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NOMENCLATURE

[A]l. = defined in Eq. (19)

[B efndi E.(9

[B]. = defined in Eq. (19)

{C). = defined by Eq. (15)

IF] = excitation force levels

F 9, = j%. element of [F]

(G)~ = defined in Eq. (19)

{G}. = jth column of [G]

[H]. = defined in Eq. (19)

Mi} = defined by Eq. (12)

L = Lagrange function

[MI = mass matrix

C = critical damping ratio

(W] = weighting matrix

a * = defined by Eq. (4)

[13] = eigenvalues of ( I[MHO]

[01 = eigenvectors of [*] T [M][*]

[I = matrix of Lagrange multipliers

X = element of ti. of (XI, Lagrange multiplier

{X. = jth row of [N]
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NOMENCLATURE (continued)

[$1 = all the normal modes of a structure

[*] = identified mode shapes

[ ] = analytically orthogonalized mode shapes

[*m] = measured modes

{W}. = jth column of [ ]

*jk = jk element of [0]

m = jk element of [.m]jk

[''] = defined by Eq. (17)

[ 2] = admittance matrix, imaginary components

Q ij = ij element of (01

[]j = defined in Eq. (9)

w i = frequency of excitation (rad/sec)J

w = ith natural frequency (rad/sec)nl

8 = element-by-element matrix multiplication operator
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I. INTRODUCTION

Accurate structural dynami- models of complex spacecraft are a require-

ment. Unfortunately, analytical models agree closely with properly measured

mode data only in the first few modes. To minimize the effects of this defi-

ciency, two approaches are widely used. The first approach is to adjust the

analytical dynamic model to improve correlation between the analytical and

empirical modes., Any remaining difference between the two mode sets is then

usually ignored, and the adjusted analytical model is adopted as the model of

the actual hardware.

The second approach also involves adjusting the analytical model to improve

correlation with the measured modes. However, unlike the first approach, the

measured modes are then adopted as the normal coordinates of the dynamic model.

This requires that the mode survey test article be representative of flight

hardware. The principal advantage of this approach is that the influence of

deficiencies remaining in the analytical model, after all adjustments have

been made, are minimized.

Structural dynamic models of complex space systems are typically formulated

by component mode synthesis coupling of substructure modal models. Inherent in

the coupling procedures is the assumption that the modes of a substructure are

orthogonal with respect to its mass matrix. Therefore, if measured modes are

used, any deviation from mass-weighted orthogonality must be corrected.

Numerous procedures have been proposed to analytically orthogonalize

measured modes. Gravitz (Ref. 1) proposed calculating a symmetric influence

coefficient matrix by averaging the off-diagonal terms of a matrix obtained

from the measured frequencies, measured modes, and the generalized mass matrix.

An eigenproblem solution would then yield a set of orthogonal modes. McGrew

(Ref. 2) proposed using the Gram-Schmidt orthogonalization procedure by

modifying it to include mass weighting.
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Targoff (Ref. 3) presented a procedure which yielded orthogonal modes by

making minimum changes to the measured modes. Subsequently, Baruch and Bar

Itzhack (Ref. 4) demonstrated that Targoff's results could also be obtained by

minimizing the mass-weighted difference between the measured and orthogonalized

modes. The minimization was performed subject to mass-weighted orthogonality

constraints. In References 5 and 6, additional refinements to the procedure

of Reference 4 were introduced. Of particular value is the ability to ortho-

gonalize measured modes relative to each other and to another, already ortho-

gonal set of modes.

An attractive feature of the Reference 3 procedure, often referred to as

the symmetric correction procedure, is that the changes made to the measured

data are a minimum. Experience with numerous spacecraft mode sets has demon-

strated that if the measured modes satisfy certain orthogonality requirements

(i.e., the off-diagonal terms of the unit-normalized, generalized mass matrix

are less than 0.10), then the differences between the measured and orthogon-

alized modes are small. However, as the modal contamination increases, the

required changes obviously become larger.

The Reference 3 procedure assumes that the lack of orthogonality between

any two modes should be corrected by splitting the error equally between the

two modes. This approach is adequate for small modal contamination, since the

changes thus made are small. This approach is also preferable to other

approaches if the contamination is relatively large and the cause of the

contamination cannot be established. Note that this approach has been used

successfully in a large number of programs in which the measured modes were

used as the normal coordinates of the spacecraft dynamic model.

A large number of spacecraft mode survey tests are performed using multi-

shaker, sine dwell test procedures (e.g., Ref. 7). Frequently, with complex

spacecraft, the number of closely spaced modes exceeds the number of available

shakers. Under these circumstances it is often possible to obtain accurate

frequency and damping measurements, even though mode shapes of acceptable

quality might not be obtained.
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If these mode shapes are to be used as normal coordinates, they will have

to be orthogonalized. However, before using a procedure such as that

presented in Reference 3, it would be advantageous to improve the mode shape

orthogonality by considering the degree of isolation that existed when each

mode shape was measured. It is the purpose of this report to introduce an

identification procedure that accomplishes the above-mentioned objective.
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II. THEORETICAL DEVELOPMENT

It is reasonable to expect that more accurate mode shapes will result if

the degree of mode isolation present during measurement is used to improve the

mass-weighted orthogonality of the measured modes prior to analytical ortho-

gonalization. Assume that for each measured mode the natural frequency,

critical damping ratio, and shaker force levels and locations are known. In

addition, the shaker locations need to be included as degrees of freedom in

the measured mode vectors. Furthermore, it will be assumed that any deviation

from mass-weighted orthogonality is due to modal contamination and not errors

in the mass matrix.

The mode identification procedure will be derived using constrained mini-

mization theory. To minimize changes to the measured data, the difference

between the measured modes [,m] and identified modes [01 will be minimized.

Thus, the error function c will be defined as

= llw1([W] - [,J)Il

n m {n j 2I I Z wi(j- (1)

i=l k=l j=l Wj(jk -(

where [W] is a square, positive definite weighting matrix. Note that if

(W] = (MI]/2 , the error function e reduces to the function used in Reference 4

and would, therefore, be consistent with the orthogonalization procedure of

Reference 3 (Ref. 4). However, for the derivation presented herein, we shall

allow [W] to be any square, positive defi ite matrix.

To introduce the degree of isolation that existed when the mode shapes

were measured, cross-orthogonality constraints will be imposed on the minimi-

zation of Eq. (1). These constraints can be derived from the forced response

equation for a linear, elastic structure. By taking advantage of an element-

by-element (scalar) multiplication operator 8, described in Reference 8, the

forced response equation can be written as

4 = (1 ([,II 8 ([$1T[F])) (2)
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where the operations defined in the equation must follow the nesting of the

parentheses.

In Eq. (2), [41] represents all the mode shapes of the system and thus has

an infinite number of columns. The matrix [*] in Eq. (1) is a column subset

of (4]. The matrix [Q] is the imaginary component of the system admittance

matrix where

3

.j [ 2 1 j 2 (3)i] [1 - a. + [2C 2 L j

and

ij J ni

The columns of [F], which can all be different, are the measured force levels

used to establish the corresponding columns of [tm]. Therefore, each column of

[I]T [F] represents the modal forces present during measurement of the corres-

ponding columns of [m 1 . Note that when [m] is normalized to yield unity on

the diagonal of [0mIT [M]#m], the columns of [F] need to be scaled accordingly.

Premultiplying Eq. (2) by [] T[M] and taking advantage of the mass-weighted

orthogonality exhibited by normal modes, i.e.,

{ Mi {¢}o = 1.0 if i = j

-0.0 if i Ai (5)

we obtain our cross-orthogonality constraints

W T ( m] = [(I a ([]TI(f) (6)

The method of Lagrange Multipliers (Ref. 9) will be used to incorporate,

in the minimization of c, the constraints defined by Eq. (6). We begin by

establishing the Lagrange function L
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n m (n 2
L I I Wij _k -m

i=I k=l "=1

m m i ( n nim n+Q 2 2 jk~g m Q ig .2 j mjQ, (7)
=1i=1 k=l ikk J=l

where X£ are Lagrange multipliers. Next, we take the partial derivative of L

with respect to each of the unknown j.." These derivatives are set equal

to zero to establish a set of n x m equations that the *i. must satisfy

for L to be a minimum. Expressing these equations in matrix notation, we

obtain

2[W]2([0 - i m]) + [M] [ m][,]T - [F] (((2] @ [X) T = [0] (8)

Equations (6) and (8) represent the complete set of equations needed to

determine the unknowns [$] and [I.

We begin our solution by casting Eq. (6) into a more convenient form. By

taking advantage of the element-by-element operator properties (Ref. 8), we

can write Eq. (2) as

4 m] = {*}j{ }.[F][01 (9)

j=l J

where the elements of the diagonal matrix [0]. are the elements of the jth rowJ
of [], i.e.,

Q Qk 0 jk for k

=0 for # k

Next, we transpose Eq. (9) and post-multiply by [M][U] to obtain

m T T T
[mI[M][] =j [0] [F] W{ }.{ }[M][] (10)

j=l



Taking advantage of Eq. (5), we can reduce Eq. (10) to

m T m T (11)
[41 ][M][] = [ i [F] {}{I} ()

j=l J

where

MT =()T [M (12)

and

Il = 1 if i=j

= -0 f i j

Note that unlike Eq. (9), which involved all the normal modes of the

system, Eq. (11) contains only those modes for which there are measurements.

This is consistent with our understanding that the only modes that can be

identified are those for which we have data.

Proceeding, we premultiply Eq. (8) by (1/2)[W]- 2 and solve for [01

[ [0 =[, _ [W-2[M][Om][X]T + l[WI-2[F]([Q 0 [ X,)T  (13)

The jth column of [4] is, therefore,

W, j { m [ _fl - PWI 2(M][,m]RIAT + l(W]-2 FI([n1 e [X)T fj (14)

where

Cil = 1 for i = j (15)

= 0 for i 1 j

Substituting Eqs. (13) and (14) into Eq. (11) yields

m T m T^T
[' 1 [M][] - I [M] [F] [+]{c}(i} = [0 (16)

j=l J =0a
where

[ [,m] _ 1[W]-2[M][0m][]T + 1[W]-2 [FI([] O [X])T (17)
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Equations (16) and (17) can now be used to solve for [Xl, and then Eq. (13)

can be used to obtain the desired modes []

The product (C). I}M in Eq. (16) allows us to solve for [XI one column at

a time. Therefore, we can write Eq. (16) as a set of m equations of the form

(mT1IM - I]F Tly{
([ I[M [)]II )'IC}. (0O} j 1, 2, .. ,m (18)

Substituting Eq. (17) into Eq. (18) yields

{[GI. + [XIl + [HlI 6 [XIM) (c).= 0 j =1, 2, .. ,m (19)

where

CGI =[AXl CC

(-

CHI. = A [BI.

and

[A]. jI[Om]T[M] - [6Ij[F T [WII[M[O.I

[BId J [OmIT[M] [W]-2 F] - [0] .FF1T[Wl-2[F]~

23 j

Because of the definition of {C)., the jth column inside the braces in

Eq. (18) must equal zero. All other columns are arbitrary. Therefore, Eq. (18)

reduces to

[G~j [ ] + [H]j([!] a [11) = [01 (20)

Note that the above equation can be used to obtain a unique solution for the

jth column of [XI only. Therefore, to obtain the complete matrix [XI, Eq. (20)

must be solved m times, i.e., j = 1, 2, ... , m,
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Because of the element-by-element multiplication operator in Eq. (20), each

column of [MI can be obtained independent of the other columns, i.e.,

{}j = -([I] + (H]j[1 ') {G}) (21)

where

{X}. = jth column of [?]

(G} = jth column of [G]

0 k = j j for =k

=0 for Uk

Once we have solved for the m columns of [XJ, we transpose the resulting

matrix and substitute it into Eq. (13) to obtain the identified modes. If the

modal contamination is due only to the modes represented in the measured set,

orthogonal modes should result. However, if part of the modal contamination

is due to modes not in the measured set, then the new, identified modes will

not be orthogonal. Nonetheless, they should be an improved representation of

the true, normal modes of the system. In this case, which will undoubtedly be

the most common, any remaining deviation from orthogonality can be eliminated

using the procedure of Reference 3, i.e.,

1/2= [ [T (22)

where

[*] = orthogonal mode shapes

[e] = eigenvectors of [] T[MI(M]

[W] = diagonal matrix of eigenvalues corresponding to [0]

14



III. DEMONSTRATION OF PROCEDURE

The mode shape identification procedure will be demonstrated by numerical

simulation of a test problem. The procedure will be used to identify improved

mode shapes from contaminated modes. The simulated test modes will be obtained

from an analytical test structure subjected to multi-shaker sine dwell excita-

tion at its natural frequencies.

A schematic representation of the analytical test structure is presented

in Figure 1. The springs represent load paths and the squares represent

degrees of freedom. The diagonal terms of the diagonal mass matrix and the

stiffness values of the load paths are also shown in the figure. The natural

frequencies and critical damping ratios for each mode are presented in Table 1.

"Measured" modes were obtained from the closed form solution for a multi-

degree of freedom system subjected to harmonic excitation. For the test

cases, force levels and application points were selected to yield measured

modes that were contaminated by modes close in frequency and by modes outside

the frequency range of interest. These shaker locations and force levels are

presented in Table 2. Note that the excitation levels and locations for each

measured mode are distinct. Therefore, the modal forces present when each

mode is measured are different. The result of the orthogonality check of the

measured modes is presented in Table 3.

To demonstrate the procedure, new modes were identified from the first

two, the first three, and the first five measured modes. The identification

was also performed using seven measured modes. Table 4 compares the two-mode

set measured mode, mass-weighted orthogonality to that of the identified

modes. As can be observed, the identified modes exhibit considerably better

mass-weighted orthogonality than the measured set. In Tables 5 and 6, the

measured mode, mass-weighted orthogonalities for the three- and five-mode

sets, respectively, are compared to that of the identified modes. As can be

ascertained, in each case the identified modes exhibit improved, mass-weighted

orthogonality. The seven-mode case yielded nearly exact modes.

15
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Table 1. Analytical Test Structure Natural Frequencies
and Modal Critical Damping Ratios

Mode 1 2 3 4 5 6 7 8

fn(Hz) 4.92 5.03 5.26 5.52 5.56 6.16 6.25 6.81

0.01 0.01 0.015 0.015 0.02 0.01 0.02 0.02

Table 2. Shaker Locations and Force Levels

Shaker Location
(degree of freedom) Mode Shape

1 2 3 4 5 6 7 8

1 4.5 -1.0 - 0.45 0.45

2

3 1.0 -10.0

4 1.0 32.0 7.0 28.0 75.0

5 1.0

6 -4.5 36.0 25.0 -4.0 -3.0

7 15.0 -15.0

8 1.0

17



Table 3. Mass Weighted Orthogonality of "Measured" Modes

Test Mode
Test
Mode 1 2 3 4 5 6 7 8

1 1.00 0.27 0.02 0.02 0.01 0.00 0.01 0.00

2 1.00 -0.11 -0.02 0.01 0.00 0.00 -0.12

3 1.00 -0.03 -0.09 -0.05 0.04 -0.05

4 1.00 0.55 0.00 0.00 -0.07

5 SYM. 1.00 0.02 -0.01 -0.08

6 1.00 0.23 0.03

7 1.00 0.10

8 1.00

Table 4. Mass Weighted Orthogonality of First Two Modes

"Measured" Modes Identified Modes

Modes 1 2 1 2

1 1.00 0.27 1.00 0.03

2 0.27 1.00 0.03 1.00

18



Table 5. Mass Weighted Orthogonality of First Three Modes

"Measured" Modes Identified Modes

Modes 1 2 3 1 2 3

1 1.00 0.27 0.02 1.00 0.04 0.00

2 0.27 1.00 -0.11 0.04 1.00 -0.04

3 0.02 -0.11 1.00 0.00 -0.04 1.00

Table 6. Mass Weighted Orthogonality of First Five Modes

"Measured" Modes Identified Modes

Modes 1 2 3 4 5 1 2 3 4 5

1 1.00 0.27 0.02 0.02 0.01 1.00 0.03 0.00 0.00 0.00

2 1.00 -0.11 -0.02 0.01 1.00 -0.03 0.00 0.01

3 1.00 -0.03 -0.09 1.00 0.05 -0.03

4 SYM 1.00 0.55 1.00 0.31

5 1.00 1.00

19



The small, remaining coupling terms are due to imperfect identification.

Unless all modes causing contamination are included in the identification,

exact correction cannot be achieved. In practice, modes outside the fre-

quency range of interest will not be measured. However, these modes will, to

some degree, contaminate the measured set. Therefore, perfect identification

should not be expected. Any remaining deviation from ideal mass-weighted

orthogonality can then be corrected by a procedure such as in Reference 3.

In Table 7, the measured and identified mode shapes are compared to the

normal modes of the test structure. As the table indicates, the identified

modes are in closer agreement to the exact, normal modes than the original

measured modes. As expected, the identification becomes more accurate as the

number of modes increases. It is encouraging to note that, generally, the

degrees of freedom in which the largest changes occurred were those that had

the largest errors. More importantly, nearly correct values in the measured

modes were altered very little.

For the example problems presented herein, the weighting matrix [W] was
1/2set equal to [M]I . As demonstrated in Reference 4, this weighting is

consistent with the assumption of making minimum change to the measured data

that was made in Reference 3. The identifications presented herein were also

performed with [W] = [I], i.e., no weighting. However, although dramatic

improvements were also obtained, using [W] = [MI I/2 yielded superior results.

20



Table 7. Comparison of Mode Shapes

Identified Modes
"Measured" . Normal
Modes 2 3 5 7 Modes

1.03 1.01 1.09 1.08 0.96 0.96
0.36 0.36 0.35 0.35 0.35 0.35
0.32 0.34 0.34 0.33 0.32 0.32

{01 0.44 0.42 0.42 0.42 0.42 0.42
0.40 0.38 0.38 0.38 0.39 0.39
0.42 0.42 0.42 0.41 0.41 0.41
0.33 0.31 0.31 0.33 0.32 0.32
7.92 8.83 8.83 9.06 9.16 9.18

0.44 0.23 -0.56 -0.41 0.45 0.47
0.17 0.10 0.12 0.12 0.15 0.16
0.39 0.24 0.24 0.24 0.24 0.25

{}2 0.20 0.20 0.21 0.21 0.15 0.15
0.36 0.28 0.27 0.28 0.25 0.25
0.02 -0.07 -0.06 -0.06 -0.03 -0.03
0.32 0.26 0.24 0.23 0.23 0.24

-16.56 -18.57 -18.65 -18.65 -19.02 -19.63

4.53 1.67 1.80 1.81 1.84
0.57 0.58 0.49 0.49 0.50

-0.47 -0.46 -0.43 -0.43 -0.43
(}3 0.30 0.30 0.31 0.30 0.30

-0.27 -0.27 -0.27 -0.27 -0.28
0.29 0.30 0.39 0.39 0.40

-0.40 -0.40 -0.44 -0.43 -0.44
-3.79 -3.66 -4.23 -4.26 -4.33

-2.79 -1.18 -2.08 -2.19
-0.54 -0.48 -0.41 -0.44
-0.40 -0.45 -0.52 -0.55

{(}4 0.06 -0.06 0.02 0.02
-0.01 0.04 -0.00 -0.00
0.64 0.63 0.45 0.47
0.33 0.35 0.49 0.52

-3.20 -3.17 -2.22 -2.34

-3.79 -3.79 -2.63 -2.74
-0.57 -0.57 -0.49 -0.51
0.26 0.41 0.43 0.45

{}5 0.05 0.10 0.02 0.02
-0.02 -0.04 -0.00 -0.00
0.67 0.52 0.52 0.54

-0.35 -0.38 -0.46 -0.47
-3.15 -2.30 -2.35 -2.44

*Number of modes used in identification.
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IV. SUMMARY

A mode shape identification procedure to improve the isolation of measured

modes has been introduced. The procedure was derived by minimizing the differ-

ence between measured and identified modes. The minimization was performed

subject to cross-orthogonality constraints, which allows the procedure to take

into account the degree of mode isolation present during measurement. A sig-

nificant feature of the procedure is that each measured mode can be established

using different excitation locations and force levels. This allows the proce-

dure to improve the isolation of modes measured with multi-shaker, sine dwell

test procedures. Another attractive feature is that changes made to the test

data are minimum. This report presents the theoretical formulation and

demonstrates the procedure by an example problem.

23



24



REFERENCES

1. Gravitz, S. I., "An Analytical Procedure for Orthogonalization of
Experimentally Measured Modes," J. Aerospace Sci. 25, November 1958, pp.
721-722.

2. McGrew, J., "Orthogonalization of Measured Modes and Calculation of
Influence Coefficients," AIAA J. 7, April 1969, pp. 774-776.

3. Targoff, W. P., "Orthogonality Check and Correction of Measured Modes,"

AIAA J. 14, February 1976, pp. 164-167.

4. Baruch, M. and Bar Itzhack, I. Y., "Optimal Weighted Orthogonalization of

Measured Modes," AIAA J. 16, April 1978, pp. 346-351.

5. Baruch, M., "Selective Optimal Orthogonalization of Measured Modes,"

AIAA J. 17, January 1979, pp. 120-121.

6. Baruch, M., "Proportional Optimal Orthogonalization of Measured Modes,"
AIAA J. 18, pp. 859-861.

7. Anderson, J. E., "Another Look at Sine-Dwell Mode Testing," AIAA J.
Guidance, Control, and Dynamics 5, July-August 1982, pp. 358-365.

8. Kabe, A. M., "Stiffness Matrix Adjustment Using Mode Data," AIAA J. 23,
September 1985, pp. 1431-1436.

9. Hadley, G., Nonlinear and Dynamic Programming, Addison-Wesley Publishing

Co., Reading, MA (1964).

25



26


