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1. SUMMARY

\\/ A robust test, which we call an aligned generalized, M—test for testing
subhypotheses in the general linear models is developed, and its asymptotic
properties are studied. The test is a robustification of the well known F—test, and it
is an elegant and practical alternative to Ronchetti’'s (1982) class of r—tests.
P—values associated with it can be approximated readily using existing chi square
tables, unlike Ronchetti’s test. The test is based on an appropriately constructed
quadratic form, and uses the generalized M—estimators of the parameters in the
reduced model. Under the null hypothesis the asymptotic distribution is a central
chi square, and under contiguous alternatives is a non—central chi square with the
same degrees of freedom. The test can also be viewed as a generalization of Seii’ s
(1982) M—test for linear models.
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—~————) The influence function of the test is bounded. The bound not only applies to

the influence of residuals but also to the influence of position in the factor space.
Sen's test, on the other hand, has bounded influence only in residuals. (/,’C R ) (_,.__.

Some key words: aligned generalized M—test; bounded influence; contiguous

alternatives; influence function; linear model; random carriers; robustness; r—test.

2. INTRODUCTION AND THE MODEL

We consider the following model: {(;i,yi); i=1,2,---,n} areindependent

random variables such that
;= x?ﬂ+ & (2.1}

where x. is independent of & and has distribution function K(x) with density
k(x). In the above linear model it i3 well known that least squares estimates are
very sensitive to aberrant data points, that is points that deviate significantly from
the bulk of the data. This sensitivity has led to various proposals for robust
methods of estimation. Among those proposals are the classical M—estimates

introduced by Huber (1973), and the generalized M—estimates introduced by

Hampel (1977) and discussed by Maronna and Yohai (1981). » For
&l 7
Parameter estimation is the first step in data analysis. Often, we are 0
.ed |

interested in testing if a number of linearly independent estimable functions are :yon |

equal to zero. Through a transformation in the parameter space this hypothesis
tton/
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reduces to the hypothesis of testing if a certain subvector of the vector of unknown
parameters equals zero, treating the remaining parameters as nuisance parameters.
Known robust testing procedures are the p,—test, introduced by Schrader and
Hettmansperger (1980}, which makes use of Huber's M—estimators, and the
alternative to the p—test, an aligned M—test, which was introduced by Sen (1982).

Let [iT = (d'f d'g) where  isa pxl vector and 32 isa qrl vector,
q < p. The above testing procedures, for the hypothesis Ho : 52= 0, 31
unspecified, are robust against points that exhibit large residuals. The influence
with respect to the residuals of the above testing procedures is bounded. Their total
influence though is unbounded, since the part of it that corresponds to the influence
in the factor space is unbounded (see Hampel et al., 1986, page 354).

Ronchetti (1982) introduced the class of r—~tests which makes use of the
generalized M—estimates, which have bounded influence. The class of r—tests, for
testing the hypothesis Hy: 3, =0, 8, unspecified, is defined by means of the test

statistic

S2(%ye i Yy ¥g) = (22)

- oq Ly E { '[&s; YK ildn] _ f[xi; yi—.i?ir-ﬂ)n”
i=1 ‘
where (T Jn’ (Iﬂ)n are the generalized M—estimates in the reduced and full
model respectively, 7:RP « R— R is a function such tkat (i) for all x ¢ &P,
reR, r(xr)#0, r(x;r) 20, r(x;0) =0, and (ii) for all x €RP, 7(x;-) is
differentiable. See Hampel et al. (1986, p. 345) for a complete set of regularity

conditions. Large values of Sﬁ are significant.




The asymptotic distribution of Ronchetti’s (1982) r—test statistic, under

HO' is given by the distribution of

)%
- 2
=pqtl

where A 2A <+« 2 A_>0 arethe q positive eigenvalues of the

p—q+1 = “p—q+2 2 p

matrix

M"l
K=Q{M—l-[ 11 0” (2.4)
o 0

where M'l'i is the inverse of the upper (p—q) x (p—q) part of the M matrix, and

.

M=E{r(s0xx'}, Q=E{(n(xxs’} (2.5)
where

% r(xr) = n(xr) %,- nx;r) = 7' (xr). (2.6)

Further, N i j =p—q+1,---,p are independent standard normal random variables.

The most important choices of the n—function are of the form

"85 = D)7t (27




where v:RP —RY isa weight function, ¢ > 0 and r is the residual, and
wc(t) = max(—c,min(c,t)], the Huber yp-function.

The r—test can be viewed as a complete robustification of the well known
F-test, since it accommodates points with large residuals and points with high
leverage. It is impractical however, since it is difficult to calculate the p~values
associated with it.

We will develop an alternative test, which can be viewed as a piactical
alternative to the class of 7~tests. We call it an aligned generalized M~test, and it
is based on a properly constructed quadratic form which makes use of the
generalized M—estimates. The bounded influence property of the generalized
M—estimators carries over to the test based on them. Thus the influence function of
the aligned generalized M—test is bounded.

The asymptotic distribution of the aligned generalized M—test, under the
null hypothesis, is that of a central chi square random variable with q degrees of
freedom. Therefore p—values associated with the test statistic can be approximated
readily from existing chi square tables. The asymptotic distribution of the test,

under contiguous alternatives, is that of a noncentral chi square random variable.

3. THE PROPOSED TEST. ASSUMPTIONS AND DISTRIBUTION THEORY

The model is that of section 2. We will assume the regularity conditions
(A1) — (A6) and (C1) — (C6) listed in Maronna and Yohai (1981). The notation is
slightly different, however we will not reproduce ail the conditions here.

In addition, we assume that the density of the residuals is bounded. Without loss of




generality, assume that o = 1. In practice ¢ has to be estimated from the data.
We will discuss the estimation of the scale parameter ¢ in a latter section.
Estimators based on (2.7) have been studied by Hampel (1977) and Krasker
(1980) for the special case of (x) = 1/|Ix|l, where ||-|| is the Euclidean norm of
%, and for the general case by Maronna and Yohai (1981).
We will use generalized M—estimators, defined implicitly by the (vector)

equation

n

) n[xi; yi-x?é]xi =0 (3.1)

i=1

Define the dispersion function

n
D(g) = 2 r(x; yi-x?d)xi- (3:2)

i=1

Its gradient, with respect to 3, is

n
(@ =- nx; yi—x?ﬂ)xi- (3.3)

i=1




n
S(8)=-vD(®) = § mx; v % O, (3.4)
i=1

Let x? = (;;’;'T ;’;'T), where X:* is a q—dimensional vector, be the
corresponding partition to the partition of the vector of unknown parameters. To
test the hypothesis Ho : 52 =0, ﬁl unspecified versus H1 : 52 #0, dl
unspecified, define the statistic W?l as follows:

n n
wl=[a7l/2} n(xi;yi—x?bo)x’;‘*]Tﬁ”‘ (572 ) mayisiipslt] @)
i=1 i=1

where 3, is the reduced model generalized M—estimator, U is a consistent
estimate of the asymptotic variance—covariance matrix, which is defined in
Theorem 1. .

Large values of W:21 are significant. The test statistic Wﬁ defines an
aligned test, which we call an aligned generalized M—test. We will discuss the

distribution theory of the test statistic Wg. Define

L(8) = 5(8,) — oM(3-3,) (3.6)
where do is the true parameter and

-

1
M=z
i

n (xi;yi-x?ﬁo)xix? (3.7)

1

[T o -]




8
is a consistent estimator of the matrix M defined in (2.5), and n’ is defined in
(2.6). Assuming the regularity conditions of Maronna and Yohai (1981), the
following results hold. Proofs are given in Markatou (1988).

Lemma 1
Given K> 0
sp |25 - o2 (3.8)

VAllB-BylleK

converges in probability to zero.

Lemma 2
Consider the random variables n(xi;yi-x’irﬂ)xij i=1,---,n and

.

j=12,-+-,p where the (yi,gi) are independent and identically distributed random

vectors. Then, under the assumptions of finite variance and zero mean

n
o258 =072 § nixpe)x,

i=1

converges in distribution to a random variable Z, where Z ~ MVN(Q,Q) with Q
defined in (2.5).

Lemma 3

nl/ 2(3 - ﬂo) converges in distribution to the random variable Z where




Z~MVN(@Q,MIQM™), with M and Q given in (2.5) and J is the generalized
M—estimator in the full model.

Theorem 1
Under the null hypothesis

worsef]

the test statistic W2 = a~/ 2s§(BO)O“n‘1/ 25,(B,) has asymptotically a chi

square distribution with q degrees of freedom, where

S PR © elA el
U=0Qg9 — Mg M;1Q)5 — Qo M) Mg + Mg, M1 Q) M My, (39)

and

n
Sy(By) = ¥ mxgivix; B8} (3.10)
i=1

and J, is the generalized M~estimator in the reduced model.
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3.1 DISTRIBUTION UNDER CONTIGUOUS ALTERNATIVES

We use contiguity as it is defined by Hajek and Sidak (1967, page 202). We
regard the given testing problem as a member of a sequence {Hy ,H, }, n21 of

testing problems, and we consider alternatives

Bo=0"M2A j=
Hyp:Bj=n 7178 i=patl,--p,

where AT =(A . —,Ap) isa qx1 vector of finite constants. Then:

p—q+1”

gln
HOn : @n = vs

(‘gln réln _ s
Hy: 8, = 12, .—_lo +n1/2 A
an
= 0 +94,

Theorem 2

Under the contiguous alternatives

éln
0

9
+0 /2

Hyp:8y=

i>

the test statistics n—l/ 25’5(30)l.1—1n-l/ 252(220) has asymptotically a noncentral
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chi square distribution with q degrees of freedom, where § is the noncentiality

parameter defined by
5=a™™,, UM, A (3.11)
=Q My U My, :
and
-1
Mgg 1 = Mgy = My My My (3.12)

Sen (1982), introduced the aligned M—test in linear models, based on the classical
M—estimators. Note that, if p(x;r) = qbc(r) where q{)c(r) = max{—c,min(c,r)} is
Huber’s phi—function, and r denotes a residual, the above aligned generalized
M—test reduces to Sen’'s M—test. Therefore, Sen's M—test is a special case of the
aligned generalized M—test. The noncentrality parameter 4,"in the case of simple

linear regression and with 7(x;r) = ¢c(r), is given as

/\2720?(
b= — X (3.13)
%
- p
where A=A, 7= E[gb&(r)] and 7l z (xi-:‘c)2 — 0)2( that is Sen's
i=1

noncentrality parameter.
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4. INFLUENCE FUNCTION

We calculate the influence function of the aligned generalized M—test and
show that it is bounded. Roughly speaking, the influence function formalizes the
bias caused by one outlier. It was introduced by Hampel (1968, 1974) and it
describes the effect of an infinitesimal contamination at a point on the estimate,
standardized by the mass of the contamination.

Its formal definition is as follows:

T(( l—t)F+tAx)
IF(x;T,F) = lim T
t]0

for those x € £ where the limit exists. T is an estimator which is a functional or
asymptotically can be replaced by a functional, F is a distridution function and
A, is the distribution that concentrates all the mass at x.

The influence function of a test statistic describes the effect of an outlier in
the sample on the value of the (standardized) test statistic, and therefore on the
decision (acceptance or rejection of Ho) which is based on this value. It is
analogous to the influence function of the estimators, which the test is based upon.

The influence function of the aligned generalized M—test is calculated under
the null hypothesis Ho : 32 =0, dl unspecified. It is proved that, under certain

conditions on the n—function, the influence function is bounded. Let F Q(;;y)

denote the joint distribution function of (x,y).

Note that the model distribution under H0 is F go Define:
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i@ = f n(x;y—xTﬁ)x"ng(x;y) (4.1)

Theorem 3

Let W_ be the aligned generalized M—test, and assume the regularity
conditions of Maronna and Yohai (1981) are satisfied. Assume J(Gy) = 0 (Fisher
consistency). Then, the influence function of the test statistic at (go,yo) is given
as:

IF(Ko»Yo;W»FgO) = Imxo;yo—xg%)l [x’g[ 1; 12] U_l(-leMﬁ Dy

The proof of Theorem 3 is similar to the proof of Proposition 1 in Hampel et al.
(1986, p. 350) and hence we do not repeat it here; see also Markatou (1988).

The most important choices for the function 7n(x;r) are of the form given by
(2.7). In order for the influence function to be bounded v(;go);s'gAxo must be
bounded, where

A

MM
I

11 12] U™l (-My, M7 D). (4.2)

Note that the matrix A does not depend on the outlying case (xo,yo). Thus a

natural choice for the n—function would be the one for which

B e
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-1/2

T (-MiMyg] -
wxg) = (X9 U (Mg My Dxgp (4.3)
In that case
sup |IF(x.y;W,F5 )| Sc<w (4.4)
X,y by _

where c is a finite constant. See, for example, Krasker and Welsch (1982).

There are other choices of 1{x) for which the influence function of the test
statistic remains bounded.

(1) Following Schweppe’s proposal introduced in Handshin et al. (1975), we
choose 1{xg) = (1-xa (X7 X) Lg)!/% = (1-b)!/2. Then, as by — 1,
' v(xo) — 0, where ho is the leverage that corresponds to the outlying case

(;o,yo). Then, the sensitivity of the test statistic W is

sup|IF(x,y;W,F 5 )| < sup|l(=My; Moo)IF(x,y:80.F 2 Il
gy)! < gpll Moy Mp)F @yl

5c1<m

that is, the sensitivity of the test is bounded by a rescaled version of the sensitivity
of the reduced model generalized M—estimator.

(2) Welsch's (1980) proposal consists of choosing u(xo) =
(1 —xg(XTX) g/l (XTX) " xg]!/2 = (1) /by /2. Then, as ny— 1,

nxy) — 0 and thus, the influence function of the test statistic reduces to a rescaled

g~
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version of the influence function of the reduced model generalized M—estimate,

which has bounded sensitivity.
Generalfy, starting with a bounded influence estimator, the influence
function of the test based on this estimator will be bounded.

5. EXAMPLE

The data design comes from a paper by Hill and Holland (1977) and consists
of six columns. Table 5.1 contains the values of the explanatory variables in its first
six columns. Column number 7 corresponds to the data values of the dependent

variable y.

| LN ot -, e
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Table 5.1: Data Values

(\Zgggnn 1 2 3 4 5 6 7
1 2712 2712 -.0453  .0257 —0880  .0288  .92718
2 2712 1627 .1092 —1268 —0509 .0470 —.06165
3 2712 0542 4513 0963  .0140  .0682 —.74198
4 2712 -—0542 -1605 .2077 -—1065  .0225 —.31325
5 2712 -1627 2242 —3618 .2463  .3193 —.18593
6 2712 —2712  .0107 .1246 -—0814  .0461  .18593
7 .1627 -2712 .1937  .1006 —.0373  .0583  .31325
8 0542 -—2712 -2435 3205 —.1373  .0404 —1.40377
9 —0542 -—2712 -—0094 -—4123 -—0852  .0228 1.12690
10 —1627 -2712 .1382  .4631 —.0630 —.0112 1.87129
11 -2712 -2712 0956  .0984 —.0489  .0388 —91718
12 —2712 —1627 0597 —1136 —0732 0327  .74198
13 —2712 —.0542 —0613 —1263 —.0944  .0303  .06165
14 —2712 0542 1282  .0598 —0680  .0691 -—1.87129
15 -2712  .1627 =-0966 —0085 .1387 —0672 —.58740
16 -2712 2712 —1060 —3819 —1340 .0559 —.44602
17 —-1627 2712 2013 0145 —0290 .0966 1.40377
18 .0542 2712  .0914 0840 —0417 —0620  .58740
19 —0542 2712 —4324 —2083 -—.1520 —9198 —1.12690.
20 .1627 .27T12 -5486  .0544  .8917  .0833  .44602

16
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The model to be fitted is

Yi = fo + Byxiy+Ayxia + Byxig + ByXig + Bxis + Bgxig + (5-1)

i=1,--,20.

In vector formulation the above model can be written as:

&

+ ¢ (5.2)

where ﬁ'}‘ = (ﬂO’ﬂl’ﬁ2) and ﬁg‘ = (ﬂ3,ﬂ4,ﬂ5,ﬂ6). We are interested in testing the
hypothesis

Hy: 8y =0, 4, unspecified vs '
H, :0,#0, §, unspecified.

In an analysis of variance setting we can interpret the above hypothesis as testing
for the significance of the covariates in a designed experiment.

The reason for choosing this particular data set is that the observations
exhibit varying degrees of leverage. The first two columns of the data set
correspond to variables like those in a designed experiment, and hence they
represent a very well behaved low leverage situation. The next two columns were
selected to represent a sample from a bivariate normal Jistribution, and they are

also low leverage observations.

Columns 5 and 6 were chosen to represent a sample of 20 observations from a
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distribution with outliers. Two independent Cauchy samples of size 20 were drawn
and the largest observations in each sample were moved until they contributed 80%
and 85% to the total sum of squares of their columns, respectively. Thus, those
two columns represent a high leverage situation. The two high leverage cases are
located in rows 19 and 20.

Note that the leverage of the nineteenth case is h;q = .952986 and that of
the twentieth case is hy, = .747831. If b, 2 2(p/n), where (p/n) is the average
leverage, p is the number of parameters and n is the sample size, then we

th observation as a high leverage observation; see Belsley et al.

characterize the i
(1980). In this particular example 2(p/n) = .7, and so clearly observations 19 and
20 are high leverage ones.

After the above six columns were selected, each column was standardized to
have mean 0 and unit sum of squares.

To generate a set of dependent variables y (column 7'in table 5.1), we
generated 20 normal scores. Regressing the obtained set of normal scores onto the
six columns generated before, we selected the random permutation of the normal
scores that gives us a small R2—coefficient. Therefore the experiment has been
constructed so that no regression effect is present.

We would like to show how a combination of high leverage cases with
outliers in the dependent variables distorts the results ;)f an analysis based, nos-only
on the classical F—test procedure, but also on robust procedures that do not
accommodate high leverage cases. To this end we replace the dependent value that
corresponds to the nineteenth case by Yi9 = ~7.84. This new value is

approximately six standard deviations away from the original value. The least
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squares regression with y,, = —7.84 gives R> = 72.6% and an R>—ad] = 60%.
19

Table 5.2 contains the value of the various statistics and their p—values:

Table 5.2: Statistics and their p—values

Statistic Numerical P—value
Value
F—statistic 7.9307475 .0008
M—test 13.86 .008
aligned generalized 3.69264 4492
M—test

To calculate the M—~test we used Huber’'s y-function with ¢ = 1.345 (that gives

95% efficiency at the normal model). Hence, in this example, the bounded influence

aligned generalized M—test out performed both the F—test and the M—test.
To calculate the aligned generalized M—test we chose to use Welsch’s

weights; that is, the weight function (x) is given by

1~xT (xTx)
) = e i &
)= TR T2 ™ 417

where h = x1(X2X) 5. Then

T,

. T if |d;] <S¢

1

W gy = ex;) sign [537] if |d| > ¢

(5.4)

T e s o, -




th

where s(i) is the standard deviation calculated without the i case and is given as

2

(a-p—1)52(3) = (a—p)s? —1-3,; (5.5)

case, I; is the residual of the it'h case and d; is the

corresponding DFFITS, which is defined as

b, is the leverage of the ith

(5.6)

S'i‘yi(i) _ [ hi ]l/2t.
1

d. = DFFITS. = =
i i hrins(i) T-h.

1

t; is the externally studentized residual (see Belsiey, Kuh and Welsch, 1980). The
DFFITS can be interpreted as the change in the fitted value that results when the
i"'h case is deleted and the difference is scaled by an estimate of the standard
deviation of the fitted value.

The calculations are carried out using iterated least squares by making the

identification, using (2.7),

nE 3 = w(zog
. cov(x), . ...(5'7)
= minl, 75—} §

Then
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M =E{L v, [tg)ssT) (5.8)
where y(t) =I(|t| <c¢) and
Q = E(w’ (x5} (5.9)
Estimates are:
Ly r T
M=>=—) 9 |——|xx (5.10)
“&i21 ["’(51)] a
and
n
= éﬁ z w2(3i;ri)r?5i5? ‘ (5.11)

In the weighted least squares formulation using Welsch’s weights, cases are
smoothly downweighted according to how much |d;| exceeds c. Following
the recommendation in Belsley, Kuh, and Welsch (1980), we took
c= (p/n)l/ 2 _ 1.183. The value of the aligned generalized M—test statistic is
equal to 3.69 with an approximate p—value of .4492. Thus we fail to reject the null
hypothesis. On the other hand, the F and M tests strongly reject H0 and yield
misleading results.

To estimate the scale parameter ¢ for the calculation of the M—test we can

either use Huber's proposal 2 (Huber, 1981) or the estimator & = 2.1 x med{| r'i' 1},
where |r}| arethe n—p+1 largest absolute values of the residuals (Hill and




Holland, 1977). In our calculation of the M—test we used the Hill and Holland

estimator of the scale.

6. SUMMARY AND CONCLUSIONS

The effect that the presence of a combination of highly influential points,
that is points of high leverage and outliers in the y variable, has on the testing
procedures has been studied.

In the least squares context, aberrant cases can determine the estimators of
the true parameter vector. They confuse the results of the testing procedure based
on the least squares estimators, since the test reflects the contribution of those
individual points in the model.

The M—test, in this context, is unreliable, as well as the F—test, though the
M—test shows a better behavior than the F—test with a p—value .008 compared to
.0008 of the F—test. The better behavior of the M—test can be explained by the
fact that the test accommodates large residual points; but it does not accommodate
high leverage points.

The aligned generalized M—test shows the best behavior. Designed to
accommodate points with large residuals as well as high leverage points, it does give
reliable results in the presence of the above mentioned combination. Its influence
function is bounded. It agrees also with the r—test, to which it is a practical
alternative, since one does not face the problem of computing p—values associated

with linear combinations of differentially weighted chi square random variables.’
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Thus, an elegant, computationally easy and reliable alternative to the class

of r—tests is the class of aligned generalized M—tests.
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