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ABSTRACT

This study examines the binary source correlation technique for deter-

mining vertical profiles of the refractive index structure parameter, Cn 2 .

Theoretical intensity scintillation covariance functions and power spectra

for atmospheric layers of depth Ah at a mean altitude of h are derived.

These functions are related to the photoelectron counting statistics and the

spatial covariance of photoelectron counts for binary point sources. A

linear detector array in the exit pupil of an optical system is examined, and

the effects of the detection process uncertainty are explored. A lower bound

for the expected error of an experimental determination of the spatioangu-

lar covariance of counts is derived. This error is then minimized via a least

squares analysis using the redundant information available in pairwise

multiple correlations of a signal from the detector elements of a ten element

linear array. The refractive index structure parameter profile is then

derived and found to be the undetermined coefficients of the spatial covari-

ance weighting functions in the least squares analysis.
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I. INTRODUCTION

The optical remote sensing of refractivity fluctuations induced by

turbulent mixing is of the utmost importance to studies of coherent

electromagnetic (EM) radiation propagation in the atmosphere. A quanti-

tative characterization of atmospherically induced refractivity fluctuations

as a function of altitude is required in the design and system analysis of

adaptive optical systems.

Adaptive optical systems are systems that attempt to correct a perturbed

wavefront via mechanical or electrooptic methods. These methods include

systems with mechanically deformable optical surfaces and phase

conjugation techniques using nonlinear optical materials. However, the

implementation of these techniques to correct for atmospheric degradation

of optical signal quality depends on a thorough probe of atmospheric optical

effects.

Typically, three quantities are used to characterize the atmospheric

propagation. These are the isoplanatic angle (0o), the spatial coherence

length of the atmosphere (ro) and vertical profiles of the refractive index

structure parameter Cn 2 . The purpose of this thesis is to study theoreti-

cally a single technique, binary source correlation, with the intent of find-

ing a robust optical technique to profile the refractive index structure

parameter.

Several different approaches to the profiling problem have been

employed with varying degrees of success. These include both active and

passive means. Active probes of atmospheric structure include acoustic

1
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sounders (up to approximately 1 kin) [Refs. 1,2] and pulsed Doppler radar

(3-20 kin) [Refs: 3,4]. Also, direct profile measurements may be made using

microthermal probes mounted on a balloon [Ref. 5]. Passive means of find-

ing the propagation path variations of the structure parameter include

direct inversion of the amplitude scintillation covariance function [Refs.

6,7], spatially filtered apertures [Refs. 8,9] and the crossed beam or binary

source technique.

The crossed beam method was originally proposed by Fisher and

Krause [Ref. 10] and also by Wang, Clifford and Ochs [Ref. 11]. Essentially,

the crossed beam technique proposed that two optical sources and two

receivers be arranged such that the beams from the sources cross at a point

in space. The cross correlation of the receiver outputs allow the determina-

tion of the turbulence characteristics at the beam crossing point. The

crossed beam technique, hereafter known as the binary source method, was

implemented experimentally by several French teams [Refs. 12-15] using a

binary star for the source. This method had advantages not present in the

aforementioned passive techniques.

The greatest advantages of the binary source technique are high spatial

resolution and numerical stability of the algorithm. This is in sharp

contrast with techniques involving the inversion of an integrated profile.

The inversion of the scintillation covariance is often unstable due to noise

[Ref. 16]; and, the spatial filtering technique has limited spatial resolution

due to the width of the altitude weighting functions [Refs. 8,9]. Addition-

ally, an artificial source will be available on the relay mirror experiment

satellite and it is hoped that these techniques will be directly applicable to

profile determinations made using time delayed correlations from this

source. [Ref. 17]

2
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II. THEORETICAL BACKGROUND

To fully appreciate the binary source method requires an understand-

ing of the theory of EM propagation in turbulent media. The seminal work

in this field was carried out in the Soviet Union in the 1940s and 1950s and

this work is summarized in Tatarski [Ref. 18]. Modem treatments of the

propagation problem in terms of the formalism of scattering theory have

yielded a better understanding of the propagation problem; however, this

formalism has proven impotent in furthering the predictive power of the

classical theory [Ref. 19].

The classical theory as developed by Tatarski and also summarized by

Clifford [Ref. 19], relies on a statistical description of the properties of the

turbulent medium. A summary of these properties follows.

A. TURBULENCE IN GENERAL

Turbulence is a property of fluid flows and these flows are governed by

the Navier-Stokes equations. The flow is usually characterized by a dimen-

sionless parameter called the Reynolds number, Re, with

Re = vL/g. (2.1)

The quantities v,L and g are the characteristic velocity, length scale and

kinematic viscosity respectively. For small values of Re viscous dissipation

dominates and the flow is laminar. As Re grows in magnitude, then a

critical value is reached (approximately 1000 in the atmosphere) beyond

which fluctuations in the velocity field are no longer damped. For values of

Re greater than Re critical the flow rapidly becomes chaotic.

3



Following Lumely [Ref. 20], there are several distinguishing character-

istics of turbulent flow. These are:

- irregularity

- large Reynolds numbers

- diffusivity

- dissipation

- three dimensional vorticity fluctuations.

The characteristics listed above are essential elements of any turbulent

flow. For example, the diffusivity of velocity fluctuations in a turbulent flow

and the rapid mixing inherent in this process causes an increase in the

rates of momentum and heat transfer.

Turbulence is also characterized by three dimensional fluctuations of

the vorticity; and, no flow of less than three dimensions is truly considered

turbulent. The vorticity fluctuations take place at multiple spatial scales

with each scale characterized by a different value of Re.

The energy in a turbulent flow is ultimately dissipated by viscous

friction. This dissipation converts the macroscopic kinematic energy of the

flow to thermal energy; and, this occurs at the smallest or inner scale of

turbulence. Fluctuations with a scale dimension less than the inner scale

(1-10 mm in the atmosphere) are damped by viscous dissipation.

The largest scale in a turbulent flow is determined by the boundary

conditions. This largest or outer scale of turbulent motion is where energy

is pumped into the flow. The energy then cascades from the largest to the

smallest scale sizes adiabatically and the energy is dissipated at the inner

scale. The range of scales between 10 and Lo, the inner and outer scales, is

called the inertial subrange.

4



The inertial subrange is so called because the time scale associated

with the inertial transfer of energy from larger to smaller scales is much

shorter than the time scale characterizing dissipation; therefore, the

energy transfer is essentially adiabatic. However, the Reynolds number is

dependent on the scale and decreases as the scale decreases. When a scale

is reached such that Re is less than the critical value then laminar motion

results at that scale size and smaller. Using this fact and the definition of

the Reynolds number, the inner and outer scales may be related (within a

constant) by dimensional analysis [Ref. 18]. The resulting relationship is

(1o/Lo)- 4 /3 = Re (2.2)

with Re the Reynolds number of the flow as a whole.

The existence of a well defined inertial subrange provides a handle by

which the statistical analysis of turbulence is carried out. This approach is

pursued further in the following sections.

B. STATISTICAL DESCRIPTION OF TURBULENCE

The Navier-Stokes equations are ill-posed since there are more vari-

ables than equations; and, unsolvable unless certain restrictive assump-

tions are made. Unfortunately, these same restrictions exclude the

turbulent regime of solutions and a statistical approach is required to

analyze the flow.

The full statistics would consist of a knowledge of the multidimensional

probability distribution for the velocity field. However, the statistical analy-

sis is complicated by the fact that turbulence is a nonstationary process.

Nonstationarity implies that the mean and higher order moments of the

velocity field are also stochastic functions of time. Currently, the only well
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founded statistical analysis of the velocity field statistics is due to

Kolmogorov and is valid only for scales in the inertial subrange of fully

developed turbulence. (Ref. 18]

Though the ordinary moments of the velocity field distribution are non-

stationary, a statistical analysis based on a second order quantity called the

structure tensor is carried out by Tatarski [Ref. 18]. The structure tensor is

defined in general by:

Dij(r) = ([vi(r+r)-vi(ri)] [vj(ri+r)-vj(ri)]) , (2.3)

with the angled brackets representing an ensemble average. This quantity

is approximately stationary for scale sizes in the inertial subrange. The

structure tensor may be further simplified by three assumptions and these

are:

- local homogeneity

- local isotropy

- incompressible turbulence.

Homogeneity implies that the structure tensor depends only on the dis-

placement r and not a particular location in space. Isotropy implies rota-

tional invariance or radial symmetry in that only the magnitude of r and

not the direction is important. The assumption of local homogeneity and

isotropy is a weaker assumption that reflects the fact that the structure

tensor depends only on scales very close to r. With the third assumption of

incompressibility, that is the divergence of v equals zero [Ref. 21], homo-

geneity and isotropy yield the folloving expression for the structure

function:

Drr(r) = ([vr(rl+r)-vr(rl)] 2) , (2.4)

6



where Drr is the projection of the structure tensor in the direction parallel

to the displacement r. This function describes the statistics of homo-

geneous, isotropic and incompressible turbulence. [Ref. 19]

For values of r in the inertial subrange of scales dimensional analysis

of the structure function yields:

Drr = Cv2 r 2 /3  (2.5)

with Cv2 the velocity structure parameter [Ref. 18]. The structure param-

eter is a measure of the intensity of the turbulence and it is directly related

to the refractive index structure constant mentioned in the introduction.

1. Atmosuheric Refractivity Fluctuations

To relate the velocity structure function to extensive variables such

as the temperature or refractivity then conservative passive additives must

be considered [Ref. 18]. Conservative passive additives are those quantities

that have no effect on the statistical analysis of the turbulent dynamics;

however, the conservative passive additive is transported and mixed by the

velocity fluctuations. An example of a conservative passive additive is

potential temperature 0, given by:

0 = T(po/p).2 86  (2.6)

with T the absolute temperature in Kelvin, p the atmospheric pressure and

Po the pressure at sea level. This quantity is independent of altitude.

Following Clifford [Ref. 19], the potential temperature fluctuation is

related to the refractive index fluctuation by:

An = -79x10-- 6 (p/02 )AO (2.7)

7
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with p the atmospheric pressure in millibars. Since 0 is a conservative

passive additive then so is the refractivity n. And as shown by Tatarski

[Ref. 18], conservative passive additive structure functions obey the same

power law as the velocity statistics except near the viscous convective

subrange which is near the inner scale. [Ref. 20] Therefore, the structure

function for refractive index fluctuations is given by:

Dn(r) = Cn2 r2/3 . (2.8)

The refractive index structure function is used to find the power spectrum

of refractive index fluctuations and since Clifford's derivation [Ref. 19] is

clear it is summarized here.

2. Power Svectrum of Refractivity Fluctuations

The refractive index at a point r can be decomposed into a mean and

a fluctuating part

n(r) = (n(r)) + n1(T). (2.9)

If ni is an analytic function then the spatial frequency spectrum can easily

be determined by finding the spatial Fourier transform of nl(r). However,

since ni is a stochastic function then the spatial frequency decomposition is

carried out using the three dimensional Fourier-Stieltjes integral

n - = f exp(ia9•r)dN(K) (2.10)

Forming the covariance of the refractive index fluctuations,

B(r+rl,r 1) = (nl(r+rl)n 1 (r) ) , (2.11)

the power spectrum is found by using the Wiener-Khinchin theorem.
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The Wiener-Khinchin theorem asserts that the power spectrum

and covariance form a Fourier transform pair. Using this and by invoking

homogeneity and isotropy, Clifford [Ref. 19] expresses the power spectrum

of refractive index fluctuations as:

f(K) drrBn(r)sin(Kr) (2.12)

This expression is simplified further by use of the following relation

between the structure function and the covariance:

B2(0) - Bn(r ) -1 Dn(r) (2.13)

Using this relationship and in the limit that the outer scale and inner scale

go to infinity and zero respectively the spatial power spectrum becomes:

n(K) = .033Cn2K-1 1 / 3  (2.14)

Actually, this expression is valid only for spatial wave numbers such that

2nLo- 1 << K << 2 nlI - 1 with the limiting process used to derive it being only

an analytical convenience.

With these expressions in hand the first order theory of optical

propagation in the atmosphere is addressed in the next section.

C. FIRST ORDER THEORY OF EM PROPAGATION IN THE

ATMOSPHERE

The first order theory of the propagation of an EM wave in the atmo-

sphere is essentially equivalent to first order scattering theory in which the

Born approximation allows an approximate solution to the wave equation.

9



This approach assumes single scattering of a monochromatic wave

incident on the atmosphere and it is valid for relatively weak turbulence.

For strong turbulence multiple scattering effects cause many of the statisti-

cal quantities of interest to saturate to a constant value; however, except for

long propagation paths through strong turbulence (1-2 km in the late after-

noon) the first order theory proves adequate for many purposes.

The first order theory assumes that the atmosphere has unit magnetic

permeability and zero conductivity and that the incident EM wave has a

sinusoidal time dependence. With these assumptions both Tatarski and

Clifford form the scalar wave equation for the propagation of a component

of the electric field. Clifford [Ref. 19] proceeds to solve this equation by the

method of smooth and small perturbations and this solution is summarized

here.

1. Solution of the Wave Equation

Since the electric field is proportional to the magnetic field, and

assuming that depolarization effects are negligible, then Clifford shows

that it is necessary to analyze only one component of the full vector wave

equation. The equation to be solved is:

V2E + k2n2E = 0 (2.15)

with E one of the components of the electric field, k the wave number of the

radiation and n is the position dependent atmospheric refractive index.

The solution to this equation is found by expanding E in a series of

decreasing terms:

E =Eo +El+E 2 +... (2.16)

10
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with the zero order term corresponding to the unperturbed field, the first

order term the single scattering term and higher order terms correspond-

ing to multiple scattering. Retaining the terms to first order and using

equation 2.9 then equation 2.15 is resolved into the two equations:

V2Eo + k2Eo = 0 (2.17)

V2E 1 + k2E 1 + 2k2n 1 Eo = 0 (2.18)

This separation is accomplished by substituting E = Eo+E 1 and equating

terms of the same order to zero while neglecting terms of order n12 or

higher. At this point it should be noted that each term Em in the perturba-

tive expansion is assumed to be of order nlm. Following Clifford and

Tatarski (Ref. 18-19] the unperturbed field is assumed to be a unit ampli-

tude plane wave propagating in the z direction and Eo becomes:

Eo = exp (ikz) (2.19)

Substituting this into the source term of equation 2.18 then this equation

becomes the nonhomogeneous Helmholtz equation for the perturbed electric

field Ej:

V2E 1 + k2EI = -2k 2nleikz (2.20)

The formal solution of this equation is well known and it is the convolution

of the source term of equation 2.20 with the Helmholtz equation Green's

function:

E r=1f3eikIr-Z'I [ 2 kz (2.21)
- 2k n l()eikz]EI 4n I c 1 1 'i(.1

with the integration over the scattering volume.

11



To simplify the formal solution further the Fraunhofer approxi-

mation is made in equation 2.21. The Fraunhofer approximation assumes

that X is much less than the size of the scattering refractive index inhomo-

geneity so that radiation is scattered in a small forward cone. In fact, if the

varying refractive index is perceived as a weak phase screen then

qualitatively the angle of scattering will be a maximum for inhomogeneities

on the order of the inner scale. Therefore, from simple diffraction theory

the maximum scattering angle should be on the order of X/lo with X the

wavelength; and, for inner scales on the order of millimeters then this

angle is on the order of 10- 4 radians. Specifically, the Fraunhofer approx-

imation assumes that the vertical distance from scatterer to receiver,

I z-z'l, is much greater than the transverse displacement, I p-p'l, from

the z axis. Making the Fraunhofer approximation means replacing the

term I r-r'l in the denominator of equation 2.21 by I z-z'I and expanding

the term I r-r'l in a binomial series retaining terms to second order in the

phase. The resulting expression for the perturbed field El is:

.2 ikzn

E = k kfd3 f 2(z-z') (z-z) (2.22)

vol

The physical interpretation of this equation is that of a spherical Huygen's

wavelet emitted at the scattering weak phase screen. The fringes produced

by the interference of the Huygen's wavelet with the unscattered plane wave

are interpreted as the amplitude and phase perturbations observed in

atmospheric optical propagation.

For the task at hand the quantities of interest are the fluctuations of

the amplitude and the intensity of the optical signal about the unperturbed

12



values. To find the amplitude fluctuations both Tatarski and Clifford use

the Rytov approximation which assumes that the solution of the wave equa-

tion is of the form

E = Aeis ; (2.23)

with A an amplitude and s a complex phase. Letting Eo = Aoexp(iso) then

the ratio E/Eo becomes:

E El A
-=1+ E - exp [i(S-So)] (2.24)

o 0 0

And, taking the natural log of equation 2.24 splits the ratio into real and

imaginary parts as follows:

log +N = log 1+ +i(S-S° ) (2.25)
0 0

Since E1 is assumed much less than Eo and also that A1 << Ao, then the

logarithm can be expanded quite accurately in a Taylor series. Carrying

out this expansion and retaining terms to first order yields:

E1 Al
-- + i (S-S o) (2.26)

0 0

Following Clifford this implies that the amplitude ratio is approximately

the real part of equation 2.22 normalized by the unperturbed field Eo. This

yields the following expression for the amplitude ratio:

A1  k2 f 3r, [k(p-p') nl(r')

A dr cos 2(zz') (z-z)(2.27)
vol

Tatarski shows that inherent in this approximation is the assumption that

the amplitude perturbation is small over the distance of one wavelength of

13



the radiation. This is called the assumption of smooth perturbations and

this condition is virtually always satisfied for optical radiation.

Conventionally, a quantity called the log amplitude is defined such

that:

x(r) = ln(A/Ao) = A1/Ao (2.28)

Since from the weak scattering viewpoint the log amplitude, x(.), is equal to

the normalized amplitude fluctuation A 1/Ao then it will be used in all

further calculations.

To proceed further the stochastic variable nl(r') in equation 2.27 is

expanded in a two-dimensional Fourier-Stieltjes integral:

n 1(r ') = f do(C,z') exp (ilov) (2.29)

with the expansion in a plane perpendicular to the propagation direction.

The random amplitude da now becomes a function of z', the location along

the propagation path. Substituting this expression into equation 2.27 and

carrying out the indicated integrations, Clifford obtains the following

expression for the log amplitude:

x(r) = jeiK'(kfdz'd(1K,z') sin k (2.30)

Using this expression the second order statistics of the observed amplitude

fluctuations and the power spectrum of these fluctuations is derived in the

next section.

2. Covariance and Power Spectrum of Log Amplitude Fluctuations

The spatial covariance of the log amplitude fluctuations is found by

using equation 2.30 and the relation:

14



Bx(P,z) = (x(PI+p,z) x*(p1 ,z)) (2.31)

Following Clifford and inserting equation 2.30 into equation 2.31 the spatial

covariance function is written as:

2 ffrK 2(z-z')
Bx(PZ) = k2  f eiL'*(f'+-' dz'dz"sin [k

2k
sin /2zz) d(,'d(,"* (2.32)

with the superscript * denoting the complex conjugate. The ensemble aver-

age of the random complex amplitudes is expressed in terms of the two

dimensional spectral density of the refractive index fluctuations,

Fn(K', z'-z"), by using equation 1.5 in Tatarski [Ref. 181:

(da(K,z')da(K,z")*) = 8(K-K')Fn(K',z'-z")d 2Kd2 K '  (2.33)

with B(K-K') a three-dimensional delta function. The two-dimensional

spectrum of refractivity fluctuations is defined using the three-dimensional

spectrum On of equation 2.14 and is written as:

Fn(Kz'-z") = f dKz4n(K',Kz) cos[Kz(z'-z")] (2.34)

Substituting equation 2.33 into equation 2.32, the observed spatial covari-

ance of the log amplitude fluctuations becomes:

BX(PZ) =f d2 K e 61] {k2 jf dz'dz" sin [ 2 k

sin [K 2 (z '')] Fn(K,z'-z")} (2.35)

15
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This integral is the Fourier transform of the quantity in the curly brackets.

Using the Wiener-Khinchin theorem the expression in the curly brackets is

identified with the power spectrum of the log amplitude fluctuations.

To proceed further the experimental geometry as it bears on the

evaluation of the integrals for the covariance and power spectrum must be

considered. The following sections evaluate the above expressions as they

apply directly to the binary source method of structure constant profiling.

16



III. THE ANALYSIS OF THE EXPERIMENT

The purpose of this calculation is to develop the binary source technique

theoretically for application to a linear array of photosensitive or photo-

emissive detectors in the exit pupil of an optical imaging system. The

optical system is assumed to be well corrected with an approximately con-

stant modulation transfer function over the range of spatial wave numbers

included in the inertial subrange of turbulence. With this assumption, the

intensity distribution in the exit pupil is related to the intensity distribution

in the aperture by a simple scaling. Therefore, this calculation examines

the experimental geometry illustrated in Figure 1. The exact scaling rela-

tions and corrections for a nonideal modulation transfer function will be

developed in a later section.

A. GEOMETRICAL CONSIDERATIONS

The binary source technique determines the Cn2 profile by finding the

covariance of scintillations due to a finite number of atmospheric layers Ah.

And, a consideration of the geometry of Figure 1 is used to simplify the

analysis.

The prototypical binary source of Figure 1 is a binary star with compon-

ents labeled 1 and 2. Two portions of the wave fronts intercepted by the

detector elements are illustrated and the following quantities are defined:

d= 1-r2 with d the detector element separation from center to center.

Ad, the detector element width.

h, the mean crossing altitude of the wavefronts as illustrated.

Ah, width of crossing.
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h 2 ,hl; the maximum and minimum altitudes of crossing, respectively.

0, the angular separation of the binary components 1 and 2.

Z 1. BINARY

ALTITUDE

h2

h
hh

DETECTOR

i £2
________Addd

Figure 1. The Experimental Geometry
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With these definitions and examining the geometry of Figure 1, two

relationships between these variables are apparent:

d = Oh (3.1)

Ad = OAh/2 (3.2)

Equation 3.1 gives the connection between the detector element separation,

d, and the crossing altitude, h. The second equation gives the relation

between the detector element width and the width of the crossing at a mean

height of h. Equation 3.2 is simply derived by considering the difference

between the maximum and minimum crossing altitudes and using equa-

tion 3.1. Note that equation 3.1 assumes that the detector array is parallel to

a line segment joining the apparent positions of the binary source compo-

nents. If this condition is not satisfied then equation 3.1 becomes:

d = Oh sec 4 (3.3)

with 0 the azimuthal angle between the array and the line joining the

source components. Equation 3.1 is assumed valid for this calculation;

since, the optical system can in principle be aligned and driven such that

this relation holds.

B. POWER SPECTRUM OF LOG AMPLITUDE FLUCTUATIONS IN Ah

Given a picture of the experimental geometry the derivation of the

power spectrum of log amplitude fluctuations for a layer h at an altitude of

h is carried out using equation 2.35. This power spectrum is then used to

find the expected spatial covariance of the log amplitude fluctuations and

the related covariance of intensity scintillations via the Wiener-Khinchin

theorem.
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For a layer Ah, isotropy and equation 2.35 imply the following expres-

sion for the power spectrum of the log amplitude fluctuations:

Ah

F(K,O) = k2fJdz'dz' sinK2(-Zx 2k

20K (z-z')
sin 2k Fn(Kz'-z") (3.4)

with Fn(K,z'-z") equal to Fn(K,z"-z') the two-dimensional power spectrum

of refractive index fluctuations [Ref. 19]. Also note that the origin of the

coordinate system is at h2 (z=O) and the integration is over the scattering

volume or layer.

To make full use of the symmetry in equation 3.4 the following variable

change is made [Ref. 18]:

= z'-z" and 271 = z'+z" (3.5)

Using the Jacobian of this transformation then,

Dz'/ azV"-V

dz'dz" = d~di = d d (3.6)

therefore, dz'dz" = d~drI. Using this variable change and the trigonometric

identity sin(a+b)sin(a-b) = sin 2 a-sin2 b with,

2 = -, z-T) ; b = (3.7)

then equation 3.4 becomes:
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F(K,0) = kJ2fddIF(K~~)sinI 2( 2 )-in1 2 j~) (3.8)

The integrand is simplified further by noting Tatarski's observation on

page 135 of Reference 18 that Fn(K,4) rapidly approaches zero for K4 greater

than or equal to unity. This derives from the fact that fluctuations in the

refractive index separated by displacements greater than Lo, the outer

scale, are uncorrelated; and, by the Wiener-Khinchin theorem the power

spectrum vanishes as the corresponding covariance of fluctuations goes to

zero. Also note that the assumption of smooth perturbations, X << 1o,

implies that k >> K over the significant part of the integrand of equation 3.8.

Therefore, over the significant part of the range of integration then:

42 << I and sin2 k - 0 (3.9)
4k 4k

And, equation 3.8 simplifies to:

F (K,O) = k2 JJ d~dTj Fn(K,4) sin 2 (k (3.10)

The evaluation of this integral depends on the assumption of a form for

Fn(K,4) and this form depends on the magnitude of Ah compared with the

inner and outer scale. For the experimental geometry of Figure 1 the ten

detector elements of the linear array will divide the total atmospheric

volume into ten separate non-overlapping regions. The width of these

regions will be on the order of kilometers for observations of the profile from

the planetary boundary layer to about 20 kilometers. This is much greater

than outer scales observed in the atmosphere [Ref. 2,191 and it is safely

assumed that Ah >> Lo.
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Under the conditions discussed in the previous paragraph the layer Ah

includes many separate, uncorrelated regions of turbulence. Following

Tatarski [Ref. 18] the power spectrum of refractive index fluctuations for

sublayers of Ah on the order of the outer scale is still given by equation 2.14;

however, the refractive index structure constant is now a function of il.

Therefore, the refractive index fluctuation power spectrum takes the form:

Fn(K ,kJ 1) := C2(01) f(K,k) (3.11)

and, it should be noted that:

f(K, )d = ic(.033) K-111 3 = n O°(K) (3.12)

with this expression completely analogous to equation 2.14. With an

expression for the refractive index power spectrum available further

progress in evaluating the integral of equation 3.10 is possible.

Noting that equation 3.10 is even in k and symmetric in Ii then substi-

tuting equation 3.11 into equation 3.10 and employing symmetry yields:

Ah/2 21

F K,0) = 2k 2 fJdgC2(11) sin 2 ( z-) f f(K,k)d

0 0

Ah 2(Ah-il)

+ 2k 2 f diiC2(ii) sin 2 ( K 2 U-) f f (K, )dk (3.13)
Ah/2 0

for the log amplitude power spectrum. Over most of the region of integra-

tion both 211 and 2(Ah-TI) have magnitudes between the outer scale and Ah.

As previously noted, the refractive index power spectrum rapidly
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approaches zero for K4 greater than or equal to one [Ref. 18], therefore the

upper limits for the 4 integration are replaced with infinity to a high degree

of accuracy. Replacing the upper limits of the 4 integrals of equation 3.13

and carrying out the integrations using equation 3.12 yields the following

expression for the power spectrum:

Ah

F(K,) = 2k 2 (K)C2 (T) sin [ ] di1  (3.14)

0

Since the detector elements have a finite width then by equation 3.2

spatial variations of Cn 2 smaller than Ah cannot be resolved. In effect the

detector observes an average structure constant for the layer. If the Cn 2

profile is known apriori then this average can be carried out in the Fourier

transform or spatial covariance domain as an aperture average over the

finite detector element area. However, since a measurement of the struc-

ture parameter profile is the objective then it is the power spectrum that

must be averaged over the layer depth. This average of equation 3.14 is

indicated as:

Ah

(F(K,0)) = 2k2R J0 (K) (C2 () sin2[K 2(-)])dl (3.15)

0

with the angled brackets denoting the spatial average over the layer. The t1

integration is trivially:

2
(Fx(K,0) )  2k2 n e (K)Ah (C2(,) 5 2[K (z-71) (3.16)

Xn nL 2
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Past observations of Cn2 indicate that it fluctuates rapidly in space with a

mean that decreases slowly with altitude [Refs. 2,19]. Since the spatial

fluctuations of Cn2 appear uncorrelated with the sin 2 weighting function

then the average indicated in equation 3.16 is rewritten as:

(F (K,o)) = 2, 7c DP(K)Ah (C2 (l))(sin 2[ K (Z-1) (3.17)

Carrying out the spatial average explicitly for the sin 2 weighting function

yields:
Ah

(F (Ko)) = 2k2 nAhef (K)(C2(T1)) -  Jsin2 [K2(z1)] d (3.18)

0

or, for z, the observer coordinate, equals h2 :

(F(K~o)) = 2k2 n AhdOf (K) (C2 (11))

• 1 2k K2h '  (K 2 Ah]
hK 2 cos Kt) sin kT ) (3.19)

AhK2

with (Cn 2 (11)) the average or effective value of the structure parameter for

the layer at a mean altitude of h. This is the observed average power

spectrum of the log amplitude fluctuations due to turbulent mixing in a

layer Ah.

The power spectrum used by the various French teams [Refs. 12-15] is

in this calculation's notation written as:

F(KO) = 2k2rAh°(K)C2(1))sin2(K h ) (3.20)
Fx( ) n n -
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Approximating the sin(K2Ah/2k) term in equation 3.19 by AhK 2/2k (k >> K)

then 3.19 becomes:

(F(K,o)) = 2k2,IAh4°(K)(C(11)) sin 2 ( -h) (3.21)

an expression identical to the French spectrum. The two spectra are illus-

trated in Figure 2 and it is evident that the French spectrum is an excellent

approximation to the spectrum of equation 3.19. Therefore, the spectrum of

equation 3.21 will be used for further calculations since it is analytically

simpler.

C. THE SPATIOANGULAR CORRELATION OF INTENSITY

FLUCTUATIONS

The power spectral density of equation 3.21 can be Fourier transformed

to yield the spatial covariance of the log amplitude fluctuations of a single

point source due to a layer Ah. The solution of the wave equation in Section

II assumed a plane wave solution and as is well known from classical

optics a point source at infinity produces plane waves at the detector. For

the stellar sources of Figure 1, the transverse spatial coherence function is

essentially unity for displacements of less than five meters as shown by

Hanbury-Brown and Twiss for Sirius [Ref. 221. Therefore, an assumption

of initial spatial coherence of the source is excellent for spatial separations

of less than five meters. However, the log amplitude covariance is not

directly obtained by cross-correlation of the signal from the detector

elements.

For a real detector operating at optical frequencies the detector response

is typically proportional to the intensity and it is the covariance of intensity
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Figure 2. The French Spectrum (x), and the Spectrum of

Equation 3.19 (-)
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fluctuations that is probed by the detector system. The details of the

detection process will be treated in later sections; however, the intensity

scintillations in the aperture are independent of the detection process. The

spatioangular covariance of intensity fluctuations due to the binary stellar

source will now be derived and related to the log amplitude statistics.

1. The SRatial Covariance Functions

For calculational simplicity, consider the wavefronts and two

detector elements of Figure 3. The normalized spatial covariance of the

intensity is given by:
-[~1  -<(1)][ (1.)-<(1.2))])

CI(p) = ((3.22)

with the angled brackets denoting an ensemble average and I(r.j) the

instantaneous intensity at Li. The sources labeled 1 and 2 are assumed

independent; therefore,

I(rj) = II(j) + 1 2(rj) (3.23)

with the subscripts 1 and 2 denoting the sources. Note that conservation of

energy requires that the long term average illumination in the exit pupil is

uniform. Substituting this expression into equation 3.22 and rearranging

terms yields:

= +( 2 )) 2 [(8I1 (r1 ) 811(r2)) +

+ (1 1  212) + (811(12 )81 2(1:1))] (3.24)
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Figure 3. The Wavefronts Intercepted by Detector Elements
at rl, r2 Due to the Binary Source
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with 8I=I-(I). Defining the relative irradiance fluctuations as:

li( ) - i )(3.25)

and substituting into equation 3.24 gives the following expression for the

normalized spatial covariance of intensity scintillations:

(2 (h2

() + (Y)____
C1(p)= ( 12)2 ( 1 (r (r-2 )) + ( 12) ]

+I12 [<lr)1(2 + (2)) 2(11)I (2)

+(01 + 02))

The first two terms of equation 3.26 are the weighted autocovariances of

sources 1 and 2 with the weighting functions carrying the brightness or

magnitude difference between the two stellar components. Since assuming

homogeneity implies that the normalized autocovariances are equal then

equation 3.26 is further simplified to:

( (1) 2+ (12) 2  (' 1) (2)
C(P 0) + ()) 2 1- 1- 2)) +

[(l 1( 1 ) 12)( 2 )) + (l1 ( 2 ) 12(rd))] (3.27)

The first term of this equation is the normalized autocovariance of a single

source and the second term is the cross covariances of source components

1 and 2.
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The intensity covariances in the observation plane are related to the

log amplitude covariances by a relation due to Fried [Ref. 23], and since his

derivation is clear and readily available it will not be repeated here. In this

calculation's notation Fried's result is:

C1(p) = exp[4Bx(p)] - 1 (3.28)

Since the perturbative solution of the wave equation assumes weak turbu-

lence and this implies that the log amplitude fluctuations are small then

equation 3.28 is expanded in a Maclaurin series to first order. The result is:

CI(p) = 4Bx(p) (3.29)

Both expressions for the spatial covariance of intensity are graphed

in Figure 4 as a function of the log amplitude covariance. The first order

approximation is selected for further calculations based on comparison

with the experimental curve of Figure 4. As is evident from Figure 4

experimental evidence indicates that the intensity covariance saturates to

unity as the intensity of turbulence increases. Therefore, the first order

approximation of equation 3.29 is actually a better approximation over the

range of validity of the single scattering theory. [Ref. 24]

Using equation 3.29 and examining the terms of equation 3.27 indi-

vidually then the spatial covariance of intensity scintillations can be cast in

a more transparent form in terms of the log amplitude covariance. For the

first or autocovariance term of equation 3.27, direct substitution of equation

3.29 yields:

( 1( 1) l (L2)) = 4Bx(p) = 4BX2(p) (3.30)

However, the cross covariance terms are not treated as straightforwardly.
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The first cross term in equation 3.27 is expressed as a function of

the log amplitude using equation 3.29:

( 1(11)12(k2)) = 4x 2 3 (p) (3.31)

This term is the cross covariance of the light propagating along the paths

labeled by the numbers 2 and 3 in Figure 3. Using equations 2.31 to 2.33 and

the assumption of statistical homogeneity then the cross covariance of log

amplitude fluctuations is expressed as:

00

B 2(p) = Jexp [iKo[(r2 -r1 ) + p]] Fx(K,O)d 2K (3.32)

-00

The assumption of statistical homogeneity in the layer Ah implies that

fluctuations in xi are mirrored by fluctuations in x2 at the crossing.

Further simplification of equation 3.32 is achieved by using equation 3.1.

Substituting this relation between the mean altitude and the detector

separation in equation 3.32, this cross term becomes the same function as

the autocorrelation but with the origin shifted by Oh:

B (p) = Bx(P-0h) ; r2-r I = - Oh (3.33)x2,3

An exactly analogous derivation for the second cross term yields:

B (p) = Bx(p+Oh); rl-L2 = Oh (3.34)X1 ,4

That is light propagating along paths 1 and 4 in Figure 3 have a maximum

in the spatial covariance for refractive index inhomogeneities with a scale

of Oh.
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Substituting equations 3.33 and 3.34 in equation 3.27 then the spatial

covariance of intensity scintillations is expressed as:

C(P) 12 + (12)2 4B (p) + (I) ('2)

[I1)+(12)12 x [(1 +(<I2]12

4[BX(p-Oh) + BX(p+Oh)] (3.35)

with the log amplitude covariance given by the two dimensional Fourier

transform of the power spectrum of equation 3.21. Also note that equation

3.35 depends explicitly on 0 and the covariance is now called the spatio-

angular covariance as a remainder of this dependence.

2. Evaluation of the Spatioangtlar Covariances

The normalized spatial covariance of equation 3.35 indicates that

this intensity expression can be constructed from the log amplitude auto-

covariance by appropriate scalings and corresponding shifts of the origin.

Using the Wiener-Khinchin theorem the log amplitude autocovari-

ance in the aperture plane is given by:

00

B (p) = Jexp[iK.g] Fx(K,O)d 2 K (3.36)

-00

with the power spectrum given by equation 3.21, and letting the average

spectrum condition be understood. Note that (Cn2(1)) is now identified as

the mean or effective structure parameter in the layer at a mean altitude of

h. Equation 3.36 is the two-dimensional Fourier transform of the power

spectrum. However, the assumption of isotropy and an assumption of a

circular aperture imply that equation 3.36 can be recast as a Hankel

transform: S
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circular aperture imply that equation 3.36 can be recast as a Hankel

transform:

00

BX(p) = 24JFx(K,O)J 0 (Kp)KdK (3.37)

0

with Jo( ) the zeroth order Bessel function. Substituting from equation 3.21,

the autocovariance becomes:
00

2
B (P) = MfJ(KP) K7 8 3 sin 2 (K)dK (3.38)

0

with M=4W2 (.033)k 2 Ah(Cn 2). Note that this integral is valid only for the

inertial subrange of spatial scales since the power spectrum is divergent at

the origin. Therefore, the limits of integration are changed to K'=2n/Lo and

k"=2r/lo, with lo and Lo the inner and outer scales respectively.

In the limit that p goes to zero then equation 3.38 becomes:

K " KK K2h

BX(o) = M K4/3sin2 ( ) dK (3.39)

K'

and this expression is the variance of the log amplitude fluctuations. If

NF,-, with X the EM wavelength, is much greater than unity then the limits

of integration may be extended from zero to infinity with little error

[Ref. 18]. Equation 3.39 becomes:

00

B(o)= MJ -8/3 sin2 (-) dK (3.40)
0
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and this expression has been evaluated by Tatarski in Chapter 8 of Refer-

ence 18. In the notation of this calculation the variance of log amplitude

fluctuations for the layer at a mean altitude of h is given by: 0

Bx(0) = .564 Ah h1 6 0 (C) (3.41)

The integral of equation 3.38 is not analytic and a numerical inte-

gration must be carried out to find the spatial covariance. Normalizing

equation 3.38 by the variance and carrying out a numerical integration

yields the function of Figure 5 with p measured in units of 4Ah. [Ref. 19]

The intensity spatial covariance is constructed by appropriate shift-

ing and scaling of the log amplitude covariance as indicated by equation

3.35. Assuming that the components of the binary source are of equal

intensity then equation 3.35 becomes:

CI(p) = 2Bx(p) + [Bx(p-0h) + Bx(p+Oh)] (3.42)

Normalizing each term of this equation separately:

cI(p) = 2bx(p) + bx(P+0h) + bx(p-0h) (3.43)

with bx(p+0h)=Bx(p±Oh)/Bx(O). A graph of this function for h of ten kilo-

meters is constructed in Figure 6 with p,h scaled by Ah.

For experimental implementation the needed covariance functions

could be computed beforehand and stored for later use. Another alternative

would be to find a suitable Chebyshev polynomial expansion of the integral

of equation 3.38. However, the effects of nonideal optics must be considered

and this implies a numerical calculation of the log amplitude

autocovariance.
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Figure 5. The Normalized Log Amplitude Spatial Covariance
of Fluctuations [Ref. 19]
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3. Nonideal Optical Corrections to the Autocovariance

The actual detector system is coupled to an optical system with the

real detector array in the exit pupil. Taking the linear systems viewpoint of

the optical system then it is viewed as a linear transformation of the optical

input at the aperture. The individual spatial frequencies in the aperture

are transformed to the exit pupil via the optical transfer function (OTF).

The OTF of the optical system is defined as the ratio of the output spatial

power spectrum to the input spectrum, and it is a spatial frequency depen-

dent complex quantity with the modulus defining the modulation transfer

function (MTF) and phase, the phase transfer function (PTF). The optical

system is assumed on axis and since phase shifts in centered optical

systems occur off axis then the MTF is the quantity of interest. The MTF

describes the filtering of spatial frequencies by the optical system. For the

detector array in the exit pupil a spatially modulated input will result in a

spatially modulated output that is suitably scaled; however, if the MTF falls

to zero (optical system cutoff) rapidly or is a rapidly varying function of

spatial frequency then the output spatial spectrum is found from

Fx(KO) I output = MTF(K) F(K,O) I input (3.44)

by the definition of the OTF. The spatial autocovariance then becomes the

Hankel transform of equation 3.44 as indicated in the previous section.

The power spectrum of log amplitude fluctuations in the aperture is

illustrated in Figure 2 and it is noted that this spectrum falls rapidly to zero

as a function of spatial frequency. Therefore, the assumption of unity MTF

is quite good for reasonable aperture sizes (greater than approximately

20 cm). The MTF will be assumed constant for the balance of this
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calculation; however, experimental implementation of this scheme should

include a measurement of the MTF of the optical system.

With the assumption of constant MTF over the inertial subrange,

the scaling between the aperture and exit pupil is derived from geometrical

considerations. As is apparent from Figure 7 the average intensity in the

exit pupil is increased by the factor:

TrD 2 A/ 2 (3.45)/E

with DA the aperture diameter, DE the diameter of the exit pupil and Tr the

overall transmittance of the optical system. For the linear detector array

illustrated, the scaled array in the aperture is characterized by:

A-; PA= PE DA (3.46)
E A/DE

with A the detector element area, p a linear displacement along the array

and the subscripts A and E referring to the aperture and exit pupil respec-

tively. For the remainder of this calculation the optical system coupled to

the detector is assumed to have unity transmittance and constant MTF over

the inertial subrange. Under these assumptions the covariances of the

previous section are assumed valid.

Given the assumption of an ideal optical system the interaction of

the electromagnetic field with the detector elements must now be consid-

ered. The next section discusses the photon counting statistics of the binary

source profiling method.
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IV. PHOTOELECTRON COUNTING STATISTICS

The intensity scintillations are detected by a linear array of photosensi-

tive or photoemissive detectors, and the discrete nature of this detection

process must be considered. The incident electromagnetic flux causes the

photosensitive surface of a detector element to eject a photoelectron and

these electrons are then collected and analyzed as the detector element

signal. Following Saleh [Ref. 25], this derivation treats the electromagnetic

field classically as a stochastic quantity; and, the photoelectron production

process is treated semiclassically. This approach does not invoke the

photon concept and has the advantage of not demanding the full quantum

electrodynamic treatment of the electromagnetic field. The semiclassical

approach is compatible with the full quantum analysis of the photoemission

process provided certain mildly restrictive assumptions hold true. [Ref. 25]

To proceed with this analysis a certain amount of statistical back-

ground is required. The definitions and relations used in this calculation

are summarized in the next section and the notation used is that of

Reference 25.

A. STATISTICAL BACKGROUND

For an experiment that counts photoelectrons the observed data is the

number of counts (nl,n2,...nm) in the intervals (tj,tj+T) with J equal to

(1,2,...m). Since the photoemission process is assumed probabilistic, the

number of counts in disjoint time intervals are assumed independent.

Therefore, a rate density P(t) is defined:
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D( =m (N, (t + At) - Nt(t)) (4.1)

At--*0 At

with NT(t) the number of events in the interval T. This function is also

known as the arrival rate of a Poisson process [Ref. 26].

Given an assumption of independence in disjoint intervals then the

process described is called a Poisson point process (P.PP) with rate density

P(t). The number of points (counts) in a single interval (t,t+T) has a Poisson

density:

P(n) = - exp(-W) (4.2)

with W, the integrated rate of events defined by the relation:

t +T

W =J (t) dt (4.3)

t 0

And, the time T is the counting time. If P is a constant then the P.PP is

called homogeneous and equation 4.2 becomes:

nP~)=n! exp (-13T) (4.4)

The integer random variable n is also described statistically by the

moment generating function (mgf). The ordinary moment generating

function is defined by:

Qn(s) = (exp (-ns)) = no exp (-ns) P(n) (4.5)

with P(n) given by equation 4.2. Carrying out the indicated summation

using equation 4.2 gives the following expression for the mgf:
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Qn(s) = exp [W(exp (-s) -1)] (4.6)

The usefulness of the mgf is apparent when the term exp(-ns) is expanded

in a Maclaurin series. The mth term of the expansion evaluated at s = 0 is

the mth ordinary moment of n. Using equation 4.2 and the mgf the rela-

tions between the moments of W and n are easily derived. Several of these

are listed here for future reference:

- ordinary moments

(n) =W a)

(n2) = W2 +W b) (4.7)

(nln2) = W1W 2  c)

- central moments

(sn) = ((n-(n))) = 0 a)

((Bn) 2 ) = W b) (4.8)

(Sn18n2) = 0 c)

The statistics of a non-homogeneous P.PP are completely determined by

the rate density P(t). However, if P(t) is itself a stochastic function then the

statistics of the point process depend on the statistics of P. If P(t) is a

stationary stochastic function then the point process described by it is called

a doubly stochastic Poisson point process (DSP.PP). The moments and

moment generating functions of the DSP.PP are found by averaging the

corresponding moments and mgf s of the P.PP over the different realiza-

tions of P(t) or the integrated rate W. Thus, the moments of the DSP.PP are

obtained by averaging equation 4.7 over W. They are listed here:

ordinary moments of DSP.PP

(n) = (W) a)
(4.9)

(n2) = (W2 )+(W) b)
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and, conversely:

(W)= (n) a)
(4.10)

(W2) = (n2)-(n) b)

Also:

(nln2) = (WlW2) (4.11)

variance of DSP.PP

((Sn)2 ) = ((SW)2)+ (4.12)

These relations and the results of section III are used to derive the photo-

electron counting statistics for the binary source method.

B. THE RATE OF PHOTOEMISSIONS

A full quantum analysis of the photoemission process reveals the

following facts [Ref. 25]:

1. The probability of transition from a bound to an unbound state for

an electron in a photosensitive surface during a time At is proportional to At

and the instantaneous intensity.

2. If the intensity is a stochastic function of time then the photoemis-

sion process is a DSP.PP.

These conditions hold quite generally if the following two auxiliary

conditions hold:

1. The time At, though much greater than the period of oscillation of

the EM wave, is much shorter than other characteristic time scales of the

experiment.

2. The bandwidth of unbound (free) electron states is much greater

than the EM bandwidth.
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Under these conditions then the rate density of photoelectric emissions

can be expressed as:

t)f dv a (v) I(,t,v) (4.13)

with v the EM frequency, AD the detector element area and a(v) the quan-

tum efficiency at frequency v.

This expression for the rate density is simplified by making the quasi-

monochromatic approximation. The quasimonochromatic approximation

assumes that the center EM frequency is much greater than the EM band-

width. For optical frequencies this condition is easily satisfied by using an

appropriate set of colored filters. However, the same thing is accomplished

by a narrowband detector response. If a more accurate assessment of the

frequency dependence is required the stellar spectrum is modeled by a

Planck blackbody spectrum and the explicit frequency dependence of the

quantum efficiency is used to evaluate the frequency integral of equation

4.13. However, since an analytic form for the quantum efficiency is not

readily available this calculation proceeds by invoking the quasimonochro-

matic approximation and approximating the frequency integral as follows:

0(rt) = A v a (vo) fADd2r I(r,t,vo)  (4.14)

with vo the center frequency.

The spatial integral can similarly be approximated by assuming that

the area over which the spatial fluctuations are correlated is much larger

than the detector element area. The rate density then becomes:

P(;i,t) = A v a (v,) AD I(.,t,vo ) (4.15)

with ri the geometric center of the detector element.
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The rate of photoemissions is given by equation 4.3:

t+T t+T

W(.it) = ft,rl)dt = -j'I(ri,t) dt (4.16)

t t

with I equal to Ava(vo)AD and letting the frequency dependence be under-

stood. But, as noted in section III, the intensity is the sum of two indepen-

dent sources:

I(];t) = I1(3,t) + I2 (1;,t) (4.17)

Following Fried [Ref: 23], the intensity is expressed as a function of the log

amplitude as:

I(ri,t) = I(t) exp (2x.(r.,t)) (4.18)

with IOt) the source intensity; and, the exponential term is the atmo-

spheric modulation. Again, the source term is assumed spatially, though

not temporally, coherent over the detector element area. Under these

assumptions the rate is:

t+T

W(rit) ='Y 7 [IO(t) exp (2xl(ri,t)) + I2(t)exp(2x 2(r.,t))]dt (4.19)

t

The stellar sources are assumed thermal and as is well known thermal

sources have a coherence time that is the inverse of the optical bandwidth.

However, the correlation time associated with the atmospheric modulation

is on the order of one millisecond. This is consistent with the assumption of

frozen turbulence for times less than or equal to one millisecond [Ref. 20].

For any reasonable optical bandwidth the source coherence time is safely

assumed to be many orders of magnitude less than the correlation time of
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the atmospheric modulation. Selecting an integration time that is much

less than the atmospheric correlation time and much greater than the

source coherence time the rate becomes:

W(r.,t.) = W0 (t) exp (2xl(ri,t.)) + W2(t.) exp(2x2(ri,t.)) (4.20)
l j j 2 j2

with tj = t+T/2. Note that the atmospheric modulation is considered frozen

over the integration time.

Equation 4.20 is used to form the second order moments of the rate and

these moments are related to the second order moments of the photo-

electron counts.

C. COVARIANCE OF PHOTOELECTRON COUNTS

Forming the normalized spatial covariance of the integrated rate yields:

(BW(rl,t i) 8W(r 2 ,t)) (W(r 1,t i) W(r 2 ,ti)) 1
= -1 (4.21)

(W(rl,ti))(W(r 2 ,ti)) (W(rl,ti))(W(r 2 ,ti))

with the angled brackets denoting an ensemble average. Examining the

correlation term of equation 4.21 and noting that the atmospheric and

source modulation are independent then this term becomes:

(W(r 1 ,ti ) W(r 2,ti)) = (W0(t)(exp[2x1 (r1 ,t i) + 2xl(r2 ,ti)])

+ (W2(t.))(exp[2x 2 (rl,t i) + 2x2 (r2 ,t.)]) + 0(t) W2(ti))

{ (exp[2xl(rl,t i) + 2x 2(r2 ,ti)])+(exp[2x l(r 2,ti)+2x2(rl,ti)])} (4.22)

by using equation 4.20. This relation is further simplified by using the

relation between the intensity and the log amplitude. Following Fried
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[Ref. 23], the exponential terms of equation 4.22 are related to the log ampli-

tude covariance by:

(exp [2xi(r ,tk) + 2x.(r mtk)]) = exp [4B x.(p)] (4.23)11.

Since the log amplitude fluctuations are assumed small then this expres-

sion is expanded in a Maclaurin series to yield:

exp [4B (p)] - 4B (p) + 1 (4.24)

The various log amplitude covariances implied by equation 4.24 are again

simplified by appealing to the symmetry of Figure 3 and equations 3.31 to

3.34. The result is:

(W(rl,t i) W(r2 ,ti)) = [(WO(ti) 2) + (W2(t.) 2)] (4B (P) +1)

+ 4(WO(t.) W2(ti))[Bx(p-0h) + Bx(P+0h)] (4.25)

or, rearranging terms:

(W(rtW(r2 ,t)) = ([WO(tl)+W2(ti)] 2) + [(Wo(ti)2)+(Wo(ti )2 ) ] 4 B x (p )

+ 4(W(ti)W2(ti))[4Bx(p-0h) + 4Bx(p+8h) ]  (4.26)

Noting that (exp[2x(:,t)]) equals unity by conservation of energy then the

normalizing term of equation 4.21 is expressed as:

(W(rl,ti))(W(r 2 ,ti)) = [(WO(t.)) + (W2(t))] 2  (4.27)

by using equation 4.20. Therefore, substituting from equations 4.26 and 4.27

in equation 4.21 yields the following expression for the spatial covariance of

the rate:
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(SW(r 1 ,ti) SW(r 2 ,ti)) ([W (t.)+ W2(ti)2)

(W(r 1,t.))(W(r2 ,t.)) [(W(ti))+(W2(t))
2

[(W (ti)2)+(W2(ti)2)] 4(Wol(t i ) W2(ti))

[(W(ti))+(W2(ti))]2 4B(P) + (ti 2

[Bx(p+eh) + Bx(p-0h)] - 1 (4.28)

As stated previously the photoelectron emission process is a DSP.PP for

a stochastic intensity. The relations between the second order moments of

W, the integrated rate and n, the number of counts, are given by equations

4.9 to 4.12. Substituting from these relations in the rate spatial covariance

of equation 4.28 yields:

(8n(rl,t i ) Bn(r 2,ti)) ([nl(t i ) + n 2(ti)] 2 ) [(nl(ti)) + (n 2 (ti))]

(n(rl,ti ))(n(r2,ti)) [(nl(ti)) + (n2(ti ))]2 -[(nl(ti)) + (n2(ti ))]2 1

[(nl(ti)2) + (n 2(ti) 2) - (n1 (ti)) - (n 2(ti))]
[(ni(t )2) + (n 2 (ti ))] 2B-_

+ 4(nl(ti)) (n 2(ti)) [Bx(p-0h) + Bx(+Oh)] (4.29)
[(n(ti )) + (n2(ti ))]

2

This is the normalized spatial covariance of photoelectron counts for a

binary stellar source.

To proceed further note that a single measurement or counting interval

T of approximately one millisecond probes a single configuration of the

atmospheric modulation. This single measurement is clearly insufficient

to determine the modulation statistics, and since there is only one
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atmosphere to sample then the ensemble averages of equation 4.29 must be

replaced with a time average. Assuming ergodicity holds, Saleh [Ref. 28]

points out that long time averages wash out the stochastic nature of the

intensity fluctuations. To demonstrate this assume that the unmodulated

source intensity is characteristic of linearly polarized thermal light. Saleh

derives the probability density of photoelectron counts in terms of the

parameter N:

P n)=( ) ( )) (I + N -) (4.30)
n n)

with N the number of coherence times of the source intensity. Apparently,

a good determination of the atmospheric modulation is made only after

many coherence times of the source intensity have elapsed. In the limit

that N goes to infinity equation 4.30 becomes the Poisson distribution:

P(n) = nP exp (-n)) (4.31)

And as is well known [Ref. 26], the following relations hold for the Poisson

distribution:

((8) = (n) (4.32)

(n 2 ) = (n)2 + (n) (4.33)

Therefore in the limit of long (compared with one millisecond) time aver-

ages the normalized spatial covariance of counts is:
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(8n(r1 ,ti)8n(r 2 ,ti) (n 1 ) 2+ (n2)2  4 (n (n 2)

(n(rl,ti))(n(r2,ti)) - [(nl)+(n2)] 2 4B(P) + <n2

i 2Pi A[(n) + (n2)]

[Bx(P-h) + Bx(p+Oh)] (4.34)

This expression indicates that the spatial covariance of counts is directly

dependent on the second order statistics of the atmospheric modulation.

The source modulation is averaged away due to the extremely short

(Av >108Hz) coherence time of the source radiation.

Since the actual experiment depends on replacing ensemble averages

with time averages the statistics of the experimentally estimated spatial

covariance must be explored. The next section examines the counting 0

experiment for a single layer Ah.

D. STATISTICAL ACCURACY

The spatial covariance of counts:

<8n(r,t i) Wnr2,td) <n(r2,t i) n(rl~td) 1( .5

(n(rl,ti)) (n(r 2 ,ti)) (n(rl,ti)) (n(r 2 ,ti))

can be estimated by the expression:

A G
g= A 1 (4.36)n(r1) n(r2 )

with;

G n(r ,t n(r,t) . (r.) =n(r.,t (4.37)
Nm=1 Ilm 2 m N 1 m
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N is the number of counting intervals of length T, and T is expected to be

much longer than the source coherence time and less than the atmospheric

modulation correlation time. The estimator k is characterized by its mean

and variance. The mean or expected value of g is apparently given by equa-

tion 4.34.

A (n() 2 +(n2 )2  4(n___n2_
(A 1+(n 14B(p) + )n)

[(n 1) + (n 2)] 2  x [(n) + (n2)]2

[Bx(P-Oh) + Bx(p+Oh)] (4.38)

However, the variance of g is a difficult quantity to derive. The variance of g

is defined by the relation:
var (9) g( (4.39)

which simplifies to:
A A

S^ -(A G (4.40)
n(rl n(r2) n(rl)n(r2)

This quantity is the same as the variance of the estimated spatial correla-
A

tion of counts. Saleh evaluates this variance by expanding G and nlj about

their means and retaining only the deviations from these means. With the

additional assumption that N is very large the variance of 9 is given by

equation 7.181 of Reference 25. In the notation of this calculation, the vari-

ance of g is:
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var() = var(G n 1  2 ))) +A

A=4(e)+ [ -2(9(i(r.)) -4 2 var(A(rj))]
j=1,2 (n(r ))(n(r2))(n(rj)) (n(rj))

2 coy ((n(rl)), (n(r2)))
+ n(r 1)) (n(r 2)) (.1

with the indicated variances the full spatiotemporal variances of the indi-

cated quantities. Unfortunately, a complete evaluation of this expression

requires the time statistics of the atmospheric modulation. The turbulence

in the atmosphere is typically intermittent in intensity and the statistics of

intermittency are inaccessible with current theoretical models. However,

the single scattering assumption allows a lower bound to be placed on the

variance of 9.

The time statistics of the evolving refractive index inhomogeneities will

depend on moments of the velocity field of higher order than is represented

by the structure function (see section II). This implies that the temporal

variance of the spatioangular correlation of log amplitude fluctuations will

be a quantity that is fourth order in the log amplitude. By the single

scattering approximation these moments are approximately zero. There-

fore neglecting the terms in the variance of 9 that are of order '2 and

higher, then equation 4.41 becomes:

var(A) > 4Q) + 2() -=4(j) [1 + .5 (4.42)

(n(rl))(n(r2)) [nl)+(n2 ) A ,

with ni, n2 the counts due to source 1 and 2 respectively. The relative error

is defined as:
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= 100 [var ( g)] 112/() (4.43)

or,

e1 2 -+ .5/ [ n lI + 2  (4 .44 )

A graph of the relative error for (ni) = (n2) = n is given in Figure 8 as a

function of the spatioangular covariance of counts (g).

From Figure 8, the relative error diverges rapidly as (g) goes to zero.

Since observed values of Cn 2 are very small (10 -12 to 10-14cm 1 / 3 ) [Ref. 12]

then the relative error induced due to the detection process will dominate

the counting statistics. Clearly some error reduction scheme is required to

extract the spatial covariance of counts.
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Figure 8. Relative Error Versus Spatioangular Covariance
of Counts for Various Values of Incident Intensity
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V. LEAST SQUARES ANALYSIS

The analysis of the preceding section indicated the dominance of the

detection uncertainty in the determination of the spatioangular covariance.

This large error is ameliorated by using the redundant information

provided by the multiple detector elements of the array (Figure 3). Least

squares analysis is employed to use this redundant information to reduce

noise.

Most of the analysis to this point has applied to a single layer at a mean

altitude h. However, equation 4.38 is easily generalized to any layer with a

mean altitude of hi:

C (pj,h i ) = 4 Bx(Pj,h i ) +
fll [( 1 )+(n A1

4(nl>(n2>
[n>+<n2)]2 [BX(P-0h i) + Bx(Pj+Ohi)] 

(5.1)

Note that the log amplitude covariances are now calculated at the centers of

the detector elements pj. With the previous assumption of a small detector

element size this is a reasonable approximation. Rewriting the spatio-

angular weighting functions to reflect the explicit dependence on the

refractive index structure parameter yields:

B (p.,h.) = (C 2 (h.) Bl(p.,h.) (5.2)

and equation 4.38 is generalized to:
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C (p.,h.) (h.)) {() 2  4B 1 (jh)+

4(n Xn2) 2 [Bx(PjOhi) + Bx(pj+hi)]}

[(nl)+(n2)]

= (C(h)) R(pj,h i) (5.3)

Using this equation, and assuming the fluctuations induced by non-over-

lapping layers are uncorrelated, then spatioangular covariance of counts

observed in the aperture due to multiple layers is given by the summation:

CR(pj) = I Cn (pj ,hi ) = I (C2(hi)) R(p.,hi) (5.4)
h. h i. n1

I I

This summation is equivalent to the matrix equation:

[CRk] = [Rk] 2)] (5.5)k) [(Cn~j 55

with CRk the experimentally measured spatial covariance of counts, Cn2j

the undetermined refractive index structure parameter profile and Rjk the

weighting functions described above. The undetermined Cn2 are found by

minimizing the quantity:

[CRJ - [R . [(C 2 )] = minimum (5.6)

as a function of n2 . The solution to this is well known and is given by:

* -1

[Cn]= ([Rkj] [Rkj]) [R] [CRk] (5.7)

with the superscript * denoting the Hermitian conjugate. This process is

formally known as least squares analysis and the Cn2 vector obtained is the
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least squares approximation of the structure parameter profile. A more

explicit expression for the profile is obtained by considering the experimen-

tally derived spatioangular covariance.

The experimental covariance is given by the matrix:

[CRA] = [n(r)(rk)1] (5.8)

Assuming the angular separation of the binary source is small then the

expected values of these matrix elements are a function only of the separa-

tion between detector elements. Therefore, elements along diagonals

parallel to the main diagonal are expected to be equal in the absence of

noise. Using this fact, the spatioangular covariance of counts as a function

of detector element separation is formed by summing along these diagonals

as indicated here.

n(rl)n(ri) n(r) n(r2 ) n(rl n(r()
n(r2)n(r, nr ,,
n'(r3)n(rl) r)ni(r2) .,,

[CIjk] - [CR k ] by .(5.9)

n(rl0)n(r 1)  n(rl0)n(rl0)i

Since the number of terms along these diagonals are not equal, then the

elements of this sum must be normalized by the number of terms to

preserve the relationship of equation 5.4. Therefore, the elements of the

measured covariance vector are written:
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CRk =(2(10-1n-m I)) [CRnm + CRMn] (5.10)
n=1,10-k
m=n+k

and, the structure parameter profile is determined by solving the matrix

equation

[1 (Rki R'j)] [C2(h.]= [ (RkJ oRk)] (5.11)

Which results from applying least squares analysis with the parameters

Cn 2 (hj) the undetermined coefficients. The profile is now determined since

the detector element separation and altitude are connected by the relation

3.1.
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VI. CONCLUSIONS

This thesis has explored the theoretical basis for profiling the refractive

index structure parameter using the spatial covariance of binary source

intensity scintillations. This analysis derived the power spectrum and

associated spatial covariance of intensity scintillations caused by atmo-

spheric refractive turbulence. The expected spatial covariance of

photoelectron (photon) counts and counting statistics were derived using

the intensity covariance functions.

No rigorous analysis of the binary source technique as implemented by

several French teams [Refs. 12-15] is currently available in the open litera-

ture; and, the analysis of this thesis reveals several interesting features not

previously noted.

The power spectrum and spatial covariance used by the French teams

are essentially correct; however, the error analysis of the binary source

technique is incomplete. A consideration of the photoelectron counting

statistics indicates that very large relative errors of 200 to 2,000 percent are

expected in any determination of the spatial covariance function. This

large error is not significantly improved by increasing the counting rate

above unity as indicated by Figure 8. Previous experimental work [Refs.

12-15] was limited to bright (magnitude 2) stellar binaries. However, an

elementary calculation of the available photons per counting time

(approximately one msec) coupled with the relative insensitivity of the

binary source technique to increased counting rates indicates that stellar
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binaries of magnitudes three to four are also suitable for detector apertures

of 30 to 60 centimeters.

The large relative error expected in an experimental determination of

the spatial covariance necessitates the use of a smoothing algorithm and

the least squares technique was selected. The advantage of least squares

analysis is that it accomplishes the two-fold purpose of data smoothing and

refractive index structure parameter profiling. The basis selected for the

least squares analysis is the nonorthogonal set of theoretically derived

spatial covariance functions for a series of atmospheric layers of increasing

attitude. The weighting coefficients derived using the least squares algo-

rithm are found to be the required refractive index structure parameters for

the atmospheric layers.

The expected improvement in the relative error remains an open-ended

question. The error analysis depends on the intermittency of atmospheric

turbulence and as indicated in Section IV, the error analysis in this thesis

constitutes a lower bound for the expected error. Clearly, further work on

the intermittent aspects of atmospheric turbulence is indicated.

Despite the large errors expected in the determination of the spatial

covariance function the binary source technique has several clear

advantages. As mentioned in the Introduction, the altitude resolution of

the binary source technique is superior to that of existing methods. The

implementation of the least squares algorithm is straightforward and

results in a relatively unambiguous determination of the structure

parameter profile. Modest aperture sizes (30 to 60 cm) are adequate for the

detector system. The greatest disadvantage of the technique is the paucity
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of suitable stellar binaries. However, by using stellar sources of up to

magnitude four this drawback becomes minor.

Based on this analysis, experimental implementation of this technique

should proceed, and the experimental profiles obtained should be compared

with insitu measurements or integrated profiles such as that produced by

stellar scintillometers [Ref. 16].

62



REFERENCES

1. Gossard, E.E., Gaynor, J.E., Zamora, R.J., and Neff, W.D., "Fine-
structure of Elevated Stable Layers Observed by Sounder and In Situ
Tower Sensors," Journal of the Atmospheric Sciences 42, pp. 2156-
2159, 1986.

2. Little, C.G., "Acoustic Methods for Remote Probing of the Lower
Atmosphere," Proceedings of the IEEE iZ, pp. 571-578, 1969.

3. Gage, K.S., Green, J.L., and Van Zandt, "Use of Doppler Radar for the
Measurement of Atmospheric Turbulence Parameters from Intensity
of Clear-Air Echoes," Radi Sce.c 15, pp. 407-416, 1980.

4. Bean, B.R., "Applications of FM-CW Radar and Acoustic Echosounder
Techniques to Boundary Layer and CAT Studies," Remote Sensing of
the Troposphere, Chapter 20, U.S. Government Printing Office, Wash-
ington, D.C., 1972.

5. Bufton, J.L., Menoh, T.T., Fitzmaurice, N.W., "Measurement of
Turbulence Profiles in the Troposphere," Journal of the Optical Society
of America , pp. 1068-1070, 1972.

6. Heneghan, J.M., and Ishimaru, A., "Remote Determination of the
Profiles of the Atmospheric Structure Constant and Wind Velocity
Along a Line-of-Sight Path by a Statistical Inversion Procedure," IEEE
Transactions on Antennas and Propagation AP-22, pp. 457-464, 1974.

7. Peskoff, A., "Theory of Remote Sensing of Clear-Air Turbulence
Profiles," Journal of the Optical Society of America 58, pp. 1032-1040,
1968.

8. Lee, R.W., "Remote Probing Using Spatially Filtered Apertures,"
Journal of the Optical Society of America f4, pp. 1295-1300, 1974.

9. Clifford, S.F., and Churnside, J.H., "Refractive Turbulence Profiling
Using Synthetic Aperture Filtering of Scintillation," Applied Optics 26,
pp. 1295-1303, 1987.

10. Fisher, M.J., and Krause, F.R., "The Crossed-Beam Correlation
Technique," Journal of Fluid Mechanics 2&, pp. 705-717, 1967.

11. Wang, T., Clifford, S.F., and Ochs, G.R., "Wind and Refractive-
Turbulence Sensing Using Crossed Laser Beams," Applied Optics 13,
pp. 2602-2608, 1974.

63

i- •-- i i l ll lnll II II ilil li I I -I I l lI I I I I



12. Rocca, A., Roddier, F., and Vernin, J., "Detection of Atmospheric
Turbulent Layers by Spaciotemporal and Spacioangular Correlation
Measurements of Stellar-Light Scintillation," Journal of the Optical
Society of America 64, pp. 1000-1004, 1974.

13. Roddier, C., and Vernin, J., "Relative Contribution of Upper and
Lower Atmosphere to Integrated Refractive-Index Profiles," Applied
Optcs 16, pp. 2252-2256, 1977.

14. Azouit, M., and Vernin, J., "Remote Investigation of Tropospheric
Turbulence by Two-Dimensional Analysis of Stellar Scintillation,"
Journal of the Optical Society of America E7, pp. 1550-1557, 1980.

15. Azouit, M., Vernin, J., Barletti, R., Ceppatelli, G., Righini, A., and
Speroni, N., "Remote Sensing of Atmospheric Turbulence by Means of
a Fast Optical Method: A Comparison with Simultaneous In Situ
Measurements," Journal of Applied Meteorology 19, pp. 834-838, 1980.

16. Stevens, K.B., Remote Measurement of the Atmospheric Isoplanatic
Angle and Determination of Refractive Turbulence Profiles by Direct
Inversion of the Scintillation Amolitude Covariance Function with
Tikhonov Reeularization, Doctoral Dissertation, Naval Postgraduate
School, Monterey, California, December, 1985.

17. Walters, D.A., Private Communication, June 15, 1988, Naval Post-
graduate School, Monterey, California.

18. Tatarski, V.I., Wave Propagation in a Turbulent Medium, Dover
Publications, New York, p. 1967, 1961.

19. Clifford, S.F., "The Classical Theory of Wave Propagation in a Turbu-
lent Medium," Topics in Applied Physics. Laser Beam Propagation in
the Atmosvhere, Vol. 25, Chapter 2, Springer-Verlag, New York, 1978.

20. Tennekes, H. and Lumely, J.L., A First Course in Turbulence, The
M.I.T. Press, Cambridge, Massachusetts, 1972.

21. Batchelor, G.K., The Theory of Homogeneous Turbulence, Cambridge
University Press, London, U.K., 1953.

22. Hanbury-Brown, R., and Twiss, R.Q., "A Stellar Interferometer Based
on the Principle of Intensity Interferometry," Interferometr, London:
Her Majesty's Stationary Office, 1960.

23. Fried, D.L., "Aperture Averaging of Scintillation," Journal of the
Optical Society of America 5E, pp. 169-174, 1967.

64

A



24. Kleen, R.H., and Ochs, G.R., "Measurement of Wavelength
Dependence of Scintillation in Strong Turbulence," Journa of the
Optical Society of America 6Q, pp. 1695-1697, 1970.

25. Saleh, B., Springer Series on Optical Sciences Photoelectron Counting
Saitc, Springer-Verlag, New York, 1978.

26. Papoulis, A., Probability. Random Variables. and Stochastic Pro-
css, McGraw Hill International, New York, 1984.

6

S

65

'4



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Donald L. Walters 10
Code 61 We
Naval Postgraduate School
Monterey, California 93943-5004

4. E. Rockower 2
Code 55 RF
Naval Postgraduate School
Monterey, California 93943-5000

5. K. E. Woehler 2
Code 61
Chairman, Physics Department
Naval Postgraduate School
Monterey, California 93943-5000

6. Lt. R. R. Holland, USNR 2
2495 11th Court SW
Vero Beach Highlands
Vero Bea-h, Florida 32962

66


