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GOODNESS-OF-FIT TESTS FOR ADDITIVE HAZARDS AND
PROPORTIONAL HAZARDS MODELS

Jan W. McKeague
The Florida State University

and

Klaus J. Utikal
University of Kentucky

Abstract

Goodness-of-fit tests for Cox’s proportional hazards model and Aalen’s additive risk model,
in which each model is compared on an equal footing with the best fitting fully nonparametric
model, are developed. The goodness-of-fit statistics are based on differences between estimates
of the doubly cumulative hazard function A(¢,z) = f(;f(; A(s,z)dsdz, under each model, with
a fully nonparametric estimator of A recently introduced by the authors. Here A(-,:) denotes the
conditional hazard function of the survival time of an individual with covariate vector :. Comparison
of the results of the tests makes it possible to decide whether Cox’s proportional hazards or Aalen’s
additive risk model gives a better fit to the data. In addition, a goodness-of-fit test for Cox’s model
within the family of all proportional hazards models A(f,2z) = Ag(2) r{z), where Xy is a baseline
hazard function and r is a general relative risk function, is developed.




1. Introduction

Additive hazards and proportional hazards regression models used in the analysis of
censored survival data can give substantially different results. For instance, in connection
with a study of cancer mortality among Japanese atomic bomb survivors, Muirhead and
Darby (1987) have noted that the two models give substantially different estimates of the
age-speciﬁt‘:’plqbgbm“ty that an individual will develop radiation induced cancer. Muirhead
and Darbyfseeaiso-ATarda-Ordas;-1983) introduced a generalized parametric model which
contains parametric additive hazards and proportional hazards models as special cases. The
goodness-of-fit of each model is then obtained by comparing with the best fitting model
within the generalized family, allowing the two special models to be treated on an equal
footin
Beyond the parametric setting, much effort has been devoted to the development of
goodness-of-fit tests for Cox’s (1972) proportional hazards model

AL, 2) = o(t) €%, (1.1)

where A(t,z) = A(t|z) is the conditional hazard function of the survival time of an individual
who has a covariate vector z = (21,...,2p)’, say, at time ¢, §o is a vector of p parameters and
Ao is an arbitrary baseline hazard function. Many papers deal with graphical methods and
their interpretation—see Arjas (1988) for a recent contribution. These methods are useful
for detecting and diagnosing possible departures from the model, but their interpretation in
the absence of formal significance tests is largely subjective. A formal test for Cox’s model
| was introduced by Schoenfeld (1980) who developed a test of Cox’s model against the fully
nonparametric alternative that A(t,z) is arbitrary by using a chi-squared test based on
the observed and expected frequencies that data points fall into cells that partition the
product of the time and covariate state spaces. Using a similar approach, Andersen (1982)
introduced a test of whether the inclusion of a new covariate 2,41 gives rise to a Cox model
when (21,...,2p)" already does. Moreau, O’Quigley and Mesbah (1985) considered testing
whether By varies with time.

Recently, Aalen (1988) discussed some graphical methods for examining the goodness-
of-fit of the additive risk model (Aalen, 1980)

P
. A(t,2) =D _ () 2, (1.2)
b gt

f

where a;,...,a, are arbitrary functions of time.
"~~~ The purpose of paper is to develop formal goodness-of-fit tests for the

models of Aalen and Cox in which each model is compared on an equal footing with the
best fitting fully nonparametric model.,Our test statistics are based on differences between
estimates of the doubly cumulative hdzard function A(t,z) = fozfot A(s,z)dsdz, under
each model, with a nonparametric estimator .A of A introduced by McKeague and Utikal
(1988). Comparison of the results of our tests makes it possible to decide whether Cox’s
proportional hazards or Aalen’s additive risk model gives a better fit to the data.
Goodness-of-fit statistics based on a comparison of estimates of cnmulative hazard
functions, allowing the application of powerful counting process and martingale techniques,
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have been previously studied by Hjort (1984). He constructed tests for the hypothesis that
the baseline hazard function in Cox’s model follows a given parametric form, where the
relative risk function r(z) = e%* is assumed to be correctly specified. Hjort obtained a
weak convergence result for the difference between nonparametric and parametric estimates
of the cumulative baseline hazard function, and used his result to construct a chi-squared
statistic based on a division of the time domain into cells. We have extended this approach
to the full Cox model.

The general model (in which A(t, z) is fully nonparametric) is described in Section 2.
Our goodness-of-fit tests for the models of Cox and Aalen are presented in Sections 3 and 5
respectively. In the case of Cox’s model, with p = 1, we compare .A with the semiparametric
estimator A of A given by

At,z) = A(t)/ozeﬁzdx, (t,2) € [0,1} (1.3)

where A is an estimator of the baseline hazard function and § is Cox’s maximum partial
likelihood estimator. Under Cox’s model the two estimators should be close to one another.
We show that /n(A — A) converges weakly to a certain Gaussian random field which is
represented as a sum of stochastic integrals with respect to a Brownian sheet process.
This result leads to the construction of our goodness-of-fit test for Cox’s model against
the general alternative. In Section 4 we develop a test for Cox’s model against the more
restrictive alternative of general proportional hazards: A(t,z) = A¢(t) 7(2), where r is an
unspecified relative risk function.
Proofs of all our results are collected in Section 6.

2. The general model

Let N(t) = (N1(t),...,Nn(?)), t € [0,1], be a multivariate counting process with
respect to a right-continuous filtration (), i.e. N is adapted to the filtration and has
components N; which are right-continuous step functions, zero at time zero, with jumps of
size +1 such that no two components jump simultaneously. Here N,(t) records the number
of observed failures (0 or 1) in [0, 1] for the ith individual. Suppose that N; has intensity
of the general form

Ai(t) = Yi() A1, Zi(1)), i=1,....n
where Yi(?) is a predictable {0,1}-valued process, indicating that the ith individual is at
risk when Yi(t) = 1. and Z;(t) is a predictable covariate process. The function A(t,z2)
represents the failure rate for an individual at risk at time t with covariate Z;(t) = z. We
assume throughout that (N;,Y;,Z;),{ = 1,...,n are i.i.d. replicates of (N,Y,Z) and Z is
scalar valued. Note that (see Andersen and Borgan, 1985) the processes

Mi(t) = N,~(t)—/ot}’i(s)/\(s,Z,-(s))ds, i=1,...,n (2.1)

are orthogonal local square integrable martingales with predictable variation process
(M;, M;); = / Yi(s) A(s, Zi(s))ds, i=1,...,n.
0
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The goodness-of-fit tests introduced in this paper involve a certain estimator for
At 2) = fozfot A(s,z)ds dz over the unit square [0,1)2. Let z, = r/d, and Z, = [2,_1,2,)
for r = 1,...,d,, where d, is an increasing sequence of positive integers. Let N, (t) be the
counting process which registers the jumps of N;(t) when Z;(t) € Z,, <o that

Nr(t) = /o "1(2:(s) € Z,) dNi(s). (2.2)

Beran (1981) suggested that the cumulative conditional hazard function A(t,2) =
fot A(s,2)ds could be estimated by the Nelson-Aalen type estimator

t
x 1
A, 2) = / dN{M(s), for z € I,
t.2) 0 Y(")(s) F()

r

where

Y(s) = 32 (Zis) € Z,)Yils)
=1

and N = Y&, Nir. McKeague and Utikal (1988), subsequently referred to as MU,
proposed the following estimator for A

A(t,z) = /oz A(t,z)dz,

and they obtained a weak convergence result for A.

Before stating that result we need to introduce some more notation and some conditions
onY and Z. Let ftfoz ¢(s,z)dW (s, z) denote a continuous version of the Wiener integral
of a function ¢ € Ls( [0,1]%, ds dz) with respect to a Brownian sheet ¥, see Wong and Zakai
(1974). Suppose that for each t € [0,1], the random vector (Z,,Y}) is absolutely continuous
with respect to the product of Lebesgue measure on [0, 1] and cornting measure, and denote
the corresponding density by fz(s)y(r)(2,9)- Also, assume that fz(;)y()(2,1) is a positive,
continuous function of (¢,2) € [0,1]>. Let D; denote the extension of Skorohod space D[0,1]
to functions on [0, 1], as defined in Neuhaus (1971), and let D[0, 1) denote the product of
p copies of D|0,1].

In the present setting we may state Theorem 3.1 of MU as follows.

Proposition 3.1. Suppose that X is Lipschitz, d%/n — oo and d, = o(n®) for some
6 € (3,1). Then \/n(A -~ A)Em in Dy as n — oo, where m = (m(t,z), (t,z) € [0,1]%) is

given by .
m(f,:-:):/o/o Vh(s,z)dW(s,z), (2.3)

A(s, 1)
h(s, 1) = ——————,
(s,2) Sz via)(z,1)

In the sequel we shall denote H(t,2) = fotfoz h(u,z)dz du and denote the corresponding
measure on [0,1}? by H as well.




.. 3. Cox’s proportional hazards model vs. the general model

. Inference for Gy in (1.1) can be based on the partial likelihood function

eBZi(Tn) } 5

16) = Il{ sz

i=1

(3.1)

where 8§; and T; are the indicator of noncensorship and the survival iime for the ith indi-
vidual respectively, and R; is the risk set consisting of all individuals who are observed to
be at risk at time T;. This approach was proposed by Cox (1972, 1975). Let 3 be the value

that maximizes L(8) and estimate the cumulative baseline hazard Ao(t) = fo Ao(8) ds by
the Bresiow (1972, 1974) type estimator

Ay =Y ——5—- (3.2)

T.<t LjER; ePZ(T:)

We are interested in testing the null hypothesis Hg: Cox’s proportional hazards model
(1.1) holds over the region (t,z) € [0,1)>. The natural estimator of A under Hp is

At,z) = f\(t)/ozeﬁ"dz, (t,2) € [0,1)?

where, if (T}, Z;(T;)) falls outside [0,1]?, the survival time T; is regarded as being censored
(i.e. &; is set to 0). Introduce some notation (cf. Andersen and Gill, 1982):

s(8,1) = %anze(t)fn(t)f(o < Zi(t) < 1) P70,
i=1

s(j)(ﬂ,t) = ES(j)(ﬂ,t),
for j = 0,1,2, where 0° = 1, and

e= s/ 4= @0 _ g2

L= /t v(B.t) s (Bo, 1) Ao(2) dt.
0

Formulated in terms of the counting processes, the estimate § is the unique solution to
% log L(B) = U(B,1) = 0, where

u(s, t)—z [{z20- g0 2@ nav. 03

and the estimator (3.2) is given by

s [t dN(u)
A(i)—/o ——nS(O)(B,u)’

4




where N = 39 N{™ and N{™ is defined in Section 2.
Theorem 3.1. Suppose that Y and Z are left-continuous with right hand limits, ¥ is

positive, Ao is Lipschitz, d% /n — oo and dn = o(n’) for some § € (},1). Then, under Cox’s
proportional hazards model (1.1), /n(A — A)Em’ in D; as n — oo, where

m!(t,z) = // VA, 7) dW (u, z)—b(z)// vo(wz) 7 417 (u2)

3(0)(ﬂo
)
- c(t,z)/o /0 z(o)ggo’:j;}\/g(u z) dW (u, z),
/\o(‘u) e"“

h(u,z) = W€
(v,2) Sz Y(u)(2,1)

g(u,z) = ’\O(u) eﬁosz(u) Y(u)(z, 1)’
b(z) = / ePordz,
0

c(t,z) =2? (Ao(t) /01 zePo*dz — b(z2) /ote(ﬂo,u) Ao(u)du).

In order to test Hy against the alternative that A has the general form of Section 2 we
might consider using statistics of Kolmogorov-Smirnov type or Cramér-von Mises type:

-~ -~ l 1 ~ -~
Vi osup  JA,z) - A(t,2)  or \/E/O/O(A(t,z)-—.A(t,z))?dtdz

(t,2) G(O JP

which have asymptotic distributions sup, ,)efo,1)2 |m'(%,2)| and fol fol(m'(t,z))z dtdz re-
spectively. However, general tables for these distributions are not available. MU suggested
that critical values for such distributions be obtained by simulation of the process m'. A
more feasible approach might be to bootstrap the estimators A and A in some way [cf.
the papers of Akritas (1986), Horvath and Yandell (1987) and Lo and Singh (1986) on
the bootstrapped Kaplan-Meier estimator], but we shall not pursue that possibility here.
Rather, our present approach [following Schoenfeld (1980)] is to derive a chi-squared test
based on a partition of the product of the time and covariate state spaces into cells.

Let 0 =ty < ---<tp=1and 0 =2 < :-- < z; = 1 and denote 7; = (t,_1,1,)
and Z; = (21-1,z] so that the cells J; = 7; x Z; partition [0,1]>. The increment
of X = /(A - A) over J, is given by Qf_';) = X(Jn) = X(tp,21) = X(tr,2121) -
X(t,_l,z,) + X(tr-1,z1-1). Under Hy and the conditions of Theorem 3.1 we have that
Q™M = (Qr, , r=1,...,R; 1 = 1,...,L) converges in distribution to the Gaussian ran-
dom array Q = (@n, r=1,...,R; 1=1,...,L) with mean zero and covariance

dAo(u)

Cov(Qrt, Qrr) = H(Tr1 0 Trorr) — b(Z1) b(Z1) 7,07, 5 (Bo,u)

- C(jrl) C(jr’l')z’




"

where b(Z;) and ¢(J,:) denote increments of b and ¢. A consistent estimator for this
covariance can be obtained by inserting the usual estimates of ;. Ao, s, T and e(fy, )
in the last two terms above and estimating the first term by H(J7,(), where

[zda]

g
f{(t, 2) = dlz E e[)::, d.’\o(s)

. 3.4
N y=] 0 Y"(ﬂ)(s) ( )

The estimator A is similar to the general estimator of H employed in MU (Section 3).
Routine modifications to the proof of Lemma 9 of MU show that H is consistent.

If we write Q(™) and Q in the form of column vectors U(™ and U, respectively, (by
stacking columns one on top of each other, say) and let C(™ denote the corresponding
estimate of the covariance matrix C of U, then our test statistic is given by

£lr) — gy Em)-17(n).

Under Ho and the conditions of Theorem 3.1 we obtain that I'(™) has a limiting x? distri-
bution, wher2 ¢ = rank(C). Usually we would expect that C is of full rank, in which case
g=RL.

4. Cox’s model vs. general proportional hazards

The general proportional hazards model A(t,z) = Ao(t) 7(z), where 7 is an unknown
relative risk function, was proposed by Thomas (1983). This model admits nonlinear co-
variate effects while preserving the proportional hazards form. Tibshirani (1984), Hastie
and Tibshirani (1986) and O’Sullivan (198%6a, 1986b) have studied various estimators for
the log relative risk function log r(z). MU studied an estimator of the cumulative relative
risk function f;r(z)dz and developed a goodness-of-fit test for the general proportional
hazards model.

Now consider testing the Cox model null hypothesis Hy of Section 3 vs. the alterna-
tive that the general proportional hazards model holds. Our test statistic compares two
estimators of the normalized cumulative relative risk function

Since 1(z) = €”°* under Cox’s model, the natural estimator of R under H is

foz e dz

R(z)= 22
)= Fra

An estimator for R under the general proportional hazards model is

A1, 2)

R(Z) = _/i(]’l).

6




The following result gives the asymptotic distribution of \/n(R — R) under H,.

Theorem 4.1. Suppose that the conditions of Theorem 3.1 hold. Then, under Cox’s
proportional hazards model (3.1), \/n(R - R)gpm" in D[0,1] as n — oo, where p =
(Ao(1)82(1)) ™",

m(z) = b(l)/ol/; \/h(Tl,z_)ldW(u,z))— b(z)/ol/ol Ve, 2) dW (u,z)
1
—ga(z)/(; /o {z- E;%Z?:—Z;}\/g(u,r)dﬂ’(u,z),

o(z) = B! Ao(l)(b(l) /0 " zePrdz — b(2) /0 " pefor d:z).

We shall omit the proaf of this result since it is very similar to the proof of Theorem
3.1. A chi-squared goodness-of-fit test can be derived using Theorem 4.1, much as it was
done using Theorem 3.1.

Let 0 = 29 < -+ < z; = 1 so that the intervals Z; = (z_1,2] partition [0,1].
Let X = /(R - R) and let Qf") denote the increment of X over Z;. Under Hy and
the conditions of Theorem 4.1 we have that Q(") = (Qf"), l =1,...,L) converges in
distribution to the Gaussian random vector @ = (Q;, ! = 1,...,L) with mean zero and
covariance

Cov(Q1,Qr) = p? [B(1)* Hy(2: 0 Zp) = b(1) b(21) Hi(Zr) - b((1) b(21) Hi(2))
+b6(Z2)6(Z2p)H(1, 1) +3p(21) t,:(Zp)E],

where Hy(z) = H(1,z). This covariance can be estimated consistently by inserting the
usual estimates of By, Ao and L; and estimating H; by Hy(-) = H(1,-), where H is given
by (3.4).

5. Aal:n’s additive risk model vs. the general model

For simplicity, we shall only consider the following special case of Aalen's model (1.2):
Alt,2) = aa(1) + (1) 2, (5.1)

where z is scalar valued, but our approach could easily be extended to the full Aalen model
(1.2). Weighted least squares estimators A; for the functions 4(t) = f:o aj(s)ds,t € [tg,1],
J = 1,2 were introduced by Huffer and McKeague (1987) and McKeague (1988a). Here
to is fixed, 0 < #9 < 1. The reason for restricting estimation to the time interval [tg,1] is
that it is not possible to estimate the correct weights uniformly over the whole of [0, 1], as
required for the asymptotic theory developed in McKeague (1988a). In this section D, is
restricted to functions on [to, 1] X [0, 1).




The null hypothesis that we intend to test is Ho: Aalen’s additive risk model (5.1)
holds over the region [to, 1] X [0,1]. Define A and A as in Section 2, except with the range
of integration for the time variable going from t; to t. Since A(t,z) = z Ay(t) + 322 A,(2)
under Hy, a reasonable estimator for A under Hy is

A(t,z) = 2 A (1) + 322 As(2).

Let Yi(t) = Yi(1) 1(0 < Z(t) < 1) and Yi;(2) =Yi() Zi(1) (0 < Zi(t) < 1). Then the
intensity of the counting process N; is given by

Ai(t) = aq(t) Ya(t) + aa(t) Yia(t)

under the additive risk model. Using similar notation to McKeague (1988a), the weighted
least squares estimator A is defined by

A1) = ]: Y~(s)dN(s),

where Y =(s) = (Y'(s) W(s) Y (s))~1Y"(s) W (s) and Y(s) = (Yi;(s)) is the n x 2 matrix of
covariate processes, W(t) is the n x n diagonal matrix with ith diagonal entry (;(t))~?,
Ai(t) = G (1) Ya (1) + 62(2) Yar (1)

is an estimate of the intensity Ai(?), and & = (&1, &2)' is the smoothed least squares

estimator )
1 t—s -
a0 =1 [ x(52) i)

Here A = (4,, fig)’ is Aalen’s least squares estimator

i = [ @Y VNG,

K is a left-continuous kernel function of bounded variation having integral 1, support [0, 1]
and b, > 0 is a bandwidth parameter. Let L(?) and V() denote the 2 x 2 matrices
with entries Ljx(t) =EY1;(t) Yik(t), Vir(t) =E Y1;(t) Yax(t) A]1(t) respectively. Also, for
any square matrix D, let D~! denote the inverse of D if D is invertible, the zero matrix
otherwise.

Theorem 5.1. Suppose that the processes Y; and Z; are left-continuous with right hand
limits, a1 and ay are Lipschitz, the matrix functions L(-) and V(.) are continuous, L(t)
and V(t) are nonsingular for all t € [0,1], inf(; ;)¢f0,1)2 A(t,2) > 0, b — 0, nb? — oo,
d%/n — o and d, = o(n®) for some § € (},1). Then, under Aalen’s additive risk model

(5.1), V/n(A - A)Zm' in D, as n — oo, where

e [ ey, [T+ 2 (V]
m(t,z)~/0L\/h(s,x)dW(~,x) z/o/o NOTE dW(s,z)

2 [f [ VYo + 2 (V7(s))22) ;
_%2/0/0 dW (s, z),

Vh(s,z)
hs.z) = ai(s) +02(5)I.
(&) fz(s) v(s)(2,1)
8

h
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Define a chi-squared statistic I'™ for testing Ho in the same way that (™) was defined
in Section 2, but with X = /n(A—A). Under Hy and the conditions of Theorem 5.1 we have

that Q(*) = (Q(r':), r=1,...,R; | = 1,...,L) converges in distribution to the Gaussian
random array Q = (Qn, r=1,...,R; 1=1,...,L) with mean zero and covariance

COV(er,Qr'l’) = H(Jrl n jr'l’)
— A&y / [V + 3 (Ar+ Ar) (VT (e + § A1 Ar (V7)) ds,

r

where A; = z;— zj_1. A consistent estimator of this covariance can be obtained by esti-
mating the first term by H(7.), where

[zd,.

At,z)= — z Z

/t dA;(s) + 2, dA,y(s)
Y{"(s)

’

and estimating the remaining terms using the following estimator (see McKeague, 1988a)

of [y (V=1(s))jk ds:
E (Y (8))5i(Y ~(8))ki dNi(s).

A chi-squared statistic (") for testing Ho can then be developed as in Section 3.

6. Proofs

We shall make repeated use of the notation (R,, n > 1) for a generic sequence of
processes which converge uniformly in probabilty to zero as n — 0o. Also, the processes

AIS_")(t) = Zn: /ot I{Z,(S) € Ir} d]\l,‘(S),
i=1

da z pt
M™(t,2) = Va Z / / <n1>(s) dM{™(s) I(z € T,) dz,

[zd..

Z/ y(")( )d}‘['('ﬂ)(s)’

play an important role in the proofs.

MM, 2) = ‘/_

Proof of Theorem 3.1. By the proof of Theorem 3.1 of MU we have (in our notation)
V(A - Ay = M+ R,. (6.1)

The Lipschitz condition on A required for that theorem to be applicable is satisfied for
Cox’s proportional hazards model (3.1), since A\g is assumed to be Lipschitz.

9




The next step in the proof is to decompose /%(A — A) using the results of Andersen
and Gill (1982), subsequently referred to as AG. Conditions A to D of AG can be checked
under conditions of the present theorem (cf. the proof of Theorem 4.1 of AG). Then write

VAL - A)(t, 2) = VA(AQ) - Ao(0)) () + VR jo “(ePT - Py dzAt).  (6.2)

,..

- By AG (p.1104)

VAA®) ~ Aa(t) = Fa(t) = VB - o) [ elBo,u) bo(w)du + Bu)  (63)

where

Mo(t) = n™ &Z/ 5(0)(ﬂ SO (0 € Zi(w) < VM)

=1

Also, since B is a consistent estimator of By and A is uniformly consistent estimator of Ao,
by a Taylor series expansion the second term in (6.2) can be written as

V(B - Bo) Ao(t) /ozze"”dz + Ry(t, 2). (6.4)
By AG (proof of Theorem 3.2)
V(B - Bo) = n~HU(Bo,1) £7" + 0p(1). (6.5)

Note that by (3.3) and (2.1)

U(Bort) = Z / Z(x) ﬁ(o)é?’"g} (0< Ziw) < )dMi(w).  (66)

Let z, = r/dy,, and introduce the martingale

S“)(ﬂ ,U) ) n
Mit)=n %Zl/ zr mﬂ—w}“ﬁ )(u)

I Z/ E: (Z{uw) € I,) - Z(O)EZO’";}I(I < Zi(u) < 1) dMi(u).

By Doob’s inequality and (6.6)
. 1, dn 2
E supln=4U(6o,) - FR(0F < 4B [ {Y(ar - ) I(Zr(w) € T,)) d0a),
0 "=
= 0(512_)“' 0. (6.7)

n
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Thus, combining (6.1)-(6.5), we obtain the decomposition
V(A = A)(t,z) = M(t,z) - b(z) Mo(2) — c(t,2) My (1) + Ru(, 2). (6.8)
Set

mo(t)—//o VI2) iy 2, (6.9)

O(Go,u)
s (Bo, u)
m;(t):/0 /0 z - mg,—u)}\/g(u,z)dW(u,z).

Then mg and m; are independent zero mean Gaussian martingales with predictable varia-

tion processes
t
'\o(“)

(m,),=/0 v(ﬂo,u)s(o)(ﬂo,u)/\o(u)du.

Suppose that (M, A[o,Ml)—r(m mg, my) jointly in D' = D, x D[0,1}?. Define a map
T2 D' — D' by n,(f1, f2, f3) = (xn(fi), f2, f3), where m, is defined by 7,(f)(t,z) =
ft,zr1)+dn(z—2,21)f(1,2,) for z € I, where z, = r/d,,. Here m,(f)(t, ") is a piecewise
linear approximation to f(t,-) based on the points z,, r = 1,...,d,, for each t. Note that
M = x,(M™). Also, appealing to a D' version of Lemma 4.1 of McKeague (1988b) we
have wﬁ,(ﬁ, Mo, M, )B(m,mo,ml) in D', where we have used the fact that m (defined by
(2.3)), mo and m; have continuous sample paths. Thus (M,ﬂo,ﬂl )E(m,mo,ml) jointly
in D' and by the continuous mapping theorem and (6.8) we may conclude that

V(A —.Ai)zm -bmg—cm(l)=m

It remains to show that (M,Ho,ﬁl)-g(m,mo,ml) jointly in D'. By (6.7) and the
proof of Theorem 3.4 of AG we have (ﬁo,ﬁl)—*(mo,ml) in D[0,1]%. Also, by the proof

of Theorem 3.1 of MU_ we have MZmin D;. If we can show that the finite dimensional i
distributions of (M Mo,M]) converge to those of (m,mg, m;) then we are finished. It {
suffices to show that forany 0< 20 < 2 < --- <z, < 1,9 > 1,

((M(23) = M(2520))ans Mo()s Bi()) 2 (M 25) = m(-,z521)) g, mof-)s ma())

in D[0,1}9%2. This is done using Rebolledo’s (1980) martingale central limit theorem. Since 1
Mi"), r = 1,...,d, are orthogonal martingales and My can be written in the form
dn t 1
Mo(t) = e d M(™(u),
0( ) ;/0 S(o)(ﬂo,u) r (U)

11
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we have (cf. Lemma 9 of MU)

[zd-l

(M(-,2), Mo(-))e = / o S(°)(ﬂ0 3 d(My,

P eﬁ“/\o(u) il ). .
_*/o/o a4 du = (mC,2), ma()e

Also, directly from the definitions of M and ﬁl

— . [zdn) §(1) u
(2, B = o /ym(u) e~ St} au),

sM(Bo,u)\ gz _
f’/o /0 z - -————8(0)(32,“)}e5 do(u)dz du = (m(., z), my(-)):.

Now apply the version of Rebolledo’s central limit theorem given by AG (Theorem 1.2)
with p = ¢ + 2 and d,, playing the role of n. There are g + 2 Lindeberg conditions to
check. For the ¢ components involving M(., z), these conditions follow from Lemma 6 of

MU. The same approach works for the M, component, and the Mo component is treated
in AG (proof of Theorem 3.4). O

Prooj of Theorem 5.1. First note that by the proof of Theorem 3.2 of McKeague (1988a)
we can decompose /n(A — A) as

VA(A = A) (1,2) = 2V/ilAr — A)(0) + 522VA(Ar ~ Az)(1)
= 2 My(t) + 122 Ma(t) + Ra(t,2), (6.10)
where " .
M(t) = \/L;Z /‘ G{P(s) dMi(s),

6™ (s) = {G‘"’( ) i I1GHs) <
Y otherwxse,

&) = z'j(v-‘(s))jmk(s) 57106,
V(s) = (l k(s)) (a 2 x 2 matrix)
Vik(s) = E) i5(8) Yir(8) A7 (s)
and C is a positive constant such that
PGP (s)=G{P(s)foralli=1,...,n, s € [to,1]) — 1. (6.11)

12
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By (3.1) and (6.10) we obtain the following decomposition
V(A = A)(t,2) = M(,2) — z My(1) - 122 M,(8) + Ra (1, 2). (6.12)

Set

(1) = C IV H)a + 2 (V7)) 7(s.z
mJ(t)—/to/O o] dW(s,z), to<t<1

for j = 1,2. Then (m;,m3) is a bivariate Gaussian martingale with zero mean and, as
routine calculations show, predictable covariation processes

t
(mj,mi)e = [ (V7I(s))inds, 4,k =1,2.
to

By the proof of Theorem 3.2 of McKeague (1988a) it follows that (¥4, M) B (my, myp)
in D(to,1}>. Also, by the proof of Theorem 3.1 of MU, we have MEZm in Dy, where m
is defined in the statement of Proposition 2.1. Thus, from the representation (6.12), to
complete the proof (cf. the proof of Theorem 3.1} it suffices to show that for any 0 < 2z <
< <2,<1, 921,

(M(-,2;) - ﬁ('ﬂj-:))}:l M1 (-), M3(3)) 2 ((m(-, 25) = m(-, 254 i1, ma(-),ma(-))

in Dto,1]9*2. As in the proof of Theorem 3.1, we apply the version of Rebolledo’s mar-
tingale central limit theorem given in AG (Theorem 1.2) to do this. Note that Af;, j = 1,2
are square integrable martingales and

lzd.] ”
(AI( Z)aM ( ))t / Y(n)( G(ﬂ)( )d(}\fi,luy(-n))a
r-l i=1 r
[zda]
= a'i Z/ Y(n)( )[EG(H)( YI(Z; () €I, .'(S)] ds+op(1)
" i=1
(zd ]

Z [(v Yo + 2r(V=1(9))j2)ds + Op(d;") + 0p(1)

"/o / (V1 ())j + 2 (V7 N(s))2) ds dz = (m(-,2), my(-))e,

where we have used (6.11), Lemma 4.3 of McKeague (1988a) and the fact that |z—z,| < d;!
when 2z € Z,. Once again there are ¢ + 2 Lindeberg conditions to check. They have been
checked for M, j = 1,2 in the proof of Theorem 3.2 of McKeague (1988a), and for the ¢

components involving H(-,z) in MU (Lemma 6). 0O
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