l

Max H( t) (0) . > & (1+1) (118)

where we note that the conditional expectations in (112) and (113) are needed for the computation

of H(t )(0) (rq.(107)). Since s(t) = hTx(t) (Eq. (96)), then

S(t)(t) = hT^(t)(t) (119)

sZ(t)() = hT x(t)x(t)T ( ) h (120)

Using these relations, the conditional expectations in (I11) and (112) are sufficient to compute

the terms in (114)-(117). The algorithm is illustrated in Figure 5.

Since the algorithm is based on the EM method, it must converge to a stationary point of

LZ(C), the log-likelihood of the observed data, where each iteration cycle increases the likelihood of

the estimated parameters.

We note that the delay estimates are not subject to the sampling period, since the maximization

in (114) is carried out in the underlying continuous-time domain of the propagating signals. Hence,

this scheme is particular useful when we want to estimate the delay with resolution that is a fraction

of the sampling interval.

If the stochastic system generating the signal s(t) is known (i.e., 0 is known) we simply eliminate

Eqs. (113) and (118) from the algorithm, and use this a-priori information in the computation of

(Il1) and (112). If the noise power levels a,2 and a.2 are known a-priori, we simply eliminate Eqs.

(116) and (117).
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of A t)
The computation of i( t )(t) and x(t)x(t) ) Tist_<Tf (Eqs. (11) and (112), respectively) can be

carried out by first calculating the discrete-time estimates of x(t) and x(t)x(t)T using the discrete

Kalman smoothing equations, and then exploiting the Markovian nature of the underlying stochastic

state equation to interpolate between adjacent time instances. Details of this procedure will be pre-

sented in the sequel.

The conditional expectation of the stochastic integral in (113) can be expressed in some impor-

tant cases in terms of the conditional expectation in (112), e.g., in the case of all-pole signals to be

described next. Otherwise, it can be approximated via discretization (see the considerations in [24],

and the computationally efficient method developed in [26]).

All-Pole Signals

Let the signal s(t) be modeled as the output of an all-pole filter driven by a white Gaussian

noise. The equivalent state model is given by (93)-(94), where

0 1 0

F(t;f) =0
0 1
01 62 6q (i2i)

G(t)T . [0 0 - - - ovjj (122)

and

hT =[1 0-- - 0] (123)

In this setting, the signal s(t) is stationary; however, since we allow the signal source to manu -

ver, the received signals are not stationary and we could not apply the algorithm developed for the

stationary case. Also, we do not assume long observation time, and we relate to the continuous-dis-

crete nature of the problem.
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Suppose that the gain g in (122) is known, otherwise it could be factored out of the system

equation (93) and inserted into the measurement equation (97) as an unknown amplitude scale.

Substituting (121)-(123) into (104), we obtain (see [24127])

LX(D) = c + O T x(t)dxq(t) - -L OT x(t)x(t)Tdtl0 (124)g Ji 2 ~

where 1= (01 02 ...0q)T, and

Jtx(t)dx (t)]i i .(125)

'_g (Tf - Ti)/2 i-q

where xi(t) denotes the ith component of x(t) (note that x(t) is a q-dimensional vector). Therefore,

H(M)(0) _- E A(f) (LX(O)/zz,,Z. N)

g IT x(t)dxq(t)(t ) - LT I x(dt (126)
gi i Jx"t 2-]
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where

Tff,,

-x(t)dxq (t) i (127)

i~

L - g (Tf - Ti )/ 2  iq

In (126) we have ignored the constant c. Observing that H(t)(0) is a quadratic function of 0,

the maximization required in (118) can be solved analytically. We further observe that the computa-

tion of H(t)(0) requires only the computation of x(t)x(t)T ( t ) . Therefore, in the case of all-pole sig-

nals, the algorithm assumes the form:

E-Step: Compute

()(t) and x(t)x(t) T )  Ti < t < Tf (128)

M-Step:

- Max(Eq.(l14)) ===> ATl) (129)

- Compute a(t+l) using Eq.(l 15) (130)

- Compute a 1 (l) using Eq.(l16) (131)

- Compute a 2 (+ 1) using Eq.(l17) (132)

- Compute



- 39 -ITf (e
T~) fix(t)dxq(t) (133)

We note that only the estimation of the delay parameters involves maximization. We now

describe the computation of ( )(t) and x(t)x(t) r () in details.

Development of the Continuous-Discrete Smoothing Equations.

The computation of i()(t) (Eq. ( 111)) and x(t)x(t)T(') (Eq. (112)) is carried out by considering

the equivalent discrete model and calculating the discrete-time estimates of the related quantities,

and then e.xploiting the Markovian nature of the underlying stochastic system to interpolate between

adjacent time instances. We shall now describe the proposed procedure step by step. For notational

convenience we substitute t (l) by .

The Equivalent discrete model

Let the 2N time points tk, tk-T(tk) k=l,2,...N be arranged in increased order, and denote by

t r the rth time instance. Then, in view of (97) and (98), the scalar measurements can be repre-

sented as

Zr = Ar hTxr + Pr-vr r=l,2,...2.N (134)

A

where Xr = x(" r), yr r=l,2,... are statistically independent normalized Gaussian random variables,

and

Ar = I Zr~fll = (z 1 1, Z2 1 ... ZN 1  (135)
L a Zr f12 = z 1 2, Z2, ... ZN 2)
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Pr {a zrCfi (136)
az  Zr ez

Now, following the considerations in (e.g., [25] [28]), the xr r-l,2,... satisfy the following sto-

chastic difference equation:

Xr+l Or+i ($) Xr + Ur+l (137)

where Or(M), the discrete-time state transition matrix, is specified by

Or(0) = O(F r, -" r-I; 0) (138)

where O(t,r,0) is the continuous-time state transition matrix, satisfying the differential equation

aCt~;0 =F(t;0)O(t,r,0) t ?> r (1 39)
at

with the initial condition O(r,r,0) = I. The ur r=l,2,... are statistically independent zero-mean and

Gaussian with the covariance matrix

Qr(0) = Q(t r, T r- ;) (140)

where

• t

Q(t,r,o) = Jr (t,s;O)G(s)G(s)T¢(t,s;8)Tds (141)

Eqs. (137) and (134) specify the equivalent discrete model.
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The discrete smoothing equations

Define

Pxjk = E e(xr/zl,...zk) (142)

PO k = Ef((Xr - Irk) (xr - Ilk)T/zi,--zk) (143)

Then, the discrete Kalman filtering equations are (e.g., [18] [25]):

Propagation equations: For r=l,2,...2N

"r'r- = r /Jr-ljr-I (144)

Pdr-I = 'Or Pr-ljr-l 'rT + Qr (145)

Up-dating equations: For r=1,2,...,2N

PrIr = Ad r- I + kr (Zr - ArhT dr-Il (146)

Prr = (I-ArkrhT) Prlr-! (147)

where kr is the Kalman gain defined by

kr = Ar Prr-I h (148)
Ar 2hT Pr1 r-i h + Pr2

To initiate the recursions in (144)-(147) we must select some initial conditions /solo and Polo

(e.g., polo = 0, and PoIo = I/e for some i > 0).
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At this point we need the definition of

Pr- 1,d k EC ((xr- I - Or- IIk ) (xr 00 rk )T /zZZ2... zk) (149)

Sr I r-ljr-I Or rlr-I(10

Then the discrete smoothing equations are (e.g., [25])

For r = 2N,2N-I,...1

IAr- 112N = Or- Ir- I + Sr-.I (Id2N - Or Pr- IIr-I) (151)

Pr-I112N = Pr-lI r-I + Sr- I (I'd 2N - Pdr- I )Sr- I T (152)

and (see Shumway 129])

Pr-1,rj2N = Sr-2 Pr-lr-I + Sr- (Pr-1,rI2N - Pr-ljr-1 OrT) S r-lT (153)

with the initial condition

P2N-1,2NI2N = P2N-II2N-l 02 N T (I - A~2N hk2N)(14

The interpolation formulae

Invoking the Markovian nature of the underlying stochastic system, for T r- 1 :5 t r

A
x(t) = EC(X(t)/Z1Z 2 ... zN)

= A(t) Pr-112N + B(t) ;rI2N (155)
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x(t)x(t)T EC(x(t)x(t)T/zl,z 2...zN)

x(t)i(t)T + A(t) Pr-II2N A(t)T + B(t) PrI2N B(t)T

+ A(t) Pr-l,rl2N B(t)T + B(t) PT A(t)T + C(t)

r-l,ij2N A~) ~)(156)

where

A(t) = -O(tt r-I ) - B(t) VFt r,t r-I ) (157)

B(t) = Q(t," r-I) I'W rt)T ,I,(t r,t) Q(t,F r-I ) '(T rt)T + Q( r,t)1-1  (158)

C(t) = Q(t,i r-I ) - B(t)4(i" r,t) Q(t,t r-I ) (159)

where A(t,r) and Q(t,r) are defined in (139) and (141), respectively. If 4(t,r,) and Q(t,r,) depend

on the difference (t-r) (i.e., time invariant system) the interpolation operation ,an be carried out

efficiently using the procedure in [26].

Further Considerations

(1) Motivated by the considerations in the stationary case, near the point of convergence we

may leave the spectral parameters at their current values and perform a partial M-step. This

way will still retain the monotonic increase of the likelihood function, and the convergence

to a stationary point is guaranteed. From computational point of view, it might be prefer-

able to do so, perhaps at the expense of convergence rate reduction.

(2) An initial estimate of the signal and its spectral parameters may be obtained by applying the

EM-type algorithm proposed in [23] to the signal observed in one receiver output (say, the

receiver with the higher SNR). Based on these estimates, an initial estimate of the delay

parameters can be obtained. Then we can switch to the full-scale EM algorithm.

(3) In calculating the conditional expectations (I l1)-(l 13), we may consider performing the con-

tinuous-time interpolation alone (Eqs. (155)-(156)) while retaining the discrete state estimates
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at their current values for some iterations. As proved in [30], this modification preserves the

basic properties of the EM algorithm, that is the monotonic increase of the likelihood func-

tion on each iteration cycle, and the convergence to a stationary point of that function. We

may find this modification useful in both achieving faster convergence rates and in simpli-

fying the computations involved (see the example in [30]).

(4) At some iterations, we may leave the discrete state (signal) estimates available from the

higher SNR receiver output at their current values while performing the interpolation opera-

tion using the measurements of the other receiver. This is another instance of the algorithm

proposed in [30] that may simplify the computations involved and accelerate the convergence

rate.

(5) In calculating (IlI)-(113), we may consider substituting the full-scale smoothing by fixed-

lag smoothing or even by filtering, with the obvious benefit of reduced computations and

storage requirements. This is not a variant of the EM algorithm in the sense that we cannot

guarantee the monotonic increase of the likelihood function or the convergence to a station-

ary point. However, this modification might be particularly useful in situations where the

environment is changing rapidly and we want an adaptive algorithm.

Extension to Pole-Zero Processes

A state space representation of a pole-zero (ARMA) signal is given by (93)-(94), where F(O) is

given by (121) (0 are the so-called AR parameters), G is given by (22), and hT = (hl...hq) are the

moving average (MA) parameters. The vector unknown parameters f to be estimated is
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T

1
== a22

h (160)
9

Following the considerations leading to (108)-(l 10), the algorithm in that case takes the form:

Max H() (0) .......- >-0 (+ 1) (161)e

Max G(t) (r,,a 12,a 22,h) .> .(t+1) a(f+l)
r, ,a1

2,a' 2 ,h orz(I+l) 2(),() (162)

where H( t )(0) is given by (126), and

GVl) (r,cr,ai2,'22,h)

N
o- a12 - [z 1k2 - 2 z lk hTx(t)(tk + hTx(tkX(tkT(t) h]

k=l

NNlog ? Akh^aTo ~ 2a- 2 [z2k1 - 2z'khTzt(t)(tk;r) + c2hTx(tk;r)x(tk;r)T(t)h] (163)

k=I

where x(tr) = x(t-r(t)).

From (161)-(162), we see that the optimization with respect to (w.r.t) the AR parameters 9 is

decoupled from that associated with the delay r. It is also decoupled from the optimization w.r.t the

MA part of the spectral parameters. However, the latter must be performed jointly with the delay

r. Since G(l)(r,a,,a1,o 2,h) in (163) is quadratic in h, the maximization w.r.t to h can easily be

obtained for any specified r,c,ai 2
2. This suggests the following two-step procedure:
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1) Up-date rao 1
2,a.2 using (1 14)-(1 17), (119)-(120) with h=fi( t )

2) Up-date h via

Max G(e) ((t+l), A(t+l) A 2(e+l) A :(t+l), h) i g(I+l) (164)

h

This two-step maximization preserves the monotonic increase of the likelihood and the conver-

gence to a stationary point of it, prehaps at some moderate reduction in speed of convergence.

The idea of decomposing the spectral optimization into separate optimizations w.r.t to the AR

and the MA parts is due to Musicus and Lim [31]. In fact, this idea could also be incorporated into

the algorithms presented in Section II for the stationary case.

C. Simulation Results

To demonstrate the performance of the algorithm we have considered the following example.

The source radiates a continuous-time all-pole process, whose spectrum is

1
Ps(w) = w4-2.4375w2+2.25

The corresponding state space model of the signal is given by

0 1Ft -1.5 -0.7 Jx(t) + (0) ut)

s(t) = (1 0) x(t)

The only unknown parameter to be estimated is the delay r. The data were generated using

r-3.1 (the true delay), and sampled at a constant rate of At = 1.0. The noise variances are a =
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0.25 (0.5) and a 2 = 0.50 (1.0), a = I and N = 220 data points. Using exhaustive search, the ML

estimate is found to be at T ML -  3.02 (3.0). An approximate CRLB is obtained by calculating

the sample variance of the score (see Eq. (167) in the sequel) using monte-carlo simulations. We

find CRLB z 0.09 (0.149). In Figure 6 we have tabulated the results, where the initial guess is

A (o) = 4.0. We observe that after few iterations, the algorithm essentially converges within the

CRLB, to the ML estimate of the delay. For reference, we have also calculated the log-likelihood

function LZ(r) along the iterations. (LZ(r) is computed using the Kalman filter equations).

IV. GRADIENT-BASED ALGORITHMS AND PERFORMANCE EVALUATION

As shown in [16], the rate of convergence of the algorithm (near the point of convergence) is

geometrical (exponential), depending on the fraction of the complete data#can be predicted using the

observed (incomplete) data. If that fraction is small (e.g., under low SNR conditions, and/or low

sampling rates) the rate of convergence tends to be slow, in which case we want to use the Gaussian

method or the Newton-Raphson or some other gradient search algorithm. These methods require

the computation of the log-likelihood gradient (score) and the computation of the log-likelihood

Hessian or the Fisher's information matrix (FIM), or some approximation of which. The FIM can

further be used to assess the mean square error of the ML parameter estimates.

The switching from the EM algorithm to a gradient-based method can be facilitated using the

following identity, first presented by Fisher (1925, [32]), and recently by Dempster et al. [16], Louis

[33], and Meilijson [34]

LZ(C = EC{-- LY()/zi'z 2 '"'ZN =
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a QO f , ) (165)

Using (165), the observed data score can be computed by taking the conditional expectation of

the complete data score. A proof of Fishers identity when part of the complete data are continu-

ous-time processes is presented in [35].

To simplify he exposition, we concentrate on the all-pole signal case. In view of (105) and

(126),

LZ() - 0 H()(9) (aea

fTf fTf

= [J x(t)Tdxq(t) -T1 x(t)x(t)Tdt (166)
g i  fTi

where (.) = E ((.)/Zlz 2 ,...ZN). Similarly, in view of (105) and (106),

0 LZ() = G (r,a,a 'a22)

N
_-7-

= _L l tkJ zk s(tk;r)-a 2s(tk;r)s(tk;r)] j--0,1,2,... (167)
k=l

a LZ(e) = -2

N7
I Z2k ctk ;r) - cs(tk;r)J (168)

2
k= I
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a
Fd7-2 aZf GV)(r~axo,2,a2)I

1 01 1 eM
N

N 1 72oJ + [Zlk 2 - 2Zik Atk) + S2tk)] (169)
k=l

LZ()= G(V) (T'c',c"',G ))

N
N I 717 0)2- + 2---'L., [Z2 k - 2az2k S(tk;r) + a 2 S2(tk;r)] (170)

k=l

where we note that in the case of all-pole signals s(t) = x1(t) and s(t) __ ds(t)/dt x2(t), the second

component of the qxl state vector x(t), provided that q2 (otherwise the process s(t) is not differen-

tiable, and the regularity conditions imposed upon Fisher's identity are violated (see [35])). With this

convention, the various conditional expectations indicated in (166) - (170) are precisely those

required by the EM algorithm, and they involve the continuous-discrete smoothing equations. In

fact, only the discrete smoothing equations are needed for the computation of (167) - (170).

The Fisher's identity can also be applied to the stationary case. There, however, we could get

at the same result by the direct differentiation of LZ(f) (Eq.(8)) (with the exception of stationary

signals and linearly time-varying delays, where Fisher's identity allows us to differentiate first and

then perform the indicated time-scale operation. By that we retain the stationarity of the underly-

ing processes and the score computation becomes relatively easy, see the considerations in Section lI-

E). In the case discussed here, the direct differentiation of LZ(f) implies a significantly more com-

plicated way of computing the score, although the final result should be the same. The direct dif-

ferentiation of LZ(C) with respect to 9 requires the computation of the continuous-discrete filtering

equations [25] and their derivatives with respect to the components of 0 (the so-called sensitivity

derivatives [36]). Thus, if 0 is a p-dimensional vector, the direct approach requires roughly the
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equivalent of (p+l) continuous-discrete filters. Score evaluation based on the equivalent discrete

model is even more complicated since it requires the differentiation of the discrete filtering equa-

tions and the associated matrices with respect to 0. The direct differentiation with respect to r may

not even be expressed analytically, and one is forced to substitute the derivatives with finite differ-

ences.

Using (166) - (170) we are able to compute the score in a closed-form with a computation that

only employs the Kalman smoother. We note that the continuous-discrete smoothing is performed

by going through the equivalent discrete model, but there is no need to differentiate its matrices, as

is needed in the direct computation of the score. We further note that the smoothed error covari-

ance matrix can be precomputed, a feature that can be exploited for efficient computations and

approximations of the score. For example, pre-computation of the error covariance matrix may in-

dicate whether approximation can be made by performing filtering alone rather than the full smo-

othing with the obvious benefit of reduced computations and storage requirements.

Hessian Evaluation

The log-likelihood Hessian

A
HZ (f) = 9'LZ (f)/af2  (171)

is computed by differentiating the expression for the score (Eqs. (166)-(170)) with respect to the

components of f. The derivatives with respect to 0 result a set of forward-backward sensitivity

equations that require roughly the equivalent of (p+l) continuous-discrete Kalman smoothers. The

derivatives with respect to r are not accessible since r is implicitly induced in the Kalman smoothing

equations. In practice, the derivatives with respect to r may be approximated by finite differences.

We perturb one coordinate of r at a time and compute the resulting score at the perturbed parame-

ter. If w is a m-dimensional vector, this approximation requires the computation of the smoothing
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equations at (m+l) closely spaced values ot r, a task that can be simplified by pre-computation of

the smoothed error covariance matrix. The same numerical procedure can be applied with respect

to the components of 0. Also, pre-computation of the smoothed error covariance matrix may indi-

cate if further approximation can be made by performing filtering alone rather than the full smo-

othing, resulting in a simple recursive approximation of the Hessian. Another approximation of the

Hessian, based on score computations will be presented in the sequel.

FIM Evaluation

The FIM can be used to assess the mean square errors of the resulting ML parameter estimates.

It can further be used in conjunction with the scoring algorithm, which is a variant of the Newton-

Raphson method where the Hessian is approximated by the FIM, with a minus sign.

Assuming that the source signal and the additive noises are stationary, and that the observation

interval is long compared with the correlation time (inverse bandwidth) of the signal and the noises,

the FIM, computed on the basis of continuous-time observations, assumes the form [4] [221

J()A { Lz()T OLz() }
J1 0

0 J: (172)

where

iA E! faLz(f)T _L_)___ (173)

Closed form expressions for J, and J. can be found in [6) [22]. This result is an extension of

the result in (15) for the case of non-stationary (moving) sources. It asserts that the quality of the

delay estimates is unaffected by lack of knowledge of the spectral parameters, and vice versa.
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However, this result critically depends on the stationarity of the source signal and the large time-

bandwidth assumptions. For moderate observation intervals, the delay and spectral estimates are sta-

tistically correlated, the FIM is no longer block diagonal, and its computation becomes more compli-

cated. If, in addition, we allow non-stationary signals, the direct computation of the FIM becomes

exceedingly more complicated and, as far as we know, it has not been attempted yet.

By computing the second moment (covariance) of the score (Eqs. (166)-(170)), we are able to

evaluate the FIM even for the non-stationary case.1 To simplify the exposition, we concentrate on

the delay estimation problem, and assume that 0, a, a12 and a22 are known.

From (167),

N
a LZ (r) = ci -ti [ - c-s(t k~r))s(tk)

an o2 2LY k
k=l

N

= ci - 9 t V2k S(tk;r) (174)0'2
2  k k tkr

k=l

where ci is a constant independent of z2,...zIV

Taking the expectation of the product aii LZ(r) - ' LZ(r) and invoking the zero-mean pro-

perty of the score, that is Er( (jj LZ(r))=0 to eliminate ci, the ij-element of the FIM is given by

Jij (r) = Er j ii LZ (r) 1-LZ

We note in passing that the rationale of Fisher's identity leads also to the reversibility theorem,

used by Weinstein (41 to derive the FIM for the moving source, WSS signal case.
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S- E r  tm v 2m s(tm;r) [ci - v t v s (175)

Using the well-known formula for the expectation of the product of four zero-mean Gaussian

random variables, and invoking again the zero-mean property of the score to eliminate cj, we

obtain

N N
cr2  i • [A 2M 'A A (176)Jij(r) = - tm tv [v s(t 1 ;r). vz S(tmr) + v v2t-s(tt;r) s(tm;r)]  (176)

m=l l

where (.) E,.(.). Recall that for all-pole signals s(t)=x2 (t), the second component of the state

vector. Hence,

N NC12 77 AAA
Jij(r) = a2

4  tm t [Vm x2(tt;r) v 2 X2(tM;T) + 2m v t x2 (t ;r) x2(tm;r)] (177)
m=l &Il

where x2(t;r) = X2(t-r(t)).

The above result corresponds to sampled data. We have therefore taken into consideration the

loss of information due to aliasing effects.

Observing that v2k = z2k - ahTx(tk;r), the elements of the FIM are expressible in terms of

Er { (tm;T)x (t,;r)T) = P the covariance matrix of the smoothed estimates of the state.

The expression for the FIM involves the double sum over N, the number of data points, and

therefore tends to be computationally expensive. Successive approximat ions of the FIM, based on

substituting the full-scale smoothed estimates X 2(tk;r) and v k with fixed-lag smoothing of increas-

ing order, can be obtained following the considerations in [37].
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An alternative approximation of the FIM can be obtained by decomposing the score into condi-

tional scores

N

9LZ(t) . O Ldr-1 (178)

r-l

where

log f(z1;f) rlLir.r-.1(O) = (179)log f(zr/zr..i ....z,;C) r-2,3,...N

where f(.) stands for the appropriate probability density function and the Zr'S are the scaler meas-

urements defined in Eq. (134). Eq. (178) is a martingale representation of the score since the incre-

ments are the conditional scores, and therefore have zero conditional expectation given the past.

Following [34], we propose the following approximation of the FIM:

T2- I Lir-IW-- ' °
af N e- i NL4t

N

= 2 L-lr.l(C)T L rl(-) Z (CT - L Z ( f (180)
r=l

This estimate is, in fact, the sample covariance matrix of the conditional scores, where the

actual FIM is the covariance matrix of the score. The estimate may also be used, with a minus sign,

to apqroximate the Hessian. Since the increments of a martingale are uncorrelated, the expected

value of the sum of squares of the conditional scores (the first term on the second line of (180)) is

an unbaised estimate of the covariance matrix of their sum, which is the FIM. The expected value

of the second term of that expression equals the FIM divided by N. Therefore, (C)/(N-I) has the
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same expectation as FIM/N (i.e., "asymptotic unbiasedness"). Furthermore, consistency of the esti-

mate can be shown under stationarity and ergodicity of the martingale-difference increments (i.e.,

the conditional scores), e.g., see [38] [39]. We note that under the usual regularity conditions for ML

to apply, the consistency will be preserved if we replace j by its ML estimate.

Now, since

f(zr/zr- 1 ...z1;) - f(zr-i .... z1;V) (181)

it immediately follows that

Ld- grr-lI(f) - Lr( W - Lr- I(C) (182)

where Lr(f) denotes the log-likelihood function of the observed data zi,...zr. Substituting (182) into

(180), the proposed estimate can be computed using (166)-(170).
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V. CONCLUSIONS

We have developed computationally efficient iterative algorithms for finding the Maximum

Likelihood estimates of the delay and spectral parameters of a noise-like Gaussian signal radi-

ated from a common point source and observed by two or more spatially separated receivers.

We first consider the stationary case in which the source is stationary (not moving) and the

observed signals are modeled as wide sense stationary processes. We then extend the scope by

considering a non-stationary (moving) source radiating a possible non-stationary stochastic

signal. In that context, we address the practical problem of estimation given discrete-time

observations. We also present efficient methods for calculating the log-likelihood gradient

(score), the Hessian, the Fisher's information matrix under stationary and non-stationary

conditions.
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Figure Captions

Figure 1: Two-channel time delay estimator - the stationary case.

Figure 2: Simulation results.

Figure 3: The multi-receiver vector delay estimator.

Figure 4: Two-channel time delay and Doppler estimator.

Figure 5: Two-channel time delay estimator - the non-stationary case.

Figure 6: Simulation results.
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(0 A 10.0, a(0) = .7, l (o) = 1.8, 2(0) =1.7, 6 3(0) -.

1 10.22 .912 -1.813 1.647 -.748 -4.1870

2 10.33 .992 -1.806 1.614 -.714 -4.1256

3 10.39 1.031 -1.796 1.591 -.695 -4.1144

4 10.43 1.052 -1.787 1.575 -.684 -4.1114

5 10.46 1.065 -1.781 1.564 -.678 -4.1104

6 10.48 1.073 -1.776 1.557 -.674 -4.1100

7 10.49 1.078 -1.774 1.554 -.673 -4.1098

TABLE I

Figure 2 :SIMULATION RESULTS
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(o) /,t = 11.0, A(o) = .7, 1(o) = -1.8, e2(0) = 1.7, 3(o) = -.8

T(t)/t() (t) 2 z(t) 9 3(Y) LZ ( (1) )/N

1 10.79 .913 -1.810 1.644 -. 748 -4.1888

2 10.69 .994 -1.803 1.610 -. 713 -4.1273

3 10.63 1.033 -1.793 1.587 -. 694 -4.1158

4 10.59 1.054 -1.785 1.572 -. 683 -4.1123

5 10.57 1.067 -1.779 1.562 -. 677 -4.1109

6 10.55 1.075 -1.777 1.559 -. 676 -4.1105

7 10.54 1.079 -1.775 1.557 -. 675 -4.1102

TABLE 2

Figure 2: SIMULATION RESULTS
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=(0)/at 10.0, a(0)=.7, 1(o) = -2.2, (° ) = 2.2, 6(0) =1.5

r (t)/At) a() LZ )/N

1 10.215 1.328 -2.094 2.234 -1.375 -4.4730

2 10.295 1.399 -1.930 2.190 -1.130 -4.1854

3 10.35 1.342 -1.979 2.224 -1.119 -4.1334

4 10.395 1.289 -2.012 2.244 -1.112 -4.1238

5 10.425 1.246 -2.032 2.256 -1.107 -4.1184

6 10.45 1.213 -2.046 2.262 -1.104 -4.1155

7 10.465 1.189 -2.055 2.266 -1.101 -4.1139

TABLE 3

Figure 2: SIMULATION RESULTS
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'(0)/At = 11.0, a,(o) .7, 6 1(o) -2.2, 2(0) = 2.2, &3(o) = -1.5

. ()/A (, (I) 8 ,() 3l ( ())/

1 10.80 1.322 -2.092 2.230 -1.373 -4.4721

2 10.72 1.396 -1.926 2.185 -1.129 -4.1875

3 10.655 1.341 -1.976 2.220 -1.118 -4.1347

4 10.62 1.289 -2.009 2.241 -1.112 -4.1250

5 10.585 1.246 -2.030 2.254 -1.107 -4.1193

6 10.56 1.214 -2.044 2.261 -1.104 -4.1161

7 10.54 1.190 -2.053 2.265 -1.101 -4.1144

TABLE 4

Figure 2: SIMULATION RESULTS
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al 2=0.25 a 2 0.5

1 3.- -156.846

2 3.01 - 98.150

3 3.014 - 98.128

4 3.016 - 98.123

TABLE 5

Figure 6 :SIMULATION RESULTS
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a1 0.5 a2  1.0

1 3.6 -220.239

2 3.4 -215.162

3 3.3 -213.412

4 3.2 -212.214

5 3.1 -211.578

6 3.08 -211.518

7 3.07 -211.497

8 3.061 -211.482

TABLE 6

Figure 6: SIMULATION RESULTS
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