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RESEARCH OVERVIEW

I The research vehicle for this contract is the largest possible computer that could be conceived for the
mid to late 1990s. The technical challenges of such a machine serve as the guiding stimulus for the research

I carried out and reported here.

We imagine this machine to occupy a 14-story building, to cost upwards of $1,000,000,000, and to be so
colossal that the nation can only afford one or two of them. The available chip technology and machine size are
consistent with a million billion FLOPS (that's 10 to the 15th) and a million billion Bytes of memory. It will
dissipate 50 megawatts of power using CMOS technology. Communication across the machine will be much
slower than computation at a node. The architecture, software, interconnect technology, packaging, and5 operating system are unknown.

This investigation deals with hardware technology, software techniques, programming algorithms,
communications, processing elements, and applications. The study will determine the plausibility (not
feasibility) of such a machine. Progress in these various areas are highlighted in the individual sections below.
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CIRCUrrs

A returning faculty member, Prof. Thomas F. Knight, Jr., has taken over this aspect of the work
following the departure of Prof. Lance A. Glasser. Some immediate plans for this activity are outlined below.

We will design and construct a low latency processor to processor communication switch which uses
innovative ideas at the architectural, silicon, and packaging levels to reduce communications delays. At the
architectural level, the impact of simple source-responsible routing protocols on the development of fault
tolerant, extremely simple routing elements will be investigated. The reduction in complexity of the routing part
contributes to its speed. At the circuit level, high speed chip to chip communication techniques such as
transistor series terminated drivers will be investigated, as well as some ideas for using high speed microwave
modems to communicate in a non-baseband environment. In packaging, the objective includes a liquid cooled,
dense, three-dimensional second level wiring technology, with almost isotropic wire density in all three
dimensions.
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i PROCESSING ELEMENTS

Prof. Dally and his students have made significant progress in development of processing elements and
associated communications circuits.

We developed a deadlock-free adaptive routing algorithm for k-ary n-cube networks. This algorithm will
be used to implement fault-tolerant networks.

We completed an analysis and simulation study of network performance using different flow controlstrategies. This study showed that adaptive routing does not significantly improve performance. A flow control
discipline that permits messages to pass one another is needed to improve performance further.

In the laboratory we demonstrated a number of our network and arithmetic concepts in three prototype
chips: the NDF router, the RAP arithmetic chip, and a high-bandwidth memory chip.

A computer the size of the American Resource Computer will require the ability to change state rapidlyto hide transmission latency without sacrificing single-thread performance. We are working on an architecturefor a named state processor that explicitly binds names to registers. This mechanism combines the advantagesof multi-threading and multiple register sets for implementing fast context switches and procedure calls.

We are investigating programming strategies for very large numbers of processors based on agents andagencies (Minsky, Society of the Mind). We are planning to use agencies to implement concurrencyI abstractions for naming and information sharing.

We are investigating the application of a computer of the scale of the American Resource Computer to
database applications. The issues involved include data partitioning, methods for insuring stability and
persistence, concurrency control, and efficient algorithms for search and update.
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COMMUNICATIONS TOPOLOGY AND ROUTING ALGORITHMS

Charles E. Leiserson is currently on leave at Thinking Machines Corporation, through December 1988.
On his return to MIT, he plans to continue his investigations into parallel computation, focusing principally on
issues related to timing, synchronization, fault tolerance, and routing algorithms. He also expects to complete a
textbook, entitled Introduction to Algorithm, coauthored with Thomas H. Cormen and Ronald L Rivest.

Guy Blelloch is finishing his thesis, titled "Scan Primitives and Parallel Vector Models." The thesis
suggests a new class of algorithmic models for parallel computing. These models are based on a set of
operations on vectors of atomic values. The thesis shows how the models can be used for algorithm design, how
they can be implemented on various computers, and how they can be used as the back end of a compiler for
high-level languages. The thesis also suggests that a set of scan operations should be considered primitive
parallel operations. Next year he will be an Assistant Professor at Carnegie Mellon University.

Tom Cormen has concentrated on writing the textbook Introduction to Algorithms with Professors
Leiserson and Rivest. The textbook includes several chapters on parallel algorithms and circuitry. The writing
should be completed by the end of 1988.

Jeff Fried is currently working on a number of problems to the impact of synchrony on the performance
of distributed algorithms. He is also working on the architecture and blocking analysis of sparse circuit-
switched interconnection networks. His most significant results relate to the design of VLSI processors for use
within the interconnection networks found in telecommunications, distributed computing, and parallel
processing.

Ron Greenberg and Mike Foster of Columbia have established matching lower and upper bounds for
the area required to implement finite-state machines in VLSI. In addition Greenberg has continued work on
the subject of universal routing networks for parallel computation. Greenberg and Leiserson's paper on
compact layout of the three-dimensional tree of meshes provides a simple proof of results used to establish
upper bounds on the penalty paid for using a general network to simulate all parallel machines, and Greenberg
is currently making progress on lower bound results.

Greenberg and Alexander Ishii have also been working with Alberto Sangiovanni-Vincentelli of Berkeley
on a multi-layer channel router for VLSI circuits, called MulCh. While based on the Chameleon system
developed at Berkeley, MulCh incorporates the additional feature that nets may be routed entirely on a single
interconnect layer (Chameleon requires the vertical and horizontal sections of a net be routed on different
interconnect layers). When used on sample problems, MulCh shows significant improvements over
Chameleon in area, total wire length, and via count.

Ishii has completed his masters thesis, which describes his models for VLSI timing analysis. The model
maps continuous data-domains, such as voltage, into discrete, or digital, data domains, while retaining a
continuous notion of time. The majority of the thesis concentrates on developing lemmas and theorems that
can serve as a set of "axioms" when analyzing algorithms based on the model. Key axioms include the fact that
circuits in our model generate only well defined digital signals, and the fact that components in our model
support and accurately handle the "undefined" values that electrical signals must take on when they make a
transition between valid logic levels. In order to facilitate proofs for circuit properties, the class of
computational predicates is defined. A circuit property can be proved by simply casting the property as a
computational predicate.

Ishii has also been working with Bruce Maggs on a new VLSI design for a high-speed multi-port register
file. Design goals include short cycle-time and single-cycle register window context changes. This research
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began as an advanced VLSI class project, under the supervision of Prof. Knight of the MIT Artificial
Intelligence Laboratory.

James K. Park is currently collaborating with Alok Aggarwal and Dina Kravets on a number of problems
in Computational Geometry. He is also working with Bruce Maggs on the problem of finding an optimal offline
deterministic routing algorithm for the butterfly-fat-tree. Park's most significant contribution of the past year
was his work with Aggarwal on monotone arrays.

Cindy Phillips and Charles Leiserson extended the graph contraction results of Phillips to lead to
0(1g n + lg 2-y) -time randomized algorithms for finding the connected components (and related problems)
of n-node bounded degree graphs where -y is the maximum genus of any connected component. With Guy
Blelloch and (from Thinking Machines Corp) Ajit Agrawal and Robert Krawitz, Phillips investigated primitives
for efficiently manipulating dense matrices in massively parallel hypercube architectures where many matrix5 elements must be mapped to a single processor.

Serge A. Plotkin finished his Ph.D. thesis entitled Graph-Theoretic Techniques for Parallel Distributed.
and Sequential Computation. His thesis includes the following results:

* A novel algorithm for symmetry breaking in distributed and parallel computing environments that runs
in O(1gn) time.

e A new atomic data object, called a Sticky Bit. A polynomial number of Sticky Bits are sufficient to
convert a safe, implementation of an arbitrary sequential object into an atomic one in a shared-memory
multiprocessing environment.

1 e An algorithm for managing a global resource in a distributed network. In particular, the algorithm
allows a resource used by a protocol of n processors to be managed with only amortized 0(lg2n) message

* overhead.

* A parallel algorithm for solving the minimum spanning tree problem on a n-by-n mesh-connected
computer that runs in 0(n) time. The algorithm is. novel because it is based on reducing the minimum
spanning tree problem to the problem of finding shortest paths.

* The first sublinear-time parallel algorithm for bipartite matching. The algorithm runs in
0 (n 213 1 93n) time on a graph of n vertices, and can be generalized to solve 0-1 flow problems, both
including both weighted and unweighted versions.

* Two sequential algorithms for the generalized circulation problem (network flow with losses and
gains) which are the first polynomial-time combinatorial algorithms for this problem. One algorithm runs in
O(n2m2 lg 2 n Ig B) time and the other runs in O(n2m2 lg n lg2 B) time, where n is the number of
nodes, m is the number of edges, and B is the largest integer used to represent capacities and gains, where

I gains are represented as ; atios of integers.

Plotkin has assumed a postdoctoral position at Stanford University.

I Mark Newman's interests include fault tolerant parallel computation and efficient procedures for
simulating one parallel network with another. During the past year, he completed work with Leighton and
Johan Hastad which showed how a hypercube with a large number of faulty processors and communication
paths could be used for computation. They showed that, even if a constant fraction of the hypercube's
components fail, the cube can simulate a fully functioning hypercube using only a constant factor more time. In
the next year, Newman plans to extend the results for faulty hypercubes to other networks and to search for
efficient graph embeddings which aid in network simulation.

I
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SYSTEMS SOFTWARE

Studies in sc-dability of large-scale shared-memory multiprocessors focussing on the use of locality in
various forms to reduce the latency of memory accesses. A major part of the work headed by Prof. Anant
Agarwal has also focussed on developing better data collection and evaluation techniques for multiprocessors.

The data from several address tracing techniques that we developed for both symbolic and numeric
computing showed that parallel programs exhibit a significant amount of locality, and that this locality could be
successfully exploited by caches at the processor level to provide a high effective memory bandwidth to the
processor. An evaluation of the large-scale interconnection network performance of both hardware cache
coherence (based on a novel directory structure) and software coherence schemes showed that the hardware
directory scheme could perform well under significant sharing levels, while the software schemes could be relied
upon for low to moderate sharing levels.

Our future research will focus on two aspects. Investigating high-performance interconnection
technology for large-scale multiprocessing. We are building a prototype network clocked at 100MHz that will
provide an average memory access time for a 256-processor system of less than 200ns. We are also investigating
how locality of addressing can be incorporated into the network and to what extent programs can exploit the
locality in the network. The second aspect of our research will research novel techniques of synchronization
such a barriers and semaphores with a back-off capability to reduce network traffic by minimizing unnecessary
spins on the network, and do a detailed design of the directory structure required to maintain cache coherence
on a large scale. Plus, continued work on network and cache evaluation techniques and multiprocessor data
collection efforts.
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I ALGORITHMS

Prof. Leighton and his students have discovered a very efficient randomized algorithm for routing in
such networks as the hypercube, butterfly and shuffle-exchange graph that is robust in the sense that the same
algorithm works for virtually any network in near-optimal time (e.g., even in arrays).

They have also discovered an entire class of approximation algorithms for layout related problems in
VLSI such as graph partitioning, crossing number and layout area.

In addition, they have discovered efficient embeddings for a variety of useful networks in the hypercube
and butterfly. Such embeddings are useful for mapping processes to processors in both synchronous and
asynchronous parallel machines.

I Michelangelo Grigni drafted "Tight Bounds on Minimum Broadcast Networks" with David Peleg of the
Weizmann Institute (previously Stanford).

A certain class of recursively structured graphs had been proposed an examples of graphs which
required small wire area, but large chip area, to lay out. Mark Hansen disproved this conjecture and
demonstrated that this class of graphs have chip layout area equal to wire area. He has also developed some
techniques for proving lower bounds on the area required to embed rectangular grids in square grids.

Richard Koch has probabilistically analyzed a routing scheme which has been implemented on parallelfl architectures based on the butterfly graph.

Dina Kravets developed algorithms for finding all farthest neighbors of every vertex on a convex n-gon in
e (n) time, for sorting every row of a monotone matrix in e (n2 ) time, and for sorting a set of numbers given
ranges of ranks in e(n log Q/n) where Q is the sum of the ranges.

Satish Rao and Tom Leighton have found the first approximation algorithms for the problems of finding
small graph separators, VLSI layout and crossing number. Leighton, Maggs, and Rao have explored solutions
to packet routing problems with fixed congestion and dilation in LMR. They show the existence of a constant
overhead schedule for such problem.

I Eric Schwabe proved a general lower bound showing that any bounded-degree network which can
manage m local priority-queue memories must have total size Qt(m log m), even if randomized algorithms
are allowed. This lower bound can be achieved -- meaning it is a network and algorithm which can manage m
such memories in O(mI log m) total space. As a side result of the techniques used in this algorithm, Hansen
developed a simple algorithm for permutation routing of n messages on a butterfly network deterministicaUy
andon-linein O((logn)/(log log n)) steps.

U
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APPLICATIONS

Profs. Jacob White and Srinivas Devadas and their students are investigating difficult simulation tasks in
an effort to challenge the capabilities of the American Resource Computer.

In this past year we proved a result about the optimality of Gauss-Jacobi over Gauss-Seidel on parallel
processors, and developed a banded Gauss-Jacobi relaxation approach to simulating circuits that is fast and
reliable. In addition, we proved several new results about the uniformity of WR convergence for nonlinear
diagonally dominant systems, and demonstrated the result's practical implications on one dimensional MOS
device simulation. We also reformulated the capacitance extraction problem into an iterative algorithm whose
steps involve a potential field from point charge calculation, for which order N log N approximate
algorithms exist. This implies that it is possible to reduce the complexity of capacitance extraction problem
from the commonly used NI approach to N log N. Finally, we found several new approaches for the
detailed simulation of switching filter circuits, and in particular implemented a new method for distortion
calculation of switched capacitor filters.

In the immediate future, we will continue the investigation of the capacitance calculation problem, and
will also try to apply the N log N approach to the calculation of inductances. In the area of device
simulation, we will be working on numerical techniques for solving the hydrodynamics-based MOS device
equations, parallel iterative techniques for two and three dimensional device simulation, and parallel WR for
mixed device-circuit simulation. In the area of circuit simulation, we are investigating parallel nonlinear multi-
grid like techniques for the simulation of analog arrays, investigating parallel exponential fitting discretization
schemes, and trying to extend the approach to simulation of clocked analog circuits to phase-locked loops.
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A MEMORY DESIGN FOR THE MESSAGE-DRIVEN PROCESSOR

Soca M. N. Hassoun

Abstract

The Message-Driven Processor (MDP) is a low-latency processing node for a scalable
fine-grain MIMO concurrent computer, the Jellybean Machine. Programs are executed
by passing messages through a low-latency network. Each MDP integrates a
processor, a memory, and a communication network. On top of this message-passing
model, the MOP supports a global virtual address space.

This thesis involves the design and implementation of a memory for the Message-Driven
Processor. The memory array can be accessed by index, by row, or as a set-associative
cache. Index operations are used to read and write memory. Row operations reduce
the latency in message-handling by providing special purpose buffers, Row Buffers that
access four words (a row) of memory simultaneously. Two Queue Row Buffers enable
buffering messages at two different priority levels as soon as they arrive from the
network. An Instruction Row Buffer acts as a small instruction cache. Set-associative
operations provide a translation mechanism to enable translating any object to its
associated item. MDP operating system routines use this cache to translate virtual
identifiers into global addresses.

The microarchitecture and the circuit design of the memory is developed. A test chip is
fabricated to verify the design. Evaluation of the row operations is presented.

Microsystems Massachusetts Cambridge Telephone
Research Center Institute Massachusetts (617) 253-8138
Room 39-321 of Technology 02139
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August 1988

DESIGN OF A NETWORK FOR CONCURRENT MESSAGE PASSING SYSTEMS

Paul Y. Song

Abstract -

We describe the design of the network design frame (NDF). a self-timed routing chip for a message-
passing concurrent computer. The NDF uses a partitioned data path, low-voltage output drivers, and a
distributed token-passing arbiter to provide a bandwidth of 450 Mbits/sec into the network. Wormhole
routing and bidirectional virtual channels are used to provide low latency communications, less than 2us
latency to deliver a 216 bit message across the diameter of a 1K node mess-connected machine. To
support concurrent software systems, the NOF provides two logical networks, one for user messages and
one for system messages. The two netwcrks share the same set of physical wires. To facilitate the
development of network nodes, the NOF is a design frame. The NDF circuitry is integrated into the pad
frame of a chip leaving the center of the chip uncommitted.

We define an analytic framework in which to study the effects of network size, network buffering capacity,
bidirectional channels, and traffic on this class of networks. The response of the network to various
combinations of these parameters are obtained through extensive simulation of the network model.
Through simulation, we are able to observe the macro behavior of the network as opposed to the micro
behavior of the NDF routing controller.

We subsequently define the limitations of the network and propose recommendations for enhancing the
network performance. The limitation of the network arises from contention for the switching elements of
the NDF. The use of virtual channels allows better utilization of network bandwidth by doubling the number
of switches at each node. A three dimensional version of the NOF will be needed to support large
machines that exceed 16 nodes in a dimension. Adding a third dimension Increases the bisection width of
the network and gives us more throughpuL
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A MIXED FREOUENCY-TIME APPROACH FOR FINDING THE STEADY-STATE
SOLUTION OF CLOCKED ANALOG CIRCUITS

K. Kundert, J. White, and A. Sangiovanni-Vincentelli

Abstract

Performing detailed simulation of clocked analog circuits (e.g. switched-capacitor filters
and switching power supplies) with circuit simulation programs like SPICE is
computationally very expensive. In this paper we present a new, more efficient, method
for computing the detailed steady-state solution of clocked analog circuits. The method
exploits the property of such circuits that the waveforms in each clock cycle are similar
but not exact duplicates of the proceeding or following cycles. Therefore, by computing
accurately a few selected cycles, the entire steady-state solution can be constructed
efficiently.
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3 THE RECONFIGURABLE ARITHMETIC PROCESSOR

Stuart Fiske and William J. Daily

Abstract

The Reconfigurable Arithmetic Processor (RAP) is an arithmetic processing node for a
message-passing, MIMD concurrent computer. It incorporates on one chip several
serial, 64 bit floating point arithmetic units connected by a switching network. By
sequencing the switch through different patterns, the RAP chip calculates complete
arithmetic formulas. By chaining together its arithmetic units the RAP reduces the
amount of off chip data transfer; In the examples we have simulated off chip I/0 can
often be reduced to 30% or 40% of that required by a conventional arithmetic chip.
Simulations predict a peak performance of 20M Flops with 800M bit/sec off chip
bandwidth in a 2 pm CMOS process.
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REDUCING THE PARALLEL SOLUTION TIME OF SPARSE CIRCUIT MATRICES
USING REORDERED GAUSSIAN ELIMINATION AND RELAXATION

David Smart and Jacob White

Abstract

Using parallel processors to reduce the execution times of classical circuit simulation
programs like SPICE and ASTAP has been the focus of much current research. In these
efforts, good parallel speed increases have been achieved for linearized system
construction, but it has been difficult to get good parallel speed increases for sparse
matrix solution. In this paper we examine two approaches for reducing parallel sparse
matrix solution time; the first based on pivot ordering algorithms for Gaussian
elimination, and the second based on relaxation algorithms. In the section on Gaussian
elimination sparse matrix solution, we present a pivot ordering algorithm which increases
the parallelism of Gaussian elimination compared to the commonly used Markowitz
method. The performance of the new algorithm is compared to other suggested
ordering algorithms for a collection of circuit examples. The minimum number of parallel
steps for the solution of a tridiagonal matrix is derived, and it is shown that this optimum
is nearly achieved by the ordering heuristics which attempt to maximize parallelism. In
the section on relaxation, we present an optimality result about Gauss-Jacobi over
Gauss-Seidel relaxation on parallel processors.
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WAVEFORM RELAXATION APPLIED TO TRANSIENT DEVICE SIMULATION

M. Reichelt, J. White, J. Allen, and F. Odeh

Abstract

In this paper we investigate the possibility of accelerating the transient simulation of MOS
devices by using waveform relaxation. Standard spatial discretization techniques are
used to generate a large, sparsely-connected system of algebraic and ordinary
differential equations in time. The waveform relaxation (WR) algorithm for solving such a
system is described, and several theoretical results that characterize the convergence of
WR for device simulation are given. In addition, one-dimensional experimental results
are presented.
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Waveform Relaxation Applied to Transient
Device Simulation

3 M. Reichelt, J. White, J. Allen
Research Laboratory of Electronics and the
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F. Odeh
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Abstract
In this paper we investigate the possibility of accelerating the tran-

sient simulation of MOS devices by using waveform relaxation. Standard
spatial discretization techniques are used to generate a large, sparsely-
connected system of algebraic and ordinary differential equations in time.
The waveform relaxation (WR) algorithm for solving such a system is de-
scribed, and several theoretical results that characterize the convergence
of WR for device simulation are given. In addition, one-dimensional ex-
perimental results ate presented.

1 Introduction
Bath digital and analog MOS circuit designers rely heavily on circuit simulation

programs like SPICE [3] to insure the correctness and to test the performance of
their designs. For most applications, the lumped MOS models used in these pro-
grams [91 accurately reflect the behavior of terminal currents and charges, but in
some cases, these models are not adequate. In particular, charge redistribution
between source and drain during device switching cannot easily be modeled by
a lumped device, but the details of this charge redistribution can have an im-
portant effect on circuit behavior. In circuits like dynamic memory cells, sense
amplifiers, analog-to-digital converters, and high frequency operational ampli-
fiers, charge redistribution effects may not only degrade performance, but can
inhibit proper function.

For these critical applications, sufficiently accurate transient simulations can
be performed if, instead of using a lumped model for each transistor, the transis-
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tor terminal currents and charges are computed by numerically solving the drift-
diffusion based partial differential equation approximation for electron transport
in the device. However, simulating even a few transistor circuit in this way is
very computationally expensive, because the accurate solution of the transport
transport equations an MOS device requires a two dimensional mesh with more
than a thousand points.

In this paper we investigate the possibility of accelerating the transient sim-
ulation of MOS devices by using waveform relaxation. In the next section we
start by introducing the equations for transient device simulation. Then we view
the result of applying commonly used spatial discretization techniques to these
equations, generating a large, sparsely-connected system consisting of algebraic
and ordinary differential equations in time. In Section 3 we present the waveform
relaxation algorithm for solving such a system, and suggest why it may be par-
ticularly efficient. Several theoretical results that characterize the convergence
of the method are presented in Section 4, and one-dimensional experimental
results are described in section 5. Finally, conclusions and acknowledgements
are given in section 6.

2 Classical Simulation Equations

The terminal behavior of an MOS device is well described by the Poisson equa-
tion and the electron current-continuity equation [51

V 2 + q (N - n)= (1)
-On

V j--qL= 0(2)

In these equations 0 is the electrostatic potential, q is the magnitude of elec-
tronic charge, n is the electron concentration, and Jn is the electron current
density. N is the net doping concentration given by N = PND - NA where ND
and NA are the donor and acceptor concentrations.

The electron current density is commonly approximated by the drift-diffusion
equation:

Jn, = -q (An n VO - DnVn) (3)

where , is the electron mobility, and Dn is the diffusion coefficient. An equa-
tion system with only n and 0 as unknowns is derived by using (3) to eliminate
Jn from (2).

There are a variety of ways to spatially discretize the system of two equa-
tions in the two unknowns n and 0. Given a rectangular two dimensional mesh,
a common approach is to use a finite-difference formula for the Poisson equa-
tion, and an exponentially-fit finite-difference formula for the current-continuity
equation. For notational simplicity, we will assume that the mesh points are
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evenly spaced a distance I apart, so that the discretized Poisson equation at
each mesh point i is:

- O,) + q1' (N, - n,) = 0 (4)

where ni, Oi, and Ni are the electron concentration, the potential, and the net
doping concentration at mesh point i. The summation is taken over the nodes
j surrounding i (four nodes for a mesh node i not on the boundary, i.e. north,
south, east, and west).

Under the same assumptions, and assuming constant mobility, the discretized3 current-continuity equation with the drift-diffusion approximation becomes:

qDn [B(uj - ui)nj - B(ui - ui)ni] - q 12 (t n) 0 (5)

where ui = qoi/KT and B(z) = z/(expz - 1) is the Bernoulli function used
to exponentially fit the potential variation to the electron concentration varia-
tion. In this equation, the Einstein relation D, = (KT/q)p,n has been used to
eliminate An .

If there are m mesh points, then the result of applying the spatial discretiza-
tion to (1),(2), and (3) is a sparse system of m algebraic constraints, represented
by (4), and a sparsely connected system of m ordinary differential equations,
represented by (5).

S3 The Waveform Relaxation Process

The standard approach used to solve these two systems is to discretize the
d7,ni(t) term in (5) with a low order integration method such as backward-Euler

[1]. The result is a sequence of algebraic systems in 2m unknowns, each of which
can be solved with some variant of Newton's method and/or relaxation. Another
approach is to apply relaxation directly to the differential equation system. This
leads to a time waveform relaxation process, as given by the following algorithm.

Although only the Gauss-Jacobi algorithm is presented for the sake of no-
tational simplicity, a Gauss-Seidel version could be created by adjusting theiteration indexes.

The Wit algorithm reduces the problem of simultaneously solving m differ-
ential equations and m algebraic equations to one of iteratively solving 2m inde-
pendent equations. Each of the m differential equations for the ni(t) waveforms
can be solved with a numerical integration method such as backward-Euler.
Since they only contribute algebraic constraints, the equations for calculating
the O (t) waveforms need to be solved only at the discrete points in time used
to calculate the ni(t) waveforms.
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Algorithm 1 WR Gauss-Jacobi Algorithm for solving the system
produced by equations (4) and (5).

The superscript k denotes the iteration count, the subscript
i denotes the component index of a vector, and eO and c,,
are small positive numbers.

k 4-- 0!

repeat

foreach(i E {1 .... ,n}) {
solve

E (0 ' - ) + q2 ( -,-) -- 0

qD, E [B( k-1 - U-,I )nkl-- - B(u k-1 uk- )n]

-q 12 ( d) -0

for(,(t), n,(t); t E [0,71, n(O) = -,o)

U ntil(llo - fik-1 11 < e and Ink - nk-11 < 3,.)

I
I!
I
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The inherent advantage of the WR approach is that the differential tquations
are solved in a decomposed fashion, and therefore different sets of timesteps can
be used at different mesh points to calculate the time evolution of the electron
concentration. The method exploits multi-rate behavior. In MOS devices, the
rate at which electron concentrations evolve may be very different in the channel
compared to the source or the drain. Therefore, WR may prove to be efficient
for the device simulation problem, provided it converges, and doesn't take too
many iterations. This is the subject of the next section.

4 Theoretical Results

As is uslially the case for waveform relaxation algorithms applied to systems of
differential equations, Algorithm 1 converges to the solution of the differential-
algebraic system for any initial guess that matches the initial conditions. The
precise statement is given in the following theorem.

Theorem 1 Given a finite interval [0, T], and any initial guess no(t) and k°(t),
t E [0,21, such that nO(O) = no, the sequence of waveforms produced by Alg. 1
converges to the exact solution of the system given by equations (4) and (5).

The proof of the above theorem follows the same steps as the Picard-like
proofs of waveform relaxation for ordinary differential equations [10). First the
equations that describe the difference between one iteidLion and the next are
organized into the form

8bk+1 = Abibh + B6nk(t) (6)

and

Sn +'(t) = [f(nk+1(t), nk(t), ok(t)) - f(nk(t), n k-(t), ok-l(t))] (7)

where 86 = 0 - 0-, 6n = n' - n -1 . The matrices A, B E R" ' and
the function f :-Imxmm - K" are constructed from the iteration equations
in Alg. 1. The next step is to show that (6) and (7) represent a contraction.
To this end, consider an interval of time short enough to insure equation (7)
represents a contraction with respect to n for a fixed 0. That (6) is a contraction
with respect to k for a fixed n is well-known (8], as (6) represents relaxation
applied to the Poisson equation. One can fit the two contractions together to
show that relaxation applied to the coupled system converges.

The above proof outline suggests that the WR algorithm converges in a
nonuniform manner. That is, first convergence is achieved over a short time
interval, set by what is needed to make (7) a contraction, then over the next
short time interval, and then the next, continuing slowly, until the convergence
is achieved throughout an entire interval of interest. When applied to general
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differential equation systems, like circuits, WR does demonstrate this nonuni-
formity in the convergence [7], but WR does not usually show nonuniformity
when applied to the transient device simulation problem.

In order to analyze why this is the case, we will consider a model problem of
just the differential equation associated with the electron concentration, n and
assume that the potential 0 is known. The WR iteration update equation for
this case is then

D, [B(uji - ui)n - B(u- ] _ 12 (±n 4') = 0 (8)

for each i E {1.... m}. Note that given 0, (8) is a linear time-varying differential
equation in n. For this problem we have the following theorem.

Theorem 2 If at each time t, 4'(t) is such that the electric field along any
vertical or horizontal line is either constant, or monotonically increasing, then
(8) is a contraction in a uniform norm on any finite interval [0, T]. That is,

rnax(0,Tlll6n' + '(t)lJ <5 -traz[0,71ll6nk (t)ll (9)

where 7 < 1.

The proof of Theorem 2 is given in the appendix.
Since allowing the different differential equations to take very different timesteps

is WR's main advantage, if this property were limited to insure convergence, the
WR algorithm would not be effective. Fortunately, that the WR algorithm is a
contraction in a unform norm on any interval implies that the timesteps used
to numerically integrate the differential equations are almost unconstrained.
Given that the different differential equations use different timesteps, interpo-
lation must be used to communicate results between equations, and if not done
carefully this can cause nonconvergence. Linear interpolation is certain not
cause problems, and therefore we have the following theorem [7]:

Theorem 3 Let each of the m independent WR iteration update equations
given in (8) be solved numerically with backward-Euler, with m different sets of
timesteps. In addition, assume that linear interpolation is used to derive values
for the nas between time discretization points. Then this multirate discretized
WR algorithm for (8) converges, regardless of the timestep selections.

5 One Dimensional Experiments

Except for Theorem 1, the above theoretical results only apply under certain
conditions, and are only an indication that the WR algorithm may be effective.
In order to verify that the theoretical results apply in actual simulation, a one-
dimensional transient device simulation program was written and applied to a
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one-dimensional approximation of an MOS device with a conducting channel.
The doping distribution for the one-dimensional device is given in Fig. 1, where
the tick marks denote the mesh points. Potential and electron concentration
boundary conditions were given a. z = 0.0 and x = 3.0p. The boundary values
for the electron concentration were computed assuming charge neutrality at the
"contacts".

The relaxation process was tested by first solving the static problem with
zero volts across the "device", and then making a step change of five volts.

II Even with this simple example, the variable-by-variable WR algorithm as given
in Alg. 1 was ineffective. The iterates did not converge in a uniform manner,
and they converged very slowly.

In order to improve convergence, rather than using variable-by-variable de-
composition, we partitioned the problem into blocks based on two techniques.
First, we associated the electron concentration at node i, n,(t) with the potential
I i(t) at that node. Then, in order to try to satisfy the assumptions of Theorem
2, we placed together neighboring nodes where we expected rapid changes in
the electric field. The resulting partitioning of the nodes are boxed in Fig. 1.

The resulting waveform iterations for the slowest converging variable, the
electron concentration for the mesh point where the doping changes abruptly, is
plotted in Fig. 2. As the figure indicates, with the partitioning just described,
the WR process converges in just a few iterations and the contraction is uniform
through time as predicted by Theorem 2. The simulation was rerun with very
coarse timesteps to see the effects on convergence, and the WR iterations for the
same node is plotted in Fig. 3. As the figure indicates, using ccarse timesteps
does not effect the overall convergence, although the convergence for small t is
slowed.

* 6 Conclusions and Acknowledgements

In this paper we presented some preliminary results that indicate the WR al-
gorithm may indeed be efficient for device transient simulation. In particular,
it was shown that under conditions that can be arranged for in practice, the
WR algorithm is a contraction in a uniform norm on any interval [0, T]. Also,
given these same conditions, the relaxation process will still converge even if
very different sets of timesteps are used for the individual iteration equations.
Finally, we verified the theoretical results on a one dimensional example.

There are several aspects of WR that need to be addressed if this method
it to be efficent for two-dimensional MOS transient device simulation. Most
important, a general algorithm for blocking the device must be developed. An
efficent approach for determining what discretization points to use for the alge-
braic constraints must be considered. In addition, the efficiency of WR methods
can also be improved by refining the timesteps with iterations, or using a single
waveform-Newton iteration to solve the nonlinear WR iteration equations.
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A Proof of Theorem 2

The WR iteration equations applied to the model problem (8) can be described
as3k jik+'(t) = D(t)nk+l(t) + M(t)nk(t) (10)

where D(t), M(t) E Rnxh, and D(t) is negative diagonal matrix. The assump-
tions about the electric field result in values for the Bernoulli functions such3 that D(t) and M(t) will satisfy the relation

jBdi(t)JI 2_ ci + E ]]mij(til-. (1

where ci _ 0 and is strictly greater than zero for those i's corresponding to the
mesh points next to the boundaries. Note that this implies

[[D(t)-IM(t)[ S< 7 (12)

for y < 1, for some norm on R.,n and for all t.
Given the relationship between D(t) and M(t), the WR algorithm applied

to a system of the form of (13) will contract in a uniform norm. This has been
shown for the case when D(t) and M(t) are independent of t, using Laplace
transforms [2]. In the time dependent case, the result can be shown by examining
the difference between iteration k and k + 1 of (13) to get

6n,+'(i) = di(t)6n +'(t) + mij(t)6n ,) (13)

'Si

for each mesh point i, where 6n'(t) = n (t)-n-'(t). By assumption, d,,(t) < 0
and 6n#(0) = 0. Therefore,

maz[o,T] f6n +1 (t) I_ maz[o,TT i -- Imax[o,2l]6n (t) . (14)

Equation (14) follows from the fact that for all values of 6nk+ 1 (t) on the bound-
ary of (or outside) the bounded region 6n +i(t) points back into the bounded
region [6].

Assembling the equation system from (14) results in

3 maz[o,T]I6n k+1(t) _5 maz[oID(t)-'M(t)ma [o,Tlh6n k(t)I. (15)

Then in the norm for which IID(t)- 1 M(t)jI ! 7 < 1.0,

3 mazojll6n+l(t)Il < 'ymaxz[o,T]I6nk(t)II. (16)

which proves the theorem.
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OPTIMAL SIMULATIONS BY BUTTERFLY NETWORKS

Sandeep N. Bhatt, Fan R. K Chung, Jia-Wei Hong, F. Thomson Leighton, and Arnold L
Rosenberg

Abstract

The power of Butterfly-type networks relative to other proposed multicomputer Interconnection networks Is
studied, by considering how efficiently the Butterfly can simulate the other networks. Simulation is
represented formally via graph embeddings, so the topic here becomes: How efficiently can one embed
the graph underlying a given network in the graph underlying the Butterfly network? The efficiency of an
embedding of a graph G In a graph H Is measured in terms of. the dlaton, or, the maximum amount that
any edge of G Is "stretched" by the embedding; the expansion, or, the ratio of the number of vertices of H
to the number of vertices of G. Three general results about embeddlngs in Butterfly-type graphs are
established here, that expose a number of simulations by Butterfly-type networks, which are optimal (to
within constant factors): (1) Any complete binary tree can be embedded in a Butterfly graph, with
simultaneous dilation 0(1) and expansion 0(1). (2) Any n-vertex graph having a ,/2-bifurcator of size S -

n(Iog n) can be embedded In a Butterfly graph with simultaneous dilation 0(log S) and expansion 0(1). (3)
Any embedding of a planar graph G in a Butterfly graph must have dilation l{ [log Z (G)]/§ (G)}: E (G) is the
size of the smallest 1/3-2/3 vertex-separator of G; 0 (G) Is the size of G's largest interior face. Corollaries
include: (a) The n-vertex X-tree can be embedded In the Butterfly with simultaneous dilation O(1og log n)
and expansion 0(1); no embedding yields smaller dilation, independent of expansion. (b) Every
embedding of the n x n mesh in the Butterfly has dilation fl (log n); any expansion-O(1) embedding of the
mesh in the Butterfly achieves this dilation. These results, which extend to Butterfly-like graphs such as the
Cube-Connected Cycles and Benes networks, supply the first examples of graphs that can be embedded
more efficiently in the Hypercube than in the Butterfly.
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3 Abstract

The power of Butterfly-type networks relative to other proposed multicomputer
interconnection networks is studied, by considering how efficiently the Butterfly
can simulate the other networks. Simulation is represented formally via graph
embeddings, so the topic here becomes: How efficiently can one embed the graph
underlying a given network in the graph underlying the Butterfly network? The
efficiency of an embedding of a graph G in a graph H is measured in terms of:
the dilation, or, the maximum amount that any edge of G is "stretched" by the
embedding; the expansion, or, the ratio of the number of vertices of H to the
number of vertices of G. Three general results about embeddings in Butterfly-type
graphs are established here, that expose a number of simulations by Butterfly-type
networks, which are optimal (to within constant factors): (1) Any complete binary

I tree can be embedded in a Butterfly graph, with simultaneous dilation 0(1) and
expansion 0(1). (2) Any n-vertex graph having a v/2-bifurcator of size S = fl(log it.)
carl be embedded in a Butterfly graph with simultaneous dilation O(log S) and3. expansion 0(1). (3) Any embedding of a planar graph G in a Butterfly graph
must have dilation fl (E' Z(G) is the size of the smallest 1/3-2/3 vertex-
separator of G; $(G) is the size of G's largest interior face. Corollaries include: (a)
The n-vertex X-tree can be embedded in the Butterfly with simultaneous dilation
O(log log n) and expansion 0(1); no embedding yields smaller dilation, independent

I of expansion. (b) Every embedding of the n x n mesh in the Butterfly has dilation
11(log n); any expansion-O(1) embedding of the mesh in the Butterfly achieves this
dilation. These results, which extend to Butterfly-like graphs such as the Cube-

I Connected Cycles and Benes networks, supply the first examples of graphs that can
be embedded more efficiently in the Hypercube than in the Butterfly.

I!
I
I
I
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I 1. INTRODUCTION

This paper reports on a continuing program of the authors, dedicated to determining
the relative computational capabilities of the various interconnection networks that
have been proposed for use as multicomputer interconnection networks [BCLR, BI,
GHR, Le]. We focus here on one member of the family of butterfly-like machines,
that have become one of the benchmark architectures for multicomputers. The
major contributions of this paper are the following general results about embeddings
of graphs in Butterfly networks':

1. We embed the complete binary tree in the Butterfly network, with simulta-
neous dilation 0(1) and expansion 0(1).

2. We embed any n-vertex graph having a v/2-bifurcator of size S = fl(log n)
in the Butterfly network, with simultaneous dilation O(log S) and expansion
0(1).

3. We prove that any embedding of any planar graph G in a Butterfly network
must have dilation (log (G)

where: E(G) is the size of the smallest 1/3-2/3 vertex-separator of G; O(G)
is the size of G's largest interior face.

The latter two results lead to embeddings of graphs such as X-trees and meshes in
I the Butterfly, that are optimal, to within constant factors. By Result 2, such embed-

dings can be found with expansion 0(1) and with, respectively, dilation O(log log n)
and O(log n); by Result 3, no embeddings can improve on these dilations, indepen-

I dent of expansion. These embeddings expose X-trees and meshes as the first known
graphs that can be embedded very efficiently in the Hypercube (simultaneous dilation

0(I) and expansion 0(1)) but have no efficient embedding in butterfly-like graphs.
Note that, if we restrict attention only to the issue of dilation, then - to within con-
stant factors - these graphs cannot be embedded any more efficiently in Butterfly
graphs than they can in complete binary trees!

I 1.1. The Formal Setting

"The technical vehicle for our investigations is the following notion of graph embed-

ding [Rol. Let G and H be simple undirected graphs. An embedding of G in H is a

'All technical terms are defined in Section 1.1.

I =I I



one-to-one association of the vertices of G with vertices of H, plus a routing of each
edge of G within H, i.e., an assignment of a path in H connecting the imags of
the endplints or each edge of G. The dilation of the embedding is the length or the
longest path in H that routes an edge of G; it thus measures how much the edges of
G are "stretched" by the embedding. The expansion of the embedding is the ratio
IHI/IGI of the number of vertices in Hto the number of vertices in G. We use the
dilation- and expansion-costs of the best embedding of G in H as our mieasures of
how well H can simulate G as an interconnection network: One views the graph H as
abstracting the processor-intercommunication structure of a physical architecture;
one views the graph G as abstracting either the task-interdependency structure of
an algorithm one wants to implement on H or the processor-intercommunication
structure of an architecture one wants to simulate on H.

Remark. A third important measure of how well H can simulate G is congestion,
the maximum number of edges that are routed through a single edge (or vertex) of
H. Congestion does not play a major role in this paper, however, since
1. our embedding of a complete binary tree in a Butterfly trivially has unit conges-
tion;
2. the n-vertex Butterfly is known to be able to simulate any n-vertex bounded-
degree graph with O(logn) delay, irrespective of the fact that the dilation and
congestion of the corresponding embedding may both be 11(logn); 3. our major
focus is on developing broadly applicable techniques for bounding the dilation of
embeddings.
Hence, for our purposes, dilation is the central measure of concern.

Our results hold for a large variety of "levelled" Hypercube-derivative host
graphs (which play the role of our H's), that we collectively term butterfly net-
works. For the sake of rigor, we focus on one particular such network (which can
be viewed as the FFT network, with input and output vertices identified), although
we could just as easily substitute other such graphs - the Cube-Connected Cycles
JPVJ or Benes network [Be], for example. Formally,

* Let m be a positive integer. The rn-level Butterfly graph B(m) has vertex-set2

V,,n = {O11l,..-,M- 1} x {0,1}1 .

The subset V,.t = {e} x {0, 1}m of V.. (0 < t < rn) is the £th level of B(m).
The string z E (0, 1} of vertex (t, z) is the position-within-level string (P WL
string, for short) of the vertex. The edges of B(m) form butterflies (or, copies

2(0, 1)" denotes the set of length-m binary strings.

2
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3 Figure 1: The 3-level Butterfly graph B(3)

of K 2,2) between consecutive levels of vertices, with wraparound in the sense
that level 0 is identified with level m. Each butterfly connects vertices

and ~(t, 001o ... 1e-ioIo + ... o. I
(t, 00, ... "o-110e+1 "" - A-I)I and

I on level t of B(m) (0 < t < m; each A, E {0, 1}) with vertices

m (1 + I(mod in), log1 ... e-10)3 t+" ... )3,,,-)

and

(t + 1(mod m), go/, ... ot- Il 3t+, .-. 3,-I)

on level e + l(mod m) of B(m). One can represent B(m) level by level, in
such a way that at each level the PWL strings are the reversals of the binary
representations of the integers 01,... ,2' -1, in that order. See Fig. 1.

The guest graphs in our study, which play the role of our G's, are complete
binary trees, X-trees, and meshes; see Fig. 2. Formally,

I I3
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Figure 2: The Complete Binary tree T(2), the X-tree X(2), and the mesh M(4)
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1 The height-h complete binary tree T(h) is the graph whose (2h+1 - 1)-element
vertex-set comprises all binary strings of length at most h, and whose edges
connect each vertex z of length less than h with vertices xO and zi. The
(unique) string of length 0 is the root of the tree, which is the sole occupant of
level 0 of the tree; the 2' strings of length f are the level-e vertices of the tree;

I the strings of length h (i.e., the level-h vertices) are the leaves of the tree.

The height-h X-tree X(h) is the graph that is obtained from the height-h
complete binary tree T(h) by adding cross edges connecting the vertices at
each level of T(h) in a path, with the vertices in lexicographic order. X-trees
inherit a level structure from their underlying complete binary trees.

* The s x s mesh M(s) is the graph whose s2-element vertex set comprises the

ordered pairs of integers

I {1,2,...,s} x

and whose edges connect vertices (a,b) and (c,d) just when Ia-c+b--dI = 1.

IAll of these networks have been seriously proposed as interconnection networks
for multicomputers [DP, Ga, HZI, hence are important candidates for our study.

I Another approach to comparing these networks, via implementation and analysis
of specific algorithms, appears in [Ag].

I Our esults depend on three structural features of a graph G:

1. Let S and k be positive integers. The n-vertex graph C has a k-color v2-
bifurcator of size S if either n < 2 or the following holds for every way of

labelling each vertex of G with one of k possible labels: By removing < S
vertices from G, one can partition G into subgraphs G, and G2 such that 3

(a) I IG11- IG21I < 1.
(b) For each label 1, the number of I-labelled vertices in G is within 1 of the
number of I-labelled vertices in G 2.

I (c) Each of G, and G 2 has a k-color vi-bifurcator of size S/IV/2.

2. A 1/3-2/3 (vertez-)separator of G is a set of vertices whose removal partitions
G into subgraphs, each having > IG1/3 vertices; we denote by E(G) the size
of the smallest 1/3-2/3 vertex-separator of G.

3. When G is planar and we are given a witnessing planar embedding E, we

denote by 0,(G) the number of vertices in G's largest interior face in the
embedding. When E is clear from context, we omit the subscript.

5 :We (eote by [(;I the miniber nf vertices in tihe graph G.

I



1.2. The Main Results

We prove three results about optimal embeddings in the Butterfly that lead to a
variety of nontrivial optimal embeddings.

Theorem I The complete binary tree T(h) can be embedded in a Butterfly graph,
unth simultaneous dilation 0(1) and expansion 0(1).

Obviously, the embedding of Theorem 1 is within a constant factor of optimal in
both dilation and expansion. Building on the embedding, we obtain the following
general upper bound result.

Theorem 2 Any n-vertex graph G having a .Vi-bifurcator of size S = fl(Iog n) can
be embedded in a Butterfly graph with simultaneous dilation O(log S) and expansion
0(l).

We balance Theorem 2 with one of the first broadly applicable results for bound-
ing dilation from below.

Theorem 3 Any embedding of a nontree planar graph G in a Butterfly graph has
dilation io E(G). This bound cannot be improved in general.

Direct application of the proofs of these results yields the following optinl
embeddings.

Corollary 1 The height-h X-tree X(h) can be embedded in a Butterfly graph with
simultaneous dilation 0(log h) = 0(log log IX(h)1) and expansion 0(1). Any embed-
ding of X(h) in a Butterfly graph must have dilation fl(logh) = fl(log log IX(h)I).

Corollary 2 Any embedding of the s x s mesh M(s) in a Butterfly graph must have
dilation 11(log s) = fZ(log IM(s)[).

Corollary 2 betokens a mismatch in the structures of meshes and Butterfly
graphs, since any expansion-0(1) embedding of any graph G in B(m) has dilation
o(log IGI). 4

4This follows fromi the facts that B(m) has m2'- vertices and diameter 0(m).

6



I Theorem 1 and Corollaries I and 2 can be interpreted as yielding tight bounds
on the efficiency with which a Butterfly machine can simulate a complete-binary-
tree machine, an X-tree machine, and a mesh-structured machine, with regard to
both delay (dilation) and resource utilization (expansion). Equating dilation with
delay is most appropriate when the machines are to be run in SJMD mode.

3 The next three sections are devoted to proving our main results.

1 2. COMPLETE BINARY TREES

I 2.1. Embedding Many Small Trees in a Butterfly

IIt is obvious from inspection that one can find an instance of the height-(m - 1)
complete binary tree T(m - 1) rooted at every vertex of B(m). Somewhat less
obvious is the fact that one can find m mutually disjoint instances of T(rn - 1) as-
subgraphs of B(m). We now verify this fact via an embedding which will prove
useful as we develop our final embedding.

5 Proposition I For every integer m, one can find m mutually disjoint instances of
T(m - 1) a. subgraphs of B(m).

Proof. To simplify exposition, we represent sets of binary strings by strings over

i the alphabet {0, 1, t}, using * as a wild-card character. The length-k string

/3 =160013 ... A-1

I where each /O E (0, 1, *}, represents the set o(3) of all length-k binary strings that
have a 0 in each position i of 0 where O3 = 0, a 1 in each position i of 3 where
A =1I, and either a 0 or a 1 in each position i of / where Oi , *. For illustration,I'(0-0) = {010}, and o(0 * 1) = {001,011}. Call the string / the code for the set
a(/3).

On to our embeddings of m instances of T(m - 1) in B(m): For any letter a
and nonnegative integer k, we denote by ak a string of k a's.

*7
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For the first instance of T(m - 1), we have the following correspondence between

tree vertices and Butterfly vertices.

T(m - 1) B (m)

level 0 (0, On)
level 1 (1, *0 - )

level 2 (2, *20m-2)

level m - 1 (m - 1, *m-10)

For each subsequent instance of T(m - 1), say the ith where 1 < j < m, we have

the following correspondence between tree vertices and Butterfly vertices.

T(m- 1) B(m)

level 0 (" - 1, OYS-110"-j-ll)

level 1 (j", O-11 * 0m2--21)

level 2 Li + 1(mod m), 0- 1 1 *2 0 m-i-31)

level m - 1 (j - 2, *-*-)

The rlacement of the l's in the PWL strings ensures that the m instances or

T(m - 1) are mutually disjoint. To verify this, via contradiction, let us look at an

arbitrary level t of B(m) and at arbitrary distinct tree vertices i and j that collide

at some position within level t of B(m). It is clear that all Butterfly vertices that

are images of the same instance of T(m - 1) are distinct, so we may assume that

vertices i and j come from distinct instances of T(m - 1), call them L(i) and L(i),

where the t-"name" of an instance of T(m - 1) is the level of B(m) where its root

resides. We consider four cases that exhaust the possibilities. In each case, we

adduce a property of the PWL strings that precludes any overlap in the images of
the trees.

If c(i) = 0, then the PWL string of i ends with 0"1- , while the PWL

string of j has a 1 in this range, specifically, in position m - 1 if j _< t,
and in position j if j > t.

< (i) < (j) < t: I

8
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i Every PWL string of t(i) starts with Oil, while every PWL string of &(j)
starts with Oi1.

3 Every PWL string of c(i) has a 0 in position j, while every PWL string
of t(j) has a I in that position.

I< < < M:

Every PWL string of i(i) has a I in position i, while every PWL string
of L(j) has a 0 in position i.

SThe proof is complete. 0

An algebraic proof of Proposition 1, which is "cleaner" than our combinatorial
proof here, appears in fABRI; however, it is the embedding rather than the result
that will be helpful in our proof of Theorem 1.

The embedding in our proof of Proposition 1 does not serve us directly in our
attempt to embed a large complete binary tree in a small Butterfly, since (for one
thing) it places the roots of every instance of T(m - 1) at a different level of B(m);
and it is not clear how to combine these instances into a bigger complete binary
tree with small dilation. However, the overall strategy of the embedding will be
useful in Section 2.2.D.

2.2. Optimally Embedding Trees in Butterfly Graphs

I We turn now to the proof of Theorem 1. Specifically, we prove the following.

I For any integer m, one can embed the complete binary tree T(m +
[log mJ - 1) in the Butterfly graph B(m + 3), with dilation 0(I).

To simplify our description, let q =d.f m + [logmj - 1, and assume henceforthI that m is even; clerical changes will remove the assumption.

A. The Embedding Strategy

We wish to etmbled the tree T(q) with dilation 0(l), in the smallest Butterfly
that is big enough to hold the tree, namely, B(m). We fall somewhat short of this

* 9
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goal, but not by much: We find an embedding with dilation 0(1), but we have
to use a somewhat larger host Butterfly graph (specifically, B(m + 3)) in order to
resolve collisions in our embedding procedure. Our embedding proceeds in four
stages. Stage 1 embeds the top logm levels of T(q) with unit dilation in B(m),
thereby specifying implicitly the images in B(m) of the roots of the m/2 subtrees of
T(q) rooted at level log m - 1. Stage 2 expands these subtrees a further m/2 levels,
but now in B(m + 1), with dilation 2. thereby specifying implicitly the images in
B(m) of the roots of the mn 2' /2-1 subtrees of T(q) rooted at level m/2 + log m - 1
of the tree. In Stage 3, we embed the final m/2 levels of T(q) in B(m + 1), with
dilation 4. The vertex-mappings in each stage are embeddings (i.e., are one-to-one);
there is, however, "overlap" (i.e., distinct vertices of T(q) getting mapped to the
same vertex of B(m + 1)) among the mappings of the three stages. In Stage 4, we
eliminate this overlap by expanding the host Butterfly by two more levels, thereby
giving us four connected isomorphic copies of B(m + 1). At the cost of increasing
dilation by 2, we modify our mapping so that each of Stages 1, 2, 3 is performed in
a distinct copy of B(m + 1), thereby eliminating all overlap.

B. Stage 1: The Top log rn Levels of T(q)

We place the root of T(m + log m) at position

(M - log n, 0' )

of B(m). We then proceed to higher-numbered levels, embedding the top log rn
levels of T(q) as a subgraph of B(m), ending up with the leaves of these levels in
positions

(0, 0O -10gM+1 * bg M- I

of B(m) (because of wraparound). See Fig. 3. We call the rightmost log n - I bits
of each of the resulting PWL strings the signature of the Butterfly position and of
the subtree rooted at that position. It is convenient to interpret a signature as an
integer in the range (0, 1,-.- , m/2 - 1), as well as a bit string.

The embedding in Stage 1 is trivially one-to-one, with unit dilation.

C. Stage 2: The Next m/2 Levels of T(q)

Call the (m/2 + 1)-level subtree of T(q) that has signature k, the k"' subtree.
Our goal is to embed the k1h subtree in B(m + 1) (with dilation 2), so that its 2'/2
leaves form the set of positions s

(m-1, *0*0... * 0*1*0... * 0*0?),

'The last bit position is not affected by this Stage, so is denoted ?".

10
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where the I appears in the kth even position from the right (using O-based counting);
call this the signatory I of the tree position. For instance, when m = 8, the secoind
sultree has leaves in positions

(7, *0, 1 * 0* 0?)

of B(9). We embed these (m/2 + 1)-level trees by alternating binary and unary
branchings in B(m+ 1), starting at the "roots" placed at level-O vertices of B(?? - 1)

during Stage 1; we place a tree-vertex after each unary branching. See Fig. I.
Binary branchings generate the *'s in the code for the set of PWL strings, while
inary branchings generate the 0's and l's in the code. As a simple example: a
binary branching from vertex

(0, 000000011),

which holds the root of one of the subtrees planted during Stage 1, generates vertices

(1, *00000011);

a inary branching thence generates vertices

(2, *00000011),

where we place the level-i vertices of the subtree; a second binary branching gen-

erates vertices
(3, *0 * 000011);

a tinary branching thence generates vertices

(4, *0 *100011),

where we place the level-2 vertices of the subtree; a subsequent sequence of alter-
nating binary and unary branchings finally embeds the desired set of leaf positions
in the advertised vertices of B(m + 1).

This stage of our embedding clearly has dilation 2. The fact that that this stage
is one-to-one (though it may produce conflicts with the embedding from Stage t)
has two origins. First, we are using levels 0 through m of B(m + 1) for the rn + I
levels of this stage, so the leaves of the embedded trees do not wrap around to
conflict with their roots. Second, each signatory 1, whose placement identifies its
respective tree, is set "on" before the signature bits are reached and altered by the
sequence of branchings. This is ensured by the fact that we place the signatory 1
by counting from the right: the signature bits occupy the rightmost log m - I bits

12
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Figure 4: A logical view of the next m/2 levels of the embedding

E of the PWL string; by the time the branchings have reached the i", bit from the

right, only the rightmost (log i) bits of the signature are needed to specify the next.
position where branching occurs. Hence, at the point when we place the signatory
I in the ith position, the odd-numbered positions to the left of the I are all 0, and
the positions to the right of the 1 form the binary representation of i, possibly with
leading O's.

D. Stage 3: The Final m/2 Levels of T(q)

Our goal in Stage 3 is to use the m. 2 
n /2-1 leaves of the m/2 trees generated

in Stage 2 as the roots of the (m/2 + 1)-level subtrees comprising the bottom m/2
I levels of T(q). Each root has a signatory 1, identifying the subtree it came from

in Stage 2, and a serial number obtained from the odd-numbered bits of its PWL
string. The signatory l's will keep trees sired by different Stage-2 trees disjoint; the3 serial numbers will guard against collisions among trees that were sired by the same
S'tage-2 tree. The main challenge here is to achieve the embedding while the roots

of all the trees reside at the same level of B(m + 1) (which is how Stage 2 has placed
them). To accomplish this, we have the trees grow upward, in the direction of lower
level-numbers, for varying amounts of time, before starting to grow downward, in

II I.hw direction of higher level-numbers. While growing either upward or downward,
al tree grows via, alternating unary and binary branchings, so as to preserne Ilic
serial utimbrr; this alternation will incur dilatiol 2. An additional dilation of 2 is3 imtirred while a tree grows upward: each tree begins to grows upward using only

I 13
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Figure 5:. A logical view of the final m/2 levels

every fourth level of B(m + 1); when it "turns" from growing upward to growing
downward, it. uses the levels it has skipped while moving upward to regain lev'el 4)

or B(m +- 1), at which time it grows downward using every other level of 8(m + 1).
See Fig. 5. Thus, in all, this Stage of the embedding incurs dilation 4.

All trees with the same signatory 1 (i.e., rooted at the leaves of the same Stage-2
tree) will grow in lockstep. We refer to the trees sharing a signatory 1 in the k"h
even bit-position as the k"h subtrees of T(q), 0 < k < m/2. We place the vertices of
the kth subtrees of T(q) into B(m + 1) as follows:

e For the 0" trees, we place the 2' level-e vertices of T(q) at level 2t of B(m + I).
(Thus, these trees grow downward immediately.)

* For the kth trees, k -> 0:

-we place their unique level-O vertex at level 0 of B(m + 1) (in fact this
was placed during Stage 2)

I
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3 - for 1 t < [k/2J, we place their 2' level-e vertices at level m - 41 + 1 of

B(m + 1)
- if k is odd. we place their 2 rk/11 level-([k/21) vertices at level m-4[k/21 +
3 of B(m + 1)

- for rk/2] + 1 < t < k, we place their 2t level-e vertices at level m - 4(k -
e)-I ofB(,n+ 1

Now we verify that the described mapping is one-to-one, hence an embedding.
We consider separately the two potential sources of collisions.

First, we note that there can be no collisions among the 2' /2 kth trees, for any
k, since each of these trees has a unique serial number.

Second, we note that, for each fixed serial number, there can be no collision
between the j" and kth trees having that serial number. This is argued most easily
by considering how such trees are laid out level by level. To simplify exposition, we
present only the even bit-positions of the image vertices in B(m + 1), since the odd
bit-positions hold identical serial numbers. Note first that the top k levels of each
k"' tree are placed in vertices of the form

(t, 0 "m/2-k1 :k)

ini B(?n + 1); hence, their membership in a kth tree is announced by the leftmost
m,/2 - k + I even bit-positions of the PWL strings. For tree-levels > k, the j", and
k"' trees are distinguished as follows. Say, with no loss of generality, that j -: k.
For each 0 < t m/2 - k, the level-(k + f) vertices of each kt" tree are placed at.
vertices

(t, *,tOm/2-k'-tOk)

I of B(m + 1). By the same token, for each 0 < t < m/2 - j, the level-(j + t) vertices
of each jth tree are placed at vertices

3 (t, *tom/2-j-w)

I of B(m -+ i). Since j .-- k by hypothesis, we see that, at those levels of B(rn + 1)
where we place vertices of both trees, the kth even bit-position from the right of each
k"' tree contains a 1, while the corresponding bit-position of each j"' tree containsI a 0.

Thns, the mapping in this stage is an embedding.

3 E. Resolving Collisions

I 15
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Figure 6: Replicating B(m + 1) to avoid collisions

We now have three subembeddings that accomplish the desired task, except for

the fact that Stage i and Stage j may map different tree vertices to the same But-
terfly verLex. We resolve these possible collisions as follows. Instead of performing
the subembeddings in B(m + 1), we perform them in B(m + 3), placing each sube-
mbedding in a distinct copy of B(?n 4- 1). We make the transition between copies
of 1(m -+ 1) as 16llows. As the Stage-i embedding of the top of T(q) reaches level
m - I or its copy of B(m + 1), we use a sequence of unary branchings in B(m + 3) to
reach level 0 of the next copy of B(rn + 1). We perform the Stage-2 subembeddiiig
within this second copy; this takes us to level m - 1 of that copy, where a sequence
of unary branchings in B(m + 3) takes us to level 0 of the third copy of B(m + 1).
We perform the Stage-3 subembedding in this third copy. See Fig. 6. The transi-
tion from level ?n - 1 of the second copy of B(m + 1) to level 0 of the third copy
engenders dilation 4.

The embedding, hence the proof, is now complete. C1

2.3. The Issue of Optimality

Theorem 1 settles for an embedding of complete binary trees in Butterfly graphs,
that achieves dilation 0(1) and expansion 0(1) simultaneously. While this achieves
our overall goal of optimality to within constant factors, it does leave open the
possibility of those constant-factor improvements. We have been unable to deter-
mine exact dilation-expansion tradeoffs for embeddings of complete binary trees in
Butterfly graphs, but we can show easily that it is impossible to optimize both cost

16



measures simultaneously. Thus, one cannot hope for the level of "perfection" found
in, say, [GHR]6 .

Proposition 2 No embedding of T(q) in B(m + 1) has unit dilation.

Proof. Both complete binary trees and Butterfly graphs are bipartite graphs: one
can color the vertices of either graph red and blue in such a way that every edge
connects a red vertex and a blue one. For any Butterfly graph B(r), on the one
hand, the numbers of red and blue vertices are within r of being equal; for any
complete binary tree, on the other hand. one of the sets has roughly twice as many
vertices as the other. Thus, one cannot find a unit-dilation embedding of a complete

binary tree in the smallest Butterfly graph that has enough vertices to hold it. n

3 3. UPPER BOUNDS - THEOREM 2

I This section is.devoted to proving Theorem 2. Since all of the relevant ideas in the
proof are present in its application to specific families of graphs, we actually provern only Llie upper bound of Corollary 1. The reader should be able to generalize easily
to arbitrary families of graphs, thereby proving Theorem 2. For the remainder of
the S;ection, we therefore focus on the problem of embedding X-trees in Butterflies.

I Our embedding of the X-tree in the Butterfly graph is indirect: First we find a
unit-expansion, dilation-O(log log n) embedding of X(h) in T(h). Then we compose

I this embedding with the expansion-O(1), dilation-O(1) embedding of T(h) in B(rn)
from Theorem 1, to obtain the upper bound of Theorem 2. We discuss here only the
former embedding, which, in fact, embeds the X-tree X(m) in the complete binary
I ree T(m). For notational simplicity, let n =def 2 1 -- 1, the number of vertices in
X(m). We devote this section to proving the following.

I Proposition 3 For any integer m, one can embed the X-tree X(m) in the complete
binary tree T(7n), with dilation O(log m) = O(log log n).

Using the obvious fact that the n-vertex X-tree can be bisected (in the sense or
statement 1 above) by removing O(log n) edges, coupled with techniques in Section
I of 1B,1, the reader can easily prove the following.

41n I(;1111] a variant of 8(m) with no wraparound is embedded in I-he Hypercube with tittit.3 di atnla.im and opt imal expansion.

1 17
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Lemma 1 For all positive integers n,k, the n-vertex X-tree has a k-color v"2-
bifurcator of size S = 2k log n.

Proof of Proposition S. Our embedding uses the following auxiliary structure, which
appears (in slightly different form) in [BCLR]. A bucket tree is a complete binary
tree, each of whose level-C vertices has (bucket) capacity

c - og( n )

for some fixed constant c to be chosen later (in Lemma 2). We embed X(m)
in T(rn) in two stages: First, we embed X(m) in a bucket tree, via a many-to-one
function ju that "respects" bucket capacities (always placing precisely c . log((2 m+ I -
1)/2') vertices of X(m) in each level-t vertex of the bucket tree) and has constant
"dilation". Then we "spread" the contents of the bucket tree's buckets within T(m),
to achieve an embedding of X(m) in T(m), with the claimed dilation. Formally,
the first stage of the embedding is described as follows.

Lermma 2 Every X-tree X(m) can be mapped onto a bucket tree in such a u,ay that:
(a) exactly

N(t) = 14log 2 1 - 1) +24

vertices of X(m) are mapped to each level-t vertex of the bucket tree, and
(b) vertices that are adjacent in X(m) are mapped to buckets that are at mo.i
distance 5 apart in the bucket tree.

The constants in the expression for N(t) can be reduced by increasing
the constant 5 in part (b) of the Lemma (say, to 10). We suffer the
larger constants in order to simplify the technical development in the
proof. The interested reader can easily mimic our development with
other constants.

Proof. The basic idea is to recursively bisect X(m), using a 5-color V2-bifurcator
(the uses of the colors will become clear momentarily), placing successively smaller
sets of v/2-bifurcator vertices in lower-level buckets of the bucket tree. We also
place other vertices in the buckets, in order to ensure the desired "dilation" and
in order to ensure that all buckets are filled to capacity. The formal description
of the mapping will require two iterations. First, we present a mapping procedure
that establishes the sufficiency of the quantities N(t) as bucket capacities. Then
we refine the initial mapping to complete the proof.
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3 We simplify our description of this technically cumbersome procedure in two
ways. First, we describe in detail what the procedure would look like if we wereU using 3-color bifurcators rather than 5-color bifurcators; the reader should be able
to extrapolate from oor description to arbitrray numbers of colors. Second, we
establish the following notation.

U * We denote by BA, where A denotes the null string (i.e., the string of length 0)
over the alphabet {1, 2}, the bucket at the root of the bucket tree.

I . In general, letting x denote any string over the alphabet {1,2}, we denote
by B., and B. 2 the buckets at the children of the vertex of the bucket tree
having bucket B,; for example, B, and B 2 denote the buckets at the children
of the root. vertex of the bucket tree. B 11 and B1 2 denote the buckets at the
left grandchildren of the root vertex, B 21 and B 22 denote the buckets at the3 right grandchildren of the root vertex, and so on.

I Algorithm Bucket: Mapping X(m) into a bucket tree

Step 1. Initial coloring and bisection.

3 l.a. Initialize every vertex of X(m) to color A.

L.b. Associate' the graph X(m) with the root of the bucket tree.

3 l.c. Bisect X(m), to obtain subgraphs X, and X2, and place the vi-bifurcator
vertices in bucket BA.

I.d. Recolor every A-colored vertex of X(m) that is adjacent to a vertex in
bucket BA with color 0.

i .e. Associate X, (i E {1, 2}) with the child of the root vertex of the bucket

tree holding bucket B,.

I Step 2. Second-level bisection.

2.a. Use a 2-color v"2-bifurcator for each X,, to create subgraphs Xil and
X' 2.

2.b. Place the Vi-bifurcator vertices for each Xi in the corresponding bucket
B, of the bucket tree.

3 2.c. Recolor every A-colored vertex of X(m) that is adjacent to a vertex in
bucket Bi with color 1.

I l:he a~4Te iati re" er are intended to make it easier for the reader to follow our description
C,f Ilihe 11alpling .

S19
I



2.d. For each X,, associate each subgraph X,, with the V2/-bifurcator-tree
vertex associated with bucket B,.p

Step 3. Third-level bisection.

3.a. Use a 3-color v/2-bifurcator for each X,,, to create subgraphs X,,, and
X,,2.

3.b. Place the v"r-bifurcator vertices for each X,, in the corresponding bucket
B,, of the bucket tree.

3.c. Recolor every A-colored vertex of X(m) that is adjacent to a vertex in
bucket B i with color 0.

3.d. For.each X, associate each subgraph X,,k with the v2-bifurcator-tree
vertex associated with bucket B,,k.

Step .9. (4 < s < m) All remaining bisections.

s.a. For each subgraph X, (y E {1,2}') of X(m) created in Step s - 1, place
every vertex of color a (mod 2) in the associated bucket Bv.

s.b. Use a 3-color v/2-bifurcator for each X., to create subgraphs X., and
Xy 2 -

s.c. Place the v2-bifurcator vertices for each X. in the corresponding bucket,
B. of the bucket tree.

s.d. Recolor every A-colored vertex of X(m) that is adjacent to a vertex in
bucket B. with color length(y) (mod 2).

s.e. For each X., associate each subgraph X, with the v/2-bifurcator-tree
vertex associated with bucket B,,.

We now analyze 5-color analogue of the described mapping, to show that it
satisfies the demands of Lemma 2, with the requirement of "exactly" N(t) vertices
per level-t bucket replaced by "no more than" N(t) vertices per level-t bucket, i.e.,
to show that our bucket capacities are big enough. Since the "dilation" condition
(b) is transparently enforced when certain colored vertices are automatically placed
in buckets (in Step s.a), it will suffice to establish that the populations of the
buckets are as indicated in the modified condition (a). This follows by the following
recurrence, wherein N(k) denotes the number of vertices of X(m) that get mapped
into a bucket at level k - 1 of the bucket tree.

3 j -5 + 10 tog n
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E with initial conditions

* N N(1) :- 2 log n

* N (2) 4log (
1 * N(3)< 6log ( )

3 * N(4) __ 8log (n)

9 N(5) < 10 log

The initial conditions reflect the sizes of the appropriately colored v/2-bifurcatorsU of X(m): At each level t, 1 < t < 4, one uses an e-colored vri-bifurcator, followed
by a 5-color vi2-bifurcator at all subsequent levels. At levels s > 2, the buckets
contain not only vi-bifurcator vertices, which account for the term

l0log f n

5 in the general recurrence; they contain also the vertices of X(m) that are placed
to satisfy the "dilation" requirements. The latter vertices comprise all neighbors of

I the N(k - 5) occupants of the distance-4 ancestor bucket that have not yet been
placed in any other bucket. Since vertices of X(m) can have no more than five
neighbors, and since our 5-color bisections allocate these neighbors equally among
the descendants of a given bucket, these "dilation"-generated vertices can be no
more than

5KN(k -5)] -N(k - 5)32 16
in number. These two sources, the v/2-bifurcators and their neighbors, account for

I the occupants of the buckets and for the recurrence counting them. To complete
I h- proof of the modified Lemma, one now shows by standard techniques that the
indicated recurrence, with the indicated initial conditions, has the solution

I (k) : 14log(n) +24.

I Finally, we turn to the original form of the Lemma. This follows from the
fTodified form, upon refining the Algorithm by adding the following substeps at theU indicated points.
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Figure 7: Unloading the buckets

At the end of each step of the Algorithm, when we have finished filling

a bucket-B. (x E {1,21') with vertices obtained from a recent bisection

or from our desire to maintain small "dilation", we check the population

of the bucket against the ceiling population N(t), where e = length(x).

If the bucket contains fewer than N(e), vertices, then we add enough

new vertices to it from the remaining associated subgraph to fill it to

capacity.

This last step ensures that all buckets at level t of the bucket tree contain exactly

N(t) vertices. L-1

Our final task is to refine the "dilation"-5 mapping of Lemma 2 to a bona fide

embedding of X(m) in T(m), having dilation O(log log n). We proceed inductively,

emptying buckets into T(m) in such a way that each tree vertex is assigned a

unique X-tree vertex. In general, we denote by T, the smallest subtree of T(m)

that is rooted at level length(x) of T(m) and that contains the contents of bucket

B,. (In general, the contents of B2 will occupy only the last few levels of T.) See

Fig. 7.

" Place the log n elements of bucket BA in the topmost copy of T(log log n) in

T(m), in any way.

" Consider the subtrees of TA rooted at level 1 of T(m). Place the contents of

bucket B, in the (roughly) log log n levels of the leftmore of these two subtrees,
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Sstarting immediately after the leaves of TA. Place the contents of bucket B 2

analogously, using the rightmore of these two subtrees, starting immediately
after the leaves of T%. We have thus implicitly defined the subtrees T and T2.

Note that by this point, we are using enough of the top levels of T(m) that we need
use only one more level in order to place the contents of the next level of buckets.
The importance of this fact is that it guarantees that all of the subtrees T. will
have height O(log log n). (Namely, TA, TI, and T2 have the desired height, and all

I subsequent trees will result from adding one level of leaves to a tree whose root is
one level lower in T(m) than was its father's root.)

9 Proceeding inductively, assume that we have filled subtrees T,, of T(m) with
bucket contents, for strings x E {1,2}' of length < t. We now consider
the subtrees of T(rn) rooted at level t + 1; each subtree T. rooted at level
t thus spawns two children. We order these 2E+" subtrees from left to right,
according to the lexicographic order on the subscript-strings x. We then place
the contents of the bucket B.1 in the leaves of the leftmore of the children of
7'., beginning where the contents of bucket B. left off. Analogously, we place
the contents of the bucket B 2 in the leaves of the rightmore of the children
of T2, beginning where the contents of bucket B, left off.

The described procedure clearly produces an embedding of X(m) in T(m), since
each vertex of X(m) is assigned to a unique tree vertex. Additionally, the em-S bedding has unit expansion since no tree vertices are passed over in the assign-
ment process and since all buckets at each level t have the same population N(f)
(so all subtrees T. are isomorphic). Finally, the procedure's method of spreading
bucket contents throughout T(m) produces an embedding with the desired dilation,
namely, O(log log n). Specifically, by always spreading the contents of buckets B.,

I and B.2 in the leaves of the left and right subtrees of the depth-O(log log n) subtree
that contains the contents of bucket B., the procedure guarantees that the least
common ancestor, in T(m), of the set comprising the contents of any bucket plus

I the vertices in buckets at most five buckets up (which will lie in adjacent levels
k,k + 1,k + 2, k + 3, k + 4, k + 5 of the bucket tree) are always within a subtree
of height O(log log n) of T(m). Thus, we have produced the desired embedding,

i thereby proving Proposition 2, hence Theorem 2. 0

* 4. LOWER BOUNDS - THEOREM 3

I We demonstrate the near-optimality (to within constant factors) of the embeddings
of Section 3 - in fact, true optimality for X-trees - by proving the lower bound of
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Theorem 3. In contrast with Theorem 2, Theorem 3 is most easily proved in its full
generality.

Assume henceforth that we are given a planar graph G, a planar embedding
of G, and a minimum-dilation embedding p of G in B(p); let A have dilation 6.

We begin by noting that we can simplify our quest somewhat. Specifically, since
we aim only for bounds that hold up to constant factors, we lose no generality by
assuming henceforth that (in the embedding e) the exterior face of G is a simple
cycle:

Lemma 3 One can add edges to the graph G within the embedding f in such a way
that

" the resulting embedding e' is a planar embedding of the resulting graph G'

" in the embedding e', the exterior face of G' is a simple cycle

• ,(c') =

S*,(G') = -max(3, '-,(G)).

Proof Sketch. If the exterior face of G is not a simple cycle, it is because of cut-
edges and/or pinch-vertices. We take each cut-edge in turn and create a triangle
containing it as an edge; then we repeat the process with any remaining cut-edge.
When no more cut-edges exist, we eliminate each pinch-vertex in turn by creating
a triangle that includes the pinch-vertex as a vertex. Since each added edge creates
a triangle and spans only two edges of G, the claims about 0(G') and E(G') are
immediate. 0

A consequence of Lemma 3 is that we may henceforth assume that every edge
of G resides in some interior face (in the embedding e).

We turn now to the quantitative consequences of Lemma 3.

A set of faces of G is connected in the embedding e just when their corresponding
vertices are connected in the graph r(G; e) whose vertices are the faces of G and
whose edges connect a pair of face-vertices just when the faces share a vertex. A
set S of vertices of G is face-connected (in c) if the set of interior faces of G that
contain one or more of the vertices of S is connected.

Let A be a connected component of the graph G remaining after removing a
set S of vertices from G. The S-boundary of A is the set' of vertices of A that are
adjacent (in G) to vertices of S.
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Lemma 4 If one removes a face-connected set of vertices S from the graph G,
then the S-boundary of every resulting maximal connected component of G is face-
connected.

I Proof. Consider a maximal connected component A remaining after removing S
from G. Assume for contradiction that the set of S-boundary vertices of A is
not face-connected. There must then be at least two distinct maximal connected
components, call them F, and F2, of interior faces that contain boundary vertices
(so F, U F2 is not connected). Let f,, i = 1,2, be an interior face in component F,,

and let bi be a boundary vertex in face fi. Since each edge of G lies in an interior
face, we can choose each f, to contain a vertex of S as well as a boundary vertex.

3 Fact I There is a connected set I of interior faces, none of which contains a bound-
ary vertex, such that I separates f, from f2.

U Verification. It is not possible for both F, to encircle f2 and F2 to encircle fl, since
then F, and F2 would intersect (so f, and f2 would be connected by interior faces

I containing boundary vertices). Without loss of generality, say that F, does not
encircle 12.

Let J be the set of interior faces that do not contain boundary vertices and that
are incident to the outer boundary of F, (so that fz is on the outside). By definition,
the set J separates f, from f2. If J is connected, then it is the desired set I. If J
is not connected, then adding the exterior face of G to J yields a connected set J'.
Moreover, f2 must lie in one of the simply connected regions J" of J. Deleting the
exterior face from J" then yields the desired set I; see Fig. 8.

Fact 2 1 contains a vertex of A and a vertex of S.

3 Verification. I separates f, from f2, yet: f, and f2 both contain vertices of both A
and S; both A and S are face-connected in G.

Since I contains vertices of A and S and is connected, and since S separates theI connected set A from the rest of G, the set I must contain at least one face that
contains both a vertex from A and a vertex from S. Such a face must also contain
a vertex of the S-boundary of A, contradicting Fact 1. Lemma 4 follows. 0

A set of vertices S of a graph K is d-quasi-connected, d a positive integer, if for
I every two vertices u, w of S, there exists a chain of vertices

t/ = ,,,vO,v, ,v; = W,

or S, where consecutive vertices vi, v.. 1 are distance < d apart in K.
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X~rR~a XXr ,

Figure 8: (a) The embedding E, with the set J outlined boldly; "x" marks f2, and
"X" marks F2 with the holes filled in. (b) The set J' = J U (outer face). (c) The
embedding c, as in (a), with the set J" outlined boldly.

Lemma 5 The Fundamental Lemma for Butterfly-Like Graphs
Say that there is a subgraph K of G and a constant c such that

" K is $(G)-quasi-connected

" the image of K under the embedding 1A lies within cf(G)6 consecutive levels
of B(p).

Then 6 > cfc) 122,), where a(c) is a constant depending only on c.

Proof. Say that the image of H under A lies entirely in levels8

I + 1,1 + 2,...,l + cf(G)6

of B(p). Let u and v be arbitrary vertices of H which are connected by a path of
at most () vertices in G. The image of this path in B(p) must lie totally within
levels

I- (G)b + ,...,l + (c+ ),(G)6 u
of B(p), since the embedding u has dilation 6. See Fig. 9. Since K is O(G)-quasi- !
connected, this means that the PWL strings of all images of vertices of K can differ

'All addition is modulo p.
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I Figure 9: Illustrating the Fundamental Lemma, with e = c$(G)6 and h = G5

- Vertices of K reside in region II; Iength-'I(G) paths between vertices of K cannot3 xtend beyond regions I or III.
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only in some set of at most ((c + 2)$(G) + 1)6 bit positions. It follows that h"
r;I ivioIL;Lin no more than c ((G)b2(( 2)* ( (")+n)' vertices, i.e., C4((a) h(vel. of l:(p)
wilh atL rrost 2 ' 2)(( ) ° I vertices per level. In other words,

c,(G)62((+2 )*(G)+ 1)6 > IKb,

whence the result. n-

We now complete the proof of Theorem 3, beginning with two simple lemmas.

Lemma 6 Any face-connected set of vertices of G is 0(G)-quasi- connected.

Proof Sketch. Any vertex in an f-vertex face is distance < f/2 from any neighboring
race. El

Lemma 7 Let C be a set of vertices of the graph G whose removal partitions G
into connected components all of size < IGI/2. Then C is a 1/3-2/3 separator of G.

Proof Sketch. Remove C from G, order the resulting connected components by size
into decreasing order, and lump the components into two piles as follows.

* Place the largest component into the left pile.

" Place as few of the largest remaining components in the right pile as possible
until the right pile is bigger than the left.

" Now alternate piles, adding as few of the largest remaining piles as possible
to the smaller pile until the smaller first becomes bigger than the larger pile.

Clearly, when one has completed the two piles, the larger cannot be bigger than the
smaller by more than the size of the third largest component, i.e., by more than
IG1/3 vertices. It follows that each pile must contain at least jG1/3 vertices, whence
the claim. El

Theorem 3 will now follow from the next Lemma.

Lemma 8 The embedding ji must have dilation 6 > (const) ( f(G.t})"

I
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I Proof. Partition B(p) into bands, each band 1i being a sequence of d,6 consecutive
levels, 2$(G) < d, < 4$(G), where the constants d, may be chosen in any way that
achieves a partition. Let oc(v), the color of vertex v of G, be the index i of the band3 /3, in which u(v) resides.

We perform a modified breadth-first search of G, to find a t(G)-quasi-connectedU component of size > E(G), all of whose vertices have images in a single band of
B(p), hence the same color. By Lemma 5, the existence of such a component will
yield the lower bound on 6.

The breadth-first search proceeds as follows. We select an arbitrary vertex v,
of G and form V,,, the maximal connected component of G that contains v1 and
that consists entirely of vertices with color rc(vo). Since V0 is connected, removing
its vertices partitions G into connected components; let Co be the largest of these.
Lerrmas 4 and 6 assure us that the V0-boundary, Bo, of the component C, is f(G)-

I quasi-connected. It follows that

Fact 3 All vertices of Bn have the same color.

Verification. Since each v E B0 is adjacent to a vertex of V0, we must have tc(v)
{ (,,,,) - ltc(v,) + 1}. Moreover, B,, cannot contain vertices of both colors: Two
such vertices would be separated by the band I3(,,), contradicting the fact that R,,
is V(G)-quasi-connected.

3 Next, form V,, the maximal monochromatic subgraph of G that contains both Bi,
and all connected components of G that intersect Bn; obviously, V, is t(G)-quasi-
connected, so removing it partitions G into some number of connected components.
Let C, be the largest of these, and let BI be the Vl-boundary of C1 . As with B,,
one shows that B, is $(G)-quasi-connected and monochromatic.

We continue in this fashion, constructing, in turn, for i = 2,3,..., the following
subgraphs of G, with the indicated properties:

* ,: the ($(G)-quasi-connected) maximal monochromatic subgraph of G that
contains both Bi, and all connected components of G that intersect Bi-,

* C,: the largest connected component of G remaining when one removes V,
Ifrom G

* R ,: the (*(G)-quasi-connected, monochromatic) V-boundary of C,

One continues this construction until some subgraphl V contains at least E(G)3 vertices. We now show that this point must occur.

3 29

I



Fact 4 For some i, !Vi > E(G).

Verifi.ation. Note that at each point in our construction, 1ia is whittle(d out of the

largest component C,_ 1 of G remaining after removal of V_ 1 from G. Moreover, I,

disconnects the vertices of Ci- 1 - V from the remainder of G, as one can verify easily

by induction on i. At some point, therefore, the whittling process must reduce the

size of the then-current largest component C,, so that 1C.1 - IGI/2. By Lemma 7.

the then-current V is a 1/3-2/3 separator of G, hence must contain at least '"(G)
vertices.

The preceding development gives us a set of vertices, of size > E(G), whose

images reside in a single band of d, levels of B(p). By Lemma 5, Theorem 3 follows.

5. THE COROLLARIES: X-TREES AND MESHES

Corollaries I and 2 now follow from the following Lemmas.

Lei inia 9 JIHRJ (X(h)) = [1(h) = fl(loglX(h)j), and ,(X(h)) = .5 (under the
natural embedding).

Lemma 10 (e.g., [HR ) E(M(s)) - fl(s) = fl(VIMs)I), and 4(M(s)) = 4 (under

the natural embedding).

6. CONCLUDING REMARKS

We close with some remarks about extensions to the research described here.

The lower bound of Theorem 3 cannot be improved in general, as one can see
from considering homeomorphs of the mesh.

Our lower bound for the mesh extends also to higher-dimensional meshes and

to pyramid graphs; thus, these are examples of other popular nctworks that embed

efficiently in the Hypercube, but not in butterfly-like machines.

The lower bound of Theorem 3, which deals explicitly only with embeddings in
the Butterfly, extends to embeddings in the mesh of trees, Cube-Connected-Cycles,

Benes network, and similar levelled networks.
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We do not yet have an analogue of Theorem 3 for embeddings in the shuffle-
exchange and deBruin graphs9 . However, using rather complicated arguments, we
can prove that any expansion-O(1) embedding of the n-vertex X-tree or the n-vertexi m mesh in these host graphs requires dilation 1l(log log n). Since a complete binary
tree is a spanning tree of the deBruijn graph, the proof technique of Section 3 shows
that this lower bound for the X-tree is optimal. We suspect that the lower boundI for the mesh can be improved.

In order to justify dilation fully as the central measure of concern in networkI embeddings, it would be nice to strengthen the results of Section 3 to show that
the Butterfly can simulate any graph having a Vi-bifurcator of size S = fl(log n)
with delay O(log S). We believe this to be possible using the arguments of SectionI 2, but we have not worked through the details.

Lastly, it should be noted that our lower bounds do not mean that a ButterflyI cannot efficiently simulate a mesh or X-tree efficiently over a large span of time. For
example, a Butterfly can simulate log n steps of a mesh of a constant fraction smaller
size within O(log n log log n) steps, and possibly within O(log n) steps. SimilarI i~mprovements in amortized simulation times are also possible for the X-tree, and
we are currently-studying how good such amortized simulations can be if] general.
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Abstract

The Message Driven Processor is a node of a large-scale multiprocessor being
developed by the Concurrent VLSI Architecture Group. It is intended to support fine-
grained, message passing, parallel computation. It contains several novel architectural
features, such as a low-latency network interface, extensive type-checking hardware,
and on-chip memory that can be used as an associative lookup table.

This document is a programmer's guide to the MOP. It describes the processor's
register architecture, instruction set, and the data types supported by the processor. It
also details the MDP's message sending and exception handling facilities.
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OBJECT-ORIENTED CONCURRENT PROGRAMMING IN CSTI
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I Abstract

3 CST is a programming language based on Smalltalk-80 that supports concurrency using
locks, asynchronous messages, and distributed objects. Distributed objects have their
state distributed across many nodes of a machine, but are referred to by a single name.
Distributed objects are capable of processing many messages simultaneously and can
be used to efficiently connect together large collections of objects. They can be used to
construct a number of useful abstractions for concurrency. This paper describes the
CST language, gives examples of its use, and discusses an initial implementation.
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Abstract

This paper describes micro-optimization, a technique for reducing the operation count
and time required to perform floating-point calculations. Micro optimization involves
breaking floating-point operations into their constituent micro-operations and optimizing
the resulting code. Exposing micro-operations to the compiler creates many
opportunities for optimization. Redundant normalization operations can be eliminated or
combined. Also, scheduling micro-operations separately results allows dependent
operations to be partially overlapped. A prototype expression compiler has been written
to evaluate a number of micro-optimizations. On a set of benchmark expressions
operation count is reduced by 33% and execution time is reduced by 40%.
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E Abstract

This paper describes micro-optimization, a technique for reducing the operation count and
time required to perform floating-point calculations. Micro optimization involves breaking
floating-point operations into their constituent micro-operations and optimizing the resulting
code. Exposing micro-operations to the compiler creates many opportunities for optimiza-
tion. Redundant normalization operations can be eliminated or combined. Also, scheduling
micro-operations separately results allows dependent operations to be partially overlapped. A

prototype expression compiler has been written to evaluate a number of micro-optimizations.
On a set of benchmark expressions operation count is reduced by 33 % and execution time is
reduced by 407 %.I
1 Introduction

U Many unneeded operations axe performed during the evaluation of floating point expressions
because existing compilers and floating point units consider these operations to be atomic. By3 decomposing floating point operations into their constituent integer micro-operations, many
opportunities for optimization are exposed. Redundant shift operations may be eliminated,
parts of the computation may be done with a block exponent, common subexpressions in the3mantissa or exponent calculation are exposed, and additional flexibility in scheduling operations
is possible.

This paper describes methods for micro-optimizing floating point expressions. Each operation in
the expression is decomposed into its primitive integer micro-operations. For example a floating
point add is decomposed into an exponent subtract, mantissa alignment, mantissa add, leading
zero's count, exponent adjust, and mantissa normalization. Optimizations axe performed on
the resulting micro-operations. For example, a normalizing left shift from one FP add may be
combined with the aligning right shift of a subsequent FP add resulting in a single shift. The5 entire expression is scheduled as a unit resulting in better hardware utilization.

On a set of benchmark expressions, micro-optimization reduces operation count by 33 % and3 execution time by 40 % compared to conventional floating point execution with identical

'The research described in this paper was supported in part by the Defense Advanced Research Projects
Agency under contracts N00014-80-C-0622 and N00014-85-K-0124 and in part by a National Science Founda-
tion Presidential Young Investigator Award with matching funds from General Electric Corporation and IBM
Corporation.

Sifrditted to ASPLOS '88I!



function unit performance and register bandwidth.

..-. To fully exploit micro-optimization, a micro floating point unit (pFPU) is required. The in-
... struction set of a jiFPU consists of the micro-operations required for floating point arithmetic

(e.g., alignment shifts that maintain guard, round, and sticky bits). These operations are per-
formed out of a set of mantissa and exponent registers. By providing the appropriate primitive
operations, no comprimises are made in terms of accuracy, rounding, adherence to standards,
and performance.

This work is motivated by recent progress on RISC [8) and VLIW [3] architectures. RISC
machines eliminate the complex addressing modes found in CISC machines [9]. Address calcu-
lations are performed using integer arithmetic instructions rather than by microcode or special
hardware. Exposing these calculations to the compiler often improves performance. Micro
optimization applies this technique to floating point operations. As with address calculations,
breaking these operations into their primitive components has the disadvantage of decreasing
code density and increasing instruction bandwidth.

Micro-optimization borrows from VLIW technology, in that several micro-operations may be
performed simultaneously. Also, some of the optimizations described here schedule code across
basic blocks. However, the technique used is different from trace scheduling.

The idea of using a compiler to optimize a function normally considered a primitive arithmetic
operation has been applied to integer multiplication by a constant [5).

The next section illustrates the basic concepts of micro-optimization by means of a few simple
examples. A prototype expression compiler written to test these concepts is described in Section
3. Section 4 describes the architecture of an exemplary uFPU. The compiler and AFPU are
evaluated on a number of benchmark programs inSection 5.

2 Micro-Optimizations

This section illustrates micro-optimizations by means of examples given in tFP assembly code
(see Section 4). The code for a single add (A = B + C) and a single multiply (A = B * C)
are shown below. The subtract operation is similar to add. The optimizations start from
concatenations of these sequences and perform transformations to reduce the number of micro-
operations.

ADD MULTIPLY

LO: EO EB E- EC , BNEG LI LO: El = EB E+ EC
NO = NC SUR EO Mi = MB M* NC
Mi = NO M+ MB ,BR L2 E2 = FF1 MI

Li: NO = MB SHR- EO EA = El E- E2
Ni = NB M+ NO MA = Mi SHL E2

L2: Ei a FF1 MI
&A = EB E- Ei

NA a N1 SUL El

2.
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1

3 In this section optimizations will be evaluated by comparing the path lengths of the optimized
and unoptimized jFP code. Timings for different micro-operations will be discussed in Section
4.

Three instructions, at least half the total, in each sequence are used to normalize the result.
Many of the optimizations described below are methods to eliminate unneccessary normaliza-
tions.

5Automatic Block Exponent

The alignment operations of cascaded additions can be simplified if the largest exponent is
identified and used as a block exponent for the additions. All mantissas are aligned using this
exponent and added without normalization. Only the final sum is normalized.

The following code shows an application of this technique to the expression (TO = A + B +
C). Only the code for the case where A has the largest exponent is shown. By eliminating the
normalization and realignment of the intermediate result, this path through the sum has been
reduced from 12 instructions to 9.

LO: El o EA E- EB, BIEG LI
E2 = EA E- EC BIEG L2
MI a MB SHR El
M2 = MA M+ M1
M3 a MC SER E2
M4 a M2 M+ M33, BR L4
<LI and L2 omitted for clarity>

L4: E4 = FFI NI
ETO = EA E- E4ITO = M4 SHL E4

IThe use of automatic block exponent requires that extra mantissa bits to the left of the binary
point be maintained in case the adds result in an increased exponent. If n adds are performed3 in sequence, log2n extra bits must be maintained.

In some cases, the use of an automatic block exponent can increase rounding errors. In the
above example, if A -B and ICI << IAI, the intermediate result is badly undernormalized
and valuable bits of C will be lost when it is aligned with the original exponent. The effect is
the same as if the addition were performed in the order (A + C + B). This technique treats
floating point addition as if it were associative and commutative and has the same effect as
reordering the additions to give the largest possible rounding error.

Even with these limitations, automatic block exponent is a very effective optimization. Many3computations include long sequences of adds (e.g., dot products.) where operand ordering is
not critical. In these cases, the use of a block exponent reduces the path length by from 6n to
3n + 3, a savings of 50%!

*' 3



Shift Combining

Shift combining is an alternative to automatic block exponent that can be used in cases where
the order of the operations must be preserved. When adding three or more floating point
numbers, redundant shifts may be performed when a mantissa is shifted left for normalization
and then immediately shifted right for alignment. To recognize redundant shifts, the mantissa
left shift in the first add is moved below the branch of the second add. This requires copying
the shift into both paths of the branch. The shift will be eliminated in one of the two paths.

The following code fragment, taken from the compilation of A + B + C, illustrates this tech-
nique. The fragment begins after the B and C mantissas have already been aligned and added.
It ends after the final mantissa sum is computed but before the normalization.

BEFORE OPTIMIZATION AFTER OPTIMIZATION

L2: El a FFl Ml L2: El = FFl MI
ETO = EB E- El ETO = EB E- El
MTO = M SEL El E2 = EA E- ETO, BNEG L3
E2 = EA E- ETO, BNEG L3 E3 = EA E- EB
M2 eMTO SER E2 M2 = MI SHR E3
M3 =M2 M+ MA, BR L4 M3 = M2 M+ MA, BR L4

L3: M2 MA SHR- E2 L3: MTO = MI SHL El,
M3 =MTO M+ M2 M2 = MA SHR- E2

M3 = MTO M+ M2

The left shift of M1 has been pushed below the branch on (EA >= ETO). If the branch is not
taken, the shift is combined with the alignment right shift. An additional exponent subtract
is required to calculate the shift count. If the branch is taken, the shifts operate on different
mantissas and cannot be combined. The path length of the optimized code is unchanged, but
an expensive mantissa shift is replaced with an inexpensive exponent subtract.

Post Multiply Normalization

A multiply operation can denormalize its result by at most one bit position. If a few extra
guard bits to the right of the mantissa are maintained, the results of multiplication can be used
without normalization with no loss of accuracy. Only the final result must be normalized. For
example, the code for A * B * C is shown below.

LO: El = EB E+ EC
Ml = MB M* MC
E2 = El E+ EA
M2 a MA M* MI

E3 = FF1 M2
ETO - E3 E- E2
MTO = M2 SIL E3

4



I iThis optimization also handles the ubiquitous case of multiply-add. If a multiply is followed by
an add, its normalization can be eliminated as the final result will be normalized by the add.

3 For a sequence of multiplies, this optimization reduced the number of intructions from 5n to
2n + 3, a savings of 60%. The savings in terms of time is somewhat less since the mantissa3 multiply M* is an extremely costly operation.

Conventional Optimizations

Decomposing floating-point operations exposes the resulting micro-operations to conventional
compiler optimizations such as constant folding, common subexpression elimination, and dead
code elimination. Consider for example, the expression (A + B)*(A - B). When reduced to
micro-operations the alignment of A and B can be recognized as a common subexpression and
eliminated. The optimization reduces the path length from 17 to 15, a 12% improvement. A
source level compiler can find no common subexpressions and will perform the alignment twice.

I Scheduling

More efficient use of floating point hardware can be made by scheduling the micro-operations
of an entire floating-point expresion as a unit rather than scheduling each add or multiply
separately. The pops of one floating point operations can be used to fill idle cycles in the
evaluation of other floating point operations even if there are dependencies between the two
operations.

Consider for example the case of a multiply-add (A * B + C). A reservation table for this
operation is shown below. Once the exponent addition for the multiply is completed (A), the
exponent subtract for the add may be performed (C). If EA + EB > EC, the alignment shift for
the add (D) may also be performed in parallel with the multiply (B). In a conventional floating3 point unit, the multiply has to complete before any part of the add can be performed.

Uni 1 2 3 4 5 6 7 8 9 10 A:E, El E+ EB
B: N1 = NA M* MB

* B B 8 B C: E2 =E1 E- EC, BNEG L1
H + E E D: M2 =MC SHR E2
M SH D D H I E: M3 = KI M+ M2, BR L2
M FF1 FF
E+/- AC GI

I 3 The Micro-Optimizer

An experimental micro-optimizer has been implemented to evaluate the optimizations described
above. The program accepts a restricted LISP expression as input and produces optimized
pFPU assembly code as output.

3!



The compilation is performed in the following steps

1. The expression is compiled into standard three address macro floating-point assembly
code.

2. A data flow graph is constructed and used to recognize (1) sequences of cascaded additions
and (2) non-terminal multiplies.

3. With the aid of the data flow graph, the macro assembly code is translated into /FP code.
Automatic block exponent and post multiply normalization optmizations are performed
during this step.

4. Shift combining is performed by checking each shift to determine if its result is used as
input to another shift.

5. A control flow graph is constructed and each statement is labeled with an identifier spec-
ifying the paths that pass through that statement.

6. With the aid of the control flow graph, common subexpression elimination is performed.
Expressions are eliminated outside of basic blocks if they axe labeled with the same path
identifier.

7. The optimized uFP code is scheduled into horizontal microinstructions using a greedy
algorithm that schedules an operation as soon as its inputs and required resources areI available.

4 A Micro Floating Point Unit

A micro floating point unit (/FP) is required to efficiently execute the code produced by U
the micro-optimizer. Micro-optimization reduces floating point operations to their constituent
integer operations; however an integer processor does not support features such as stic-j bits
that axe required to round according to existing standards [2]. This section describes the
architecture of au FP suitable to execute the code described above. The purpose of this design
is to serve as a basis for the evaluation made in Section 5. This description is a paper design,
no jLFPU has been constructed.

The jFP contains a 31-word by 12-bit exponent register file, and a 31-word by 64-bit mantissa
file. Each register file has two read ports and a single write port. The exponent registers contain

12-bit 2's complement numbers. These numbers are converted to/from offset format during load
and store operations. The mantissa registers have the format shown below. A 55-bit r.antissa
(M) includes the implied bit (I), and sign bit S. The mantissa is protected above by t'zee A bits
and below by three B bits as well as the standard guard, round, and sticky bits (R).

ISIAAAIIM ... ... MIBBBIRRRI

63 62 69 6 5 4 2 0
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3 The A bits allow up to four aligned mantissa additions to be performed before normalizing the
result. The possible one-bit overflows are accumulated in the A bits for later normalization.
The B bits allow up to four multiplies to be performed before normalizing. The bits that shift

I off to the right because of the possible one-bit denormalization are accumulated in the B bits
and the guard bit.

The exponent and mantissa data paths are shown in Figure 1. The exponent path has anI adder/subtractor and can receive data from the find-first-one (FF1) unit in the mantissa path.
The mantissa path includes a multiplier, an adder, a shifter, and a find-first-one unit The
multiplier, adder, shifter, and FF1 unit are pipelined with latencies of 4,2,2, and 2 (see below).
The shifter sets the sticky bit of the result if any ones are discarded from the right side of the
operand. The adder uses the round and sticky bits to round each addition. The multiplier both3 produces the rounding bits and uses them to round the result.

There are two crossovers between the exponent and mantissa data paths. The mantissa shift
is controlled by an exponent shift count, and the find-first-one unit takes a mantissa as input
and produces an exponent result.

The clock cycle is determined by the time required for a 12-bit exponent add (; 15ns in a 1/u
CMOS technology). Assuming a carry lookahead adder and a Wallace-tree multiplier [41, times
for mantissa'multiply, add, shift, and find-first-one are estimated to be 4, 2, 2, and 2 cycles
respectively. A register read or write takes one clock cycle, and a register can be read in the
same cycle it is written. There is full bypassing under compiler control (no comparators).

The format of a pFP instruction is shown below. Each instruction specifies sources and des-
tinations for the mantissa and exponent register files, the exponent and mantissa operations,
and a branch specifier. Specifying a register address of all ones (OxIF) selects a bypass from
the result bus. Branches have no delay if not taken and a one cycle delay if taken.I
Instruction Format:

3 I EA I EB I EC I MA I MB I MC I EOP I MOP I BOP I BDSTI

IThe units perform the following operations. Each unit also has a NOP operation.

!7
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I Exponent OPs
E+, E- Exponent add/subtract (EC <- EA op EB).

FF1 Returns the shift required to normalize mantissa MA (EC <- FF1
HA). In the range [-3,57]. Returns the largest positive number if no
ones are found.

LDE, STE Load or store exponent as an integer.

Mantissa OPs
SH+, -, M* Mantissa add, subtract, and multiply (KC <- MA op HB).

SHR, SHiL Mantissa right and left shift (MC <- MA >> EA) or (MC <- MA <<
EA). A negative exponent shifts in the opposite direction.

ABS, NEG Zeros and complements the mantissa sign bit.

LDM, STM Load or store mantissa as an integer.

LDF, STF Load or store mantissa and exponent formatted as a standard float-I ing point number.

Branch OPs BR Unconditional branch.
BNEG Branch on exponent negative (EC < 0).
Bcond Branch on exponent and mantissa compare (EA, MA) relop (EB,

MB).

U This instruction set is the minimum required to perform the evaluation in the next section. In
certain applications additional instructions would be useful. For example, if divides were used

frequently a mantissa divide MI could be realized with an SRT divide array. If divides are less

frequent, a reciprocal approximation can be programmed using the instructions above.

This instruction set is intended to complement a simple integer instruction set [7] [1] [6]. For
operations such as reciprocal and square root that are often performed using Newton's method,
there is no need to implement an initial approximation lookup table in the /FPU. These tables

can be kept in main memory and accessed using integer instructions. By exposing the algo-
rithms for reciprocal, square root, and other floating-point functions, the compiler can perform
optimizations that are not possible if these functions are hidden in microcode.I
5 Evaluation

To evaluate micro-optimizations, the uFPU described in Section 4 is compared against a con-
ventional floating point unit (cFPU) with the same micro-operation times and register file

I . bandwidth. The two units were compared on a series of benchmark expressions. For each
expression and each unit, the total number of micro operations operation count and the total
number of clock cycles required time to execute the longest path through the expression is

3 measured.

The following assumptions are made:

1 a The two units have identical clock rates and micro operation times.

* 9
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" Each cycle, each unit can read two mantissas and two exponents and write one mantissa
and one exponent.

" All units are pipelined and can accept a new input each cycle.

" Branches have no delay if not taken and a delay of one if taken.

" Common subexpression elimination is performed on the macro floating point operations i
for both units.

" The operations on each unit were scheduled using a greedy algorithm. 3
The benchmarks are summarized in the following table: 3

Benchmark Description iii
1 (+ (* a a) (*b b))) 2 i
2 (+ a b c d)) 0 3
3 (* ab c d)) 3 0

4 Simple MOSFET Equation 3 3
5 3-D dot product 3 2
6 Acceleration Calculation 8 7
7 Magnitude of Butterfly 8 9
8 8 Tap FIR Filter 8 7

The operation counts and times for the twelve cases are tabulated below along with total lengths
and times for the two units.

Over the six benchmarks, micro-optimizations resulted in a 93 % reduction in operation count m
and a 40 % reduction in time. The reductions are largest for large expressions with long
sequences of adds or multiplies.

Expressions with a great deal of internal parallelism give a smaller reduction in execution time.
The parallelism in these expressions can keep a conventional floating point pipeline very busy
reducing the advantage gained by independently scheduling micro-operations. For example, the
FFT butterfly operation (benchmark 7) calculates the real and imaginary components of its two
outputs in parallel. A pipelined FPU can execute these four calculations in parallel. Because the
j.FPU consumes register bandwidth handling intermediate results, it cannot initiate operations
as quickly. Because of the register bandwidth bottleneck, this benchmark has a typical reduction
in operation count (30%), but only a 25% reduction in execution time.

Al] benchmarks other than number 7 show a greater improvement in execution time than in
operation count. This data suggests that register bandwidth is not an issue for most scalar
expressions. The two units were compared with identical and realistic register file bandwidth.
Data dependencies prevent the conventional FPU from exploiting all of this bandwidth. If
memory bandwidth is equal to register bandwidth, a ronventional FPU will outperform a
kFPU or. vector operations. The conventional unit can start an operation each cycle while the

10
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I pFPU will use some register bandwidth for intermediate results. When register bandwidth is
at least twice memory bandwidth, the /FPU becomes competitive even on vector operations.

I _Operation Count

Benchmark _cFPU I,,FPU 1% Reduction
1 16 10 38

2 18 15 17
3 15 9 40
4 33 26 21
5 27 17 37
6 82 56 32
7 94 67 29
8 82 47 43
TOTAL 367 247 33

S[ hTime (cycles)

Benchmark cFPU A'FPU [% Reduction
1 21 13 38
2 30 19 37
3 30 16 47
4 50 31 38
5 32 17 47
6 94 52 45

_ 7 73 55 25
8 87 47 46
TOTAL 417 250 40I

6 Conclusion

I A technique for micro-optimizing floating-point expressions has been described. Micro-optimization
involves reducing floating-point expressions to their constituent micro-operations and optimiz-
ing the resulting sequence. By exposing the micro-operations to the compiler many redun-
dant operations can be eliminated. Scheduling of individual micro-operations allows dependent
macro operations to be partially overlapped.

I An evalaation of micro-optimization shows that it reduces operation count by 33 % and exe-
cution time by 40 % compared to conventional floating-point execution. The operation count
reduction is largely due to the elimination of unecessary normalization operations. Elimination
of common exponent subexpressions contributes a small amount. The improvement in execu-
tion time is due to the elimination of these operations and the increased overlap of operations
resulting from scheduling micro-operations separately. In some cases exponent calculations are
scheduled in such a manner that the execution time is entirely due to mantissa calculations.

I 11



A micro floating-point unit is required to execute these floating-point micro-operations. Al-
though they are integer operations, appropriate word lengths and support for rounding are
required to maintain accuracy. Also, separate mantissa and exponent paths are required to
give performance competitive with conventional floating point units.

A MFPU breaks the pipeline of a conventional floating-point unit into separitely schedula-
ble function units. The additional scheduling flexibility can be exploited through micro-
optimization. The penalty for this separation is potentially higher register file bandwidth,
higher instruction bandwidth and increased control complexity.

The flexibility inherent in a 1sFPU has many advantages other than performance. For example,
it can be used to gracefully support high precision floating point numbers. If provision is made
in the t&FPU to recover the low bits of a multiply and to link carry bits between adds, high-
precision floating point arithmetic can be implemented at about the same cost as high-precision
integer arithmetic.

A sFPU can also make tradeoffs between area and performance. For example, a smaller unit
could be constructed that performs mantissa multiply with two or four multiply step operations.
The resulting unit would be significantly smaller and would be slower only in those cases where
two mantissa- multiplies can be overlapped.

The work described here is an effort to integrate floating-point arithmetic into RLISC computer
architecture [8]. Conventional IUSCs operate with a scalar and/or vector floating point unit that
is operated separately from the RISC pipeline. A uFPU integrates floating point operations into
the pipeline so that only one execution controller is required. Floating-point micro-operations
are handled in the same manner as integer operations.

Most floating point calculations are limited by memory bandwidth rather than by arithmetic
capability. By integrating floating-point and address calculation in one unit, the coupling
between the FPU and the memory system can be made tighter. For example, micro-operations
can be used to fill the delay slots of a delayed load. Because these operations are scheduled
by the compiler, no time and bandwidth is lost synchronizing data arrival with a separately
scheduled floating point pipeline.

Much work remains to be done on micro-optimizations. Extending the expression compiler of
Section 3 into a full compiler will create opportunities for additional optimization. For example,
loops that iterate over arrays accumulating a running sum can be optimized with a technique
similar to automatic block exponent. Other optimizations become possible if the compiler is
extended to infer the signs and relative magnitudes of some variables. If the two inputs to a
mantissa add can be shown to have the same sign, the result will not be denormalized (it may
overflow one bit), and the sign of the result can be inferred. If exponent values can be inferred
or computed early, block exponents can be applied across large expressions. If the relative
magnitudes of exponents can be inferred, branches on exponent comparison can be eliminated.

Floating point numbers are popular because they free the programmer from the tedious task
of scaling integers. Scaling need not be performed entirely at run-time by hardware, however.
A suitable division of effort between a micro-optimizing compiler and hardware with some
primitive support for floating point can result in substantial performance improvement.

12



i Acknowledgement

The work presented here has benefited from discussions with Anant Agarwal, Tom Knight,
Scott Wills, and Steve Ward.

References

I [1] AMD, AMD 29000 User's Manual, 1987.

[2] ANSI/IEEE Standard 754-1985. IEEE Standard for Binary Floating-Point Arithmetic.

[3] Colwell, R.P., et.al., "A VLIW Architecture for a Trace Scheduling Compiler," IEEE
Trans. Computers, C-37(8), August 1988, pp. 967-979.

[4] Hwang, K., Computer Arithmetic: Principles, Architecture, and Design, Wiley, 1979.

[5] Magenheimer, et.al., "Integer Multiplication and Division on the HP Precision Archi-
tecture," IEEE Trans. Computers, C-37(8), August 1988, pp. 980-990.

[6] Motorola, MC88100 32-bit Third-Generation RISC Microprocessor: Technical Sum-
n mary, Document BR588/D, 1988.

[7] Moussouris, J. et.al, "A CMOS RISC Processor with Integrated System Function,"
COMPCON, 1986, pp. 126-131.

[8] Patterson, David A., "Reduced Instruction Set Computers," CACM, 28(1), January
1985, pp. 8-21.

[9] Strecker, W.D., "VAX-11/780, A Virtual Address Extension to the PDP-11 Family",
Proc. NCC, 1978, pp. 967-980.

I
I
U
I
I

I 13 mm|


