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I Summary

During the period 1 July 1987 - 30 June 1988, the research under Grant AFOSR-84-0181 has

been concerned with binary parallel optical computing architectures with particular attention to

cellular logic and symbolic substitution for pattern recognition and numerical operations. Our

approach has been to experimentally implement binary optical cellular logic processors and inter-

connection arrays; define an instruction set and software suited to optical computing systems, and

to study generalizations of optical cellular logic processors such as the hypercube and pyramid.

Recent accomplishments include the experimental implementation of a 54-gate binary optical cel-

lular logic processor with instruction decoders, input/output, memory and test/branch functions:

the completion of a binary image algebra (BIA) description of cellular logic, image analysis and

symbolic operations; and the development of binary image algebra algorithms for scale and shift

invariant pattern recognition.
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2 Research Progress

This section summarizes research progress and accomplishments for the period 1 July 1987 - 30

June 1988 on Grant AFOSR-84-0181 for Nonlinear Real-Time Optical Signal Processing. These

results are discussed separately in the sections that follow.
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Abstract

Optical computers can operate on 2-D planes of data in parallel. Boolean logic equations do not

provide a complete description of such parallel operations for binary arithmetic. An optical system

that operates on planes of data should employ an inherently parallel mathematical description for its

arithmetic. The purposes of this paper are: to use binary image algebra to develop parallel numerical

computation algorithms, and to describe the execution of these algorithms on a digital optical cellular

image processor (DOCIP) architecture. We discuss three basic binaxy number representations: 1) binary

row(or column)-coding; 2) binary stack-coding and 3) binary symbol-coding for symbolic substitution

axithmetic.



1 Introduction

Digital optical systems hold the promise of providing more accuracy, fleibility, &ad programmability

than analog optical systems, at the cost of somewhat lower throughput [1] [2]. To achieve digital optical

computing, there are at least three possible logic systems: residue logic [3]-[6], multilevel logic [7]-10]

and binary logic [11] [12]. Because it is much easier to make reliable two level devices for binary logic and

only log2k of them are needed to to represent k levels, in this paper 7-e will consider only binary parallel

optical computing. A digital optical cellular image processor (DOCIP) architecture based on binary

image algebra (BIA) has been demonstrated to be very powerful in parallel binary image processing

[131-416]. This paper will demonstrate that the DOCIP with BIA algebraic techniques can efficiently

perform parallel numerical computations also.

Boolean logic equations for binary axithmetic are not well-suited to highly parallel operations on

planes of data; they do not reflect the location of data except typically by a memory address. Here.

we first seek a software theory for parallel numerical computation algorithms that simultaneously have

binary digital efficiency and the advantages of optical parallel processing. We have developed a binary

image algebra (BIA) [161, built from only 3 fundamental operations and 5 elementaxy images, to serve as

a complete unified systematic theory for binary parallel image processing. Now, we will show that BLA

can be also considered as a spatial logic which is a generalized parallel form of boolean logic with an

additional parallel information transfer ability. BIA then becomes a formalism and a general technique

for developlmg and comparing parallel numerical computation algorithms for digital optical computers.

Based on BIA, parallel numerical computation algorithms for the DOCIP machine are developed and

compared to that for optical symbolic substitution processors (171-191. Symbolic substitution rules azre

particular BIA image transformations (201 (section 5). Hence, the comparison of these machines will be

in terms of this BIA algebraic language. Three different binary number representations (binary row(or

column)-coding, binary stack-coding, and binary symbol-coding of symbolic substitution) for binary

arithmetic in the DOCIP machine are developed. Parallel operations of binary addition, subtraction and

multiplication are derived by BIA and illustrated as examples. Parallelism is achieved by performing

axithmetic operations on many pairs of operands simultaneously. The carries for each pair of operands
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are essentially propagated serially to keep hardware compledry low [211. This enables speed-ups close to,

and in some cases equal to, linear to be obtained. In this paper we will consider only positive numbers.

A suitable digital number representation will easily provide for negative numbers also. For example,

two's complement arithmetic can be performed with only minor modifications to the algorithms and

programs given in this paper, and with the addition of one more bit (the sign bit) to each operand and

result.

Section 2 gives a brief review of BLA and the DOCIP architecture. Section 3 presents binary row(or

column)-coded arithmetic: binary addition, binary subtraction, and binary multiplication (including a

matrix-constant multiplication and an element-element multiplication). Section 4 presents binary stack-

coded arithmetic. Section 5 gives a BIA representation of symbolic substitution and discusses binary

symbol-coded arithmetic (symbolic substitution arithmetic). Section 6 gives a comparison for the above

different number representations.

2 Binary Image Algebra (BIA) and DOCIP Architecture

2.1 Review of Binary Image Algebra

We give here a very brief summary of BIA. Details are contained in Ref. [161.

A binary digital image is usually defined as a function f mapping each grid point (z, y) of an

orthogonal coordinate system onto the set composed of two elements: 1 (white, bright, i.e. image point)

and 0 (black, dark, i.e. background point). However, it will be more convenient for our image algebra to

use only the set of coordinates of image points ('1's) to specify an image. In BIA, an image is then treated

as a set of coordinates of image points (pixels that have value 1). This paper deals with only binary

arithmetic; hence, an image point represents a binary bit with value 1, a background point represents a

binary bit with value 0, and an image is a finite 2-D bit plane. We list here only those basic definitions

and operations which will be referred to latter.

Defion of Binary Image Algebra (ETA)

Binary image algebra is an algebr with an image space S and a family F of operations

m,.mm~ m u m mmmmmm~m m m • mmmm l[ I m a



including 5 elementary images and 3 fundamental operations. Symbolically,

BIA = (P(W); 9, U, -,I,A,A-',B,B - ) ()

where S = P(W) and F = (9,U,-,I,A,A-',B,B-'). The image space S, the family F of

operations, and all other symbols are defined in the following.

1. The Universal Image (the bit plane containing all bits with value 1): The universal image is a set

W = {(z,y) I x E Z,y E Z,}, where Z, = {O,±1,±2, .±n and nis a positive integer.

2. Image Space (the set of all possible bit planes): The image space is the power set (the set of all

subsets) of the universal image, i.e. S = P(W).

3. Image (bit plane): A set X is an image if and only if X is an element of the image space S, i.e. X

is a subimage of the universal image W.

4. Image Point (a bit with value 1): A point (bit) (z, p) is an image point of an image X if and only

if (s, y) is an element of the set X.

5. Image Transformation (a mapping between bit planes): An image transformation T is a function

mapping the image space 5 into the image space S.

6. Three Fundamental Operationh (Fig. 1):

(a) Complement of an image X:

T = {(zY) ( ) E W A (z,) CX} (2)

(b) Unioa of two images X and R:

X R= {(,y) (,) rE Xv (,Y) E R} (3)

(c) Dlation of two images X and R:

X{(z 1+z 2,p+y)EW(,p,)EX,(z 2 ,p)ER} (X#)A(R#) (4)
othermise



Remark: "E" denotes "belongs to", "A" denotes "and", 'v" denotes "or", and "0" is the auJ

image having no image point. Note that X usually represents an input image and R is a reference

image containing predefined information. We can define other image operations as fundamental

operations instead of these three operations. The reason for choosing these tbhree operations is

because of their simplicity, simple software design and simple hardware implementation. Dilation

can be interpreted as a parallel mathematical formalism of the pattern substtution step in symbolic

substitution (section 5).

7. Five Elementary Imager There are 5 elementary images:

(a) I = {(0,0)} - consisting of an image point at the origin

* (b) A = {(1,0)} - consisting of an image point right of the origin

(c) A- ' = {(-1,0)} - consisting of an image point left of the origin

(d) B = {(O, 1)} - consisting of an image point above the origin

(e) B - = {(O, -1)} - consisting of an image point below the origin

In fact, these 5 elementary images could be reduced to 4 elementary images, because I = AE A-' =

B ED B - 1. Any (reference) image can be represented as

X= A' B (5)

where A'B a A'E9'B',

A' fAEDA 9...Af= {(i,O)} ifi> 0,

A' - A- ' ED (- 9 ... 9 A- '. = {(i, 0)} if i < 0,
-I

A a A 0 9 A - ' = 1.

8. Reflected Image- Given an image R, its refected image is defined as

A= {(-Y,-) I (, ) E R}. (6)

9. Some Standard Derived Operation.
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(a.) Difference of X by R (Fig. 2(a)):

X/R = {(z,) I (,) E X A (,y) 0R} = Xn = uR ()

Remark: I = W/X where W is the universal image.

(b) Intersection of two images X and R (Fig. 2(b)):

Xn R = {(z,y) (z,Y) E X A (z,y) C R} (3)

Remark: X u R=- .

(c) Erosion of an image X by a reference image R (Fig. 2(c)):

x e R = (9)

where R is deined above.

Remark: X a a = 759. The erosion of an image X bya reference image A can be thought

as the complement of the dilation of the background by the reflection of the reference image

R. In general, the erosion of a non-null image X by a non-null reference image R decreases

the size of reions, increases the size of holes, eliminates regions, and breaks bridges in X.

(d) Symmetric difference of tw images (Fig. 2(d)):

X AR = (X/R) u (R /x)=Xu u X (10)

Remark: The symmetric difference is a commutative operation, and is its own inverse.

(e) Hit or mis transform a of an image X by an image pair R = (R,,R 2 ) (Fig. 2(e)):

x@RA = (x e R1 ) n (%e Ri) = (9 sA) u (xis ) (A2)

Remark: The hit or miss transform of an image X by a reference image pair R = (RI, R2 )

formally describes the pattern recognition step in symbolic substitution (section 5); and it is

used to match the shape (or template) defined by the reference image pair A where R, defines

the foreground of the shape and R2 defines the background of the shape. The conditions are



that the foreground X must match A1 (i.e. XE) R1 ), while simultaneously the background .

matches R2 (i.e. Te? R2). Note the similarity of the symmetric difference (parallel bit-wise

comparison) and the hit or miss transform (parallel shape or symbol recognition).

The important results of BLA. are. (1) any image transformation can be implemented by the three

fundamental operations with appropriate reference images; (2) any reference image can be generated

from the elementary images by using the three fundamental operations; and ki) BIA provides an efficient

representation for many parallel image processing algorithms (e.g. shape and size verifications [161). Here

we will demonstrate that BIA is also a fundamental tool for parallel numerical computation.

2.2 Review of DOCIP Architecture

We have designed a class of the digital optical cellular image processors (DOCIPs) for effectively impie-

menting BIA [13]-[15]. Here we only summarize their major characteristics. Details are given in (14] (15].

To map BIA into the DOCIP architecture in a transparent way, we first define the DOCIP algebraicly:

Definition of Cellular Automata

A cellular automaton is an algebra A = (S; F, N,.) where S is the state space which is a

set of states, F is a family of transition functions, and N, is the neighborhood configuration.

Constraints on a cellular automaton for Implementing BLA:

1. S P(W)

2. F• {, u,}

3.NIU AUA-'uBuB-1orN, AUA-'uBuB -1

where ":)" means "'contains".

Thus, in terms of cellular automata, the DOCIPs have to satisfy the above constraints for realizing

BIA. For storing input images and temporary results in a more flexible way, the DOCIPs utilize three

memory modules and* all share the same algebraic structure (except the neighborhood configuration):

DOCIP = (P(W x W x W); ,U,, -I) (12)

12



where "x" denotes cross product and N. can be one of the following 4 types:

1. DOCIP-array4: each cell connects with its four nearest neighbors and itself, i.e.

N,,1 = Iu A u A-' u B u B-1 . (13)

2. DOCIP-array8: each cell connects with its eight nearest neighbors and itself, i.e.

1

IV.t"1 - U A'B j .- (14)

3. DOCIP-hypercube4: each cell connects with those cells in the 4 directions at distances 1, 2, 4,8, ..., 2

from itself, i.e.

NJ'W, . U (A'uB') (15)
i-o *,.*2,...,*i26

where k is sufficiently large for the connections to traverse the entire array of cells.

4. DOCIP-hypercubeS: each cell connects with those cells in the 8 directions at distances 1, 2,4,8, ..,2k

from itself, i.e.

N',,,.,.'. = U (A U B' U A'B' U A'B - ) (16)

From the above algebraic description, the DOCIPs have the same algebraic structure and differ only

in their neighborhood configurations N.. Thus, they share the same architecture shown in Fig. 3, but

have different confgurations of the reference imagus E, depending on the optical interconnection network

which defines the neighborhood. In practical applications, a larger reference image A can be 'enerated

from a set of smal er reference imasge() E, by a "sequential dilation". If it is possible to decompose R

into a sequence A = El E F a... 9 Ek, then

This decomposition may not eist, in which cae R can always be decomposed as R = R u R 2 u... U Ak,

and then

XaA= (xo aA,) u (xe S R2 ... U (xe ) (18)

where each R. can be decomposed into smaller reference images Ei (141 (22].

13



Basically, the proposed DOCIP shown in Fig. 3 is a cellular SDIND machine and consists of an array

of ceLs or processing elements (PEs) under the supervision of a control unit. The control unit includes

a dock, a program counter, a test and branch module for feedback control, and an instruction decoder

for storing instructions and decoding them to supervise cells. The array of cells includes a 1 x 3 line

destination selector, where each line is N2 bits wide, three N x N x I bit memories for storing images,

a memory selector, and a dilation unit. It operates as follows: (1) a binary image (Y x N matrix) is

input into the destination selector and then stored in any memory (or set of memories) as the instruction

specifies; (2) after one to three images have been stored, these images and their complements are piped

into the next stage, which forms the union of any combination of images (specified by the instruction);

(3) the result is sent to a dilation unit where the reference image specified by the instruction is used to

control the type of dilation; (4) finally, the dilated image can be output, tested for program control, or

fed back to step (1) as the instruction specifies.

The DOCIP machine (Fig. 3) has one instruction; it implements the three fundamental operations of

BIA along with fetch and store (22]. This design uses the parallelism of optics to simultaneously execute

instructions involving all N 2 picture elements. Each instruction takes one complete cycle to execute.

Note that the DOCIP machine can perform a dilation by any reference image R that is a subset of the

neighborhood configuration, N,, in a single clock cycle.

The entire system can be realized by an optical gate arry with optical 3-D interconnections [i]

(12] (23]. Fig. 4 describes an optical implementation concept for the DOCIP-hypercube. The DOCIP
4

has very low cell hardware compledty to madmize paralelism, yet enough cell sophistication to permit

the machine to execute udl programs. The use of optical interconnections permits a cellular hyper-

cube topology to be implemented without paying a large penalty in chip area (the cellular hypercube

interconnections are space-invariant which implies relatively low hologram compleity); it also enables

images to be input to and output from the machine in parallel.

14



3 Binary row(or column)-coded Arithmetic

Bina.-y addition of two k-bit numbers yields at most k + 1 bits, and binary multiplication of two k-bit

numbers yields at most 2k bits. In this paper. we assume that all input na--bers are padded with enough

zeroes to avoid the possibility of overflow. This also guarantees that the different operands in the image

will be treated separately. A binary row-coded number is encoded in a part of a row of an image.

Although the word lengths of numbers do not need to be equal, we assume in this discussion that an

image (bit plane) with N x N bits contains V2/k numbers of k-bit length as a simple illustration (Fig.

5). In this section, we describe parallel addition, subtraction and multiplication by BIA expressions and

their programs on the DOCIP machine.

3.1 Addition of Binary row-coded Numbers

Consider an image X (e.g. Fig. 6(a)) composed of N2 1k numbers xi, i = 1,2,..., N 2/k, an image R (e.g.

Fig. 6(b)) composed of V2 /k numbers ri,i = 1,2,..., N2 /k, and the output of the addition S = X + R

(Fig. 6(c)). To realize this addition in parallel by means of BEA, we fIrst consider the serial (carray-

propagate) addition of 2 binary numberss, = zi + ri. The first step of serial addition is to add the least

significant bits, say Zi(.) and ri(. ). The booleaa logic equations for adding the two least significant bits

(half-adder) are

e sum bit: i(o)= xj(o) XOR r,),

e carry bit: Ci(o) = xi(q) AND rtq).

Now, applying the corresponding paallel operations of XOR and AND, i.e. the symmetrical difference a

and intersection fn, and shifting the set of carry bits by a dilation (b, we can implement parallel addition

by the following recursive equations:

1. Define the initial states of images of sum bits and carry bits (called sum-bit image and carry-bit

image) at time t as:

S(o) = X, C(to)=R- (19)

15



2. The recursive relation between the states of the sum-bit image and carry-bit ima- at two adjacent

time intervals is then:

S(ti+i) = S(t) a C(ti) = s() u C(t') u S(ti) u C(t) (20)

C(ti+,) = (S(t,) n C(ti)) E A- ' = S(t.) U C(t,) E A- ' (21)

where i = 0, 1,2,..., k + 1, and the elementary image A- ' is used to shift the carry-bit image one

bit to the left for the next iteration.

3. After a maximum of k + 1 iterations, the sum-bit image is the result and the carry-bit image is

the null image 0:

S(tk+,) = X+ R, C(t 1+,)= . (22)

This procedure is illustrated in Fig. 6(d). The result of parallel addition of binary numbers with a

maximum k-bit word size is obtained after k + 1 iterations. This algorithm can be implemented in the

DOCIP architecture by the program (instructions) given below. MI, M2 , and M3 represent the three

N x N-bit memories. "X - MI" denotes 'store X into memory MI". Eac numbered line represents

a single DOCIP machine instruction for one value of i. Comments are in parentheses.

* Assume strt with X ia r (= (o)) ad A in M2 C(to)).

e First to k'h iterations:

1I. iU M2- M3( S(t,) U C(t ))

3. IT U M2 U 3 (= (t. U c 7))

4. VIU M--Ir (= S(ti,))

-5. (A-' -M 2 (=C(ti.1 ))

where i = 0, 1, 2,..., k - 1.

e (k + 1)t iteration:

1. MI u A - M3 (= s 74. UC(41 ))

16



2. MI u ZVI C = s(t,) U cT ))

3 VL, V.l3  Out (= S(tk+l) = X + R).

The total number of clock cycles for the execution of this program on the DOCIP machine is

t(k) < 5k + 3 = o(k)

which is independent of the number of words being added.

In fact, BIA can be used to devise a parallel form of a conditional-sum adder or carry-lookahead adder

for further extracting additional parallelism, and the execution time of this addition can be reduced to

O(log2 k). Obviously, there exists a tradeoff between execution time and hardware compleaity. This

paper concentrates only on some simple algorithms.

3.2 Subtraction of Binary row-coded Numbers

Let the output of the parallel subtraction be D = X - R (e.g. Fig. 7(a)-(c)). To realize it, we first

consider the serial binary subtraction of 2 binary numbers d, = zi - ri. The procedure in the least

significant bits ZT(o) and ri(o) of binary subtraction generates a difference bit d,(.) and a borrow bit bi(o).

The boolean logic equations for subtracting the two least significant bits (half-subtractor) are

@ difference bit: S(.) = xi(.) XOR rqo),

* borrow bit: c4(o) = i(o) AND ri(o).

Now, applying the corresponding parallel operations, and shifting the set of borrow bits by a dilation' e,

we can implement the parallel subtraction as follows:

1. Define the initial states of images of difference bits and borrow bits (called difference-bit image

and borrow-bit image) at time t. as:

(to) = X, B(to) = . (23)

2. The recursive relation between the state of the difference-bit image and borrow-bit image at two

adjacent time intervals is:

D(tii) = D(.) A B(4~) - D(4.) u B(t) u D(t,) u B(ti) (24)

17



B(tj1 j) = (f--in B(t,)) $ A- ' = 1() uB(t) e A- ' (25)

where i = 0, 1,2, ..., k + 1, and the elementary image A- is used to shift the borrow-bit image one

bit to the left for the next iteration.

3. After a maximum of k + 1 iterations, the difference-bit image is the result and the borrow-bit image

becomes the null image 0:

D(tk+l) = X - R, B(tk+l) " @. (26)

This procedure is illustrated in Fig. 7(d). The result of paralel subtraction of binary numbers with a

maximumk-bit word size is obtained after k + 1 iterations. The DOCIP architecture can realize this by

the following program (instructions):

" Assume start with X in M, (= D(to)) and A in M 2 (= B(to)).

" First to kt1 iterations:

2. MI u 2 - (= D(ti) U B(t-))

4. M3 E A - ' - M.2 (= B(ti+,))

where i = 0, 1, 2,..., k - 1.

* (k + 1)14 iteration.:

2. V u AM2  t (= -DTtk) u B(t))

3. iu -U r (= tk+,) = X - A)

The total number of clock cycles in the DOCIP to complete this subtraction process is

k) < 4k + 3 =0(k).

18
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3.3 Multiplication of Binary row-coded Numbers

Using the representation illustrated in Fig. 5, we define a parallel (matrix-constant) multiplication of

an image set of binary numbers and one single binary number X. R, and parallel (element-element)

multiplication of two image sets of binary numbers X x R.

I. Matrix-Constant Multiplication X. R,

Consider an image X (e.g. Fig. 8(a)) comprising N2/k numbers zj, i = 1, 2,..., N2/k, and a reference

image B, (e.g. Fig. 8(b)) comprising only one single k-bit binary number r = (r(kj)r(k_))...r(0))2.

The output of the parallel multiplication is X. . (Fig. 8(c)). To realize it, we firsnt consider the serial

multiplication of two binary numbers that is the sum of the shifted versions of the multiplier or the

multiplicand. Then, by applying the corresponding parallel operations and parallel shifting by a dilation

*, we can implement this parallel multiplication by the equation

X-B,= 1 X$A-' (27)
1,W(,)=1

where the sum notation 1 reers to a s quence of parallel additions and the parallel addition + is defined

in subsection 3.1.

The DOCIP takes 0(k2) clock cycles for implementing this matrix-constant multiplication. Its

procedure involves:

1. Generating the term A'e A"4 :

The DOCIP-arry requires at most I S k - 1 = 0(k) dock cycles, because

_ (A-')'

@ . (28)

X S A-' (...((X 9 A-')( A-') 9... $ A-').
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e The DOCIP-hypercube requires at most log2l <- log2(k - 1) = 0(log2k) clock cycles, because

we can rewrite 1 as a binary number I = (a(L1oij)...a(x)a(0))2, and we have

A- L rjOnl A-I)
2

X A. = (...((X 9 A- (0)) 9 4
- 't()'2) 9 ... A - L o@. 2

ol )

where Log2lJ is the greatest integer less than or equal to Z!og2I, and each dilation with A-"') 2,

can be implemented in the DOCiP-hypercube in one single dock cycle.

* The total time delay for generating all required X 9 A - ', 0 < I < k - 1, is bounded by 0(k)

for both the DOCtP-array and the DOCIP-hypercube. Since

X -9 - - = (X 9 A- ('- ' )) ED A- ' ,  (30)

we can generate the new term X$A - ' by simply deriving it from the previous term XEA - ( - 1)

without starting from the original X. The total generating time is then dominated by the

number of terms X 9 A - ' which is at most 0(k).

2. Implementing the summation ,W(fl X 9 A-:

* The DOCIPs require at most k - 1 = 0(k) parallel additions to implement this summation,

and each parallel addition requires at most k + 1 = 0(k) iterations (as shown in subsection

3.1). Since it takes 0(k) time for generating all the terms X S A- ', the total execution time

of the DOCIPs for this matrix-constant multiplication of k-bit binary numbers is

0(k) x 0(k) + 0(k) = 0(k 2 ).

From the example shown in Fig. 8, R, = I u A- 3 contains only a single number r = (0101)2 = 5, and

the DOCIP can implement this matrix-constant multiplication X. R, as follows:

As ume start with X in M1 (= X l).
1. MI - - M (= X 9 A-3)

2. The instructions of the parallel addition are performed as shown in subsection 3.1:

MI + M2 - Out (= X. R,).
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II. Element-Element Multiplication X x R

Consider an image X (e.g. Fig. 9(a)) comprising N*2 /k numbers zi,i = 1,2,....N 2 /k, and an image

R (e.g. Fig. 9(b)) comprising IV
2/k numbers ri, i = 1,2, ..., N 2 /k. The output of the element-element

parallel multiplication is X x A (Fig. 9(c)). Because the multiplication of two binary numbers is the

sum of the shifted versions of the multiplier or the multiplicand, applying the corresponding parallel

operations, we can implement this parallel multiplication by the equation

X x R E-(X S A-') n ((R n (M 9 A-') ED Uk*7-A-3)1= (31)
im- Xe- U UM A-I@~'-

where the mask M (Fig. 9(d)) is used to extract the PA bit (where the 0' bit is least significant and

the (k - 1)'A bit is most significant). The DOCIPs can implement this element-element multipLication

by the procedure

1. Generate X @ A -' and u MSA-:

9 Using an argument similar to that in subsubeection I above, the DOCIP-array takes O(k)

time and the DOCIP-hypercube take O(log2k) time.

2. Generate Iu 7097-9 Uke --A-i:

* The DOCIP-array take O(k) time, because

U A- (U A-j)k-1-aU 9(U..aU(UAA-j), (32)

k-1-1

iO, and each dilation by a term in parentheses executes in one clock cycle.

" The DOCIP-hypercube takes O(Iog2 k) time, since

h-1-1 Llefl(-I-I)J ,%

U A = II (U A(4-2') (33)
0 -o .i7O

where k-i-1 = (a(L. 0 (k._Ilj)...a(j)a(o))2, and again each dilation by the term in parentheses

execute in one cdock cycle.
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a It takes O(k) time for the DOCIP.array and 0(log2 k) for the DOCIP-hyperc-abe to generate

the term (X s A-') U ((R U (M UA1 A-'))

3. Implementing the summation X D A U IFU M S A - 4 ' us- o 1 .

S The summation requires at most (k - 1) addition operations, and each addition operation

takes 0(k) time on the DOCIP system. We also require O(k) time for the DOCk-array and

O(log2 k) time for the DOCIP-hypercube to generate each operand of the addition. Thus, for

this element-element multiplication of k-bit binary numbers, the total computation time is

O(k 3) for the DOCIP-array and O(k 2 log2 k) for the DOCIP-hypercube.

Multiplication requires more than three memories. This can be accommodated by either building

more memory into the DOCIP machine or by swapping intermediate results into and out of an external

memory. In the latter case we assume the external memory c&n be loaded and unloaded with one image

in a single time step. In section 4, binary stack-coded arithmetic also requires more than three memories;

well make the same auumptions on the use of an external memory.

For binary column-coded arithmetic, a number is encoded in a part of a column of an image as in

Fig. 10. All the algorithms derived in this section can be also applied to binary column-coded numbers

except that we replace the elementary image A- 1 by a different elementary image B for shifting the

carry-bit image or borrow-bit imag in the vertical direction.

4 Binary stack-coded Arithmetic

In this case, a number is encoded in a stack of k image planes with the least significant bit in the first

plane, next leat sipificant bit in the second plane, etc. (Fig. 11). We assume all numbers including

the results of arithmetic operations can be represented in k bits, so that k images, each with N x N bits,

contain N 2 binary numbers. Here, we describe parallel addition, subtraction and multiplication by BIA

expressions.
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4.1 Addition of Binary stack-coded Numbers

Using the representation ilustrated in Fig. 11, we consider the parallel addition of two sequences of

images of binary numbers. Assume a sequence of images X = (X(k...1), X(k-..), ..., X(o)) (e.g. Fig. 12(a))

storing NV2 binary numbers zi,i = 1,2, ...,tN2, and a sequence of images AR = (Ak ,R%2), ---, R(O))

(e.g. Fig. 12(b)) storing N2 numbers ri, i = 1, 2,..., N2. Then the output of the parallel addition is

X +R =5 =(Sk),5(k1).5S0)) as shown in Fig. 12(c). To realize this addition using our three

fundamental, operations, we implement an array of full adders as described by the equations

1. The least sipiiicant bit planes of sum bits and carry bits are given by:

S(O) = X(O) A R(O) X70) U R(0) U X(O) U70 (34)

CM1 =9 X(o) flO = 7707,u70 (35)

2. The recursive relations:

(36)

C(j.i) n (X,)fl()) u(X(,) nl C(,) u (Rq(.1 n C()(7

Where i=O0,,2,..., k-1.

3. The final solution is:

X + 5 (S~), ~k-l, .. , S)).(38)

where S(k) = C(k) because X(h) - R(k) =-

This algorithm can be implemented in the DOCIP architecture by the program (DOCIP instructions):

e Assume start with X(o) stored in Mi and R~o) stored in M2 .
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4.V'T[ U 72 - Out (= S (o))

* Calculate S(1) and C(2):

2. ? - M2

3. M 3-M ~)U7-)

4. MIu 7 - OtI (= s(i))

1. X(O - M

T. M U V- -

8. U V13 - t o

9. X(I) - M,

10. R J) -'*M

12. M~i I

14. V2 V 3

16. A( 1U -M 2

17. V-2 U M3 - MA SC Out (=C(2))

SCalculate 5(2) to S(_-1) and C(3) to Cp,):

Use the same instructions for calculatinug S() and C(2 ) except that X(,) and (1) (and S(I) and

C(2)) are replaced by X(i) and , .) (and S(o and C(i4.)) in each itera.tion, and in the beginning of
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an iteration the memory M 3 stores C(,) instead of (7, : = 2,3, .. , k.

The complete execution of this operation in the DOCIP requires

t(k) <5 17(k - 1) + 4 = 17k - 13 = 0(k).

clock cycles. Additional parallelism could be extracted to further reduce the execution time by utilizing

carry-lookahead techniques or by optimizing the above program.

4.2 Subtraction of Binary stack-coded Numbers

Let the result of the parallel subtraction be X - R = D = (D(k-l), D(k- 2), ...,D(o)) (e.g. Fig. 12(d)).

To realize it using the 3 fundazmental operations, we consider a serial full-subtractor. Applying the

corresponding parallel operations, we can implement this parallel subtraction by the equations

1. The least significant bit planes of difference bits and borrow bits:

D(o) = X(o) A R o) = 7) u j(O) u r() u X(o) (39)

B(I) = (-,) n 'O = X(O) u r(O) (40)

2. The recursive relations:

(41)

D¢O = (XC ( nR("onB(,)u(X( nR,n V)u(X(-)nR(,nE(I)u(X(,nR(,)nB(,))

= X(. u &, u eco)) U (lu u &o uBe.o) u(X(. u (j) U (.1 u (x(,u &,) u (,))
(42)

where i=0,1,2,...,k-1.

3. The final solution:

X - A = D = (D(- ),Dk-,), ...,D(O)). (43)

This algorithm can be implemented in the DOCIP architecture by the program (instructions):
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0 Assume start with X(o) in Mi and R(o) in M 2.

0 Calculate D(o) and 7 :

1M, U M2- Mt3 &Out (= B(1))

2. tI, U v 2 - 'V, (= X uR(o) )

3. W2U V,3 Out (,,))

o Calculate D(I) and B(2):

1. x(I) - M

2. Af, U M3  M~A2

3. V.1-U At 3 At

4. R(I) - M 3

5. M2 u M3 - M 2

6. M U M 3 - 3

7. 91 u V3- M2

13.) - M31

14. M 1 U M3 AMI
i. X(I) - M

~12. Vj- U M3-- M3

13. B(I) - M

14. MI u 23- M3
15. M2 u V3- Out( Din))

16. X() - M3

1 T. V1'- u M3 -- M,
I 18s. R(I) - M3

20. Mju M2  M3 & 0Out (= B(2))
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* Calculate D(2) to D(k_1) and B(3) to B(k):

Use the same instructions for calculating D(I) and B(2) except that X(x) and R(1) (and D(l) and

B(2)) are replaced by X(.) and R(i (and D(,) and B(;+,)) in each iteration, and in the beginning

of an iteration the memory M3 stores B(,) instead of 17), i = 2,3,.., k.

Therefore, the total execution time in the DOCIP to complete this parallel subtraction is

t(k) < 20(k - 1) + 3 = 20k - 17 = 0(k).

4.3 Multiplication of Binary stack-coded Numbers

Let the result of the parallel multiplication be X x R = M = (M(U,_),M(2,_ 2) ... , M(O)) (e.g. Fig.

12(e)). Since binary multiplication is equivalent to the addition of shifted versions of the multiplicand,

applying the corresponding parallel operations, we can implement the parallel multiplication by the

equations

P(O) = (0,0, ..,oX(k.1) fR(o),X(k-_,) nB(O),--,X(O) C)) (44)

o = ( o , -, , k - n s R , X ( k _ , ) n 1 . , - X ( )  R , 0 0 . . o )( 5

X X R = M = P (,I .a Po) + pO,) + ... + P -1) (46)

where i = 0,1, ... , k - 1, and the addition + is defined in subsection 4.1. Since this parallel multiplication

requires at most k -1 a4ditions, each addition take O(k) time for the DOCIP, and each P, can be

generated in O(k) time, the total execution time is O(P).

5 Symbolic Substitution and Binary symbol-coded Arithmetic

Symbolic substitution wa first considered as a means of utilizing te parallelism of optics by Huang [17].

R~ecently, the use of symbolic substitution as a basis for digital optid computing has been reported in

[1T]-(191 [24F[31]. Special symbolic substitution rules can be applied to perform arithmetic operations

and simulate a Turing machine (191. Although symbolic substitution demonstrates the ability to solve

any computable problem and performs many operations, we will formalize symbolic substitution by BIA
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algebraic symbols, demonstrate that symbolic substitution rules a&re pa ticular BIA image transforma-

tions, and give the BIA formal notations of binary symbol-coded (symbolic substitution) arithmetic.

We show that the symbolic substitution implementation of some operations is relatively complicated to

other implementations.

5.1 BIA Representation of Symbolic Substitution

In this subsection we give the BIA equation for symbolic substitution and show how it can be implemented

on the DOCIP machine. A symbolic substitution rule involves two steps: 1) recognizing the locations

of a certain search-pattern within the 2-D binary input data, and 2) substituting a replacement-pattern

wherever the search-pattern is recognized. We derive it by BIA in the following steps (illustrated in Fig.

13):

1. BIA Notations for Symbolic Substitution:

" 2-D binary input data = image (bit plane) X

" Symbol to be recognized (search-pattern) = reference image (or image pairs) A

" Symbol to be replaced (replacement-pattern) = reference image Q

2. A Symbolic Substitution Rule:

* Step 1. recognition of the search-pattern:

(a) Foreground recogzzer, the locations of a certain spatial search-pattern R (defined by

its foreground) within the foreground of the 2-D input data X can be recognized by the

eosion operation of X and R:

X E At 7 . (47)

(b) Background recognizer: the locations of a certain spatial search-pattern A 2 within the

background of the 2-D input data X can be recognized by the erosion of X and R2:

%eR=?., (48)
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(c) Full recognizer by combining the two above steps, the locations of a certain spatial

search-pattem R = (R, A2 ) (A1 defnes the foreground, and R2 defines the background)

within the 2-D input data X can be recognized by the hit or miss transform of X and R:

X a R = (X e R 1 ) n (XeR2 ) = (X A A1 ) u (X R2 ). (49)

" Step 2. substitution of the replacement-patter,:

- Substituter. a new replacement-pattern Q can be substituted for R wherever the search-

pattern A is recognized by the dilation of X a R by Q.

* Synthesis:

- A complete symbolic sr bstitution rule is implemented by the hit or miss transform of X

by R followed by the dilation by Q:

(X@)eQ=((XeR,1)n(XE ))9Q=(X(R) u(XeR 2)q . (50)

" Optional masking.

- An optional mask M can be used for controlling the block search region. A symbolic

substitution rule can be modified as:

((X @R)n Mn ) D Q. (51)

By proper choice of M, the search can be made in overlapping, disjoint or non-contiguops

blocks.

3. A symbolic substitution system (Fig. 14):

e To work with more than one rule (say p substitution rules) for practical applications, a

symbolic substitution processor produces several copies of the input X, provides p different

recognizer-substituter units, and than combines the outputs of various units to form a new

output. Thus, a symbolic substitution system is implemented by

,U(XaR(D QM (52)
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where R(') and Q('), i = 1,2,...,p, are the reference image pairs and replacement patterns

in the it symbolic substitution rule. This, then, is the BIA formula for general symbolic

substitution.

Hence, a general mathematical formalism of symbolic substitution has been developed. For a local

search-pattern and replacement-pattern (i.e. R1, R2 , Q C N., or the OCT-array or

DOCIP-hypercube can implement a symbolic substitution rule in four (or five with the optional mask)

steps:

Assume start with X in A"1 .

I. 1, A - 2

2. MEDR 2 -.-M 3

3. M2 U M3 - M3

4. M3e Q - Ot(= (X9R) (D Q)

Let the pixels used in the substitution rale(s) of a symbolic substitution processor be the neighborhood,

N,,, of the processor. We see from the above steps that the DOCIP can simulate the symbolic substitu-

tion processor in constant time if the two machines have the same neighborhood. If N, is not a subset

of the DOCIP neighborhood, then the simulation will take loner. In either case, it is not presently

known how many steps it takes the symbolic substitution processor to simulate the DOCIP.

5.2 Binary symbol-coded (Symbolic Substitution) Arithmetic

A bit in a binary number is encoded in symbolically as pixels of an image (Fig. 15). In this subsection,

we primarily concentrate on simple intensity coding: a logic value (0 or 1) is represented by a single

pixel (dark or bright) (Fig. IS(a)), as in the binary row and stack-coded number representations, but

the operands of binary numbers zi and r, are stored in the same input image X as shown in Fig. 16(a).

The expected output images of symbolic substitution for binary addition and binary subtraction are

shown in Fig. 16(b)-(c). To achieve these desired operations, the symbols associated with the operands

are recognized and then replaced by new symbols associated with the results of the operation. Systems

for implementing binary addition and subtraction are formalized and illustrated as examples of binary
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symbol-coded arithmetic below.

5.2.1 Addition of Binary symbol-coded Numbers

This parallel binary addition (Fig. 17) can be implemented with four symbolic substitution rules (Fig.

17(a)) [17] [18]. In the case of simple intensity coding, as we will show, RIule I is not necessary. The

symbolic substitution system for simple intensity coding can be realized as

Y(to) = X (53)

4

Y )= UC(Ygti) @R(s) n M) ( Q() (54)
i-i

where Y(tk+l) is the result, j = 0,1,2,...,k + 1, k is word size (i.e. the number of bits in a operand);

= (R(1), 4')) and Q(') are shown in Fig. 17(b) and represented as
i i. ' :,, (1) UloB', QM, =

2. e = r, B, Q(2) = I,

3. ? 3 = B, e~3 I, Q(3) =,

4.e) = U' B', ) , Q(' ) = A-IB.

Here the null image 0 and the elementary images are as defined in subsection 2.1; the mask M (Fig.

1T(c)), used for controlling t4e block search region, is the image corresponding to the coordinates of

the origins (lower-letter pixels) of the input symbols in the input image X. An example is given in Fig.

17(d). Note that Q) = , implies

((Y(ti) @R()) n M) a Q() = , (55)

so that

Y(t ) = UIm1((Y(t) @R(') n M) Q(

= iJ..((Y(t,) 9R(') n u)e q(') (56)

= LJ.-((T(t,) e Al ') u (Y(t) S A12( )) n M) S Q(.
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Thus, for simple intensity coding of symbolic substitution, we can reduce the four rules of binary addition

to only three rules. However, this reduction of complexity cannot be applied to dual-rail or six-pixel

coding.

When implemented on the DOCIP, this addition requires at most k + 1 iterations, each iteration

requiring two union operations of three results of symbolic substitution rules, and each rule is realized

within five steps as shown in subsection 5.1. Thus, the total execution time in the DOCIP is

t(k) < (3 x 5 + 2)(k + 1) = 17(k + 1) =0(k).

When using 2 or 6 pixels to represent alogic value (Fig. 15(b)-(c)), we can formalize symbolic substitution

addition as

e Dual-rail coding (Fig. 15(b)) (19][20]: we can implement a full recognition with only a background

recognizer (or foreground recognizer)

YCtj+i) = UL((Y(t,) @R(,l) n M) ( Q(')

= U2.((Yt,) e AW' ) u (Y(t,) @ A.10) n M) e Q(') (57)

= Uj.(Y(t,) a A2(' n A) • Q(01

where 0, =O1, 2,..., k; R~)=(R~141  and QOi are shown in Fig. 18(a) and represented by

elementary images as

1. = Iu B2, R' = B uB 3, Q(i) = u A-B',

2. Rj2) = uL B', 4) = I U B3 , Q() = Eu A-'B 2 ,

3. AP = IuB3,r,? =U B', QM =B U A-' ,

4. e = BuB 3 , .) = IuB 2 , Q() = Iu A-B 3 ;

and the mask M is shown in Fig. 18(b). Since

(Y(t) At(") u (Y(ti)e A2(,) = (Y(t) ( At( 0 ) = (Y(t) s A2('), (58)

for the dua-rail coding, (1 ca b. reprented by only its foreground RJ') or background R f.

For implementation on the DOCIP, this algorithm requires four rules, and each rule involves two
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dilations and one union or intersection. Because they may be not included in N,,.-av or

each dilation of i4') or Q{O is implemented by 2-4 steps for the DOCIP-a, rr'y8 and 1-2 steps for

the DOCIP-hypercubeS. The total execution time is bounded by 28(k + 1) for the DOCIP-a ay8

and 18(k + 1) for the DOCIP-hypercube8. Moreover, it requires more difficult dual-rail coding and

doubles the device area.

* Six-pixel coding (Fig. 15(c)) [30]: the mask M is not needed and

4

Y~ti.i) = U(Y(ti) SRO) 9 Q(') (39)

where j = 0, 1, 2,..., k, k is the word size; RIZO = (141'), A(')) and Q0' are shown in Fig. 21 and are

represented as

1. = IuABuB uAB 3 , 4) = BUUB 3UALJAB 2 u( 0
2 B) Q()2 AEu B 3 U

I AB,

2. RP) = (U . ) u AuA , 4 u = u B (U?, A ) u(LO A2B'), Q(2) = A-3B 2 u A-2 B3 u

BUA,

3. -=IruB u(U., A.i), 43) (U. B')uAuA 3u (i, A B), Q(M) = A-BuA-B~ u

BUA,
4. A ---BUB 3 UAUA 2 , ) = IuB 2 uABuA.B3U(U3A 2 B'), q(4) = A 3 uA 2 U

IuA.B.

The six-pixel coding removes the need for the mask M, but requires more difficult encoding, more

difficult implemettion of the hit or miss transform by RO(' and dilation by Q(,), and six times the

hardware ares. Addition on the DOCIP-aray or DOCIP-hypercube using six-pixel coding takes

much more time (on the order of ten times) than simple intensity coding or dual-rail coding.

5.2.2 Subtraction of Binary symbol-coded Numbes

Sim 1ar to addition, we genwaly use 4 symbolic substitution rules (Fig. 20(a)), but Rule 1 and Rule 4

are not necessary for simple intensity coding. The symbolic substitution system using simple intensity
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coding for binary subtraction can be realized as

Y(to) = X (60)

Y0,+) = L.J((Y(tj) GR ) n M ) e Q(')

SLJ((Mt(t) 9 Atli)) u (Y(ti) R21)) n At) 9 Q(i) (61)

J 2(((tI) e Atli)) U (Y(t,) 9 ,2()) n M) E Q()

where Y(tk+I) is the result of the subtraction, j = 0,1,2, ...,k, k is word size (i.e. the number of bits in

a operand); R(') = (. , n) and Q(') are shown in Fig. 20(b) and represented as

1. A') = 0, 4) U = B-,QM =1. = = U;..B -', Qi -,

2. R42) B-1, 42) = 1, Q () = U A-I'B-,

3. 1, 4) = B-1 , Q(3) = 1,

4. R = U1 B-', j44) = ., Q(4) =

witere the null image 0 and the elementary images are as defned in subsection 2.1; and the mask M

(Fig. 20(c)) is a shifting of the mask for binary addition. Because Q() and Q(4) are null images, and the

dilation of a null image is a null image, Rule I and Rule 4 are not needed for simple intensity coding.

Fig. 20(d) gives an example. The execution time for the DOCIP is

t(k) < 11(k + 1) = 0(k).

Similar to binary addition, we can develop symbolic substitution binb y subtraction algorithms with

BIA representations for coding a symbol with two or six pixels. However, four symbolic substitution

rules are still required became Q() and q(4) will not be equal to the null image. The DOCIPs take

approximately the same execution time for binary subtraction using dual-rail or six-pixel coding as for

binary addition.

6 Complexity of Parallel Optical Binary Arithmetic

We have shown that BIA offier a general tool for mapping serial binary arithmetic into different forms

of parallel binary arithmetic (including binary row(or column)-coding, binary stack-coding, and three
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coding techniques for symbolic substitution arithmetic)in a precise and compact way. The comple.tty

of parallel addition and subtraction of two N x N arrays of binary numbers (each number with k-bit

length) for these different number representations are compared in Table i and Table 2. Binary row(or

column)-coded arithmetic requires the smallest number 0 of fundamental operations. Binary stack-

coded arithmetic requires the lowest number of processing elements (or cells) P and the smallest overall

0 x P complexity (assume each parallel fundamental operation corresponds to P processing elements

executing in parallel). For the normal case in which the word sizeis larger than one and much smaller

than the image size (1 < k < N), binary row(or column)-coded arithmetic can be implemented in the

DOCIP with the fastest computation speed (assume the DOCIP can input all operands in an image

at a time). The complexity of binary symbol-coded (symbolic substitution) axithmetic in general is

in all cases higher than that of binary row(or column,-coded and binary stack-coded axithmetic. For

implementing symbolic substitution algorithms on the DOCIPs, the simple intensity coding is superior

to the other symbol coding techniques.

7 Conclusion

Binary image algebra (BIA) is demonstrated to be a general technique for developing and formulating

parallel numerical and non-numerical computation algorithms for digital optical computers. The DO CIP

is a simple optical architecture for effectively implementing BIA. Symbolic substitution is a subset of

BIA and can be formalized in compact BIA expressions. Three different techniques for parallel optical

binary arithmetic, based on binary row(or column)-coding, binary stack-coding, and binary symbol-

coding (symbolic substitution), ar il1utrated for implementation on the DOCIP. Binary row-coding

arithmetic has fut DOCIP execution and binary stack-coding arithmetic requires the lowest number of

computations 0 x P. In summary, BIA and the DOCIP represent % simple yet powerful parallel digital

optical algorithmic and architectural technique for both numerical and non-numerical applications.
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0000000 0000000
0011110 0000 000
00"01 110 001 1 100

0000110 001 1 100
0000010 001 1 100
0000000 0000000
0000000 0000000
Tested X Reference R

Image Image

111 111 000 O000 0 1 1 1 1 1 1
1 00 001 001 1 1 10 01 1 1 1 1 1

11 10001 0011110 0111111
1111001 0011110 0011111
11 11101 0011110 000111111 11 11 1 0000000 0000111
11 11 1 0000000 00000 0

Complement y Union X u R Dilation X 9 R

Figure 1: An example of fundamental operations: complement , union u, and dilation E).

x R X/A

Figure 2(a): Difference.

ni

XR X nR

Figure 2(b): Intersection.
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R XeR

Figure 2(c): Erosion.

X R X&A
Figure 2(d): Symmetric difference.

x: donl care points
I: foreground points with value 1
b: background points with value 0

R.(R1, R2)

Figure 2(e): Hit or miss trasform (temaite matcing).

Figure 2: Some standard derived image operations. The shaded regions in (a)-(d) correspond
to pLxels with value 1.

40



C* Image Data (Nx4MtviCnr Int
- Control Signal

-Complement ClcCone

~~~~~~~~~ntution fbnrMmg ler (I) h O I-ra eqursmor 5 co T est bi arrfn ce

imag E~ TheDOC-hyercue rquies Olog) cntro bis fReference imageE.

-~ t Mpemory I e~ckP
) netions h DOePlyecb

2U intncin Uni
4-eta imgigmIpemneeb

Figure 4: A opgtal 4pdiaeceluor irected prcesr hyOCpeub arOcIhitee or impemet-

hyerubS) Chlonnectsiotncls in the 4 directib4o W or S dir ctik Pathdsane

1,2,4,3,...,~~Ineronocio Unfoitsltyopia -Ditronetos
(Ipeetdb



- k-bit k-bit
1 engt! , jegjN-bit 

N-bitlength t 4 - length soilT * "
N-bit •N-bit
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Figure 5: Binary row-coded numbers.
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k-5 bits

01011 00010 01101

07 UT U I U

(a): An image X of operands. (b): An image R of other operands. (c): The outpur v R.

010011 001001

) , C(t1)=

U U

• •S(tj)=

011011 000001

* C(t2) =

U U

U U

011011 000001

S(t3) 
=

011011 000001

S(t4W C(t4)

S(ts) = S = X+R C(ts)

(d): The procedure for paraUel addition X + R.

Figure 6: Parallel addition of binary row-coded numbers.
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k=7 bitS

1 11)1101111
0001001 1011011 . a

(a): An image X of operands. (b): An image R, containing only a (c): The output X R,
single number.

Figure 8: Parallel (matrix-constant) multiplication of binary row-coded numbers.

kW7 bits

3011 001 Q1 110001001 0000101 1 1 * *

(a): An image X of operands. (b): An image A of other operands. (c): The output X x R.

k=7 bits k-W7 bits W bits

00o 00 .. 0 T 000000o

1 . 1 11111111*1a* a 1 W bit$

a. rrnr -- n

- .1

(d): The mask M. (a): The image U,-.,d A-j. (f): The image (R n M) 9 Uk- A-j.

Figure 9: Parallel (element-element) multiplication of binary row-coded numbers.
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N-bit
t-length " '

t-aMost significant bit

k-bit,

lengthl
UI-- Least significant bit

N- it

XN2/k

x

Figure 10: Binary coluumn-coded numbers.

z1(k - 1)

N-bit = o

XXV2(O

X( k- 11X(o)

Figure 11: Binary stack-coded numbers. zi(m) represents the mth bit of the it/ number in the

image plane. X(o) represents the image plane of least significant bits and X(k-) represents the
image plane of most significant bits.
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*. 000 0000

Figure 12(a): A sequence of images. Figure 12(b): A sequence of images
X =(X(3), X( 2), X(I), X()). R =(R3 R2)RlRO)

Figure 12(c): The sum X+A Figure 12(d): The difference D =X - R?

Figure 12(e): The product M =X x R

Figure 12: Parallel arithmetic with binary stack-coded numbers.
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1 I1 o1 Background recognition 0 0 0 o 0

0 0 X@R

00 10

YeR2 = x R2
Symbolic substitution rule - Hit or miss transform + Dilation

ED a10 10

1 0 1 10

1 0 [a 0O

M
Figure 13: BIA representation of symbolic substitution. The optional mask M is tor controlling

the block seach region.

Symbolic Recogntion 1 I Symbolic Substitidon 1

(Hit or Miss T form) . (OiEDon

Symbolic Recognition 2 Symbolic SubstItution 2

Input (Hit or Miss Transform) Union Out
image

7-" Symbolic Recognition pl JYmoc Substitution p

Lge(Hit or Miss Tranmfofm) (Dilation)

Figure 14: A symbolic substitution system with p symbolic substitution rules.
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U LI
Zero

Figure 15(a): The simple intensity coding of
zero and one (a bit is a pixel).

Zero One ZeroOn

Figure 15(b): The dual-rail coding of zero and Figure 15(c): The six-pixel coding of zero and
one (a bit is encoded as two pixels) (adapted one (a bit with value zero or one is encoded as
from [18][191). six pixels) (adapted from [30)).

Figure 15: A bit encoded as a symbol.

k-bit
length

Figure 16(a): The input image X contains the
operands si and the other opemads ri.S. 0X,. l

xg r000 ... 0o0 ,

000o...oo0

Figure 16(c): The output of paelel subtrac-
Figure 16(b): The output of paralel additiont tion.

Figure 16: Binary symbol-coding (symbolic substitution) binary arithmetic).
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10110 Rule 1. o0 -a o. o
+10011 0 0Carry bits 10010Sum bits 0o1l4 Rule 2. 0 -- o 1

Carry bits 0010Sum bits 100001 Rule 3. 1 -0
Carry bits 000
Sum bits 101001 Rule 4. 1 1

1 0
Figure 17(a): Four symbolic substitution rules for addition.

Rule 1. m mURule 2. m_

Orign Oigi (2)1 R(2)- BQ( 2)=I
R(1o)o, ' '  = , R ) = U.. Bi :M RI

Rule 3. so so Rule 4. D _. E

R B R3 = Q(3) = UoB, -B
Figure 17(b): Reference image pairs R(' ) and reference images Q(11, i = 2,2,3,4, used for addi-tion. Q(') is a null image, Rule 1 is not needed for this simple intensity coding.

Figure 17(c): The mask M.

k..5 bits

Figure 17(d): An example of parallel addition of binary symbol-coded numbers.

Figure 17: Parallel addition of binary symbol-coded numbers.
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Rule 1 [. . LI Rule 2.W

Origin, Origin)mm

Rule 3. Rule 4.E

Figure 18(a): Reference image pairs R (') and reference images Q('), i- 1,2,3, 4, used for addi-

tion (with dual-rail coding) (adapted from [18] [19]).

|U

mijlU

Figure 18(b): The mask M.

Figure 18: Symbolic substitution binary addition with dual-rail coding.

Rule 1. WE.EEERule 2. WDE00E*

Origin O rigin W EE EWE

Rule I MD~EE E Ru le4. !iiDE-0SEE
MEN EWE EWE WEE

Figure 19: Symbolic substitution binary addition with encoding a bit as six pixels (adapted
from 1301).
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10100 Rule 1.0- 0
-10011

Difference bits 00111 Rule 2. 1 _ 11
Borrow bits Re . - 1

Difference bits 00001 1
Borrow bits 0011 Rule 3. o* 0

Difference bits 00001 0
Borrow bits 000 Rule 4. - 0

Figure 20(a): Four symbolic substitution rules for subtraction.

Origin Origin

Rule1. m Rule 2. m 1

=, R-, U B' Q() R(2 ) = B-', R 2 2)  Q(2) Iu A-'B-'

Rule3 . * Rule 4.

R(
3 ) - I R (3)qB-1 = Q(3 UI=o B R-iR( 4) Q(4) =

Figure 20(b): Reference imag) pairs R(') and reference images Q(') , i 1,2,3,4, used for sub-

traction. Because QMl andQ 4) are null images, Rules 1 and 4 are not needed for simple iLtensity

coding.

Figure 20(c): The mask M.

kW5 bits

D101

11 1

m U

Figure 20(d): An example of parallel subtraction of binary symbol-coded numbers.

Figure 20: Parallel subtraction of binary symbol-coded numbers.
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Symbolic SymbolicNumber Binary Binary Substitution Substitution
Representation Row-coding Stack-coding (simple intensity (dual-rail coding)

coding)

No. of Dilations k 0 9(k+1) 8(k.1)
(or Erosions)

No. of Unions 4k+3 16k-12 15(k+e1) 16(k.1)
(or Intersections) ______

No. of 7k+4 20k- 13 12(k+l) 16 k+1)
Complements *2k+2 *7k-5 3(K.1) '4(k+1)

Total No. of Parallel
Fundamental 0 12k+7 36k-25 36(k+1) 40(k+l)
Operations *7k..5 '23k- t7 *27(k+I) *28(k...)

Processing P k W N2  2k N2 4kN2
Elements_______ ___ ___

Total No. of (I 2k+7)kN2  (36k-25)N2 76k(k+1)N2 160k(k+l)N2

Computations OxP -(7k+S)k2 *(22k-1 6)N2  54k(kiI)N2  * 12k(k.1)N

DOCIP T 5k..3 17*k13 17(k.1) 18(k+l) or
ExectionTime28(k~i.)

PxT (5k+3)k N2 (1 Ak-13)N 2  34lk(k+I )W 72k(k~i.)N 2 or
1 12k(k+I WO'

indicates the numnber of operations when erosion and intersection are also allowed.
Table 1. Complexity of parallel optical binary addition of two NxN arrays of k-bit binary numbers.
Each parallel fundamental operation corresponds to P processing elements executinig in parallel.

Symnbolic Symbolic
Number Binary Binary Substitution Substitution

Representation Row-coding Stack-coding (simple intensity (dual-rail coding)
coding) _______

No. of Dilations k 0 6(~-)8(k+l)
(or Erosions)

No. of Unions 4k+.3 16k-12 1O(k+1) 16(k+1)
(or Intersections) ____________

No dGk422- 88(k.&i) 1B(k.1)
Comnplemrents "A+2 * 1 k-8 2Kl*4k)

Total No. of Parallel 1k74k3 4kl 0kl
Fundamientall 0 *lk,7 *33k-26 *18(k+l) 28(k~l)
Oertions8+ 3k2 1(,)*8k1
No. of

Processing P kN N' 11 4kN2
Elements_____________

Total No. of (1 lk,7)kN' (43k-33)N' 4$k(k.1)N' 160k(k+lIhP
Computations OxP -(Sk+S)kN' *(33k-26)N2 *36k(k+.)N' *1 12k(k...)N'

DOCIP T 4k+3 20k- 17 11 (W) 1 8(k+1) or
Execution Tims I 28(k,1)

PxT (4k.3)k W (20k-17)th 22k(k+1)N' 12k(k )' o

indicates the number of operations when erosion and'intersection are also allowed.
Table 2. Complexity of parallel optical binary subtraction of two NxN arrays of k-Mi binary numbers.
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2.1 Binary Image Algebra

Binary image algebra (BIA) forms the mathematical background for software and hardware

systems suitable for optical digital computing. Parallel algorithms for optical cellular logic and

symbolic substitution processors can be formalized as compact BIA expressions. BIA also leads to

the architectural design of digital optical cellular image processors (DOCIP) which are well-suited

to executing the parallel algorithms. The following paper "An Image Algebra Representation of

Parallel Optical Binary Arithmetic" submitted to Applied Optics summarizes our recent work in

this area.
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Abstract

Is there a simple unified consistent complete theory of parallel binary digital image processing
algorithms and architectures? Can this theory suggest new parallel architectures for image
processing? Can these architectures be implemented by optical computing techniques? We
at-empt to answer these questions.

Techniques for digital optical cellular image processing are presented. A binary image algebra
(BIA), built from only five elementary images and three fundamental operations, serves as its
software and leads to a formal parallel language approach to the design of parallel binary image
processing algorithms. Its applications and relationships with other computing theories demon-
strate that BIA is a powerful systematic tool for formalizing and analyzing parallel algorithms.

Digital optical cellular image processors (DOCIPs), based on cellular automata and cellular
logic architectures, serve as its hardware and implement the parallel binary image processing
tasks naturally and effectively. An algebraic structure provides a link between the algorithms
of BIA and architectures of DOCIP. Optical computing suggests a more ideal and efficient im-
plementation of the DOCEP architectures because of its inherent parallelism and 3-D global free
interconnection capabilities. Finally, the instruction set and the programming of the DOCIPs
are illustrated.
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1 Introduction

In this paper we combine studies of architectures, algorithm, mathematical structures, and op-

tics to show that: 1) an image algebra extending from mathematical morphology [2]-(5] can lead

to a formal parallel language approach to the design of image processing algorithms; 2) cellular

automata are appropriate models for parallel image processing machines [6](7]; 3) an algebraic

structure serves as a framework for both algorithms and architectures of parallel image process-

ing; and 4) the parallel processing and global interconnection advantages of optical computing

may be useful in eficiently implementing image algebra with cellular logic architectures.

The purpose of the image algebra approach in this paper is for the development of a pro.

gramming language for a specific parallel architecture. namely a digital optical cellular image

processor (DOCIP). The binary image algebra (BIA) described here is based on a set of three

specific fundamental operations. These fundamental operations are the key operations in the in-

struction set of the DOCIP machine. The BIA provides a decomposition of general operations.

including low-level image processing operations, into the three fundamental operations of the

instruction set. This decomposition is inherently parallel and provides a direct mapping to the

machine architecture.
In this section, we first review previous work on image algebra, cellular automata and cellular

logic architectures, then define the algebraic structure and outline the detailed discussion that

follows.

Previous Work on Image Algebra

During the past few years, numerous papers have used an algebraic approach to aid in

image processing (2J-(51 [8]-10]. Among them, morphological image algebra has the closest

relation to binary image algebra (BIA). Many papers describe either specific theoretical aspects

of mathematical morphology or application-specific morphological algorithm [111-18]. The

applications of mathematical morphology has been fruitful. In this paper we adapt it to provide

the following features:

1. A simplified mathematical structure. Mathematical morphology comprises two branches,

integral geometry and geometrical probability, plus a few collateral ancestors (harmonic

analysis, stochastic processes, algebraic topology) [2]. The mathematical details and formal

proofs in morphology are often intricate and involve advanced set theoretic and topological

concepts which are not always necessary for engineering applications.

2. A complete algebraic theory. Mathematical morphology defines some algebraic operators

and utilizes some algebra. With our adaptation, we would like to answer the following

questions:

* What is the algebraic definition of this mathematical morphology?

* How powerful is this mathematical morphology?

o What is the definition of a transformation? Morphological transformations are con-

strained by four principles (2], here we introduce a complete definition of image trans-

formations.

3. Clarification of its relationship to other areas. We define its relationship to linear sys-

tem theory, image processing, and common computing techniques including boolean logic,

cellular logic, and algebraic structures.
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Here we develop a simple unified complete parallel binary image processing theory based on
an algebraic structure - binary image algebra (BL-). Tn BIA, parallel binary image process-
ing algorithms (including parallel numerical computations) can be written as compact algebraic
expressions where an algebraic symbol represents an image (not a pixel) or an image operation
(not a pixel-wise operation). A complete algebraic system comprises three fundamental oper-
ations and five elementary images which can be combined to generate any image in the three
fundamental operations for forming any image transformation. (In fact, one can define four
elementary images and two fundamental operations that are sufficient: however, in this paper
we will not consider them since they are more difficult to use.)

There are other imace algebras, each with its own characteristics [8] [9]. Because of our
intended application to a highly parallel computing machine with simple processing elements
and a reduced instruction set, we utilize a BIA with only three fundamental operations that
can implement any binary image transformation. For example, the counting function, which
gives the number of pixels having a certain level, is considered a mapping from a picture type of
operand to another number type of operand in references [8] and [91; in BIA numbers are also
represented as images [19]. BIA suggests several simple but fast parallel image algorithms and
a parallel image processing architecture with a very low cell complexity.

Previous Work on Cellular Logic Architectures

To match BIA parallel algorithms by cellular logic architectures in a transparent way, we char-
acterize a cellular automaton by an algebraic structure as BIA does. The cellular logic computer
was first inspired by the writings of von Neumann (20][21] on cellular automata. A sequential
process of cellular logic operations is described in Fig. 1. Some review of cellular image proces-
sors can be found in Ref. (21]-[25]. Many cellular computers have been constructed previously
for implementing cellular logic operations, and some ideas for extending the nearest-neighbor
connected cellular logic computers for improving speed and flexibility have been proposed [24!.
These architectures include: (1) the cellular string (Fig. 2(a)); (2) the cellular array (Fig. 2(b));
and '3) the cellular hypercube (Fig. 2(c)) and the cellular pyramid (Fig. 2(d)). These three
architectures share a common feature in the simplicity and regularity of interconnecting simple
processing elements, and represent an interconnection topology in 1-D, 2-D, and 3-D, respec-
tively. The 3-D case is difficult to implement on a planar VLSI chip (24] (261 [27], but may
be realizable by a digital optical system [28][291. Two promising architectures based on digital
optical cellular image processors (DOCIPs), DOCIP-array and DOCIP-hypercube, are presented
below as a means of implementing BIA effectively.

Definition of Algebraic Structure

An algebraic structure (or algebra) (30]-(32] is a pair (or system) A = (S,F) where

* S is a set, and

e F is a family of operations which are functions:

f : 5. - S,

and k is a finite non-negative integer.
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Remark: For any finite non-negative integer k, we define a k-ary operation on S as an operation
which is a function f : P - S. Thus, a unary (or 1-ary) operation on 5 is simply a function
on S to S. A binary (or 2-ary) operation on S is a function on 52 to S. For completeness, we
define a nullary (or O-ary) operation on S to be a particular element of S.

Therefore, the problem to be solved is essentially to find a 'good" algebraic structure (S, F)
for parallel binary image processing, i.e. to search for S and F, and its "good" hardware
implementation.

Outline

Section 2 contains the framework of BIA: subsection 2.1 gives the basic definitions; subsection
2.2 presents two fundamental principles which prove the completeness of BLA.

Section 3 describes some applications of BIA: subsection 3.1 reviews basic properties of
images and image transformations, and derives from them some standard image operations:
subsection 3.2 gives some useful theorems for properties of image operations, for applications in
morphological filtering, shape recognition, "sat" and 'pepper" noise removal, size and location
verification.

Section 4 discusses the relationship of BIA a6nd other computing theories: subsection 4.1
describes the relationship with boolean logic; subsection 4.2 describes the relationship with
symbolic substitution and cellular logic; subsection 4.3 describes the relationship with linear
shift invariant system theory, convolution and correlation; subsection 4.4 descibes some standard
algebraic structures supported by BIA.

Section 5 contains the implementation of BIA on digital optical cellular image processors
(DOCIPs): subsection 5.1 gives the algebraic description of the DOCIPs which have the same
algebraic structure as BlA; subsection 5.2 gives the general description of the DOCIPs.

Finally, the programming of the DOCIPs is iMlustrated in Section 6.

2 Binary Image Algebra (BIA) Fundamentals

The overall philosophy of BIA is:

* An image, but not a piei, is an object. For parallel languages and machines for image
processing, images can be considered as primitive variables for simplifying the design.

* Complex image processing operations can be reduced to simple instrtctions. Although
image processing operations appear complex, the fundamental interactions and the ele-
mentary components in a system are very simple.

Thus, BIA begins by:

1. Defining the universal image as the working space for images and their image transforma-
tions.

2. Defining elementary images which can be combined to generate any image.

3. Defining fundamental operations which can be cascaded to form complex operations.
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4. Defining image processing/analysis algorithm design as the choice of "good" (or "appro-
priate" ) reference images and transformations.

A reference image can be any image and is a generalization of structuring elements in mathemat-
ical morphology [2]. Reference images contain some predefined image property (or information);
image transformations (or operations) are used for measuring the image property from an input
image. Image description, image information extraction or image property measurement is done
by using reference images to model or transform the original image to a final state which reveals
the desired information or is used to detect the desired properties easily.

Here we give the algebraic structure of BIA first, a. then provide deflnitions and present
two fundamental principles which allow us generate any reference image and implement any
image transformation. Ideally, BLA may be further generalized to GLA. (General Image Algebra)
which deals with grey-level and complex-valued images.

2.1 Definitions

Definition of Binary Image Algebra (BL4)
Binary image algebra is an algebra with an image space S, which is the power

set of a predefined universal image P(W), and a family F of operations including 3
fundamental operations (E, u, -), which are non 0-ary operations, and 5 elementary
images (I, A, A-1, B, B-'), which are 0-ary operations. Symbolically,

BIA = (P(W);E,U,,I,A,A-',B,B-')

i.e. S = P(W) and F = (s,u,-,I,A,A-',B,B-'). The image space S and the
family F of operations will be derived in the following.

Basic Definitions

In general, a, binary digital image is defined as a function f that maps each grid point (z, y)
of the picture on an orthogonal coordinate system onto the set composed of two elements: I (i.e.
white, foreground point or image point) and 0 (i.e black or background point). However, it will
be more convenient for our algebra, if we use a set of the coordinates of image points ('1's) to
specify an image. In this paper, an image is treated as the set of coordinates of image points
(i.e. foreground points or pixels that have value 1). We begin the description of BIA by defining
our artificial universe:

Definition .1 The Universai Image.
The universal image is the set W = {(z, y) x E Z,y E Z}, where Z. = {O,±1,+2,..., ±n)
and n is a positive integer (Fig. 3).
Remark: "E" means "belongs to". Notice that given n, the universal image defines the domain
of our images. In fact, for an image with size larger than (2n 4- 1) x (2n + 1) (the size of the
universal image), we need to increase the size of the universal image or decompose the tested
image into subimages whose sizes are smaller than the size of the universal image. For the
reason of simple practice, we only consider the square tessellation of images. To deal with
non-square tesselations (such as the hexagonal digitization), we can simply replace the
universal image to be the set of grid points corresponding to the new digitization pattern.
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Definition 2.2 Image Space.
The image space is the power set (the set of all subsets) of the universal image, i.e. S = P(W).

Definition 2.3 Image.
A set X is an image if and only if X is an element of the image space 5, i.e. X is a subimage
(subset) of the universal image W. Symbolically,

Xis an image-XES--XCW.

Remark: " means 'is included in". There exist 2 (2n+l)x(2n+i) different images. Three terms
related to images are defined:

1. Size (or area) of an image X, denoted as #(X), is the cardinality (i.e. the number of
elements) of the image X.

2. Foreground of an image X, simply denoted as X, is referred to those pixels with value 1.

3. Background of an image X, denoted as the complement " (Definition 2.6), is referred to
those pixels with value 0.

Once we know the foreground of an image, the background of this image is well defined (since
the universal image is given first). Thus, the foreground is sufficient to specify an image.

Definition 2.4 image Point (Foreground Point).
A point (z. y) is an image point of an image X if and only if (z, y) is an element of the set X.
Remark: The largest image is the universal image W and consists of (2n + 1) x (2n + 1) image
points, i.e. #(W) = (2n + 1) x (2n + 1); the smallest image is the null image 0 (defined as the
complement d = W) and has no image points, i.e #(#) = 0.

Definition 2.5 Image Transformation.
A transformation T is an image transformation if and only if T is a function mapping from the
image space S to the image space S.
Remark: There exist (2(2n+i)x(2"+l))(2(2"+I)X( 2 

f )) image transformations.

Definition 2.6 Three Fundamental Operations.

There are three fundamental operations:

1. 'Complement of an image X (Fig. 4(a)):

X = {(z, y) I (z, Y) E W A (X, y) % X}

2. Union of two images X and R (Fig. 4(b)):

X U R = {(z, y) I (z, Y) E X V (z, Y) E R}

3. Dilation of two images X and R (Fig. 4(c)):

= {(s+z 2,y+y2) EWI ,(,yl)EX,(;2,y)ER} (X#O)A(R#O)
XEDR= '1 otherwise

61



Remark: 'A" means 'and", and "V" means "or". Note that X usually represents an input or
data image and R is a reference image. The consideration of null image in the dilation
operation is missing in mathematical morphology (where the dilation is defined the union of all
translations of X by all image points in R); with this generalization we have a complete theory
which is not found in other image algebras because of less demonstration of their capabilities
for implementing any image transformation. We can also define other image operations as
fundamental operations instead of these three operations. The reason for choosing these three
operations is because of their simplicity, simple software design and simple hardware
implementation. As shown later, these three operations may be implemented by a 2-D optical
gate array with 3-D interconnections.

Definition 2.7 Elementari Images.
These elementary images are constant images, i.e. 0-ary operations. Each elementary image
has only one image point. There are 5 elementary images:

1. 1 = {(0, O)} - consisting of an image point at the origin

2. A = {(1, 0)} - consisting of an image point right of the origin

3. A-' = {(-1,0)} - consisting of an image point left of the origin

4. B = {(O, l)} - consisting of an image point above the origin

5. B- 1 = {(O, -1)} consisting of an image point below the origin

Remark: In fact, these 5 elementary images could be reduced to 4 elementary images, because
I= A°=AeA-' = Bo= BB - 1.

Definition 2.8 Reflected Reference Image.
Given a reference image R which is a predefined image for containing some desired image
property or image information, its refected image is defined as

A = {(-z,-I) (Z' Y) E R}.

Remark: In many useful cases the reference image R is symmetric, then A = R.

2.2 Two fundamental Principles

Two fundamental principles basically define the binary image algebra (BIA). Before stating these
two principles, we give some preliminary results.

Lemma 2.1.

(X (D 1) U (T] ' a R) U I f R ' R oif X=R

(X@~)u(X R~u7={ otherwiseVRE(W
where I = {(0,0)} is an elementary image, A is the reflected reference image of R, and "V"
means "for all".

Proof Appendix A.
Remark: This lemma says that if the image X matches the image A, then the origin (central

pixel) of the above output image has value '1', otherwise always '0'.
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Theorem 2.1.

Any image transformation T: P(W) - P(W) can be expressed as

k 
__________________

T(X) =U(a . (X -_UED

where k < #(P(W)), R and Qj are the reference images used to form any desir" image
transformation, and

U R, -- Ri UR2 U ... U Rk-.

Proof Appendix B.

Theorem 2.2.

Any image can be represented as
X= U A'B'

(ij)EX

where A'BJ =_ A' 9 B2,
A" EDA ED... ED {(i,0O)l ifi > 0,
A' A- ' E A-' ... E A- ={(i,0) if i < 0,

and A, B, A- ', B- 1 are the elementary images defined in Definition 2.7.
Proof Appendix C.

Principle 1. Fundamental Principle of Image Transformations
Any image transformation T can be implemented by using appropriate reference
images R and the three fundamental operations: 1. Complement 7 of an image X,
2. Union u of two images, 3. Dilation E of two images.

Proof It follows from Theorem 2.1.

In order to use principle 1 efficiently in practice, we invoke principle 2 for the generation of
reference images.

Principle 2. Fundamental Principle of Reference Images
Any reference image R can be generated from elementary images (1, A,A - ', B, B - ')
by using the three fundamenta operations.

Proof It follows from Theorem 2.2.

Therefore, by the above principles, we can represent BEA as:

BIA = (P(W); (, U,, I,A,A-', B,B-).
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3 Development of Binary Image Algebra (BIA)

BIA can have many applications in character recognition, industrial inspection, medical image
processing, and scientific computation. In this section we first review the basic properties of

images and image transformations, define 11 standard operations, and give some special cases
of dilation [21-[5] [331-[36). Then we summarize 5 theorems for binary image processing.

This section is primarily a survey of binary image processing algorithms with implementation
using BIA fundamental operations. These fundamental operations axe so chosen because they
form an efficient basis for the instruction set of an optically-based cellular image processor. This
survey serves as a description of a parallel language for controlling the processor and how it

is compiled into low level instructions. The use of BIA for parallel nu.merical computation is

described in (191.

3.1 Basic Properties of Images and Image Transformations

Definition 3.1 Connectivity in Images

1. 4-neighbor and 8-neighbor:
An image point (z, y) in an image X can have two types of neighors:

(a) An image point (i, j) is a 4-neighbor of (z, y)
- (i, i) E {(z ± 1, Y), (z,y Y 1)}.-

Remark: {(z, y), (z ± 1, y), (z, y ± 1)} is called the 4-neighborhood of (z, y) and Y4 E
{(O, 0), (0, ±1), (_1, 0)} = Iu Au A-' u B U B- 1 (Fig. 5(a)).

(b) An image point (i, j) is a 8-neighbor of (z, y)
- (i,2 ) E {(z ± 1,Y),(z,Y ± 1),(z ± 1,Y ± 1)}.
Remark: {(z, y),(z ± 1,y),(z,y y 1),(z ± 1, y ± 1)} is called the 8-neighborhood of
(z,y) and Ns {(0,0),(0,±1),(±1,0),(±1,±1)} (Fig. 5(b)).

2. 4-connected and 8-connected:

(a) Two image points (z,y) and (i,j) of an image X are 4-connected
- there exists a sequence of image points (z,y) = (zo. Y),(z, y), .... (z.,ym) =
(i,j), where (z,yk) is a 4-neighbor of (zk-1,yk-1) and (zX,yk) E X, 1 < k 5 m.

(b) Two image points (z, y) and (i,j) of an image X are 8-connected
- there exists a sequence of image points (z,y) = (zo, YO),(zI, Y)...,(zy.) =
(i,j), where (zh, y,) is a 8-neighbor of (zk_1, yk-1) and (zk,yk) E X, I _ 1k < m.

Remark 1: '4-connected in X" and "8-connected in X" are equivalence relations (reflexive,
symmetric and transitive).

Remark 2: For any image point (z, y) in a non-null image X, the set of (i,j) such that

(z,y) and (i,j) are 4-connected (or 8-connected) is called a 4-connected (or 8 connected)
component of X. A 4-connected (or 8-connected) component of X is just an equivalence

class in X under the equivalence relation - '4-connected (or 8-connected) in X". Thus,
a collection of 4-connected (or 8-connected) component of X forms a partition of X, i.e.

the set of all 4-connected (or 8-connected) components {X 1 },iE (where I is the index set

1 
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of connected components) is a family of non-null subimages of X and has the following
properties:

(a) X1 0 0 for all I E 1.

(b) X, n Xi = o for all i # j, 1,j E L (Xi n X, = U, as defined in Definition 3.3

(c) X = UI'Ek-T,

Fig. 6(a) shows a 4-connected component in an image X and Fig. 6(b) z 2ws an 3-
connected component in X.

Remark 3: If an image X has I 4-connected (or 3-connected) components, there axe I
distinct equivalence classes in X. Each equivalence class X, can be represented by an
image point in X,. Thus, we may use I distinct image points which belong to I different
4-connected (or S-connected) components to represent the classes of the image X.

Remark 4: In dealing with connectedness in both X and 77, to avoid the "connectivity
paradox" [331, it is preferable to use opposite types of connectedness for X and T, i.e. if
we use "4-connected" for X, then we use -S-connected" for .', and vice versa.

Remark 5: If any image X is surrounded by a border of O's, the component of T consisting
of the points connected to (any one of) these O's is called the outside of X (Fig. 7(a)). If
T has any other components, they are called holes in X (Fig. 7(b)).

For more detailed discussion of geometric properties of images, the reader is referred to
f331-L35]. For equivalence relations, equivalence classes and partitions, please refer to [30]4321.

Definition 3.2 Basic Properties in Image Transformations

The key properties of image transformations are the following ten basic properties

1.. Increasing: An image transformation T(X) is increasing

- (X C Y - T(X) C T(Y)) for all X, Y E P(W).

2. Decreasing: An image transformation T(X) is decreasing

- (X C Y - T(Y) C T(X)) for all X, Y E P(W).

3. E;tensive: An image transformation T(X) is extensive
- X C T(X) for all X E P(W).

4. Antiextensive: An image transformation T(X) is antiextensive
- T(X) C X for all X E P(W).

S. Idempotent: An image transformation T(X) is idempotent
- T(T(X)) = T(X) for all X E P(W).

6. Shift invariant: An image transformation T(X) is shift invariant
- T(X E P) = T(X) @ P for all X, P E P(W) and P is a point image which consists of

one and only one image point.
If an image transformation is not shift invaxiant, then it is shift variant:
T(X 9 P) # T(X) P (in general).
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7. Homotopic: Ank image transformation T(X) is homotopic
- there exists a one-to-one and onto correspondence between the connected components
of X and those of T(X), for all X E P(W). The same is then tue for the holes.

S. Commutative: A binary image operation , is commutative
- X. R = A. X for all X,R E P(W).

9. Associative: A binary image operation - is commutative
- (X R) .Q = X.(R .Q) for all X,R,Q E P(W).

10. Distributive: A binary image operation - is distributive over a binary image operation
- X.(R+Q) = (X.R) + (X.Q) for all X,R,Q E P(W).

Definition 3.3 Standard Operations

Most standard operations can be derived from the three fundamental operations; eleven common
ones follow:

1. Difference of X by R (Fig. $(a)):

X/R = {(x,i,) E X I (z,y) 0 RI = Xn 7 = X-u 1
Remark: T = WtX where W is the universal image. The difference is an obvious approach
to detect defects in the foreground of a tested image.

2. Intersection of two images X and R (Fig. 8(b)):

X n R = {(x, y) I (z, y) (= X A, (z, y) E R}= u IF

Remark: X u R =777. If X nR # , then we say that an image X hits (or is joint
with) an image R. If X n R = ,, then we say that an image X misses (or is disjoint with)
an image R

3. Erosion of an image X by a reference image R or foreground template matching of X by
R (Fig. 8(c)):

XeR= 'R

Remark: X D R = T R!, and R = A when R is symmetic. The erosion of an image X by
a reference image A can be thought of as the complement of the dilation of the backgound
by the relection of the reference image R. In general, the erosion of a non-null image
X by a non-null reference image R can be used to decrease the size of regions, increase
the size of holes, eliminate regions, and break bridges in X; on the contrary, the dilation
of a non-null image X by a non-null reference image R can increase the size of regions,
decrease or fill in holes and cavities, and bridge gaps in X. Furthermore, the erosion can
be interpreted as a foreground template matching where the foreground points of X e R
indicates the ocurrences of the foreground template R in X (in this purpose, the size of R
usually is much smaller than the size of X).
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4. Symmetric Difference of two images (mod 2 image addition or subtraction) (Fig. 3(d)):

X A R = (XIR) u (RX) = 'uRU uX

Remark: The symmetric difference is a commutative operation, and its inverse operation
can be defined as itself. In section 4 we show that this operation is the parallel form
of boolean EXCLUSIVE-OR. It is an obvious approach to detect defects (including the
foreground or background defects) of a tested image.

5. Opening of an image X by a reference image R (Fig. 3(e)):

X oR = (X eR) eR = TS RR

Remark: The opening operation is an erosion followed by a. dilaton with the same reference
image R. In general, the opening X o R with a non-null reference image R reduces the size
of regions and eliminates some image points by removing all features in X which can not
contain the reference image R.

6. Closing of an image X by a reference image R (Fig. 8(f)):

X OR = (X R) ER =(XaR)

Remark: The closing operation is a dilation followed by au erosion with the same reference
image R. In general, the closing X e R with a non-null reference image R increases the size
of regions and eliminates some background points by filling in all background areas that
can not contain the reference image R, such as holes and concavities in the image X.

7. Hit or miss transform a of an image X by an image pair R = (RI, R 2 ) or template
matching of X by R (Fig. 8(g)):

XaR = (X eRI) n (Y = E ) R )u (XeR2 )

Remark: The hit or miss transform of an image X by a reference image pair R = (RI, R2 )

is used to match the shape (or template) defined by the reference image pair R where R,
defines the foreground of the shape and R2 defines the background of the shape. The key
conditions are that the foreground X must match R, (i.e. XCR), while simutaneously the
background Y matches R2 (i.e. YE) R2 ). In order to better define the hit or miss transform
and its relationship with conventional boolean logic operations, we start from a pLxel-wise
boolean comparison to derive the bit or miss transform in shape recognition (Theorem
3.4). Note the similarity of the symmetric difference and the hit or miss transform.

8. Thinning @ an image X by an image pair R = (RI, R2 ) (Fig. 8(h)):

X@R = X/(X(R) = U _RO U(X )R2 )

Remark: The thinning operation is antiextensive and decreases the size by removing the

central points of the regions which match the reference image pair R = (Rj, R2 ).
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9. Thickening (D an image X by an image pair R = (R1,R 2) (Fig. 8(i)):

X(DR = Xu(XGR) = Xu ('T 9 )u(X9R2)

Remark: The thickening operation is extensive and increases the size by filling the image
points where the regions match the reference image pair R = (R1, R2).

10. Sequential operations (e.g. sequential dilation, sequential erosion, sequential thinning etc.):
If an image operation- is successively performed with each reference image (or image pairs)
in a sequence (Re) - (R,, R6, ..., R:), then we define a sequential image operation

X (Re) (...(X. -R) . Rb).... R,).

Two examples are:

(a) Sequential thinning of an image X by a sequence of image pairs (Re) - (R., B, ..., R):
X @ (Re) = (.-.((X @,,) @ R).. @R.-)-

Remark: The sequential thinning is powerful in many applications, such as construct-
ing a digital homotopic skeleton of an image X. Skeletonization of an image is an
operation that transforms the image to a simplified image, called skeleton, which
emphasizes its connectivity. However, a homotopic skeleton cannot be obtained by
digitizing aa analog skeletonization algorithm; instead, a sequential thinning with a
sequence of reference image pairs should be used. Several different algorith.ms em-
ploying different reference image pairs (called masks) have been proposed by several
authors [6][36). Fig. 8(j) shows an example of the skeletonization by a sequential
thinning with a sequence of eight reference image pairs proposed by Levialdi et al
[36].

(b) Sequential dilation of an image X and a sequence of reference images (Re) = (R,, Rb, ..., R,):

X E (Re) = (...((X E R) E Rb)... E A,).

Remark: Since the dilation is commutative and associative, in practice the dilation
X E R with a large reference image R is usually implemented as a sequential dilation
with a sequence of small reference images. For example, if R = E, 9 E2 E ... 9 E
then 4

X 9) R = (...((X 9 Ei) D E2) 9 ... 9 Ek);

and if E = E =...=E, then

A= E - EeE ... DE.
k

1i. Conditional operations (e.g. conditional dilation, conditional erosion, conditional thinning
etc.):
An image operation • between an image X and a reference image (or image pairs) R

performed within a lmiting set Y is called a conditional operation and is denoted

X.R IY-(X.R)nY= =.U

Remark: Fig. 8(k) gives an example of the conditional dilation.
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3.2 Examples of Special Cases: Translation (Shifting), Expansion, Shrining,

and Projection

Translation (shifting), expansion, shrinking and projection in a direction can by achieved by the
dilation (or erosion) in a direct way.

1. Shifting an image X from coordinate (z, y) to coordinate (z + i, y + j) is done by

X 9 {(ij)} = X e {(-i )}.

Remark: A point image {(i,j)} corresponds to a discrete delta function at 6(z - i, -
Thus, an image function X(x, y) (which corresponds to the image X) convolved with the
delta function 6(z - i. y - j) or correlated with 6(z + i, y + j) is the same as Xe {(i,j)} =
X a {(-i, -)}.

2. Adding a new 8-connected or 4-connected boundary to an image X (i.e. expansion) is done
by

X - Y4 or X 9 N8
where Y 4  --- I u A- ' U B u B - 1 and N 8  

= U - . IB .

3. Removing the 8-connected or 4-connected boundary of an image X (i.e. shrinking) is done
by

XE) N4 = q N4 or Xe ENY = 7 NE9aV
where N4 - Iu A u A- ' U B u B - 1 and Ns a U.;,j=-, AsBJ.

4. Projecting an image X to distance k in a direction 8, i.e. producing a shadow of X where
the furthest image point in the shadow in the direction 9 is at distance k from the furthest
image point in X in the direction 9, this can be achieved by

X E e-

where e can be any one of the following:

"East:E=IuA, E =U.oA
0 South: S=I U B- 1, St' = ,O B
" West: W = UA - , W =UoA
* North: N= I u B,N=Uo B

Southeast: Ss = ru AB - 1, S = A=o,
* Southwest: Sw= u A-B, S = t-o A-'B - 1
" Northwest: Nw r U A-1B, NA,= (Lo A-'B
* Northeast: N8 = LU AB, N U%0 A'B'
" Horizontal: H - U!- A', H - #- A'
* Vertical: V = Ul}=- 1 B, V" = UV-k B'

eft-diagonal: LD =J-. A- 'B', L k Ut A-'B'

" Right-diagona o D = USL-, A'B', AI = k_ A'B'
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3.3 Theorems for Low Level Vision

Here we summarize ive theorems for binary image processing applications. Theorem 3.1 givws
basic properties of the BIA fundamental operations and standard operations. Theorems 3.2-
3.5 describes the implementation of morphological filters, shape recognition algorithms, "salt"
and "pepper" noise removal, and size and location verifications. Those more obvious proofs are
omitted for brevity..

Theorem 3.1 Properties of Image Operations

The BLA fundamental operations and standard operations have the properties shown in Table
1(a) and Table 1(b).

Proof Appendix D gives some of their mathematical expressions which follow form the
definitions.

Theorem 3.2 Morphological Filters

Many image transformations are interpreted as morphological filtering [2] or cellular filtering [61.
The major mophological filters are listed in the following:

1. One kind of morphological low pass filter (Fig. 9(a)): to remove high frequencies in the
foreground of an image X can be achieved by opening, i.e.

XoR= (Xe R) e R = -'RE R.

2. A second kind of morphological low pass filter (Fig. 9(b)): to remove high frequencies in
the background of an image X can be achieved by closing, i.e.

X * R = (X e R) E R = (X e R) 9 R.

3. A morphological high pass filter (as shown in Fig. 9(c)) which removes low frequencies in
the foreground of an image X can be achieved by the difference of X and its opening, i.e.

X/(X o R) = X/((X e R) E R) = X/(79 e- R) = Y U (T 9 A 9 R).

4. A morphological band pass filter (as shown in Fig. 9(d)) which removes low frequencies
and high frequencies in the foreground of an image X can be achieved by the difference of
its opening with a smaller reference image R and its opening with a larger reference image
Q, where R C Q, i.e.

(X o R)/(X o Q) = ((X e R) D R)/((X e Q) 9 Q)
= (ED" " )u(-' )Q)
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Theorem 3.3 Shape Recognition (Template Matching)

1. The locations of a shape, that is defined by a non-null reference image R and a. non- null,
reference image (called mask) If (Fig. 10(a)), with R C MV c W (W is the universal
image), can be detected by

(X;3 R) n Cr (MIR)) = (7-a A) U (X,- (MVfIR)) = (Ye aA) u (Xe- M u R).

Equivalently, setting R1 = R, R2 = MIR and redefining a. non-null reference image pair

R = (RI, R2) (Fig. 10(b)) yields the hit or miss transform of X by R:

X (R =(XtRI) n(GTE)R 2) = (XRAi) U(X aR2).

2. The locations of a shape, that is defined by a family of non-null reference image pairs
{R(9)1 with 0 E 9 (9 is the index set of the family of non-null reference image pairs and
R(9) = (RI (8),R 2(0)), can be detected by the union of the hit or miss transform of X by

U X GR(9) . U (Xe9R,(8)n (79 R.(8)) =U (7 R,(9)) u (Xa A2(0)).

Prooft Appendix E.

Theorem 3.4 "Salt' and "Pepper' Noise Removal

1. "Salt" noise removal (isolated image point removal) (Fig. 11(a))- to remove an image point
if its 4-connected or 8-connected neighbors are background points (O's) can be achieved by

X 0Q4 =X u T,4or
XOQs = xU 79 ma

where Q4~ = (.M4,), Q& = (Me, 0), M4 = A U A-' u B U B-1 = Y 4/1 and Me = NS/I.

2. "Pepper" noise removal (interior fill) (Fig. 11(b)): to create an image point at a coordinate

if its 4-connected or 8-connected neighbors are image points (1's) can be achieved by

X@R 4 = TU Tor

x @Ra = U'Ta

where R4 = (1, M 4 ), Re = (r, ms).

3. "Salt and pepper" noise removal (Fig. 11(c)): to remove noise points, that are completely
suirrounded with 4-connected neighbors or 8-connected n'ighbors of the opposite value, can
be achieved by
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(X Q 4 )/(x GR4 ) = (X U M.) U (T u (X M,)) or

(X (D Qs)/(X G Rs) = (X u 7 V ) U (' U (X a)).
Proof: Appendix F.
Remark: This theorem demonstrates the fact that many higher level operations (e.g. involv-

ing thinning and thickening) can be efficiently mplemented by the three fundamental operations.
Using the same design methodology as the "sait and pepper' noise removal, we can design many
similar algorithms, such as spur removal, bridge break, and edge detection (perimeter) etc. For
example, the detection of the 4-connected or 3-connected edge of an image X (Fig. 12) can be
achieved by

X/(Xe aVs) =?u (T E.Vs) or
X/(X e S4) = u ( e Iv4 ).

Theorem 3.5 Size and Location Verification

The locations in an image X of the regions including the reference image R and included in the
reference image Q, where R C Q, can be detected by

S((X e R)I((Xe Q) 9 Q))) = S((*e A) u (---QD Q))).
where S(.) means the homotopic skeetonization. (An example is given in Fig. 13.)

Proof: Appendix G.

The above theorems serve as the typical rules for morphological image processing. In fact,
there axe many ways to analyze the shapes and sizes of an image only using by the three
fundamental operations. As another example: comparing an image X with its convex hull C(X)
(34] is a useful technique to analyze shape. If there is only one object or objects separated by
distances greater zhan their own diameters in the image X. then its convex hull is the intersection
of projections (Fig. 14(a)):

4

N(x GDe

where ei, i = 1,2,3,4, are H,VRD,LD (defined in Definition 3.4), and k should be greater
than the longest radius of objects in X. Then the difference of the convex hull and the image
C(X)/X indicates how many concavities the image X has and what their individual shapes and
sizes are. Fig. 14(b) illustrates an example.

4 Relationship to Other Computing The3ries

4.1 Relationship to Boolean Logic

BIA can implement any boolean logic operation on binary images. It is also obvious that BIA
fundamental operations can be implemented by a boolean logic gate array with interconnections.
The following straight-forward correspondance can be drawn between the BIA operations and
boolean logic operations:
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BIA Operations Boolean Logic Operations
1. Complement NOT
2. Union OR
3. Dilation Multiple-input OR
4. Intersection AND
5. Erosion Multiple-input AND

.6. Symmetric Difference EXCLUSIVE-OR

Note that the inputs of OR and AYD (corresponding to union and intersection) come from two
different images. The multiple inputs of OR and A.ND (corresponding to dilation and union)
come from the same image while the other operand image R only determines the number and
location of input pixel values. A complete logical set is able to implement any boolean logic
fanuction; it consists of at least one of the following sets: NOT and OR, NOT and A.YD; NA ND;
NOR. In BLA., in order to implement any image transformation, we need a complete system of
pixel-wise logic operations and we also need a translational type of operation (such as translation.
dilation, erosion, convolution and correlation etc.) to allow the global information extractiork in
an image or the information exchange between pLxels of the same images. In order to have a
2-D compact parallel form of image processing algorithms whose vaxiables are whole images, we
define the parallel form of those corresponding boolean logic operations as BIA operations. In
fact, there are two boolean algebras, (P(W); u, n, -, 0, W) and (P(W); a, n, -, 0, W), supported
by BIA also (subsection 4.4). We can define several possible sets of fundamental operations for
implementing any image transformation, such as a parallel form of NOR (or NAND or (NOT
and OR) or (NOT and AND)) and a translational-type operation (e.g. translation, dilation,
erosion, convolution, and correlation etc). The reason why we choose the complement, the union
and the dilation as the three fundamental operations is:

* Nice mathematical properties: The dilation is commutative, associative, and distributive
with the union; but the erosion has no such properties.

* Simple hardware implementation: These three operations are easily implemented by the
2-D gate axray and 3-D interconnection technique.

* Simple software design: These three operations are inherently parallel and frequently used
operations. Algorithms can be written as compact formulas which easily become very effi-
cient fast parallel algorithms by simply applying the fundamental operations and removing
the data dependencies.

Compaxing BIA with the conventional boolean ex'pressions for logic functions, the major
advantages of BIA are summarized in the following:

* BLA6 operations are inherently parallel, but boolean logic operations are serial.

o BIA operations include parallel information transferring capabilities which is missing in
boolean logic operations.

• Algorithms in BIA are written as compact algebraic formulas whose variables a-e whole
images, while a typical image processing algorithm is very difficult to write in a compact
precise boolean logic expression.

s BIA has pictorial physical meaning, while boolean expressions provide little physical feeling
for parallel image processing algorithms.
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4.2 Relationship to Symbolic Substitution and Cellular Logic

Symbolic substitution is a means of performing parallel digital computions and can be used
to implement boolean logic, binary arithmetic, cellular logic and Turing machines [37)[38]. It
involves two steps: 1) recognizing all the locations of a certain spatial pattern within the 2-

D input data, and 2) substituting a new replacement-pattern wherever the search-partern was
recogmized. BLEA can be used to realize a symbolic substitution rule as follows:

(X aR)9Q = (Xe A,)u (XqA2R2 aeQ

where X is the 2-D input data, R = (Ri,R 2 ) is the reference image pair corresponding to
the search-pattern (RI and R2 define the foreground and the background of the search-pattern
respectively), R defines a reflected reference image given by R = {(-z, -y) I (z, y) E R}, and Q is
the reference image corresponding to the replacement-pattern. Thus, symbolic substitution rules
are particular BIA image transformations having the above form; and BIA represents a general
complete systematic mathematical tool for formalizing the symbolic substitution algorithms.

Cellular logic architectures have been briefly reviewed in section 1. A cellular logic operation
transforms an array of data into a new array of data where each element in the new array has a
value determined only by the corresponding element in the original array along with the values
of its neighbors (Fig. 1). In BIA, an image transformation can be writtern as a polynominal
of reference images (Theorem 2.1) where the reference images can have arbitrary large size. In
terms of cellular logic, the reference image essentially defines the neighborhood of a cell where
the neighborhood can be very large and not just nearest 4- or 8-neighborhood in conventional
cellular logic. Thus, cellular logic operations are also particular cases of image transformations
with small local reference images, and BIA also serve as a systematic mathematical tool for

formalizing cellular logic.
Because of existing hardware interconnection limitations, it is difficult and costly to imple-

ment an image transformation with a large reference image in one clock cycle. However, the
conventional nearest-neighbor connected cellular arrays have poor communication capabilities.
To improve this, we develop the DOCIP-hypercube architecure in section 5, which combines
features of conventional nearest-neighbor connected cellular logic architectures and conventional
hypercube architectures for implementing BIA effectively.

In summary, BA provides a systematic mathematical formalism for both symbolic substi-
tution and cellular logic. The applications of symbolic substitution and cellular logic can be
accomplished by BIA.; on the other hand, generalized cellular logic architectures are good can-
didates for implementing BIA.

4.3 Relationship to Linear Shift Invariant Systems, Convolution, and Corre-

lation

It is well known that the theory of linear shift-invariant (LSI) systems plays a key role in
conventional signal (including image) and system analysis [39][401. It is very natural that we

like to ask what the relation between BIA and LSI system theory is. A system is defined as a

transformation or mapping from a set of input functions into a set of output functions, and a
two dimensional discrete LSI system is defined as a system which obeys two properties:

a Linearity: Ttax(i, j) + bz(ij)] = a~tz(i, j)) + bljz(i, j)] for arbitary constants a and b;
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SSohift-invariance: y(i,j) = Ttz(i,j)I - y(i - k,j - 1) = Trx(i - k,j - 1)1.
A linear system can be completely characterized by its unit-impulse response r(i, j; k, 1) = T16(i -
k, j- 1)]. In an LSI system the unit-impulse response is simply r(i, j; k, 1) = r(i- k, j-), and the
output of an LSI system with input z(i,j) and unit-impulse response r(i,j) is the convolution
of z(i,j) and r(i,j), denoted by

00z( i, j) * r( i, j) = z( k, t)r( i - k, j - 1).

kJ=-co

Now, let us consider only binary images. In terms of the set notation, an image X = {(i, j) !
z(i,j) = 1} corresponds to function z(i,j). If we assume r(i,j) = 1 at and only at a points
which corresponds to an image A with n image points, then the convolution of z(i,j) and r(i, j)
with a threshold t = 0 is

X * R [_o = {(i,J) j Ez(k,l)r(i -k,j-l) >0}
k,I

- {(i+ k,j +1)j 'z(k,1)r(i,j) > O}
kI

- {(i + k,j + l)f z(k,I)r(i,j) > O}

= {(i + k,j + 1)1 (i,j) E X,(k,1) E j}
= XqR

where the ouput of the threshold is defined as 1 if z(i, j). r(i, j) > 0, and is 0 otherwise; and the
universal image, as before, contains all image points (i,j), (k,1), and (i + k,j + 1). This means
that the dilation X @ R is the same as adding a threshold t = 0 to the convolution sum. The
reference image plays a role similar to that of the unit impluse response in the binary image
system. Similarly the erosion X e R is the same as the convolution z(i, j) * r(-i, -j) followed
by the threshold t = n - 1.

Correlators have been used in pattern recognition for a long time [41]. Correlation is strongly
related to convolution: convolution involves folding, shifting and summing; correlation involves
shifting and summing without folding. Therefore,

X$R = X*R Ito= XoR It.o

X e R = X * A if=,-= X OR It=,-I

where* means convolution, * means correlation, and A means the reflected image of IL
Furthermore, although the three fundamental operations of BTA are nonlinear, with appropri-

ate number representations they are able to implement parallel numerical and linear operations
too. Also, BIA can implement both shift invariant and shift variant image transformations.

4.4 Some Standard Algebraic Structures

Some algebraic structures supported by BIA are in the following:
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1. (P(W); 9) is a semigroup.

2. (P(W); 9, I) is a monoid.

3. (P(W);A, , A) is an abelian group.

4. (P(W); U, n, ,,W) and (P(W); A, n, , ,W) are Boolean algebras.

5. (P(W); C) is a poset (partially ordered set).

6. (P(W); u, n, C) is a complete lattice.

Proof. (1) A semigroup is a set with an associative binary operation [30j-(321. By Theorem 3.1,
the dilation a is associative for all images in P(W).

(2) A monoid is a semigroup with an identity [301-(321. By Appendix D, the dilation has an
identity I = {(0, 0)}. Note that (P(W); e) is neither a semigroup nor a monoid.

(3) A group is a monoid in which every element has an inverse. An abelian group is a group
in which the operation is commutative [30]-[32]. By the definition of symmetric difference (mod
2 image addition), it can be easily verified that its identity is (0 and its inverse operation (mod
2 image subtraction) is itself.

(4) A boolean algebra is a set with operations v,A,-,0 and I satisfying, 1. av b = by a,
a A b = b A a (commutativity); 2. a v (b A c) = (a v b) A (a v c), a A (b v c) = (a A b) V (a A c)
(associativity); 3. av0 = a (universal bound); 4. aAl = a (universal bound); 5, avT = 1, aAa" = 0
(complementanity) [301-[32]. By Appendix D, (P(W);u, n,- ,W) and (P(W); A,n,, W)
are Boolean algebras.

(5) A poset is a set with a relation iatisfying: 1. the reflexivity; 2. the antisymmetry; and
3. the transitivity [301-(321. The relation C satisfies these three conditions: 1. X C X for all
X E P(W); 2. ifX C R and RC X, then X = R; and 3. if XC R and R C Q, then XC Q.

(6) A complete lattice is a poset (S; :<) in which every subset of S has a sup (the least upper
bound) and an inf (the greatest lower bound) [301-432]. In the algebra (P(W); u, n, C), given
any subset of P(W), say {X(8) j 8 E 9} (e is the index set of the elements in this subset of
P(W)), we have

sup= U X(e)
fee

inf= =n x(). .

Thus, several standard algebraic structures and their properties can be directly implemented
and used in BIA.

5 Implementation on Optical Cellular Logic Processors

To map algorithms into architectures, we first use an algebraic approach for describing a cellular
image processor. Then we design the digital optical cellular image processors (DOCIPs) and
their optical implementation. Figures 15 and 16 show an optic-, concept for the DOCIP imple-
mentation. The optical system can realize an array of cells by a spatially parallel 2-D array of
optical binary gates and performs interconnections of these gates by an optical hologram. The
DOCIPs are:
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a The DOCIP-arry (Fig. 15), a cellular a my processor, uses optical parallelism to map an
inherently 2-D parallel image data srrcture to a 2-D nearest-aeighbor connected cellular
computer in a simple and direct way. Its performance is primarily linited by its 0(1)
interconnectivity.

* The DOCIP-hypercube (Fig. 16), a two-dimensional cellular hypercube, uses optical par-
allelism and the 3-D global interconnection capabilities of optics to implement a hypercube
interconnection mechanism.

Here, the two-dimensional cellular hypercube is used to match the structure of a two-

dimensional image and further improve the communication ability of a cellular array. Ideally,
a conventional hypercube (Fig. 17) increases the interconnectiviry to O(logN) for X compu-
tation cells; however, when laid out in two-dimensional space, its interconnection patterns are
not space invariant; such spatial invariance is desirable for image processing and for simple im-
plementation in optical hardware. To include this, we increase the interconnections to make a
two dimensional cellular hypercube (Fig. 18). The cellular hypercube introduces a symmetrical
positive and negative index so that each cell is connected with cells having a relative one bit
difference in coordinate label in positive or negative z and y directions; the numerical difference
of addresses of connected cells is nonzero in at most 1 bit (42].

5.1 Algebraic Description

Having defined cellular automata and the implementation requirements of BIA, we describe the
DOCIP in an algebraic war.

Definition of Cellular Automata
A cellular automaton is an algebra A = (S; F, N0 ) where S is the state space which

is a set of states, F is a family of transition functions, and N is the neighborhood
configuration.

Constraints of Implementing BIA:

1. S : P(W)
2. F D [aU,-

3. N, D LU Au A-' u EB B-1 (or N D Au A- ' u B u B-')

where ":n" means "contains".

Thus, in terms of cellular automata, the DOCPs have to satisfy the above constraints for

realizing BIA. For storing input images and temporary results in a more flexible way, the DOCIPs

utilize three memory modules and share the same algebraic structure (except the neighborhood

configuration):
DOCIP = (P(W x W x W); ,U,-,IV)

where "x" denotes cross product and N. can be one of the following 4 types:

1. DOCIP-array4: each cell connects with its four nearest neighbors and itself, i.e.

=I u A U A u B u B- .
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2. DOCIP-array8: each cell connects with its eight nearest neighbors and itself, i.e.

I

=U A'B'*

3. DOCIP-hypercube4: each cell connects with those cells in the 4 directions at distances
1,2,4,. .... ,2" from itself, i.e.

Np.i=Cue 4  (A' U B')

where k is sufficiently large for the connections to traverse the entire array of cells.

4. DOCIP-hypercube8: each cell connects with those cells in the 8 directions at distances

1 , 2 , 4 ,3 ,..., 2 from itself, i.e.

= U (. A'U B' U A'B' U A'B - )
......I.......,. 2h

5.2 General Description

From the above algebraic description, the DOCIPs have the same algebraic structure and differ
only in their neighborhood configuzations N. Thus, they share the same architecture as shown
in Fig. 19, but have different configurations of the reference images E, depending on the optical
interconnection network which defines the neighborhood. In practical applications, a larger
reference image R can be generated from a set of smaller reference image(s) E by a "sequential
dilation". If it is possible to decompose R into a sequence R El 9 E2 E ... E Ek, then

X a R= ( ... ((X 9 E) D E2) 9 ... Ek).
This decomposition may not exist, in which case R can always be decomposed as R = RI U R2 U

U R, and then

Xe R= (X E R)U(Xe R 2) u ... u (Xe Rk)

where each Ri can be composed from the smaller reference images Ej.
Basically, the proposed DOCIP as shown in Fig. 19 is a cellular SIMD machine and consists

of an array of cells or processing elements (PEs) under the supervision of a control unit. The
control unit includes a. dock, a program counter, a test and branch module for feedback control,
and an instruction decoder for storing instructions and decoding them to supervise cells. The
array of cells includes a 1 x 3 x N2 bit destination selector, three N x N x 1 bit memories for
storing images, a memory selector, and a dilation unit.

The DOCIP shown in Fig. 19 operates as follows: (1) a binary image (N x N matrix) is
selected by the destination selector and then stored in any memory as the instruction specifies;
(2) after storing the images (i to 3 N x N matrices), these images and their complemented
versions are piped into the next stage, which forms the union of any combination of images;
(3) the result i: sent to a dilation where the reference image specified by the instruction is used
to control the type of dilation; (4) finally, the dilated image can be output, tested for program
control, or fed back to step (1) by the address field of the instruction.
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The entire system can be realized by an optical gate array with optical 3-D interconnections
[2514-28]. It should be noted that current optical technology has implemented only arrays of
moderately large numbers of gates (500 x 500) at very slow (-ms) switching speeds, and alter-
natively, arrys of small numbers of gates (2 x 2 to 6 x 6) at fast switching speeds (0.i - SOps)
(43][441. Current ongoing research in a number of laboratories looks promising in eventually
providing the needed arrays of large numbers of gates with reasonably fast switching speeds.
Alternatively, control of the DOCIP can be easily realized by using an electronic host instead of
the optical control unit, since control of SLMD systems is primarily a serial process. The tradeoff
is a possible inefficiency in the interfaces between electronic and optical units. Because of this,
the all-optical approach may be preferable in the long term. To efficiently utilize optical gates,
they can be interconnected with a 2-D optical multiplexing technique in which a common con-
trollable mask is used for all cells. The optical multiplexing technique has following advantages:
1) the DOCIP will no longer require the broadcasting of instructions from the control unit -
instead all cells fan their outputs into a commmon controlling mask pixel; 2) it will reduce the
number of gates; and 3) each cell has a simple structure - essentially containing only a 3-bit
memory with inverting and non-inverting outputs, and a multiple-input OR gate for dilation.

To avoid the well-known drawbacks of conventional computers based on von Neumann princi-
ples (23][381, the machine in Fig. 19 has one instruction which implements the three fundamental
operations of BIA along with fetch and store. This design uses the parallelism of optics to si-
multaneously execute instructions involving all N 2 picture elements.

This single instruction has the following format:

(31, 31,_ .. ,6, ,i , n2, .... nk,d dl d, 3, , , , a2, ...? at, 1, b,2., J)

where k is determined by the chosen neighborhood configuration N,. The DOCIP-array requires
k = 5 or k = 9 bits for controlling reference image R at a clock cycle and the DOCIP-hypercube
requires k = O(logN) for N cells, and I defines the maximum length of a program: 21. The
functions of these 11 + k + 21 instruction codes are the following

0 31 ,32,- ., are used to select the output from the memory elements;

* ni, n2, ..., nk are used to control the neighborhood mask, i.e. to supply the reference image;

Sd1 , d2 , and d3 are used to select the destination memory for storing the image;

e j. and 3 are used to flag an absolute jump or conditional jump;

* a,a, ...,at are the address for jump; and

* blb,, .b are the address of the instruction.

Order of magnitude execution times for image processing on the DOCIP machines and on the
conventional-array processors are compared in Table 2. In contrast with the DOCIP-array, the
DOCIP-hypercube increases the interconnection complexity to O(logN), but is able to perform
many global operations in O(logN) time. Comparing with the conventional-array processors
having serial or N-parallel input/output, the DOCtP-array will have the same order of perfor-
mance in local and global operations but will be improved in input/output performance, and in
principle r' ild be as low as 0(1) in I/O operations. The DOCIP-hypercube will not only be
improved L., input/output performances but also in global operations. With external memory, it
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can also be demonstrated to be general purpose in the sense of the ability of simulating any Tur-
ing machine. One important feature in the design of the DOCIP-array and DOCIP-hypercube
is that optical 3-D free interconnection capabilities can be used to reduce the cell hardware re-
quirements as well as solve the global connection and 1/0 problems which are difficult to solve
by planar VLSI technology.

6 A Programming Example - Size Verification

BTA and DOCIP architectures can have many applications in character recognition, industrial
inspection, medical and scientific research. Since BIA is able to implement morphological op-
erations efficiently, the DOCIP machines can efficiently analyze the shape and connectivity of
regons as well as measure their size; they also have the potential to accomplish any image
transformation. Here we illustrate the progamming of the DOCIP machines by a simple size
verification algorithm:

" Problem: Given an input image X with 31 x 31 pixels (Fig. 20) which contains some
square objects X1, we want to preserve those square objects X, which satisfy the following
condition:

size of R < size of Xi < size of Q

where R and Q are reference images as shown in Fig. 21. Other objects will be eliminated
in the output image Y. The expected output image Y is shown in Fig. 22.

" Algebraic expression for the size verification using band pass morphological
filtering (Theorem 3.2):

(79 Re R ) U (TEDQ EQ)
where R =1? and Q = Q in this special example.

" Algorithm for the DOCIP-array8:

(X E39 E 3)U (X EE E4)

where E (Fig. 23) is the allowed reference image with the maximum size at a dock
cycle in the DOCIP-array8, the reference images R = V = E a E @ E and Q = E =

E aEGaE 9E = R EE.
The DOCIP-array8 requires 13 steps to complete this algorithm, its program (instructions)
is in the following-
Assume start with X - MI (X stored in Memoryl)
1. 1 E-.E M 2 (= $ E)
2. ME M2 (=XeE 2 )
3. M 2 11E- M1 (XE 3 )
4. M 2 9E-M3 (= eE4)

S. M2_9E - M2(=X@E 3 9E)
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6. It aE - M T= 73 J E2)
. ,9 E - M2 3E3(= e E3 )

8. 73eE--M 3 (=.'a EPeE)

9. M 3 aE -M 3 (=T BE'eE2)
10. M3 aE-- M3 (=4- 'E E3)
11. M 3 e E- M 3 (= P E4 

4)

12.72mM3 - m.(( 3  E 3 ) U( ~ 4 )

13. End with -3 - Y 3 9 E3 ) U E4 9 E4))

.Algorithm for the DOCIP-hypercube8:

(TwaP- Ee P E) u(Z Pe E29 PJ E2)

where P (Fig. 24) and E (Fig. 23) are allowed reference images at a clock cycle in the
DOCIP-hypercube8, the reference images R = E3 = P9E and Q = E4 = P=E2 = RaE.
The DOCIP-hypercube8 requires 10 steps to complete this algorithm, its program (instrac-
tions) is shown in the following:
Assume staxt with X - M1 (X stored in Memoryl)
1. 37 P - M (= T P)
2. M 2  E - M 2 (=7 ePe E)
3. M 2  E - M3 (=- P ED E2 )
4. 72 P - M2 (=Y - P e e P)
5. MC E - M 2 (= e Pe E2 9 P e E)
6. M3e P -M 3 (=XePeE 2 9P)

7. M3 E E - M3 (= a P9 E e P E E)
8. M 3 eE- M3 (=XePeE PEE) (P

10. End with TT-Y(= ('PeEEE) u(TePE2EDP E2))

The above prograns can be translated into the machine instruction codes directly. I" we want
to detect the geometric centers (locations) of the desired objects, then we can use a sequential
thinning to achieve the homotopic skeleton (Theorem 3.5) (Fig. 25).

7 Conclusions

We have summarized digital optical cellular image processing, including binary image algebra
(BIA) and the DOCIP architectures. BIA suggests an unified theory of parallel binary image
processing for developing parallel algorilhms/langages and can be generalized to grey-level im-
ages. Applications of BIA in binary image processing are illustrated. The DOCIP architectures,
especially the DOCIP-hypercube, utilize the parallel communication and global interconnection
capabilities of optics for avoiding communication bottlenecks and matching BIA parallel algo-
rith.ms efficiently. A size verification algorithm i- used to demonstrate the programming of these
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1-instruction DOCIP machines. Overall, BIA is a simple, precise and complete algebraic the-
ory of b1nary images; the DOCIP machines have simple organization, low cell complexity and

potentially fast processing ability.

Ackowledgements

The authors would like to thank T. C. Strand, P. Chavel, E. K. Blam, and R Chellappa for their
contributions to this re.aarch.

Appendix A

Proof of Lemma 2. 1:
We start with the case of X = A and then the case of X # R.

Case 1: X = R, i.e. R= X.
We want to prove

(Xe X)u (X e X) u I ; - (Xe ) u (Xe X ) n r= I.

1. Claim I C (Te X) U (X X ) . I

- (0,0) E (Ta X )u (X a X)
~-(0, 0) 0(TE U(X qX)
- [(0, 0) (X E ±)] A [(0, 0)0 (X E X)]:

(a) Claim (0,0) (XD X):
Assume (0, 0) E (T 9 t)

-(0, 0) E {(a +(-x), b+ (-y)) E W (a, b) E X, (-Z,-Y) E X
-(0, 0) E {(a - z, b - Y) E W I (a, b) X, (X, Y) E X}

3 (a- z,b- y) = (0,0) where (a, b) X,(z,y) E X
- 3(z, y) = (a, b) where (a, b) 0 X, (z, y) E X
which is impossible, since (z, y) = (a, b) % X contradicts with (z, y) = (a, b) E X.

Therefore, the assumption is wrong, we have that (0, 0) E (XD X).

(b) Claim (0, 0) 0 (X E X)-

Assume (0,0) C (XE X)

(0,0) E {(z + (-a), + (-b)) E W I (zY) E X,(-a, -b) E X}
- (0, 0) E {(x - a, y - b) E W (z, Y) E X, (-a,-b) 0 ±}

- (0,0) E {( -a,y -b) E W (z, y) E X,(a,b) 0 X}
- 2(x - a,y -b) = (0,0) where (a,b) X,(z,y) E X
- 3(z, y) = (a,b) where (a,b) . X,(z, y) E X
which is impossible, since (x, y) = (a, b) 0 X contradicts with (z, y) = (a,b) E X.

Therefore, the a.ssumption is wrong, we have that (0, 0) 0 (X E X).

By (a) and (b), we have ((0,0) 0 (Xe X)J A ((0,0) 0 (X X 7)], i.e.
rc (Xe E f) u (x ED).

We also know I C I, then we have

r c (Xe X) u (X ED fn r.
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2. Claim ( X (Xe X) U7cI:

Since 1 C I, it implies

(s X)u (x x)u 7= ( ')u (Xe x) n I c 1.

From (1) and (2), we have
rc (-",)u (x @X-) n r

and
('Te X) u (X X 7) U 7 = (79 X) U (X X T) n r c 1.

Thus, by the equivalence of sets, we have (T e X) u (X a X) n I = I.

Case 2: X # Ri.e. R - X.
We want to prove

(9.eR)u (Xe u= -(e R)u (Xe n 1 =

1. Claim r Z (Y -a R) U (Xe a)

- (0,0) 0 (Xe R) u (X 9 A)-(0,0) G 9* R) U (Xe9
(0, 0) E (9 R) V (0, 0) E (X E R):

Now we assume (0,0) 0 (Xe R) A (0,0) €(Xe :

(a) If (0, 0) 0 ( E R)
-(0, 0) 0 {(a + k, b + 1) 1 (a, b) E ,(k, 1) E R)

- (a + k,b + 1) (0,0), V(a,b) E X, V(k,l) E R
- (a,b) # (-k1,-), V(a,b) % X, V(k, )E R
- V(k,1) E R, 3(a,b) E X, (a,b) = (-k, -1)
- V(-k,-i) E , 3(a,b) E X, (a,b) = (-k,-1)

V(i, j) ER , 3(a, b) E X, (a, b) = (i,;)
-- ((i,j) e R) - (i,j) E X)
-A cX.

(b) If (0, 0) [ (X E X), then X C A. Since the dilation operation is commutative, by
interchanging the variables X and A and applying the same procedure as (a), we

have X C A.

2. By the above (a) and (b), we have X = A which contradicts with X # A. Thus, the

asumption is wrong, and we get the following result:
- (0,0) e (Te R)v (0,0) E (X S)
- r¢ (XeDR) u (x e9
- (XeR)u(X Xu) n '
.- (Y 9R) U (X ) U 1 0.

Hence, by case 1. and case 2., we have shown that
i fX=A

(X R) U(XeA)U7{ I fx f
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Appendix B

Proof of Theorem 2.1: Consider any image transformation (general case):

XI - Al

X2 - A2
T:

where X, E P(W),Ai E P(W),i = 1,2,..., 1.
If we choo e Ri = 9', Qi = Aj,i = 1,2..... use Lemma 2.1 and some properties of the

dilation (i.e. I e X = X and e X = €), then we have

T(X) = U{(Td) U (Xq @Ql.

Since some images Xj may map into the null image 6 for a given image transformation; by
Lemma 2.1, we have that

T(X) = Uf(7 I YD- E i

where k < 1, 1 = #(P(W)) is the cardina1ity of P(W).

Appendix C

Proof of Theorem 2.2: This can be shown in a very straight forward way. Any image is a set
of image points and is the union of point images ( consisting one and only one image point). A
point image {(i,j)} can be written as

{(iJ)} = A'BJ.

Hence, the union of all point images which are contained in X is the image X. For example, an
image X = {(2,),(1,-1),(-1,2)} is denoted by

X = A2 U AB - 1 U A-'B 2.

Appendix D

1. Properties of Complement and Difference
The complement -, a unary operation, is decreasing and shift variant (considering the outside

of an image). The difference X/R, a binary operation, is increasing (but decreasing with respect
to the reference image R), antiextensive with respect to X, and shift variant (the reference
image R is fixed once it is given). Note that the difference operation is not commutative, not
associative, and not distributive over other operations. Fulthermore, the difference operation is
more complicated than the complement. Hence, it is preferable to employ the complement as
a fundamental operation, but not the difference. The major properties of the complement and
the difference are listed in the following:
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1. X= w/x

2. X/R=XnX

3. = W

4. W=

5. = X (idempotent for twice complements)

6. X/10 = X (idempotent for a given reference image R =

7. X/X=

S. X C Y - 7 C Y (decreasing)

9. X C Y - XIR C Y/R (increasing)

10. X/R C X (antiextensive)

11. X C R - X/R=

12. lT'5 = Xu X

13. =' = YXn I

14. XnY=

is. XuY=W

16. X- = Xe A where R = {(-y,-) I (z, y) E R}

17. = Xe 1A where A = {(-,- y) (z, y) E R}

2. Properties of Union and Intersection
The union U, a binary operation, is increasing, extensive, shift variant, idempotent, commu-

tative, associative, and distributive over intersection. The intersection n, a binaxy operation,
is increasing, antiextensive, shift variant, idempotent, commutative, associative, and distibutive
over union. The major properties of the anion and the intersection are listed in the following.

1. XU4=X

2. XuX=X
XnX=X

3. X u R = R X (commutative)
X n R = R X (commutative)

4. X U (R U Q) = (X u R) u Q (a ociative)
X n (Rn Q) = (X l R) r Q (associative)

5. XUW=W
X n W = X (idempotent for a given reference image R = W)
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6. X u (R n Q) = (X u R) n (X u Q) (distributive)
X n (R u Q) = (X n R) u (X n Q) (distributive)

7. X C X U R (extensive)
X n R C X (antiextensive)

S. XC Y - XuRC Y R (increasing)
X C Y - Xi R Y n R (increasing)

9. XcR--XuR-R
X c R -X n R =X

lO. RCXAQCX-RuQCX
10X C R A Q C X - R U RuXXCRAXC Q-XCRUQ

11. RCXAQ CY-RuQ cXuY
R C X A Q C Y -Rn Q C X n Y

3. Properties of Dilation and Erosion
The dilation a, a binary operation, is increasing, extensive for a given reference image R

which contains the elementary image I, shift invariant, commutative, associative, distributive
over union, and possesses an identity which is I. The erosion e, a binary operation, is shift
invariant, increasing (but decreasing with respect to the refernce image R), antiextensive for a
given reference image R which contains the elementary image I. But, in general, the erosion is
not commutative, not associative, not distibutive over other operations, and does not possesses
a left identity. The major properties of the union and the intersection are listed in the foUowing-

1. X 9 R = R E X (commutative)
X 8 R eR R e X (in general)

2. (X a R) E Q = x s(Re Q) (associative)
(X e R) e Q X xE (A e Q) (in general)
(XeR)eQ = (XeQ)eR

3. X E (R U Q) = (X ED R) u (X ED Q) (distributive)
x e (R u Q) = (x e mn (x e Q)
Xe(ReQ) =(XeR)eQ

4. X 9 I = X = I a X (identity)
Xei= x # I X (in general)

5. XE =4 = X
Xe = w# e X (in general)

6. X C X E R when I C R (extensive)
X e R C X when I C A (antiextensive)

7. X C Y - X 9 R C Y E R (increasing)
X C Y - X e R C Y 8 R (increasing)
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S. RCQ-XaRcXeQ
RCQ -XeQ cXeR

9. X a (A n Q) C (X EDR) I (X 9 Q) (distributive inequality)
Xe(RnQ) (X e9R)u (XeQ)
(Xu Y)e)R (Xe R) n(Ye R)
(Xe R) Q c (XER)eQ
Remark: 'D" means "contains".

4. Properties of some standard operations

1. The symmetric difference is shift variant (with a fixed reference image R), commutative
and associative. Symbolically,

(a) XAA = R AX

(b) X A(RA Q) = (XAR)AQ
(c) XAO=X

(d) XAX=O
(e) XAT= W
(f) XaW='
(g) X n(RaQ)= (XnR)A(XnQ)
(h) X U (A A Q) # (X u R) A (X U Q) (in general)

(i) XAR=YAR-X=Y

2. The opening o is shift invariant, increasing, anti-extensive and idempotent. The dosing o
is shift invarinat, extensive, and idempotent. Symbolically,

(a) XoRCXCX*R

(b) XCY-XoRCYoR

(c) XcY-.XORCYGR
(d) (XoR)oR=XoR

(e) (X*R),R=X.R

3. The thinning is shift invariant and antiextensive. The thickening is shift invariant and

extensive. The major properties are in the following.

(a) X@RCXCXOR

(b) XCY -. X@RCY@R
(c) XCY-XORCYOR
(d) If R C Q (which means A, C Q, and R2 C Q2), then we have:

R cQ - X@RC X@Q cX CXOQ C XOA.
(e) X (D-= A @R" where A = {a,B} and R= {A2,At}.
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Appendix E

Proof of Theorem 3.3: We can easily see that (2) in Therorem 3.3 is a generalization of (1)
in Theorem 3.3. (1) is used for exactly matching shapes (or templates) with shift invariance;
(2) is generalized to more general cases. For example, to consider noise and to have rotational
invariance, we can choose the family {R(9)} to incorporate all aspect reference image pairs. In
the following, we prove (1) and then (2) will follow from it directly. The proof will demonstrate
the mathematical correspondance between boolean logic and BUA. The notations x(i,j) and
r(i,j) will be used to represent the binary values (0 or 1) of pixels at coordinate (i,j) of image
fnncLios which correspond to the images X and R in BIA notations.

First, let us use the boolean logic XOR (excusive or) operation, i.e.

x(i,j) XOR. r(i,j) = ((i,j) A r(i,j)) V (X(i,j) A P(i,j)),

to achieve the pLxel-wise comparison where the ouput value with '0' means that 'z(i,j)' matches
4r(i,j)' and the output value with '1' means that 'z(i,j)' does not match 'r(i,j)'.

Second, to check the occurence of the shape (defined by R with M) in the tested image X
at coordinate (i,j), we have to shift the origin of the shape to the coordinate (i,j) in X. Then
the process of the comparison of the shape and the subimage in X (limited in the mask M) and
the indication of "match" (0) and "not match" (1) will be performed by

V (!Z(i +k,j +I) Ar(k,l)) V V (z(i +k,j+ 1) A 7(k,I)).
( kI) EM ( k,O)EM,

If the above equation is considered as a binary operation operating on two images z(i.j) and
r(i, j), then this operation is not commutative; in order to achieve the commutativity, we change
(k,1) with (-k,-1) and denote fqk,l) = r(-k,-1):

V (T(i-k,j-1)A f(k,1))V V (z(i-k,j-1) A (k,)).
(-k,-I)EVf (-k,-OER

If the output value of the above equation is '0', then it means that the location (i,j) of the
image X has the occurrence of the shape ( defined by R and Mf); if '1', the shape is not occurred
at (ij).

Third, let us run over all coordinates (i,j) (i.e. for all (i,j) E W the universal image) and
then the union of those coordinates with value '0' would be the answer. The value '0' at a.
coordinate (ij) corresponds to the null image in set notation and the value '1' at a coordinate
(i,j) corresponds to the point image {(ij)}. For convenience, in the following we mix the
notations of boolean logic functions and set notations; if the output of a boolean logic expression
is '0', it represents the null image 0; if '1', it represents the point image {(i, j)}. Thus, we have

U ( V (7(i-k,j-L) A f(k,1))v V (x(i-kj-1)A(k,l)))
(i.,)EW (-..,-I)EM (-l,-0OE,"

which is the same as

U ( V (T(i-k,j-1)A(k,l)))U U ( V (z(i-k,j-1)A (k,1))).
(i,j)AW (_k,_1E,* (ij)EW (-k.-I)C8
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Since x(i,j) 0 only when (i,j) E X and f(k,1) # 0 only when (k,1) E A, we have

U ( V ( kji-,j- 1)^A k, 1)) = {(i,j)j (i-k,j- ) X,(k, 1) }
(j)EW (-k,-OEz

={(i + k,j + 1) 1 (i,j) E T',(k,1) E Al
= XR

Similarly, we have

U ( V (z(i - k,j - ^1) A #(k,1)) =X (IA).
(iJ)C-W (-I,,-Oet

Hence, if we use '0' to indicate "match", we have

(TE R) U (X E (, /A));

if we use 'I' to indicate "match",then we have

(T A) U (X ae (I A)).

Thus, the locations of a shape, which is deliued by a non-null reference image R with a non-
null reference image (called mask) M and R C M C W, are the image points in the following

(X R) u (X e (MI)) = (T E i) u (X Mu A) = (X e R) n (Te) (MIR)).

A more intuitive illustration is that the foreground X should match R by X 9 R (using
multiple-input AND gates to examine the locations where the l's should be), while the back-
ground 7 should match MIR by Te(M/R). Combining both results by the intersection (AND),
we then implement the shape recognition by (Xe R) n (T (MIR)). Replacing R by R and

(MIR) by R2 , we obtain the hit or miss transform (template matching) for shape recognition.

Appendix F

Proof of Teorem 3.4:
(1) The straight forward way for removing the "pepper" noise is the thinning operation

X @R 4 (or X @Rj. Follow this, we have

X@R 4  = ITU 1e) U(X 9-V4)
= YuYu(Xe M4)

= U(XnT)
= (.u X) n (Tu _qV,4)

= Wn(Tu
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(2) The straight forward way for removing the "pepper" noise is the thickening operation
xQQ4  = XU('XeM 4)u(XEI)

= Xu(TE.M4 )u X

XQQ 4 (or XDQ). Follow this, we have X U(91n )
= (Xu 7E )n (X u )
= (Xu a 4 )nW
= (XU<e M 4 ).

(3)The straight forward way for removing the 'salt and pepper" noise the difference of
X (D Q4 by X () R 4 (or the difference of X (D Qa by X (D Rs). By a similar procedure as above
we can achieve the desired result.

Appendix G

Proof of Theorem 3.5: To extract the region whose sizes are between two reference images
R and Q, the straight forward way is to design a morphological band pass filter (Theorem 3.2):

(X o R)/(X 0 Q) = ((X e R) E R)/((X e Q) s Q).

To obtain the locations of those desired regions, we then perform the skelotonization:

S(((X e R) E R)/((X e Q) ( Q)) = S((X e R)/((X e Q) ( Q))) = S((s i) U (-ED4 Q Q)).
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CLO Figure 2(a): A cellular string. It requires only
Instructions a 1-D interconnection mechanism. Each cell

conects with its two nearest cells.

Noeigflborhooa
Contigurauon Connecons In t"S 4 c.nn c d ular array

...)connections inInat a-onnectd cellular array

Image Array of Calls Image

Figure 1: A sequential process of cellular logic /a
operations (CLO). The value X'(i,j) is deter-
mined by the corresponding X(i,j) in the orig- Figure 2(b): A cellular array. It requires a 2-D
inal image along with the values of its neigh- interconnection mechanism. Each cell connects

bors. with its 4 or 8 nearest cells.

Figure 2(c): A one-dimensional cellular hypercube (24]. Each cell connects with cells at dis-
tances 1, 2,4,8. 2k from it. Here, only the connections with distances 1, 2, and 4 are shown.

Figure 2(d): A two-dimensional cellular pyramid. It consists of stages of arrays with connections

between two adjacent stages and requires a 3-D interconnection mechanism.
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00 00 0 00 0 0 000 0 0
00 11 1 10 00 00 00 0
00 01 1 10 00 11 10 0t 00 001 10 00 11 10 0
0 00 0 010 00 1 11 00

I' 0 000 00 00 0 000 0
'0 00 0000 00 00 00 0

Image imeleec

0111 00 00 00 01 11 11 1
110 00 01 00 11 1 10 01 11 11 1
1 110 0 01 0 01 1 110 01 11 11 1

11.. 01 1 101 00 11 1 10 00 1 111 1
1I.. 01 111101 00 1 11 10 00 01 11 1

0I.. 01 0. 01 0111 0 00 00 0 011 1
0111 00 0 000 00 0 00 0

Figure 3: The universal image W. It has (2n + Complement ~'unhon XUR D1latiom XOR

1) x (2n + 1) image points and n is a positive Figure 4: An example of fundamental opera-
integer. tions: complement -, union U, and dil.,tiou 3.

the pixel at coordinate (x,y) the pixel at coordinate (x,y)

(a) the 4-neighborhood of (x,y). (b) the 8-neighborhood of (x,y).

Figure 5: The 4-neighborhood and 8-neighborhood of an image point (z, y).

too capnn of X. 0
Fiur 6: The 4-once0opnn 0n -onetdcmoetoniae

100 00 0 -

Qmg X (a) Th utieo. (bThhoeoX

Fiu~e : heotsdean hls f n0mae
90404-41



Difference

x R X/R

Figure 8(a): Difference.

Intersection

XR XnR
Figure 8(b): Intersection.

!0

Erosion

0 
___1

X R XeR
Figure 8(c): Erosion.
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Symmetric
Difference

x R XAR

Figure 8(d): Symmetric difference.

0i Opening

X R XoR

Figure 8(e): Opening.

CLOSING

X R X.R

Figure 8(f): Closing.
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00 x: don't care points
00 1: foreground poirts with value 1

b: background points with value 0

R (RI, R2)

R:6(R, I. 2)

Image X X&

Figure 8(g): Hit or miss transform (template matching).

R.(R1 .R2 )XO

Image X
Figure 8(h): Thinning.

Imag, x XQ

image x Figure 8(i): Thickening. O
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nn:

O _ 
s

x R XeR

XER Y XBRI Y

Figure 8(k): A conditional dilation.
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"Complement Union Dilation Difference Inescin Erosion

Pro erties IV___ XLR X (DR X/R XnR XeR

Increasing No Yes Yes Yes Yes Yes

Decreasing Yes No No No No No

Extensive No Yes (ieRs No No No

Yes
Antiextensive No No No Yes Yes (if R D 1)

Idempotent No Yes No Yes Yes No

Shift invariant No No Yes No No Yes

Homnotopic No No No No No No

Commutative No Yes yes No YsNo

Associative No Yes Yes No Yes No

(wtithusomeo. No Yes Yes No Yes No
_____soe____. (with nl) (with u) (with U, A)______

Table 1(a): Basic properties of the three fundamental operations and of three derived operations
(alternative fundamental operations).
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Opraion. Symme tricHotoc
Difference Opening Closing Thinning Thickening Homotopic

Properties X A R XoR XeR X@R XQR X @ (Re)

Increasing No Yes Yes Yes Yes No

Decreasing No No No No No No

Extensive No No Yes No Yes No

Antiextensive No Yes No Yes No Yes

Idempotent No Yes Yes No No Yes

Shift invariant No Yes Yes Yes Yes Yes

Homotopic No No No No No Yes

Commutative Yes No No No No No

Associative Yes No No No No No

Distributive No No No No No No
(with some oper.

Table 1(b): Basic properties of some standard derived operations.
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X R XoR

Figure 9(a): One kind of morphological low pass filter (opening).

X R X*R
Figure 9(b): A second kind of morphological low pass fi'ter (closing).

x R X/(X oR)

Figure 9(c): A morphological high pass filter.

X (X o R)I(X o Q)
Figure 9(d): A morphological band pass filter.
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x R M

(Y.¥ R) u (X AfUR) -

Figure 10(a): One kind of shape recognition. R represents the shape to be identified, and must
lie entirely and exclusively in the mask defined by M.

AO 
A

X@RR=

Figure 10(b): Hit or miss transform, which recognizes locations of foreground points given by
R, in conjunction with background points given by R 2.
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Image X Reference Image N. Reference Image N 4

X/(X e NV4)

X/(X e Ns)

Figure 12: Edge Detection.
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X RQ

XeR XoR

(XeR)/((XeQ)9Q)) S(e~(e9)

i gure 13: A size verification (for holes).
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X X EDHk XS vk

Figure 14(a): An example of the convex hull of an image X "implemented by the intersection
of projections )

C(X)/X
Figure 14(b): The difrerence of C(X) by X,
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Connections in the DOCIP-array4 Optical Feedback Path
= Connections in the DOCIP-array8

Interconnection Unit

imaging (implemented byimagig ]optical hologram)

ON 
00

0.

N x N Output Side of Array of Cells N x N Input Side of Array of Cells
(implemented by optical gate array) (implemented by optical gate array)

Figure 15: An optical 4-connected or 8-connected cellular array (DOCIP-array4 or DOCIP-
arrayS). Imaging optics are omitted for clarity. Each cell connects with its four nearest cells
and itself by optical 3-D free interconnection. Thae input and output sides of the optical gate
array are interconnected by an optical feedback path and are shown separately for clarity.

Connections in the DOCIP-hypercube4 Optical Feedback Path

=)Connections in the DOCIP-hypercube8

Interconnection Unit
imaging (implemented by

optical hologram)

N

N

N x N Output Side of Array of Cells N x N Input Side of Array of Cells
(implemented by optical gate array) (implemented by optical gate array)

Figure 16: An optical 4-directed or 8-directed cellular hypercube (DOCIP-hypercube4 or DOCIP-

hypercube8). Each cell connects with cells in the 4 directions or 8 directions at distances

1, 2, 4,8, ..., 2k from it by optical 3-D free interconnection.
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(1000) (1001) (1010) (1011)

Figure 17: A conventional hypercube (4-cube) laid out in two dimensional space. Its inter-
connections have no spatial invariance.

/ Connections in the 4-directed cellular hypercube
) Connections in the 8-directed cellular hypercube

Figure 18: A two-dimensional cellular hypercube - DOCIP-hypercube. Ech cell is inter-
connected with other cells having a relative one bit difference in coordlinate label in positiveor negative z and y directions to achieve a spatial)y symmetric and invariant interconnection
pattern. Only connections from the central cell are shown; all cells are connected identically so

the resulting interconnections are space invariant.
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m;* image Data (Nxgl Uathir) f-nntrnl Ilrnt

Control Signal
S[Clock Poga

ComplementSU Union

9 Dilation -
oe Instruction Memory Test and
F3adDecoder Branch

Reference Image -

Dest Memory

Image In aad
- Soet jUn: Image

.m 9: or Data Out

Figure 19: A digital optical cellular image processor (DOCIP) architecture - one implementa
tion of binary image algebra (BIA). The DOCIP-array requires 9 (or 5) control bits for reference
image E,. The DOCIP-hypercube requires O(logN) control bits for reference image E;.

TECHNOLOGY Conventional DOCIP- DOCIP-
Array array hypercube

OPERATION (Electronics) (Optics) (Optics)

Local 00) 0(1) 0)

Operations

Global O(N)
Operations or O(N2 ) 0(N) O(IogN)

Communication O(N)

PE--Main Memor or O(N2 ) 0(1) O(1)

Input O(N) O(1). 0(1)

A *i tput or O(N2 )

Table 2: Cellular image processor execution times for N x N image data. It roughly com-
pares the execution time for the conventional electronic array processor, the DOCIP-array and
the DOCIP-hypercube.
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Figure 20: The input image X.

Reference Image R Reference Image Q

Figure 21: The reference images R and Q.

Figure 22: The expected output image 1'.
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Reference Image E
DOCIP-arrayS Instruction Code for E

I1 1 1111 11111 I I

DOCIP-hypercube8 Instruction Code for E
I0 I0 )IO 0 It 1010 O 010 0 10 1O l0 0 101 10 10 10 10I 10 l 1 11 1 1 1 1 1 I1 1

for cells for celis for ce!'s tor cels
at distance 8 at distance 4 at distance 2 at distance 1/0

Figure 23: An allowed reference image E at a clock cycle in the DOCIP-arrays also allowed in
DOCIP-hypercube8) and its corresponding 9 (or 33) bits in instruction (n1 n2 ...n,.) for control-
ling the neighborhood mask (i.e. the reference image for the dilation).

Reference Image p

DOCIP-hypercube8 Instruction Code for P
1101010 lI IO 10 O1 IOp101o I010111 Ii II ft1 1 (fit I? 1 111 11 11 1 111 i I

for cells for cells for cells for ceils
at distance 8 at distance 4 at distancp 2 at distance 1/0

Figure 24: An allowed reference image P at a clock cycle in the DOCIP-hypercubeS (not al-
lowed in the DOCIP-array8) and its corresponding 33 bits (assume 31 x 31 cells) in instruction
(n 1 n2 ... n33) for controlling the neighborhood mask (i.e. the reference image for the dilation).

/
Figure 25: The locations of the desired objects in the output image V. /

111/



Optical Symbolic Substitution and Pattern Recognition Algorithms
Based on Binary Image Algebra

K. S. Huang, B. K. Jenkins, A. A. Sawchuk

Signal and Image Processing Institute
Department of Electrical Engineering

University of Southern California
Los Angeles, CA 90089-0272, USA

February 27, 1988

Abstract

Pattern recognition algorithms and algebraic properties of binary image algebra (BIA) are used to improve the speed, flexibdity
and complexity of symbolic substitution.

Submitted to ICO Topical Meeting On Optical Computing, Toulon, France, August 29 - September 2, 1988.
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Optical Symbolic Substitution and Pattern Recognition Algorithms
Based on Binary Image Algebra

K. S. Huang, B. K. Jenkins, A. A. Sawchuk
Signal and Image Processing Institute, Department of Electrical Engineering,

University of Southern California, Lo Angeles, CA 90089-0272, USA

Summary

Binary image algebra (BIA), a unified systematic complete theory of parallel binary image processing [1], also provides a
unified spatial logic of digital optical computing for describing symbolic substitution, cellular logic and Boolean logic in parallel F2].
Symbolic substitution has been used to implement logic, arithmetic, communication and simulating a Turing machine [31; but its
implementation of some operations (e.g. parallel binary arithmetic) is relatively complicated to other BIA implementations [21. In
this paper we further suggest some BIA algebraic techniques and pattern recognition algorithms, including a shift, scale and rotation
invariant algorithm, to improve the speed, flexibility and complexity of symbolic substitution.

A symbolic substitution rule involves two steps: 1) recognizing the locations of a certain spatial search-pattern within the 2-D
input data, and 2) substituting a new replacement-pattern wherever the search-pattern is recognized. As illustrated in Fig. 1, BIA
can be used to realize a symbolic substitution rule defined by:

(X (2)R) ED Q = ((X ,9 R ) n ( 3 ) R,)) aQ = (T -a Al , U (X B R ) Q l)

where X is the 2-D input data, R = (Ri, R2) is the reference image pair corresponding to the search-pattern (RI and R2 define the
foreground and the background of the search-pattern respectively), A defines a reflected reference image given by R = {(-z.-9) !
(z,y) e R), Q is the reference image corresponding to the replacement-pattern, " (" denotes the hit or miss transform which is
the pattern recognizer, "e" denotes the erosion operation, and "E" denotes the dilation operation which is the pattern replacement
operator. To work with more than one rule (say p substitution rules) for practical applications, a symbolic substitution system (Fig.
2) produces several copies of the input X, provides p different recognizer-substituter units, and then combines the outputs of various
units to form a new output. Thus, a symbolic substitution system is implemented by

U(X ®R(j)) s q ) (2)

where R(O) and Q(), i - 1, 2 ..., p, are the reference image pairs and replacement patterns in the is' symbolic substitution rule.
This, then, is the BIA formula for general symbolic substitution.

However, in many cases the above form is inefficient and can be reduced to a relatively simpler form or implemented in a more
efficient way by using some BIA algebraic techniques. Here are some examples: 1) the full recognition can be implemented by only
the background or foreground recognition under certain conditions; 2) if Q(' ) = 0, the i' h symbolic substitution rule in Eq. (2) is
not needed (e.g. the four rules of binary subtraction in simple intensity coding of arithmetic data can be reduced to only two rules
(2]); and 3) if Q(') = Q for all 1 < i < p (this happens in those cases that a clanss of search-patterns is defined by a set of reference
image. pairs R( ' ) , i = 1, 2,..., p), we should combine the results of the hit or miss transforms first and then replace them by the same
replacement-pattern Q instead of implementing p substitution units for realizing the same substitution step, i.e.

(6 X ®(j ) ) e Q. (3)
.01

The practical difficulty with the implementation in Eqs. (2) and (3) is that the hit or miss transform is only efficient for the
shift invariant recognition and would require a large number of intricate reference image pairs to perform the recognition step in the
presence of changes in scale, rotation or both. Thus, it might be too costly to implement scale and rotation invariant recognition of
intricate patterns for symbolic substitution based on the above formula. For example, if we want to substitute all "square patterns'
in an input image by the same character "S", it would be very inefficient to use the above symbolic substitution implementation
techniques.

To solve this kind of scale and rotation invaxiant problem, here we recognize all the desired patterns by reversing the growing
procedure of a family of patterns. This family defines all patterns in the presence of changes in scale, rotation or both, and transforms
all the desired patterns into their original seeds, which are isolated single image points. We have developed a description of this
procedure in terms of BIA. For brevity, here we describe only the case of shift and scale invariant recognition. Suppose we want to
recognize all square patterns with different scales and locations in the input image X (e.g. Fig. 3(a)) and to produce the output
image Y (e.g. Fig. 3(b)). The procedure is: 1) determine a growing sequence of the desired patterns T, (e.g. Fig. 3(c)), where
0 < i < m and the largest size of the desired patterns is m x mn; 2) find a small set of good reference image pairs { R(O)) (e.g. Fig. 3(d)
has only 5 small reference image pairs for recognizing all square objects with different scales) satisfying some criteria, where each
reference image pair in {R(9)) corresponds to a possible neighborhood of a given foreground image point in a pattern T,, 1 < i <_ m,
whose previous state in the pattern T,.- is a background point; 3) transform the desired patterns T. i = 1. 2..., m, in the 2-D input
image X X(t0 ) into their original seeds (i.e. To which contains one and only one foreground image point) by the recursive relation
X(tk+i) X(th)/U,.6 X(t&) R(O), where 0 :_ k < m; and 4) pick up the original seeds by Y = X(t..) GQ, where Q (Fig. 3 (e))
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is a reference image pair with one and only one foreground image point at the center and Y is the final recognition output. By

selecting good reference image pairs associated the growing sequences of rotation patterns, we can extend shift and scale tnvariance
to include rotation invariance in a similar way. This algorithm can efficiently reduce the computation complexity for a certain class

of pattern recognition and symbolic substitution problems; their computation times depend only on the diameter of the largest

desired pattern, but not on the number of patterns nor the size of the whole image.

A digital optical cellular image processor (DOCIP) (11 [21 implements all the above algorithms of symbolic substitution and
pattern recognition in a flexible and efficient way compared to a symbolic substitution processor (Fig. 2) with p fixed recognizer-

substituter units. The DOCIP programming for these algorithms will be illustrated.
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2.2 Digital Optical Cellular Architectures

The papers reprinted in this section discuss details of optical cellular architectures and their in-

struction set.

The DOCIP is a 2-D, page oriented array of individual processors located at every pixel of a

large image. The attached paper by K.S. Huang, B.K. Jenkins and A.A. Sawchuk, "Binary Image

Algebra and Optical Cellular Logic Processor Design", submitted to Computer Vision, Graphics

and Image Processing, summarizes some of these concepts and their algebraic background. Fol-

lowing this paper is "Optical Symbolic Substitution and Pattern Recognition Algorithms Based

on Binary In.age Algebra", by K.S. Huang, B.K. Jenkins and A.A. Sawchuk, from the ICO Topi-

cal Meeting on Optical Computing, Toulon, France, 1988, which contains additional information.

This paper is concerned with the hardware implementation of one cell of a prototype digital

optical cellular image processor (DOCIP).
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Abstract

A processing element of a prototype digital optical cellular image processor (DOCIP) is implemented to

demonstrate a particular parallel computing and interconnection architecture.

Submitted to ICO Topical Meeting On Optical Computing, Toulon, France, August 29 - September 2, 1988.
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Summary

Digital optical cellular image processor (DOCIP) architectures, DOCIP-array and DOCIP-hypercube, can perform
the tasks of parallel binary image processing and parallel binary arithmetic [1]. The use of optical interconnections per-
mits a cellular hypercube topology to be implemented without paying a large penalty in chip area (the cellular hypercube
interconnections are space-invariant which implies relatively low hologram complexity); it also enables images to be input
to and output from the machine in parallel. Table I gives a comparison of three different interconnection networks: cel-
lular array (DOCIP-array interconnection network), conventional hypercube, and cellular hypercube (DOCIP-hypercube
interconnection network). In this paper we experimentally demonstrate the concept of the DOCIP architecture by imple-

menting one processing element of a prototype optical computer including a 49-gate processor, an instruction decoder,
and electronic input/output interfaces.

A multiple-exposure multi-facet interconnection hologram provides the fixed interconnections between the outputs
and the inputs of an array of 7 x 7 optical gates. The input data and the instructions are supplied from an LED array.
The outputs of optical gates are detected by a video camera and compared with the results of a software simulation. A
diagram of the main components of this experimental system is shown in Fig. 1.

A space-variant interconnection system [2] for within-processor interconnection is used in this experimental demon-
stration. A computer controlled system is used to make an array of 49 interconnection subholograms. An optical point
sourceS, whose position is controlled by the mirror M2 with two rotational stages (Fig. 1), is used to provide an object
beam for determining an interconnection of a subhologram in the multi-facet hologram. A mask with a circular aperture,
controlled by two translational stages, is used to determine the sizes and positions of subholograms in a holographic plate.
The interconnection hologram for this 49-gate optical processing element comprises 49 subholograms, which are laid out
in a 7 x 7 array. Each subhologram covers a circular area with a diameter of 1.5 mm. The spacing between the centers
of two subholograms is 3.0 mm. Note that the path of the object beam and the mask for subholograms are only used for
making the interconnection hologram; they are blocked or moved when we reconstruct the hologram to implement the
interconnections of the optical gates. We use a volume phase hologram with a dichromated gelatin medium for obtaining
high diffraction efficiencies.

The array of 7 x 7 optical gates is implemented by a Hughes liquid-crystal light valve (LCLV) with liquid-crystal
molecules in a 45" twisted nematic configuration [2]. The LCLV is read out between crossed polarizers and is biased to
implement a NOR operation. The gate size in this experiment has a diameter of 0.3 mm and the spacing between the
centers of two gates is 0.6 m-

The circuit diagram of the processing element, as shown in Fig. 2, consists of 49 NOR gates with maximum fan-in
of 3 and fan-out of 4. The processing element includes a 3-bit destination selector, a 3-bit master-slave ip-flop memory,
a 6-bit memory selector with a union module, and a 5-bit neighborhood selector (for DOCIP-array4 (1]) with a dilation
module. This experimental DOCIP system has one instruction, supplied from an LED array and decoded by the optical
hardware. This instruction has the format: (c, di, d2,ds, al, $2,..., so, X, n1 2 , .., ns) where c selects the image from the
input or from the feedback; di, di, and d3 select the destination memory for storing the image; S2, ... ,ss select the
output from the memory elements; and at, n2, ..., as control the neighborhood mzsk, i.e. supply the reference image. We
will experimentally demonstrate the DOCIP architecture concept with this system.
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