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1. Introduction
“-In this paper we-establish some refined estiﬁates for the approximation

of the eigenvalues and eigenvectors of selfadjoyﬁt eigenvalue problems by
finite element or, more generally, Galerkin mqfhods. Suppose A fis an
eigenvalue of multiplicity q of a selfadJoi/t problem and let M(A) denote
the space of eigenvectors corresponding to 1?\\Denote by “.“B the energy
norm for the problem. Let {Sh}0<h be the family of finite dimensional
approximation spaces employed in the Galerkin method. A will be approximated

from above by q of the Galerkin approximate eligenvalues:

A S A < < A - A ‘51.,’/,‘"
h,1 = *h,q ) R R A

AQA oo

h1° Ah,q .

Let wu, with “uuB = 1, denote an eigenvector corresponding to A, and let

Y1t Y g with ﬂuh k“B = 1, denote the Galerkin eigenvectors

corresponding to Ah 1,'-'.A

It is well-known that

h,q’ respectively.

(1.1) A A SC  suwp  inf uu-xug L k=1,e00,q,
i ueM(A) xesh

fhullp=1

and that there is a u = uk(h) € M(A), with “uk"B = 1, such that

(1.2) lu, .- uwjl- <C sup inf flu-xfl, , k =1,¢+°,q.
b,k "kl ueM(A) xeS B
A h
fullg=t

In [7,8] Chatelin proved the following refinements of (1.1) and (1.2):
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(a)

(1.3a) fu - Eujg =" inf fu-xfly ¥ ue M),
xesh
_ _(b) _
(1.3b) fu, « - Euy (Mg =ry  inf By -2l k= 1,000.q,
. ’ ’ xesh ’
and
(c) 2 _
(1.3c) “(Ah Kk - A)/A“B = ph inf uEu_h k-x“B' k = 1,.9.'q’
’ zesh ’

where E denotes the orthogonal projection of the energy space onto M(A)

and Eh the orthogonal projection onto span{uh 10" Yy q} and where

r(l)

h —5 1 as h—>o0, for ¢ =a,b,c.

The purpose of this paper is twofold. The first purpose is to establish
an estimate for |r£t)-1|. We show that

(¢

1] < an’(n),

(1.4) |r

where 7n(h) 1is a certain measure of the approximability property of {Sh};

for the definition of 7 see Section 3. This is done in Section 4.

In [3) the authors established the estimate

2
(1.5) App ~A=C inf inf flu-x|g .
ueM(a) xeSh
lullg=1

which is an improvement over (1.1) and (1.3c) in the case of a multiple
eigenvalue. [3] also contains estimates for Ah’k—k,k=2,--',q, and for
"uh.k-u"B’ k = 1,++-,q, which are improvements of (1.1) and (1.3c) and of
(1.2) and (1.3a,b), respectively. The second purpose of the paper is to

present a simplified proof and an extension of the resuits in [3]. This is

done in Section 5.




In Section 2 we give a precise statement of class of eigenvalue problems
and approximation methods we will consider. Section 3 contains some back-
ground information.

The 2nd author would like to thank Professor Hans F. Weinberger for

several helpful discussions on the topics in this paper.

2. Setting for the Problem

Suppose H 1is a real Hilbert space with inner product (+,¢} and norm
|-}, respectively, and suppose we are given two symmetric bilinear forms

B{u,v) and D(u,v) on H x H. B(u,v) is assumed to satisfy

(2.1) |BCu,v)| s C fjuf} v}, ¥ u,v eH
and
(2.2) Couu“2 < B(u,u), Yu € H, with C, > 0.

It follows from (2.1) and (2.2) that (u,v)p = B(u,v) and |uf; = B(u,u) 172

are equivalent to (u,v) and |[u|, respectively. Regarding D we assume

(2.3) 0 <D(u,u), V 0Ozuel
and that
(2.4) lull, = Dtu,w'"?

is compact with respect to [+, i.e., from any sequence which is bounded in
I+l. one can extract a subsequence which is Cauchy in "'"D' For the
remainder of this paper we will use B(u,v) and “'"B as the inner product
and norm on H and denote this space by HB.

We then consider the variationally formulated, selfadjoint eigenvalue

problem,




—>

{ Seek A (real) and O # u e Hg satisfying
(2.5)

B{u,v) = AD(u,v), Vv € HB )

Under the assumptions we have made, (2.5) has a sequence of eigenvalues

0<A SA, S vee / +w

2

and corresponding eigenvectors

up, Uy, e,

which can be chosen to satisfy

(2.6) B(ui,u ) = AiD(ui,u ) = 61 ,1,J=1,2, 2

J J J

The eigenvalues and eigenvectors satisfy the following well-known variational

principles:
B(u ,u )
(2.7) A, = min 853’3; = D(uk uk) , k=1,2,°0
ueHB ’ Yee Yy
B(u.ui)=0
i=1,2,¢°+,k-1
{(the minimum principle)
and
B(u, u) B(u,u)
(2.8) A, = min max P o= max d k=1,2,¢°>
k D(u, u) _ . D(u, u)’ T
chHB uer ueUk-sp(ul, ,uk)
dim Vk=k

(the minimum-maximum principle).

For any Ak we let

(2.9) M= M(Ak) = {u: u is an eigenvector of (2.5) corresponding to Ak}.

We shall be interested in approximating the eigenpairs of (2.5) by

finite element or, more generally, Galerkin methods. Toward this end we




suppose we are given a (one parameter) family {éb} of finite dimensional
0<hs1

subspaces Sh c HB and we consider the eigenvalue problem,

2. 10) { Seek Ah(real), 0#u €5  satisfying

B(uh,v) = AhD(uh,v), VvVve Sh .

The eigenpairs (Ah.uh) of (2.10) are then viewed as approximations to the
eigenpairs (A.u) of (2.5). (2.10) is called the Galerkin method determined
by the subspaces {Sh} for the approximation of the eigenvalues and eigen-
vectors of (2.5). We will also sometimes refer to problem (2.10) as the

Galerkin approximation of problem (2.5). (2.10) has a sequence of eigenvalues

Coon =
0 < Ah,l < Ah,z < SAh,N , N =dim Sh’
and corresponding eigenvectors
Yh,1"%h,2° " Y, N
which can be chosen to satisfy
(2.11) B(uu,i’uh,J) = Ah,iD(uh,i’uh,j) = 61J,i,j=1,---,N

The (Ah,j’uh,J) are referred to as the approximate eigenpairs, while
(Aj,ui) are referred to as the exact eigenpairs of (2.5). Maximum and
minimum-maximum principles analogous to (2.7) and (2.8) hold for problem
(2.10); they are obtained from (2.7) and (2.8) by replacing HB by Sh and
letting k=1,+-+,N. We will refer to them by (2.7") and (2.8"), respective-
ly. Using (2.7) and (2.8) together with (2.7h) and (2.8h) we see immediately

that

(2.12) A k=1,¢*+,N=dim S .

k 5 Mk h

We will assume that the family {Sh) satisfies the approximability




assumption

(2.13) su(h) = “un-l inf uu-x“B — 0 as h — 0, for each u € Hp.
B xeSh

It follows from (2.7), (2.8), (2.7h). (2.8h). and (2.13) that

(2.14) Ah,k — Ak as h — 0, for each k.

Finally we introduce

the exact eigenvectors normalized in ".“D’ and

ENRACWEWE

the approximate eigenvectors normalized in “.uD’
Throughout the paper, the specific eigenfunctions satisfying (2.6)
((2.11)) will be denoted by u ). Thus the u,( ) are normalized in
youyly, 3%, g
“."B; uj(uh,J) denotes the same eigenvectors, renormalized in “'"D' When we
denote an eigenpair by (A,u) we will not assume any particular normalization

on u. C,C,,d, and di will denote generic constants.

il




3. Preliminary Results

In this section we present several preliminary results that will be used
in the sequel. For further information on eigenvalue problems we refer the

reader to [4,8].

a) An Identity Relating the Eigenvalue and Eigenvector Errors

Here we present an identity that relates the errors in eigenvalue and

eigenvector approximation.
Lemma 3.1. Suppose (A,u) is an eigenpalr of (2.5), suppose w is any vector
in HB with ﬂwnD =1, and let A’ = B(w,w). Then
' 2 2

(3.1) Al = "w—u"B - A"w-unn .
Proof. By an easy calculation,

2 2 2 2
(3.2) “w—uﬂB - Anw-uﬂn = “wnB - 2B(w,u) + nu“B

- A2 + 22 Dlw,w) + AfufZ
Now
B(v,u) = AD(v,u) V v € HB’

from which we get

(3.3) B(w,u) = AD(w,u)
and

2 2
(3.4) ﬂu"B = B(u,u) = AD(u,u) = A"u"D .

The result follows from (3.2)-(3.4) and the relations A’ = ﬂwug and

1= uw“g . o

b) The Operators T and T,
Let




Hy = the completion of HB with respect u-“D.

Hy is a Hilbert space with inner product D and, since “.“D is assumed to
be compact with respect to u-nB, Hy 1is compactly imbedded in Hp.
(Alternatively, we could have assumed HB < HD’ compactly, and let D(u,v) be
the inner product on HD.)

From HD and HB construct the “negative space” H-B = Hé , with norm
I+l_g- Then Hy c H j compactly, and for v € Hy, D(u,v) has a continuous

extension to u € H 5 so that D(u,v) 1is continuous on H p x Hgp. For
ueH g, ful_g = sup lgii%ill . For a complete discussion of this construc-
veHB B

tion we refer to (5, pp.31-39].

Next we introduce the operators T,T,: H 5 — Hy defined by

Tf €
(3.5) { s

B(Tf,v) = D(f,v), V v € HB,

Tf € S
(3.6) { h h

B(Thf.v) = D(f,v), Vve Sh'

T and 'I‘h are the solution and approximate solution operators for the

"boundary value" problem corresponding to the eigenvalue problem (2.5). It
follows immediately from (2.1}, (2.2}, and the fact that D(f,v) is continuous

on H_Bx HB that T and Th are bounded from H—B to HB. Since HB is‘

compact iy imbedded in HD and HD is compactly imbedded in H—B’ T Iis

compact from HB to HB' from HD to HD' and from H—B to H_B. Th is, of

course, also compact on HB’ HD' and H_ It is easily seen that T

B’
and Th are selfadjoint on HD and that T 1is selfadjoint and positive

definite on HB (with respect to B(u,v)). It is immediate that T has

eigenvalues




and eigenvectors

and that Th has eigenvalues

= _1 ses = -1 =
oot =21 2 2N My N=dim S,

and eigenvectors

Yh,1* " e N
Let Ph be the orthogonal projection of HB onto Sh; then from (3.6) we
see that
Th = PhT

Let

(3.7)  a(n) = |(I-PIT| = |1-1.| = sup inf ||Tg-x]
h HDQHB h HD')HB geHD xéSh B
ﬂ8“D=1

and

(3.8)  w(h) = J(I-P )T = |T-T, | = sup inf [Tg-xf; -
h HB_)HB h HB-)HB geHB xeSh B
“8"B=1

Several of the results in Sections 4 and 5§ are stated in terms of the

qualities of m» and v. We now present some properties of 7 and v.

Lemma 3.2. There are positive constants C1 and C2 such that

(3.9) Clv(h) < n(h) s C2 vv(h) .

Proof. Since "u"D < C"uﬂB Y ue HB we have v(h) £ Cn(h), which is the




first inequality in (3.9) with C1 = C °. Now consider the second inequality

in (3.8). From (3.5) and (3.6) we have

el < Ifllp - ITfll < IFllg

and hence
(3.10) IT-T | <2
h H_B—eHB
and from (3.8) we have
(3.11) [T-T.| = v(h).
h HB—AHB
We now note that H_ and H_ are connected by a scale of Hilbert spaces.

B B

It thus follows from (3.10), (3.11), and a result on interpolation of linear

operators [5, pp. 240-242] that

172 1/2 1/2
n(h) = "T-Th"H IR c2 v = Cv(h) ,
D B
which is the second inequality in (3.9). o
Lemma 3.3.
(3.12) lim n(h) = lim v(h) =0 .
h-0 h-0

Proof: Because of Lemma 3.2 it is sufficient to show that 1im v(h) = O.

h-0

(2.13) implies that Ph — I pointwise on HB

to this result). Since T: — H_ is compact, T{geH_.: llg|l, = 1} is
HB B B B

(in fact, (2.13) is equivalent

relatively compact in HB’ and lim v(h) = 0 follows from the standard result
h-0

that a family of operators that converges pointwise on a space converges

uniformly on a relatively compact subset. n]

10




From Lemma 3.2 we have . nz < 0(v). It may happen that n2 = o(v). This

is shown by the following example.

Example
Let
ol
HB = HO(O,I).
1
B(u,v) = J a(x) u'v’/dx,
0
and
1
D(y,v) = I u v dx,
0

where 0 < a £ a(x) £ B < . (Hl(O,l) is the lth order Sobolev space and
Hé(O.l) = {u e H1(0,1): u(0) = u(1) = 0}). For f € L2(0,1), u=Tf is the

solution of

{ ~-{a(x)u’)’ = f(x), 0 < x< 1

u(0) = u(1) = 0.

First suppose Sh = the space of CO, piecewise linear functions with

mesh size h that vanishat 0 and 1 and suppose a(x) is smooth. Then

ve easily see that 7(h) ~h and v(h) ~.h, so that n2 = o(v). Next

suppose Sh = the space of CO. piecewise quadratic functions vanishing

at 0 and 1. If a(x) 1is smooth we see that =n(h) ~h and v(h) ~ h2, S0

n2 ~p. If, on the other hand, a(x) 1is rough, specifically if a(x) is

such that g e€ H, = L2(0,1) implies u = Tf € H2(0.1), but g e€ H_ = Hé(o,l)

D B
does not, in general, imply u e H“(o.1) for a > 2, then n ~h and v ~ h,
s0 n2 = ol(v).

From (2.13) we have

11




ﬂ(I-Ph)unB = eu(h) nuﬂB — 0, Vue HB.

The usual dualiy argument (cf. Aubin [1], Nitsche [10], and Oganes jan-
Rukhovets [11]) shows that H(I-Ph)u“D < Cn(h)I(I-Ph)u“B and

"(I-Ph)uﬂ_B < Cv(h)“(I-Ph)unB. For the sake of completeness we include proofs

of these results.

Lemma 3.4.

(3.13a) ICr-P )yl < n(B)(1-P ufl5, ¥ u e Hy
and

(3.13b) C1-P uff_g s v(h)|(I-P Jufl5, ¥ u e Hy.

Proof Since Ph is the orthogonal projection of HB onto Sh’ we have

B((I-Ph)u.Tg) = B((I-Ph)u,Tg-x). Vxe Sh,
from which we get
(3.14) [BO(I-P )u,Tg) [ s [(I-P )ufl;  inf [[Tg-xfg .
xeSh

From (3.5), the symmetry of D and B, and (3.14) we have

“(I-Ph)ul]D sup ID((I-Ph)u.g)l

geHy

ﬂ8"D=1

sup IB((I—Ph)u,Tg)l
geHy

"8"D=1

12




s sup inf Teg-xfly [(I-P )u],
geHD 1eSh
ﬂ8ﬂD=1

< () (1-P ufg,
which is (3.13a). Similarly,
“(I-Ph)u"_B = sup ]D((I-Ph)u.g)|

gety

“8ﬂ3=1

sup inf [Tg-x|, [|(I-P)u
geHB xeSh B ho B
ﬂ8ﬂ3=1

v(h) {1-P v,

which is (3.13b). a

¢) Preliminary Eigenvector Estimates

th

For 1 =1,2,+¢¢ let k be the lowest index of the 1 distinct

i
eigenvalue of (2.5) and suppose Ak, has multiplicity q;. Let E = E(Akl)
be the orthogonal projection of HB onto M(Ak‘) and let Eh = Eh(Akl) be

the orthogonal projection of HB onto

(3.15) Mh = Mh(hkl) = the space of eigenvectors of (2.10)

corresponding to Ah,ki+J,J=0,...'qi-1.

Lemma 3.5 There is a constant Ci such that

(3. 16a) "u-Eh(Akl)uﬂB < Ci"(I-Ph)u"B , Yue M(Aklh
(3.16b) "u-Eh(Ak‘)u"D < Ci“(I—Ph)u"D , Vue M(Akl).
13

_




and

(3. 186¢) ﬂu-Eh(hki)un_B sC(1-P)uf o, VYue My

Proof. Suppose the spaces HB.HD, and H_ the bilinear forms B and D,

Bl

and the operators T,Th,E, and Eh have been complexified in the usual

-1

manner. Let T be a circle in the complex plane centered at “k1 = Ak,

ky
enclosing no other eigenvalues of T. Then for h sufficiently small,

s T = 31
“h,ki = Ah.k,’ ’"h.k1+q1-1 Ah,k;+q;-1’ but no other eigenvalues of Th’

are contained in 'L , and

k;
_ 1 -1
(3.17a) EQy) = 52 j; (z-T)"! 4z
ky
and
1 -1
(3.17b) E,) = T f; (z-T,) 7" dz.
ki

These are the usual formulas for the spectral projections associated with T

and M, and T, and Mkt P, k-1 respectively (cf.[9, Section X1.8]).

Consider now the proof of (3.16a). Using (3.17) we have

(3.18) ﬂu—Eh(Akl)uuB “[E(Ak;) - Eh(Akl)]uuB

1 -1 -1
P ML I o SR PR Y
ky

-1 -1
= 5= lIr (z-T,) (T-T ) (z-T) 'u dz||B
ky

1 -1 u
Ky !

14




A

1 -1 _
55 (2 rad (T )] z:;p I(z-T) “HB*“B“(T T ullg
kl radirkli
O<h

-1
- -P , A, ).
ukl zz;p ﬂ(z Th) HH H ﬂ(I h)u||B Y u e M( kl)
kl

O<h

In the last inequality we used the relation (T-Th)u = (I-Ph)Tu = “k,(I-Ph)u'

Now |T-T, | — 0 1implies
hiHgHp
-1
C, = sup ||(z-T,) | < o,
L7 N g,
0O<h

so we have established (3.16a).
Now consider the proof of (3.16b). The above analysis is relative to

the space HB (the integrals in (3.17) converge in the operator norm on HB

nligony

"T-Th"HDeHD — 0, we can apply the same argument in Hj. Note that the

and ||T-T — 0.). Since T and Th can also be considered on HD and

formulas (3.17) will now define projections on HD which are extensions to

HD of E and Eh. We thus obtain (cf. (3.18))

-1
Ju-E_(x, Ju]l, < sup |(z-T,) | fC1-P )ufj., ¥V u eM(A, ),
B (A, Yullp < my, et n' lusn ' Yip K,
h>0
which is (3.16b).

The proof of (3.16c) is similar. o

Remark 3.1. It is essential in the Lemma 3.5 that h 1is sufficiently small,
meaning small in comparison with the gap between Ak, and Ak;-l’ Ak,+1'
If this gap is small then it can happen that the approximation eigenfunction

15




Yk, associated with Ah,kl could be close to uk,—l or U e

Lemma 3.5 is an eigenvector estimate since it provides an estimate for

u(an exact eigenvector) - Ehu(a linear combination of

approximate eigenvectors).

We note that (2.13) and (3.16) imply that Eh(kkl):M(kkt)-—aMh(Aki) is
one-to-one and onto for h sufficiently small.

We next prove a refinement of (3.16a) due to Chatelin [7,8]. (3.16a)
shows that

“u-Eh(Akl)u“B
ﬂu—Phﬁ“é

s 0(1), Yue M(Ak ).
1

Chatelin showed that

uu-Eh(Ak‘)uﬂB .

To-Pullg 1, as h — O(see (1.3a));

her argument, in fact, establishes

Lemma 3.6 (Chatelin). There is a constant di such that

“u-Eh(Akl)unB
“u-Phu“B

(3.19) 1 < <1+ div(h), VYue M(kkik

where v(h) 1is defined in (3.8).

Proof. For the sake of completeness and to establish the form of the bound in
the second inequality in (3.19) we present a proof of this result.
Let Th = Ph T Ph = Th Ph. Note that Th and Th
nonzero ejgenvalues, that Eh(hk ) commutes with Th’ and that Th is
i

have the same

selfadjoint with respect to B. For u € M(Ak ),
1

16
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(Tp, = i, )PpY = PRT(P D+ G =y P

and hence, since Eh(Akl) commutes with Th ,

(3.20) (Th - uh’kl)(I—Eh(Akl))Phu = (I-Eh(lkl))PhT(Ph—I)u

+ (uk‘-uh’ki)(I-Eh(Akl))Phu.

Let Q be the orthogonal projection of HB onto N(Th), the null space

of Th. Then, any 2z € R(I-Eh(kkl)). the range of I-Eh(kkl). can be written

as
N

z = Z B(z.uh t)u'h et Qz.
L=1
l#ki,"',kivl-qi—l

Here we have used the orthogonal decomposition

— _
HB = fR(Th) ® N(Th)
= ?(Th) ® A/(Th)
= span {uh,l"..'uh,N} ® N(Th)
= span (uh,l"..'uh,N} @ N(Th).
Thus
N
(Ty~Mp, )% = zz: Blz,uy iy oty o M9 0 "My k0%
=1
tek,, >0,k +q; -1
and hence
N
CIID R [ AN Y D N |- CRT Y ol PR
: h Mh,k, %l e W1 B L N N
=1

M TRRAEEIRS b

17




2 gy 42
*+ lmy i, I HQzlg

2 = se e LA 4 - 2
2 min {luh,‘j - u.h.kll ’ \j—ly vaJ * ki. .ki+qi 1’ l""h.kll }

N

x { Y By, g ;ang}

¢=1
taki, °°',ki+q1—1

~

2 2 2 2
min {l“h.k;-l - “h,k,l .Iuh'ki,,1 - “h,k,l 'l“h,k,| } lzlg, 122

2 2 2 ., _
i (I, = i 17 T P} B =

Since My 3 — “J {(cf. (2.14)) for each j as h — O,

,
2 2 2
min {luh,ki—l-“h,kll N R LI }' L
* _

Lmin {Iuh,ka- “'h,kllz , I#h’kllz} 1=

[ win (I, 1P g = 1P g 1P} 12 2

min {|uk2— uk1I2 , lukilz} , 1i=1

“

= af, as h — 0,

from (3.21) we get

(3.22) “(Th—uh,k,)z"B 2 61 “z“B , Vze R(I_Eh(lk,)) and

V small h,

18




where 61 > 0 and depends only on the gap between “ki and “kl-l’ “k1+1-

Combining (3.20), (3.22), and the fact that I-Eh(hki) and P_ are

h

orthogonal projections we have

-1
ﬂ(I-Eh(Akl)) Pyullg s 8, I(I-Eh(Akl)) P T(P, -I)u
+ (uk‘-nh.kl)(I*Eh(Ak‘)) PhuﬂB

-1 2
< 61 {"T(Ph-l) uﬂB +

ety ) DB ) Phu“B}.

from which we get

(3.23) H(I-Eh(lkl)) Poullg s 4 IT(P,

-IJu (P -y
uHBeHB h B

diu(Ph-I)T]HB4HBH(Ph-1)u"B.

In the last equality we used the fact that (Ph—I) and T are selfadjoint
and that the norm of an operator and its adjoint are equal.

(3.23) implies

I"(I—Eh(AkI)Ph)u“B - "(I-Ph)u"BI < u(I—Eh(Akl))PhuuB

< di“(Ph_I)TllHB—)HB ||(1>h—1)u||B ,
and hence
IC(1-E, (A, P, ufg
(3.24) — -1} < d fitp, -DT| .
]](Ph I)u]]B it h Hp-Hg
We easily see that
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I(1-P uflg < ﬂ(I-Eh(Akl))uﬂB < H(I-Eh(hkl)Ph)u“B .

and thus

jci- Epy, ))unB @ “E, (AP )u||B

(3.25) 1<
I, mnB [(T-p )G[B

Combining (3.24) and (3.25) we have

ﬂ(I-Eh(kkl))u“B )

0=

](Ph-f)u“gf
< n(I-Eh(Akl)Ph)u"B o
f(P, -TIuffg
< di“(Ph-I)T“HB y » Yue M(Ak‘k
Recalling that "(Ph—I)TnHBaHB = v(h) we obtain the desired result. o

-~

Remarks 3.2. (3.19) should be compared with (4.21), which provides a stronger
estimate for certain special u’'s in M(Akl).

Lemmas 3.5 and 3.6 show that starting from any exact eigenvector u we
can construct Eh(kkx)u. a linear combination of approximate eigenvectors
that is close to u. One can also start with an approximate eigenvector and
construct a close exact eigenvector. We present another result of Chatelin

[7.8]; (see (1.3b)).

Lemma 3.7 (Chatelin). There is a constant di such

(3.26) 1<

I, J ~ B, U, J"B <1+ d,vh)
Py, E(A E(A )uh [ - i ’
“h, J ky J
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Proof. Observing that E(Akl)_Eh(Akg)Ph = (Eh(Ak‘)-Eh(Aki))Ph + E(Aki)(I-Ph).

we obtain
HE(Akl)-Eh(Akl)PhaﬂBaHB < "E(Ak:)'Eh(Akl)“HBaHB + ﬂE(Akl)(I-Ph)"HBeHB.
We easily see that

JE(a = J(I-P)EQA

kl)(x-rh)nHB%HB kx)nHB+HB

sup [[(I-P_)E(A_ )uf
ety n EQy Julg

"u"3=1

Ak, u:;g H(I-Ph)TE(Aki)u"B
flulg=1
< Ak‘ v(h)

and by a slight modification of estimate (3.18) we have

IE(Akx)-Eh(Aki)"HBeHB < Cv(h).
Thus

(3.27) ﬂE(Aki)—Eh(Aki)P £ Cv(h).

L

Next note that
{I-IEh(Aki)Ph - E(Aki)]} (uy 5 = EOy duy )
= [Eh(kkx)Ph-I]E(Ak‘)uh’J.

Hence, using (3.24) and (3.27), we have

-1
"uh’J - E(Akl)uh’J"B s "{I-[Eh(hkl)Ph-E(Akl)]} ""B*HB
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x “[Eh(hki)Ph-I]E(Akl)uh’J"B

ﬂ[Eh(Akl)Ph—IlE(Aki)uh'J“B
l‘lth(xk{)Ph'E(kk,)“HBeHB

[7)

(1+div)ﬂ(Ph-I)E(Akl)uh.JﬂB
1-Cv )

<

which implies the second inequality in (3.26). The first is immediate.

d) Relation between Eigenvector Error in "."B . I llp._and I-lg -
In subsection 3.b) we noted that [[(I-P )ul; < n(h) [|(I-P,)uf; and

“(I—Ph)u“_B < v(h)ﬂ(I-Ph)u“B. In this subsection we establish similar
results for the eigenvector error.
-h
For 1 =1,2, and J = ki' ,ki *q 1, let u‘j € M(Akl) satisfy
Eh(kk‘) Gg = Gh j- We know from the discussion in Subsection 3.c) that

ug exists and is unique for h small. From (3.13a) and (3.16b) we have

-h _ - _ y-h _ -h
uy - uh,J“D = ||u‘j Eh(kkl)uJuD

IA

~h
C, n(h)ﬂ(I-Ph)uJ"B

IA

_h_
o n(h)“uj_uh.J“B ,
or
_h_ - "
I L)

(3.28a)
-G |
"“J Yp, j'B

< Cin(h).

It follows immediately (by scaling) that
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ﬂug - uh JnD
(3.28b) —h———l—-— < Cin(h) ,
““J = uh,J“B

where u e M(A_ ) satisfies Ep QA )u = u, - (Recall that flu

3 Ky s.nllp =1

and ||uJ pllg = 1.) Similarly, from (3.13b) and (3.16c) we get
o) - Gh JH—B
(3.293.) —_%—_—;—'— < Civ(h)
uj - Uy, sls
and
h
Ju, - I
(3.29b) —ﬂ—uh'-"—B s Cu(n).
"“J - uh.JnB

By Lemma 3.1 we know that

(3.30) Ay - A = fu uh.JﬂB Akluu “h.JHD

hu - u 12
_______!_E
= fju- uh JuB { K I n , Yue M(Aklk
WL
- 2
L
As u varies over M(Akl) it is clear from (3.30) that —— s
flu -y, Slg
minimized for that u, that minimizes flu- uh J“B’ namely for uj = E(Akl) ST

Thus we have

“E(A )uh J'ah J“D “ uh J“D
IEQy du mu Sl ||_ u, J||B

(3.31a) n(h).

We, of course, also get

23




||E(Ak‘)uh'j-uh’J||D .
||E(Akl)uh,J-uh,J[|B

(3.31b) n(h).

i

Estimates (3.31) are similar to (3.28), but involve a different pairing of

approximate and exact eigenvectors.

Remarks 3.4. Pierce and Varga [12] proved eigenvector estimates in “.“D and

Babuska and Osborn [6] established them in “.“—B'
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4. Precise As totic Estimates for the Eigenvalue and Eigenvector Error
In this section we use the notation introduced in Subsection 3.c), i.e.,
we let k1 be the lowest index of the ith distinct eigenvalue of (2.5) and
suppose Ak; has multiplicity qi.
a) The Eigenvalue Error
For 1i=1,2,+s+ and j=k1,-~-,ki+q1-1 fixed, Chatelin [7,8] has
shown that
(A -A, )/A
(4.1) h,J ‘2" ky 5 — 1, as h—0 (ef. 1.3¢)).
||(I—Ph)E(Akl)uh,j||B / "E(Aki)uh'JllB
We now prove a refinement of (4.1) (cf.(1.3c) and (1.4))
Theorem 4.1. For i = 1,2,¢++ there is a constant di such that
(A “A, }/A
(4.2) | h, J ‘2“ ki 5 - 1| < dinz(h), J=ky, 000 kv -1,
]l(I-Ph)E(Ak‘)uh'J“B / []E(Akl)uh'JllB
where 7n(h) 1is defined in (3.7).
Proof Let u = E(Akl)uh,J' We have
(4.3) (“kl_“h,J)B(u'uh,j) = B(Tu,uh’J) - B(U’Thuh,J)
= B(u’(T’Th)uh,J)

B(T(I—Ph)U.Uh,J)

B(T(I-Ph)u,u) + B(T(I-Ph)u,uh’d-u)

2
B(T(I—Ph) u,u) + B(T(I—Ph)u,uh,J-u)
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= ule((I-Ph)u,(I—Ph)u) + D((I-Ph)u,uh’J—u)

Using the fact that B(u, } = B(u,E(A_ ) ) = {u 2 , (4.3) can be
n, J k' Uh, J B

written as

_E_J__EL fu “ RE (i-p )Uﬂz + D((I-P )u -u)
N TR n'% ", g

Dividing by "(I-Ph)uﬂg , multiplying by A and subtracting 1 from both

h,J’
sides we find
- /A =2 - , -
(a.4) (Ah,J Ag‘) k‘z . Ah’g K Ah J D((I Ph)u uhéj u)
f(1-P)uflg 7 Jullg ki ’ JC1-p g

From (4.1) or the standard, well known results for eigenvalue approxima-

tion we have

M, 5 2
(4.5) — 1l <d sup  [[(I-P )u]
Ay 1 ueM(r, ) h™ "B
"u“B“l

ueM(A )
“““D'l

2
di[VXEI sup "(I—Ph)Tu"B]

IA

2 - e 0 ~—
din (h), § = ki' ,k1 + q; 1,

from (3.13a) we have

(4.6) H(1-P ully < ath) J(I-P )ulg,

and from (3.26) and (3.31b) we have
(4.7) “uh,j_u“D = “uh,J-E(Ak,)uh,J“D

26




s d, n(h)luh'J-E(Aki)uh’JﬂB
= d, a(h)(1-P Iufly .

Combining (4.4) - (4.7) we obtain

(Ah’J-Aki)/Ak! L an2h) + Ah’J|D((I-Ph)u,uh’J—u|
2 2 i 2
HCx-pullg 7 flulg §(1-P ullg

IA

< d 2 A, -PRlullply, 5ulp
i7"t 2
“(I-Ph)u“B

2
din .

A

the desired result. (m]

Remark 4.1. Formula (4.4) is due to Chatelin [5,6], and is used by her to

prove (4.1). Using eigenvector estimates in "."B ((3.26)) one can prove

( )/Aki

57
2 2
“(I—Ph)E(ukl)uh'J“B / nE(Akl)uh,JnB

-1} < div(h).

(4.2), which was proved using eigenvector estimates in "-ﬁD ((3.31b) together
with (3.26)), is an improvement over this result since, as we saw in
Subsection 3.b), n2 may be of higher order than v.

Theorem 4.1 relates the eigenvalue error /A

2
Ap, 57,2, O f(1-P, Jullg,

with u = E(Ak )uh 3 We now prove a result that relates the eigenvalue error
i ’
2 2 =
to (I Ph)u||B / ﬂu"B , where u e M(Ak,) and Eh(Akl) U=y i.e.,

h
u=u

3 as defined in Subsection 3.d).
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Theorem 4.2. For i =1,2,+-¢« there is a constant d1 such that

( }/A

Ah,J"‘k, Ky

(4.8)
2 2
fC1-P )ufp 7 fullg

-1 saq 72(h),

kysveme &y *qy-l,

where u € M(Akl) satisfies Eh(kkl)u = uh,J‘

Proof. With u e M(Akl) satisfying Eh(Akl)u = uh.J we have

(“ki-“h.J) B (u,uh.J) = B(Tu.uh'J) - B(u'Thuh,J)

B(T(I-P, )u,u)

+ B(T(I-Ph)u,uh'J—u)

2
uklﬂ(I-Ph)u“B

+ B(T(I—Ph)u.uh,J-u).

from which we get, as above,

(A, A )/A A A D((I-P )u,u_ . -u)
(4.9) hd ki Kk 1= ki, h" g .

2 2 A h, 2
fa-pulg 7 B, O dulf Ky I ja-p )l

It follows from (3.13a) and (3.16b) that
(4.10) o, 5 - ullp < 9nl(1-Pp )l
Combining (4.5), (4.6), (4.9), and (4.10) we obtain

( )/

An, 570k,
2 2
fc-p ufly 7 "Eh(Akl)unB

-1 < d1 nz(h),

from which we get

28




2 2
(Ah’j-hkl)/kk1 B ﬂuIB 5 nunB

(4.11) 5 5 5| s 41 (h)\——— .
ji-puly 7 Jullg ﬂEh(Akl)ulB ﬂEh(Akl)u“B

i

Since u = (u—Eh(Akl)u) + Eh(kki)u is an orthogonal decomposition in H_, we

have
2 2 2
“U"B = “u-Eh(Ak’)u“B + “Eh(Akl)u“B
and hence
2
full ﬂu- (A )u“
(4.12) B = 1 Eh B

—_— =
uEh(kkl)u“B HE, (A, )unB
Using (3.16a) and (2.13) we see that

ﬂu—Eh(A )u||B >

(4.13) <C eu(h)
“Eh(kk )u||B

< C 72(h).

Combining (4.11), (4.12), and (4.13) we get the desired result.

b) The Eigenvector Error

Let 1 =1,2,¢+¢ and let j =k ~,k1 tq - 1 be fixed and consider

i’..

Gh ; and E )Gh 3 (recall that We showed in Subsection
s i ’

[y, jlp = 1
3.d) (see (3.31a)) that

(4.14) “E(Ak,)uh,j-uh,j“D < din(h)"E(Aki)uh,j-uh“j“B .
From Lemma 3.1 we have

- = 2
(4.15) Ap g " "E(A Uy g uh J"B k‘"E(Aki)uh’J-uh,J“D .

Combining (4.14) and (4.15) we obtain

A, - 2 "E(A

2

h J- h J"B
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which implies

- = a2
1=y o, y7un, 5l *ng "

(4.186) 5 = - .2 2,
"(I—Ph)E(Akl)uh’JﬂB H(I-Ph)E(Ak‘)uh’J“B (1-d,7%)

Since ah,J = E(Jlkl)\-xh"j + (Gh’J-E(Akl)Gh'J) is an orthogonal decomposition

in HD, we have
_ - w2 - -2
U= By D gllp + lhey, g By Oy 5l -

From this, (3.26), and (4.14) we get

- 2 2 -2 [Ey Ouy J"g 4
(4.17) 1 s uE(Akl)uh'j“D v d;m "(Ph—I)E(Akl)uh'J“B = x (1+d,7m7).

i

Now, combining (4.2), (4.16), and (4.17) we have

S 4,172
IEQy vy, 570,408 { P, 57, 1+dim }

= - 2 = 2 2
u(I-Ph)E(Aki)uh'JnB "(I-Ph)E(Akl)uh.JﬂB /ﬂE(Aki)uh’J“B 1-d,m

A

1-d.n

(1+d n4)}1/2
i

2 i
{(1 +din ) — 3

1+ di"2]1/2

IA

IA

1+ dinz(h).

We summarize this (cf. (1.3b) and (1.4)) in

Theorem 4.3. For i1 =1,2,¢+ there is a constant d1 such that

By O, y7un, 4l
H(I-Ph)E(Aki)uh’J"B

(4.18) 1

<1+ dinz(h). J= ki.---,ki+qi-1.

uh.j can be replaced by uh,J in (4.18).
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Remark 4.2 (4.18) is stronger than (3.26) since nz may be of higher order
than wv.

Next consider ﬁh J and Gg (recall that \-13

Eh(Ak‘)Gg = §, ). Ve know (see (3.28a)) that

€ M(A, ) satisfies
ky

-h - -h -
ﬂuJ - uh,J“D < d;n(h) “uJ - uh.J“B'

This, together with Lemma 3.1, yields

-h = 2 2
[ UJ - uh,JIIB (l'di"ﬂ )n
which implies
RN Ay g A
(4.19) JShls hJ_ ki

-h,2 =hy2 2
ﬂ(I—Ph)uJﬂB I(I-Ph)uJﬂB (1-d;n")

( A, )/A

n, 37 2y

<
=h,2
Ja-p a3

(1-d2n

— )
1550 1

Finally, combining (4.8) and (4.19) we have

-h_- 2 172
! < AL . [ 1+dym }
2

f(1-P )u 1-d 9

h
"l

<1+ dinz.

This result (cf. (1.3a) and (1.4)) and the related result (3.19) are

summarized in

31




_

Theorem 4.4. For 1 =1,2,+*++ there is a constent d1 such that

-h_- -h -h
uuj-uh,J"B ) “uJ-Eh(Ak!)uJHB

(4.20) 1s - -
I(I-Ph)uJ“B ﬂ(I-Ph)uJIB

<1+ dm7(h),

G
]

= Ky, o0 k4, -l

(4.20) remains valid if Gh 3 is replaced by u 3 and u‘j by ug. There is

a constant di such that

"u—Eh(Akl)unB

(4.21) 1 < <1 +d,v(h), for all u e M(a, ).
1 K,
ﬂ(u~Ph)uﬂB

Remark 4.3. We have restated (3.19) in (4.21) because it is related to (4.20)
and it is the strongest known result of its specific type. It should be noted

that (4.21) is true for all u € M(Ak ), whereas (4.20) is valid only for
1

u = Gg, J= ki,---,ki + qi-l' However, for these u’s, (4.20) is stronger
than (4.21).

Remark 4.4 See [2,4]) for a numerical study of the reliability of the results
of this section - which are of an asymptotic nature - as a guide to practical
computations - which often takes place in the preasymptotic phase.

5. An Additional Result for Multiple Eigenvalues

Theorem 4.1 shows that

2
inf [|EQ Jw, - g
xeSh

2
"E(Akl)uh,k"B

In (3] Babuska and Osborn proved the stronger result (cf. (1.5))
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2
A -A, sC inf inf Ju-xj|
h, kg ky B
ueM(Ak‘) xesh
ﬂ“ﬂ3=1
(as well as similar estimates for Ah,J - Akg' J= ki + 1,°°~,k1 + qi-l' and
for the eigenvector errors), which shows that A - A the error in the

h, k4 ky’

approximate eigenvalue closest to Ak,' is governed by the approximability of

the exact eigenvector corresponding to A that can be best approximated by

ky
Sh. In this section we give a simplified proof of the results of [3], which

in addition provides information on C (the results in [3] only established
that C 1is a constant), and estimate the eigenvector error in “.“D and
"."—B'

As above, for 1 =1,2,¢++ suppose k1 is the lowest index of the ith

distinct eigenvalue of (2.5) and let q be its multiplicity, i.e., suppose

T N B S B e TS T T R WPl e
Let
(5.1) €y, 50 = ueri;(l{ ) xégf fu-xllg
ki h
B(u ||u||13=1=---=13(u ) =0
*Yh, Ky *Yh, ky+ -2
= inf eu(h)
ueM(Akl)
llullg=1

=0, J:l'ono'q’

Blu,uy g, )= =Bl v g-2) i

where M(Ak } 1is defined in (2.9). The restrictions B(u,uh )
1 Ky

Teee= B(u’uh.k,+J-2) = 0 are considered vacous if j = 1. We note that they

are equivalent to

B(ugE(Akl)uh’z) = 0’ £=ki'...’ki + J - 2
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and to

B(Eh(lkl)u,uh’t) =0, e:ki'...,ki +J-2.

Theorem 5.1 (cf. (1.5)) For 1 =1,2,°++ there is a function Ci(h) and a

constant Ei' with

(5.2) Ei(h) <1+ dlv(h). di = constant,

such that

(5.3) (A - A, /A

. 2
hoky+d-1 ~ Ak, 3 CR) gy y(h), g=1,eeeqy,

and such that the eigenvectors u of (2.5) can be chosen so that

l’uz"..
(2.6) is satisfied and such that

(5.4) lon e g-1 = Yo g-1llp S C, (h) £y, 4B J=leenuqy,
(5.5a) “uh,k,+J-1 - “k,+j—1“D s Cyn(h)ey ((h), J=1,-+,q,
and

(5.5b) "uh,k1+J—1 - uk,+J-1"-B s C1"(h)ei,J(h)’ J=1,00.q;,

where w(h) and =n(h) are defined in (3.7) and (3.8).
Proof. let i and Jj, with i =1,2,*+¢ and j = 1,---,qi be fixed. Note

that eu(h) < hkiv(h). Vue M(Akl) and ¢ (h) < hkivfh), J = 1,--°,qi.

i J
Let u e M(lkl) with B(u,uh’k‘) =eee= B(u’uh,k1+3—2) =0 and "u"B = 1.

Now apply (2.7%) and Lemma 3.1 with (A,u) = [Ak , u and
i
Eh(hk Ju
= “——ﬁ“— . Since
Ep (g, ulip

1

B(Eh(lki)u,uh'l) = 0, &=1.°-~.ki-1

by the orthogonality of the approximate eigenvectors, and
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B(Eh(kkl)u,uh’c) = B(u.uh,c) =0, ¢ = ki,o--,ki+3—2

by the assumption on u, we have

Ep 4y, v B )
ﬂEh(Akl)unD nEh(Akl)unD

(5.6) k,

Ah,k;+J-1 - Aki <B

2 2
"Eh(hkl)u-unB - Akl"Eh(Akl)u u"D

2
uEh(Akl)u“D

2

) uEh(Akl)u-uﬂB
> -

ﬂEh(Ak‘)u“D

From (3.19) we have

(5.7) “Eh(kki)u—uﬂa S (1+dv) fu-Poull, .

From (3.13) and (3.16b) we see that

-1/2

| HEh(*k‘)“ﬂD - Akl | = l"Eh(Akl)u"D N "u"DI

IA

“Eh(Akl)u-u“D

d fu - Phu“D

IA

IA

an Ju-P,ull

dn(h) eu(h),

which shows that

1 dncu(h) 2
(5.8) 5 LA B A ————
AklnEh(Akl)u“D "Eh(kkl)u"

S 1 +dn cu(h)
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€1 + dnv.

Combining (5.6) - (5.8) we get

(5.9) ( A S (1 + dv)2(1edm) Ju-P ul?

Ah,k,+3-1'7‘kl K,

2
< (1 + dv) Iu-PhuﬂB .

Now since (5.9) holds for all u € M(A, ) with B(u,uh ) =0,
ky , &

L= ki,---,ki+j-2, and ﬁu"B = 1, we have

- / < i -
N Ll I
| 9 h
fullg=1
B(u, u'h,k, )=eo c=B(u’ u_h’ k1+‘j—2)=0
= (1+d v(h))eZ ()
i 1,J ’

which is (5.3) with Ci(h) = l*div(h). Thus (5.2) and (5.3) have both been

proved.

Remark S5.1. (2.7h) and Lemma 3.1 lead to a particularly simple proof of a
result slightly weaker than (5.3) for the case i = j=1. It follows

immediately from these two results that

>

I
>
1

Phu Phu
< -
B IFal; * TPl A

2 2
“Phu-u“B - AlnPhu~u“D

2
"Phunu

2
-h B
- 2

“Phu“D

“P u—u"
h VueMA),
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and hence
IPhu-ung
(Ah 1'7‘1)“1 < inf — £ C(h) 81 1(h).
ueM(Al) AlﬂPhuﬂD

Hu“B=1

where C(h) — 1.

Now consider (5.4) and (5.5). Let { =1,2,++¢ and J=1."',qi be

fixed. Let uﬁ,k,+J-1 € M(Aki) satisfy Eh(lkl)uig+J-1 = uh'kﬁ‘j_l(ul’(”‘j_1 =

h h
uk|+J-1’ where uk1+J-1 was introduced in Subsection 3.d)). Applying Lemma
3.1 with
(A’u) = Ak' “_ukL‘j-l_n_ and w:,"_MLﬁ_
t WY,k +j~1UD Yh, ky+3-11D
we get
(5.10)

A - A = " Thokyeg-1 o Vkgd-l "2
Rolitd=t Tk Yy e egetbp Wy 4 g-1lp g

R T U 1L T

- A
kil Tup e eg-10p Ty i, 4 5-1lp

D

From (3.28b) we have

(5.1 o yio1 = Uy gepegorllp S OO Lol
(5.10) and (5.11) yield

[1-2 lcznzth)l

A - A k

2
2 I IR Y et
h,ky+j-1 ky+j-1 "uh kl"’J-l"g uh'k”\j ! ukl+J 1B

which, together with (2.11), (2.12), and (5.3), yields
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172
Ph, ke g-1 ~ Ak,

(5.12) ||uk,+J-1 - uh,k;ﬂj—lllB s A 1/2 [1-A C2 2]1/2
h»kl+J-1 ki n

1/2 172
Ak; Ci(h) €

172
h,k;+j-1

,j(h)

i
2 2,172

A [1-A lCvn ]

k

<Cy(h) & s(h), §=1,-*.q,

where, because of (5.2), C,(h) s 1 + d,v(h). (5.12) shows that the u’
1 i ky+j-1
satisfy estimates (5.4). (5.12), together with (3.28b) and (3.28b), shows
that the ui +5-1 satisfy estimates (5.5). They will not in general,
\F -
however, be orthonormal with respect to B, so that (2.6) may not be
satisfied.

It remains to modify the ué i.e., replace !
i

+J-1 R A AR

in such a way that (2.6) and (5.4) and (5.5) hold. We proceed by induction on

J- Let j=1. If we define ukl = “ﬁz%i; , wWe have "uk,"B = 1, so that

(2.8) 1is satisfied. From (5.12) we have

5 1/2
(5.13) I"uk|+J-1"B_1| = I[l * "ui1+J‘l B uh,k1+J‘1"B] -1
o Iz
‘ ““k,+j—1 h, k+4-1'B
= 2
< Cv ci,.j' \j=1n°"rqi’
and hence

“ukt - uh.kqu < “uk! - ui1“B + “uﬁl - uh,k;“B
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IA

|l|“{<i||3‘1| + ﬂ“{(, - “h,killg

+ Ei(h)ne

IA

Cve

i,1 i,1

< Ci(h)e1 (h),

1

where Ei(h) $ 1 +dw(h), which is (5.4) for J = 1. Using (3.9), (5.13),

and the fact that the u’ satisfy (5.5a) we get

k""‘j‘l

lup, = i lp = oy, = ui llp * e, = wy U

Sl U ST R &

A

Cve + Cype

i,1 i, 1

IA

Ci"(h)ei, (n),

1

which is (5.5a) for J = 1. A similar estimate establishes (5.56) for J = 1.
Next suppose j = 2. Let ukl = uki+1 - B(uk1+1’uki)uk1' Using (5.4)
for j =1, (5.5b) for Jj =1, (5.12), and the facts that (5.5b) holds for the

uii+J_1 and that ¢ Se we have

i1 i, 2’

(5.14) |B(ui‘+1,ukl)| < |B(uél+1-uh,kl+1,ukl)| + IB(uh’kl+1-uii+1,uki-uh'k‘)|
A LG ATRTLAR
= A, D0 7Y ke Y,
* Bl 1™ 01 Y, ", k)

* Akl*-l ID(ukl'Pl’ uki-uh, kl) |
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S A o o179, o1 - T, flp
* oy, 1%+ 1 g 1o 79y i, I
MESR] LATRY PN L S I
S PR SEVeY I
Ul LSRRI ] P L

R [ TPy R [ P

< Cvt:i’2 + Ci(h)r:i’2 Ci(h)ei,l + CvCi(h)z:i'1
< Cv(h)ci,z(h),
and hence
(5.15) “uklﬂ-u'kﬁl“B = IB(uk:+1'ukx)| < Cv(h)ci’z(h).
Now set U4y = u—#ﬁ— Combining (5.12), (5.13), and (5.15) we obtain
1 uk[*l B

"ukr"l-uh,kl*’l"B s "uki"’l-u;l‘.'l“B * Ill]';l.pl““lh’ki+1u8

= Mgt 1+ Bl
< l“ui|+1“B-1 |+ ZHUQ"I— uix*lnB

* "ui,ox- uh,kx~1"B

+ Cvey ,(h) + Cv €y o(h) + Ei(h)e (h)

i,2
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ﬂ

< Ci(h)el. (h),

2

where Ei(h) <1+ dw(h), wuhich is (5.4) for J = 2.

Now consider (5.5a) for Jj = 2. Using (5.13), (5.14), (5.15) and the

fact that the ui‘+J_1 satisfy (5.5) we have

““k,+1‘“h,k,+1“n s ““kl+1'“ﬁx+1nn * l“1’2,+1'“h,k,+1“0

-1/2

W I LY Pt IR VPR NpvpeY I

A

-1/2 -1/2

VR I EAPPY Pl IR Wl LA ey

A

A

* "“]I(“"l - uh,kl-leD * lB(u]ICl‘fl'ukl)llIukl“D

+ Cvei’2 + Cm:i'2 + Cnei’z + Cm:i’2

< Cinei'z(h).

which is (5.5a) for J = 2. The proof of (5.5b) is similar.
Continuing in this manner we get (2.8), (5.4), and (5.5) for j=1,---,qi.

This completes the proof. =

Theorem 5.2. For i1 =1,2,++« there is a function Ei(h) with

(5. 16) Ei(h) >1-dw(h), d; 0, constant,
such that

- 2 - L N ]
(5.17) (Ah,k,+J-1 - kkl)/Akl 2 Ci(h) ei,J(h)’ J=1, Ay
and
(5.18) uuh.k1+J-1 - uk,+J—1"B 2 C,(h) ci,J(h)' J= 1,000,

Proof. First consider (5.18) for J = 1. It is immediate that
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- I, 2 inf inf fJu-x|
Iuh’k‘ R ueM(Akl) xeS, B

lulg=1

= ei,l(h)'

Thus for Jj =1, (5.18) holds with Ci(h) = 1.

Now suppose J = 2. Since

Blug 904y ) = B(uil+1’Eh(Ak,)uh.k;)

B(Eh(kkl)ui‘+1.uh’kl)

B(uh, kg"‘l'uh, kx)
= 0,

we see that

"uh,k1+1_ui‘+1u8 2 inf inf Iu—qu = 81,2‘“"
ueM(Akl) xeSh

ﬂ“ﬂg=1
B(u' uh, k1 )=0

Combining this result with (5.13) and (5.15) we get
ll“h,k,+1'“k,+1"B 2 "“h,ki+1'“i,+1ue - ““i‘+1'“§,+1ns - u“ﬁ,+1'“k,+1"3
LAY " AR e PR | LAY Pt

2 (1-d1v)ei‘ (h),

2

which is (5.18) for Jj = 2. Continuing in this manner we get (5.18) for
J=1’o-o'qi.

Now consider (5.17). From Lemma 3.1, (5.5a), and (5.18) we see that

2
19, k4 5-1 - Yk, +3-10B

P)
A LY

( A /A

Akt g-1 " Pk PRy S
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e

u2
'uh.kl+J‘1 - k;+J-17D
|
Iuh.k,+J—1 D

A
. 5 7B,k +J-1

A

=2 2] 2
3

2
[(1~div) - Aklcin ci,J ,

which implies (5.17).

Remark 5.2. Note that in Theorems 5.1 and 5.2 we have shown that

(Ah,k,+J—1 - Akl)/hk’
82 (h) - 1 s diV(h)n
i,J
whereas in Theorems 4.1 and 4.2 we showed that
(Ah,J - Akl)/?\kl )

2 2 i
H(I—Ph)E(Akl)uh’J"B/"E(Akl)uh’JnB

and

( A )/A

Ah,J T %y Ky

-1
2 2
“(I—Ph)u"B/"u"B

s dinz(h).

for ue M(Akl) with Eh(Akl)u = uh,J .

Remarks §.3. For a computational illustration of the results in this section

see [3,4].
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