
APPROVED FOR PUBL!
DISTRIBUTIO"

M ASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

N

ICOMPUTER-AIDED FABRICATION SYSTEM IMPLEMENTATION

< Semiannual Technical Report for the period April 1, 1988 to September 30, 1988

Massachusetts Institute of Technology . -

Cambridge, Massachusetts 02139 CT-
NOV 2 3 1988

r&1

Principal Investigators: Paul Penfield, Jr. (617) 253-2506
Dimitri A. Antoniadis (617) 253-4693
Stanley B. Gershwin (617) 253-2149
Stephen D. Senturia (617) 253-6869
Emanuel M. Sachs (617) 253-5831
Donald E. Troxel (617) 253-2570

This research was sponsored by Defense Advanced Research Projects Agency (DoD), through the Office of

Naval Research under Contract No. N00014-85-K-0213.

Microsystenis Massachusetts Cambridge Telephone
Research Center Institute Massachusetts (61 7) 253-8138
Room 39-321 of Technology 02139

TABLE OF CONTENTS

Research O verview I
CAF System Structure 2
M odular Process 5
Equipment M odeling 6
M echanical-Property TCAD ... 7
Sceuig..........ed..................u ng... 8
Publications List .. 9

Selected Publications (starting after page 10) S

*G. H. Prueger, Equipment Model for the Low Pressure Chemical Vaor Detosition of Polysilicon M.S.
Thesis, Department of Mechanical Engineering, MIT, March 1988. Also, MIT VLSI Memo No. 88-485,
November 1988.

•T.-L. Tung, Boundary Element Techniques for Modeling Thermal Oxidation of Silicon Ph.D. Thesis,
Department of Electrical Engineering and Computer Science, MIT, September 1988.

•R. Jayavant, An n ignt Process Flow Jaguai Editor. M. S. Thesis, Department of Electrical Engineering
and Computer Science, MIT, September 1938. Also, MIT VISI Memo No. 88-475, September 1988.

J. Huang, T. A. Lober, M. A. Schmidt, and S. D. Senturia, "The Maximum Free-Standing Length of
Polycrystalline Silicon Microbeams," to appear in Proceedings. International Conference on Material
and Process Characterizatio Shanghai, China, October 1988.

*S. B. Gershwin, "Hierarchical Flow Control: A Framework for Scheduling and Planning Discrete Events in
Manufacturing Systems," to appear in Proceedin=s. IEEE Siecial Issue on Discrete Event Systems. -
Also, MIT VLSI Memo No. 88-48Z October 1988, earlier version appeared as MIT VLSI Memo No. 88-
406, July 1987.

M. L Heytens and R. S. Nikhil, "GESTALT: An Expressive Database Programming System," submitted to the
ACM SIGMOD. Also, MIT VLSI Memo No. 88-484, October 1988.

• Abstract only. Complete version available from Microsystems Research Center, Room 39-321, MIT,
Cambridge, MA 02139; telephone (617) 253-8138.

S

= --- =iiliilli II iI IIIII ll mln I~l -0

U RESEARCH OVERVIEW

The objective of this contract is to do research supporting the development of a computer-aided
fabrication system that will serve the needs of the American semiconductor industry and the VLSI design
community. The semiconductor industry requires computer tools to enhance yields and reduce cost. VLSI
designers can benefit from the ability to specify application-specific processes to fabricate their application-
specific integrated circuits.

In support of these goals, specific projects are in place to design, develop, and implement a
hardware/software CAF system architecture; to develop aids to specifying process flows in a modular way, to
develop models for semiconductor fabrication equipment; to develop technology GAP (TCAD) tools for the
mechanical properties of integrated structures; and to develop and implement algori kms and programs to assist
in scheduling of fabrication operations. T" k_

Progress in each of these areas is described ow.

Ug

.....

II

2

CAF SYSTEM STRUCTURE

We made substantial progress in the development of programs relating to our data model and schema.
Our Gestalt system architecture provides a uniform query interface to data residing in multiple autonomous,
heterogeneous data bases. The Gestalt data base interface routines were expanded to include Lisp interface
routines in addition to C interface routines by Ken lshii.

Mike Ruf has completed his S.M. thesis proposal, "Management of IC Manufacturing Data," August 18,
1988. Mike worked on our CAFE project this past spring and is now at TI on his VI-A internship company
assignment. While his work is actually being done at TI, I am his MIT S. Lthesis supervisor. This thesis is an
example of how our CAFE system data base philosophy is influencing related work at TI. A comprehensive set
of data base tools, DBTOOLS, were generated by Ruf. These include:

o dbinspect - which is a "data base walker" program which enables application programmers (and
others) to find their way around the existing data base. It displays an existing entity and allows the user to
explore related entities. For example, one can display a facility and see that it has a list of machines. From
there one can display a particular machine and see its attributes, etc.

" dbcreate - which enables the creation of entities without writing a special application program.
" dbquery - which can be used to implement data base queries.
" dbmutate - to enable changes to be made to existing entities.
" dbchoose - to select entities from the data base.

An S.B. thesis, "Schema Viewer. A Graphical Representation to Portray the Database Schema of the
MIT CAFE System," was completed by Nazhin S. Zarghamee in May, 1988. This software provides a schema
display so as to allow lab managers and users to provide more meaningful feedback as to the appropriateness
and utility of our schema.

A number of application programs pertaining to status and log reports were written or modified by D. E.
Troxel. These included change-statis which is used for entering data relating to status changes, describe-
machine to display current status, new-machine to enter a new machine into the data base, format-equipment to
report the status of all equipment in a facility, up which is a generalized status and log report generator, and dbt
which was used to transfer file based data to the data base. The up program can produce graphs of uptime for a
selected machine for a selected period of time or, alternatively, a summary of the relevant log entries relating to
machine status changes. The graphs can be output on a terminal or laser printer via giraphe3 which was written
by Duane Boning and Bob Harris.

A new program, operate-machine, was written by Mike Mcllrath. This is initially used to make log
entries when a machine is operated. It also provides a base for the creation of machine specific data entry and
will be ,xpanded substantially in the near future. In addition to being available from the CAFE menu, this
program or procedure will be called by the fabrication interpreter in order to actually effect the machine
operations. The operate-machine program is being expanded to create wip entities when the program is exited
without the finish time being specified. When this is accomplished several programs (up, change-status, and
describe-machine) will have to be modified to include reports on active wips.

The next stage in the development of operate-machine, is t make it specific to the actual machine being
operated. This requires generation of opdesc entities which embody the description of the parameters or
machine settings and the measurements or data which are to be collected.

A new program which interfaces with the Nanospec film thickness instrument has been developed. In
addition to operating the Nanospec via the computer, it now initiates measurements and places the resulting

3

thickness measurement in the appropriate field automatically, thereby reducing the operator interaction
required to capture the measurement data for data base storage.

A program written by Peter Monta provides for an alternative direct interface between the Gyrex mask
maker and a computer as opposed to requiring users to write data to magnetic tape and transport these tapes to
the Gyrex.

We have developed and demonstrated a "hands off terminal." We chose a commercially available TI
speech recognition card which plugs into an IBM PC/XT. Software has been developed by Peter Monta to
interface the TI PC software to control a fabform interface. As this speech recognition module is speaker
dependent, the software automatically loads the data base appropriate to the login name. Several of us have
"trained" the recognition software and the results are quite interesting. This "hands off terminal" is now ready
to be installed as the terminal next to the Nanospec in the fabrication laboratory.

We have continued the development of a process flow language (PFL). The creation of a PFL and
associated interpreters is the key to our approach for generating actual fabrication instructions and for
collecting the data resulting from actual fabrication steps. The interpreters provide the actual meaning of the
process flows expressed in the flow language.

Our previous PFL development was based on only the machine setting view in order to get something
working as soon as possible. We now have a version of our PFL which is based on the two stage process step
model which relates the goal of a change in wafer state first to the physical treatment parameters and finally to
the actual machine settings used to process the wafers. We have recoded the CMOS baseline process in this
new version and, in addition, have encoded a furnace monitor process which is routinely used every week.

We have made substantial progress on an expert PFL editor. An expert PFL editor has been completed
by Rajeev Jayavant as his S.M. Thesis, "An Intelligent Process Flow Language Editor". This editor uses
fabform as the user interface. Ideally one starts with an existing process flow, encoded in out lisp like syntax,
which is somewhat similar to the desired process flow. The editor then displays this existing process flow with a
forms based presentation and allows the user to modify the flow. The editor then produces the new flow
encoded in our lisp like PFL without the user even being aware of the lisp nature of the PFL. The editor
supports the three views required by the two stage generic process model and, in addition, allows any number of
hierarchical levels of process flow definition.

Our standard user interface, fabform, has been improved and extended so that it can now be called as a
procedure from either C or Lisp.

We have made substantial progress on the development of a simulation interpreter. Duane Boning has
completed his Ph.D. proposal, "Custom Fabrication Process Design: Tools and Methodologies," March 8, 1988.
We have also realized that we must provide for operation of partial flows. One impediment to the use of our
PFL is that users change their minds about the process specification as they progress with the actual fabrication.
By concatenating the processing history of fabrication with a number of partial flows we at least will have a
uace which accurately reflects what happened. A prototype version of the Suprem-Ill Simulation Interpreter
has been completed. The interpreter generates Suprem-II fragments for multiple one-dimensional cross
sections, produces a Makefile to minimize shared simulations, and provides analysis (plotting, sheet resistance,
and threshold voltage) capabilities. Duane Boning is now working to get an accurate description of the CMOS
Baseline process, so that meaningful comparisons of fabrication and simulation of the MIT standard defect
array is possible, and so that realistic work with the flow language can progress.

We completed a substantial reorganization and cleanup of our CAFE software. We now have it all
existing under a single directory, /usr/cafe, in preparation for distribution to our fabrication laboratory and
perhaps elsewhere.

4

We have acquired another computer and several workstations. We installed a VAX 750, garcon, for use
as a file server. We have installed three monochrome and two color VS2000s, two Symbolics Lisp machines,
and relocated the TI Explorer. We have installed a terminal concentrator in building 13. All of our computers
are now on the same subnet with the result that file transfer and NFS services are now robust.

This summer we made a major new release of our CAFE software. We installed INGRES 5.1, an
updated schema, operate-machine, and a series of applications programs related to status and log reports.
These programs were described in previous progress reports. In addition, Mike Heytens generated a number of
new database access routines which provide for more efficient filtering and sorting by implementing these!
operations at the underlying data base level instead of at the applications programming level In spite of these
opkmizations we found that the system response time had deteriorated substantially both due to increased
program size and an increase in the number of active users.

We temporarily took the computer cafl.mit.edu used for CAFE development out of service in order to
provide better response time on caf2.nit.edu, which is the computer used by fabrication laboratory users. This
doubled the memory available on caf2 from 8 to 16 megabytes. Later, we were able to borrow some memory
and we restored cafl to service and now have 16 megabytes of main memory for caf2. We conducted timing
tests on caf2 with 16, 24, and 32 megabytes of memory. Seven identical CAFE operations were started in quick
suc on. One sample operation implemented in Lisp took 160 seconds with 16 megabytes and 8 seconds with
24 or 32 megabytes. A different operation implemented in C took 125 seconds with 16 megabytes and 85 to 90
seconds with 24 or 32 megabytes. The primary reason that the Lisp program is slower than the C program is
that it is much larger and the paging time is thus longer. Clearly we need to acquire more memory.

A fast method of logging in and out of the laboratory has been implemented by Rajeev Jayavant. The
actual computations involved is not any faster but the user no longer must wait until they finish. This has been
tested but not yet installed on caf2.

An extension to the reservation program has been made and tested, though not yet installed on ca2. A
new program to make periodic reservations was written by Joseph Kaliszewski and he also modified the existing
reservations program. Periodic reservation enables the convenient entry of lab hours and weekly scheduled
preventive maintenance. Reservations indicated by the periodic reservation data structure are merged into
blank areas of the reservation forms so as to provide this information to lab users. However, if a lab user wants
to make a reservation which overrides these, he or she can do so.

We plan to re-implement the GESTALT object-like interface to provide an in-memory storage option
for those sites and applications who do not want or need a persistent database, and do want and need fast, in-
memory, object-like data structuring.

We have begun serious consideration of the integration of scheduling programs with CAFE. Xiewei Bai
has started to integrate fabform into his factory simulation programs. We have discussed schema additions to
represent the data required for scheduling programs but have not yet settled on their final form. The present
approach is to write a single machine scheduler first with later extension to a multi-machine scheduler.

The programs relating to lot and wafer tracking have been rewritten and tested but not yet installed.
Create lot and create processname were rewritten by Rajeev Jayavant. Showlot and track/ot were rewritten by
D. E. TroxeL The latter two programs include optional reports of the history of opinsts and existing wips.

A project to automate the operation of the HP wafer prober has been initiated by Merit Hung and
Joseph Kaliszewski under the direction of Professor Antoniadis. This project is proceeding in three phases, the
first being development of a stand alone program on the computer supplied with the wafer prober. The second
phase will be to enable the operation of this machine from another computer (caf and/or caf2). A third phase
will be to integrate the operation of this machine with the operate-machine program running under CAFE.

5

MODULAR PROCESS

Development of the Profile Interchange Format (PIF) has proceeded in two areas: implementation of a
PIF program interface, and development of individual PIF utilities. Taking the published proposal for the
"intersite" (or ASCII) PIF as a starting point, we have been developing a set of routines through which CAD
and CIM programs may access PIF objects. This "intertool" format is based on the GESTALT database
interface to a geometric and attribute schema definition tailored to the PIF, and provides a uniform or
"standard" functional program interface. Tools implemented with this interface should, like the data itself, thus
be portable. We have so far developed a small set of such utilities, including format conversion programs froia
SUPREM-Ill to the PIF (-sup2piP" and "pif2sup-), between the ASCII and database versions ("pif2db" and
"pifdump"), as well as a simple profile plotting utility ("pifplot"). Implementation of the interface and specific
PIF utilities is continuing.

The Technology (encompassing both Process and Device) CAD Environment is based solidly on the
wafer representation (PIF) and the process representation (PFL or Process Flow Language). During the last
six months, we have focussed on development of two tools for this environment. The first of these is a
prototype Simulation Manager, which has as a key component a translator from the PFL representation of the
process to the input required by SUPREM-m11. The specification and handling of multiple one-dimensional
cross sections for simulation has been a major addition to the Manager. Utilities allow minimal simulation of
the process (the MIT CMOS Baseline process has been the vehicle for testing the manager), evaluation of
where the process diverges for multiple cross sections, as well as interactive examination of simulation results.
The second area of research we have begun is to investigate simple process synthesis utilities. We have written
initial versions of an "Oxidation Advisor," an "Implantation Advisor," and a "Diffusion Advisor" to provide
physically-based initial guesses for process parameters during process design. Work is underway to further
build "Correction Advisors", as well as to experiment with physically-based optimization methods.

pJ

6

EQUIPMENT MODELING

During this time period, progress was made on three projects, and a fourth project was initiated. The
first ongoing project is an equipment model for the LPCVD of doped polysilicon. The second ongoing project
concerns the use of dimensional analysis in the design of experiments. The third ongoing effort concerns the
use of sequential design of experiments for process optimization and controL The new project concerns the
development of a general framework for process control

A common element in our equipment modeling efforts is the fusion of statistical design of experiments
with physically based mechanistic modeling. Our first completed work is an equipment model for LPCVD of
polysilicon in a horizontal tube furnace. In this work, George Prueger developed a finite difference model for
the equipment and process and calibrated that model using data derived from designed experiments. Our
current projects on modeling of doped poly and the use of sequential design of experiments seek to further the
effort at the combination of experimental design and physical knowledge.

The project on modeling of the LPCVD doped poly is being carried out by Master's student Parmeet
Chaddha with experimental support coming from the BTU applications lab, in Billerica, MA. The goal of this
work is to develop an equipment model which aids in the design of the cage in the doped poly process. The
function of the cage is to serve as a deposition site for reactants formed in the annular layer between the cage
and the tube walls, thereby resulting in uniform thickness deposition on the wafers. The challenge in cage
design is to specify the size and distribution of the holes so that the deposit is uniform on the wafers, and the
deposition rate is as high as possible. Our approach is to develop a highly simplified analytical model which
predicts deposition uniformity and rate as a function of cage geometry, and to calibrate this model using data
derived from designed experiments. Roughly one half of the experiments have been completed during this
reporting period, with the work being performed on 4 inch wafers at BTU, Inc.

Master's student William Wehrle has been developing methods of using dimensional analysis in the
design of experiments. Dimensional analysis is a relatively easy means of deriving relationships between
variables based on physical arguments. A very general theorem called the Pi Theorem provides a set of rules
which can be followed to create the dimensionless groupings which characterize a problem. The theorem,
however, results in a tremendous choice of sets of these groupings. Mr. Wehrle has developed two rules which
narrow the choice down when the Pi theorem is applied to the design of experiments. He will test the theory in
application to the LPCVD of LTO.

Master's student Michele Storm is working on the use of sequential design of experiments for process
optimization and control, in collaboration with Ultramax Corp. of Cincinnati, OH. Sequential optimization is a
technique particularly well suited to manufacturing, where processes are inherently sequential. The basis of the
method is to perform a local regression to the measured data, thereby calibrating a quadratic response surface
centered near the current point of operation. This response surface may be considered to be a Taylor series
representation of the process. The polynomial representation is then used to design the next experiment in a
continuous cycle of "learning and advising". Our goal is to use dimensional analysis to create grouped variables
for use in the models, as a replacement for the primitive variable currently used. Ms. Storm has written a
sequential optimization program and will shortly begin experimental work on wire bonding. She will compare
the effectiveness of grouped (dimensionless) variables with the effectiveness of primitive variables for
optimization of wire bonding.

Doctoral student Ruey-Shan Guo was hired toward the end of the summer (August 1988). Mr. Guo has
spent the intervening months acquiring a background in statistics and experimental design.

7

MECHANICAL-PROPERTY TCAD

The overall goal of this project is the development of a design capability that includes the mechanical
properties of microelectronic materials. This is a new project, which began in October 1987. The specific goal
during this past year has been to develop experimental methodologies with which to determine the residual

- stress in microelectronic thin films. The material selected for the first set of experiments was polycrystalline
silicon, because it is well known that its residual stress is very dependent on process conditions. Several
experiments were carried out on polysilicon as a function of its deposition and doping. Using techniques of
surface micromachining. suspended polysilicon beams and cantilevers were fabricated in various thickness,
doped variously, and subjected to different sequences of thermal annealing. The residual stress in the

- polysilicon and the stress uniformity were then determined by examining vertical deflection of cantilevers with
optical interferometry. In addition, the maximum free-standing non-buckled beam length was determined,
which can also be related to residual stress. The detailed descriptions and conclusions are contained in two
papers which have resulted from this work, which are attached to this report.

I.

UQ

. ..U - ... =.m ..- N .m-.m u s / i ll tl~ lll~ i

- - -- -iII IIII IIWI mi iI * U I I

8

II

SCHEDULING

Research on three activities continued during this period.

" Systems level model of the integrated-circuit fabrication process.

" Mathematical model of an integrated-circuit fabrication facility.

* Simulation and scheduling software.

An important phenomenon was added to the set of models that have been part of our study, namely the
fact that many semiconductor fabrication operations are performed on a batch of wafers simultaneously.
Examples include oxidation, deposition, ion implantation, and others. While this is seen in other kinds of
manufacturing, it is pervasive in this industry.

This feature is important because in order to realize the full capacity of a system, the machine chambers
must be as full as possible. There are two reasons for this: (1) it takes as much time to do an operation on one
wafer as 100, but 99% of the capacity is wasted if only one wafer is in a chamber that can hold 100, and (2)
maintenance must be performed on machines that do deposition operations when the total amount deposited
since the last maintenance reaches a given level, independent of the number of wafers that were in the chamber
when the depositions took place.

One way to keep the chambers full is to have large lots. However, this is not desirable in a system that
has low volume or that has a diversity of products. Another approach is to group together distinct wafers that
require the same operations. This leads to more complex modeling and scheduling issues, which we are
currently studying and simulating. A prototype scheduler has been built for a single machine.

I

9

PUBLICATIONS LIST

0. Z. Maimon and S. B. Gershwin, "Dynamic Scheduling and Routing For Flexible Manufacturing Systems that
have Unreliable Machines," Operations Research, Volume 36, Number 2, March-April, 1988, pp. 279-
293. Also, MIT VLSI Memo No. 87-370, March 1987.

G. H. Prueger, Equipment Model for the Low Pressure Chemical Vapor Detsition of Po.lili M.S.
Thesis, Department of Mechanical Engineering, MIT, March 1988. Also, MIT VLSI Memo No. 88-485,
November 1988.

E. M. Sachs, "Process Model Construction and Optimization using Statistical Experimental Design,"
fM0 Mafatrng International. Atlanta, GA, April 18-19, 1988. Also, MIT VLSI Memo No.
88-442, March 1988.

N. S. Zarghamee, Schema Viewer: A GraNhical Representation to Portray the Database Schema of the MIT
CE SygeM, S.B. Thesis, Department of Electrical Engineering and Computer Science, MIT, May
1988.

T. A. Lober, J. Huang M. A. Schmidt, and S. D. Senturia, "Characterization of the Mechanisms Producing
Bending Moments in Polysilicon Micro-Cantilever Beams by Interferometric Deflection Measure-
ments," Proceedins- IEEE Workshop on Solid-State Sensors and Actuator' Hilton Head, SC, June
6,1988.

R. Jayavant, An Intelligent Process Flow Language Editor, M. S. Thesis, Department of Electrical Engineering
and Computer Science, MIT, September 1988. Also, MIT VLSI Memo No. 88-475, September 1988.

T.-L. Tung, Boundary Element Technigues for Modeling Thermal Oxidation of Silicon Ph.D. Thesis,
Department of Electrical Engineering and Computer Science, MIT, September 1988.

J. Huang, T. A. Lober, M. A. Schmidt, and S. D. Senturia, "The Maximum Free-Standing Length of
Polycrystalline Silicon Microbeams," to appear in Proceedins. International Conference on Material
and Process Characterizatio Shanghai, China, October 1988.

S. B. Gershwin, "Hierarchical Flow Control: A Framework for Scheduling and Planning Discrete Events in
Manufacturing Systems," to appear in Proc¢edinL. IEEE Special Issue on Discrete Event Systems.
Also, MIT VLSI Memo No. 88-482, October 1988, earlier version appeared as MIT VLSI Memo No. 88-
406, July 1987.

INTERNAL MEMORANDA

X. Bai and S. B. Gershwin, "A Manufacturing Scheduler's Perspective on Semiconductor Fabrication," in
preparation.

M. L. Heytens and R. S. Nikhil, "GESTALT: An Expressive Database Programming System," submitted to the
AICMGMO. Also, MIT VLSI Memo No. 88-484, October 1988.

10

TALKS WITHOUT PROCEEDINGS

S. D. Senturia, "Microsensors: The Promise and the Problems," 3M MicroTech Symposium, St. Paul, MN,
March 30, 1988.

S. D. Senturia, "Critical Issues in Microsensor Design," Toyota Central Research Laboratories, Nagoya, Japan,
May 27, 1988.

S. B. Gershwin, "A Hierarchical Framework for Manufacturing Systems," INRIA-LORRAINE, France, June

28, 1988.

S. D. Senturia, "Critical Issues in Microsensor Design," Hitachi Sawa Works, Mito City, Japan, June 1, 1988.

S. B. Gershwin, "A Hierarchical Scheduling and Planning Framework for Manufacturing Systems," EURO
Workshop on Production Planning and Scheduling, Paris, France, July 5, 1988.

X. Bai, "A Hierarchical Scheduling and Planning Framework for Manufacturing Systems," CIM-IC Workshop,
Stanford University, Palo Alto, CA, August 5, 1988.

S. B. Gershwin, "A Hierarchical Scheduling and Planning Framework for Manufacturing Systems," Symposium
on Automated Manufacturing Systems, Rensselaer Polytechnic Institute, Troy, NY, August 29, 1988.

P. Penfield, Jr. and D. S. Boning, "Is the Two-Stage Process-Step Model Valid?," CIM-IC Workshop, Stanford
University, Palo Alto, CA, August 4-5, 1988.

E. M. Sachs, "Equipment Modeling Using Smart Response Surfaces," Digital Equipment Corporation,
Hudson, MA, August 3, 1988

E. M. Sachs, "Equipment Modeling Using Smart Response Surfaces," CIM-IC Workshop, Stanford University,
Palo Alto, CA, August 5, 1988

P. Penfield, Jr., "Future Direction of University Research: Where will we be in 5 years?" CIM-IC Workshop,
Stanford University, Palo Alto, CA, August 4-5, 1988.

R. Jayavant, "An Intelligent Process-flow Language Editor," CIM-IC Workshop, Stanford University, Palo
Alto, CA, August 4-5, 1988.

D. E. Troxel, "CAFE Application Programs," CIM-IC Workshop, Stanford University, Palo Alto, CA, August
4-5, 1988.

M. Ruf, "DRIFS: Data Retrieval Interface for Fabrication Systems," CIM-IC Workshop, Stanford University,
Palo Alto, CA, August 4-5, 1988.

E. M. Sachs, "Equipment Modeling," SEMATECH Center of Excellence first meeting, Westboro, MA,
September 29, 1988

EQUIPMENT MODEL FOR THE LOW PRESSURE CHEMICAL VAPOR
DEPOSITION OF POLYSILICON

nby

George Henry Prueger

Submitted to the Department of Mechanical Engineering
" on March 28, 1988 in partial fulfillment of the

requirements for the Degree of Master of Science in
Mechanical Engineering

ABSTRACT

An equipment model has been developed for the low pressure chemical vapor depo-
sition (LPCVD) of polycrystalline silicon in a horizontal tube furnace. The model
predicts the wafer-to-wafer deposition rate down the length of the tube. Inputs to
the model include: silane flow rates from three injectors, injector locations, loca-
tions of and temperatures at three thermocouples, operating pressure, the number
of wafers, wafer diameter, the location of the wafer load, and other physical di-

3l mensions of the furnace such as tube length, and inner diameter. The model is
intended to aid the process engineer in the operation of equipment, including the
selection of optimum process parameters and process control based on measured
deposition thicknesses. The model is also flexible enough to aid in the design of
new equipment.

* IThe one dimensional finite difference model encompasses the convective and dif-
fusive fluxes of silane and hydrogen in the annular space between the wafer load and
tube walls. The reaction of silane is modeled, with full account taken of the genera-
tion and transport of hydrogen. Kinetic and injection parameters in the model were
calibrated using a series of nine statistically designed experiments which varied four
parameters over three levels. The model accurately predicts the axial deposition
profile over the full range of experimentation and demonstrates good extrapolation
beyond the range of experimental calibration. The model was used to predict a
set of process parameters that would result in the least variation of deposition rate
down the tube. The predicted parameters agree well with experimentally deter-
mined optimum conditions.

Thesis Supervisor: Dr. Emanuel Sachs

Title: Assistant Professor of Mechanical Engineering

2

*BOUNDARY ELEMENT TECHNIQUES FOR MODELING
THERMAL OXIDATION OF SILICON

by

THYE-LAI TUNG

Submitted to the Department of Electrical Engineering
and Computer Science on June 17, 1988 in partial fulfillment
of the requirements for the Degree of Doctor of Philosophy

in Electrical Engineering and Computer Science

ABSTRACT
L "-

This thesis advances boundary element techniques to model thermal oxidation of
silicon in two dimensions. At temperatures encountered in thermal oxidation, sili-
con dioxide flows viscoelastically. A reduced-dimension, generalized boundary element
method for modeling such a problem has been developed. With a Laplace transform

i technique, a viscoelastic kernel function is derived from Kelvin's solution, which is the
fundamental solution to linear elasticity. Constant-velocity loading is chosen to oper-
ate with a wide range of stress relaxation times. This scheme is capable of replacing
boundary element methods developed for slow viscous flow and elastic deformation.
The oxidant diffusion problem is solved using a standard potential method for Laplace

* problems. Generated by oxide growth, stress affects both oxidant diffusion and oxide
flow. In particular, it changes the diffusivity of oxidants and viscosity of oxide, render-
ing the diffusion and flow problems nonhomogeneous. Domain solutions are needed for
both processes. A unified initial stress/built-in field formulation has been developed
to account for the nonlinear effects, using interior cells that are placed where stress
is significant. The interior solutions are realized with an interfacial source method,
whereby an area integral for a cell is transformed to a line intgral on the perimeter
of the cell. It has been found that kernel functions based on Kelvin's solution are de-
ficient in modeling incompresible materials with a "hole". A correction method that
uses a source term placed at the center of the hole has been implemented to overcome
the numerical problem.

Thesis Supervisor: Dr. Dimitri A. Antoniadis
Title: Professor of Electrical Engineering and Computer Science

2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

VLSI Memo No. 88-475
September 1988

AN INTELLIGENT PROCESS FLOW LANGUAGE EDITOR

Rajeev Jayavant

Abstract

A process flow language allows a user to specify the process used to fabricate integrated circuits on a
silicon wafer. By using a flow language, a designer can modify his process more easily and processing
equipmeit can be reconfigured for use with different processes.

While the benefits gained from using a process flow language have been discussed frequently, one major
drawback of using a flow language has been overlooked: users must code their process flows in the flow
language. This may not seem like a disadvantage, but it Is rather difficult to convince people to so
something they have never done before. Furthermore, the process must be in a language that faintly
resembles Usp, not a very appealing thought for users whose primary Interest is in processing wafers, not
programming computers. Thus there Is a severe need for some tool to facilitate the coding of processes
flows in the process flow language.

Various types of programming aids have been used In the past to facilitate software development: syntax
checkers, semantic checkers, preprocessors, and intelligent editors. The process flow editor combines
attributes from all of these. The primary difference between the process flow editor and conventional
editors Is that the flow editor presents the flow to the user In a format that Is very different from the format
seen by applications accessing the flow.

By using a different format in presenting the flow to the user, most people will not have to learn the Lisp-like
syntax of the flow language and can concentrate on what they really want to do - specify a process flow.
The current Implementation of the flow editor uses a forms-based interface to present the flow as a
collection of nested operations. A forms-based interface is appealing because it facilitates the design of
the editor while providing an Interface that lab users will recognize from several CAFE applications. The
use of forms also allows the flow editor to highlight the decomposition of the process flow into
parameterized operations, thereby providing a more informative view of the flow to the user.

Syntax and semantic checking is performed as the user enters the flow. The time required to code a
process flow Is reduced since many common errors are caught as they are made rather than being
discovered at a later time by an Interpreter.

Microsystems Massachusetts Cambridge Telephone
Research Center Institute Massachusetts (617) 253-8138
Room 39-321 of Technology 02139

ICMPC, Shanghai, October, 1988

The Maximum Free-Standing Length
u H of Polycrystalline Silicon Mlcrobeazns

Jiahua Huang1, Theresa A. Lober, Martin A. Schmidt, and Stephen D. Senturia

Microsystems Technology Laboratories
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

Doubly supported polysilicon microbeams are fabricated by removing a sacrificial oxide layer from under
an LPCVD polysilicon film using hydrofluoric acid (HF) as an etchant. Compressive stress in the beams
causes buckling at a critical length, which depends on the polysikon and oxide process history. This paper
reports a matrix investigation of the maximum free-standing length, L,, of polysilicon microbeams as a
function of beam width and thickness, variations in doping and annealing conditions, and different sacrificial

h. oxides. The results indicate that the L. of polysilicon microbeams has no significant dependence on beam
width, and Increases with beam thckness. Undoped beams which are annealed are more rigid than undoped,
unannealed beams. ",, of boron doped beams is smaller than for phosphorus doped beams, and while an
annealing cycle increases L. for boron doped beams, it shows little effect for phosphorus doped beams. A
larger L. is obtained when PSO is used as the aacrificial oxide layer instead of an undoped oxide.

*[Introduction

Thin films of LPCVD polysilicon have been widely used in integrated circuits. Recently, with the devel-
opment of surface-micromachining techniques, polysilicon is also becoming an important mechanical material
for microsensor and microactuator applications. Along with electrical characteristics, attention is now given
to the the effect of the mechanical stress of polysilicon films. Many investigators have developed methods

i* for characterizing the mechanical properties of films. Guckel demonstrated the direct measurementof the
film's strain level with experimental determination of the onset of buckling for known geometries [1J. Choi
reported the stress effects in boron-implanted polysilicon films using comparative warpage measurements 121.
Howe used relaxed silicon overhangs to determine the compressive stress in polysilicon and a-Si thin films
by measuring observed edge deflections, which vary sinusoidally (31.

Doubly supported polysilicon microbeams have found increasing microsensor and microactuator appli-
cations [4, 51. Since compressive stress can cause such beams to buckle when they reach a critical length,
the design of these microatructures is constrained by the maximum free-standing length, L., for which the
microbeam is stable and maintains little deflection. This paper reports the fabrication of doubly supported
polysilicon microbeams of various sizes and with varying doping and annealing conditions using conventional
IC process techniques, and investigates the dependence of the maximum free-standing length on microbeam
thickness and process conditions.

Experimental

Using surface-micromachining techniques, polysilicon microbeams are fabricated on two groups of 4-
inch, <100> oriented, lightly doped wafers. On the first wafer set, a lpm-thick sacrificial thermal oxide is
grown at 950*C. The second group of wafers receives a 2 hour, 9250C diffusion cycle with a POC13 liquid.

'A visiting scientist from Shanghai Component No.5 Factory of China1

diffudon source before the thermal oxide is grown. This produces a phosphorus content of 1.3 wt% in the
thermal oxide. The oxide layer on both groups of wafers is patterned and dry etched using CF4 and CHF3
to define trenches for creating pedestals for the beams. Pure silane is reacted at 250 mT and 025*C to
deposit blanket LPCVD polysillcon films ranging in thickness from 0.25pm to 1pm. Some samples receive a
60 minute, 925*C doping cycle with either a POC13 or BBrs source. The PSG or BSG is removed from the
polysillcon surface using 7:1 buffered HF. Then two sample groups containing both doped and undoped films
are annealed in an N2 ambient either at 950'C for 30 mn (low T anneal), or at 11000C for 20 mn (high
T anneal). After anisotropicaly dry etching the polysilicon films with CC14 to pattern the microbeams and
remove the polysilicon from the backside of the wafers, the sacrificial oxide film is undercut using 1:1 HF:H 2 0
to release the suspended structures. Once the polysilion bridges are freed they are delicate, requiring careful
handling during rinsing and drying. The samples are gently rinsed first with DI water and then methanol,
since it has a lower surface tension coefficient than water. Up to the removal of the sacrificial oxide, the
fabrication process is compatible with standard IC process equipment and techniques. Each wafer contains
60 dies, and each die contains 81 microbeans of 5pm, 10pm and 20pm widths. The beams range in length
from 10;an to S0pm in SAm increments, from 60p to 200pm in 10pm increments, and from 200pm to 300pm
in 20prn increments. The samples are inspected for the maximum free-standing length, Lm, using a Leits
Model SMLUX inspection microscope and Hitach Model S-806 low voltage scanning electron microscope.
Lm is defined as the longest observed beam length before the length which buckles. The vertical deflection
magnitude and profile of the unbuckled microbeama is determined by interferometric deflection measurement
techniques 181.

Results and Discussion

All of the 60 duplicated patterns on each 4 inch wafer are inspected. At lengths less than the buckling
length, L., the phosphorus doped beams, whether unannealed or annealed, are undeflected. While undoped,
unannealed beams less than L. deflect slightly upward, boron doped, unannealed beams exhibit large, upward
deflections at lengths les than L.. This may be caused by a doping dependent stress nonuniformity through
the beam thickness. L. is seen to be the same for Spm, 10pmo and 20pm wide beams across a wafer,
and from wafer to wafer, suggesting that there is little dependence of Lm on beam width for this range of
widths. Table 1 summarizes the dependence of L, on beam thickness for undoped and phosphorus doped
beams. Figure 1 and 2 illustrate trends for the dependence of the average beam buckling length, L., on
beam thickness. L. and L. are larger for undoped, annealed beams than for undoped, unannealed beams,
with the higher annealing temperature producing the longest unbuckled, undoped beams. L, and L, are
constant for phosphorus doped beams, whether unannealed or annealed, suggesting that the beams are in a
stable equilibrium state after the doping cycle.

Table 1. Lm in Various Beam Thickness t and Process Conditions

procps L, -_
conditions L = 0.25 pm t = 0.52 pm t =0.8 pm t = 1.07 pm
unaoped, unanneal 20-25 pm 30-40 pm 45.50 pm 50 -70 pm
undoped, low T anneal 20-25 pm 30-45 pm 50-70 pm 70-80 jm
undoped, high T anneal 25-30 pm 45-50 pm 70-80 pm 80-90 pm
process L.

t= 0.2pm t=0.46pm tm0.75pm t,= 1pm
P doped, unanneal 15-20 pm 35-40 pm 50-70 pm 70-100 pm
P doped, low T anneal 15-20 pm 35-4S pm 50-70 pm 70-100 Am
P doped, high T anneal 15-20 pm 35-40 pm 50-70 pm 70-100 pm

The increase in buckling length for thin beams beyond that predicted by the thicker beams may be
explained by a simple model that accouOBnts for compliance of the step-up beam supports. This model will
be reported separately. If compliance of the beam support is ignored, a good approximation for the residual
strain level, c., of the lpm thick beams at the critical buckling length is estimated by Euler buckling theory

171 for each process condition as

and

2

|.

t (2)

where t is the polysilicon film thickness. Based on Eq. (2), Fig. 1, and Fig. 2, c, and L. for each3 of the polysillcon process conditions re shown in Table 2. These values are in good agreement with those
previously reported by Guckel [11.

Table 2. Buckling Length Lc and Strain e

process undoped P doped
conditions unanueal low T anneal high T anneal

atmstrain e. 1.07 x 10- 0.67 X 10- - 0.48 X 10- 3 0.41 X 10 - -
buckling length Lc (m) irt/ V3/ 2.0 10- i/ 1.4 x 10- 4/ 1.2 x 10- 3

0 ~0 WNW."
& I? AMW "--anaw
a "iT .unia "T rl-hi

L U I . G

.

IIY. VtO, I O I , 1 "
, , . .,,i , ,, *,p , ,,,,IL,,I ,,p ,U @21 U5 @.7S 1 1.116 12 LI US w 1.,23

P~Y.IUlrn5 Iss (p~t..un~c2Ui•5, (rm

Figure. 1. Buckling length as a function of film Figure 2. Buckling length as a function of film
thickness for polysilicon doubly-supported thickness for polysilicon doubly-supported
undoped beams with or without annealing phosphorus doped beams with or without

Annealing

Table 3 compares L. for boron and phosphorus doped microbeams, 0.46 or lpm-thick, unannealed and
annealed. Although both doping cycles are completed at the same temperature and for the same time, the
unannealed, boron doped samples exhibit a shorter L.m than the unannealed, phosphorus doped samples.
After annealing, both boron and phosphorus doped samples display similiar free-standing lengths, which are
the same for phosphorus doped, unannealed beams. This suggests that phosphorus doping has a stronger
effect on grain growth than boron doping. Mei mentions variable grain growth enhancement with polysilicon
phosphorus doping, and little growth with boron doping 181. Mandurah reports that phosphorus has a
strong tendency to segregate at grain boundaries while boron does not [9!. The phosphorus impurities
segregated at the boundaries during the doping cycle may hinder boundary migration, thereby inhibiting
further polysilicon grain growth during the following anneal cycle.

3

_f

Also compared in Table 3 are the free-standing lengths for microbeams fabricated on undoped or phos-
phorus doped oxide. Lm Is dramatically longer for beams fabricated on the phosphorus doped oxide than for
beams on undoped oxide. This length increase implies that the phosphorus in the underlying oxide effects
both the grain sixe and doping profile in polysilicon, therby reducing the level of stress in the film. The
high temperature annealing cycle is more effective at increasing the free-standing length of thicker beams
than thinner beams, indicating that more redistribution of dopant occurs in thicker beams during the an-
nealing cycle. Alternatively, the hinge compliance of the thinner beams' supports may mask the effects of
the annealing cycle on the free-standing length.

Table 3. Lm in Different Doping conditions and Sacrificial Oxide Layers
sa.ri. oxide poly-si anneal Lm -

tO0.48 pm t = I pm
undoped' Bdope unanneal 25-40 m 50.80 pm
undop~e B dope high T anne T 3540 pm 70-120 pm
undoped P doped unanneal 35-40 pm 70-100 pm
undoped P doped igh T anneal 3540 pm 70-100 pm
P doped 'P doped unanneal 60-70 pm 100160 pm
P doped P doped high T anneal 50-60 pm 120-180 /sm

Conclusion

Doubly supported polysilicon microbeams are fabricated with conventional IC process tecniques. The
maximum freestanding length of the beams is seen to not be a function of width, but is dependent on beam
thickness. Before buckling, undoped and boron doped beams which are not annealed deflect slightly upward,
while phosphorus doped beams, and undoped and boron doped beams which are annealed are undeflected.
Accordingly, the annealing cycle significantly increases Ln. for undoped and boron doped beams, but does not
significantly alter Lm for phosphorus doped beams. For the phophorus doped beams, Lm < irt/ %1.2 x 10-;
undoped and unannealed beams, Lm < st/ 73.2 x 10- a ; undoped beams with a low temperature anneal,
Lm < st/ 72.0 x 10 - ; and undoped beams with a high temperature anneal, Lm < rt/ 1.4 X 10- . Use
of PSG as the sacrifical oxide layer significantly increases Lm, suggesting that more rigid microbeams may
be fabricated using this as the micromachining spacer layer.

Acknowledgments

We acknowledge many useful discussions and help on this subject with L. T. Howe, H. Guckel, P. A.
Maciel, and M. T. Schroth. This work was sponsored in part by DARPA , under contract 87-SP-080;
additional support of NSF (TAL), under contract ECS-8614328 and of the 3M sensor fellowship (MAS) is
gratefully acknowledged.

REFER E NCES

1. H.Guckel, T.Randazso, and D.W.Burns, J.Appl.Phys. 57(5), 1 March, 1671(1985).

2. M.S.Choi and E.W.Hearn, J.Electrochem.Soc., vol.131, No.10, 2443(1984).

3. R.T.Howe and R.S.Muller, J.Appl.Phys. 54(8), August, 4674(1983). 1603(1980).

4. R.T.Howe and R.S.Muller, IEEE Transactions on Electron Devices, VoLED-33, No.4, 499(1988).

5. Y.Ta and R.S.Muller, The 4th International Conference on Solid-State Sensors and Actuators, 360(1987).

6. T.A.Lober, J.Huang, M.A.Schmidt, and S.D.Senturia, IEEE Workshop on Solid-State Sensors, Hilton
Head, June 1988.

7. Gere and Timoshenko, Mechanics of Materials, Wadsworth Inc., Belmont California, 1984.

8. L.Mei, M.Rivier,Y.Kwark and R.W.Dutton, I.Electrochcm.Soc., vol.129, No.8, 1791(1982).

9. M.M.Mandurah, K.C.Sarawat, C.R.Helms and T.I.Kamins, J.Appl.Phys., 51(11), 5755(1980).

4

* MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

VLSI Memo No. 88-482
" October 1988

HIERARCHICAL FLOW CONTROL: A FRAMEWORK FOR SCHEDULING

AND PLANNING DISCRETE EVENTS IN MANUFACTURING SYSTEMS

Stanley B. Gershwin

L ,

Abstract

This paper discusses the synthesis of operating policies for manufacturing systems. These
are feedback laws that respond to potentially disruptive events. We develop laws that are
based on realistic dynamic programming models which account for the discrete nature of
manufacturing and which are computationally tractable.

These scheduling and planning policies have a hierarchical structure which is systematically
based on the production process. The levels of the hierarchy correspond to classes of

*I events that occur with distinct frequencies. At each level, feedback laws select (1) times for
the controllable events whose frequency class is treated at that level, and (2) frequency
targets for much higher frequency controllable events.

In this hierarchy,

(1) Most calculations deal with expected rates of high frequency activities, conditioned on
current states of low frequency activities. There is an important relationship between
conditional expected rates at different levels.

(2) Rates are constrained because only one activity (e.g., production operation) can take
place at one resource (e.g., machine) at any time.

(3) Rates are found at each level according to a dynamic programming problem for which
there exists good approximate solutions. Times for controllable events are chosen to
agree with those rates.

Microsystems Massachusetts Cambridge Telephone
Research Center Institute Massachusetts (617) 253-8138
Room 39-321 of Technology 02139

GESTALT: An Expressive Database Programming System*

Michael L. Heytenst
Rishiyur S. Nikhil

- Massachusetts Institute of Technology

June 23, 1988

Abstract

Many new database applications require computational and data modelling power simply not
present in conventional database management systems. Developers are forced to design complex
encodings of complex data into a limited set of database types, and to embed DML commands

{- into a host programming language, a notoriously tricky and error-prone enterprise.
In this paper, we describe the design and implementation of GESTALT, a system and

methodology for organizing and interfacing to multiple heterogeneous, existing database sys-
terns. Application programs are written in a supported programming language (currently C
and Lisp) using high-level data and control abstractions native to the language. The system
is flexible in that the underlying database systems can easily be replaced/upgraded/augmented
without affecting existing application programs.

We also describe our experience with the system: GESTALT has been in daily operational
use at MIT for over a year, supporting an information system for CAF, a research facility for
the automation of semiconductor fabrication.

n 1 Introduction

Database management systems have traditionally been used in administrative applications to pro-
vide efficient access to large data sets, preserve data integrity and consistency, and to control
access. Recently, however, database systems have been applied to diverse new domains such as
VLSI computer-aided design and voice and image processing.

A straightforward application of conventional database technology (e.g., current relational sys-
tems) to these nontraditional areas has met with limited success. A key problem is the difficulty
inherent in expressing complex objects and operations in terms of relations and relational operators.
Moreover, conventional systems provide no general mechanism for abstracting over a given set of
operations or data, thus all representation and manipulation must be encoded directly in terms of
primitive constructs. In many instances, such a relational representation is cumbersome, leading
to abstruse application logic.

*This research was sponsored in part by the Defense Advanced Research Projects Agency (DoD) through the
Office of Naval Research under Contract Number N00014-85-K-0213.

tRoom 36-667, MIT, 77 Massachusetts Avenue, Cambridge MA 02139, USA; Phone: (617)-253-7811;
Arpanet: heytensfcaf.ait.edu

'MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA;
Phone: (617)-253-0237; Arpanet: nikhilxx. Ics. sit. edu

I1

To obtain adequate expressivity and abstraction, application developers typically embed query
language commands into a host programming language. An embedded interface, however, is noto-
riously tricky and error-prone. Programmers must contend with both database and programning
language concepts, e.g., two mismatched type systems, two error/exception mechanisms, two types
of control structures, etc. These inherent difficulties make it accessible only to database experts.

A number of research efforts are currently underway aimed at developing more expressive
database systems [1,4,7,11,16]. Still, conventional systems are likely to remain the commercially-
available state of the art for a number of years. Thus, a natural question is: How can we more
effectively organize and interface to today's database systems.

This paper presents one possible organization, developed as part of the integrated circuit com-
puter integrated manufacturing (IC-CIM) effort at the Massachusetts Institute of Technology. Our
system, called GESTALT, is currently employed by CAFE (Computer-Aided Fabrication Environ-
ment) a sophisticated information system supporting the many facets of IC manufacturing. From a
database perspective, CAFE is an especially challenging domain due to the diversity of information
it manages, and the many complex programs it supports for the acquisition and manipulation of
semiconductor manufacturing data. (For a discussion of IC-CIM data, see [81.)

One of the main motivations behind GESTALT was the need for an application development
paradigm that did not require database and/or programming language expertise. The implied
requirement for simplicity, however, had to be tempered with enough expressive power to permit a
conceptually natural representation of the complex structures found in the domain of semiconductor
manufacturing.

Another aim of GESTALT was database independence, i.e., the model visible to applications
was to be independent of the actual underlying database management system or systems. This
capability provides a great deal of implementation flexibility as well as an elegant way to support
"cross system" queries. The latter (similar to [3,15]) is especially useful in a manufacturing setting,
e.g., it can provide applications with a unified view of design, manufacturing, test, and product
sales data, even though this information may physically reside at multiple heterogeneous database
systems. Without this kind of support, application programmers must query component databases
directly (after first mastering all the necessary interfaces!) combining partial results to form the
desired answer. This process is complicated, tedious, and error-prone.

Finally, in a design and manufacturing environment, an effective data management system must
seamlessly encompass a variety of CAD/CAM tools; it is simply not feasible to rewrite data and
operations supported by these tools into a single monolithic DBMS. Thus, the GESTALT data
model had to support the databases and procedural primitives of such tools.

We begin by presenting an overview of GESTALT in the next section. Section 3 describes the
application interface, illustrating the programming model with sample applications. In Section 4
we describe the internal organization of GESTALT, and finally, we conclude with a discussion of
the experience gained from using GESTALT in CAFE- a large, complicated system.

2 Overview of GESTALT

In essence, GESTALT is a layer of abstraction which shields application programs from underly-
ing database systems. The application programming paradigm consists of a supported language
(currently C and Common Lisp) and a set of abstractions for accessing and manipulating persis-
tent data. An important point is that these abstractions are constructed using mechanisms native

2

____ I . II . I I - -l i n .-

to the host language, thus application developers do not have to contend with the programming
language-database dichotomy typically found in conventional approaches.

The two supported languages have their strengths and weaknesses. Many new database appli-
cations have an artificial intelligence component, for which Lisp is the preferred language. Also,
the interactive nature of Lisp is convenient for posing ad hoc interpreted queries (analogous to
query interpreters in conventional systems). The C interface is available for lower-level tasks or for
applications requiring the compactness and speed of compiled C code.

The basic architecture of GESTALT consists of a software system running atop existing het-
- erogeneous databases. GESTALT is not itself a full-fledged DBMS, rather it is a mechanism for

logically integrating disparate data managers. This integration enables applications to view data in
terms of a unified "global" schema. While GESTALT supports both read-only and update queries,
it does not allow dynamic schema modifications. Such updates require changes to the system data
dictionary, which must be "hand-coded"' by the database administrator (DBA).

Figure 1 illustrates both a conventional application architecture (a) and the organization of
applications written in GESTALT (b). In conventional systems, applications are written using an
embedded query language interface (e.g., QUEL in C); the resulting program is then transliterated
by a pre-processor and finally compiled. Conceptual entities and operations must be encoded
and manipulated explicitly in terms of primitives supported by the data model, leading to much
complexity in coding applications.

Application

* Program.

hL66

DBMS GESTALT

DBMS . DBMS

(a) (b)

Figure 1: Structure of (a) conventional systems and (b) GESTALT.

In GESTALT, applications are also coded in a host programming language (C or Common
Lisp.) Application programmers determine how to query and update persistent data by examining
a specification detailing the interface to a collection of procedural, data, and iteration abstractions.
(For a good discussion of the techniques of abstraction and specification, see [10].) The abstractions

'A structured schema-interface tool has been implemented which makes updating the data dictionary also
straightforward.

3

... ..IsI ~ m l l l i n

which describe persistent data are object-oriented in nature2, enabling applications to view domain
data at a level commensurate with the actual real-world structure.

GESTALT provides a rich set of primitive data types and explicit support for null objects.
Without system support of this kind, programmers often resort to nonstandard representations of
null values and awkward encodings of, say, temporal and engineering data. In a large project where
communication between developers is difficult, this can lead to inconsistencies and incompatibilities
between applications.

Many of the procedural abstractions supported by the system are higher-order (e.g., maps and
filters). Operations of this sort encourage a clear and elegant style of programming, allowing concise -

expression of a wider range of computational processes (12,18].

3 The Application Interface

The interface visible to application programs is similar, in many respects, to the functional data
model [12,141. A GESTALT schema consists of a specification of entity or object types, and
a collection of operations defined on instances of those types. This information is available to
application programmers in two different forms. The first is a textual specification (maintained
by the system) which provides an overview of each object type and a description of the effects,
modifications, and requirements of the associated operators. The second is the data dictionary; all
query facilities supported by GESTALT are available for accessing schema information stored in
the system catalogs. The interpreted Lisp interface provides a convenient mechanism for browsing
through meta-data of this form.

At the end of this section we present an example application as a concrete illustration of the
programming model. We first, however, examine various aspects of the interface in more detail.

3.1 Object Types

All data in a GESTALT system are viewed as abstract types, i.e., each abstract type specifies
an object type, a list of named typed slots (which record attributes and relationships) and the
set of procedures available for manipulating objects of that type. This is a very powerful tool,
enabling the DBA to add new kinds of data objects cleanly, effectively extending the application
programmer's virtual machine.

Operations in data abstractions can be divided into the following categories:

selectors - procedures to select an object component
mutators - procedures to update or delete an object
constructors - procedures to create objects
generators - procedures to generate null objects and iterators

A GESTALT system contains both pre-defined and domain-specific abstract types. The latter
are abstractions of objects present in the application domain, while the former encompass all the
built-in types, including an extended set of primitive entity types, abstract types for the data
dictionary, and list- and tuple-structured types.

2 In the following sense: Real-world entities are modelled as "objects" of various abstract types, objects can -
"contain" other objects, 'and objects can share other contained objects. We do not model inheritance.

4

It is important to realize that even though a particular type may be built-in, its behavior is still
specified only in terms of the operators defined on instances of that type, so that the user sees no
semantic difference between built-in and user-defined types. Hiding the representation of built-in

n types enables the system to perform run-time type checking. It also eliminates the possibility that
applications depend on particular encodings of values.

3.1.1 Pre-defined Types

- The set of primitive types supported was designed specifically to facilitate modelling the temporal
and engineering data commonly found in manufacturing and design domains. The atomic members
of this set are:

TEXT - variable length array of bytes
INTEGER - fixed point number
FLOAT - floating point number
BOOLEAN - "true" or "false"
DATE - month, day, and year
TIMEOFDAY - hours, minutes, and seconds
TIMEDURATION - elapsed time in hours, minutes, and seconds.

Also pre-defined are several inexact and interval types. The inexact types record a value and
an uncertainty; interval types consist of an upper and lower bound. These provide a convenient
means of encoding engineering and scientific data, e.g., the thickness of a layer of epitaxial silicon
(say 1250 ± 30 A) can be naturally expressed as an INTEGERINEXACT with the appropriate value
and uncertainty.

To provide applications with a convenient mechanism for grouping related objects, GESTALT
provides the structured types LIST and NTUPLE (n-tuples). The former is a homogeneous sequence
of objects of unspecified length, while the latter is a heterogeneous collection of a fixed number of
objects.

* GESTALT provides operators to map between pre-defined types and host programming lan-
guage values. These routines are needed because the representations of even atomic GESTALT
types are hidden from application programs. For example, the following Lisp procedure prints
the id, crystal orientation, and sheet resistivity of a specified wafer by applying dbl-coerce- an
operator which coerces atomic built-in data objects to corresponding Lisp values- to the desired
wafer attributes.

(defun wafer-print (w output-stream)
(let ((Wd (wafer-waferdeac w)))

(format output-stream "wafer -A: <-A>, -A ohm/square 'Z"
(dbl-coerce (wafer-id W))
(dbl-coerce (waferdesc-orientation wd))
(dbl-coerce (waferdesc-sheet-resistivity wd)))))

The data-dictionary is represented as a pre-defined set of abstract types, complete with selectors
and generators, so that the same computational model can be used to peruse it. These include:

TYPE - built-in and domain-specific types
ATTRIBUTE - object components or slots

5

OPERATOR - structure for describing operators

OPERA ORARG - formal operator arguments

3.1.2 Domain-Specific Types

It is the responsibility of the DBA to augment the data dictionary accordingly with the domain-
specific abstract types for a given domain. We have implemented many tools to facilitate this
activity.

An example specification is shown in Figure 2. Such specifications are automatically generated
by the system from information stored in the data dictionary and are used by application devel-
opers. The first three operations (machine..name, machine-available, and machine..labuser) are
selectors; they take objects of type MACHINE and return an object corresponding to the desired

property or attribute. The next two (modify.machine-available and modify-achine.abuser)
provide a mechanism for mutating or modifying objects. Entities of type MACHINE are created by

constructor createmachine; this operator takes a name, labuser, available triple and returns a
newly-created machine. Finally, generators null ACHINE and machineiterator produce a null

machine and machine iterator, respectively.

Another example from the CAFE system is the type WAFER, with components: a TEXT id, a
wafer description (WAFERDESC, which records dopant, crystal orientation, sheet resistivity, etc.),

and a BOOLEAN flag indicating whether or not a layer of epitaxial silicon is present.

3.2 Procedural Abstractions

GESTALT's procedural abstractions include generic operators for LISTs and NTUPLEs, as well as
common computational processes (such as maps and filters) packaged as higher-order procedures.

For ;cample, the following Lisp code prints all wafers from a named lot (a logical set of wafers)
with resistivity values below a certain threshold:

(map (lambda (w) (wafer-print v t))
(filter (lot-wafers (lot-with-name name))

'low-resistivity?))

where name identifies the desired lot. Note that map and filter take arbitrary procedures as

arguments. Applications can also make use of the procedure mechanism of the host language to
create new procedural abstractions.

In addition, a variety of others procedures are supported, e.g., to copy and (extensionally)
compare data objects, a simple mark-and-release memory management scheme, etc.

3.3 Iterators

GESTALT iterators offer a convenient and space-efficient way to examine instances of a particular
type, and are inspired by CLU [10]. Iterators serve the function of "retrieve loops" or "record

cursors" found in conventional embedded query languages. For example, the following fragment of
C code illustrates how an application might operate on all machines:

6

Overview

A MACHINE is a piece of equipment used in the fabrication of integrated
circuits. Attributes name, labuser, and available are maintained for each
machine, recording the machine's name, a list of labusers waiting to use the
machine, and the current availability, respectively. Only the latter two are
mutable.

Operations

TEXT achine-namo (m)

MACHINE a;
effects Returns machine name.

BOOLEAN machine.available(m)
MACHINE m;

effects Returns machine availability.

LIST machinelabuser(m)
MACHINE m;

effects Returns list of labusers waiting to use machine.

MACHINE modify.machineavailable(m, available)
MACNINE m; BOOLEAN available;

modifies mB.
effects Sets availability of m to available.

MACHINE modify.machine.labuser(a, labuser)
* MACHINE a; LIST labuser;

modifies a.
effects Sets labuser list of m to labuser.

MACHINE create.machine(name, available, labuser)
TEXT name; BOOLEAN available; LIST labuser;

effects Returns newly created machine.
requires Name attribute must be unique.

MACHINE nullMACHINE()
effects Generate null machine.

ITERATOR machine.iterator ()
effects Returns a machine iterator.

Figure 2: MACHINE data abstraction.

7

while BOOLEANtoi(iter-more(machines)))
current.machine a iter.current(machines);
... computation involving current-machine ...

}

where machines is an iterator, and itermore and itercurrent test for an exhausted iterator
and return the head of an iterator, respectively.

3.4 Type and Exception Checking

All GESTALT operators perform dynamic type checking. While static type checking could (in prin-
ciple) be performed, an unobtrusive implementation would require modifications of the C compiler
and Lisp interpreter, which we wished to avoid.

Certain operators also perform null checks at runtime. Generally speaking, operators that
examine object components are strict with respect to null objects, whereas operators which do not
examine components are nonstrict. For example, a null wafer can be freely included in a list or
tuple; a null exception is detected only when an attempt is made to, say, select the id component.

Routines that detect type or null errors generate a run-time warning message and return a null
object consistent with their range type. If an attempt is made to coerce a null object to a host
language type, then a pre-defined value is returned, after printing a suitable warning message.

In the case of domain-specific abstractions, the DBA is free to augment the run-time checking
with additional integrity constraints (or invariants in programming language parlance.)

3.5 Object Persistence

In GESTALT, all objects of a user-defined type persist, whereas objects of atomic, list and tuple
types axe ephemeral (unless they are part of a persistent type). For example, the constructor
createmachine creates a persistent machine object, whereas itoINTEGER - which coerces a C
integer value to a GESTALT INTEGER- returns a heap-based object whose lifetime is bounded by
the duration of the enclosing program.

Associated with each user-defined type is a single persistent extent. The system automatically
updates these extents in response to creation and deletion of objects of the appropriate type.
Applications can easily examine the contents of an extent via an iterator.

3.6 A Sample Application

As an illustration, we present a simple C application. The program, which utilizes the data abstrac-
tion of Figure 2, informs the next laboratory user waiting to use a particular piece of processing
equipment when he or she is free to do so. The code is shown in Figure 3; for brevity, it assumes
(I) there are always waiting users for a machine, and (2) a procedure send.mailmsg, which does

the obvious thing.

The application constructs a machine iterator (machines) and then uses it to examine the
availability of each machine. If a machine is available, a message is sent to the next labuser, and
the availability and waiting list are updated. Finally, the iterator is deallocated.

8

*include "specification.h

ITERATOR machines = machine-.iteratoro;
MACNIXE currenxt-.machine;

while (BaaLE&toi(iter-.mor.(machines)

ciirrent.iachine - iter..current(machines)
/* grab machine at head of iterator C

it BOaLEANtoiC machine-.availableC cuirrent-.machine))

U ~LIST labusers = machine-.labuser(cuxrent.machine)

sond.mail-magC uachine-.nain.C cuarrent-.machine), head(labuser.)

/* inform next user *

modify-.machin...available(current-.machine, itoDOOLEAN(0))
* ~~modify.machin...labuser(current-..achine, tail(C labusers);

/* modify availability and labusor list *

iter-.free(machines)

Figure 3: Sample C application program.

9

i .. I I!.l m

Notice that nowhere is the programmer forced to deal with representational issues; one need
only concentrate on the logic of the application at hand.

Note also that one does not have to annotate or flag the database commands in a program
(e.g., the #0 of embedded QUEL and embedded SQL's EXEC [6].) The programming language
and database have been integrated into a single framework, so that the actual encoding of a task
closely matches the corresponding abstract computational process, resulting in programs that are
perspicuous and easily modifiable.

Finally, since programs have no way of determining where data actually reside, the DBA is free
to change the underlying database systems without compromising the correctness of application
programs. (They will have to be relinked, however.)

4 The Implementation of GESTALT

Our implementation relies heavily on the proven software engineering principles of abstraction and
modularization. First, such techniques constitute a programming methodology which is effective
at controlling the complexities inherent in any large programming effort. Second, since the DBA
was expected to modify the implementation (e.g., to add a new component database) a clear,
well-partitioned internal structure was deemed essential.

In this section we present the internal structure of GESTALT, including a discussion of the
steps required to modify the system. We conclude by describing the system configuration currently
in use by CAFE.

4.1 System Architecture

The organization of GESTALT (Figure 4) is similar to that of Multibase [15]. The schema ar-
chitecture consists of a GESTALT global schema, and a GESTALT local schema-local DBMS
schema pair for each component system. As in Multibase, the latter insulates the global system
from local database details, allowing it to be structured in a clean and extensible manner. All
component-specific details are confined to translator modules (one per underlying database) which
are responsible for mapping operations on GESTALT local schemas to local database operations.

GESTALT, however, is responsible for translating global requests into operations (in terms of
GESTALT local schemas) on one or more of the underlying databases. This translation is performed
by the GESTALT evaluator, which is coded in a manner independent of the number and nature of
the underlying database systems. All such dependencies are recorded in a dispatch table, enabling
the DBA to extend the system in a straightforward way. This table-driven approach is possible
because the evaluator assumes a standard interface to each of the underlying systems.

The system is made available to applications in the form of a library of procedures. This library
is either linked into compiled application programs (e.g., in C), or made available to an interpreter
(e.g., in Lisp).

4.2 Modifying the System

Due to the modular implementation, modifying the system is relatively straightforward. Modifi-
cations are required when the underlying database configuration changes or when abstractions are
added, deleted, or modified.

10

GESTALT OPERATORS

GESTALT~EVALUATOR
global data

dictionaryJ

{CGESTAT (.f- GESTALT
local chemaem

DBMS / DBMS)\ ~~ lo \ocalem
local

translators

Figure 4: GESTALT system structure.

1 Adding a database to the system requires updating the dispatch table used by the evaluator,
recording the new database in the data dictionary, and incorporating the corresponding implemen-
tation module into the system.

Altering the set of procedural abstractions supported by the system simply entails adding,
* deleting, or modifying the appropriate library routine. When updating data abstractions, however,

things are a bit more involved. In the simplest case, modifications of existing data abstractions only
involve source-level changes to routines in the corresponding abstraction module (e.g., performing
additional integrity constraint checks prior to invoking the evaluator). Modifications that axe
tantamount to changing the GESTALT schema require adding or deleting abstraction operators,
entering new or updated information into the data dictionary and (possibly) changing the schema
at one or more of the underlying database systems.

As an illustration, consider the steps required to introduce type LABUSER, which captures the
notion of a certified laboratory user. The first step is to add the approriate type, attribute, and
operator information to the data dictionary. Secondly, suitable logical structures must be created
at one or more of the underlying databases. Finally, a LABUSER specification and implementation
module are generated (based on information in the data dictionary) and incorporated into the
system.

4.3 Sample Configuration, and Experience

GESTALT has been the database manager of the CAFE system since January, 1987. Since then,
approximately 50 programs totalling some 30,000 lines of GESTALT code have been written by

11

... -'I. snI l I n i m mi i

several applications programmers. An example is an electronic machine reservation system (EMR)
which provides laboratory users with a convenient mechanism for reserving time on processing
machines. EMR eliminates paper sign-up sheets from the clean-room, a potential source of con-
taminating particles. The system is regularly used in the microtechnology laboratories at MIT.

An early database configuration used by CAFE had GESTALT running atop three component
databases: University INGRES [17], PRELUDE [13], and a home-brewed system. Each of these
databases made an important contribution to the overall system. INGRES provided a reliable,
fully-functional data manager. However, due to its lengthy startup time, it was unable to support
applications requiring fast, simple data access. To remedy this, PRELUDE- a lightweight ASCII-
based DBMS- was incorporated. Finally, the home-brewed system was employed to store the
large, variable-length data objects commonly found in the IC manufacturing domain. Storing such
objects in either of the other systems would have been difficult or impossible.

The current configuration utilizes only two databases: commercial INGRES from Relational
Technology, Inc.[91 and WiSS, the Wisconsin Storage System [5]. Most CAFE data are stored
in INGRES; WiSS, because of its support for variable-length data items, handles those objects
not easily captured by the relational data model. For example, WiSS is used to store voluminous
execution "traces" of program-like process flow descriptions.

Despite the wholesale database changes to move to the current configuration, application pro-
grams remained unchanged- they only needed relinking. Thus systems using GESTALT are not
locked in to a particular database system; they are free to incorporate newer, more powerful data
managers as they become available.

CAFE developers may still write applications using INGRES or WiSS directly, e.g., to take
advantage of INGRES' report-writer tools.

5 Conclusions and Future Work

We have described GESTALT, a system which offers an expressive application programming paradigm
in which the database and programming language have been integrated into a single framework.
The system provides uniform access to existing heterogeneous databases.

While GESTALT offers a number of benefits, there are some difficulties and limitations inherent
in its approach. One obvious limitation is the lack of a dynamic data definition capability. Because
GESTALT does not have control over the entire programming environment, this is simply not
feasible in the system. In general, this problem is very difficult in a multiple heterogeneous database
environment (it is analogous to view updating in conventional systems).

Another limitation is the lack of global concurrency control and recovery. Although all interac-
tions with component databases are atomic, the system contains no general mechanism for grouping
several GESTALT operations together into a transaction.

GESTALT does no query optimization of its own, thus certain kinds of queries execute ineffi-
ciently. For example, tasks implementing the equivalent of a multiway join are not supported well,
unless there is a data abstraction that executes it entirely within a component database system.

Our experience to date with the system has been encouraging: CAFE application developers
have responded very positively. Despite the wide range "of programmer experience (from novices
to veteran software engineers) all have commented on how easy the model was to understand, and
how quickly they were able to produce sophisticated, working applications.

12

An immediate need that we plan to address soon is a coherent access control strategy. Currently
applications using GESTALT must rely on component database and/or operating system protection
mechanisms.

Our longer-term plans involve extending GESTALT so that it is a computationally complete,
stand-alone system, incorporating its own persistent objects. We are currently exloring a functional
database programming language with an immutable or functional database [11]. We feel that this
combination offers an expressive system for high level applications programming, admits much
parallelism (for high performance), and facilitates the management of historical data.

Acknowledgements

We would like to acknowledge the contributions made by Michael Mcllrath and Rajeev Jayavant
to both the design and implementation of GESTALT. Duane Boning, Paul Penfield, and Donald
Troxel also made many helpful suggestions.

References

[1] Albano, A., Cardelli, L., and Orsini, R. Galileo: A Strongly Typed Interactive Concep-
tual Language. Technical Report 83-11271-2, Bell Laboratories, 1983.

[2] Atkinson, M.P., Chisholm, K.J., and Cockshott, W.P. Ps-Algol: An Algol with a Per-
sistent Heap. SIGPLAN Notices 17(7):24-31, July, 1981.

[3] Brodie, M.L., Blaustein, B., Dayal, U., Manola, F., Rosenthal, A., CAD/CAM
Database Management. Database Engineering, Vol. 7, No. 2, IEEE, June 1984.

[4] Carey, M.J., and DeWitt, D.J. Extensible Database Systems. In Proceedings of the
Islamorada Workshop, February 1985.

(51 Chou, H.T., DeWitt, D.J., Katz, R.H., and King, A.C. Design and Implementation
of the Wisconsin Storage System, Software - Practice and Experience, Vol. 15(10),
943-962, IEEE, October 1985.

[6] Date, C.J. An Introduction to Database Systems. Addison Wesley, Reading, Mass.,
1986.

[7] Dayal, U., and Smith, J.M. PROBE: A Knowledge-oriented Database Management
System. In Proceedings of the Islamorada Workshop, February 1985.

[8] Hodges, D.A., and Rowe, L.A. Information management for CIM. In Proceedings of
Advanced Research in VLSI. Palo Alto, CA, March 1987.

[9] INGRES Reference Manual, Version 3.0, VAX/VMS, Relational Technology, Inc.,
Berkeley, CA, May 1984.

[10] Liskov, B.H. and Guttag, J.V. Abstraction and Specification in Program Development,
The MIT Press, Cambridge, MA, 1986.

13

[11] Nikhil, R.S. Functional Databases, Functional Languages. In Proceedings 1985 Persis-
tence and Data Types Workshop, Appin, Scotland, August 1985.

[12] Nikhil,R.S. An Incremental, Strongly-Typed Database Query Language. PhD thesis,
Moore School, University of Pennsylvania, Philadelphia, PA, August 1984.

[131 PRELUDE Reference Manual, Release 2.0, VenturCom, Inc., Cambridge, MA 1986.

[14] Shipman, D.W. The Functional Data Model and the Data Language DAPLEX. ACM
Transactions on Database System. 6(1):140-173, March 1981.

[I5] Smith, J.M., et al., MULTIBASE-Integrating Heterogeneous Distributed Database
Systems. In Proceedings National Computer Conference, Chicago, May 1981.

[16] Stonebraker, M. and Rowe, L.A. The Design of POSTGRES. In Proceedings 1986
SIGMOD Conference, Washington, DC, pp. 340-355, May 1986.

[17] Stonebraker, M., Wong, G., Kreps, P., and Held, G. The Design and Implementation
of INGRES, ACM Transactions on Database Systems 1(3):189-222 1976.

[18] Turner, D.A. The Semantic Elegance of Applicative Languages. In Proceedings
ACM Conference on Functional Programming Languages and Computer Architecture,
Portsmouth, NH, pp. 85-92, ACM, October 1981.

14

