Primary Eye Irritation Potential of Diethyleneglycol Dinitrate (DEGDN) in Rabbits

Gerald F. S. Hiatt, PhD
and
Don W. Korte, Jr., PhD, MAJ, MSC

MAMMALIAN TOXICOLOGY BRANCH
DIVISION OF TOXICOLOGY

Distribution Statement A
Approved for public release; Distribution Unlimited

October 1968

Toxicology Series: 153

LETTERMAN ARMY INSTITUTE OF RESEARCH
PRESIDIO OF SAN FRANCISCO, CALIFORNIA 94129
Primary Eye Irritation Potential of Diethyleneglycol Dinitrate (DEGDN) in Rabbits (Toxicology Series 153)--Hiatt and Korte

This document has been approved for public release and sale; its distribution is unlimited.

Destroy this report when it is no longer needed. Do not return to the originator.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

In conducting the research described in this report, the investigation adhered to the "Guide for the Care and Use of Laboratory Animals," as promulgated by the Committee on Revision of the Guide for Laboratory Animal Facilities and Care, Institute of Laboratory Animal Resources, National Research Council.

This material has been reviewed by Letterman Army Institute of Research and there is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense. (AR 360-5)

Edwin S. Beatrice (date)
COL, MC
Commanding
Primary Eye irritation Potential of Diethyleneglycol Dinitrate (DEGDN) in Rabbits

Gerald F.S. Hiatt and Don W. Korte, Jr.

The potential for diethyleneglycol dinitrate (DEGDN) to produce primary eye irritation was evaluated in six male New Zealand White rabbits by using a modified Draize method. DEGDN produced no response indicative of a potential to cause irritation upon direct contact with the eye. Slight iridal vasodilation (one of six rabbits) and slight conjunctival vasodilation and swelling, indicative of mild inflammation, (three of six rabbits) were the most serious responses observed. DEGDN was classified as a non-irritant under conditions of this study.
ABSTRACT

The potential for diethyleneglycol dinitrate (DEGDN) to produce primary eye irritation was evaluated in six male New Zealand White rabbits by using a modified Draize method. DEGDN produced no response indicative of a potential to cause irritation upon direct contact with the eye. Slight iridial vasodilation (one of six rabbits) and slight conjunctival vasodilation and swelling, indicative of mild inflammation, (three of six rabbits) were the most serious responses observed. DEGDN was classified as a non-irritant under conditions of this study.

Key Words: Diethyleneglycol dinitrate, DEGDN, Ocular Irritation, Mammalian Toxicology, Rabbits
PREFACE

TYPE REPORT: Primary Eye Irritation GLP Study Report

TESTING FACILITY:

US Army Medical Research and Development Command
Letterman Army Institute of Research
Presidio of San Francisco, CA 94129-6800

SPONSOR:

US Army Medical Research and Development Command
US Army Biomedical Research and Development Laboratory
Fort Detrick, Maryland 21701-5010
Project Officer: Gunda Reddy, PhD

PROJECT/WORK UNIT/APC: 3E162720A835/180/TLB0

GLP STUDY NUMBER: 85002

STUDY DIRECTOR: MAJ Don W. Korte Jr, PhD, MSC

PRINCIPAL INVESTIGATOR: Gerald F.S. Hiatt, PhD

REPORT AND DATA MANAGEMENT: A copy of the final report, study protocol, retired SOPs, raw data, analytical, stability, and purity data of the test compound, and an aliquot of the test compound will be retained in the LAIR Archives.

TEST SUBSTANCE: Diethyleneglycol dinitrate (DEGDN)

INCLUSIVE STUDY DATES: 22 Aug - 24 Sep 85

OBJECTIVE: The objective of this study was to determine the primary eye irritation potential of DEGDN in male New Zealand White rabbits.
ACKNOWLEDGMENTS

SSG James D. Justus, SP4 James J. Fischer, and SP4 Theresa I. Polk provided technical assistance in the conduct of the study. Michael J. Pearce provided assistance in the preparation of the report. SP4 Scott L. Schwebe, Richard D. Spieler, Obie B. Goodrich, and Diane Arevalo provided care for the animals. Colleen S. Kamiyama and Ann L. Wilkinson provided administrative and clerical support during the performance of this study and preparation of the report. MAJ Larry D. Brown, VC, served as the LAIR director of the research project for the acute toxicity studies of DEGPN.
SIGNATURES OF PRINCIPAL SCIENTISTS AND MANAGERS INVOLVED IN THE STUDY:

We, the undersigned, declare that GLP Study 85002 was performed under our supervision, according to the procedures described herein, and that this report is an accurate record of the results obtained.

DON W. KORTE JR., PhD / DATE
MAJ, MSC
Study Director

GERALD F.S. HIATT, PhD / DATE
DAC
Principal Investigator

CONRAD WHEELER, PhD / DATE
DAC
Analytical Chemist
MEMORANDUM FOR RECORD

SUBJECT: GLP Compliance for GLP Study 85002

1. This is to certify that in relation to LAIR GLP Study 85002, the following inspections were made:

 - 05 March 1988 - Protocol Review
 - 10 September 1988 - Dosing
 - 11 September 1988 - 24-hr Observations

2. The institute report entitled "Primary Eye Irritation Potential of Diethyleneglycol Dinitrate (DEGDN) in Rabbits," Toxicology Series 153, was audited on 14 October 1988.

 CAROLYN M. LEWIS
 Chief, Quality Assurance
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Preface</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>iv</td>
</tr>
<tr>
<td>Signatures of Principal Scientists</td>
<td>v</td>
</tr>
<tr>
<td>Report of Quality Assurance Unit</td>
<td>vi</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Objective of Study</td>
<td>1</td>
</tr>
<tr>
<td>MATERIALS</td>
<td>1</td>
</tr>
<tr>
<td>Test Substance</td>
<td>1</td>
</tr>
<tr>
<td>Animal Data</td>
<td>2</td>
</tr>
<tr>
<td>Husbandry</td>
<td>2</td>
</tr>
<tr>
<td>METHODS</td>
<td>2</td>
</tr>
<tr>
<td>Group Assignment/Acclimation</td>
<td>2</td>
</tr>
<tr>
<td>Dosage Levels and Administration</td>
<td>2</td>
</tr>
<tr>
<td>Compound Preparation</td>
<td>3</td>
</tr>
<tr>
<td>Test Procedures</td>
<td>3</td>
</tr>
<tr>
<td>Ocular Examination/Grading</td>
<td>3</td>
</tr>
<tr>
<td>Duration of Study</td>
<td>3</td>
</tr>
<tr>
<td>Changes/Deviations</td>
<td>5</td>
</tr>
<tr>
<td>Storage of the Raw Data and Final Report</td>
<td>5</td>
</tr>
<tr>
<td>RESULTS</td>
<td>5</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>7</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>7</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>8</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (cont.)

APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Chemical Data</td>
<td>10</td>
</tr>
<tr>
<td>B.</td>
<td>Animal Data</td>
<td>13</td>
</tr>
<tr>
<td>C.</td>
<td>Historical Listing of Study Events</td>
<td>14</td>
</tr>
<tr>
<td>D.</td>
<td>Tabular Scoring Data</td>
<td>16</td>
</tr>
<tr>
<td>E.</td>
<td>Summary of Ocular Observations</td>
<td>21</td>
</tr>
<tr>
<td>F.</td>
<td>Body Weight Data</td>
<td>22</td>
</tr>
<tr>
<td>G.</td>
<td>Pathology Report</td>
<td>23</td>
</tr>
</tbody>
</table>

OFFICIAL DISTRIBUTION LIST

<table>
<thead>
<tr>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>
INTRODUCTION

The Department of Defense is considering the use of either diethyleneglycol dinitrate (DEGDN), triethyleneglycol dinitrate (TEGDN), or trimethylolethane trinitrate (TMETN) as a replacement for nitroglycerin in new propellant formulations. However, considerable gaps in the toxicology data of the compounds were identified during a review of their health effects (1) conducted for the US Army Biomedical Research and Development Laboratory (USABRDL). Consequently, USABRDL has tasked the Division of Toxicology, Letterman Army Institute of Research (LAIR), to conduct an initial health effects evaluation of the proposed replacement nitrate esters. This initial evaluation of DEGDN, TMETN, TEGDN, and two DEGDN-based propellants, JA-2 and DIGL-RP, includes the Ames mutagenicity assay, acute oral toxicity tests in rats and mice, acute dermal toxicity in rabbits, dermal and ocular irritation studies in rabbits, and dermal sensitization studies in guinea pigs.

Objective of Study

The objective of this study was to determine the primary eye irritation potential of DEGDN in male New Zealand White rabbits.

MATERIALS

Test Substance

Chemical name: Diethyleneglycol dinitrate (DEGDN)

Chemical Abstracts Service Registry No.: 693-21-0

Molecular Structure:

\[O_2N-O-CH_2CH_2-O-CH_2CH_2-O-NO_2 \]
Empirical Formula: C₄H₈N₂O₈.

Other test substance information is presented in Appendix A.

Animal Data

Six male New Zealand White rabbits (Elkhorn Rabbitry, 5265 Starr Way, Watsonville, CA) were identified individually with ear tattoos numbered 85F162, 85F171, 85F172, 85F173, 85F174, and 85F175. Animal weights on dosing day ranged from 2.4 to 2.8 kg. Additional animal data appear in Appendix B.

Husbandry

The rabbits were housed individually in stainless steel, battery-type cages with screened floors and automatically flushing drinking fountains. The diet consisted of approximately 150 g/day of Certified Purina Chow Diet 5322 (Ralston Purina Company, Checkerboard Square, St. Louis, MO); water was provided by continuous drip from a central line. The animal room temperature was maintained at 18.9 to 21.1°C and relative humidity ranged from 44 to 58 percent. The photoperiod was 12 hours of light per day.

METHODS

Conduct of this study was in accordance with the LAIR Standard Operating Procedure "Primary Eye Irritation Study" (2) and guidelines promulgated by the EPA for ocular irritation testing (3).

Group Assignment/Acclimation

Study rabbits were divided into a group of two males and a group of four males. These animals were quarantined by the Division of Animal Care and Services for 14 days and acclimated for 5-12 days in the GLP room before dosing. During these periods they were observed daily for signs of illness.

Dosage Level and Administration

One-tenth milliliter of DEGDN was administered once to the "treated" eye of each rabbit by gently pulling the lower lid away from the conjunctival cul-de-sac to form a cup into which the compound was instilled. Upper and lower lids were then held gently together for one to two seconds to prevent loss of material. Group 1 was dosed on 10 Sep 85 and Group 2 was dosed on 17 Sep 85.
Compound Preparation

DEGDN is a liquid and was administered neat (undiluted).

Test Procedures

On 9 Sep 85, both eyes of each Group 1 animal were examined, for any preexisting abnormalities, by the procedure detailed below. For each animal, the eye with the most normal appearance was designated for treatment; the contralateral eye served as an untreated control. On 10 Sep 85, 0.1 ml DEGDN was placed in the treated eye of each rabbit in this group. Group 2 rabbits underwent the same procedures on 16 and 17 Sep 85, respectively.

Ocular Examination/Grading

Initially each eye was observed unaided in a darkened room with focal illumination (pen light). Structures examined included: the lids and surrounding fur, the conjunctiva (semilunar, palpebral, and bulbar), the cornea, and the iris. Grading of the cornea, iris and conjunctiva was performed according to Table 1 (modified from Ref 4). Each eye was also then examined with a slit lamp. Special attention was given to integrity of the corneal surface, thickness of the corneal stroma, clarity of anterior chamber fluid, iridial morphology, clarity of the lens, and lenticular surface morphology (5). Additionally, any areas appearing grossly abnormal were examined under high magnification. All observations, including normal appearance, were detailed on the grading sheet. Following this, fluorescein dye (Fluor-1-Strips, Ayerst Laboratories Inc., New York, N.Y. 10017) was introduced into the eye, which was then observed under ultraviolet light. Any corneal areas reacting with the dye (a sign of discontinuity of the corneal epithelium) were described with respect to area and intensity of fluorescence. Ocular reactions were examined and graded in this fashion at 1, 4, 24, 48, and 72 hours after dosing. Fluorescein staining was omitted from the observations at 1 and 4 hours. Due to an almost total lack of reaction during the 72 hours after dosing, the study was terminated, according to protocol, after this observation. Therefore no scoring or observations were performed at 7, 14 or 21 days.

Duration of Study

Appendix C is a complete listing of historical events.
TABLE 1: GRADES FOR OCULAR LESIONS†

CORNEA

Opacity: degree of density (area of greatest density taken for reading)

- No ulceration or opacity .. 0
- Scattered or diffuse areas of opacity (other than slight dulling of normal luster) details of iris clearly visible 1*
- Easily discernible translucent areas, details of iris slightly obscured ... 2
- Nacreous areas, no details of iris visible, size of pupil barely discernible .. 3
- Opaque cornea, iris not discernible through opacity 4

IRIS

- Normal .. 0
- Markedly deepened rugae, congestion, swelling, moderate circumiridial hypaemia or injection, any of these or any combination thereof, iris still reacting to light (sluggish reaction is positive) 1*
- No reaction to light, hemorrhage, gross destruction (any or all of these) ... 2

CONJUNCTIVA

Redness: (refers to palpebral and bulbar conjunctiva, excluding cornea and iris)

- Blood vessels normal .. 0
- Some blood vessels definitely hyperemic (injected) 1
- Diffuse, crimson color, individual vessels not easily discernible ... 2*
- Diffuse, beefy red .. 3

Chemosis: (lids and/or nictitating membranes)

- No swelling .. 0
- Any swelling above normal including nictitating membranes 1
- Obvious swelling with partial eversion of lids 2*
- Swelling with lids about half-closed 3
- Swelling with lids more than half-closed 4

† Adapted from Table 6 in Draize et al. (4).
* Indicates minimum level for a positive response.
Changes/Deviations

Slit lamp examination (procedure detailed above) was added to the standard observation procedures. Use of the slit lamp enables detection of subtle reactions not grossly observable and better evaluation of those abnormalities which are grossly observable. Color photographic documentation was not performed due to lack of significant response to test compound.

During an ocular pre-exam conducted on 9 Sep 85, rabbit 85F170, initially assigned to this study, apparently sustained a back injury while struggling in the restrainer. The animal was normal before being placed in the restrainer and the full extent of the injury was not apparent upon visual examination by the Suite Veterinarian immediately following return of the rabbit to its cage. In response to worsened symptoms the next morning (the day of dosing) the animal was again examined by the Suite Veterinarian and was removed from the study. Another rabbit (85F162), which was excess to GLP study 85003, was substituted.

With these exceptions, this study was completed in accordance with the appropriate protocol and addenda.

Storage of the Raw Data and Final Report

A copy of the final report, study protocols, raw data, retired SOPs and an aliquot of the test compound will be retained in the LAIR Archives.

RESULTS

Ocular grading results and slit lamp observations for each rabbit are presented in Appendices D and E.

DEGDN produced no grossly observable effects in the cornea. All treated eyes were assigned zero scores for both opacity and area of involvement at all observations after dosing. Slit lamp examination revealed no corneal reactions referable to the test compound. One rabbit (85F162) displayed a small mucoid globule on the corneal surface one hour after dosing. All other slit lamp observations revealed corneas of normal thickness, indicating lack of edema, with smooth surfaces, indicating epithelial integrity. No staining of the corneal epithelium was observed upon any of the fluorescein examinations in the treated eyes.
One rabbit (85F171) presented slight iridial vasodilation (score = 1) at the four-hour examination. This was primarily limited to the circumiridial vessels. No other grossly observable reactions were produced in the iris by DEGDN. Other iridial scores were consistently zero at all observation times. No additional iridial abnormalities were detected by slit lamp examination of the other treated eyes. Except for the vasodilation noted grossly in rabbit 85F171, circumiridial vessels and surface morphology were normal in all eyes at all times after dosing. Close examination of anterior chamber fluid revealed no evidence of the presence of protein or cells (another sign of iridial inflammation) in any of the treated eyes.

In this study, DEGDN produced slight conjunctival redness and swelling. At the observation at one hour, slight vasodilation (score = 1) was present in the conjunctiva of one rabbit (85F171); although it cleared in this animal, redness developed in two others (85F162, 85F173) by 4 hours. Another rabbit (85F174) exhibited slight conjunctival swelling (score = 1) at both 1 and 4 hours after dosing. All of these signs of mild conjunctival inflammation cleared by 24 hours. Slit lamp examination confirmed the presence of dilated vessels within the outer layers of the sclera, the nictitating membrane, and on the undersides of the eyelids.

The lens is not scored under the Draize-type grading system because of the difficulty in making unaided observations. At all times after dosing, the lens appeared normal during slit lamp examination. No changes were observed in clarity or surface morphology.

At no time during the study did the contralateral untreated eyes exhibit any change from their normal condition on the day of dosing.

With the exception of the ocular signs reported above, all animals appeared normal throughout the study and gained weight. Body weight data are presented in Appendix F.

The gross necropsy findings for the six rabbits in the study were considered unremarkable. A copy of the pathology report is presented in Appendix G.
DISCUSSION

Consumer Product Safety Commission Guidelines, which the EPA recommends for ocular irritation testing, state that an animal has exhibited a positive reaction if the test substance produces one or more of the following signs: ulceration of the cornea (other than a fine stippling), opacity of the cornea (other than a slight dulling of the normal luster), inflammation of the iris (other than a slight deepening of the rugae or a slight hyperemia of the circumcorneal blood vessels), an obvious swelling in the conjunctiva with partial eversion of the lids, or a diffuse crimson-red coloration in the conjunctiva with individual vessels not easily discernible (2). Guidelines for classification of chemicals as ocular irritants or nonirritants have been published and form the basis for evaluation in the present study (6). These Intergency Regulatory Liaison Group (IRLG) guidelines state that for an initial evaluation: "[a] test result is considered positive if four or more animals exhibit a positive reaction. If only one animal exhibits a positive reaction, the test result is regarded as negative."

In this study, DEGDN produced only one positive reaction, as defined by the IRLG. Slight conjunctival redness and swelling (score = 1), indicating mild inflammation, were observed in three rabbits. These reactions, although scorable, did not achieve sufficient severity to warrant consideration as a "positive response." One observation of slight iridal vasodilation was made 4 hours after compound instillation; this response qualified for a score of 1. Although this was a "positive response," DEGDN was still classified as a non-irritant since at least two of six animals must respond positively for any consideration of classification as an irritant.

CONCLUSION

DEGDN did not produce sufficient irritation under conditions of this study to be classified as an ocular irritant.
REFERENCES

Appendix A. Chemical Data..10
Appendix B. Animal Data..13
Appendix C. Historical Listing of Study Events...............14
Appendix D. Tabular Scoring Data...............................16
Appendix E. Summary of Ocular Observations..................21
Appendix F. Body Weight Data...................................22
Appendix G. Pathology Report..................................23
Appendix A: CHEMICAL DATA

Chemical name: Ethanol, 2,2'-oxybisdinitrate
Alternate chemical name: Diethyleneglycol dinitrate (DEGDN)
Chemical Abstracts Service Registry No.: 693-21-0
LAIR Code No.: TP047
Chemical structure:

\[\text{O}_2\text{N-O-CH}_2\text{CH}_2\text{-O-CH}_2\text{CH}_2\text{-O-NO}_2 \]

Molecular formula: C4H8N2O7
Molecular weight: 196
Physical state: Pale yellow liquid
Density (g/cm^3): 1.381

Analytical data: Refer to the attached data sheet, ARRCOM Form 213R. The compound chromatographed as a single peak (retention time 5.4 min) by HPLC analysis under the following conditions: column, Brownlee RP-18 (4.6 x 250 mm); solvent system, 30% water, 70% acetonitrile; flow rate, 0.9 ml/min; detection wavelength, 205 nm. NMR (300 MHz, CD3CN): 3.75 δ (complex multiplet, 4H,-CH2-O-CH2-), 4.61 δ complex

1 Holleman JW, Ross RH, Carroll JW. Problem definition study on the health effects of diethyleneglycol dinitrate, triethyleneglycol dinitrate, and trimethylethlene trinitrate and their respective combustion products. Frederick, Maryland; US Army Medical Bioengineering Research and Development Laboratory, 1983; DTIC No. ADA127846, p. 17.

2 Wheeler CR. Toxicity Testing of Propellants. Laboratory Notebook #85-12-023, p. 31. Letterman Army Institute of Research, Presidio of San Francisco, California.
Appendix A (cont.): CHEMICAL DATA

multiplet, \(4\text{H},-\text{CH}_2\text{ONO}_2\)).\(^3\) Additional singlet signals of approximately equal intensity were observed at 2.08 \(\delta\) and were due to sample impurities. Integration of all signals in the spectrum demonstrated that the sample contained 96.6% DEGDN. The impurities were not identified. IR(KBr): 2896, 1632, 1429, 1390, 1373, 1279, 1139, 1032, 909, 857, 758, 707, 655, 572 cm\(^{-1}\).\(^4\)

Stability: The DEGDN was shipped containing 18% acetone (a desensitizer) and arrived at LATR on 12 December 1984. The acetone was removed by rotary evaporation prior to studies with the propellant. Analysis of the compound one year after it was received gave the results described above. Stability of the compound in corn oil (the dosing vehicle) was examined. As determined by HPLC, the concentration of DEGDN in corn oil emulsions 24 h after preparation was within 1% of the target value.\(^5\)

Lot No.: RAD84M001S214

\(^5\) Wheeler CR. Nitrocellulose - Nitroguanidine Projects. Laboratory Notebook #85-01-006, pp. 57-60. Letterman Army Institute of Research, Presidio of San Francisco, California.
Appendix A (cont): CHEMICAL DATA

DESCRIPTION SHEET FOR EXPLOSIVES, CHEMICALS, ETC

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>HERCULES INCORPORATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTORY</td>
<td>RADFORD ARMY AMMUNITION PLANT</td>
</tr>
<tr>
<td>CONTRACT NO.</td>
<td>DAAO8-77-C-4007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FROM NUMBER</th>
<th>74UL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIAL</td>
<td>Diethylene Glycol Dinitrate (DEGDN)</td>
</tr>
</tbody>
</table>

SECTION A - DESCRIPTION OF LOTS

<table>
<thead>
<tr>
<th>FROM NUMBER</th>
<th>74UL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIAL</td>
<td>Diethylene Glycol Dinitrate (DEGDN)</td>
</tr>
</tbody>
</table>

SECTION B - DESCRIPTION OF MATERIAL

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Limit</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>82.2°C Potassium Iodide</td>
<td>10 minutes minimum</td>
<td>12</td>
</tr>
<tr>
<td>Starch Paper Heat Test (MP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, %</td>
<td>14.10 minimum</td>
<td>14.15</td>
</tr>
<tr>
<td>Water, %</td>
<td>Info Only</td>
<td>0.43</td>
</tr>
<tr>
<td>Acidity</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

REMARKS: DEGDN is desensitized with 15% or more of acetone for a total weight of 5 lbs. and packed in a DOT 6D 5 gallon drum with a DOT 25 liner, overpacked in a DOT-6J 30 gallon capacity drum with vermiculite as a cushioning agent around the 5 gallon drum and contained in the 30 gallon drum. Requested by shipping Order AMCOM and COR letter SMCRA dated November 28, 1984 (DOT Exemption 5704).

SECTION C - CERTIFICATION

SAMPLING CONDUCTED BY HERCULES INCORPORATED

TESTING CONDUCTED BY HERCULES INCORPORATED

THE ABOVE DESCRIBED LOTS ARE HERCULES ACCEPTED FOR THE COMMANDER

Dec 6, 1984

ABCOM Form 213-R, 10 Aug 77

SEQUENCE No. 5/4
Appendix B: ANIMAL DATA

Species: *Oryctolagus cuniculus*

Strain: New Zealand White (albino)

Source: Elkhorn Rabbitry
5265 Starr Way
Watsonville, CA 95076

Sex: Male

Age: Young Adults

Animals in each group: Group I: 2 males
Group II: 4 males

Condition of animals at start of study: Normal

Body weight range at dosing: 2.4 - 2.8 kg

Identification procedures: Ear tattoo numbers 85F162, 85F171, 85F172, 85F173, 85F174, 85F175.

Pretest conditioning: Quarantine from 22 Aug - 5 Sep 1985
Animal eyes were examined 24 hours before dosing using slit lamp, fluorescein dye, and ultraviolet light.

Justification: Laboratory rabbits are a proven sensitive animal model for ocular testing.
Appendix C: HISTORICAL LISTING OF STUDY EVENTS

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 Aug 85</td>
<td>Animals arrived at LAIR. They were tattooed, weighed, examined for illness, placed under a two-week quarantine.</td>
</tr>
<tr>
<td>22 Aug-5 Sep 85</td>
<td>Animals were checked daily by Division of Animal Care and Services (DAC&S). No animals died during the quarantine period.</td>
</tr>
<tr>
<td>5 Sep 85</td>
<td>Rabbits were certified healthy by DAC&S Staff Veterinarian and removed from quarantine, separated into test groups and weighed.</td>
</tr>
<tr>
<td>9 Sep 85</td>
<td>Animals were checked for preexisting ocular injury (Group 1).</td>
</tr>
<tr>
<td>10 Sep 85</td>
<td>Group 1 rabbits were dosed according to test chemical group and weighed. Eyes were scored 1 and 4 hours after exposure.</td>
</tr>
<tr>
<td>11 Sep 85</td>
<td>Eyes were scored 24 hours after exposure (Group 1).</td>
</tr>
<tr>
<td>12 Sep 85</td>
<td>Eyes were scored 48 hours after exposure (Group 1).</td>
</tr>
<tr>
<td>13 Sep 85</td>
<td>Eyes were scored 72 hours after exposure. Study was terminated (Group 1).</td>
</tr>
<tr>
<td>16 Sep 85</td>
<td>Animals were weighed and sent to Necropsy Suite for sacrifice and necropsy (Group 1). Animals were checked for preexisting ocular injury (Group 2).</td>
</tr>
<tr>
<td>17 Sep 85</td>
<td>Group 2 Rabbits were dosed according to test chemical group and weighed. Eyes were scored 1 and 4 hours after exposure.</td>
</tr>
<tr>
<td>18 Sep 85</td>
<td>Eyes were scored 24 hours after exposure (Group 2).</td>
</tr>
</tbody>
</table>
Appendix C (cont.): HISTORICAL LISTING OF STUDY EVENTS

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 Sep 85</td>
<td>Eyes were scored 48 hours after exposure (Group 2).</td>
</tr>
<tr>
<td>20 Sep 85</td>
<td>Eyes were scored 72 hours after exposure (Group 2).</td>
</tr>
<tr>
<td>24 Sep 85</td>
<td>Study was terminated, animals were weighed and sent to Necropsy Suite for sacrifice and necropsy (Group 2).</td>
</tr>
</tbody>
</table>
Appendix D: TABULAR SCORING DATA ON ACUTE EYE IRRITATION SUMMARY FORMS

Appendix D-1. Corneal Opacity.................................17
Appendix D-2. Iridial Scores.................................18
Appendix D-3. Conjunctiva (Redness).........................19
Appendix D-4. Conjunctiva (Chemosis).....................20
APPENDIX D-1: Cornea Opacity

Score by Animal

<table>
<thead>
<tr>
<th>Rabbit Number</th>
<th>Baseline</th>
<th>1 hr</th>
<th>4 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>72 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>85F162</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F171</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F172</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F173</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F174</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F175</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
APPENDIX D-2: Iridial Scores

Score by Animal

<table>
<thead>
<tr>
<th>Rabbit Number</th>
<th>Baseline</th>
<th>1 hr</th>
<th>4 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>72 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>85F162</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F171</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F172</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F173</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F174</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F175</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
APPENDIX D-3: Conjunctiva (Redness)

Score by Animal

<table>
<thead>
<tr>
<th>Rabbit Number</th>
<th>Baseline</th>
<th>1 hr</th>
<th>4 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>72 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>85F162</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F171</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F172</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F173</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F174</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F175</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
APPENDIX D-4: Conjunctiva (Chemosis)

Score by Animal

<table>
<thead>
<tr>
<th>Rabbit Number</th>
<th>Base-Line</th>
<th>1 hr</th>
<th>4 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>72 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>85F162</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F171</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F172</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F173</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F174</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85F175</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Appendix E: SUMMARY OF OCULAR OBSERVATIONS

One Hour After Dosing
85F162 Small "mucous-like" globule on cornea surface.
85F171 Slight conjunctival redness.
85F173 Hyperemic retina.
85F174 Slight swelling of the nictitating membrane.
 Slight bulging of the eye.

Four Hours After Dosing
85F162 Slight conjunctival redness.
85F171 Slight redness in the iris.
85F172 Small blister (1-2 mm) on nictitating membrane.
85F174 Slight swelling of the nictitating membrane.
 Slight bulging of the eye.

Twenty-four Hours After Dosing
85F172 Small blister (1-2 mm) on nictitating membrane.
85F173 Hyperemic retina.
85F174 Slight bulging of the eye.

Forty-eight Hours After Dosing
85F172 Small blister (1-2 mm) on nictitating membrane.
85F173 Hyperemic retina.
85F174 Excess mucus on the eye.

Seventy-two Hours After Dosing
85F171 Very slight increased thickness in corneal surface.
85F173 Hyperemic retina.
APPENDIX F: Body Weight Data

<table>
<thead>
<tr>
<th>Animal Number</th>
<th>Baseline</th>
<th>Termination</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>85F171</td>
<td>2399*</td>
<td>2479</td>
<td>80</td>
</tr>
<tr>
<td>85F172</td>
<td>2519</td>
<td>2576</td>
<td>57</td>
</tr>
<tr>
<td>85F162</td>
<td>2654</td>
<td>2711</td>
<td>57</td>
</tr>
<tr>
<td>85F173</td>
<td>2782</td>
<td>2804</td>
<td>22</td>
</tr>
<tr>
<td>85F174</td>
<td>2774</td>
<td>2804</td>
<td>30</td>
</tr>
<tr>
<td>85F175</td>
<td>2748</td>
<td>2872</td>
<td>124</td>
</tr>
</tbody>
</table>

* Body weights recorded in grams.
APPENDIX G: Pathology Report

LAIR Gross Pathology Report
GLP Study 85002

Study: GLP #85002
Test: Primary Ocular Irritation Test
Investigator: Dr. Gerald Hiatt
Test Substance: DEGN (CAS No. 693-21-0)

History: Six male rabbits (NZW) were exposed to 0.1 ml of the test compound in the conjunctival sac of one eye, the other eye being a control. After observation (IAW LAIR SOP-OP-STX-33), for an applicable period, the animals were-euthanized with 4.0 ml sodium pentobarbital and necropsied.

Gross findings:

<table>
<thead>
<tr>
<th>ANIMAL ID #</th>
<th>LAIR PATH #</th>
<th>MORPHOLOGIC DX</th>
</tr>
</thead>
<tbody>
<tr>
<td>8SF162</td>
<td>38239</td>
<td>Cecum - Pinworms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liver - Focal tan lesion, 2 x 0.2 cm.</td>
</tr>
<tr>
<td>8SF171</td>
<td>38234</td>
<td>Not remarkable (NR)</td>
</tr>
<tr>
<td>8SF172</td>
<td>38235</td>
<td>Lungs - Diffuse red mottled discoloration.</td>
</tr>
<tr>
<td>8SF173</td>
<td>38240</td>
<td>NR</td>
</tr>
<tr>
<td>8SF174</td>
<td>38241</td>
<td>NR</td>
</tr>
<tr>
<td>8SF175</td>
<td>38242</td>
<td>NR</td>
</tr>
</tbody>
</table>

Comment: None of the gross findings were considered remarkable.

M. V. Mayhew
Comparative Pathology Branch

G. Tracy Mapavec, DVM
CPT, VC
Diplomate, ACVP
Comparative Pathology Branch

4 December 1985
Distribution List

Commander
US Army Biomedical Research and
Development Laboratory (27)
ATTN: SGRD-UBZ-C
Fort Detrick, Frederick, MD 21701-5010

Defense Technical Information Center
(DTIC) (2)
ATTN: DTIC-DLA
Cameron Station
Alexandria, VA 22304-6145

US Army Medical Research and
Development Command (2)
ATTN: SGRD-RMI-S
Fort Detrick, Frederick, MD 21701-5012

Commandant
Academy of Health Sciences, US Army
ATTN: AHS-CDM
Fort Sam Houston, TX 78234

Chief
USAEHA Regional Division, West
Fitzsimmons AMC
Aurora, CO 80045

Chief
USAEHA Regional Division, North
Fort George G. Meade, MD 20755

Chief
USAEHA Regional Division, South
Bldg. 180
Fort McPherson, GA 30330

Commander
USA Health Services Command
ATTN: HSPA-P
Fort Sam Houston, TX 78234

Commander US Army Materiel
Command
ATTN: AMSCG
5001 Eisenhower Avenue
Alexandria VA 22333

Commander
US Army Environmental Hygiene
Agency
ATTN: Librarian, HSDH-AD-L
Aberdeen Proving Ground, MD 21010

Dean
School of Medicine
Uniformed Services University of the
Health Sciences
4301 Jones Bridge Road
Bethesda, MD 20014

Commander
US Army Materiel Command
ATTN: AMSEN-A
5001 Eisenhower Avenue
Alexandria, VA 22333

HQDA
ATTN: DASH-PSP-E
Falls Church, VA 22041-3258

HQDA
ATTN: DAEN-RDM
20 Massachusetts, NW
Washington, D.C. 20314

CDR, US Army Toxic and Hazardous
Material Agency
ATTN: DRXTH/ES
Aberdeen Proving Ground, MD 21010

Commandant
Academy of Health Sciences
United States Army
ATTN: Chief, Environmental
Quality Branch
Preventive Medicine Division
(HSHA-IPM)
Fort Sam Houston, TX 78234