
NAVAL POSTGRADUATE SCHOOL
00

Monterey, California0

N,, STATES 4

I°

A7 0%

87'CR WAO'

DTIC
(tELECTE

THESIS U 41

A SYSTEM COSTS PLANNING
DECISION SUPPORT SYSTEM

by

Craig L. Riddle

September 1988
Thesis Advisor: Gerald L. Pauler

Approved for public release; distribution is unlimited.

94 022

Unclassified
Securitv Classification of this page

REPORT DOCUMENTATION PAGE
1 a Report Security Classification Unclassified lb Restrictive Markings

2a Security Classification Authority 3 Distribution Availability of Report

2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.
4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(sq
6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
Naval Postgraduate School (If Applicable) 37 Naval Postgraduate School
6c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Funding/Sponsoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number

(If Applicable _________________________________

8c Address (city, state, and ZIP code) 10 Source of Funding Numbers
Program Elenent Number I Project No I Task No Work Unit Accession No

11 Title (Include Security Classification) A System Costs Planning Decision Support System

12 Personal Author(s) Craig L. Riddle
13a Type of Report 13b Time Covered 14 Date of Report (year, monh,day) 15 Page Count
Master's Thesis From To 1988 September 96
16 Supplementary Notation The views expresscd in this thesis are those of the author and do not relect the official
policy or position of the De)artment of Defense or the U.S. Government.
1 7 Cosati Codes 1 8 Subject Terms (continue on reverse if necessary and identify by block number)

Field Group Subgroup Decision Support System, Multi-Attribute Utility theory, Prototyping

1') Abstract (continue on reverse if necessary and identify by block number
This study undertakes the task of analysis and design to create a prototype microcomputer-based decision support
system for cost planning. System acquisition cost planning is a complex process in which a variety of ill-defined,
often conflicting variables influence the decision to be made. Multi-Attribute Utility Theory (MAUT) offers a
Multicriterion decision method to incorporate and quantify these variables in the search for an optimal solution. A
decision is defined by the options among which one must choose, the possible outcomes, or consequences.
Typically, there exists a measurable preference among various choices when making a decision. This preference
is called -utility." Microeconomic marginal analysis applied to utility curves generated from MAUT data derivation
reveals insights to decision risk assessment and cost planning limitations. In a decision with preferences spread
among several goals, the utilities may be assigned different weights to determine overall utility value. This theory
of weighted utility is the basis for this prototype. This study envelopes user-oriented analysis and design of a
prototype. The microcomputer code is developed for in-house use by decision makers, thus facilitating the
management decision process more cost effectively and in less time.

20 Distribution/Availability of Abstract 21 Abstract Security Classification

ID unclassified/unlimited 5 same as repon U DTIC users Unclassified

22a Name of Responsible Individual 22b Telephone (Include Area code) 22c Office Symbol
Professor Gerald L. Pauler (408) 646-2938 55Pa
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted security classification of this page

All other editions are obsolete Unclassified

o . .

Approved for public release; distribution is unlimited.

A System Costs Planning Decision Support System

by

Craig L. Riddle
Lieutenant, United States Navy

B.S., United States Naval Academy, 1981

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September 1988

Author: __,.__ __ _ __ __ _ .._ _ __ __.__/.
raig L. Riddle

Approved by:
. Gerald L. Pater, Thesis Aa'hor

/,Barry Frew, Second ader

David R. Whippi airman,
Department of Administr e Sc ences

Kneale T. Marshall, erfz!-
Information and Policy Sciences

S

ii!

.... , --. m , II~iilll IIlII~mI

ABSTRACT

This -study undertakes the task of analysis and design to create a prototype

microcomputer-based decision support system for cost planning. System acquisition cost

planning is a complex process in which a variety of ill-defined, often conflicting variables

influence the decision to be made. Multi-Attribute Utility Theory (MAUT) offers a

Multicriterion decision method to incorporate and quantify these variables in the search for

an optimal solution. A decision is defined by the options among which one must choose,

the possible outcomes, or consequences. Typically, there exists a measurable preference

among various choices when making a decision. This preference is called "utility."

Microeconomic marginal analysis applied to utility curves generated from MAUT data

derivation reveals insights to decision risk assessment and cost planning limitations. In a

decision with preferences spread among several goals, the utilities may be assigned

different weights to determine overall utility value. This theory of weighted utility is the

basis for this prototype. This study envelopes user-oriented analysis and design of a

prototype. The microcomputer code is developed for in-house use by decision makers, thus
/

facilitating the management decision process more cost effectively and M less time.

A.ec,75n For

._ - -

, |copy

'SPECTflD
4 s ,c -

iii.

TABLE OF CONTENTS

1. INTRODUCTION .. 1

A. BACKGROUND .. 1

B . PU R PO SE 1

C . SC O PE ... 2

D. METHODOLOGY ... 2

II. SURVEY OF DSS LITERATURE ... 4

A. DSS FRAMEWORK AND USAGE ... 5

B. DECISION-CENTERED DECISION MAKING 6

i1. A SYSTEM COSTS PLANNING-DSS .. 9

A. SUMMARY DESCRIPTION .. 9

B. PRELIMINARY CALCULATIONS .. 13

C. BUILDING TIE UTILITY CURVE ... 14

D. COST RANGE CALCULATIONS AND RESULTS 17

IV. THE SCP-DSS SYSTEM DESIGN ... 19

A. USER-ORIENTED DESIGN .. 19

1. User-Oriented Analysis ... 20

2. User-Oriented Implementation .. 21

B. FUNCTIONS OF THIE SCP-DSS .. 21

ix'

C. DATA FLOW OF THE SCP-DSS.. 21

D. THE DATA COMPONENT...22

E. DIALOG COMPONENT... 24

1. User Interface ... 25

a. Standard Screen.. 25

b. Input/Output... 25

c. Reports.. 26

d. Help..2 7

2. Component Linkage..27

F. SCP-DSS MODEL COMPONENT....................................... 27

1. Matrix Building Functions .. 27

a. Cost Matrix.. 27

b . Utility Matrix .. 28

C. Cumulative Costs Matrix 28

d. Weiiihted Utility Matrix....................................... 28

2. Model Execution... 28

3. Dialog Interface..29

4. Data Interface .. 30

V. PROTOTYPE IMPLEMENTATION OF THE SCP-DSS................ 31

A. PROTOTYPING LANGUAGE ... 33

B. PROTOTYPING PROBLEMS... 33

I. User Requirements .. 33

2. Programming Environment.. 34

V

" . I. I I , m _ _ I i i m , ,,

VI. CONCLUSIONS AND RECOMMENDATIONS 36

A . C O N C LU SIO N S .. 36

B. RECOMMENDATIONS FOR FURTHER STUDY 37

AXPPENDIX A MULTI-ATTRIBUTE UrILITY THEORY 38

APPENDIX B REFERENCES ON MICROECONOMIC MARGINAL

THEORY W............ 41

PPEND X C DATA FLOW DIAGRA S .. 43

APPENDIX D FIRST PROGRAM LISTING IN PASCAL 51

APPENDIX E SECOND PROGRAM LISTING IN PASCAL 67

LIST O F REFERENCES ... 84

INITIAL DISTRIBUTION LIST .. 87

i

VIm

ACKNOWLEDGMENTS

At the completion of this research the author wishes to express his gratitude and

sincere appreciation to G. Pauler and B. Frew for their assistance, support.,and guidance.

Furthermore, he would like to convey his sincere appreciation to M. Mayer for his

recursive perspective toward tne coding of this project.

Finally, the author dedicates this thesis to his loved ones and family for their

continued support and encouragement that have helped him in his efforts for education, self

improvement, and happiness.

vii

I. INTRODUCTION

A. BACKGROUND

Decision support systems (DSSs) began in the 1960s as a concept for integration of

computer processing with modeling tools such as linear programming and/or simulation as

an interactive tool [Ref. 1]. The idea of a human-machine interactive system in which the

decision task was divided between the human and the machine in a synergistic problem-

solving system was emphasized. The intent was that each component did those parts of the

task for which it was best suited [Ref. 2] . A DSS can be represented as an interactive

computer-based system that helps decision makers utilize data and models to solve

unstructured problems [Ref. 3].

One such environment for DSS is that of System Costs Planning (SCP). A DSS can

provide computational and analytical support in the SCP process to complement judgment,

expertise, experierce, and insight. As such, it uses Multi-Attribute Utility Theory

(MAUT). MAUT is a method used to incorporate and quantify data variables to obtain a

recommended decision. Turban and Meredith state briefly that - .. there is a measurable

preference among various choices available in risk situations." [Ref. 41 This

"...measurable preference...'" is called Utility. In a decision involving Multi-Attribute, and

thus Multi-Criteria, utility values can be assessed for how weli each attribute meets its

associated criterion.

B. PURPOSE

The purpose of this thesis is to provide a comprehensive and responsive microcom-

puter Decision Support System to support SCP planners.

-- II I ! _

SCP-DSS users must understand MAUT as background to support their decision

making (Appendix A contains a brief overview of MAUT). System use is correlated to its

ability to support users' needs.

C. SCOPE

This thesis uses a percentage weighted criteria method of MAUT, for development of

an integrated and graphic DSS for SCP tasks. An aircraft upgrade decision is used as an

example application. Aircraft components specified for upgrade constitute the decision cri-

teria. These criteria are also referred to as attributes (of the upgrade system), features, or

decision variables. Each decision variable has multiple options trom which a combination

upgrade, consisting of one option per variable giving the highest utility score, is chosen.

The cost parameter is the user-defined target for the SCP-DSS. It searches all possible

combinations of options to isolate the combination with the highest utility score for the

user's input target cost. The size of the user input matrices determines the complexity of

the decision under consideration.

D. METIIODOLOGY

The decision cnvironment and an existing system were reviewed to ascertain how

current methodologies nnd procedures worked in conjunction to aid decision makers.

Analysis of the process identified a lengthy time element for problem solution plus a need

for a easy to-use local system. The decision makers identified relevant methodojogics to

aid the formulation of automation techniques. From this analysis, with the described prob-

lem areas and solution methodologies ident ivd, the decision to build a prototype system

was made. This allowed decision makers to provide constant input to the system design.

Using a prototype strategy consisting of a common language (PASCAL) base

allowed the design of a low-cost system with immediate pay-off. A clear and concise

2u

communic- ion between the system users and the analyst kept the system design in a logical

context until all areas of decision support were ictentified. Prototype development allowed

the users to appreciate an almost immediately available automated solution for costs

planning needs on the microcomputer.

3

!I

3

II I I I III III

I. SURVEY OF DSS LITERATURE

Many decision-making activities within an organization occur in an unstructured

environment. This environment is characterized by constantly shifting goals, restructuring

of priorities, and varying decision-making styles. Information is recognized as a major

resource of any organization. Within a DSS environment, it supports the decision-making

process. With managerial judgement being so critical to the decision process, a DSS must

be designed to allow combining computerized output with managerial judgement. In

essence, decision support systems are designed to support specific decision processes.

Advances in technology, coupled with declining hardware costs, permit increasingly com-

plex problem resolution on microcomputers. Design of a DSS requires a firm understand-

ine of decision-making processes within the organization. An implicit assumption is that

better data and more accurate models result in a better DSS. This idea, although relevant,

does not guarantee that DSSs will function as important decision-making tools [Ref. 5].

Fundamentally, the main thrust of decision support systems is on problems for which there

Is surficient structure for computer and mathematical (and statistical) models to be of value,

but not to occlude the manager's essential judgment. DSS extends the range and capability

of the decision process to help improve the decision maker's effectiveness. The relation-

ship of the DSS to the manager is the creation of a supportive tool, under his control,

which does not attempt to predefine objectives, automate the decision process, or impose

solutions directly [Ref. 61.

DSS literature agrees upon the emergence of three main components: data, dialog,

and model [Ref. 71. A separate view of each component supports the development,

design, implementation, and maintenance of the SCP-DSS. The data, dialog, and model

components, with their varied complexities, based on user input, are not easily separated.

4

The model component, although not intricate in design, becomes complex when tied to a

dialog component that is a complex and restrictive user interface. The model component is

driven by the complexity of the data component through the dialog component.

A. DSS FRAMEWORK AND USAGE

To assess prototype system development, it is important to first structure a frame-

work. As Sprague states, "A framework, in the absence of theory, is helpful in organizing

a complex subject, identifying the relationships between the parts, and revealing the areas

in which further developments will be required." [Ref. 7] Also, it is necessary that this

framework be grounded in a firm realization of just "what exactly is a DSS." Sprague and

Carlson define a DSS as a computer-based system that helps decision-makers confront ill-

structured problems through direct interaction with data and analysis models [Ref. 3].

Using the MAUT model, with a microcomputer, experience, expertise, and insight as key

elements, this definition guides analysis and design of this microcomputer-based DSS.

To establish a framework, a clear understanding of the DSS's information require-

ments concepts is key. Gorry and Scott-Morton define information requirements for

Strategic Planning DSS types as having the following characteiistics (by decision category)

[Ref. 8]:

Characteristic of Information Strategic Planning
Source external

Scope very wide

Level of Detail aggregate
Time Horizon future

Currency quite old
Required Accuracy quite low

Frequency of Use infrequent

5

This Gorry and Scott-Morton table summarizes their notions of complex decision

planning requirements. The example problem, described in Chapter III due to its complex

information needs, alters this framework described in the following manner:

• Level of Detail that is maore detailed versus aggregate;

" Currency that is relatively near-term; and

" Accuracy in moderate to high range.

This altered framework puts the requirements imposed here on the data, dialog, and

model components into perspective to reveal how they have to be interrelated to increase

their collective effectiveness. As decision makers come together to discuss formulation

costs and utility values, their initial inputs to the matrices form the data component.

B. DECISION-CENTERED DECISION MAKING

Decision-makirl,, activities are at the center of the functions comprising the manage-

ment pro~ess. The process of management is basically one of decision making. The DSS

rationale for a combined mathematical/computerized approach to decision-making is the

recognition by a decision maker that it is impossible, working alone, to evaluate all the

factors for an effective decision. The microconputer allows immediate and direct input or

immediate retrievability of data to and from a database. Also, it allows the decision maker

to solve mathematical and statistic style problems in a matter of minutes and hours instead

of days, weeks, or nmonths.

The Decision Centered approach to decision making is in contrast to the classical

quantitative approach based on scientific method. The scientific method was originally

formulated by Francis Bacon in the sixteenth century and elaborated by John Stuart Mill in

the nineteenth centry 19]. Its traditional steps are observation, definition of the problem,

formulation of the hypothesis. experimentation, and verification. These steps are altered to

adapt to the decision-making environment. This method is used to help decision makers

6

.. . . ,. ..a ,n,.f,,m .Mmu nnmnu mmmanu Im ll~ nam nnnm nmm i~l ~ u u ln

choose the best or "optimal" alternative, that is, one that balances the costs and benefits,

along with some unknown factors. This is good practice in many cases, but many times

the decision makers lack important information affecting a decision. With time constraints

and decision anticipation affecting actions, many alternatives are overlooked in the decision

process. These limitations restrict decision making, with the result being that of

"satisficing." The word "satisficing" means finding and selecting a satisfactory alternative

(as opposed to the best one) that achieves a minimally acceptable solution [Ref. 10]. Deci-

sion makers should not select the first satisfactory alternative developed but rather should

take the opportunity and time to develop other feasible alternatives.

Thierauf further defines the Decision-Centered method with the following:

An essential part of satisficing is the concept of bounded rationality. The fact that
managers often make decisions without knowing all the alternatives available to them
or possible consequences means that there is a limit to how logical or rational their
decision can be. In organizational life, managers make the most logical decision they
can, limited by their inadequate information and by their ability to utilize that infor-
mation, thereby resulting in bounded rationality. Within bounded rationality, rather
than make the best or ideal decision, managers more realistically settle for a decision
that will satisfice rather than optimize. [Ref. 11]

This satisficing approach does not mean that decision makers cannot obtain the best

possible solution. It is just that at some point it becomes too expensive in terms of time and

money to gain the additional information needed. These are realities in any decision

maker's world, and Herbert Simon's decision centered method [Ref. 12] is outlined as

follows:

Step 1: Intelligence-This is the data-gathering phase in which the decision maker
seeks information to define the problem more clearly and provide some input to
the solution process.

Step 2: Design-The second step centers on inventing, developing, and analyzing pos-
sible courses of action. It involves manipulation of the data obtained to develop
various alternative solutions to the problem.

Step 3: Choice-This task is one of evaluating alternatives. This phase of the problem-
solving process also requires selection of the best among the alternatives devel-
oped in the design phase.

7

Step 4: Implementation-This step puts the chosen solution into effect. In essence, the
best alternative selected in the prior step is placed into operation.

Step 5: Control-The fifth step is monitoring the outcome and making necessary
adjustments. This last step links back to the first step, intelligence, by recog-
nizing any new problems that arise and need to be solved.

The foregoing steps allow the decision makers to explore all possibilities within a

sernistructured environment. To compare them on the same basis for an optimum answer

may be too costly and time consuming using a quantitative method. The focus of decision

support systems is on the semistructured and unstructured problem. The SCP-DSS user

seeks the optimal decision with the best intelligence, design, and choice method available.

Simon's Decision-Centered approach as applied to this thesis covers only the first three

steps-those of intelligence, design, and choice. Implementation and control are follow-on

stages past which the SCP-DSS is of minor assistance.

e

8!

S

III. A SYSTEM COSTS PLANNING-DECISION

SUPPORT SYSTEM (SCP-DSS) MODEL

A Costs Planning example to illustrate this SCP-DSS is a decision to upgrade the

NAVY's F-14 Fleet Interceptor. In this decision process, many decision variables referred

to as COMPONENTS are considered for upgrade. Each COMPONENT has the possibility

of being upgraded to one of several configurations called OPTIONS, each with differing

costs and utility values to the overall upgrade configuration.

In this process, an additive combination of one OPTION per aircraft COMPONENT

is chosen. The goal of the SCP-DSS is to find the optimum combination of COMPO-

NENT-OPTIONs that returns the highest utility score.

A. SUMMARY DESCRIPTION

To determine the combination of COMPONENT-OPTIONs that returns the greatest

utility for a given amount of money, the first task is to review all OPTIONs within each

COMPONENT and assign a UTILITY value for each. Decision makers meet to give their

opinions and validations to the building of the utility matrix. Accompanying the utility

matrix is the cost matrix. The cost matrix is a utility matrix template copy containing costs

for each option. All option costs are determined prior to the utility evaluation phase so that

the matrices can both be built simultaneously. Each matrix provides input paths for the

decision makers as they progress through the decision process.

A zero-to-100 percent scale is used to guide the decision makers through their judg-

ments on the relative merits of all COMPONENT options. The current aircraft configura-

tion is assigned the value of zero percent. The "ideal" option is assigned the value of

100%. All other options are scored by relative importance between these extremes. That

9

is, the ENGINE has seven options under consideration; each option is scaled and scored

relative to only the other six options within the ENGINE component. Measures of UTIL-

ITY are shown in their resultant ranking in Figure 3-1.

COMPONENTS OPTIONS
ENGINE 0 2 10 112 13 15 1oo

RADAR 0 3 30 40 60 100

ELEC-OPTC 0 3 45 9 0 100,1

TACCOMMS 0 0 20 30 65 1001

AVIONICS 0 3 9 1 0 90 9511001

EW 0 50 1 55 1 60 1001

WEAPONmINT 0 401 70 85 1001

WPNCONT 0 50 1801 95 00

SURVIVE 0 45 170 190 1100

WTREDUC 0 34 159 164 85 11]

OSIP 0 20 40 140 160 1100

Figure 3-1. Utility Values of Options (%)

Figure 3-2. shows option cost figures that template the COMPONENT-OPTION

configuration as they appear relative to one another in UTILITY value. Note that the costs

of the options do not affect the relative tutilio , relationship of the options to one another.

The decision makers consider the utility value of the COMPONENT-OPTIONs as the most

critical decision element rather than the cost of each.

10

1D',

COMPONEN'S OPIONS
ENGINE 0 2 0 1 2 1 1 353
RADAR 0 0 0 162 202 1331

ELEC-OPTC 0 5 20 70 65
TACCOMMS 0 0 0 0 40 20 1

AVIONICS 0 20 20 20 380 40 140
EW 0 10 25 0 15

WEAPON INT 0 20 3 20 30
WPN CONT 0 0 15 15 18

SURVIVE 0 3 9 4 4
WT REDUC 0 0 10 20 60 200

OSIP 0 0 0 0 15 18

Figure 3.2. Specific Costs of Options ($Million)

The next task is to determine a ranking of the desirability between the COMPO-

NENTS. In this step, the relative importance, or priority, of the components is agreed

upon. Since a base percentage of desirability could not be readily determined, as in the

ranking of options, the decision makers now assigned arbitrarily relative weights based on

the overall importance of each COMPONENT. Raw numbers are used to aid in the sim-

plicity of scaling the importance of one COMPONENT to another. Summing the COM-

PONENT relative weights and using this sum to divide into the relative scores normalizes

the entire matrix to a 100 percent scale. This normalizing process reduces the complexity

of the final solution. This ranking is shown in Figure 3-3.

These raw weights are then translated into percentages as shown by Figure 3-4. The

raw relative weight for the ENGINE of 210 divided by the summation of all weights-

637-yields the percent value of 32.97 percent.

11

• ' ' -' !S

COMPONENTS
21 0 ENGINE
1 00 RADAR

5 0 ELEC-OPTC
50 TAC COMMS
8 0 AVIONICS
40 EW
3 5 WEAPON INT
25 WPN CONT
1 2 SURVIVE
25 WTREDUC
1 0OSIP

TOTAL 63 7

Figure 3.3. Relative Desirability of Components Using Raw Weights

COMPONENTS %
210 ENGINE 32.97%
10 0 RADAR 15.70%

5 OELEC-OPTC 7.85%
5 0 TAC COMMS 7.85%
8 0 AVIONICS 12.56%.
40 EW 6.28%
3 5 wEAPON INT 5.49%
2 5 WPN CONT 3.92%
1 2 SURVIVE 1.88%
2 5 WT REDUC 3.92%
1 0 OSIP 1.57%

TOTAL 637

Figure 3.4. Component Relative Weights as a Percentage

The data on option utility, costs , and relative importance of each COMPONENT is

the input to the SCP-DSS.

With manual or mainframe computer methods, based upon locality to the decision

makers, the decision result time is measured in days. The process took days because the

12

data had to be collated, then taken to the location of the mainframe computer, entered into

the machine, results tabulated, and these results returned to the decision makers for a final

decision to be made. Decision makers wanted more timely feedback than currently avail-

able. The entire process as described in this scenario using a microcomputer-based SCP-

DSS will decrease time requirements to minutes. Manual and mainframe processes are too

laborious to use. Answers to numerous "what if" suppositions can be given without

excessive delay due to the locality of the decision makers and the availability of the SCP-

DSS.

B. PRELIMINARY CALCULATIONS

Prior to final calculations which yield the optimal combination, a Cumulative Costs

matrix is produced. The Cumulative Costs matrix single option cost includes the costs of

the options which precede it. Figure 3-5 shows the Cumulative Costs matrix of the example

model. The matrix is derived using the cost data shown by Figure 3-2.

COMPONENTS OPTIONS
ENGINE 0 2 2 3 5 6 [359
RADAR 0 0 0 162 364 497 1

ELEC-0TC 0 5 25 95 160
TAC COMMS 0 0 0 0 40 60

AVIONICS 0 20 40 60 440 480[520
EW 0 10 35 35 50

WEAPON INT 0 20 23 43 73
WPNCONT 0 0 15 30 48

SURVIVE 0 3 12 16 20
WTREDUC 0 0 10 30 90 290

OSIP 0 0 0 0 15 33I

Figure 3.5. Cumulative Costs Matrix

13

The SCP-DSS calculates the Weighted Criteria Utility matrix. The objective of these

calculations is to combine the utility values of options and COMPONENTs into a single

matrix of weighted utility values. To do this, the relative percentage weight of each CONI-

PONENT is multiplied by the utility score for each option. Figure 3-6 shows the com-

Sileted calculations in the weighted utility matrix. Note, for example, that the calculation for

RADAR-Option 5 of 9.42 is yielded by multiplying 15.7 percent (as shown in Figure 3-4)

uy the option score of 60 percent (as shown by Figure 3-1).

COMPONENTS OPTIONS
32.97/o ENGINE 0 0.66 3.3 3.96 4.29 4.951 33
15.70% RADAR 0 0.47 4.71 6.28 9.42 15.7
7.85% ELEC-OPTC 0 0.24 3.53 7.06 7.85
7.85% TACCOMMS 0 0 1.57 2.35 5.1

12.56% AVIONICS 0 0.38 1.13 1.26 11.3 11.9112.6
6.28% EW 0 3.14 3.45 3.77 6.28
5.49% WEAPON INT 0 2.2 3.85 4.67 5.49
3.92% WPNCONT 0 1.96 3.14 3.73 3.92
1.88% SURVIVE 0 0.85 1.32 1.7 1.88
3.92% WTREDUC 0 1.33 2.32 2.51 3.34.3.92
1.57%, OSIP 0 0.31 0.63 0.63 0.94 1.57
10000

Figure 3.6. Weighted Utility Matrix

C. BUILDING THE UTILITY CURVE

With the Cumulative Costs and Weighted Utility matrices, the main process of deter-

mining the best combination of options begin-;. Initially, the decision makers chose funds

(cost) as tie parameter limit to drive the SCP-I)SS to the optimum combination of options,

In this example, the funrds (cost) art, the imitin : parameter.

14

• ,, , m u nR imluunm nmi i nnianmnnnmn nmmU/i iR~ll/m i-J

The SCP-DSS generates a utility curve from data inputs. This aircraft upgrade had

the cost possibility range of zero to $2.1 billion. Twenty equal intervals of SCP-DSS gen-

erated increments are used as predetermined steps to guide the plotting function (i.e., 2.1

billion divided by 20 gives increments of 105 million). The objective of this plotting func-

tion is to give the user a visualization of his data matrices and whether it will produce a risk

curve plot similar to one of the types shown in Figure 3-7. Note that if a utility curve can

be constructed, then one can select utility values that correspond to any desired monetary

value. The construction of the curve, therefore, is key to the analysis. According to the

Von Neumann-Morgenstern proposal [Ref. 13], a curve can be constructed by measuring

the attitude of the decision maker toward risk. This measure assesses the risk in monetary

Risk Averse

Risk Neutral

Risk Taker When Poor,
Risk Averse When Rich

Risk Taker

Cost ($)

Figure 3.7. Utility Curves

15

.............. lm ~ ~ llllm mmll lllllllllll fr fl'tlfi-. 4S

amounts that the user is willing to lose as compared to the expected return in utility for the

money the risk taker spends. The shape of the curve is a function of the decision maker's

attitude toward risk. The conservative perspective of the DOD decision maker is that of a

risk-averse decision maker. Using the risk averse curve, for example, money has a lot of

value, incrementally per dollar spent, when a risk averse decision maker is poor. How-

ever, beyond a certain amount, the monetary increases have less and less value, incremen-

tally, as the amount of money increases. Once a decision maker's utility curve is known,

then it is possible to replace any monetary value by its utility equivalent for that decision

maker.lRef. 41

Figure 3-8 shows a utility curve of 20 equal steps of $105 million each. An algo-

rithmic plotting procedure within the SCP-DSS produces a utility curve for the user.

The plotted curve is analyzed to determine the theoretical point of the highest utility

score per cost value given. This is the point called the Decision Point (DP). The DP is

located on the outennmost frontier of the utility curve at the intercept of a tangent line to the

curve having a risk neutral utilitV curve.

Marginal cost analhsis theory is used to assist in the verification of the highest utility

score at a tangent point along the plotted curve parallel to the risk neutral curve (see

Appendix B for references on Microeconomic Marginal Theory). All slope functions prior

to this DP will have a slope-value greater than one, meaning that there is incrementally

more utility per dollar spent, whereas after the DP the slope-value along the curve

approaches zero, indicating the utility increment per dollar spent is smaller and smaller as

the curve slope-value approaches zero. In this example the DP has a 71 percent utility

value and a 41 percent cost value (approximating $800 million).

16

DECISION POINT (DP)

90 .. -

\J

70 ' - =o

60 "- -0'"

>" 50 l.

-- 'J4 0 ----- --- ------ ,-----

Z2 0

PARALLEL LINES
DENOTING
RISK-NEUTRAL 0 0 0 0 0 0 00 0 00 0 0 0 0 0 0 0 0 0 0

- C M~ V~ 0D r- MD M 0-CJC UCDtC O0
CURVES T

COST(S)

Figure 3.8. Utility Curve Plot Showing Decision Point

D. COSTS RANGE CALCULATIONS AND RESULTS

The decision makers can now determine a cost range within which to consider

options. This cost range may be the theoretical decision point (DP) of the Highest Utility,

an imposed spending ceiling, a minimum desired utility, or any possible combination of

economic and/or political considerations.

The decision makers use the $800 million cost as the input for the SCP-DSS to

determine the optimal combination of options. The program offers the user single cost tar-

gets or cost targets with a range (i.e., $800 million plus or minus $2 million). The SCP-

DSS will consider all combinations within the range as possible answers for comparison;

17

S

however, it only gives the decision makers the highest utility combination within the

identified range. The computed output can be modified by altering the input utility scores

or altering the relative COMPONENT weights. The overall matrix shape can be changed to

project certain minimum and maximum considerations in option choices for the decision

makers. The SCP-DSS in its prototype configuration can be easily modified to allow the

decision makers to tailor the system to adapt to the possible unique criteria that they may

choose.

18

IV. THE SCP-DSS SYSTEM DESIGN

The objective of system design is to develop a blueprint for the physical system. from

the analysis output. The system view changes direction from "what" to "how." A proto-

type system design serves as a model or framework for the final system. The system plan

must be a complete system design, not a partial design. The prototype becomes an exten-

sion of the feasibility study; its purpose is to demonstrate feasibility. The functional

requirements for the data component, the dialog component, and the model component are

inputs to the prototyping phase. The design of the prototype is key to its successful and

rapid completion. User-oriented design helps build a DSS while promoting a shorter

development. Better problem refinement will result in greater user satisfaction in the end

[Ref. 14].

A. USER-ORIENTED DESIGN

User-oriented design has three major components:

" User-controlled systems design

* User-defined criteria of system quality

* Special attention to design of the interface between user and system

User control is the most important element of user-oriented design. The user's influ-

ence on the final system is the result of close cooperation between the user and designer.

Interviews helped the designer to construct a system by translating user needs into the

technical specifications for computer programmers. The user helps to determine his own

trade-offs as to the system inputs and outputs that are considered necessary for the decision

process. Cooperative design ensures system quality which is measured by system usability

and efficient error processing.

19

The final component of user-oriented design is the interface between the user and the

system. The essence of this DSS design is to structure a user-friendly dialog component

on a microcomputer, so that decision makers can easily input their data, then process their

matrices in a timely fashion in a local and secure manner. Mason alludes to the value of a

dialog component by saying that the closer the information provided is to the decision-

maker's needs, the better the decisions that will be made [Ref. 15]. This means design of

this DSS must stay close to decision-makers' concepts of their decision processes while

assisting them toward a final decision. Local use of microcomputer resources at the deci-

sion-makers' disposal is key to supporting all phases of the decision-making processes.

Evaluating options and weighting components enjoins experts to evaluate the result each

option score and component weight has on the final decision. The matrix is an outline to

support the semistructured nature of this type of decision. An adequate interface between

the user and the system ensures a higher quality input and output. Without a proper and

usable interface, the user loses confidence in the system.

I. User-Oriented Analysis

The user-oriented analysis process allows the following:

• Users learning about the decision domain and tasks required.

" Specifying the performance criteria by giving users reassurance that the system will
give similar answers every time given similar input data.

" Selecting a DSS building tool (if available) to consider type of modelling component0!
to assure support to a decision (PASCAL was chosen).

" Developing an initial implementation to review use of the model and allow users to
become more committed to the DSS.

" Testing implementation to determine the viability of continuance of the project. This
was accomplished via demonstration to the users.

" Developing detailed design for a complete system.

20

2. User-Oriented Implementation

When everyone is satisfied that the prototype can perform as designed, the

implementation development follows. Implementation includes the following activities:

" Implementing the system structure from logical design through physical
implementation.

* Tailoring user interfaces to make it easy for the user to input data and receive output,

query the system, and add, delete, or change existing data.

" Monitoring system performance.

During the implementation phase, components are tested against performance

and decision criteria obtained during earlier stages of the prototype development. Alternate

data inputs are used for similar-style problems to see if the dialog component is standard

for new data inputs and that the model component is satisfactory for the problem solution

set. Testing continues to refine the dialog component and adapt to newer and better ways

to input the data component. If newer methods and modelling algorithms are discovered to

be more elegant for solution sets, then they can be added to the system.

B. FUNCTIONS OF THE SCP-DSS

The SCP-DSS should perform the following functions:

Support decision makers by evaluating alternatives and choosing combinations of
component-options that provide the highest total utility score based upon initial
inputs.

Provide graphical output, tabular analyses of data, and report formats to help deci-
sion makers select and tailor alternatives of choice.

Provide for "what-if" analysis by being able to selectively change data inputs.

C. DATA FLOW OF THE SCP-DSS

The overall design of the SCP-DSS system is similar to the existing method except

that the computation is local to the user in the microcomputer environment. The search for

alternative solutions directs the designer to consider the most efficient microcomputer

21

automation techniques. Implementation strategies are reviewed to determine all system

automation boundaries and the areas of input data processing. System decomposition

determines the extent of duplicate processes and data flow paths. Figure 4.1 shows the

highest level data flow diagram of the SCP-DSS. A logical decomposition model is pre-

Hented in Appendix C for each process and data flow path.

D. THE DATA COMPONENT

The data component consists of the data that the SCP-DSS must process for the

desired output informntion. The purpose of the DSS is to generate the desired combination

of component-options with the highest utility score. The input begins with the user defin-

ing the matrix array size by inputting the number of rows (# ROWS) and the number of

options per row (# OPTIONS PER ROW). The user is allowed to name the components in

a character string of 15 characters maximum. The size of the matrix limits the user only to

the number of data elements input, not the &watt element size. Numerical data types are

integer or real values, The matrix array size ir: set for the cost (COST PER OPTION), util-

ity (UTILITY PER OITION), and weighted criteria (WEIGHTED CRITERIA PER ROW)

inputs. All data input, are stored in dynamic memory. The last user data input is the target

cost (TARGET COST) and search range (SEARCH RANGE) to the CALC COMBO

procedure. The CALI COMBO procedure calculates the combinational utility score using

a TARGET COST in(orporating the Cumulative Costs matrix and the Weighted Utility

matrix. The CALC UTILITY CURVE procedure calculates the combinational utility score

for the 20 target cost ncrements using the same two matrices. The highest utility score

with its accompanying cost is stored in an array and passed to the PLOT CURVE

procedure that output, a utility curve for the user.

22

1.0

BILDRI R INPT DATA FILE

TEMIPLATE /X(YRRGH E
R UTLT E EGTDCRITERIA

*OSCOST PER OPTION PER ROW
OPTION

X(R) 4.0
sOPTIONS RBUILD Cull.
PER ROW X()cull. COST PER

RCOST OPTION R
X MATRIX jjR

COTPR 20COST PER CUIM. COST MIATRIX

USR TIO N P ILR PE ROPTPTIO

3.ATRARIXT TIIYIITI

UTILTYGE R PEARX UTIIT PER UIIT E

OPTION EIGHTEOPTIONO

TAR13EILIT UTIITTRIX

WOS 3.IGHESTRI WTD UOTIONT K(AR)X

RAILIT FORRI 'UTILITY PER XR
TARET OSTOPTION X(R).

6.0~~CS COTPEERILT

UTILITY CAL T ION CURVEDOPIO

UTILITTLIT CURV DATAIT FILE()

~ICRZE ALTARGET COSTOPINXR .

Figure. 4-.SP-S at lw iga

23.

Data inputs in dynamic memory may be modified at any time. Users may save data

inputs before and/or after processing. To modify a saved set of data requires that the saved

data be recalled from peripheral memory; only then can the cost, utility, and weighted crite-

ria data be modified. Recalled data is loaded into the dynamic array structures for further

processing. The arrays are passed between procedures within the program as needed.

The data component needs the flexibility to deal with a library of problems. To

achieve this, the SCP-DSS must have the ability to save and retrieve files named by the

user.

The user follows the following algorithm:

• The SCP-DSS queries the user to create a new data set or retrieve an already saved
file.

• If new data is selected, then

the system queries the user for row, option , costs, utility, and component
weights to build a data set for decision support

Else

- the system queries the user for the saved data set file name and begin to process
the oid data

0 When the user is finished with the data set, the SCP-DSS queries the user to save or
discard the current data set

• If save. then

- save the data set in a file named by the user for later use

Else

- terminate program.

E. DIALOG COMPONENT

The dialog component must be the most elegantly designed component of the SCP-

DSS. The format must be obvious for the user to balance user requirements against DSS

function. The dialog component should guidc the user through the data input and retrieval

24

with a minimum of effort. The SCP-DSS Dialog component consists of the following

functions:

" user interface

" component linkage

1. User Interface

The designer's primary concern for the user interface is to make the SCP-DSS

"user friendly." The power in the model component will not be used properly if the user

interface is unacceptable. The screen frame should be uniform from beginning to end.

This ensures the user that he is working in the same environment. Using a standard screen

reduces the learning curve and increases acceptability.

The machine interaction should include menus, queries, error messages, stan-

dard input/output windows, graphic output, and a help facility.

a. Standard Screen

The standard screen area is divided into three areas: the working area, the

menu area, and the message area.

° Working Area-In this area, the user can view the matrices and the combination
answer. Any graphics processing is viewed in this area.

• Menu Area-In this area, the menu selections are available for the user to select the
input, view, calculate, or perform graphics options as desired. Figure 4.2 shows the
menu hierarchy structure.

• Message Area-This area displays alerts and input error messages to guide the user to
input the correct data elements for the SCP-DSS. Alert and error messages can
appear as dialog boxes. Whenever an error occurs or the SCP-DSS needs more
information from the user, it presents a dialog box on screen. Dialog boxes are not
for data input; they alert the user to an exceptional condition.

b. Input/Output

The input for this SCP-DSS is received from the keyboard or as a

retrieved file from memory. The output is to the computer screen, printer, or saved file

25

,- , ll I I I

INPUT DATA- UPDATE DATA VIEW MATRIX

MATRIX -E OAJ

COST CUMULATIVEI

UTILTY EGHTED GRAPH UTILITY

-FWEIGHTLD

CRITERIA UTILITY

Figure 4.2. SCP-DSS Menu Hierarchy

format. The SCP-DSS output to primer g, ,cs the user backup when data is not saved to a

file. The linear format plot is the most appropriate for this application because of its simi-

larity to the Von Neumann-Morgenstern uility curve representations. The graphics output

helps the user to conceptualize the differences among the alternatives present for analysis.

The analysis of the graphics output helps identify key value areas from which to use the

SCP-DSS to retieve detailed information.

c. Rcports

Printed reports are not a part of the SCP-DSS; however, this function

should be added to give the user a summary of the processed data and sensitivity analysis.

This summary should consist of the input data in both tabular and matrix form. The sensi-

tivity analysis report should consist of the combination of options answer as well as the

currint changes made to the input data.

26

d. Help

The intent of the help function is to provide the user with on-line assis-

tance and information about the specific area of the SCP-DSS currently being used. Each

help screen is written to an appropriate level of detail and is presented on a single screen.

2. Component Linkage

This ingredient of the user interface assures the connections of model compo-

nents with data components. The use of IFTHENELSE or CASE type statements is

appropriate for functions or procedure control. PASCAL offers arrays as a structured type

variable whereby each array can contain distinct but related components. The array allows

for data grouping and indexing by element type. The array structure is highly dependent on

the programming language and the hardware configuration used for the SCP-DSS.

F. SCP-DSS MODEL COMPONENT

The most important functions of the model component are the matrix building, model

execution, dialog interface, and data interface functions.

1. Matrix Building Functions

Matrix building functions are required as building blocks to the model execution

unit. These matrices form the content base for the search to determine the optimum combi-

nation of cost and utility options.(see Appendices D and E for source code listing).

a. Cost Matrix

This function fills the cost matrix by placing all input cost elements in the

matrix designated by the number of rows, R, and the number of option per row, XR. The

cost elements are assigned to their respective component options as structured by the matrix

array.

27

,.,,,,,. *,.,.... ,,.,,,, m " l i I I I I I I |

b. Utility Matrix

This function fills the utility matrix by placing all input utility score ele-

ments in the matrix designated by the number of rows, R, and the number of option per

row, XR. The utility score elements are assigned to their respective component options as

structured by the matrix array.

c. Cumulative Costs Matrix

This function computes the cumulative costs matrix by summation of all

input cost elements prior to its position in the matrix. The cost elements are assigned to

their respective component options as input to the cost matrix. The summation equation is

as follows for each component-option cell in the cumulative costs matrix:

I comp(to XR) = comp(1R) + comp(2 R) + . comp(XR)

where XR is the number of component-options per row R.

For example, the cumulative costs for component-option number 4 is the

sum of input costs for components numbered 1 through 4 inclusively (see Figures 3.2 and

3.4 in Chapter III).

d. Weighted Utility Matrix

This function computes the Weighted Utility matrix by summing all the

component variable weights and dividing the input weights by the total (see Figure 3-5 in

Chapter III). The Utility elements are assigned to their respective component options as

input for the Utility matrix and then multiplied by the calculated percentage value.(see Fig-

ure 3-6 in Chapter 1ll).

2. Model Execution

The model execution function calculates the combination of options with the

highest utility score for a given input target cost. The intent is to pick one option per row

28

and add it to the next row's option choice. The algorithm recursively loops through all

component-options in each row, scores each set's utility score, and saves the utility score

and the combination, if it is higher than the last saved score and combination. The unit

checks all combinations, in order, to show the user that all possible choices have been

evaluated. The thoroughness of this unit is critical because if a partial set of combinations

are evaluated then only partial decision effectiveness is gained.

The following pseudocode details the execution algorithm:

ROW 1 has 3 options

ROW 2 has 4 options

ROW 3 has 5 options

FOR X= I TO 3 DO

FOR Y = I TO 4 DO

FOR Z = I TO 5 DO

COST = COST(X) + COST(Y) + COST(Z)

UTILITY= WT'D UTILITY(X) + WT'D UTILITY(Y) + WT'D UTILITY(Z)

IF UTILITY> HIGHESTUTILITY THEN

HIGHESTUTILITY = UTILITY

XI =X

Y1 =Y

ZI =Z

NEXT Z

NEXT Y

NEXT X

3. Dialog Interface

The model component is directly interfaced with the dialog component so that

the user can direct the matrix building and execution phases. The user selects the desired

target cost to drive the execution unit to search for the optimum utility score and

29

component-option combination. The user determines whether to derive the utility curve for

the entire problem or to immediately search the combination answer.

4. Data Interface

The model component is directly interfaced to the data component. The model

component begins by accepting the user input and then giving the option for saving the data

and for data retrieval. Files can be created or deleted at the user option. Figure 4-3 shows

the data flow in the system user interface from user input to SCP-DSS output.

SCP-DSS QUERIES j jFUNCTIONS/PROCESSES

ROWS

BUILD MATRIX
#OPTIONS / ROWv BUILD CUMULATIVE

FILL COST MATRIX COST MATRIX

COST DFA TA

FILL UTILITY MATRIX
UTILITY DATA

BUILD WEIGHTED

UTILITY MATRIX J,COMPONENT WEIGHTS..

COIBINATION TARGET COST

COMBINATION OF OPTIONS
WITH HIGHEST UTILITY SCORE

Figure 4-3. SCP-DSS User rnputs to System Output

30

V. PROTOTYPE IMPLEMENTATION OF THE SCP-DSS

The process of prototyping allows concurrent evolution of user requirements and

system design [Ref. 16]. The following steps were used in the prototype process:

1. Users' basic requirements were identified by interviews and user feedback to gain
the information needs and decision support requirements.

2. Incremental development of a working prototype that performs all important, identi-
fied functions, using sample representative input data.

3. Allow the user to test the prototype and evaluate its performance and output for
update and immediate modification.

4. Further refine the prototype by discussing with the user the requested changes and
deciding which ones were feasible for implementation. Repeat steps 3 and 4 until
the system fully achieves the requirements of the users.

Prototyping as a system development and design methodology recognizes cognitive-

style issues, requires advanced technology (applying PASCAL programming to the micro-

computer) and is an adaptive revision to accepted systems development methodology [Ref.

171. The goal is to develop a working system that is refined through an iterative process

with major user involvement. Figure 5-1 represents the requirements determination and

validation by the prototyping process [Ref. 18]. Many times, prototypes are, at some point

in development, discarded and a formal system development process is initiated. Alterna-

tively, the prototype may become the production system.

The prototype process, including editing and updating, is used successfully here with

the following benefits:

" Shorter development time

" Better problem definition and refinement

" Greater user participation and support

" Greater user satisfaction

31

A

determine requirements _] construct

requirements prototype

requirements prototype
adjustments

demonstrate

prototype

requirements
CK

imp le mentation

Figure 5-1. Process of Requirements Determination

and Validation by Prototyping

The development of many systems is facilitated using a standard System Develop-

nment Life Cycle (SDLC) approach. When the user requirements are unclear or too broad in

scope for standard methods, then prototyping becomes an acceptable alternative to SDLC.

Prototyping offers ,(,o thi: design process an articulate method of quick feedback and refine-

ment to determine user requirements and get them automated as soon as possible.

32

A. PROTOTYPING LANGUAGE

The language used for prototyping this problem is PASCAL. Pascal was developed

in 1971 by Nicklaus Wirth. Its syntax is relatively easy to learn and its structured nature

supports programming that is easy to read, understand, and maintain [Ref. 19]. Pascal as a

high-level language is much easier to use than machine or assembly languages. The intent

is to write code that is portable so that it can be executed without modification on many dif-

ferent types of microcomputers. An assembly or machine-language may only execute on

one computer.

B. PROTOTYPING PROBLEMS

1. User Requirements

User requirements for this problem were gained by interviews and discussion.

From these meetings, the following areas of importance to the solution were gained:

1. The nature of the in-house systems command decision environment.

2. The local automation of the data analysis.

3. The decision time element whereby, if it were shortened to minutes from days, a
more thorough study of the information results could be gained.

4. Integer input data types and formatted real values in the data manipulation.

5. The desired matrix format and plotted view of the desired output.

6. Analytical insights into user's decision algorithms and processes.

7. All possible combinations are to be compared to ensure thoroughness of calculation.

User involvement was critical for initial momentum and insights. The determi-

nation of the decision environment structure in which this decision tool will be used led to

setting the level of user-to-system interaction necessary. Also, the degree to which data

analysis can be performed to assist the users in making their decisions. Above all, this

system had to be user friendly, fast, and thorough in computation.

33

2. Programming Environment

A major problem in implementing this prototype in the microcomputer environ-

ment was the magnitude of calculations required with the relatively slow speed of the

microcomputers used. Results were gained using a set of generic sample data for the F-14

upgrade process described in Chapter III. Due to the requirement that all possible combi-

nations be compared during each trial run, note in Figure 5-2 the times recorded for the

matrix sizes.

ROWVS
1 2 3 4 5 6 7

1 1 1 1 1 1 1 1

C 2 2 4 8 16 32 64 128
O 3 3 9 27 81 243 729 2187
L 4 4 1 6 64 256 1024 4096 16384
U 5 5 25 125 625 3125 15625 78125
M 6 6 36 216 1296 7776 46656 279936
N 7 7 49 343 2401 16807 117649 823543
S 8 8 64 512 4096 32768 262144 2097152

9 9 81 729 6561 59049 531441 4782969

NUMBER OF CALCULATIONS RELATED TO MATRIX SIZE

ROWS
1 2 3 4 5 6 7

1 0.004 0.004 0.004 0.004 0.004 0.004 0.004
C 2 0.008 0.016 0.032 0.064 0.128 0.256 0.512
O 3 0.012 0.036 0.108 0.324 0.972 2.916 8.748
L 4 0.016 0.064 0.256 1.024 4.096 16.384 65.536
U 5 0.02 0.1 0.5 2.5 12.5 62.5 312.5
M 6 0.024 0.144 0.864 5.184 31.104 186.62 1119.74
N 7 0.028 0.196 1.372 9.604 67.228 470.6 3294.17
S 8 0.032 0.256 2.048 16.384 131.07 1048.6 8388.61

9 0.036 0.324 2.916 26.244 236.2 2125.8 19131.9

ALL TIMES IN SECONDS

Figure 5-2. Time Data Related To Matrix Size

34

• -.- , .. , ., n . m unlnnna nmmmmm mlN ml N NI mllll~ MA

The magnitude of calculations that are required and the time involved for a

solution to the problem set varied from 4 to 11 minutes, depending on the computer used.

Data sets up to seven by seven matrices sizes were measured. Larger matrix size time esti-

mates are extrapolated from the sample data trials, given that computer processor speeds are

constant.

In writing the program (Source Code listings are in Appendices D and E), sev-

eral steps were used to reduce the computer run time. The first step was to limit the

input/output operations. This was accomplished by not displaying to the screen each com-

bination as it was computed. Limiting input/output operations made the process CPU

intensive. This resulted in more processor time being devoted to actual calculations.

A second step was to restrict the allowed input/output to main memory.

Because dynamic memory access is faster than peripheral access, the CPU exercised more

directly on calculations than stopping for disk access to get added data.

The third step was to limit the number of possible combinations of utilities

being considered by removing the zero cost cells from the combination sets. This requires

a common sense understanding of the input matrices. Only the matrix cells with associated

cost values are considered. This step is based on cost elements only, so the zero cost cells

had to be present for relative importance of decision variables but not calculations. This

reduced the matrix size for calculation. This reduction assumed that options with utility but

no cost would automatically be chosen.

35

VI. CONCLUSIONS AND RECOMMENDATIONS

FOR FURTHER STUDY

A. CONCLUSIONS

1. The micro-computer based SCP-DSS provides a mathematically unbiased result to
decision makers involved in costs planning for major systems. Political elements
and biases are either eliminated or taken into consideration by the experts in
evaluating the utility of each option of each component and then assigning relative
weighting values. The relative weighting of components accommodates the view
that item costs do not determine utility value. The association is with the quality of
the component's option in relation to comparative options.

2. Decision makers using this tool can judge the sensitivity of the data input given the
results in both tabular and graphic form. In essence, more timely, precise decisions
may result from the speed, and accuracy, with which this process can return infor-
mation to the user.

3. The use of a microcomputer with graphics capability and user friendliness leads to a
more conducive prototyping/programming environment. The PASCAL code facili-
tated a structured and simplified modular development on the Macintosh rV. Integra-
tion of this code to the IBM PCr u or Zenith systems prevalent in the Department of
Defense will require slight modifications of the current system. The data types and
array structures are common in all PASCAL environments. The section of code
used for plotting the utility curve will have to be removed or modified to operate on
other than Macintosh"4 microcomputer operating systems. Another concern for
modifying this code to other machines involves the file manager routines necessary
for saving data for later recall and use. This, again, is due to the nature of the oper-
ating system.

4. Marginal cost analysis theory is used to verify the highest utility score at a tangent
point along the plotted curve parallel to the risk neutral curve. All tangent points to
the utility curve prior to the decision point (DP) will have a slope-value greater than
the slope value of a risk-neutral utility curve, meaning that there is incrementally
more utility per dollar spent, whereas after the decision point (DP), the slope-value
along the curve approaches zero, indicating that the utility increment per dollar spent 1
is smaller and smaller as the curve slope-value approaches zero.

5. A prototype strategy for review of each component supports the development,
design, implementation, and maintenance of this DSS. With its array structure and
size, based on user input, the data, dialog, and model components are easily sepa-
rated and maintained. The data component is simplified by use of array structure
types. The model component, although not intricate in design, becomes complex
when tied to a dialog component that is a complex, and restrictive, user interface.
The dialog component is dependent on the user friendliness of the coded program or
the microcomputer operating system environment. The model component is driven

36

.... ,...,. . . m* ~ m m m ia i m I |11 mmm m

by the complexity of the data component via the dialog component. This tool,
designed and refined through prototype development, is automated so that data input
is simple, changes to inputs can be made easily, and results can be calculated
quickly.

6. The SCP-DSS can supports later phases of decision and sensitivity analysis. This is
accomplished by using the SCP-DSS as a tabulating system for the data inputs.
Choices have to be equitably made. When the options become too numerous for
simple decision making then quantifiably reducing the decision elements into groups
is needed. If grouping is unacceptable, then the use of automation to consider each
element for decision making becomes necessary. When all data inputs are complete,
the locality of this tool allows for many ad hoc "what-if' queries. The time element
for combination calculation is miniscule in relation to the flexibility that this system
offers.

B. RECOMMENDATIONS FOR FURTHER STUDY

1. It is recommended that the recursive array processing algorithm be studied for fur-
ther optimization. The narrowing of the solution set prior to the array processing
and reducing the array size into small chunks for individual processing of each
chunk in parallel may help to reduce the time element for calculation of a solution
combination.

2. Consideration of programming this DSS in an object oriented code such as ADA, the
accepted DOD programming code standard, may facilitate this tool's proliferation
and use.

3. This DSS should be used in evaluation of the impact on secure and classified
decision making that can be made in the work environment.

4. This SCP-DSS should be evaluated on other planning applications like wargaming
scenarios, tactics evaluation, and weapons deployment. The use of this DSS in par-
allel with an alternative method of both analysis and information results gathering
for a decision environment may provide cross-over and alternative uses for this tool.

5. Investigation into the use of and redesign of this DSS in an interactive group deci-
sion environment. This tool, if properly implemented in a Group Decision Support
System (GDSS), could further reduce the time of the entire decision process.

37

APPENDIX A

MULTI-ATTRIBUTE UTILITY THEORY

Multicriterion choice methods are directed at problems in which there is a finite set of

predefined alternatives or choices. A widely known method for choice problems is Multi-

Attribute Utility Theory (MAUT). The approach is to estimate the decision maker's value

function (for deterministic problems) or utility function (for uncertainty situations) [Ref.

20]. The function, defined over the criteria, serves to collapse the problem into one with a

single criterion, the maximization of utility. Once the utility function is known, solution

identification is straight forward.

Multi-Attribute Utility Theory (MAUT) has been developed for problems which have

uncertainty about outcomes (consequences). If an appropriate utility is assigned to each

possible consequence and the expected utility of each alternative is calculated, then the best

course of action is to take the alternative with the highest expected utility [Ref. 211. MAUT

is one of the more difficult topics under Multicriterion choice methods due to its sophisti-

(-ated nature (assumption) and elaborate assessment of the utility function. Many advances

in MAUT have been developed by Keeney [Refs. 22-26]. The literature on MAUT and its

assessment methods has been summarized in Farquhar [Ref. 271, Fischer [Refs. 28-291,

and Fishburn [Refs. 30-31]. Keeney and Raiffa [Ref. 321 in particular deal extensively

with utility from unidimensional to multi-attribute, its assessment methods and

applications.

Multi-Attribute Utility Theory (MAUT) is used for handling uncertainty in outcomes.

Most of the literature is filled with mathematical proofs, but most of the theoretical work in

MAUT investigates the possibilities for simpliiying the task of MAUT assessment. Skep-

ticism concerning the practical usefulness of N.IAUT involves the fact that MAUT has been

38

. ...-.-.. b,.=~ mn ~a i m mmnmnlm ~ i D ni D H i i -

applied to relatively few applications. Many theorists have proposed a variety of models/

methods describing how a decision maker might arrive at a preference judgment when

choosing among multiple attribute alternatives. MAUT requires various types of vder-

lying assumptions, information requirements from the decision maker, and evaluation

principles; these include the following: complete independence among attributes, indiffer-

ence curves for hierarchical tradeoffs, or-if situation dependent-maximin for pessimistic

decisions, maximax for the optimistic, or disjunction for specialized selection [Ref. 21].

Decision making certainly is difficult; MAUT is one of several multicriterion choice

methods.

Publications referenced in this appendix include:

Stadler,W., "Preference Optimality (On Optimality Concept in Multicriteria Problems),"
in W. Oettli and K. Ritter (eds.), Optimization and Operations Research, pp. 129-306,
Springer-Verlag, New York, 1976.

Hwang, C. and Yoon , K., "Multiple Attribute Decision Making, Methods and Applica-
tions," in M. Beckmann and H. P. Kunzi (eds.), Lecture Notes in Economics and
Mathematical Systems, p. 208, Springer-Verlag, New York, 1981.

Keeney, R. L., "Quasi-Separable Utility Functions," Naval Research Logistics Quar-
terly, vol. 15, no. 4, pp. 551-556, 1968.

Keeney, R. L., "Utility Independence and Preferences for Multiattributed Conse-
quences," Operations Research, vol. 19, no. 4, pp. 875-893, 1971.

Keeney, R. L., "Utility Functions for Multiattributed Consequences," Management
Science, vol. 18, no. 5, part 1, pp. 276-287, 1972.

Keeney, R. L., "Concepts of Independence in Multiattribute Utility Theory," in
J. Cochran and M. Zeleny (eds.), Multiple Criteria Decision Making, University of
South Carolina Press, Columbia, South Carolina, 1973.

Keeney, R. L., "Multiplicative Utility Functions," Operations Research, vol. 22, no. 1,
pp. 22-34 1974.

Farquhar, P. H., "A Survey of Multiattribute Utility Theory and Applications," in
M. Starr and M. Zeleny (eds.), Multiple Criteria Decision Making, North Holland, New
York, 1977.

39

Fischer, G. W., "Experimental Applications of Multi-Attribute Utility Models," in
D. Wendt and C. Vlek (eds.), Utility, Probability, and Human Decision Making,
D. Reidel Pub. Co., Boston, 1975.

Fischer, G. W., "Utility Models for Multiple Objective Decisions: Do They Accurately
Represent Human Preferences?" Decision Sciences, vol. 10, no. 3, pp. 451-479, 1979.

Fishburn, P. C., "Lexicographic Orders. Utilities, and Decision Rules: A Survey,"
Management Science, vol. 20, no. 11, pp. 1442-1471,1974.

Fishburn, P. C., "A Survey of Multiattribute/ Multicriterion Evaluation Theories," in
S. Zionts (ed.), Multiple Criteria Decision Making: Kyoto 1975, Springer-Verlag, New
York, 1976.

Keeney, R. L., and Raiffa, H., Decision with Multiple Objectives: Preferences and
Value Tradeoffs, Wiley and Sons, New York, 1976.

40

40o

APPENDIX B

REFERENCES ON MICROECONOMIC MARGINAL THEORY

The following reference list is not exhaustive but provides adequate discussion on

Utility Theory and Analysis within the realm of Microeconomic Marginal Theory. The

search for analysis summaries of a microeconomic approach on the Von Neumann-

Morgenstern utility assessment curves are mentioned in each of these texts:

Henderson, J. M., and Quandt, R. C., Microeconomic Theory.: A Mathematical
Approach, New York: McGraw-Hill, 1958, ch.2.

Koplin, H. T., Microeconomic Analysis: Welfare and Efficiency in Private and Public
Sectors, New York: Harper and Row, 1971, ch.3.

Koutsoyiannis, A., Modern Microeconomics, New York: Wiley and Sons, 1975, pp.
15-16.

Lipsey, R. G., and Steiner, P. 0., Economics, New York: Harper and Row, 1969, ch.
11.

Lloyd, C., Microeconomic Analysis, Homewood, IL: Richard D. Irwin, Inc., 1969.
pp. 35-65.

Luce, R. D., and Raiffa, H., Games and Decisions, New York: McGraw-Hill, 1970,
pp. 21-22.

Malinvaud, E., Lectures on Microeconomic Theory, New York: North-Holland Pub-
lishing Co., 1972, pp. 16-20.

Nicholson, W., Microeconomic Theory: Basic Principles and Extensions, 2nd ed.,

Hinsdale, IL: The Dryden Press, 1978, pp. 57-60.

Rader, T., Theory of Microeconomics, New York: Academic Press, 1972, ch. 6.

Samuelson, P. A., Foundations of Economic Analysis, Cambridge, MA: Harvard
University Press, 1947, ch. 5.

Shone, R., Microeconomics. A Modern Treatment, New York: Academic Press, 1975,
pp.59-60.

Tisdell, C. A., Microeconomics: The Theory of Economic Allocation, New York:
Wiley and Sons, 1972, pp. 120-123.

41

- -. S. I IS I I-

Walsh, V. C., Introduction to Contemporary Economics, New York: McGraw-Hill,
1970, pp. 63-66.

S

42

lei

APPENDIX C

DATA FLOW DIAGRAMS

Data flow diagrams (DFD) are the logical models of the processes and data flow for

the prototype SCP-DSS. These DFDs do not depend on a particular operating system or

hardware configuration but represent an understandable logical model of the overall

system.

PROCESS 1.0

1.0
BUILD

MATRIX
TEMPLATE

R R

#ROWS)

X(R)

#OPT ION S
PER ROW/ INPUT DATA FILE

USER

43

PROCESS 2.0

INPUT DATA FILE

COSTPER

/ X(R)

S OPTION COST
USER1""""' COST PER

_J OPTION

COST MATRIX

44

PROCESS 3.0

INPUT DATA FILE

UTILITY PER
OPTION

X(R)

UTILITY PER

USER OPTION

3.0
FILL

UTILITY
MATRIX

UTILITY PER
R OPTION

X(R)

UTILITY MATRIX

45

PROCESS 4.0

4.0
BUILD
CUM.
COST

R R

X(R) CSPRXR

OPTION

COST MATRIX GUM. COST MATRIX

46

PROCESS 5.0

INPUT DATA FILE

R

X(R)

WEIGHTED CRITERIA
PER ROW

WEIGHTED CRITERIA UE

UTILITYPE

UTIILITY PER PTIONPE

OPTION
OTO

UTILITY MATRIX WT'D UTILITY MATRIX

47

PROCESS 6. 0

WT'D UTILITY M4ATRIX________

C~LT. COST MIATRIX

WT'D ((R
UTILITY PER~

OPTIONN

TARGET
COST 6.0

USER 4 CL

.- COMIBINATION COMiBO
- W/ HIGHEST

UTILITY FOR
TARGET COST

48

PROCESS 7.0

WT'D UTILITY MATRIX CUM. COST MATRIX

R CUM.
COST PER

X(R) OPTION

WT'D R
UTILITY

PER X(R)

OPTION

COMBINATION WITH
HIGHEST UTILITY FOR
INCREMENTAL TARGET COST

UTILITY CURVE DATA FILE

49

PROCESS 8.0

USER

UTILITY CURVE DATA FILE

UTILITY
CURVE

COMBINATION WITH
HIGHEST UTILITY FOR
INCREMENTAL TARGET COST

8.0
PLOT

CURVE

50

APPENDIX D

FIRST PROGRAM LISTING IN PASCAL

program SCP DSS; {Lt Craig L. Riddle, USN; 1988)

(This source code program listing, in THINK Technologies, Inc.-MacPascal M, is a
System Cost Planning Decision support system. It uses applied Multi-attribute Utility
theory. The user builds the decision matrix by inputting cost and utility scores for the
different combination options. Refer to Thesis Chapter III for decision environment
discussion. This program when compiled allows the user to select the functions necessary
through menu options. The output can be saved to a file, printed, or both. This code does
not allow for the plotting of the utility curve as can be found in Appendix E.)

type
utilplot = array[1..2 iI of real;
compname = array[l..15] of string;
row = array[1..15] of integer;
matrix = array[l..15] of array[l..151 of integer; (integer matrix format)
matrixR = array(L..15] of array[L..15] of real;(real value matrix format)

filedata = record
r: integer;
rowopt : row; { matrix rows and options)
names : compname; { component names file)
costs : matrix; (input cost data file)
utilities : matrix; input utility data file)
wtutilityfile : row; { relative component weights)

end;
savedfile = file of filedata;

var
ticks: Longint; (keeps track of time
R : integer; { variable for number of matrix rows)
utilmat : matrix; { utility matrix)
costmat : matrix; { cost matrix)
wtutilmat : matrixR; { weighted utility matrix)
cumcostmat : matrix; { cumulative cost matrix)
numopt : row; (number of options per row)
rowcount : row; { holder for row counts in Docomp-recursion
Best: row; { holds best combination of options }
inputcomp : compname; { component name)
option : char; (user inputted option)
rel-comp_wt : row; (relative weight values for components)
utilpt : utilplot;

51

SCPDSS-data: savecifile;
saverec :filedata.;

procedure savefile;

var
x, v :integer,

beginl
saverec.r :=R;
for x :=I to R do
begin
saverec.rowopt[x] :=nurnopt[x];
saverec.names[xI : inputcompfx:
saverec.wtutlityfilefxi : rel-comp-wtl x];
for y :=I to nurnopt[xI do
begin
saverec.costsfx, y] : cost rnat[x, yJ:
saverec.utilities~x, y] :=util-mat[x, y];

end,
end;
rewrite(SCPDSS-data);
write(SCPDSS-data, saverec);

end,

procedure openfile;,

var
x. y : integer;

beg in
re se t(S C PDS S -da ta);
read(SCP DSS -data, saverec);
R :=saverec.r:
for x :=I to R do
begin
nuniopt~xJ : saverec.rowoptx];
inputcompjx := sav'erec.namcs[x];
rel -comp-vttxl : saverec.wtutilityfile [x];
for v : I to numopt[x] do
begin
cost_mat[x. yI : saverec.costs[x. y];
util_rnatfx, yI : saverec.utilitiesfx, yj;

end;
end;

end;

procedure getinpcomp-name-

{('Get input component namres' procedure allows the user to input the matrix
[components names as passed variables for screen, printer, and file)I

52

(output.)

var
X, G :integer;

begin

begin
write('Lnput the number of components for this matrix -
readln(R);
writeln;
for X :=1 to R do

begin
write('Input the number of options for row ', X :3,-
readln(numopt[XI);
wniteln;
write('Input component #V, X, "s category name)

readln(inputcomp[X]);
writein;

end;
for X:= R+ I to 15 do
numoptlX] : 1;

end.
writein;
sysbeep(3);
write(' Input 1 to return to the Main Menu)
readln(G);
end-,

procedure draw-cost-mat;

I(This procedure prints the cost matrix for the user to view)
var
X, Y, G :integer;

begin
writeln(Thiis is the Cost matrix.'),
writein;
for X:ito Rdo {for each row)
begin
begin
for Y 1= to numopt[XI + 1 do
write(' _ '); (draws the top line for row X)

writein;
end;

begin
write(inputcomp[X]); (prints the component name for row X)

begin

53

for Y 1= to numopt[XI do
write(' I ', costmat[X, YJ 3); (draws cost data for row-X,option-Y)
writeln(' I'); (ends each row)

for Y :=I to numoptf M + I do
write(' _ '); (draws bottom line of matrix)

write in;
end,

end;
end;
wite in;
sysbeep(3);
write(' Input I to return to the Main Menu')
readln(G);
end,

procedure draw-cum--cost-nmat;

(This procedure uses the input cost nmatrix2 to build and print the cumulative)
Icost matrix for the user. cum -cost-mat is passed to the calculation procedure to)
(gives the cost data for the combination search.)

var
B, X, Y, G : integer,

begin

witeln('This is the Cumulative Cost matrix.')-.
wniteln;
for X :=I to R do I for- each component row)

beci n
B :=0;
for Y :=- I to numopt[X] + I do (draws top line of row X for the matrix)
write('----');

wniteln.

begin
write(inputcomp[XI); (print the component row name for row X)
begin
for Y:= Ito numoptiXi do [for each option per row X)

begin (use cost mat(cost matrix) to build the cumulative cost matrix)
B := cost-matliX, V1 + B;
write(' I ', B :)
cum-cost-matjX. YJ :=- B; jcumcost mnat is calculation procedure to build the

cumulative cost matrix fromn the user inputted opt ion cost inputs)
end;

wri telIn (' I'); (ends each row)

54

for Y :=I to numopt[X] + I do (draws bottom line of matrix)
write(' - ');

writeln;
end;

end;
end;

writeln;
sysbeep(3);
write(' Input 1 to return to the Main Menu ')
readln(G);

end;

procedure get-inp-cost;

(This procedure gets the user cost inputs for each option for all
(data points. costmat is passed to the view cost matrix procedure and)
(as the input data for the cumulative cost matrix procedure)

var
X, Y, G : integer;

begin
for X 1 to R do
for Y I to numopt[X] do

begin
write('Input cost of Component-', X : 3, ' option-', Y : 3, ' of, numopt[XI 3,'

readln(cost_rltt[X. Y]'; (get user inputted cost data for component)
(of row-X, option-Y into cost_mat array)

writeln;
end;

writeln;
sysbeep(3);
write(' Input I to return to the Main Menu ');
readln(G);
end;

procedure drawutility-mat;

(This procedure draws the utility matrix for the user to view.)

var
X, Y, G : integer;

begin
writeln(' This is the Utility matrix.');
writeln;
for X := 1 to R do

55

begin
begin {draws top line of each row)
for Y := I to numopt[X] + 1 do

write('. - ');
writeln;

end;

begin
write(inputcomp[X]); (prints component name for row X)

begin
for Y:= 1 to numopt[XI do
write(' I ', util-mat[X, YJ : 3);{prints option data for each row)
writeln(' ');

for Y := 1 to numopt[X] + 1 do
write(' ');

writeln;
end;

end;
end;

writeln;
sysbeep(3);
write(' Input I to return to the Main Menu ');
readln(G);
end;

procedure get-inp utility;

This procedure gets the user to input utility scores for each)
options per component row. utilmat is the utility input matrix that)
is passed to the weighted utility matrix procedure to build the
weighted utility matrix

var
X, Y, G . integer;

begin
writeln;
for X := I to R do {for each row)
begin
for Y := I to numopt[X do { for each option per row)
begin

write('Input utility of Component-', X " 3, ' option-', Y 3, ' of. numopt[X] 3,

readln(utilmat[X, YJ); fput utility values into coordinates)
rowA-X, option-Y into array util-mat)

writeln;
end;

56

end;

writeln;
sysbeep(3);
write(' Input 1 to return to the Main Menu ');
readln(G);
end;

procedure get.rel-comp-wts;

{ This procedure gets the user to input relative weights for each component. The
inputwtcriteria is passed to the weighted utility matrix procedure }

var
X, G : integer,

begin

writeln;
for X:= 1 to R do

begin
write('Input relative value of component - ',X 3,
readln(re!_comp-wt[X]);
writeln;

end;
writeln;
sysbeep(3);
write(' Input 1 to return to the Main Menu ');
readln(G);
end;

procedure draw-wt utility-mat;

{This procedure uses the input utility matrix and the component relative weights to build
the weighted utility matrix)

var
sum, X, Y, G : integer;
outwtcriteria : array[1.. 151 of real;

begin

sum:= 0;
for X 1 to R do
sum sum + relcomp-wt[X]; {adds all input component weights to get sum total}

for X 1 to R do

57

.... m. lwmml l mli w i llli lF~l ll p~i ilwoodi

outwtcriteria[X] := (rel-comp-wt[X] / sum);

{outwtcriteria(output weight criteria) is the percent value the component has as a relative

value to the other components)

begin

writeln(This is the weighted utility matrix.');
writeln;
for X := to R do

begin (drawing weighted utility value matrix)
for Y := I to numopt[XI] + 2 do (draws the top line of each row to frame the matrix)
write('.

writeln;

begin
write(outwtcriteria[X : 3: 2, inputcomp[X] : 8);
begin
for Y := 1 to numopt[XI do
beginwt-util -mat[X, Y] := util_mat[X, Y] * out~wtcriteria[X];

write(' I ', wt util_matfX, Y] : 3 : 2); (prints the calculated weighted utility matrix
values separated by a vertical bracket)

end;

writeln(' I'); [end bracket for each row)

for Y := 1 to nunmopt[X! + 2 do {draws the bottom line of the matrix)write(');_

writeln;

end,
end;

end; I drawing weigh red utlity values)
writeln:
sysbeep(3);
write(' Input 1 to :eturn to the Main Menu ;
readln(G);
end;
end;

procedure update-compwts"
(This procedure allows the user to change a component weight data point)

var
A, X, G : integer;

begin

58

writeln('In what ROW is the element that you desire to change?-');
readln(X);
writeln('What RELATIVE COMPONENT WEIGHT do you wish to assign to ROW',x);
readln(A);
relcomp-wt[X] := A;
writeln;
sysbeep(3);
write(' Input 1 to return to the Main Menu ');
readln(G);
end;

procedure update-costlinputs;
{This procedure allows the user to change a cost matrix data point I

var
A, X, Y, G : integer;

begin

writeln('In what ROW is the element that you desire to change?-');
readln(X);
writeln('What OPTION NUMBER do you desire to change?-');
readln(Y);
writeln('What COST do you desire to assign to ROW ', X, 'option', Y);
readln(A);
cost mat[X, Y] := A;
writeln;
sysbeep(3);
write(' Input 1 to return to the Main Menu ');
readln(G);
end;

procedure update-utilityinputs;
This procedure allows the user to change a utility matrix data point)

var
A, X, Y, G : integer;

begin

writeln('In what ROW is the element that you desire to change?-');
readln(X);
writeln('What OPTION NUMBER do you desire to change?-');
readln(Y);
writeln('What UTILITY VALUE do you desire to assign to ROW ', X, 'option', Y);
readln(A):
util-matiX, YI := A;

59

I.4

writeln;
sysbeep(3);
write(' Input 1 to return to the Main Menu);
readln(G);
end;

procedure find-optimum combo;

(This procedure is the mathematical model component of the SCP-DSS. The user inputs a
cost target and the function produces the optimum combination of options with the highest
utility score as derived from the cumulative cost matrix and the weighted utility matrix. }

var
X, Y, G, target, range : integer;
utility, lastutil : real;
cost, costl, sum : integer;
i: integer; (for loop variable}

procedure find-optimum comborecursion (Rows: integer);
var
i, j : integer; (for loop variables}

begin
for i := 1 to numopt[R .. Rows + 1] do
begin
rowcount[Rows] := i;
if Rows > 1 then
findoptimum._comborecursion(Rows - 1)

else
begin
cost 0;
forj I to R do
cost cost + cumcostmat[j, rowcount[R -j + 1]];
if (cost > (target - range)) and (cost < (target + range)) then
begin
utility := 0;
forj := 1 to R do
utility := utility + wt util-matfj, rowcount[R - j + lfl;

if utility > lastutil then
begin
lastutil:= utility;
cost I cost;
for j I to R do
Bestj] := rowcount[jl;

end;
end:

end:
end;

end; {findoptimum _combo recursion)

begin
for X := I to R do

60

begin
write(');
for Y := I to numopt[X] do
write(cumcost_mat[X, Y] :3,'

writeln;
end;
sum:= 0;
for X:= 1 to R do
sum:= cumcost mat[X, numopt[X]] + sum;

writeln(' target range is 0 to ',sum);
sysbeep(3);
write(' Input the target COST-');
readln(target);
write(' Input the target COST SEARCH RANGE(plus or minus) i.e 2,3,5,etc.');
readln(range);
writeln(' This may take a few minutes

find-optimum-comborecursion(R);

writeln;
writeln('$ ', costl);
sysbeep(3);
writeln(' The Optimum Combination of options is:');
write(' ');
for i := 1 to R do
write(Best[R - i + 1] : 4,

wnteln;
writeln;
writeln(' The highest Utility score is: ', lastutil • 5 • 2);
writeln;
writeln;
sysbeep(3);
write(' Input 1 to return to the Main Menu);
readln(G);
end;

procedure find-optimumcombo2;

[This procedure is the mathematical model component of the SCP-DSS used for the utility
curve plot.The function produces the optimum combination of options with the highest
utility score as derived from the cumulative cost matrix and the weighted utility matrix in
twenty incremental steps for the plot of the curve.)

type
utilstep = array[1..211 of integer;
timearray = array[L..21] of real;

var
X, Y, G, M, target : integer;

61

utility, lastutil, increment, timesum, rangemax • real;
cost, costl, sum : integer;
step : utilstep;
clock: timearray;
Str, AVG: real;
i integer; (for loop variable I

procedure findoptimum combo2_recursion (Rows: integer);
var
i,j : integer, (for loop variables}

begin
for i = I to numopt[R - Rows + 1] do
begin
rowcount[Rows] := i;
if Rows > 1 then
findoptimumcombo2_recursion(Rows - 1)

else
begin
cost 0;
for j := 1 to R do
cost cost + cumcostmattj, rowcou-it[R - j + 1]];
if (cost > (step[XI - rangemax)) and (cost < (step[XI + rangemax)) then
begin
utility:= 0;
for j := 1 to R do
utility := utility + wt-util-matU, rowcount[R - j + 1]];

if utility > lastutil then
begin
lastutil := utility;
cost • = cost:
forj =1 toR do
BesljI := rowcount[j]:

end;
end;

end;
end;

end; { find-optimumcombo2__recrsion)

begin
timesum := 0;

sum := 0;
for X := I to R do
sum := cum__cost-matlX, nunioptIX]] + sum,

increment (sum / 20);
rangemax :- (sum / 40)"

stepil I := 0:
for X := 2 to 21 do

62

begin
step[X] :=step[X - 1] + round(increment);

end;

writeln('This may take a few minutes....
writein;

for X:= 2to 21do

begin
sysbeep(3);
ticks :=tickeount;
fmc~optimum combo2_recursion(R);
wvrite(' Utility for step ', (X - 1) : 2, ' is: ', lastutil :5 :2, 'Cost is $,step[XI:5);

ticks := tickcount - ticks;
begin
str := ticks / 60.0; {convert ticks to second
writeln(' in ', Str : 5 : 3, ' sec');

clock[X] := Sr
end;
write(' The Optimum Combination for step:', (X - 1): 2);
write(' -)

for i := 1 to R do
write(Best[R - i + 1] : 4,'

writein;
utilptfI 0;
utilpt[X] :=lastutil;

end;

for X:= 2to 21 do
timesum := clock[X] + timesum;

AVG := timesum / 20;
writeln (' average time is', AVG : 5 :3);

writein;
sysbeep(3);
sysbeep(3);
write(' Input I to return to the Main Menu')
readin (G);

end,

procedure get-choice (var option : CHAR);

[This procedure prints a menu of options for the user to work or to just quit to terminate
the program)

63

procedure PrintMenu (var option CHAR); (self-explanatory I

begin

begin
writein;
writein;
writeln(' MENU')-.
writeln(Q INPUT DATA ***************)

writeln(' A :MATRIX');
writeln(' B : COST');
writeln(' C : UTILITY');
writeln(' D: COMPONENT WEIGHT');
writeln(' UPDATE DATA *************')

writeln(' E: COST');
%riteln(' F: UTILITY');
writeln(' G : COMPONENT WEIGHT DATA');
writeln(' VIEW MATRIX ~e*************)
writeln(' H: COST');
writeln(' I1: CUMULATIVE COST');
writeln(' J: UTILITY');
writeln(' K : WEIGHTED UTILITY');
writeln(' FIND COMBINATION ************)

writeln(Q L: COMPONE-NT-OPTION MIX ');
writeln(' M : UTILITY CURVE SCORES');
writeln(' 0 : OPEN SAVED FILE');
writeln(' S : SAVE FILE');
writeln(' Q: QUIT');
write In;
writeln(' ENTER SELECTION (A. B, C, D, E, F, G, H, 1, J, K, L, M, P or

Q) FOLLOWED BY A 'RETURN");
write('
sysbeep(3);
readi~option);

end; { Print__Menu)
end;

begin (proceduire get-choice)I
repeat
begin
Prin tMenu (option);
case option of

'A':
get-inp-comprname; (Gets the # of component rows, number of options

per row, and component names

'B':
get-inp cost; {esinial option cost inputs)

64

'....

getjinp-utility; (gets initial option utility inputs)

'D' :

getjrelcompwts; f gets the relative component weights)

'E' :
updatescost-inputs; (Update cost data)

F.

update-utility inputs; (Update utility data)

'G, :

update_compwts; (Update component weight data)

'H' :
draw-cost mat; (draws cost matrix}

'I'•
drawcumcostmat; (draws cumulative cost matrix)

drawutilitymat; (draws utility matrix)

'K' :
draw wt utilitymat; (draws weighted utility matrix)

findoptimumcombo; (Finds the optimum combination of one option
per component that gives the highest utility score based on one user inputted
target cost)

findoptimumcombo2; (Finds the optimum combination of one option per
component that gives the highest utility scores for 20 data points along the cost axis in
equal increments for data points for the utility curve plot)

'0: ,
openfile;

savefile;

; (quit the program)

otherwise
writeln(Invalid Input -Invalid Input -Invalid Input -Invalid Input');

65

I . . .i q I -

end;
end;

until option=
writeln(HAVE A GOOD DAY!');
sysbeep(3);
sysbeep(3);
,nd;

begin

getschoice(option);

end.

66

APPENDIX E

SECOND PROGRAM LISTING IN PASCAL

program SCPDSSTURBO; (Lt Craig L. Riddle, USN; 19881

{This source code program listing, in Borland International's TURBOTm PASCAL, is a
System-Cost Planning Decision support system (SCPDSS). It uses applied Multi-
Attribute Utility Theory (MAUT). The user builds the decision matrix by inputting cost
and utility scores for the different combination options. Refer to Thesis Chapter III for
decision environment discussion. This program, when compiled, allows the user to select
the functions necessary through menu options. The distinguishing characteristics of this
code, compared to that in Appendix D, are in the utility curve plotting procedure. There is
no provision in this code for saving data to disk nor for printing the plotted graph.

USES
MEMTYPES, QUICKDRAW, OSINTF, TOOLINTF,PACKINTF;

type
utilplot = array[..21] of real;
compname = array L.. 15] of string;
row = array[1.. 15] of integer;
matrix = array[1..15] of array[L..15] of integer; {integer matrix format)
matrixR = arraylL..15] of array[1..15} of real;(real value matrix format)

filedata = record
rfile row; { matrix rows and options)

datafile • compname; I component names file }
costfile • matrix; { input cost data file)
utilityfile matrix; { input utility data file)
wtutilityfile• row; {relative component weights)
end;

var
ticks : Longint; { keeps track of time }
R : integer; { variable for number of matrix rows)
util mat : matrix; (utility matrix)
cost-mat: matrix; (cost matrix)
wt utilmat• matrixR; (weighted utility matrix)
cumcostmat: matrix; { cumulative cost matrix)
numopt : row; { number of options per row)
rowcount : row; { holder for row counts in Docompjrecursion
Best : row; I holds best combination of options
inputcomp : compname; { component name)
option : char; { user inputted option)
relcomp_wt : row; (relative weight values for components)

67

utilpt utilplot;

gport grafport;

procedure getinp-comp-name;

('Get input component names' procedure allows the user to input the matrix
components names as passed variables for screen, printer, and file output.)

var
X,G "integer,

begin

begin
%,rite('Input the niimber of components for this matrix -
readln(R);
writeln:
for X := I to R do

begin
write('Input the number of options for row ', X 3, '-
readln(numopt[X]);
writeln:
write('Input componcnt #', X, ' s category name ');
readln(inputcomp[X I):
writeln;

end;
for X :=R + to 15 do

numopt[X] := 1;
end;
writeln;
sysbeep(3);
write(' Input I to return to the Main Menu ';
readln(G):
end;

procedure drawcost-mat;

(This procedure prints the cost matrix for the user to view)
var

X, Y, G : integer;

begin
writeln(' This is the Cost matrix.');
writeln;

for X := ito R do (for each row)
begin
begin
for Y := I to numoptiXi + 1 do
write('_ _). (draws the top line for row X)

68

.. - u . .,, ,,,.,.,, mln~m i nim mum a m ilm n n a " |I iII n S

writeln;
end;

begin
write(inputcomp[X]); (prints the component name for row X)

begin
for Y := 1 to numopt[X] do
write(' I ',cost mat[X, Y] 3); (draws cost data for row-X,option-Y)

writeln(' I'); {ends each row)

for Y := I to numopt[X] + 1 do
write('_ '); (draws bottom line of matrix)

writeln;
end;

end;
end;
writeln;
sysbeep(3);
write(' Input 1 to return to the Main Menu ');
readln(G);

end;

procedure drawcumcostmat;

{This procedure uses the input cost matrix2 to build and print the cumulative
cost matrix for the user. cumcosymat is passed to the calculation procedure to
gives the cost data for the combination search.)

var
B, X, Y, G : integer;

begin

writeln(This is the Cumulative Cost matrix.');
writeln;
for X := I to R do (for each component row)

begin
B := 0;
for Y := I to numopt[XJ + I do (draws top line of row X for the matrix)
write('_ ');

writeln;

begin
write(inputcomp[XJ); (Print the component row name for row X)
begin
for Y := I to numopt[X] do (for each option per row X)

begin (use costmat(cost matrix) to build the cumulative cost matrix}

69

.. -- -- -,, w ,. .,,,.i u l . ll iillm Und n n l i l I I

B := costmat[X, Y] + B;
write(' I ', B : 3);
cumcost_mat[X, YJ := B; (cumcost_mat is the calculation procedure to build the

cumulative cost matrix given the option cost inputs }
end;

writeln(' I'); [ends each row)

for Y := I to numopt[X] + 1 do [draws bottom line of matrix)write(' ');__

writeln;
end;

end;
end;
writeln;
sysbeep(3);
write(' Input 1 to return to the Main Menu ';
readln(G):

end;

procedure get-inpcost;

{This procedure gets the user cost inputs for each option for aHl data points, costmat is
passed to the view cost matrix procedure and as the input data for the cumulative cost
matrix procedure)

var
X, Y, G "integer;

begin
for X:= I to R do
for Y := I to numopt[XI do

begin
write('Input cost of Component-', X 3, option-', Y 3, ' of, numopt[X] 3,

readln(cost-mat[X. Yj); (get user inputted cost data for component
of row-X, option-Y into cost _mat array)

writeln;
end;

writeln;
sysbeep(3);
write(' Input I to return to the Main Menu ');
readln(G);

end;

procedure drawutility mat•

(This procedure draws the utility matrix for the user to view.)

70

var
X, Y, G integer;

begin
writeln(' This is the Utility matrix.');
writeln:
forX := 1 to R do
begin
begin {draws top line of each row)
for Y:= 1 to numopt[X] + 1 do
write(' - ');

writeln;
end;

begin
write(inputcomp[X]); (prints component name for row X)

begin
for Y := I to numopt[X] do
write(' I ', utilmat[X, Y] : 3); (prints option data for each row)
writeln(' I');

for Y := I to numopt[XI + I do
writeC(' ');

writeln;
end;

end;
end;
writeln;
sysbeep(3);
write(' Input 1 to return to the Main Menu ');
readln(G);
end;

procedure get-inpjutility;

(This procedure gets the user to input utility scores for each options per component row.
utilmat is the utility input matrix that is passed to the weighted utility matrix procedure to
build the weighted utility matrix

var
X, Y, G : integer;

begin
writeln;
for X I to R do {for each row)
begin
for Y I to numopt[X] do { for each option per row)
begin

71

write('Input utility of Component-', X 3, ' option-', Y 3, of, numopt[X]• 3,

readln(util_mat[X, Y]); (put utility values into coordinates row-X, option-Y
into array util-mat}

writein;

end;
end:

writeln;
sysbeep(3);
write(' Input I to return to the Main Menu ');
readln(G);

end;

procedure get-rel-compwts•
I This procedure gets the user to input relative weights for each component. The

inputwtcriteria is passed to the weighted utility matrix procedure

var
X, G : integer;

begin
writeln:
for X:= to R do
begin
write('Input relative value of component - ', X 3, -

readln(re _comp_wt[X]);
writeln.

end;
writeln;
sysbeep(3);
write(' Input I to return to the Main Menu):
readln(G);
end;

procedure draw wt utility-mat,

{ This procedure uses the input utility matrix and the component relative weights to build
the weighted utility matrix)

var
sum, X, Y, G: integer;
outwtcriteria : arrayl 1.. 15] of real;

begin
sum:= 0;
for X I to R do
sum sum + relcompwt[X 1; 1 acids all input component weights to

get sum total)

72

for X:= I to R do
outwtcriteria[X] := (rel-compwt[X] / sum); (output weight criteria is the percent

value the component has as a relative value to the other components)

begin

writeln('This is the weighted utility matrix.');
writeln;
for X:= 1 to R do

begin (drawing weighted utility value matrix)
for Y := I to numopt[X] + 2 do [draws the top line of each row to

frame the matrix)
write('.');

writeln;

begin
write(outwtcriteria[X] : 3 : 2, inputcomp[X] : 8);
begin
for Y := 1 to numopt[X] do
begin
wtutil-mat[X, Y] := util-mat[X, Y] * outwtcriteria[X];
write(' I ', wt-util-mat[X, Y] : 3 : 2); (prints the calculated weighted

utility manix values separated by a vertical bracket)
end;

writeln(' I'); (end bracket for each row)

for Y := I to numopt[X] + 2 do (draws the bottom line of the matrix}
write('_');

writeln;

end;
end;

end; Idrawing weighted utility values)
writeln;
sysbeep(3);
write(' Input 1 to return to the Main Menu ');
readln(G);
end;
end;

procedure updatecomp-wts;
(This procedure allows the user to change a component weight data point)

var
A, X, G : integer;

begin
writeln('In what ROW is the element that you desire to change?-');

73

readln(X);
writeln('What RELATIVE COMPONENT WEIGHT do you wish to assign to ROW',

readln(A);
rel-compwt[X] :=A;
writein;
sysbeep(3);
write(' Input I to return to the Main Menu
readin (G);,

end;

procedure update-cost-inputs;
(This procedure allows the user to change a cost matrix data point)

var
A, X, Y, G :integer,

begin

writelt(inh what ROW is the element that you desire to change?-');
readln(X);
writeln('What OPTION NUMBER do you desire to change?-');
readln(Y):
writeln('What COSTr do you desire to assign to ROW ', X,'option', Y);
readln(A);
cost-inat[X, Y] :=A-
wrte in;
sysbeep(3);
write(' Input 1 to return to the Main Menu')
readltn(G)-.
end;

procedure update-titilitvjinpLIltS
f This procedure dlows the user to change a utility matrix data point)

var
A, X, Y, G : integei:

begin
w-ritcln('In what ROW is the element that you (itsire to change?-');-
readln(X);
writeln('What OPTION NU \IBER do you desire to change?-'),
readln(Y);
writeln('What UT! 1 VY VALUE do you desiim to assign to ROW ', X,'option', Y)-.
veadln(A).
util_mat[X, YJ :=A.
wnteln:
sysbeep(3);,
write(' Input I to return to the Main Menu j

readln(G);

74

end;

procedure fredmoptimum-combo;

[This procedure is the mathematical model component of the SCP-DSS. The user inputs a
cost target and the function produces the optimum combination of options with the highest
utility score as derived from the cumulative cost matrix and the weighted utility matrix. }

var
X, Y, G, target,range : integer;
utility, lastutil : real;
cost, costl, sum : integer;
i : integer; (for loop variable)

procedure find optimumcomborecursion (Rows: integer);
var

i, j : integer; {for loop variables)
begin

for i := I to numopt[R - Rows + 1] do
begin

rowcount[Rows] := i;
if Rows > 1 then

find optimum comborecursion(Rows -1)
else

begin
cost 0;
for j I to R do

cost := cost + cumcostmat[j, rowcount[R - j + 1]];
if (cost > (target - range)) and

(cost < (target + range)) then
begin

utility := 0;
forj := I to R do

utility := utility + wtutil mat[j, rowcount[R - j + 111:
if utility > lastutil then

begin
lastutil := utility;
costI := cost;
for j:= I to R do

Best[jl := rowcoUntjj;
end;

end;
end;

end;
end; [find optimum-comborecursion)

begin
for X := I to R do
begin
write(' ');
for Y := I to numoptlX] do

75

write (c um-cos t-rat[X, Y] 3,'
wniteln;

end;
sum:= 0;
for X:= I to R do

sum:=cum_cost_mat(X,numopt[X1 + sum;
writeln(' target range is 0 to ',sum);
sysbeep(3),
write(' Input the target COST-');
realln(target);
write(' Input the target COST SEARCH RANGE(plus or minus) iLe 2,3,5,etc.');
readln(range);,
writeln(' This may' take a few minutes . ..

find..~optiMu~m-combo-recursion(.R);

writeln.
writeln('$ ', costl);

sysbeep(3):
writeln(' The Optimum Combination of options is:'):
write('')
for := I toR do
writc(Best[R - i + 11 : 4,')

write In;
write In:
wniteln('rhc highest Utility score is: ,lastutil :5 :2);
write in:
wri tel n:
sysbeep(3);
write(' Input I to return to the Main Menu'j
read I ni(G);

end:

procedUre find optimuni-combo2

f{This procedure is the mathematical model component of the SCP-DSS used for the utility
curve plot.The function produces the optimum combination of options with the highest
utility score as derived fromn the cumulative cost matrix and the weighted utility matrix in
twenty incremental steps for the plot of the curve.

type
utilstep = array[L1 1 of in teger;
timearray = wuTay[L..211 of real,

var
X, Y, G, N1, target : integer:
utility, lastuctil.inicremient~timesum,rangcmatx :real;
cost. cost]. sum : integer:
step :utilstcp;,
clock : timearray-:

.7

Str,AVG real;
i:integer; (for loop variable)

procedure find-optimum-combo2_recursion (Rows integer);
var

i, j :integer; I(for loop variables
begin

for i :=Ito numopt[R - Rows + 11 do
begin

rowcount[Rowsl =i
if Rows > 1 then

find-optimum combo2_rec ursion (Rows -1)
else

begin
cost 0;
forj I to R do

Cost :=Cost + cum-cost-matU, rowcount[R - j + 1]];
if (cost > (step[Xl - rangemax)) and (cost < (step[XI + rangemdx)) then

begin
utility: 0;
forj :=Ito R do

utility :=utility + wt-util-matUj, rowcount[R - j + 1]];
if utility > lastutil then

begin
lastutil :=utility;
costl :=cost;
for j:= I to Rdo

BestU] : rowcountUj];
end;

end;
end;

end;
end; { find-optimu-combo2_recursion)

begin
timesum:=0;

sum:= 0;
for X:= I to R do

sum:=cum-cost-mattX,numopt[X] + sum;

incremient:= (suni/20);
ran gemax :=sum/40);

step[1]:=O0;
for X:= 2to 21 do
begin

step[XI:=steprX-lI I + round(incremrent);
end;

77

writeln('This may take a few minutes....
writeln;
lastutil:=-O;
for X:= 2to 21 do

begin
sysbeep(3);
ticks: =tickcount;
find - ptimumn-combo2_recirsion(R);
write(' Utility for step ',(X-lI):2,' is: ', lastutil :6 :2
ICost is $',costl :5):

ticks:= tickcount-tick s;
begin

Str:=ticks/60.O: convert ticks to second
writeln(' in ',Str:5:3,' sec');

clock[X7J:=Str;
end;
(write(' The Optimum Combination for step:',(X-1):2);

write(' -
for i := 1 to R do

write(Best[R - i + 11 : 4,'
w'riteln;)

utilptl 1]:=O0:
utilptl X] :=lastutil;
lastutil:=O;

end;

for X:'=2 to21 do
timesum:=clock[X I+ timesumn;
AVG:=timesum/20,

wvriteln(' average tim,,is', AVG:5:3)

writeln;
sysbeep(3);
sysbeep(3);
write(' Input I to return to the Main Menu
readln(C;);

end-

procedure utility-urve plot(var utilpt :utilplot

type
exch =(ycs,no);

var
exchanged : exch:
temp : real;

X,G,Y: integer;

procedure setupscreen; (Initializes the display for the curve graphing procedure)

var
R rect;

X integer;

begin
openport(@gport);
R :=gport.portrect;
penpat(white);
paintrect(R);
penpat(white);
framerect(R);
insetrect(R, 1, 1);
cliprect(R);

pensize(1,1);
penpat(black);

moveto(40,255);
for X:=l to 21 DO

begin
line(O,-205);
moveto(X*20+40,25 5);

end;

moveto(35 ,250);
for X:=l toll DO

begin
line(405 ,O);
moveto(35 ,25O-X*2O);

end;

end; (End setting up the screen for the graphics display)

procedure Dographics; (The GRAPHICS ROUTINE that plots the utility
curve using the utility point data generated in the procedure
find-optimum combo2_recursion)

var
X,Y,YO,DX :integer;
NS STR255;

begin
pensize(l ,l);

79

penpat(black);

with screenbits. bounds do
begin
moveto(40,250);
YO:= 0;
DX:=20;
for X: =I to 20 do
if utilptlX]cz>O then

begin
Y:= ROUND(-(utilptIXD)/l00*2O00);

line(DX,Y-YO);

YO:=Y;
DX:=20;

end
else

DX:=DX+20,
end;

begin
Textfont(4);
Textsize(9);
nioveto (50,20).
drawstring('CLICK MOUSE TO RETURN TO MENU');
moveto (175,40);
drawstring('0PLOTTED UTILITY CURVE);

for X:=-0 to 10ODO
begin

numtostring(X* l0,NS);
Y:= stringwidth(NS);
moveto(X*40+40-ROUND(Y/2),2 70);
drawstring(NS):-

end;

for X:=0 to 10ODO
begin

n umtostri n g(X* 1 0, NS);
Y:= stringwidth(NS);
moveto(33-Y,255-X*120);
drawstring(N S);

end;

repeat
until button
end;

end;

800

bgninitgaf(@ THEPORT);
initfonts;
initcursor;
hidecursor
flushevents(E VERYE VENT, 0);
setupscreen;
dographics,

sysbeep(3);
end;

procedure get-choice (var option: CHAR);

{ This procedure prints a menu of options for the user to work or to just quit to terminate
the program)

procedure print-menu (var option: CHAR); (self-explanatory)I
begin
begin
writeln;
writeln;
writeln(' MENU');
writeln(' INPUT DATA ***************)

writeln(' A: MATRIX');
writeln(' B : COST');
writeln(' C : UTILITY');
writeln(' D: COMPONENT WEIGHT');
writeln(' UPDATE DATA**************')
writeln(' E: COST');
writeln(' F : UTILITY');
writeln(' G : COMPONENT WEIGHT DATA');
writeln(' VIEW MATRIX***************)
writeln(' H : COST');
writeln(' I1: CUMULATIVE COST');
writeln(' J : UTILITY');
writeln(' K : WEIGHTED UTILITY');
writeln(' FIND COMBINATION ************)

writeln(' L: COMPONENT-OPTION MIX ');
writeln(' M : UTILITY CURVE SCORES');
writeln(' P: PLOT UTILITY CURVE');
writeln(' Q: QUIT');
writein;
writeln(' ENTER SELECTION (A, B, C, D, E, F, G, H, 1, J, K,

L, M, P or Q) FOLLOWED BY A "RETURN"');
write('

sysbeep(3);
read(option);

end; (print-menu)
end;

81

begin {procedure get choice}
repeat
begin
printmenu(option);
CASE option OF
'A: getjinp-comp-name; { Gets the # of component rows,
number of options per row. and component names j

'B get inp-cost; { gets initial option cost inputs

'C' get-inp-utility; { gets initial option utility inputs)

D' get-rel-comp wts; { gets the relative component weights)

'E' update-cost-inputs: (Update cost data)

'F' update utility inputs; (Update utility data]

'G' update-comp-wts; (Update component weight data)

'H' drawcostmat: {draws cost matrix)

T draw _cttm costmat: (draws cumulative cost matrix)

'T' draw'_utilitymat: (draws utility matrix)

'K' draw wt_utility_ mat: (draws weighted utility matrix -

'' find-optimum_'combo; (Finds the optimum combination of one
option per component that gives the highest utility score based on one user
inputted target cost)

'M'• find-optimum combo2; (Finds the optimum combination of one option
per component that gives the highest utility scores for 20 data points along the
cost axis in equal increments for data points for the utility curve plot)

'P utility-curve-plot(utilpt); (Plots the utility curve using the saved utility
scores stored in the utilpt array)

'Q" ; I(quit the program)
otherwise

writeln('Invalid Input -Invalid Input -Invalid Input -Invalid Input'):
sysbeep(3);
sysbeep(3);
sysbeep(3);
sysbeep(3);
end;
end;

82

SS

until option
sysbeep(3);
sysbeep(3);

end;

begin
get-choice(option);

end.

83

LIST OF REFERENCES

1. Dickson, Gary H., and Wetherbe, James C., The Management of Information Sys-
tems, McGraw-Hill Book Company, New York, 1985, p. 220.

2. Thierauf, Robert J., Decision Support Systems, for Effective Planning and Control,
McGraw-Hill Book Company, New York, 1982, p. 57.

3. Sprague, Ralph H., and Carlson, Eric D., Building Effective Decision Support
Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982, 329 pp.

4. Turban. E., and Meredith, Jack R., Fundamentals of Management Science, BPI,
Plano, TX, 1985, pp. 88.

5. Sprague and Carlson, eds., Decision Support Systems.: Putting Theory into Practice,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1986, ch. 1.

6. Thierauf, Robert J., Decision Support Systems for Effective Planning and Control,
McGraw-Hill Book Company, New York, 1982, p. 59.

7. Sprague, R. H.. Jr., "A Framework for the Development of Decision Support Sys-
tems," MIS Quarterly, December 1980.

8. Gorry. G.. and Scott-Morton, Michael S., "A Framework for Management Informa-
tion Systems," Sloan Management Review, 1971.

9. Raitt. Robert A., "Must We Revolutionize Our Methodology?" Interfaces, Vol. 4,
No. 2. February 1974.

1i). March, J. G.. and Simon, H. A., Organizations, New York: Wiley and Sons, Inc.,
1958.

11. Thierauf, Robert J., Decision Support Systems for Effective Planning and Control,
McGraw-Hill Book Company, New York, 1982, pp. 86-87.

12. Simon,H. A., Models of Man. Social and Rational, New York: Wiley and Sons,
Inc., 1957.

13. Von Neumann. J., and Morgenstern, 0., Theory of Games and Economic Behavior,
Princeton University Press: Princeton, NJ, 1944.

14. Lucas, H. C.. Jr., The Analysis, Design, and Implementation of Information Sys-
tems, 2nd ed., McGraw-Hili Book Company, New York, 1981.

15. Mason, Richard 0., "Basic Concepts for Designing Management Information Sys-
tems," 1969, in Measurement for Management Decision, Addison-Wesley Publishing
Company, Inc., MA, 1981.

84

16. Jenkins, A. M., "A Framework For MIS Research," Proceedings of the 9th Annual
Conference: American Institute for Decision Sciences, Chicago, October 1977, p.
573.

17. Dickson, Gary H., and Wetherbe, James C., The Management of Information Sys-
tems, McGraw-Hill Book Company, New York, 1985, pp. 347-348.

18. Luqi, M. K., "A Computer Aided Prototyping System," submitted to First Interna-
tional Workshop on Computer -Aided Software Engineering, May 1987.

19. Koffman, E. B., Problem Solving and Structured Programming in PASCAL, 2nd
ed., Addison-Wesley Publishing Company, Inc., MA, 1985, p. 11.

20. Stadler,W., "Preference Optimality (On Optimality Concept in Multicriteria Prob-
lems)," in W. Oettli and K. Ritter (eds.), Optimization and Operations Research,
pp. 129-306, Springer-Verlag, New York, 1976.

21. Hwang, C., and Yoon , K., "Multiple Attribute Decision Making: Methods and
Applications," in M. Beckmann and H. P. Kunzi (eds.), Lecture Notes in Eco-
nomics and Mathematical Systems, p. 208, Springer-Verlag, New York, 1981.

22. Keeney, R. L., "Quasi-Separable Utility Functions," Naval Research Logistics
Quarterly, vol. 15, no. 4, pp. 551-556, 1968.

23. Keeney, R. L., "Utility Independence and Preferences for Multiattributed Conse-
quences," Operations Research, vol. 19, no. 4, pp. 875-893, 1971.

24. Keeney, R. L., "Utility Functions for Multiattributed Consequences," Management
Science, vol. 18, no. 5, part 1, pp. 276-287, 1972.

25. Keeney, R. L., "Concepts of Independence in Multiattribute Utility Theory," in
J. Cochran and M. Zeleny (eds.), Multiple Criteria Decision Making, University of
South Carolina Press, Columbia, South Carolina, 1973.

26. Keeney, R. L., "Multiplicative Utility Functions," Operations Research, vol. 22, no.
1, pp. 22-34 1974.

27. Farquhar, P. H., "A Survey of Multiattribute Utility Theory and Applications," in
M. Starr and M. Zeleny (eds.), Multiple Criteria Decision Making, North Holland,
New York, 1977.

28. Fischer, G. W., "Experimental Applications of Multi-Attribute Utility Models,")n
D. Wendt and C. Vlek (eds.), Utility, Probability, and Human Decision Making,
D. Reidel Pub. Co., Boston, 1975.

29. Fischer, G. W., "Utility Models for Multiple Objective Decisions: Do They Accu-
rately Represent Human Preferences?" Decision Sciences, vol. 10, no. 3, pp. 451-
479, 1979.

30. Fishburn, P. C., "Lexicographic Orders, Utilities, and Decision Rules: A Survey,"
Management Science, vol. 20, no. 11, pp. 1442-1471, 1974.

85

31. Fishbum, P. C., "A Survey of Multiattribute/ Multicriterion Evaluation Theories," in
S. Zionts (ed.), Multiple Criteria Decision Making: Kyoto 1975, Springer-Verlag,
New York, 1976.

32. Keeney, R. L., and Raiffa, H., Decision with Multiple Objectives: Preferences and
Value Tradeoffs, New York: Wiley and Sons, Inc., 1976.

6

S

86

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Department Chairman, Code 54 1
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93943-5100

4. Dr Gerald R. Pauler, Code 55Pa 4
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943-5 100

4. Assistant Professor Barry Frew, Code 54Fw 1
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93943-5100

5. Computer Technology rograms, Code 37
Naval Postgraduate School
Monterey, CA 93943-5 100

6. LT C. L. Riddle, USN 2
456 "B" Ave.
Coronado, CA 92118

87

