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ABSTRACT

The estimation of a variance ratio & = Tz/Tl iy”studied under
restrictions € > 50 or &€ < eO' We assume first that we observe
2 . . , . .
Ui g TiXg independent. -A Bayesian viewpoint is- taken. We then
assume additional information on T} is available in the form of

. . ’ 2 .. . .
an independent observation from a noncentral x~ distribution. A
natural application arises when the Q& are sums of squares in a
variance components model. .~

— L — T e , o
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I 1. “ENTRODUCTION
<> In this paper we consider the estimation of a variance ratio
over a truncated parameter space. Suppose that Ui v Tixi ,
i
i =1,2, independent, n, > 5, n, > 3. Llet £ = 12/11. Under the
scale invariant quadratic loss function
L(2,a) = 272(: - a)? (1.1)
the estimator n -4 U
-2 =2 (1.2
0 n, + 2 U1 T

1s best invariant in the class based upon U°/U1' In fact, using
the approach of Brown and Fox (1974), it is straightforward to

establish that 50 is admissible under (1.1). (See Gelfand and
Dey (1986) for details.) Suppose we restrict %, % < %0 or
T > 50. Such restrictions arise naturally when, for example, the

Ui are sums of squares in a variance components model. Then 60




is no longer admissible. A usual approach to dominating 60 is to
restrict 60 in the same fashion that 6 is restricted. Such esti-
mators are no longar smooth, hence inadmissible. From a Bayesian
viewpoint, such an approach is essentially taking the posterior
mode resulting from a prior over the restricted space. An alter-
native is to take the posterior mean. Such estimators will be
admissible, but exhibit strange behavior. In Section 2 we look
into all of these issues drawing upon ideas of Hill (1965) and
recent work of Loh (1986).

A broader setting presumes that we have additional informa-

tion about the 71, in the form of V. ~ T.X2 or V.ﬂr(7.+¢.)x2 ,
1 1 A 1 1 1 "m,

i=1,2, Vi independent of Ui and of each :th;r. Now 60 is no '
longer admissible for 6 under (1.1). An example is that of Xi'

" N(ui,ri), 1i=1,2, j= 1,...,ni, with Ui_f E(Xij-ii)z. Then
(1.2) is not admissible for 6. 1In fact, (Xl,Xz,Ul,Uz) is a
version of the complete, sufficient statistic and the Xi (hence
ii) contain information about T (Gelfand and Dey (1986) dis-
cuss this example at ‘length.) 1In this broader setting, we again
seek to estimate a restricted 6. This problem 1is the issue of
Section 3, drawing uponrideas dating to Stein (1964), Brown (1968)
and Klotz, Milton and Zacks (1969).

The seminal paper by Katz (1961) on admissibility for esti-
mators of restricted parameters is inapplicable here since the
distribution of W = U2/U1 does not belong to the exponential
family.

2. THE BAYESIAN APPROACH

In the spirit of variance components models, let 1, = an

1 1
g3 To = cny + dn, where n, > 0, a,b,c,d > 0 and r = ad - bc

-1 -1
) 2 6 < 62 wvhere 91 min(a "¢, b "d),

92 = max(a-lc, b-ld). If aorb=0 (c or d =0), we obtain a

+ bT]

# 0. We necessarily have 6

one-sided restriction below (above).

Example: 1In the balanced one-way ANOVA, i.e., Yij =y + a, + Eij’
i=1,...,1, 3=1,...,], with a, ~ N(0,02), €., ~ N(0,0%) all
i o ij e

independent, we have Ul = ZE(Yij-Yi)z, U2 = JZ(Yi -Y )2, n,
5 . ..
= 1J-1), 0, = I-l, n) =0, n, = oﬁ, a=1,b=0,c=1,d=1J
and € > 1.
2
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We now develop the relevant distribution theory. We assume

a prior over n., n, of the form n(n,)en(n,) with ntl having a
1 1 2 i &

2
gamma distribution, i.e.,
-(ki+1) -Ai/ni
m(n)e ng e , 1=1,2. (2.1)

Hill (1965, p. 811) argues for the plausibility of the independence

assumption in the context of variance components. The resulting

prior for 1

1» Tpon the domain €,1, < T, S 6,1, is

2 11 - 22
-(k, +k, +2) -(k,+1) -(k.+1)

1 72 1 2
ﬂ(Tl,Tz) T (dr1 brz) (aT2 crl)

e b Al(arz—ctl)+kz(d11-b12) } (2.2)
PATT (drl—brz)(aTz-CTI) :

The noninformative prior on n. arises as the limiting case
ki =0, Ai = 0 in (2.1) and induces [(dtl-brz)-(aTZ-CTl)]tl as the
prior for T T This differs from the noninformative prior of
Box and Tiao (1973, p. 253), (11-12)-1 which cannot arise from
- independent ng unless the transformation from ng to T is trivial
and has been criticized in the variance components case for its
dependence in the n space upon the sample size J.

From (2.2)

k,.-1 k.~1 k_+k_.-2
1 2 1 72
n(6) = (ab-c) (d-bé) r

€. <6 <6 (2.3)

k,+k, * 1

1% 2

(Al(aﬁ-c) + Az(d-be))

i.e., € follows a generalized Beta distribution. Two cases of

(2.3) which we study in greater detail are:
kl-l
(6-€,)

k2°1

()=

, 0270, , (2.4)
(1+x(e-eo))
i.e., A(G—GO) follows a nonstandardized F distribution or limit

thereof and

1 2

7(6) = 6 (6,-6) » 02828, (2.5)

i.e., 6/60 follows a Beta distribution or limit thereof.
Under (2.1) the posterior distribution of 6 given the data
is
3

-




E(elul,uz)

n.+n n,+n
1 2 .1 -15—3 + -1 K k=2
(d-b¢) (ac-¢c) r

n n,+n

2 (U18+U2)(d-be)(ae-c) 1 2

2
2

+k, +k

67 1[

+A1(ae—c)+x2(d-be)]

(2.6)
Since (2.6) is analytically intractable, we consider instead
the simpler posterior of 6|W = Ul/UZ' The distribution of wle is

a nonstandardized F, i.e.,

n n
nty ?} 3} -1
T( 5 ) ] w
£(ul€) = — - S RaL] (2.7)

_l _Z 2
I‘(2 ) T(2 Y (1+6w)
whence under (2.1)

k.-1 k,-1 n,/2 k_+k_-2
(af-c) 1 (d-be) 2 9 1 r 172

£(6|w) = = AT - (2.8)
Dy @e-c)n, (@-be)] 1 2 (een) ™7
In the special case (2.4) with A = 651; we obtain
!
_ (e-eo)kl_leir “at)
£(e|w) « T , 628, (2.9)
(1+6w) 2
In the special case (2.5), we obtain
zl +k.-1 k. -1
62 ! (6,-6) 2
£(e|w) « el 0 Ses<eg . (2.10)
(1+6w) 2
The case k1 =1, k2 =0 in (2.9) or kl =0, k2 =1 in (2.10)

produces the posterior associated with the Box-Tiao prior.

Turning to estimation of 6, we first consider the posterior
mode in (2.9) and (2.10). 1If k, < 1 in (2.9) or k, < 1 in (2.10),
the mode occurs at eo. 1f k, > 1 in (2.9) or k, > 1 in (2.10), the
the posterior need not be unimodal. However, if in (2.9), k, =1
and k, < (n1—2)/2, we obtain a unique mode at

4




_ -1 Py~ 2(k, 1)
d = max(6_,W —_—), (2.11)
k2,80 0 n2+2(k2+1)
If in (2.10), k2 = 1 and k1 < (n2+2)/2, we obtain a unique mode at
-1 M*2k -
d = min(6 _,W —_—(—_——) (2.12)
k; .8 0 n, 2 k1 1)
Note that k = 1 in (2.4), k, =1 in (2.5) asserts prior informa-
tion concentrated near 90.

As remarked earlier (2.11) and (2.12) are not admissible.

_1 .
< (n1+n2 2) (n2+2), max(eo,éo), 60 as in

is best invariant in

In particular for k2

(1.2) dominates (2.11) using the fact that S
the unrestricted problem and Lemma 1 of the appendix. However,
min(eo,éo) does not dominate (2.12) by using the same argument as
in Loh (1986, p. 700).

Consider now formal Bayes rules extending the loss (1.1) to

2
L(€,a) = 6°(6~a) (2.13)
where ¢ is arbitrary.
We recall that if 0 < a < b
6 a-1
0 L —as=u -’%g—b'a—) 1. (a,b-a) (2.14)
0 (1+6w) 0
vhere In (a,b-a) is the incomplete Beta function evaluated at
0
= e oyl
o = (1+u0w) NS

Consider first the case € > 6 Under (2.9) with loss

0
= - 3 =( -
(2.13), 1let mj n1/2 +c+l (k1+k2)+3 and lj n1+néV2 mj' 1f k1
is a positive integer and m, > 0 using (2.14), we can obtain the
unique Bayes rule as
3
kl’k2’c’60
k-1 kl-l _. ~m, ,
£ (% eglw Irar(e, -1 (2:-1,m41)
-1 i= 0 j 3 ng 33
_ 1 3=0 0
¥R
1 kl-l _: -m.
1 CL et (e ar(e)r | (e,m)
j=0 ) J no J J
(2.15)

Similarly, if 0 < g < 60, under (2.10) with loss (2.13), let
m. =n,/2 +c+k,+j and 2 =(n1+n2)/2 -mj. If k, is a positive

5




integer using (2.14), we can obtain the unique Bayes rule as

£
kyskysc, 8

. ™m.
Y6 9w Ir(m.+1)T(L.-1)I_ (m.+1,2.-1)
0 3 j Ny J j

0

k,-1 _. -m.
)eOJw IT(e)T(L)T (m.,2.)
j ML PO R
(2.16)

Remark 1: Expression (2.15) depends upon ¢ and k2 through

¢ -k, =Y, 50 we can denote it by & ; expression (2.16)

k 6

1°Y2°70

through ¢ + k, = Y, S0 we can denote it by

depends upon ¢ and k 1

& .
—\likz’eo

1

Remark 2: Computation of (2.15) and (2.16) requires calculation of
the incomplete Beta functions only for, say, the denominator by
using the well~known relationship (see, e.g., Abramovitz and

Stegun, 1965)
] _ I{c+d) ¢,y a-1
Ix(cil, d-1) = Ix(c,d) TCer DT (a5 x (1-x) ~.

Remark 3: Using Lemma 2 of the appendix, we may show that

k-1 k,-1 -1
T (7.1
1 3 6 J=0 ) ) .> £
im =
R G B
20 3 j
7 k-1 ,
T (7. )8 (m.+1)
3=0 J 0] .
lim & = £ < .
wo %% ORhy g o 0
T (7.)e (m),)
j=0 30

In this sense the behavior of E, § differs strikingly from
that of d, d as W approaches the extremes of its domain. The latter

have positive probability of equaling 6 Loh's Theorem 3.1 shows

0
a special case of this.

Remark 4: Parglleling (2.11) and (2.12) when k, = 1, we obtain

1




n n,
n. +2y Lo Gty t L5 -y
3 - ,'1( 1 2 ). 0
l)Yzyeo n2’2(.‘2*1) 1 (n_l . :\2 _ )
1-ny 2 Yor 7 T Y2
and when k2 = 1 in (2.16) we obtain
n n
1 2
n_+2y In (?T ﬂ1*1' 2 Y1 D
] S Wb Rl 0 :
-,,1,¢ n,-2(y, +1) n n :
1’70 274N Do, Py
ng 2 Y17 T M

The estimators (2.15) and (2.16) are admissible under (1.1)
within the class of rules based upon W. However, admissibility in
the larger class based upon Ul’ U2 (equivalently W, Ul) is a more
difficult question. The approach of Brown and Fox (1974) mentioned

after (1.2) is not applicable to a restricted parameter space.

3. ADDITIONAL. INFORMATION ABOUT i

. . . . 2

Recalling the notation of Section 1, suppose Vi T
- i’

We have the following results whose proof is essentially contained

in Stein (1964) or Strawderman (1974).

Result 1: In estimating :2 under squared error loss,

. -1 -1 ) -1
{ ! L+ 2 AN 7 i
mlnk(n2+2) L2, (m2+r2+ )_1 (L2+\2), dominates (n2+2) U

Result 2: In estimating 11

r B 1 _ N . ’1 . _ ,’1
maxt(n1 4) U (m1+n1 A)(L1+\]) } dominates (n1 4) v,

9
under squared error loss,




If instead Vi " (Ii + ¢i) xi , Results 1 and 2 still hold.

That is, we may think of V., arisiﬁg from V.IZ. =2z.n 1.x2
i i'71 i*m

i a2

vwhere Z, (¢i/21i)xi.' Since Results 1 and 2 hold regard;es: of
Zi’ they hold uncondi%ionally. Klotz, Milton and Zacks (1969,
p. 1392) allude to this idea in a special case.

Taking these ideas further to the estimation of an unrestrict-
ed variance ratio using essentially the proof of Theorem 3.1 in
Gelfand and Dey (1986), we can show
Result 3: In estimating & under squared error loss,

(nl-é) (U2+V2)

L= mln(éo, T iy ) < 60 dominates 60
1 2 2
_ U2 m1+n -4
L= max(éo, n2+2. U1+V1 ) > 60 dominates 60 .

By Lemma 1 of the appendix, we have immediately that with

squared error loss under the restriction 6 > €

o’
max(Z,¢.) dominates max(éo,eo) (3.1)
and under the restriction 0 < & < 60,
min(z,eo) dominates min(éo,eo). (3.2)

In Gelfand and Dey other estimators (e.g., using ideas of

Brown, 1968) which dominate 60 in the unrestricted problem are

given. These estimators may be used to obtain results similar to

(3.1) and (3.2). We omit the details.

APPENDIX
Lemma 1: Under squared error loss
(a) 1f T dominates U on 60 <6 and T < U, then max(T,eo)
dominates max(U,6.) on 60 < 6.
(b) 1f T dominates U on 0 < 6 < and T > U, then min(T,eo)

®
dominates min(U,Bo) on 0 <6< eo.
Proof: The proof is essentially that of a lemma in Klotz, Milton
and Zacks (1969, p. 1394),

Lemma 2: In the notation of (2.14),

T'(b) a
T(a+1)T(b-a) 20 (a.1)

limw 2 1 (a,b-a) =
w0 "o




or equivalently

T(b) g8
r(a+1)r(b-a) 0

lim w? I (a,b-a) =
-1
W 0

(A.2)

Proof: Since the limit as w + O of the left-hand side in (2.14)

is 68/3, we obtain (A.1). But (A.2) follows by replacing w with
w ! and 6 with 67 in (A.1).

0 0
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