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1. Introduction

cI- this paper we-est blish some refined estisiates for the approximation

of the elgenvalues and eigenvectors of selfadjo nt eigenvalue problems by

finite element or, more generally, Galerkin medhods. Suppose i is an

elgenvalue of multiplicity q of a selfadJol t problem and let M(A) denote

the space of elgenvectors corresponding to Denote by 'lIB the energy

norm for the problem. Let {Sh} O<h be the family of finite dimensional

approximation spaces employed In the Galerkin method. A will be approximated

from above by q of the Galerkin approximate elgenvalues:

A :5 Ah  :. ._ kh - I.... " 
h, h ,qA

A a Ah~l Ah,q

Let u, with UIB = 1, denote an elgenvector corresponding to A, and let

Uh,l...Uh,q , with Uh, k1B = 1, denote the Galerkin eigenvectors

corresponding to A h,**' A, q respectively.

It is well-known that

(1.1) Ahk-A < C sup Inf iu-xD, , k = ,
ueM(A) XESh
IUHB=l

and that there is a uk = uk(h) E M(A), with ukIIB = 1, such that

(1.2) ih.k- <uk11 - C sup inf IIu-IIB , k =1,'',q.
UEM(A) XSh

IuIIB~1

In (7,8] Chatelln proved the following refinements of (1.1) and (1.2):

• • , I II I I I I I1



(1.3a) Oju - EhnuJB = r (a) In JuUXIB V u e MMX,

(1.3b) ilhk- Eukll ( b) id. MEukDB, k = 1--q

and

(1.3c) '1 Ahk - A)/AUB h Cc 'n ilEu,k-XHBP k
ZeSh

where E denotes the orthogonal projection of the energy space onto M(A)

and Eh the orthogonal projection onto span{%h,1 '...uh%} and where

rhM -- + 1 as h -- 0, for = a,b,c.

The purpose of this paper Is twofold. The first purpose Is to establish

an estimate for IrM- 1 We show that
lh

(1.4) lrh M- 11 d-q 2Ch),

where ii(h) Is a certain measure of the approximability property of (S h

for the definition of 71 see Section 3. This Is done in Section 4.

In [ 3] the authors established the estimate

(1.5) X - A= C inf inf Hu-xll 2
h,1 UEM(A) Xesh B

which is an Improvement over (1.1) and (1.3c) in the case of a multiple

eigenvalue. [3] also contains estimates for A h-A k=2,--q n o

l1h,k-ullB, k = 1,---,q, which are improvements of (1.1) and (1.3c) and of

(1.2) and (1.3a,b), respectively. The second purpose of the paper is to

present a simplified proof and an extension of the results in [3]. This Is

done in Section 5.
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In Section 2 we give a precise statement of class of elgenvalue problems

and approximation methods we will consider. Section 3 contains some back-

ground informat ion.

The 2n d author would like to thank Professor Hans F. Weinberger for

several helpful discussions on the topics in this paper.

2. Setting for the Problem

Suppose H is a real Hilbert space with inner product (.,.) and norm

'll, respectively, and suppose we are given two symmetric bilinear forms

B(u,v) and D(u,v) on H x H. B(u,v) is assumed to satisfy

(2.1) IB(u,v)l 5 C1 11ul ivi, V u,v e H

and

(2.2) Coilul2 < B(u,u), Vu E H, with C2 > 0.

It follows from (2.1) and (2.2) that (u,v)B = B(u,v) and RulIB = B(u,u)1/2

are equivalent to (u,v) and lug, respectively. Regarding D we assume

(2.3) 0 < D(u,u), V 0 * u e H

and that

(2.4) iuilD = D(u,u) 1/2

is compact with respect to U"1, i.e., from any sequence which Is bounded in

11'1, one can extract a subsequence which is Cauchy in 11.11D . For the

remainder of this paper we will use B(u,v) and 11'11B as the inner product

and norm on H and denote this space by HB.

We then consider the variationally formulated, selfadjoint eigenvalue

problem,
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(2.5) Seek A (real) and 0 * u e HB satisfying

B(u,v) = AD(u,v), V v e HB

Under the assumptions we have made, (2.5) has a sequence of elgenvalues

0 < A1 5 A2 : "' /. + W

and corresponding elgenvectors

u ,u2 ,***,

which can be chosen to satisfy

(2.6) B(ui*u j ) = AiD(u ,u) = Ij, ij=1,2,-"

The eigenvalues and eigenvectors satisfy the following well-known variational

principles:

B~u, u) -B( Uk'CUk)
(2.7) Ak = min =(uu) - uk k = 1,2,-*°k ueH. DFu D(u k u

B(u, u )=O
i=1,2,.-.,k-i

(the minimum principle)

and

B(u,u) max B(u,u)
k k maxDuu) uEUksp(u .,uk) -  , k=1,2,.-.VkCHB uEVk UU=pu,'

dim V k=k

(the minimum-maximum principle).

For any Ak  we let

(2.9) M = M(Ak ) = {u: u is an elgenvector of (2.5) corresponding to A }

We shall be interested in approximating the eigenpairs of (2.5) by

finite element or, more generally, Galerkin methods. Toward this end we
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suppose we are given a (one parameter) family hf finite dimensional

subspaces Sh c H, and we consider the elgenvalue problem,

(2.10) Seek Ah(real), 0 * uh e Sh satisfying

I B(Uh,v) = AhD(uh,v), V v ES h

The elgenpairs (Ahuh) of (2.10) are then viewed as approximations to the

eigenpairs (A.u) of (2.5). (2.10) is called the Galerkin method determined

by the subspaces {S h } for the approximation of the elgenvalues and eigen-

vectors of (2.5). We will also sometimes refer to problem (2.10) as the

Galerkin approximation of problem (2.5). (2.10) has a sequence of eigenvalues

0 < Ah,1  A h,2 .. h,N N = dim Sh

and corresponding eigenvectors

Uh, lUh,2'',Uh,N

which can be chosen to satisfy

(2.11) B(UuiUhj) = Ah, iD(uh,i uh,j) =61jIj=1,..,N"

The (Ah,jUh,j) are referred to as the approximate eigenpairs, while

(Aj, ui) are referred to as the exact elgenpairs of (2.5). Maximum and

minimum-maximum principles analogous to (2.7) and (2.8) hold for problem

(2.10); they are obtained from (2.7) and (2.8) by replacing HB by Sh and

letting k=l,-..,N. We will refer to them by (2.7 h ) and (2.8 h), respective-

ly. Using (2.7) and (2.8) together with (2.7 h ) and (2.8 h ) we see immediately

that

(2.12) Ak -< Ah,k' k = 1,''',N = dim Sh .

We will assume that the family {Sh} satisfies the approximability
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assumpt ion

(2.13) C(h) = Jul - 1  inf ju-IB --* 0 as h - 0, for each u e HB.
B XeSh

It follows from (2.7), (2.8), (2.7 h), (2.8 h), and (2.13) that

(2.14) Xh,k -- Xk as h --* O, for each k.

Finally we introduce

j uJ

the exact eigenvectors normalized in ID' and

Uhj = lih,j Uhij

the approximate eigenvectors normalized in V-D.

Throughout the paper, the specific elgenfunctions satisfying (2.6)

((2.11)) will be denoted by u (uh,j). Thus the uj(uh,j) are normalized in

11'B; uj(uhj) denotes the same elgenvectors, renormalized in 0'16 When we

denote an eigenpair by (A,u) we will not assume any particular normalization

on u. C,C l d, and dI will denote generic constants.
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3. Preliminary Results

In this section we present several preliminary results that will be used

in the sequel. For further information on elgenvalue problems we refer the

reader to [4,8].

a) An Identity Relating the Elienvalue and Elienvector Errors

Here we present an identity that relates the errors in eigenvalue and

eigenvector approximation.

Lemma 3.1. Suppose (A,u) is an elgenpair of (2.5), suppose w is any vector

in HB with WID = 1, and let A' = B(w,w). Then

(3.1) A'-A = ow-uln - AUw-u 2

Proof. By an easy calculation,

(3.2) IHw-UH 2 -u .2 2 2B(w,u) +Hu2

- ANw + 2A D(w,u) + Allull2

Now

B(v,u) = AD(v,u) V v e HB,

from which we get

(3.3) B(w,u) = AD(w,u)

and

(3.4) Au = B(u,u) = AD(u,u) = Allull 2

The result follows from (3.2)-(3.4) and the relations A' IwOl2 and

Io2

b) The Operators T and Th

Let
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HD = the completion of % with respect 'D.

HD  is a Hilbert space with inner product D and, since iD is assumed to

be compact with respect to A' HB is compactly imbedded in H.

(Alternatively, we could have assumed H. c HD, compactly, and let D(u,v) be

the inner product on HD.)

From RD and HB construct the "negative space" H_ = H- with norm

11-1-B Then HD c H-B compactly, and for v e HB, D(u,v) has a continuous

extension to u e HB so that D(u,v) is continuous on HB x H For

u e H-B' [unB = sup ]D~uv) For a complete discussion of this construc-
vEH

tion we refer to [5, pp.31-391.

Next we introduce the operators T,Th: HB --4 HB defined by

(3.5) Tf e HB

" B(Tf,v) = D(f,v), V v e HB,

(3.6) h h

"B(Thf,v) = D(f,v), V v e Sh.

T and Th are the solution and approximate solution operators for the

"boundary value" problem corresponding to the eigenvalue problem (2.5). It

follows immediately from (2.1), (2.2), and the fact that D(f,v) is continuous

on H-BX HB that T and Th are bounded from HB to HB . Since HB is

compactly imbedded in HD0 and HD  is compactly imbedded in HB, T is

compact from HB to fB, from RD to HD , and from H_, to HB. Th  is' of

course, also compact on H., H D , and HB. It is easily seen that T

and Th are selfadjoint on HD and that T is selfadjoint and positive

definite on HE (with respect to B(u,v)). It is immediate that T has

eigenvalues

8



= 22 =A -2  0

and elgenvectors

UlU 2 , "'',

and that Th  has elgenvalues

-1 - N = dim S
'h,1 h, 1 - > Ph,N Ah,N h'

and eigenvectors

h 1, ' u , N"

Let Ph be the orthogonal projection of HB onto Sh; then from (3.6) we

see that

Th = P hT.

Let

(3.7) ii(h) =II-(Ph)TI1 H = TH = Dsup hIn IITg-XI B

D B ~ fgGH D XEIglID= 1

and

(3.8) P(h) = H(I-Ph)TIIB T-ThII B B  sup n s ITg-Xj11

PgIIB=l

Several of the results In Sections 4 and 5 are stated in terms of the

qualities of i and v. We now present some properties of n and v.

Lemma 3.2. There are positive constants C1 and C2  such that

(3.9) C1P(h) 5 n(h) 5 C 2  .1

Proof. Since luRlD 5 CIuUB V u E HB  we have v(h) _< Cn(h), which is the
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first inequality in (3.9) with C = C Now consider the second inequality

in (3.9). From (3.5) and (3.6) we have

jTf 1B :S if11-B ' UT hf11B :5 Of 11-B

and hence

(3.10) IiT-ThlIH_B_-__ B 2

and from (3.8) we have

(3.11) IT-ThUIHB.H = W.

We now note that HB and HB  are connected by a scale of Hilbert spaces.

It thus follows from (3.10), (3.11), and a result on interpolation of linear

operators (5, pp. 240-242] that

1/2 1/2 1/2
7h(h) = ST-Th11HD_.)HB 5 C2 VI =Cu(h)

which is the second inequality in (3.9). 03

Lemma 3.3.

(3.12) lim n(h) = lim u(h) = 0
h-)0 h-)

Proof: Because of Lemma 3.2 it is sufficient to show that lim v(h) = 0.
h-)O

(2.13) implies that Ph --4 I pointwise on HB (in fact, (2.13) is equivalent

to this result). Since T:HB --4 HB is compact, T{geHB: 11gl{B = 1} is

relatively compact in HB , and lim v(h) = 0 follows from the standard result
h-40

that a family of operators that converges pointwise on a space converges

uniformly on a relatively compact subset. o
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From Lemma 3.2 we have. 2 < 0(v). It may happen that n = o(P). This

is shown by the following example.

Example

Let

H'(H~0, 1),0

1

B(u,v) = {a(x) u'v'dx,

0

and

1

D(u,v) = f u v dx,

0

where 0 < a : a(x) S $ < w. (H (0,1) is the Lth order Sobolev space and

H(O,1) = {u e H (0,1): u(O) = u(1) = 0}). For f e L2 (0,1), u = Tf is the

solution of

-(a(x)u')' = f(x), 0 < x < 1

u(O) = uCM) = 0.

First suppose Sh = the space of C0 , piecewise linear functions with

mesh size h that vanish at 0 and 1 and suppose a(x) is smooth. Then

2we easily see that v(h) - h and v(h) - h, so that W = o(v). Next

0
suppose Sh = the space of C , piecewise quadratic functions vanishing

2at 0 and 1. If a(x) is smooth we see that ii~h) -h and v(h) - h , so

n - v. If, on the other hand, a(x) is rough, specifically if a(x) is
111

such that g e H = L (0,1) implies u = Tf e H2 (0,1), but g e H = Ho(0,1)
D 2B 0

does not, in general, imply u e H(0,1) for a > 2, then n - h and v - h,

2
so =o(V).

From (2.13) we have
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H(I-Ph)UDB = cu(h) DUIB -' 0, V u E HB

The usual dually argument (cf. Aubin [11, Nitsche [10], and OganesJan-

Rukhovets [11]) shows that I(I-Ph)ulD S Cn(h)(I-Ph)UB and

U(I-Ph)ULB : CP(h) I(IPh)uIB. For the sake of completeness we include proofs

of these results.

Lemma 3.4.

(3.13a) II(I-Ph)UD 5 n(h) I(IPh)ugB, V u E HB

and

(3.13b) {(I-Ph)uoLB u (h)U(I-Ph)uIB, V u E ".

Proof Since Ph is the orthogonal projection of HB onto Sh , we have

B((I-Ph)u.Tg) = B((I-Ph )uTg-X), V X e Sh '

from which we get

(3.14) IB((I-Ph)uTg)I S f(I-Ph)UhlO Inf RITg-XB .
XGSh

From (3.5), the symmetry of D and B, and (3.14) we have

i(I-Ph)uHD = sup ID((I-Ph)ug) I

RgIID=l

sup IB((I-Ph )u,Tg)}gEHD

PIIDg=l

12



5 sup inf flTg-Xl,8 HCI-Ph)uHB

which Is (3.13a). Similarly,

IIIP h )ul_ su IN(-h~'

- sup inf DTg-xDB I(I-Ph)uIIB
ge% B xES h

which is (3.13b).0

e) Preliminary Elizenvector Estimates

For I = 1,2,-- let k Ibe the lowest Index of the I th distinct

eigenvalue of (2.5) and suppose A k1has multiplicity q I. Let E = ECA k

be the orthogonal projection of H B onto M(A k ) and let Eh = Eh(Ak,) be

the orthogonal projection of HBonto

(3.15) Mh : Mh(Aki) = the space of eigenvectors of (2.10)

corresponding to A h. k JJO--q1

Lemma 3.5 There is a constant C Isuch that

(3.16b) Du-E h(Ak1)uPD :5 CiD(I-Ph)uDD V u E M(Akl)I

13



and

(3. 16c) Iu-Eh( k)uIB 5 C 1 (I Ph)uI-B ,V u E M(A ),

Proof. Suppose the spaces HB H D' and H_,, the bilinear forms B and D,

and the operators T,T hoE. and Eh have been compJlexif led in the usual

*manner. Let rk be a circle in the complex plane centered at = XA

enclosing no other elgenvalues of T. Then for h sufficiently small,

A-IX h~1 q-1 but no other eigenvalues ofT
Ahi=hk1i-***'hk+qi-1 = hk1ql 1 ho

are contained In r ktand

(3.17a) EC ) = (z-T)- dz
ki 2i r i

and

(3.17b) E~A 1  i-j f (-T h dz.

These are the usual formulas for the spectral projections associated with T

and PkIand T h and Ahk'-"hk+11 respectively (cf.[9, Section X1.91).

Consider now the proof of (3.16a). Using (3.17) we have

(3.18) IHu-Eh(Ak,)uB =I[EC Aki) - Eh(Ak,)]ulB

11- [iy (z-T) 1- (z-Th -1u dzII

=-.1j (-Th (T-T )(z-T)- u dzIIB

TW1fr -1 h

= 1 N (z-Th (T Th dzN

14



<- [2 rad (rk)] sup I(z-Th-1 l(T-Th)uIIB
2wkj ZIEf h IH-H had B

O<h

=k sup (Z-Th) -IH4H i(I-Ph)ulB, V u E M(Xki).

O<h

In the last inequality we used the relation (T-Th)u = (I-Ph)TU = AkC(I-Ph)u.

Now PT-ThHBH B --" 0 implies

C, = pk , sup i(z-Th )- 1 <

0<h

so we have established (3.16a).

Now consider the proof of (3.16b). The above analysis is relative to

the space HB (the integrals in (3.17) converge in the operator norm on H.

and IT-Th1H BEMB ---" 0.). Since T and Th can also be considered on HD and

IT-ThIIUHD D -- 0, we can apply the same argument in HD . Note that the

formulas (3.17) will now define projections on HD  which are extensions to

HD of E and Eh. We thus obtain (cf. (3.18))

Iu-Eh(Ak )u1D -< Mki sup I(z-Th) H_4H% (I-Ph)UID, V u EM(Ak),

h>O

which is (3.16b).

The proof of (3.16c) is similar. o

Remark 3.1. It is essential in the Lemma 3.5 that h is sufficiently small,

meaning small in comparison with the gap between Ak and Ak-l' Ak+1"

If this gap is small then it can happen that the approximation eigenfunction
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uh,k, associated with A h,k, could be close to UkI11 or Uk,+i"

Lemma 3.5 is an eigenvector estimate since it provides an estimate for

u(an exact elgenvector) - Ehu(a linear combination of

approximate eigenvectors).

We note that (2.13) and (3.16) Imply that Eh(Ak ):M(Xk)--+Mh(Ak) is

one-to-one and onto for h sufficiently small.

We next prove a refinement of (3.16a) due to Chatelin (7,8]. (3.16a)

shows that

Iu-E h(Aki)uiB S 0(1), V u e M(A

IU-Ph ORB k

Chatelin showed that

Uhk)uIB -) 1, as h - O(see (1.3a));

Iu-PhUIB-

her argument, in fact, establishes

Lemma 3.6 (Chatelin). There is a constant d. such that
1

(3.19) 1 Hu-E hCAkdURB < I + d P(h), V u e M(ATU-PhUgB ik

where P(h) is defined in (3.8).

Proof. For the sake of completeness and to establish the form of the bound in

the second inequality in (3.19) we present a proof of this result.

Let Th = Ph T Ph = Th P Note that Th and Th have the same

nonzero elgenvalues, that Eh("k,) commutes with Th' and that Th is

selfadjoint with respect to B. For u e M(k,

16



(Thh - Ph, ki)Phu = PhT(Ph-I)u + (;k-;h, ki)Phu

and hence, since Eh( Ak) commutes with Th

(3.20) (Th - Ah,kl) ( IEh(AkI ))Phu = (I-Eh(Aki ) )PhT(Ph- I)u

+ (AkI-;hk)(I-Eh("Ak ))Phu.

Let Q be the orthogonal projection of HB onto N(Th), the null space

of Th" Then, any z e R(I-Eh(Aki)), the range of I-Eh(Aki), can be written

as
N

z = z B(z'Uh)tUh,t + Qz.

t=1
t'k i I'.-.k ki+qi- 1

Here we have used the orthogonal decomposition

HB = I(Th) N(Th)

= (T h) N(Th)

= span {uh , 1 P*UhN} o) N(Th)

= span {uh, i* .*uh N} 0 N(Th).

Thus

N

(Th-h, k, )z = B(z,h)(Ph,i k )Uh,t -Ih,k1Qz
'

f=l

t*k 1 ...,kl+q-1

and hence

N

(3.21) ll(Th - ,k)zll = z IB(z%) ll Cph kl2

t=l

k l,...,k I +q1

17



+ ''h,kil IQzIB

2: min {kph,j - h,kl 2, J=1,.'",N,j k1,*.,k i+q I-" IIh,kiI}2

x Z IB(z,uht)I BQH~

f=

main {I h kh,-kh1k2 1Ik, 1 2} IzI12, 1 = 1.I m {Ih, k. , 1  k2, I Ih, k+1 B , 1 ~ %, 1 }

mi 2. 2 1 Iz2
m I~h k uh kI , I!k B LIl~Ij

{min {I~k2- AkI 2 , I "k 121 1

32, as h--> 0,

from (3.21) we get

(3.22) f(T -LLk)zl : 61 UzIl, V z e 9Z(I-E h(Aki)) and

V small h,

18



where 81 > 0 and depends only on the gap between "k, and "k,-l' "k, + 1.

Combining (3.20), (3.22), and the fact that I-Eh(Ak ) and Ph are

orthogonal projections we have

I(I-Eh(Xk,)) PhUB 5 Si (I-Eh(xk)) PhT(Ph-I)u

+ (k-h,k )(I-Eh( k1)) PhUHB

_5 a {1T(Ph-I)2uB +

{# k1- , k11 I(I-Eh(Xk, ) ) PhUlB1,

from which we get

(3.23) J(I-Eh(A,,)) PhUIB < diIIT(Ph-I)UIHB..'B I(Ph-I)uIB

= diD(Ph-I)TI HBB (Ph-I)uB

In the last equality we used the fact that (P h-I) and T are selfadjoint

and that the norm of an operator and Its adjoint are equal.

(3.23) implies

Hf(I-Eh(1kI )Ph)u{1B - P(IPh)UIBI 5 I(I-Eh(Ak ))PhuB

-< d i ii ( Ph- I )T II H B_--H,3 1(P h- I ) u liB ,

and hence

(3.24) J(I-Eh(Ak )Ph)uIB - d (Ph)TI

We easily see that

19



J(I-P h)U1B 5 I(,-Eh(Lki))UUB 5 l(,-Eh(;k)Ph)UIlB ,

and thus

(3.25) 1 :I(IEh(Ak )uflB f(I-Eh(Ak )Ph)ulB
|(P h-I)UlB U(I-Ph )uB

Combining (3.24) and (3.25) we have

(IC-Eh(Xk 
))uiB

ICPhI)UB -1-FRCPh-IlU B

S dilI(h-I)TII _HB)H , V u G M (Ak).

Recalling that H(Ph-I)TIHBH = B (h) we obtain the desired result. o

Remarks 3.2. (3.19) should be compared with (4.21), which provides a stronger

estimate for certain special u's in M(X k).

Lemmas 3.5 and 3.6 show that starting from any exact eigenvector u we

can construct Eh(;k )u, a linear combination of approximate eigenvectors

that is close to u. One can also start with an approximate eigenvector and

construct a close exact elgenvector. We present another result of Chatelin

17.8]; (see (1.3b)).

Lemma 3.7 (Chatelin). There is a constant di such

(3.26) ,Uh'j - E(kUhJUB I d (h),
IPPhE(Aki)uh, j-E(Ak 1)Uh, B i

j = ki,.*,k 1 + q. - 1.
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Proof. Observing that E(X ki) Eh(Akj )P = (Eh(Xk ) Eh(Aki))P h + E(A k,)CI-Ph)

we obtain

iE(A k) Eh(k )P hI~ -, : E(A k)Eh(Ak)I B4' + lE( Ak, M-P h)IPH *

We easily see that

DE(A k,)(I-P h )Il =, I(I-P h)E(A k )D-

SU I(I-P h)E(A k,)uIB

-t k, sup I(I-P h )TE(A k)uIIB
ueHB

:5A kiv(h)

and by a slight modification of estimate (3.18) we have

Thus

(3.27) IVEA k ) Eh(k)PhH~ B H CP(h).

Next note that

I[Eh(Ak,)Ph - ECA k,) (uhij - E (Akl)uhj)

CE h (A k,)P h-I]IE(Ak i ) uhj

Hence, using (3.24) and (3.27), we have
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x I[Eh(Ak )Ph-I ]E(Aki )Uh, j1B

U[EhCAkl )P h- I ]EC, )Uh, JIIB
1- 1h'Ck, )Ph-ECL ;'T ) I U,

I h kl'HB-,H B

(l+div I CRP h- IM Ckt)Uh, JHB

1-Cu

which implies the second inequality in (3.26). The first is immediate.

d) Relation between Eigenvector Error in HIIB *ID' and 11-1B .

In subsection 3.b) we noted that n(I-Ph)uUD < 71(h) I(I-Ph)ul1B and

(I-Ph)uUlB < u(h) (I-Ph)ulB. In this subsection we establish similar

results for the elgenvector error.
For 1= 1,2,--. and J= -,k + let h

I k q C-1, ltu.i e M (A k satisfy

Eh(k,) u j = Uh j . We know from the discussion in Subsection 3.c) that

-h
u i exists and is unique for h small. From (3.13a) and (3. 16b) we have

Ouj - ,JIID = Iluj - Eh(Ak )ujlD

-h:5 C1 n(h)P(I-P h)u JOB

5 Ci I (h)lluJ-uhjllB

or

(3.28a) u - :5 C qh
flh - U~~II
Ou j - uh,,.11,B < ci()

It follows immediately (by scaling) that
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uh

(3. 28b) lux -
u Jh D :5 C1 (h)

u - JOB

where uh e M(Ak) satisfies Eh( )uh = h (Recall that IIjihlD = 1

and Iluj,htB = 1.) Similarly, from (3.13b) and (3.16c) we get

(3.-29a) - u C V(h)-hj - -. -I
OU- uh,JPB

and

juh_

(3.29b) u - UhJ 1 B S C (h).juh _l~ 
)

IUj - uh,jB

By Lemma 3. 1 we know that

(3.30) Ah - Ak u-~~l -J12I 2A

=, k U-uh, jlB -Ak,lu ,JIlD
lu--'J12 j- flU. - uh. D V U E M(A k.

IU~UJI~{l..~ -hJI

As u varies over MCA ) it is clear from (3.30) that u - .JI is
ki fu - 2

minimized for that u0 that minimizes Du-Uh, jBI , namely for u0 = E(Ak) Uh,j.

Thus we have

IIE(Ak ) Uh , - , l h _ h ID

(3.31a) k, JJIID < _ < C 7?(h).
IIE(k,)Uh, J-hJIB IIU - hJIIB <

We, of course, also get
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(3.31b) IIE(A k )uhj-,JIDIIE(A k, )u, J-uh, J IB

Estimates (3.31) are similar to (3.28), but involve a different pairing of

approximate and exact eigenvectors.

Remarks 3.4. Pierce and Varga [121 proved eigenvector estimates in 11-11D and

Babu~ka and Osborn [6] established them in 11.1-B
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4. Precise Asymptotic Estimates for the Elgenvalue and Eizenvector Error

In this section we use the notation introduced in Subsection 3.c), i.e.,

we let k Ibe the lowest Index of the I thdistinct elgenvalue of (2.5) and

suppose A khas multiplicity q.

a) The Eizenvalue Error

For 1=1,2,--- and J=k 1 '..k I q C 1 fixed, Chatelln [7,8] has

shown that

(4.1) (Ah, JA k, / k1  -- 1, as h ---)0 (cf. 1. 3c))

We now prove a refinement of (4.1) (cf'.(i.3c) and (1.4))

Theorem 4.1. For I = 1,2,--- there is a constant d I such that

(42)(A hJAk )/A kI- 1:5dV2(hJk kq
(42 2~ k1  k1 1
II(I-P hEMA k,)uh,JUB / HE( Akk)uh, JIB~-1 1 ~() ~.

where n(h) is defined In (3.7).

Proof Let u =ECA k,)u h~-We have

(4.3) (Mukl-igh~J)B(u~uhj) =B(Tu, uh~j -B(uT h%,J)

= B(u,(T-T h )%J )

= B(TI-P h)uuhj)

= B(TI-P h)u~u) + BTI-.P h )Uu hJu)
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= IkBI-Ph)U,(I-Ph)U) + D((I-Ph)u Uh,j-u).

Using the fact that B(uuh, j ) = B(uE(Ak)Uh j ) = UuIB (4.3) can be

written as

A A lul - I(I-Ph A. + D( (IPh)uPu. -u).

h, j ki  k

Dividing by II(I-Ph)UIIB , multiplying by Ah,j , and subtracting 1 from both

sides we find

(Ah, JAk )/Aki Ah iA + A D((I-Ph) uUhj-u)

Il(IPh)ull2 / Ilul 'k 1  h,j I(I-Ph )ull2

From (4.1) or the standard, well known results for elgenvalue approxima-

tion we have

(4.5) Ah Ak d[ sup (I-Ph)UHB]

ki  ueM(Ak

IuHB=1

d I sup II(I-Ph)TullB] 
2

UEM(A k

_< d 1 2 (h), J = ki,'.',k + q-l,

from (3.13a) we have

(4.6) II(I-P h)UlD 5 7?(h) ll(,-ph)ullB,

and from (3.26) and (3.31b) we have

(4.7) IluhJ-UUD = IJhJ-E(Ak 1 )%, jIID
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< d i I(h)IUh, j-E(Ak)Uh, jAB

= dI 71(h) I(I-Ph)UDB

Combining (4.4) - (4.7) we obtain

I (AhJAk )/ k, - 1 1 2 (h) + AhjID((IPh)u'uhjuI

:5 d 72 + Ah, J (I-Ph)uDI1uh, j-UID

< O(I-Ph U

-< dt ,2

the desired result. 0

Remark 4.1. Formula (4.4) is due to Chatelin [5,61, and is used by her to

prove (4.1). Using eigenvector estimates in I1*B ((3.26)) one can prove

S(A hJ- ki )/;k f - 1S d u(h).
R(I-Ph)E()ukhj Q/ (ki)Uh,J2i

(4.2), which was proved using eigenvector estimates in *'1D ((3.31b) together

with (3.26)), is an improvement over this result since, as we saw in

2Subsection 3.b), i may be of higher order than i'.

Theorem 4.1 relates the eigenvalue error (Ah,j-Ak )/A k to II(I-Ph)UIIB,

with u = E(A k,)Uh j . We now prove a result that relates the elgenvalue error

to (I-Ph)uIIB / HuII2 , where u e M(Aki) and Eh(Ak ,) u = Uhj I.e.,

h
u = Uj as defined in Subsection 3.d).
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Theorem 4.2. For i =i,2,--- there is a constant d Isuch that

(4.8) (A h,jixi)'A ki -_1 :5 d 2 (h), J= k1  k* + q1 1+

where u e M(A ki) satisfies Eh(AkI)u =-hj

Proof. With u e M(A k,) satisfying Eh(Ak,)u = uh~j we have

(IsLkiPhj) B (u, uh, ) =B(Tu 3 , , ) - B(u T h~i)

=B(TI-P h)u'u)

+ BMTI-P h)u'uh j-u)

- INf(I-Ph)uJI2

+ B(TI-P h)uui-u).

from which we get, as above,

(.)(A h-A k,)/A k -A A D((I-P u'hj)

I(I-PhuI 2 kIN I(-
h~1B/ IEh(?Lk,)uuB AkhJ I(~h)uIIB

It follows from (3. 13a) and (3.16b) that

(4. 10) Hhj- UIID 5 di'hl(1-Ph)uIIB

Combining (4.5), (4.6), (4.9), and (4.10) we obtain

(A h, JA -i)Ak11 5 di 2 (h),

I lIh)uIB / IEh(AkI)uAlB

from which we get
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G ki i U I B 2 k II_ _ __HU I

(4.11) h j2 2 B 2 1/A d _02 (h) Bl 2
I-Ph )UlB / UufB lc(k,)ul B l;k uHB

Since u = Cu-Eh(Ak )u) + Eh(kk)u is an orthogonal decomposition in HB we

have

lull, = IluEh(?Lk,)uIB I~h1 1iUB

and hence

(4.12) u =1+ ;u k uI
l&C(;k,)ullB h ( k, Bn,

Using (3.16a) and (2.13) we see that

2
(4.13)HU-E h k, ul B u h

: C 2 (h).

Combining (4.11), (4.12), and (4.13) we get the desired result. I

b) The Eigenvector Error

Let I = 1,2,... and let j = k i''',kI + q - 1 be fixed and consider

Uhj and E(Ak )uh,j  (recall that Iluh,iJ1D = 1). We showed in Subsection

3.d) (see (3.31a)) that

(4.14) IIEC ki ) u ,,.F uh,,j11D I_ di,1h)llECX , ) ,,h ,jlJIB ,

From Lemma 3.1 we have

(4.15) A h,j - Ak, = IIE(;k)uh,j-Uh,JIIB- A ki IMk,)h,j-uhJD

Combining (4.14) and (4.15) we obtain

A h, j -A kt -> JMki)u h, j-Uh,JB (1-di?2 (h )),
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which implies

IV -A(4.16) k- 2hju.1B<hj k
I(I-Ph)E(A - 2 - Mh)E(k)uh,JIIB (1-d ' 2 )

h ki)uh,JIB fl(Ph A)u B

Since uhij = E( Xk )%hJ + (uhj-E( Ak1 ) uJ) is an orthogonal decomposition

in HD9 we have

1 J= llE(Ak 1) .j2l + pl- j E(O k,) jl2

From this, (3.26), and (4.14) we get

2 IE( k ( +d1 ,i ).(4.17) 1 :5 UE.C k N JID2 + d -0211C(Ph-)Ck MAl =iuJI (1kd

Now, combining (4.2), (4.16), and (4.17) we have

_E(A)u-uII < h,j -k )/Xk  1+di 
4 1 1/2

2 i2

I(I-Ph)EXk ) Ih j P I-Ph)EM )h 'J12 /JECk)1hd 72

{(1 4 1/2

1-d1 1 2

[1 + d 2 1/2

~ 1 + d i IW
< 1 + di1 ]2(h).

We summarize this (cf. (1.3b) and (1.4)) in

Theorem 4.3. For i = 1,2,-.. there is a constant di such that

IIE(A k) -) hju IIB 2
(4.18) 1 S k 1 + di(h), j = k .. I k+qi-

Uh,J can be replaced by uh,J  in (4.18).
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Remark 4.2 (4.18) is stronger than (3.26) since V2 may be of higher order

than v.

Next consider Uhi and u (recall that u e M(A ) satisfiesuhJ J k

Eh;kik)U J = uh ' j ) " We know (see (3.28a)) that

-h - l-h ,jIB

iulj - uh,JUD 5 di7(h) Uuj -

This, together with Lemma 3.1, yields

-h - -h 22-h-h

which implies

-Uh I12 A -A
(4.19) -h B Sh,j k1

-h 2 hW(-P h)UJOB  W(-P hlUJI B (1-di1 -2)

(A ,Ak )/A ki

-h 2

-h 2 (i-d1r)
}U JOB

Finally, combining (4.8) and (4.19) we have

'u-HjB (.1+di 2 11/

h - dn21/2

1 < -uPh)IB '+
1 P ),.-1i 2

2
< 1 + di17

This result (cf. (1.3a) and (1.4)) and the related result (3.19) are

summarized in
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Theorem 4.4. For I = 1,2,''' there is a constent d such that

Iu h_-I - Ii~h(A N -h

(4.20) 1 Ju O 5E'',UI 5 1+d 12()

-h h

(4.20) remains valid if uh,j is replaced by Uh,J  and u.j by u.. There is

a constant d such that

gu-Eh k)UlB
(4.21) 1 < I + dI (h), for all u e MA k).

DIu(-Ph)u llB

Remark 4.3. We have restated (3.19) in (4.21) because it is related to (4.20)

and it is the strongest known result of its specific type. It should be noted

that (4.21) is true for all u E M(X k), whereas (4.20) is valid only for

u =J, J = k,'...,k i + q1-1. However, for these u's, (4.20) is stronger

than (4.21).

Remark 4.4 See [2,4] for a numerical study of the reliability of the results

of this section - which are of an asymptotic nature - as a guide to practical

computations - which often takes place in the preasymptotic phase.

5. An Additional Result for Multiple Eiaenvalues

Theorem 4.1 shows that

inf IE(AkI)Uhk 1 - 2II

A - A ZESh
Ah,k A ki l CE(A 112IICk, )uh,k BU

In (3] Babutka and Osborn proved the stronger result (cf. (1.5))
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A - A 5 C inf inf u-x 2

h,k k UEM(A k ) XeSh
kuO --

(as well as similar estimates for Ah,j - AkP J = kI + 1,-..,k + qt-1, and

for the elgenvector errors), which shows that A h,k, - A kt the error in the

approximate eigenvalue closest to Ak. is governed by the approximability of

the exact elgenvector corresponding to A k that can be best approximated by

S h  In this section we give a simplified proof of the results of [3], which

in addition provides information on C (the results in [31 only established

that C is a constant), and estimate the elgenvector error in 1I'1I) and

I1" 11-BI

As above, for I = 1,2,-.. suppose kI is the lowest index of the 1th

distinct elgenvalue of (2.5) and let q be its multiplicity, i.e., suppose

k +q _1 =A 1 kA <Aik1 =A k =+... =k k <+q A =I k +1

Let

(5.1) cj(h) = nC Inf Ilzu-xB
uEM(ki ) XESh

B~,IIUlIBIB(UUh,k)= ... =B(uuh, k1+J-2) = 0

inf C uh)
uM(A uk

B hu 11B--1 =,-q,
h,k) .... B(UUh,k+J2)=, j,...,q,

where M(Ak) Is defined In (2.9). The restrictions B(U, Uh,ki)

=.... B(u, uh,k+J2) = 0 are considered vacous If j = 1. We note that they

are equivalent to

B(uE(Ak1 )uh,t) = 0, =k, ... ,ki + j - 2
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and to

B(Eh(k)UUu hj) = 0, ... . k i + j - 2.

Theorem 5.1 (cf. (1.5)) For I = 1,2,... there is a function C (h) and a

constant CV with

(5.2) Ci(h) < 1 + d Iv(h), di = constant,

such that

(5.3) (A - A k)/ A i(h ) ci 2(h), J= .qi'

and such that the eigenvectors ulu 2,*- of (2.5) can be chosen so that

(2.6) is satisfied and such that

(5.4) l"Uh,k 1 +j-l - Uk1 +j-lPB : CI(h) c lj(h), J=1,---,q,

(5.5a) lUh, kI+j_- - Uk-+jII11s < Ci7(h)ci'j(h), J=1,..,qi,

and

(5.5b) Nuh, k+j1 - Uk +j 11B < CIP(h)cij (h), J=1,-,ql,

where v(h) and n(h) are defined in (3.7) and (3.8).

Proof. Let I and J, with I = 1,2,-** and j = 1,---,qi be fixed. Note

that cu(h) A kiP(h), V u E M(Ak) and clij(h) Ak uth), J = 1,,-,q .

Let u E M(Xk) with B(U, Uh,k) =.-.= B(u, uhk+J_2 ) = 0 and lulIB = 1.

Now apply (2 .7h and Lemma 3.1 with (A,u) = kit uEh(Ak)UJ and

w Eh( k)u
w=nklJ uTi D . Since

B(Eh(ki)u, uh,t) = 0, -1,... , ki-1

by the orthogonality of the approximate elgenvectors, and
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B( Eh (Ak1) ) ='h B(u, uh,) 0, t =i -* ,k1+J-2

by the assumption on U, we have

(5.6) A hkj--A ki B [ Eh(Xki)u -Eh(Ak 1 )u 1 A,

- Eh(Ak)uND - lEh(Ak)uuDII

lEh(A 2A2

il A(Aku)uluIIBl (h+dk)Du-PhuD

I ll~(Ak~lD -Ak
112! 8 IhA~II IID

g Ihh(Akku)uII

From (3.1h) we hhve

whcsows th.3)atd(.6)weseta

AkA~(AkuIS [ Eh(Ak,)uIID

(5.8) ~ ~ ~ ~ 1 ~( + dne (h) .
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51 + dn i'.

Combining (5.6) - (5.8) we get

(5.9) (A -A )/;k S (I + dy) 2 (1+d) Iu-PupI2
h,ki+j-l k1  k,

S(1 + du') Iu-PhuHB2

Now since (5.9) holds for all u e M(A k,) with B(u~uhLt) =0,

t kl--,k +J2,and lIull, 1, we have

r .2

(Ah,ki+j-l1 ki / k1  (1+du(h)) in n Iuxl

B(u,%hk, )= ...=B(u, uhk+J..2)=0

-(1+d P(h))c2()

which Is (5.3) with C I(h) = 1+d I (h). Thus (5.2) and (5.3) have both been

proved.

Remark 5.1. (2.7 h3 and Lemma 3.1 lead to a particularly simple proof of a

result slightly weaker than (5.3) for the case I =j 1. It follows

immediately from these two results that

A A :5 -~h"LA,
h,i1 1 1

IIphu-N B AHphu-UID

Ihu D~

2

:5 ~huuQBV u E M(A

36



and hence

IPhU-UlB2
Gk -A )/A 11if h B 5 h ,

h,1 1 1 UEBH(A1 1 AIPhuID < C h h

where C(h) -~1.

Now consider (5.4) and (5.5). Let i = 1.2,--- and J=1...,q 1  be

fixed. Let %,kj+J-l e M(A'k,) satisfy Ehl(>'ki)!i 1+j.. = 1h,k,+J-lNuk+Jl-1

Ukihj.., where hk+... was introduced in Subsection 3.d)). Applying Lemma

3.1 with

(A, U) = l and w uhk=-

we get

(5.10) Ahk+1- A ~ = hk+- l IiJ- " + 112

h~k~j- k 11H%,kJ-1D - iuh,k+J11D B1

kI Oh,k+J-11 Nu;k+ 1 [ D

From (3.28b) we have

(5.11) ilu~i+j- - U hki+J -1IID :5 C70()IRu +j 1 - uh,k+j 1IlB

(5.10) and (5.11) yield

A - A >[ l-A k C i? (h)] 2"~1+-

h~k1 +J-1 kj+J11

which, together with (2.11), (2.12), and (5.3), yields
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(5.12) Ik 
l+jI- k k )1/2

II.1u+J-1 Uhki+j.1IIB A (2 -AC 1/2
h, k+J-1 k ]

1/2 1/2Ai C (h) '  (h)kc1  i i,j

x1/2 +J-1 [ lAkC2 2 1/2
h,k 1 +- ki

< Ch) eijc (h), j =, ,

where, because of (5.2), C (h) 5 1 + d v(h). (5.12) shows that the u'I i k1+J-1

satisfy estimates (5.4). (5.12), together with (3.28b) and (3.29b), shows

that the u satisfy estimates (5.5). They will not in general,

however, be orthonormal with respect to B, so that (2.6) may not be

satisfied.

It remains to modify the u _, i.e., replace u' by u
1J1k 1+j-1 k1+J-1'

in such a way that (2.6) and (5.4) and (5.5) hold. We proceed by induction on

j. Let j = 1. If we define uk --=U7Ul -
, we have Ijuk,..B = 1, so that
k 11B

(2.6) is satisfied. From (5.12) we have

I = I[' + Iul -u 2]1/2

S l +Jl- l IB 11I k,+J-I Uh,kj+j-1IIB - ij

< llu+j-i - Uh,k,+j-11lB
2

-< CV C J=t,..-,q

and hence

luk, - uh, kIB - Nluk, - uk, 11, + luk', - uh, k, IB
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I IIKIIB-11 + Ki'k - "h,k1B

< CVC, + :i(h) i,1

< C i(he i(h),

where C (h) - 1 + d u(h), which is (5.4) for j = 1. Using (3.9), (5.13),

and the fact that the u' satisfy (5.5a) we getk1+j-1

IIk, - h, k, HD :- Iluk, - u, HD + 11K, - uh, k, 11D

=A-1

k,1 IIkIB-II + 1K, - uh,klID

< CVCil + C1Cill

<5 Ci -q(h) ci'l (h),

which is (5.Sa) for j = 1. A similar estimate establishes (5.56) for j = 1.

Next suppose j = 2. Let u K4i - B(qi+luk)uk. Using (5.4)

for j = 1, (5.5b) for j = 1, (5.12), and the facts that (5.5b) holds for the

ki+j-l and that c - 2'wh

(5.14) IB(Uk+ 1 uk)I I B(Uki~+ lUh, uk)I + B(uhtk++i-u l+iuk, Uh1k' 1)

+ 'B(u+, uk-uh,k

= .ki ID(u ,+l-u,k+luk, )I

+ IB(h, k,+l-qu,+luk-uh, k)I

+ Aki+1 JD(u k i+1 Ukj-uh,k,) I
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Akluk+1%Uk, 1 lB IukIB

+ l%,k 1 +l-u ,1 fB Dlk lUh, kilB

+ Ak hilUk 10HB KULki-Ih,kiillB

:5 A kllU +j1%hk, 1PB

" II%,k1 +l - ukI+1IIB "'uk 1 %U,kIIB

" A kl+ j1+ki1 h, k14.iIIB] ""uk1 %, ki 1 "-B

< CL'e 1 2 +C(h)i2C(~~~ u~(~~

and hence

(5.15) fllk,+1uk +111B = IB(u 1+l,uk1 )I :5 CL(h)c 1 2 (h).

Now set Uk 1+1 = " 1 +1 Combining (5.12), (5.13), and (5.15) we obtain

luk+l% hk 1 +l1"B :5 luk+lu;+lIB + IU1+l-uh k1+l"B

= I I~k IBII + lu;, 1, "i, k, 1i B

:5 IlK JIB-1 I + 2I1u ,+,- tli..1B

+ ""k 1 +i- %,k+ilB

+Cu 1,2 (h) +Cu' c 12(h) + C I(W 1, (h)
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< C Ih)e ,2(h),

where C I(h) 5 1 + d IP(h), which is (5.4) for J = 2.

Now consider (5.5a) for j = 2. Using (5.13), (5.14), (5.15) and the

fact that the u' satisfy (5.5) we have

IIk,+-Uh,k,+1ID -" uk,+1-' ,+l D + KI+1%ki+1ID

k, I u;,+lilB-11 + liUk+1luh,k+1lD

A -1/2 ,- + - 12" 1B
k, IUk,+l1B I 1 + >k,ll+-Uili

+ 1q,+1 - Uh,k,+1D + IB(q,+ uk,) Illuk 1D

+ Cve1,2 + Cuc1,2 + C7C 1 2 + Cuc1,2

5Ci11,2 (h),

which is (5.5a) for J = 2. The proof of (5.5b) is similar.

Continuing in this manner we get (2.6), (5.4), and (5.5) for j=1,-..,q.

This completes the proof. a

Theorem 5.2. For i = 1,2,-.. there is a function C I(h) with

(5.16) C (h) -> 1 -d iP(h), d >0 , constant,

such that

(5.17) hk+J-i - -> Ci(h) ci() ' = ' qi

and

(5.18) Ouh,k+Jl - Uk +J-l1B CI(h) c ij(h), J = 1,''',q i

Proof. First consider (5.18) for J = 1. It is immediate that
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Iuhki - ukIB ' nf iflf IU-XIB
ueH(k ) xes h

a~ =e (h).

Thus for J = 1, (5.18) holds with C I(h) = 1.

Now suppose j= 2. Since

B( U,+lph~k B(u!q+lEh(Ak)hk,)

=B( Eh(>Ak1 )uq+l hk,)

=B( %hk,+l'hk,)

=0,

we see that

Iuhk,+1UkI+1IB 'n in I'-x OB = ei (h),
UEM(x ki) xes h1,

fluIB1l
B~u, "h, k1 )=O

Combining this result with (5.13) and (5.15) we get

IIuhkI+iuk+1 1B Iuhk 1+l-q1 +IIB - flui~ 1-u;,1fl8  Pflukk1B

guhl,ki+luk, 1+aIB - 2qiu1+l-u;,+lDB - qII~ +lhB1Il

2: 1- I ~c1,2 ( )

which Is (5.18) for j = 2. Continuing In this manner we get (5.18) for

J=1, *..,q I

Now consider (5.17). From Lemma 3.1, (5.5a), and (5.18) we see that

(X x )/A =It'h,kl4.J-1 - uk1 +J-11B
h,kj+j-1 k, ki Ak1  2J..I

42



NIUhk 1 +j-1 - Uki+J-1HD

2
1Uh, k, +J- 1 ID

h, kl J-1 (ld 2 E2 2) 2

> Ak, - XkliT ICi,J

which implies (5.17).

Remark 5.2. Note that in Theorems 5.1 and 5.2 we have shown that

(A h,k 1 - A k )/Ak1 2k 1  k- I d di(h),

,2 (h)et,j

whereas in Theorems 4.1 and 4.2 we showed that

O h,j - xki )/ki 1 22 2- <- d 2 h)
I( I-Ph)E;k k, )Uh, jl /jjE ; k, }h, j OB

and

(A h.j -A k)/Ak1
2 - 1 <S d ' (h ) ,I(- h 2 21 k

I-~Ph)uIIB/Hud

for u e M(A k) with Ehk(A )u = Uh,j

Remarks 5.3. For a computational illustration of the results in this sectior.

see [3,4].
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The Laboratory for Numerical analysis is an integral part of the
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

o To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

o To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

o To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

o To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

o To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor I. Babu'ka, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.


