THESIS

ADAPTIVE ALGORITHMS FOR TWO DIMENSIONAL FILTERING

by

Steven L. Wilstrup

September 1988

Thesis Advisor: Murali Tummala

Approved for public release; distribution is unlimited
ADAPTIVE ALGORITHMS FOR TWO DIMENSIONAL FILTERING

Steven L. Wilstrup

September 1988

In this thesis, an adaptive two dimensional least mean squares (LMS) algorithm and a recursive least squares (RLS) algorithm are developed from the one dimensional algorithms. Design of the two dimensional LMS and RLS algorithms are studied for accuracy based on the results of a two dimensional system identification model which was used in testing the algorithms. Application of the two algorithms is demonstrated through computer simulation in which the adaptive filters are employed in a noise canceler and an adaptive line enhancer and applied to an image processing problem.

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

Murali Tummala

(408) 646-2645

Adaptive, Filter, Wiener, LMS, RLS, Noise canceler, ALE
Adaptive Algorithms for Two
Dimensional Filtering

by

Steven L. Wilstrup
Lieutenant Commander, United States Navy
M.B.A., University of West Florida, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1988

Author: Steven L. Wilstrup

Approved by: Murali Tummala, Thesis Advisor
Charles W. Therrien, Second Reader
John P. Powers, Chairman,
Department of Electrical and Computer Engineering

Gordon E. Schacher,
Dean of Science and Engineering
ABSTRACT

In this thesis, an adaptive two dimensional least mean squares (LMS) algorithm and a recursive least squares (RLS) algorithm are developed from the one dimensional algorithms. Design of the two dimensional LMS and RLS algorithms are studied for accuracy based on the results of a two dimensional system identification model which was used in testing the algorithms. Application of the two algorithms is demonstrated through computer simulation in which the adaptive filters are employed in a noise canceler and an adaptive line enhancer and applied to an image processing problem.
TABLE OF CONTENTS

I. INTRODUCTION ... 1
 A. OBJECTIVES OF THE THESIS 2
 B. ORGANIZATION OF THE THESIS 2

II. TWO DIMENSIONAL ADAPTIVE LEAST MEAN SQUARE ALGORITHM 4
 A. ONE DIMENSIONAL WIENER FILTER 4
 B. TWO DIMENSIONAL WIENER FILTER 8
 C. TWO DIMENSIONAL LEAST MEAN SQUARE 12
 D. IMPLEMENTATION .. 14
 1. System Identification 14
 2. Adaptive Noise Canceler 15
 3. Adaptive Line Enhancer 18

III. TWO DIMENSIONAL ADAPTIVE RECURSIVE LEAST SQUARES ALGORITHM .. 21
 A. ONE DIMENSIONAL RECURSIVE LEAST SQUARES 21
 B. TWO DIMENSIONAL RECURSIVE LEAST SQUARES 24
 C. IMPLEMENTATION .. 29
 1. System Identification 29
 2. Adaptive Noise Canceler/Adaptive Line Enhancer 30

IV. RESULTS AND CONCLUSIONS 33
 A. NOISE CANCELER RESULTS 34
 B. ADAPTIVE LINE ENHANCER RESULTS 39
 C. CONCLUSIONS ... 40

APPENDIX A. LMS SYSTEM IDENTIFICATION PROGRAM 42

APPENDIX B. LMS ALGORITHM IMPLEMENTED IN A NOISE CANCELER .. 44
LIST OF TABLES

Table 1. NOISE CANCELER RESULTS .. 38
Table 2. ADAPTIVE LINE ENHANCER RESULTS 40
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tapped Delay Line Filter</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Two Dimensional Wiener Filter</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Two Dimensional Least Mean Square</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Two Dimensional System Identification</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>LMS System Identification-Rate of Convergence</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>LMS System Identification-Rate of Convergence</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>Adaptive Noise Canceler</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>Adaptive Line Enhancer</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>One Dimensional RLS Reference (TDL)</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>Two Dimensional RLS Reference</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>Two Dimensional RLS System Identification</td>
<td>29</td>
</tr>
<tr>
<td>12</td>
<td>RLS System Identification Rate of Convergence</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>RLS System Identification Rate of Convergence</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>Original Image</td>
<td>33</td>
</tr>
<tr>
<td>15</td>
<td>Image plus Additive Noise</td>
<td>34</td>
</tr>
<tr>
<td>16</td>
<td>Restored Image: Noise Canceler/LMS (One pass)</td>
<td>35</td>
</tr>
<tr>
<td>17</td>
<td>Restored Image: Noise Canceler/LMS (Two passes)</td>
<td>36</td>
</tr>
<tr>
<td>18</td>
<td>Restored Image: Noise Canceler/RLS (One pass)</td>
<td>36</td>
</tr>
<tr>
<td>19</td>
<td>Restored Image: Noise Canceler/LMS (different mu)</td>
<td>37</td>
</tr>
<tr>
<td>20</td>
<td>Restored Image: Noise Canceler/LS (normalized mu)</td>
<td>37</td>
</tr>
<tr>
<td>21</td>
<td>Restored Image: Noise Canceler/LMS (3 by 3)</td>
<td>38</td>
</tr>
<tr>
<td>22</td>
<td>Restored Image: Adaptive Line Enhancer/LMS (One pass)</td>
<td>39</td>
</tr>
<tr>
<td>23</td>
<td>Restored Image: Adaptive Line Enhancer/RLS (One pass)</td>
<td>40</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

The area of digital signal processing has experienced a rapid growth in the last decade. Reasons for this have been the tremendous advances in integrated circuit technology, and some significant developments in digital processing techniques achieved during this period. Included in these developments are methods which extend certain one dimensional digital signal processing techniques to two dimensions. This extension is by no means trivial. Three significant factors must be considered:

1. more degrees of freedom are available in a two dimensional system; this gives a system designer more flexibility than the one dimensional case,
2. one dimensional problems generally involve considerably less data than two dimensional problems, and
3. the mathematical methods for handling two dimensional systems are generally less complete than those for one dimension.

As the techniques for processing multidimensional data have improved, the applications of digital signal processing have spread from one dimensional to two dimensional, to n-dimensional data. There exists many physical phenomena that inherently depend on two or more independent variables. In the prediction of weather and in seismic analysis, the data depends on more than one independent variable. Moreover, data originating from one dimensional processes can, in some cases, be considered two dimensional. For instance, data from periodic or cyclic processes can be represented as two dimensional arrays by using their periodicity.

Besides the general applicability of two dimensional signal processing in the above cases, other areas which have experienced significant growth in recent years include radar, sonar, and radio astronomy. The two dimensional processing of images is also a very important one. Images depend on two spatial variables, and are continuous in nature. However, if we digitize them and assume linear models in their formation, distortion, and recording we then have techniques that can be used in their processing. Depending on the applications, different processing techniques are used, notably: enhancement and restoration of images, and segmentation and encoding of images. For details, see References 1, 2, 3, 4.

This brief discussion about applications of two dimensional digital signal processing shows that they are found in a wide variety of fields. In this thesis, we are interested in
extending one dimensional adaptive filtering techniques to two dimensions and then applying this in the area of image restoration. Once the transition from one to two dimensions is understood, the extension to n-dimensional signal processing is fairly straightforward.

A. OBJECTIVES OF THE THESIS

The use of the Wiener filter has proven to be a very powerful tool in the area of image restoration [Refs. 1, 2, 4]. However, one disadvantage is the fact that the Wiener filter operates under the assumption that the image is stationary which generally is not the case in an image processing problem. In one dimensional signal processing the Wiener filter concept has provided a basis for various adaptive filtering algorithms. Within these adaptive algorithms, the filter possesses characteristics which can be modified to achieve some end or objective and is usually assumed to accomplish this "adaptation" automatically without the need for substantial intervention by the user. The adaptive filter can "learn" the signal characteristics when first turned on and thereafter can track changes in these characteristics. The first objective of this thesis is to examine a two dimensional Wiener model for image restoration which can then be extended to adaptive algorithms. Due to its relatively low computational requirements and the fact that it will work in a variety of signal environments, the least mean square (LMS) algorithm will be investigated first.

The second objective of this thesis is to develop a second two dimensional adaptive algorithm. In this case, we will work with the recursive least square (RLS) algorithm which offers faster convergence than the gradient-search-type algorithms but generally involves a greater cost per data sample and more numerical difficulties.

The final objective is to implement the LMS and RLS algorithms within a system identification model, a noise canceler, and an adaptive line enhancer. Each algorithm possesses several variants and various parameters which can be modified. A representative sample of the various outputs will be examined and the results compared in order to see which provides the optimum solution under given conditions.

B. ORGANIZATION OF THE THESIS

Chapter II is designed to review the development of the one dimensional Wiener filter and then extend it to two dimensions where it can be incorporated into a two dimensional LMS adaptive algorithm. Computer simulation of the algorithm within a system identification model is performed and the results are shown. The two dimensional RLS algorithm is derived in Chapter III and again the results of the algorithm
within a computer simulated system identification model are shown. Chapter IV con-
tains the results of implementing the LMS and RLS algorithms in a noise canceler and
an adaptive line enhancer. Conclusions concerning the results are also presented.
II. TWO DIMENSIONAL ADAPTIVE LEAST MEAN SQUARE ALGORITHM

In this chapter, we will review the derivation of the one dimensional Wiener filter and then develop an algorithm to extend it to the two dimensional case. We will use the two dimensional Wiener filter to achieve a two dimensional least mean square (LMS) adaptive filter algorithm which will be demonstrated to be useful in image processing by applying the algorithm in a noise canceler mode and in an adaptive line enhancer configuration for the restoration of images corrupted by noise.

A. ONE DIMENSIONAL WIENER FILTER

The problem of estimating one signal from another is one of the most important in signal processing. In many applications, the desired signal is not available or observable directly. Instead, the observable signal is a degraded or distorted version of the original signal. The signal estimation problem is to recover, in the best way possible, the desired signal from its degraded replica. One typical example which we will deal with in this paper is an image recorded by an imaging system that has been corrupted by noise. The problem is to undo the noise induced distortion and restore the original image.

This represents the classic one dimensional problem in communication theory where we must obtain an estimate of a signal of interest, which can be observed in the presence of some additive noise. In other words, the available information about the signal, \(s(n) \), is contained in the received signal:

\[
 u(n) = s(n) + w(n)
\]

where \(w(n) \) is the noise. Therefore, we must process this available signal \(u(n) \) through an optimal processor that produces the best possible estimate of \(s(n) \).

In order to establish a two dimensional Wiener filter, we must first develop a one dimensional algorithm. This task has been approached from many different directions [Refs. 5,6,7]. The formulation by Haykin [Ref. 8] provides the most logical extension to two dimensions. First, we consider a tapped delay line filter similar to Figure 1 on page 5. The filter consists of a set of delay elements, a corresponding set of adjustable tap gains or coefficients \(h(1), h(2),\ldots, h(M) \) connected to the tap inputs, and a set of adders
for summing the resultant outputs. The filter is driven by a random time series producing the sequence \(u(n), u(n - 1), \ldots, u(n - M + 1) \) as the M tap inputs of the filter.

We can express the signal produced at the filter output, \(y(n) \), by the convolution sum:

\[
y(n) = \sum_{k=1}^{M} h(k)u(n - k + 1). \tag{2.2}
\]

We desire a filter which in some way minimizes the difference between some desired response, \(d(n) \), and the corresponding value of the actual filter output. This difference can be denoted as

\[
e(n) = d(n) - y(n) \tag{2.3}
\]

where \(e(n) \) is called the error signal. In Wiener theory, the filter is optimized by minimizing the mean-square value of this error signal, \(e(n) \).
Let the mean-square value of the error be denoted by

\[MSE = E\{e^2(n)\} \tag{2.4} \]

where \(E\{.\} \) is the expectation operator. This mean-square value is a real and positive scalar quantity, representing the average normalized power of the error signal, \(e(n) \). Substituting Equation (2.3) into (2.4) yields

\[MSE = E\{d^2(n)\} - 2E\{d(n)y(n)\} + E\{y^2(n)\}. \tag{2.5} \]

Next, substituting Equation (2.2) into Equation (2.5) and then interchanging the orders of summation and expectation in the last two terms, we get

\[MSE = E\{d^2(n)\} - 2 \sum_{k=1}^{M} h(k) E\{d(n)u(n - k + 1)\} \]
\[+ \sum_{k=1}^{M} \sum_{m=1}^{M} h(k)h(m) E\{u(n - k + 1)u(n - m + 1)\}. \tag{2.6} \]

Assuming that the input signal \(u(n) \) and the desired response \(d(n) \) are jointly stationary, the three terms on the right-hand side of the above equation may be interpreted as follows:

1. The expectation \(E\{d^2(n)\} \) is equal to the mean square value of the desired response \(d(n) \):

\[P_d = E\{d^2(n)\}. \tag{2.7} \]

2. The expectation \(E\{d(n)u(n - k + 1)\} \) is equal to the cross-correlation function of the desired response \(d(n) \) and the input signal \(u(n) \) for the lag of \(k-1 \). We can therefore write the single summation term on the righthand side of Equation (2.6) as follows:

\[\sum_{k=1}^{M} h(k)E\{d(n)u(n - k + 1)\} = \sum_{k=1}^{M} h(k)p(k - 1). \tag{2.8} \]

3. Finally, the expectation \(E\{u(n - k + 1)u(n - m + 1)\} \) is equal to the autocorrelation function of the input signal \(u(n) \) for the lag of \(m-k \):

\[r(m - k) = E\{u(n - k + 1)u(n - m + 1)\}. \tag{2.9} \]

Accordingly, we can rewrite the double summation term on the righthand side of Equation (2.6) in the form

\[\sum_{k=1}^{M} \sum_{m=1}^{M} h(k)h(m) E\{u(n - k + 1)u(n - m + 1)\} \]
\[= \sum_{k=1}^{M} \sum_{m=1}^{M} h(k)h(m)r(m - k). \tag{2.10} \]
Thus, substituting Equations (2.7), (2.8), and (2.10) into Equation (2.6), we find that the expression for the mean square error may by rewritten in the form

$$MSE = P_d - 2 \sum_{k=1}^{M} h(k)p(k - 1) + \sum_{k=1}^{M} \sum_{m=1}^{M} h(k)h(m)r(m - k). \quad (2.11)$$

By differentiating Equation (2.11) with respect to $h(k)$ and setting it equal to zero, we have the following set of M simultaneous equations

$$p(k - 1) = \sum_{m=1}^{M} h_0(m)r(m - k), \quad k = 1, 2, \ldots, M. \quad (2.12)$$

This system of M simultaneous equations is called the normal equations with optimum filter coefficients as the unknowns. With the following definitions,

$$h_0 = \begin{bmatrix} h_0(1) \\ h_0(2) \\ \vdots \\ h_0(M) \end{bmatrix} \quad (2.13)$$

$$p = \begin{bmatrix} p(0) \\ p(1) \\ \vdots \\ p(M - 1) \end{bmatrix} \quad (2.14)$$

$$R = \begin{bmatrix} r(0) & r(1) & \cdots & r(M - 1) \\ r(1) & r(0) & \cdots & r(M - 2) \\ \vdots & \vdots & \ddots & \vdots \\ r(M - 1) & r(M - 2) & \cdots & r(0) \end{bmatrix} \quad (2.15)$$
we can rewrite the normal equations of Equation (2.12) in matrix form as

\[p = R h_0. \]

(2.16)

This represents the discrete-time version of the Wiener-Hopf equation.

B. TWO DIMENSIONAL WIENER FILTER

The following derivation parallels the development by Hadhoud and Thomas, however this research and simulation were completed separately and prior to the publication of Reference 9. In order to be applicable for an image processing problem, we must extend the formulation in the previous section to two dimensions [Refs. 10,11]. This is accomplished by developing a basic two dimensional Wiener filter as shown in Figure 2 on page 9. Within this filter, we use two input images, the reference array \(X \) and the primary input array \(D \). The primary input image \(D \) is a two dimensional array which represents the ideal image plus additive noise, while the reference image \(X \) is noise that is assumed to be correlated to the noise in the primary input. Both the input arrays are \(M \times M \) in dimension. The Wiener filter is an \(N \times N \) causal FIR filter with a set of weights \(W \) defined as

\[
W = \begin{bmatrix}
W_j(0,0) & W_j(0,1) & \ldots & W_j(0,N-1) \\
W_j(1,0) & W_j(1,1) & \ldots & W_j(1,N-1) \\
& \ddots & \ddots & \ddots \\
W_j(N-1,0) & W_j(N-1,1) & \ldots & W_j(N-1,N-1)
\end{bmatrix}
\]

(2.17)

which minimize the mean of the squared error, \(e_n \), between the filter output and the desired input \(D \). We designate \(j \) as the iteration number given by \(j = mM + n \) where \(m \) and \(n \) take on the values from 0 to \(M-1 \). Just as in the one dimensional case, the filter output, \(y(m,n) \), is the convolution sum of the filter mask and the reference input \(X \) which is given by

\[
y(m,n) = \sum_{l=0}^{N-1} \sum_{k=0}^{N-1} W_j(l,k)X(m-l,n-k). \]

(2.18)

During the \(j \)th iteration the input from array \(X \) is represented by \(X_j \) where
Figure 2. Two Dimensional Wiener Filter

Using the Equations (2.17) and (2.19), Equation (2.18) can now be written as
\[y(m,n) = \sum_{l=0}^{N-1} \sum_{k=0}^{N-1} W_{j(l,k)} X(l,k) \]

(2.20)

for the \(j \)th iteration.

This output \(y(m,n) \) can now be subtracted from one pixel \(D(m,n) \) of the array \(D \) to produce the error signal at the \(j \)th iteration

\[e_j = D(m,n) - \sum_{l=0}^{N-1} \sum_{k=0}^{N-1} W_{j(l,k)} X(m-l,n-k). \]

(2.21)

Since the purpose of the Wiener filter is to provide a set of weights which minimize the MSE, we can denote it as

\[MSE = E\{e_j^2\} \]

(2.22)

where \(E\{.\} \) is the expectation operator.

Using a mathematical derivation similar to the one dimensional case of the previous section, we can see that

\[e_j^2 = D^2(m,n) - 2 \sum_{l=0}^{N-1} \sum_{k=0}^{N-1} W_{j(l,k)} D(m,n) X(m-l,n-k) \]

\[+ \sum_{l=0}^{N-1} \sum_{k=0}^{N-1} \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} W_{j(l,k)} W_{j(p,q)} X(m-l,n-k) X(m-p,n-q). \]

(2.23)

Substituting Equation (2.23) into Equation (2.22) yields

\[MSE = E[D^2(m,n)] - 2 \sum_{l=0}^{N-1} \sum_{k=0}^{N-1} W_{j(l,k)} E[D(m,n) X(m-l,n-k)] \]

\[+ \sum_{l=0}^{N-1} \sum_{k=0}^{N-1} \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} W_{j(l,k)} W_{j(p,q)} E[X(m-l,n-k) X(m-p,n-q)]. \]

(2.24)

Defining \(P \) as the crosscorrelation matrix between the desired response \(D(m,n) \) and the reference input, \(R \) as the input autocorrelation matrix, and \(W \) as the optimum Wiener weight matrix, we can rewrite Equation (2.24) as
\[MSE = E[D^2(m,n)] - 2 \sum_{l=0}^{N-1} \sum_{k=0}^{N-1} W_j(l,k) P(l,k) \]
\[+ \sum_{l=0}^{N-1} \sum_{k=0}^{N-1} \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} W_j(l,k) W_j(p,q) R(p-l,q-k). \]

(2.25)

Finally, if we minimize the MSE with respect to \(W_j(l,k) \) then we have

\[P(l,k) = \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} W_j(p,q) R(p-l,q-k). \]

(2.26)

This equation is the two dimensional equivalent to Equation (2.12). The matrix form of Equation (2.26) is given as

\[\mathbf{P} = \mathbf{R} \mathbf{W} \]

(2.27)

where the elements of this equation are defined as follows

\[\mathbf{R} = \begin{bmatrix}
[R_0] & [R_1] & [R_2] & \ldots & \vdots \\
[R_1] & [R_0] & [R_1] & \ldots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
[R_{-N+1}] & [R_{-N+2}] & \ldots & \ldots & [R_0]
\end{bmatrix} \]

(2.28)

\[\mathbf{W} = \begin{bmatrix}
W_0 \\
W_1 \\
\vdots \\
W_{N-1}
\end{bmatrix} \]

(2.29)

\[\mathbf{P} = \begin{bmatrix}
P_0 \\
P_1 \\
\vdots \\
P_{N-1}
\end{bmatrix} \]

(2.30)
Within the R matrix in equation (2.28) each element is a block Toeplitz matrix represented by the equation

$$R(p-l,q-k) = E[X(m-l,n-k)X(m-p,n-q)]$$ \hspace{1cm} (2.31)

where l,k,p,q range from 0 to N-1.

C. TWO DIMENSIONAL LEAST MEAN SQUARE

One means of obtaining an approximate solution for the optimum weight matrix, W, is the use of a two dimensional LMS algorithm which is depicted in Figure 3 on page 13. This differs from Figure 2 on page 9 in that the error e_j is used to update the filter coefficients before shifting the data window X_j across the reference input for the next iteration. As in the one dimensional LMS algorithm, we are updating the coefficient matrix by adding the present matrix to a change proportional to the negative gradient of the error where the one dimensional instantaneous estimates of the gradient vector are based on sample values of the input and the error signal $e(n)u(n)$ [Ref. 8]. For the two dimensional jth iteration, we define the updated matrix as

$$W_{j+1} = W_j - \mu e_j X_j$$ \hspace{1cm} (2.32)

where
- W_{j+1} updated weight matrix
- W_j previous weight matrix
- μ scaler multiplier controlling the rate of convergence and filter stability
- $(e_j)(X_j)$ estimate for the 2-D instantaneous gradient

The previous equation can also be written as

$$W_{j+1}(l,k) = W_j(l,k) + 2\mu (e_j) X(m-l,n-k).$$ \hspace{1cm} (2.33)

These two equations give the two dimensional weight updating algorithm for the LMS adaptive filter. The algorithm we have developed here may be implemented without any form of matrix operations, averaging, or differentiation.

The value of μ may be chosen based on the desired tracking ability, steady-state mean square error, and convergence speed. In signal processing, there are several methods for determining a suitable value, however in many of these cases it requires knowledge of the eigenvalues and eigenvectors of the autocorrelation matrix. In image
processing, one method which does not require these values for the computation of μ is trial and error based on output image.

An alternate method used in one dimensional design which again does not require a priori knowledge of the autocorrelation matrix, discussed by Bitmead and Anderson [Ref. 12], is the normalized LMS. Using our previous notation, this method can be extended to two dimensions by first considering the two dimensional LMS update equation (2.32). In this equation, we redefine the step-size parameter, μ, for a given l and k as
\[\mu(l,k) = \frac{\alpha}{\beta + \sigma_j^2(l,k)} \]

(2.34)

in which \(\alpha \), represents the normalized step size chosen between zero and two, \(\beta \) is another small positive constant, and \(\sigma_j^2(l,k) \) is one of the values from the matrix

\[
\sigma_j^2 = \begin{bmatrix}
\sigma_j^2(0,0) & \sigma_j^2(0,1) & \cdots & \sigma_j^2(0,N-1) \\
\sigma_j^2(1,0) & \sigma_j^2(1,1) & \cdots & \sigma_j^2(1,N-1) \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_j^2(N-1,0) & \sigma_j^2(N-1,1) & \cdots & \sigma_j^2(N-1,N-1)
\end{bmatrix}
\]

(2.35)

The element required from the matrix depends upon the current values of \(l \) and \(k \) being used for equation (2.33). The matrix may be initialized with the values of \((X(m-l,n-k))^2\) and to update the values in \(\sigma_j^2 \), we use the following equation

\[
\sigma_{j+1}^2(l,k) = \rho(\sigma_j^2(l,k)) + (1 - \rho)(X(m-l,n-k))^2
\]

where \(\rho \) is a weighting factor between zero and one. This ensures that the value of \(\mu \) does not become large enough to cause the algorithm to become unstable.

D. IMPLEMENTATION

1. System Identification

In order to initially test the two dimensional least mean square algorithm, we established a system identification model shown in Figure 4 on page 15. Within this model the output of the known FIR filter, \(d(m,n) \), is defined as

\[
d(m,n) = .4 \ W(m,n) + .6 \ W(m-1,n) \\
- .3 \ W(m,n-1) + .2 \ W(m-1,n-1).
\]

(2.37)

The output of the two dimensional least mean square filter, \(y(m,n) \), consists of a set of adjustable coefficients and is defined as

\[
y(m,n) = A0 \ W(m,n) + A1 \ W(m-1,n) \\
+ A2 \ W(m,n-1) + A3 \ W(m-1,n-1).
\]

(2.38)

The adaptive filter output \(y(m,n) \) is then compared with the known system output \(d(m,n) \) to produce an error signal \(e(m,n) \), defined as the difference between them.
The operation of the adaptive filter is to minimize the error signal $e(m,n)$ by providing an adaptive process for adjusting the coefficients. For this adaptive process we use the update equation (2.32) for the two dimensional least mean square algorithm developed in the previous section

$$W_{j+1} = W_j - \mu e_j X_j$$ \hspace{1cm} (2.32)

For this model a 32x32 white gaussian noise matrix was used as the input and the rate of convergence can be be seen in Figure 5 on page 16 and Figure 6 on page 17. Following 600 iterations all the coefficients had converged to within 10^{-3} of the actual coefficient value and the error was 3×10^{-3}. A computer program for this system identification model is given in Appendix A.

2. Adaptive Noise Canceler

The usual method of estimating a signal corrupted by additive noise is to pass the composite signal through a filter that tends to suppress the noise while leaving the
signal relatively unchanged. The noise canceler and adaptive line enhancer developed by Widrow [Ref. 13] are well-documented ways of doing that. Adaptive noise canceling is a variation of optimal filtering that is highly advantageous in many applications. It uses an auxiliary or reference input derived from one or more sensors located at points in the noise field where the signal is weak or undetectable. This input is filtered and subtracted from a primary input containing both signal and noise. The reference input and the noise in the primary input are therefore correlated, and as a result the primary noise is attenuated or eliminated by cancellation.
The basic noise canceling concept is illustrated in Figure 7 on page 18. A signal is transmitted over a channel to a sensor that receives the signal plus noise, \(n_0 \). The combined signal and noise \(s + n_0 \) forms the "primary input" to the canceler. A second sensor receives a noise \(n_1 \) which is correlated in some way with the noise \(n_0 \). This sensor output provides the "reference input" to the canceler. The noise \(n_1 \) is filtered to produce an output \(y \) that is a close replica of \(n_0 \). This output is subtracted from the primary input \(s + n_0 \) to produce the system output \(s + n_0 - y \).
Figure 7. Adaptive Noise Canceler

In the system shown in Figure 7, the reference input is processed by our two dimensional least mean square filter. Thus the filter operates under changing conditions and will readjust itself continuously to minimize the error signal.

The computer program which simulates this noise canceling model is provided in Appendix B. We will discuss the results and conclusions concerning various simulations in Chapter 4.

3. Adaptive Line Enhancer

A special case of adaptive noise canceling is when there is only one signal $x(n)$ available which is contaminated by noise. In such a case, the signal $x(n)$ provides its own reference signal $y(n)$, which is taken to be a delayed replica of $x(n): y(n) = x(n - \Delta)$, as shown in Figure 8 on page 19. The adaptive filter will respond by canceling any components of the main signal $x(n)$ that are in any way correlated with the secondary signal $y(n) = x(n - \Delta)$. Suppose the signal $x(n)$ consists of two components: a narrowband component that has long-range correlations and a broadband component which will tend to have short-range correlations. One of these could represent the desired signal and the other an undesired interfering noise. Suppose that the
delay Δ is selected so that it falls between the correlation lengths. Since Δ is longer than the effective correlation length of the broadband component, the delayed replica will be entirely uncorrelated with the broadband part of the main signal. The adaptive filter will not be able to respond to this component. On the other hand, since Δ is shorter than the correlation length of the narrowband component, the delayed replica that appears in the secondary input will be correlated with narrowband part of the main signal and the filter will respond to cancel it. Note that if Δ is selected to be longer than both correlation lengths, the secondary input will become uncorrelated with the primary input and the adaptive filter will turn itself off. In the opposite case, when the delay Δ is selected to be less than both correlation lengths, then both components of the secondary signal will be correlated with the primary signal, and therefore the adaptive filter will respond to cancel the primary $x(n)$ completely. The computational algorithm for the adaptive line enhancer is shown in the following three equations:

$$\hat{x}(n) = \sum_{m=0}^{M} h_m(n)y(n-m) = \sum_{m=0}^{M} h_m(n)x(n-m-\Delta)$$ (2.40)
\[e(n) = x(n) - \hat{x}(n) \] (2.41)

\[h_m(n + 1) = h_m(n) + 2 \mu e(n) x(n - m - \Delta) \quad m = 0, 1, 2, \ldots, M \] (2.42)

For this model we also developed a computer simulation which incorporates our two dimensional LMS algorithm and it is provided in Appendix C. The results and conclusions will again be discussed in Chapter 4.
III. TWO DIMENSIONAL ADAPTIVE RECURSIVE LEAST SQUARES ALGORITHM

In the previous chapter, under the LMS algorithm, the available data samples were used in order to attempt to move the current estimate of the impulse response to the optimum value. This approach has the advantage of being simple to implement but carries with it the disadvantages that it can be slow to approach the optimal weight vector and, once close to it, will usually fluctuate around the optimal vector rather than actually converge to it due to the effects of approximations made in the estimate of the performance function gradient.

To overcome these difficulties, we examine another approach in this chapter which uses the input data in such a way as to ensure optimality at each step. This alternative algorithm is based on the exact minimization of the least square criteria. This algorithm is known as recursive least squares (RLS).

A. ONE DIMENSIONAL RECURSIVE LEAST SQUARES

As in the LMS case, the one dimensional RLS algorithms is developed in several different ways [Refs. 5, 8]. Orfanidis [Ref. 6] provides a derivation which we will consider prior to our extension to two dimensions. The tapped delay line shown in Figure 9 on page 22 will provide the reference for the following discussion. We begin by replacing the LMS estimation criteria of \(\text{MSE} = \mathbb{E}[e^2] \) by

\[
\text{MSE} = \sum_{k=0}^{n} e^2(k) \quad k = 0, 1,...,n \quad (3.2)
\]

where

\[
e(k) = x(k) - \hat{x}(k) \quad (3.3)
\]

and \(\hat{x}(k) \) is the estimate of \(x(k) \) produced by the Mth-order Wiener filter

\[
\hat{x} = \sum_{m=0}^{M} h(m) y(k - m) \quad (3.4)
\]
Substituting equation (3.2) into (3.1) and setting the derivative with respect to \(h \) to zero we find the least-squares analogs of the orthogonality equations.
\[
\frac{\Delta MSE}{\Delta h} = -2 \sum_{k=0}^{n} e(k) y(k) = 0 \quad (3.5)
\]

which may be rewritten in their normal equation form as follows

\[
\sum_{k=0}^{n} (x(k) - h^T y(k)) y(k) = 0 \quad (3.6)
\]

\[
\left[\sum_{k=0}^{n} y(k) y(k)^T \right] h = \sum_{k=0}^{n} x(k) y(k) \quad (3.7)
\]

Defining the quantities

\[
R(n) = \sum_{k=0}^{n} y(k) y(k)^T \quad (3.8)
\]

\[
r(n) = \sum_{k=0}^{n} x(k) y(k) \quad (3.9)
\]

we can then write the normal equation as \(R(n) h = r(n) \), with solution \(h = R(n)^{-1} r(n) \).

Note that the \(n \)-dependence of \(R(n) \) and \(r(n) \) depend on the current time \(n \), therefore,

\[
h(n) = R(n)^{-1} r(n) = P(n) r(n) \quad (3.10)
\]

where \(P(n) = R(n)^{-1} \). These are the least squares analogs of the ordinary Wiener solution, with \(R(n) \) and \(r(n) \) playing the role of the covariance matrix \(E[y(n)y(n)^T] \) and cross-correlation vector \(E[x(n)y(n)] \), respectively. The RLS algorithm is obtained by writing equation (3.10) recursively in \(n \) and then using the following matrix inversion lemma [Ref. 5]

\[
(A + BCD)^{-1} = A^{-1} - A^{-1} B (D A^{-1} B + C^{-1})^{-1} D A^{-1} \quad (3.11)
\]

we get the update equation for the \(P \) matrix

\[
P(n) = P(n - 1) - \frac{P(n-1)y(n)y(n)^T P(n-1)}{1 + y(n)^T P(n-1)y(n)}. \quad (3.12)
\]
Using the quantities in equations (3.8) and (3.9) to satisfy the recursions yields

\[R(n) = R(n-1) + y(n)y(n)^T \]
(3.13)

\[r(n) = r(n-1) + x(n)y(n) \]
(3.14)

and substituting equations (3.12) and (3.14) into (3.10) after some mathematical manipulations we find

\[h(n) = h(n-1) + P(n) y(n) e(n) \]
(3.15)

which differs from the LMS algorithm by the presence of the $P(n)$, vice μ, in front of the weight correction term. Since $P(n) = R(n)^{-1}$ is a measure of the covariance matrix $E[y(n)y(n)^T]$, the presence of $R(n)^{-1}$ makes the RLS algorithm behave like Newton's method, and hence has fast convergence properties.

B. TWO DIMENSIONAL RECURSIVE LEAST SQUARES

Although it is discussed briefly by Wellstead and Caldas Pintos [Ref. 14], limited information is available in the open literature in this area. In order to develop a two dimensional recursive least square (RLS) algorithm we will extend the one dimensional adaptive algorithm developed in the previous section in a method similar to that used for the LMS algorithm.

As in Chapter 2, using Figure 10 on page 25 as a reference we see that the basic filter has two input images. The primary two dimensional input array, D, is the ideal image plus additive noise. The reference image X is the noise array. Each array is of dimension M by M. The filter mask, W, is N by N.

The one dimensional RLS algorithm, equation (3.15), is the same as the one dimensional LMS algorithm with the exception that $P(n)$ replaces μ. Therefore, if a method of developing a P matrix for the two dimensional case can be devised we can then use an algorithm similar to the two dimensional LMS algorithm to update the filter coefficients. First, let
Figure 10. Two Dimensional RLS Reference
\[P_j = \begin{bmatrix}
 P_j(0,0) & P_j(0,1) & \cdots & P_j(0,N^2 - 1) \\
 \vdots & \vdots & \ddots & \vdots \\
 \vdots & \vdots & \ddots & \vdots \\
 P_j(N^2 - 1,0) & P_j(N^2 - 1,1) & \cdots & P_j(N^2 - 1,N^2 - 1)
\end{bmatrix} \]

(3.16)

which represents the \(P \) matrix on the \(j \)th iteration where \(j \) is defined as \(j = mM + n \). As in the two dimensional LMS algorithm, we let the filter coefficient matrix be given as

\[W_j = \begin{bmatrix}
 W_j(0,0) & W_j(0,1) & \cdots & W_j(0,N - 1) \\
 W_j(1,0) & W_j(1,1) & \cdots & W_j(1,N - 1) \\
 \vdots & \vdots & \ddots & \vdots \\
 W_j(N - 1,0) & W_j(N - 1,1) & \cdots & W_j(N - 1,N - 1)
\end{bmatrix} \]

(3.17)

and the input data window as

\[X_j = \begin{bmatrix}
 X(m,n) & X(m,n - 1) & \cdots & X(m,n - N + 1) \\
 \vdots & \vdots & \ddots & \vdots \\
 \vdots & \vdots & \ddots & \vdots \\
 X(m - N + 1,n) & X(m - N + 1,n - 1) & \cdots & X(m - N + 1,n - N + 1)
\end{bmatrix} \]

(3.18)

In order to establish an update equation for the \(P \) matrix in which each element will have the proper dimensions, we use equations (3.17) and (3.18) and make the following transformations; the filter mask, \(W_j \), equation (3.17) is transformed into a vector defined as
and we transform the X_j matrix, equation (3.18) into

$$X X_j = \begin{bmatrix}
X(m,n) \\
X(m,n-1) \\
\vdots \\
X(m,n-N+1) \\
\vdots \\
X(m-N+1,n) \\
X(m-N+1,n-1) \\
\vdots \\
X(m-N+1,n-N+1)
\end{bmatrix} \quad (3.20)$$

Using the quantities defined above, we can then write the P matrix update equation as
\[
P_j = P_{j-1} - \frac{P_{j-1}(XX_j)(XX_j^T)P_{j-1}}{1 + (XX_j^T)P_{j-1}(XX_j)} \quad (3.21)
\]

As discussed earlier, the one dimensional RLS weight updating algorithm differs from the LMS in that it contains the \(P \) matrix while the LMS algorithm contains \(\mu \). This must be considered in two dimensions since \(P \) is a matrix and \(\mu \) is a scalar. Therefore using the previous equations, we can obtain the update to the filter coefficients via

\[
WW_{j+1} = WW_j - (P_j)(e_j)(XX_j) \quad (3.22)
\]

where \(e_j \) is given as

\[
e_j = D(m,n) - y(m,n) \quad (3.23)
\]

\(y(m,n) \) is the convolution sum of the image in the reference input with the filter window

\[
y(m,n) = \sum_{l=0}^{N-1} \sum_{k=0}^{N-1} W_j(l,k) X_j(l,k) \quad (3.24)
\]

and the value \(P_j \) is updated by equation (3.21).

The cost function of the RLS criterion could be modified to include a windowing of the input data as follows

\[
MSE = \sum_{k=0}^{n} q^{n-k} e^2(k) \quad (3.25)
\]

This modification results in the following modified \(P \) matrix update:

\[
P_j = \frac{1}{q} \left[P_{j-1} - \frac{P_{j-1}(XX_j)(XX_j^T)P_{j-1}}{1 + (XX_j^T)P_{j-1}(XX_j)} \right] \quad (3.26)
\]

where \(q \), the averaging or "forgetting factor" is a positive constant. It is usually chosen to be slightly less than one, thereby diminishing the contribution of the "older" data. The problem of data nonstationarity is the main reason for introducing this type of weighting factor.[Ref. 6] It should be noted that the usual RLS algorithm is attained when \(q = 1 \) and that no changes in the amount of computation is required.
C. IMPLEMENTATION

1. System Identification

Following the mathematical development of the two dimensional recursive least squares algorithm, we implemented and tested it as was previously done with the two dimensional least mean square algorithm. Our initial testing was done in a system identification model as shown in Figure 11. As in the two dimensional LMS case, we used a known filter with the following output equation

\[
d(m,n) = 0.4W(m,n) + 0.6W(m-1,n) - 0.3W(m,n-1) + 0.2W(m-1,n-1)
\] (3.27)

Figure 11. Two Dimensional RLS System Identification
The two dimensional adaptive recursive least square filter output was given as

\[y(m,n) = A_0 W(m,n) + A_1 W(m-1,n) + A_2 W(m,n-1) + A_3 W(m-1,n-1) \]

(3.28)

The error signal was generated by taking the difference between the desired (known) signal, \(d(m,n) \), and the filter output, \(y(m,n) \). By using equations (3.21) and (3.22) to update the \(P \) matrix and the filter coefficients, we caused the filter weights to move toward their optimum values and the error signal to approach zero.

The computer program for this model is provided is Appendix D. For this system, a 32x32 white gaussian noise matrix was generated for the input to both the known filter and the RLS adaptive filter. The rate of convergence is shown in Figure 12 on page 31 and Figure 13 on page 32 and as can be seen after approximately 70 iterations each of the coefficients had converged to with \(10^{-3} \) of the actual value and the error was \(10^{-3} \).

2. Adaptive Noise Canceler/Adaptive Line Enhancer

These two systems were both discussed in Chapter 2 with regard to implementation of the two dimensional LMS algorithm. In order to further test the RLS algorithm we also implemented it within the noise canceler and the adaptive line enhancer. The computer programs which were used for the simulation are given Appendix E and Appendix F, respectively. The simulation results and discussion will be provided in Chapter 4.
Figure 12. RLS System Identification Rate of Convergence
Figure 13. RLS System Identification Rate of Convergence
IV. RESULTS AND CONCLUSIONS

In this chapter, we present the experimental results from our implementation of the two dimensional LMS algorithm derived in Chapter II and the two dimensional RLS algorithm derived in Chapter III. The two algorithms were used in a noise canceler and an adaptive line enhancer, as discussed in Chapter II, to solve an image restoration problem.

Figure 14 shows the original image of a house which is comprised of 128 by 128 eight bit pixels. The image has a mean value of 131.68 and a variance of 3194.4. In Figure 15 on page 34, we have corrupted the original image with additive white gaussian noise (zero mean and variance 1600).

![Original Image](image.png)

Figure 14. Original Image
A. NOISE CANCELER RESULTS

In order to solve our image restoration problem, we initially implemented both the LMS and the RLS algorithms in a noise canceler using a two by two filter matrix and a value of 70×10^{-9} for μ in the LMS algorithm.

Figure 16 on page 35 shows the output when the LMS algorithm is processed through the image for one pass: this results in 16,384 updates of the filter corresponding to the 16,384 pixels. Figure 17 on page 36 is the results following two passes through the image. No significant improvement was realized with more than two passes.

Implementing a two by two RLS adaptive filter in the noise canceler produced very favorable results after one pass through the image. These results are shown in Figure 18 on page 36 and compare well with the original image and the LMS output after two passes.

For the LMS algorithm our best results were achieved with a value of 70×10^{-9} for μ, however in order to demonstrate the effect of changing this value Figure 19 on page 37 represents the output with $\mu = 35 \times 10^{-8}$ and Figure 20 on page 37 is produced by a spatially varying normalized μ as discussed in Chapter II. It can be seen that for various
values of μ, different features within the image were restored at different levels. In Figure 16 on page 35, the edges and more detailed segments of the image were restored better than in Figure 19 on page 37, however areas of similar contrast were not as well restored. When using the normalized μ the mean value more closely approached the original mean, however the variance was reduced.

Finally, increasing the number of coefficients, using a three by three filter matrix in the LMS algorithm we obtained the results shown in Figure 21 on page 38 in one pass. This filter showed no significant improvement in the variance compared to the two by two filter; however, it did improve with respect to the mean.

Table 1 on page 38 shows the restoration results comparing the mean and variance of the various outputs with that of the original image and the image plus noise.

![Figure 16. Restored Image: Noise Canceler/LMS (One pass)](image)
Figure 17. Restored Image: Noise Canceler/LMS (Two passes)

Figure 18. Restored Image: Noise Canceler/RLS (One pass)
Figure 19. Restored Image: Noise Canceler/LMS (different mu)

Figure 20. Restored Image: Noise Canceler/LMS (normalized mu)
Table 1. NOISE CANCELER RESULTS

<table>
<thead>
<tr>
<th>TYPE OF FILTER</th>
<th>MEAN</th>
<th>VARIANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Image</td>
<td>131.68</td>
<td>3194.4</td>
</tr>
<tr>
<td>Image plus Noise</td>
<td>134.25</td>
<td>1647.7</td>
</tr>
<tr>
<td>One pass 2x2 LMS</td>
<td>114.52</td>
<td>2034.3</td>
</tr>
<tr>
<td>Two pass 2x2 LMS</td>
<td>136.78</td>
<td>3711.8</td>
</tr>
<tr>
<td>One pass 2x2 RLS</td>
<td>139.04</td>
<td>3607.7</td>
</tr>
<tr>
<td>One pass LMS(normalized mu)</td>
<td>120.12</td>
<td>1940.4</td>
</tr>
<tr>
<td>One pass LMS(normalized mu)</td>
<td>126.53</td>
<td>1500.7</td>
</tr>
<tr>
<td>One pass 3x3 LMS</td>
<td>119.13</td>
<td>2017.3</td>
</tr>
</tbody>
</table>
B. ADAPTIVE LINE ENHANCER RESULTS

We next implemented our two algorithms in an adaptive line enhancer. In order to obtain a reference input from the primary input, we used a two dimensional delay operator of \((m-1,n)\). As in the noise canceler we again used a two by two filter matrix and this produced the results shown in Figure 22 on page 39 and Figure 23 on page 40 for the one pass LMS and the one pass RLS, respectively. No significant improvement was noted in the two pass LMS compared to the one pass LMS.

Table 2 on page 40 shows the comparison of each output mean and variance with the mean and variance of the original image and the image plus noise.

![Figure 22. Restored Image: Adaptive Line Enhancer/LMS (One pass)](image)

Figure 22. Restored Image: Adaptive Line Enhancer/LMS (One pass)
Table 2. ADAPTIVE LINE ENHANCER RESULTS

<table>
<thead>
<tr>
<th>TYPE OF FILTER</th>
<th>MEAN</th>
<th>VARIANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Image</td>
<td>131.68</td>
<td>3194.4</td>
</tr>
<tr>
<td>Image plus Noise</td>
<td>134.25</td>
<td>1647.7</td>
</tr>
<tr>
<td>One pass 2x2 LMS</td>
<td>125.03</td>
<td>2521.8</td>
</tr>
<tr>
<td>Two pass 2x2 LMS</td>
<td>126.94</td>
<td>2529.9</td>
</tr>
<tr>
<td>One pass 2x2 RLS</td>
<td>139.69</td>
<td>2124.2</td>
</tr>
</tbody>
</table>

C. CONCLUSIONS

In this thesis we have extended a one dimensional LMS and a one dimensional RLS adaptive algorithm to two dimensions. As we examine the results we see that many of the one dimensional comparisons between LMS and RLS are applicable to two dimensions:

1. the rate of convergence of the RLS algorithm is in general faster than that of the LMS algorithm by an order of magnitude

2. this superior performance of the RLS algorithm is attained at the expense of a large increase in the computational complexity
3. there are no approximations within the derivation of the RLS algorithm, therefore as the number of iterations approach infinity, the least squares estimate approaches the optimum Wiener value.

4. in the RLS algorithm the correction which is applied is computed using all past data whereas the LMS algorithm uses only the instantaneous sample and the error signal; this is not necessarily an advantage in image processing.

The objectives of this thesis were successfully completed. Some suggestions for future work include: (i) to examine these two dimensional algorithms in other applications, applying them to areas other than image processing, (ii) to extend the two dimensional LMS and RLS algorithms to n-dimensions and implement them, (iii) to analyze the extension of these one dimensional algorithms to two dimensions in the frequency domain. Multidimensional digital signal processing is being applied in many areas today, however the potential for future growth and applications appears unlimited.
APPENDIX A. LMS SYSTEM IDENTIFICATION PROGRAM

SYSTEM IDENTIFICATION OF AN ADAPTIVE TWO DIMENSIONAL LMS FILTER VS. A KNOWN TWO DIMENSIONAL FILTER

REAL MU
DIMENSION A0(0:32,0:32),A1(0:32,0:32),A2(0:32,0:32),
 * A3(0:32,0:32),E(0:32,0:32),D(0:32,0:32),W(-1:32,-1:32),
 * Y(0:32,0:32)

******VARIABLE DEFINITIONS******
A=NOISE AMPLITUDE
S=NOISE VARIANCE
AM=NOISE MEAN
IX=SEED
A0,A1,A2,A3=FILTER COEFFICIENTS
MU=SCALING FACTOR WITHIN THE LMS ALGORITHM
W=WHITE GAUSSIAN NOISE GENERATED BY SUBROUTINE
Y=FILTER OUTPUT
D=DESIRABLE OUTPUT
E=ERROR(D - Y)

******INITIAL VALUES*******
A=1.
MU=.01
A0(0,0)=0.
A1(0,0)=0.
A2(0,0)=0.
A3(0,0)=0.
S=.1
AM=0.
IX=65539

******OPEN FILE AND FILL INPUT MATRIX WITH WHITE GAUSSIAN NOISE******
OPEN (UNIT=80,FILE='SYSID2 DATA',STATUS='NEW')
DO 10 M=-1,31
 DO 20 N=-1,31
 IF((M.LT.0).OR.(N.LT.0))THEN
 W(M,N)=0.
 ELSE
 CALL GAUSS(IX,S,AM,V)
 W(M,N)=V*E
 ENDIF
 20 CONTINUE
10 CONTINUE

******COMPUTE THE UPDATED FILTER COEFFICIENTS USING THE TWO DIMENSIONAL LMS ALGORITHM******
DO 40 K=0,31
 DO 50 J=0,31
 D(K,J)=.4*W(K,J)+.6*W(K-1,J)-.3*W(K,J-1)+.2*W(K-1,J-1)
 Y(K,J)=A0(K,J)*W(K,J)+A1(K,J)*W(K-1,J)+A2(K,J)*W(K-1,J-1)+A3(K,J)*W(K-2,J-2)+E(K,J)
 50 CONTINUE
40 CONTINUE
* A3(K,J)*W(K-1,J-1)
E(K,J)=D(K,J)-Y(K,J)
A0(K,J+1)=A0(K,J)+MU*E(K,J)*W(K,J)
A1(K,J+1)=A1(K,J)+MU*E(K,J)*W(K-1,J)
A2(K,J+1)=A2(K,J)+MU*E(K,J)*W(K,J-1)
A3(K,J+1)=A3(K,J)+MU*E(K,J)*W(K-1,J-1)
50 CONTINUE
AO(K+1,0)=AO(K,J)
A1(K+1,0)=A1(K,J)
A2(K+1,0)=A2(K,J)
A3(K+1,0)=A3(K,J)
40 CONTINUE
C C **********OUTPUT RESULTS**********
I=0
DO 60 K=0,31
DO 70 J=0,31
I=I+1
PRINT 15, I,E(K,J),A0(K,J),A1(K,J),A2(K,J),A3(K,J)
WRITE (80,15) I,E(K,J),A0(K,J),A1(K,J),A2(K,J),A3(K,J)
15 FORMAT (',1X,4,2X,F8.5,2X,F8.5,2X,F8.5,2X,F8.5,
2X,F8.5)
70 CONTINUE
60 CONTINUE
STOP
END
C SUBROUTINE GAUSS(IX,S,AM,V)
A=0.0
DO 50 I=1,12
CALL RANDLJ(IX,IY,Y)
IX=IY
50 A=A+Y
V=(A-6.0)*S+AM
RETURN
END
C SUBROUTINE RANDU(IX,IY,YFL)
IY=IX*65539
IF(IY)5,6,6
5 IY=IY+2147483647+1
6 YFL=IY
YFL=YFL*.4656613E-9
RETURN
END
APPENDIX B. LMS ALGORITHM IMPLEMENTED IN A NOISE CANCELER

THIS IS A VAX/VMS FORTRAN PROGRAM THAT IMPLEMENTS A TWO DIMENSIONAL 2X2 ADAPTIVE LMS FILTER WITHIN A NOISE CANCELER

INTEGER M,N,K,J
BYTE B(0:127),BYTEE(0:127),BYTEU(0:127),
INTEGER*4 INTE(0:127,0:127),INTU(0:127,0:127),
IE, IU
REAL*4 MU,A,FMIN,E,FMAXE,FMINU,FMAXU
REAL*4 AA(0:3),E(0:127,0:127),U(0:127,0:127),
REAL*4 W(-1:127,-1:127),Y(0:127,0:127),IM(0:127,0:127)

******VARIABLE DEFINITIONS******
A=NOISE AMPLITUDE
S=NOISE VARIANCE
AM=NOISE MEAN
AA=FILTER COEFFICIENTS
IX=SEED
MU=SCALING FACTOR WITHIN THE LMS ALGORITHM
IM=INPUT IMAGE
W=WHITE GAUSSIAN NOISE GENERATED BY SUBROUTINE
U= SIGNAL PLUS NOISE(IM+W)
Y=FILTER OUTPUT
E=ERROR(U-Y)
FMIN,FMAX,E,FMINU,FMAXU=PARAMETERS
TO BE USED TO CONVERT DECIMAL DATA TO BYTE DATA

******INITIAL VALUES*******
A=1.
MU=35.E-9
AA(0)=0.
AA(1)=0.
AA(2)=0.
AA(3)=0.
S=40.
AM=0.
IX=65539
FMIN=1.E+10
FMAX=E+10
FMINU=1.E+10
FMAXU=-1.E+10

******OPEN AN IMAGE FILE, CONVERT THE BYTE DATA INTO INTEGERS AND THEN PLACE THESE VALUES IN A MATRIX*******
OPEN (UNIT=1, NAME = 'HOUS1G.DAT', TYPE = 'OLD', ACCESS = * 'DIRECT', RECORDSIZE=32, MAXREC=128)
DO 100 M=0,127
 READ(1'M1) (B(J),J=0,127)
 DO 110 N=0,127
 ...

44
IF(B(N).LT.0)THEN
IM(M,N)=B(N)+256
ELSE
IM(M,N)=B(N)
ENDIF

110 CONTINUE
100 CONTINUE

C
C *******ADD WHITE GAUSSIAN NOISE TO THE IMAGE AND SET THE
C VALUES OUTSIDE THE IMAGE TO ZERO********
DO 10 M=-1,127
DO 20 N=-1,127
IF ((M.LT.0).OR.(N.LT.0))THEN
W(M,N)=0.
IM(M,N)=0.
ELSE
CALL GAUSS(SI,X,AM,V)
W(M,N)=V*A
ENDIF
U(M,N)=IM(M,N)+W(M,N)
20 CONTINUE
10 CONTINUE

C
C *****USE THE LMS ADAPTIVE ALGORITHM TO UPDATE
C THE FILTER COEFFICIENTS*********
DO 40 K=0,127
DO 50 J=0,127
Y(K,J)=AA(0)*W(K,J)+AA(1)*W(K-1,J)+
AA(2)*W(K,J-1)+AA(3)*W(K-1,J-1)
E(K,J)=U(K,J)-Y(K,J)
AA(0)=AA(0)+MU*E(K,J)*W(K,J)
AA(1)=AA(1)+MU*E(K,J)*W(K-1,J)
AA(2)=AA(2)+MU*E(K,J)*W(K,J-1)
AA(3)=AA(3)+MU*E(K,J)*W(K-1,J-1)
50 CONTINUE
40 CONTINUE

C
C ********CHANGE SIGNAL PLUS NOISE AND ERROR
C OUTPUT INTO BYTE DATA AND THEN WRITE
C TO A FILE********
OPEN (UNIT=2, NAME='ERRORDAT', TYPE='NEW', ACCESS=*
'DIRECT', RECORDSIZE=32, MAXREC=128)
OPEN (UNIT=3, NAME='SIGNOISE.DAT', TYPE='NEW', ACCESS=*
'DIRECT', RECORDSIZE=32, MAXREC=128)
DO 500 I=0,127
DO 550 J=0,127
IF(E(I,J).LT.FMIN)THEN
FMIN=E(I,J)
ENDIF
IF(E(I,J).GT.FMAX)THEN
FMAX=E(I,J)
ENDIF
550 CONTINUE
500 CONTINUE
IF (FMIN.LT.0) THEN
FMAX=FMAX-FMIN

45
ENDIF
DO 600 I=0,127
 DO 650 J=0,127
 IF(FMINE.LT.0) THEN
 E(I,J)=E(I,J)-FMINE
 E(I,J)=E(I,J)*255./FMAXE
 ELSE
 E(I,J)=(E(I,J)-FMINE)*255./FMAXE
 ENDIF
 IE=NINT(E(I,J))
 IF(IE.GT.127) THEN
 IE=IE-256
 ENDIF
 BYTEE(J)=IE
 CONTINUE
WRITE (2'I+1) (BYTEE(N),N=0,127)
600 CONTINUE
DO 700 I=0,127
 DO 750 J=0,127
 IF(U(I,J).LT.FMINU) THEN
 FMINU=U(I,J)
 ENDIF
 IF(U(I,J).GT.FMAXU) THEN
 FMAXU=U(I,J)
 ENDIF
 CONTINUE
700 CONTINUE
IF (FMINU.LT.0) THEN
 FMAXU=FMAXU-FMINU
ENDIF
DO 400 I=0,127
 DO 450 J=0,127
 IF(FMINU.LT.0) THEN
 U(I,J)=U(I,J)-FMINU
 U(I,J)=U(I,J)*255./FMAXU
 ELSE
 U(I,J)=(U(I,J)-FMINU)*255./FMAXU
 ENDIF
 IU=NINT(U(I,J))
 IF(IU.GT.127) THEN
 IU=IU-256
 ENDIF
 BYTEU(J)=IU
 CONTINUE
WRITE (3'I+1) (BYTEU(N),N=0,127)
400 CONTINUE
CLOSE (UNIT=2)
CLOSE (UNIT=3)
STOP
END
C
SUBROUTINE GAUSS(IX,S,AM,V)
AMP=0.0
DO 50 I=1,12
 RANDOM=RAN(IX)
AMP=AMP+RANDOM
50 CONTINUE
V=(AMP-6.0)*S+AM
RETURN
END
APPENDIX C. LMS ALGORITHM IMPLEMENTED IN AN ADAPTIVE LINE ENHANCER

This is a VAX/VMS FORTRAN program that implements a two-dimensional 2x2 adaptive LMS filter within an adaptive line enhancer.

INTEGER M,N,K,J
BYTE B(0:127),BYTEY(0:127),BYTEU(0:127)
INTEGER*4 INTY(0:127,0:127),INTU(0:127,0:127),IY,IU
REAL*4 MU,A,FMINY,FMAXY,FMINU,FMAXU
REAL*4 AA(0:3),E(0:127,0:127),U(0:127,0:127)
REAL*4 W(-1:127,-1:127),Y(0:127,0:127),IM(0:127,0:127)

******VARIABLE DEFINITIONS******
A=NOISE AMPLITUDE
S=NOISE VARIANCE
AM=NOISE MEAN
AA=FILTER COEFFICIENTS
IX=SEED
MU=SCALING FACTOR WITHIN THE LMS ALGORITHM
IM=INPUT IMAGE
W=WHITE GAUSSIAN NOISE GENERATED BY SUBROUTINE
U=IGNAL PLUS NOISE(IM + W)
Y=FILTER OUTPUT
WW=DELAYED VERSION OF SIGNAL PLUS NOISE(U)
E=ERROR(U - Y)
FMINY,FMAXY,FMINU,FMAXU=PARAMETERS
TO BE USED TO CONVERT DECIMAL DATA TO BYTE DATA

******INITIAL VALUES******
A=1.
MU=35.E-9
AA(0)=0.
AA(1)=0.
AA(2)=0.
AA(3)=0.
S=40.
AM=0.
IX=65539
FMINU=1.E+10
FMAXU=-1.E+10
FMINY=1.E+10
FMAXY=-1.E+10

******OPEN AN IMAGE FILE, CONVERT THE BYTE DATA INTO INTEGERS AND THEN PLACE THESE VALUES IN A MATRIX******
OPEN (UNIT=1, NAME = 'HOUSIG.DAT', TYPE = 'OLD', ACCESS = 'DIRECT', RECORDSIZE=32, MAXREC=128)
DO 100 M=0,127
 READ (1'M+1) (B(J),J=0,127)
DO 110 N=0,127
IF(B(N).LT.0) THEN
 IM(M,N)=B(N)+256
ELSE
 IM(M,N)=B(N)
ENDIF

CONTINUE

******** ADD WHITE GAUSSIAN NOISE TO THE IMAGE AND SET THE
VALUES OUTSIDE THE IMAGE TO ZERO ********

DO 10 M=-1,127
 DO 20 N=-1,127
 IF ((M.LT.0).OR.(N.LT.0)) THEN
 W(M,N)=0.
 IM(M,N)=0.
 ELSE
 CALL GAUSS(IX,S,AM,V)
 W(K,N)=V*A
 ENDIF
 U(M,N)=IM(M,N)+W(M,N)
 20 CONTINUE
10 CONTINUE

******** USE THE LMS ADAPTIVE ALGORITHM TO UPDATE
THE FILTER COEFFICIENTS ********

DO 40 K=0,127.
 DO 50 J=0,127
 Y(K,J)=AA(0)*WW(K,J)+AA(1)*WW(K-1,J)+
 AA(2)*WW(K,J-1)+AA(3)*WW(K-1,J-1)
 E(K,J)=U(K,J)-Y(K,J)
 AA(0)=AA(0)+MU*E(K,J)*WW(K,J)
 AA(1)=AA(1)+MU*E(K,J)*WW(K-1,J)
 AA(2)=AA(2)+MU*E(K,J)*WW(K,J-1)
 AA(3)=AA(3)+MU*E(K,J)*WW(K-1,J-1)
50 CONTINUE
40 CONTINUE

******** CHANGE SIGNAL PLUS NOISE AND FILTER OUTPUT
INTO BYTE DATA AND THEN WRITE TO A FILE ********

OPEN (UNIT=3, NAME='SIGNoise.DAT', TYPE='NEW', ACCESS='DIRECT', RECORDSIZE=32, MAXREC=128)
OPEN (UNIT=4, NAME='FILTERed.DAT', TYPE='NEW', ACCESS='DIRECT', RECORDSIZE=32, MAXREC=128)

DO 700 I=0,127
 DO 750 J=0,127
 IF(U(I,J).LT.FMINU) THEN
 FMINU=U(I,J)
 ENDIF
 IF(U(I,J).GT.FMAXU) THEN
 FMAXU=U(I,J)
 ENDIF
750 CONTINUE
700 CONTINUE

IF (FMINU.LT.0) THEN
 FMAXU=FMAXU-FMINU

49
ENDIF
DO 400 I=0,127
 DO 450 J=0,127
 IF(FMINU.LT.0) THEN
 U(I,J)=U(I,J)-FMINU
 U(I,J)=U(I,J)*255./FMAXU
 ELSE
 U(I,J)=(U(I,J)=FMINU)*255./FMAXU
 ENDIF
 IU=NINT(U(I,J))
 IF(IU.GT.127) THEN
 IU=IU-256
 ENDIF
 BYTEU(J)=IU
 CONTINUE
WRITE (3'I+1) (BYTEU(N),N=0,127)
400 CONTINUE
DO 800 I=0,127
 DO 850 J=0,127
 IF(Y(I,J).LT.FMINY) THEN
 FMINY=Y(I,J)
 ENDIF
 IF(Y(I,J).GT.FMAXY) THEN
 FMAXY=Y(I,J)
 ENDIF
 CONTINUE
850 CONTINUE
800 CONTINUE
IF (FMINY.LT.0) THEN
 FMAXY=FMAXY-FMINY
ENDIF
DO 900 I=0,127
 DO 950 J=0,127
 IF(FMINY.LT.0) THEN
 Y(I,J)=Y(I,J)*255./FMAXY
 ELSE
 Y(I,J)=(Y(I,J)=FMINY)*255./FMAXY
 ENDIF
 IY=NINT(Y(I,J))
 IF(IY.GT.127) THEN
 IY=IY-256
 ENDIF
 BYTEY(J)=IY
 CONTINUE
WRITE (4'I+1) (BYTEY(N),N=0,127)
950 CONTINUE
900 CONTINUE
CLOSE (UNIT=3)
CLOSE (UNIT=4)
STOP
END
C
SUBROUTINE GAUSS(IX,S,AM,V)
AMP=0.0
DO 50 I=1,12
 RANDOM=RAN(IX)
AMP=AMP+RANDOM
50 CONTINUE
V=(AMP-6.0)*S+AM
RETURN
END
APPENDIX D. RLS SYSTEM IDENTIFICATION

SYSTEM IDENTIFICATION OF AN ADAPTIVE RLS 2X2 FILTER VERSUS 2X2 RLS FILTER VERSUS A A 2X2 FILTER WITH KNOWN COEFFICIENTS

DIMENSION W(-1:32,-1:32),P(0:3,0:3),AA(0:3),X(0:3)

*******VARIABLE DEFINITIONS******
A=NOISE AMPLITUDE
S=NOISE VARIANCE
AM=NOISE MEAN
IX=SEED
AA=FILTER COEFFICIENTS
W=WHITE GAUSSIAN NOISE GENERATED BY SUBROUTINE
D=DESIRED OUTPUT
Y=FILTER OUTPUT
E=ERROR(D - Y)
HMXM = ARRAY SIZE
NXN = FILTER SIZE
Q=WEIGHTING FACTOR
P=INVERSE OF COVARIANCE MATRIX

******** INPUT INITIAL VALUES ************
M=32
N=2
A=1.
AA(0)=0.
AA(1)=0.
AA(2)=0.
AA(3)=0.
S=1
AM=0
IX=65539

******* BUILD INITIAL 'P' MATRIX **********
DO 1 K=0,(N**2-1)
 DO 5 J=0,(N**2-1)
 IF(K.EQ.J)THEN
 P(K,J)=100.
 ELSE
 P(K,J)=0.0
 ENDIF
 5 CONTINUE
1 CONTINUE
OPEN (UNIT=-63,FILE='RLSID2D2 DATA',STATUS='OLD')

******* CALCULATE INPUT MATRIX (WHITE GAUSSIAN NOISE) *******
DO 10 K=-1,M-1
 DO 20 J=-1,M-1
 IF((K.LT.0).OR.(J.LT.0))THEN
 W(K,J)=0.
 ENDIF
10 CONTINUE
20 CONTINUE

ELSE
CALL GAUSS(IX,S,AM,V)
W(K,J)=V*A
ENDIF
20 CONTINUE
10 CONTINUE
C
C ********** CALCULATE ERROR BETWEEN ADAPTIVE FILTER OUTPUT
C AND KNOWN FILTER OUTPUT. USE THIS ERROR TO UPDATE
C FILTER COEFFICIENTS AND THE 'P' MATRIX **********
DO 40 K=0,M-1
DO 50 J=0,M-1
L=K*M+J
D=4.0*W(K,J)+6.0*W(K-1,J)+3.0*W(K,J-1)+2.0*W(K-1,J-1)
Y=AA(0)*W(K,J)+AA(1)*W(K-1,J)+AA(2)*W(K,J-1)+
 AA(3)*W(K-1,J-1)
E=D-Y
X(0)=W(K,J)
X(1)=W(K-1,J)
X(2)=W(K,J-1)
X(3)=W(K-1,J-1)
CALL RLS(P,X,AA,N,E,Q)
PRINT 15, L,E,AA(0),AA(1),AA(2),AA(3)
WRITE (63,15) L,E,AA(0),AA(1),AA(2),AA(3)
50 CONTINUE
40 CONTINUE
STOP
END
C
C ********** TO COMPUTE THE GAIN MATRIX **********
SUBROUTINE RLS(P,X,AA,N,E,Q)
DIMENSION P(0:3,0:3),X(0:3),AA(0:3),TEMY(0:3,0:3),
 * GAMA(0:3),TEMC(0:3)
DO 30 L=0,3
 TEM=0.
 DO 20 K=0,3
 TEM=TEM+X(K)*P(K,L)
30 GAMA(L)=TEM
 GAM=Q
 DO 40 K=0,3
 GAM=GAM+GAMA(K)*X(K)
40 DO 60 L=0,3
 TEM=0.
 DO 50 K=0,3
 TEM=TEM+P(L,K)*X(K)
50 TECM(L)=TEM
 DO 70 L=0,3
 DO 70 K=0,3
 TEM=TEM=P(L,K)*X(K)
70 TEMY(L,K)=TEMC(L)*GAMA(K)
 DO 80 K=0,3
 DO 80 L=0,3
 P(K,L)=(P(K,L)-(TEMY(K,L)/GAM))/Q
80 DO 100 K=0,3
 TEM=0.
100 STOP
END
DO 90 L=0,3
 TEM=TEM+P(K,L)*X(L)
100 TEMC(K)=TEM
 DO 110 K=0,3
110 AA(K)=AA(K)+TEMC(K)*E
 Q=.99*Q+.01
RETURN
END
APPENDIX E. RLS ALGORITHM IMPLEMENTED IN A NOISE CANCELER

THIS IS A VAX/VMS FORTRAN PROGRAM THAT IMPLEMENTS A TWO DIMENSIONAL 2X2 ADAPTIVE RLS FILTER WITHIN A NOISE CANCELER

INTEGER M,N,K,J
BYTE B(O: 127),BYTEE(O: 127),BYTEU(O: 127)
INTEGER*4 INTE(O: 127,0: 127),INTU(O: 127,0: 127),IE,IU
REAL*4 A,FMINE,FMAXE,FMINU,FMAXU
REAL*4 AA(0: 3),E(0: 127,0: 127),U(0: 127,0: 127)
REAL*4 P(0: 3,0: 3),X(0: 3),IM(0: 127,0: 127)
REAL*4 W(-1: 127,-1: 127),Y(0: 127,0: 127)

*****VARIABLE DEFINITIONS*****

A=NOISE AMPLITUDE
S=NOISE VARIANCE
AM=NOISE MEAN
AA=FILTER COEFFICIENTS
IX=SEED
IM=INPUT IMAGE
W=WHITE GAUSSIAN NOISE GENERATED BY SUBROUTINE
U=SIGNAL PLUS NOISE(IM + W)
Y=FILTER OUTPUT
E=ERROR(U - Y)
Q=WEIGHTING FACTOR
P=INVERSE OF COVARIANCE MATRIX
FMINE,FMAXE,FMINU,FMAXU=PARAMETERS
TO BE USED TO CONVERT DECIMAL DATA TO BYTE DATA
MXM=ARRAY SIZE
NXN=FILTER SIZE

******INITIAL VALUES******

M=128
N=2
Q=1.
A=1.
AA(0)=0.
AA(1)=0.
AA(2)=0.
AA(3)=0.
S=40.
AM=0.
IX=65539
FMINE=1.E+10
FMAXE=-1.E+10
FMINU=1.E+10
FMAXU=-1.E+10
OPEN AN IMAGE FILE, CONVERT THE BYTE DATA INTO INTEGERS

OPEN (UNIT=1, NAME = 'HOUS1G.DAT', TYPE = 'OLD', ACCESS =
'DIRECT', RECORDSIZE=32, MAXREC=128)

DO 100 K=0,127
 READ(1'K+1) (B(L),L=0,127)
 DO 110 J=0,127
 IF(B(J).LT.0)THEN
 IM(K,J)=B(J)+256
 ELSE
 IM(K,J)=B(J)
 ENDIF
 110 CONTINUE
100 CONTINUE
CLOSE (UNIT=1)

****** BUILD INITIAL 'P' MATRIX ********

DO 1 K=0,(N**2-1)
 DO 5 J=0,(N**2-1)
 IF(K.EQ.J)THEN
 P(K,J)=100.
 ELSE
 P(K,J)=0.0
 ENDIF
 5 CONTINUE
1 CONTINUE

****** ADD WHITE GAUSSIAN NOISE TO THE IMAGE AND SET THE
VALUES OUTSIDE THE IMAGE TO ZERO******

DO 10 K=-1,M-1
 DO 20 J=-1,M-1
 IF ((K.LT.0).OR.(J.LT.0))THEN
 W(K,J)=0.
 IM(K,J)=0.
 ELSE
 CALL GAUSS(IX,S,AM,V)
 W(K,J)=V*A
 ENDIF
 U(K,J)=IM(K,J)+W(K,J)
 20 CONTINUE
10 CONTINUE

****** CALCULATE ERROR BETWEEN ADAPTIVE FILTER OUTPUT
AND KNOWN FILTER OUTPUT. USE THIS ERROR TO UPDATE
FILTER COEFFICIENTS AND THE 'P' MATRIX **************

DO 40 K=0,M-1
 DO 50 J=0,M-1
 L=K*M+J
 Y=AA(0)*W(K,J)+AA(1)*W(K-1,J)+AA(2)*W(K,J-1)+
 AA(3)*W(K-1,J-1)
 E(K,J)=U(K,J)-Y(K,J)
 50 CONTINUE
40 CONTINUE

56
CALL RLS(P,X,AA,N,EE,Q)

50 CONTINUE
40 CONTINUE

C ********CHANGE SIGNAL PLUS NOISE AND ERROR OUTPUT
 INTO BYTE DATA AND WRITE TO A FILE*****
OPEN (UNIT=2,NAME='ERROR.DAT',TYPE='NEW',ACCESS=
 'DIRECT',RECORDSIZE=32,MAXREC=128)
OPEN (UNIT=3,NAME='SIGNOISE.DAT',TYPE='NEW',ACCESS=
 'DIRECT',RECORDSIZE=32,MAXREC=128)
DO 500 I=0,127
 DO 550 J=0,127
 IF(E(I,J).LT.FMINE)THEN
 FMINE=E(I,J)
 ENDIF
 IF(E(I,J).GT.FMAXE)THEN
 FMAXE=E(I,J)
 ENDIF
 550 CONTINUE
 500 CONTINUE
 IF (FMINE.LT.0) THEN
 FMAXE=FMAXE-FMINE
 ENDIF
DO 600 I=0,127
 DO 650 J=0,127
 IF(FMINE.LT.0)THEN
 E(I,J)=E(I,J)-FMINE
 E(I,J)=E(I,J)*255./FMAXE
 ELSE
 E(I,J)=(E(I,J)-FMINE)*255./FMAXE
 ENDIF
 IF(E(I,J).GT.127) THEN
 IE=IE-256
 ENDIF
 BYTEE(J-IE)
 650 CONTINUE
 WRITE (2,'(I1)') (BYTEE(N),N=0,127)
 600 CONTINUE
DO 700 I=0,127
 DO 750 J=0,127
 IF(U(I,J).LT.FMINU)THEN
 FMINU=U(I,J)
 ENDIF
 IF(U(I,J).GT.FMAXU)THEN
 FMAXU=U(I,J)
 ENDIF
 750 CONTINUE
 700 CONTINUE
 IF (FMINU.LT.0) THEN
 FMAXU=FMAXU-FMINU
 ENDIF
DO 800 I=0,127
 DO 850 J=0,127
 IF(FMINU.LT.0)THEN
 END
U(I,J)=U(I,J)-FMINU
U(I,J)=U(I,J)*255./FMAXU
ELSE
U(I,J)=(U(I,J)=FMINU)*255./FMAXU
ENDIF
IU=NINT(U(I,J))
IF(IU.GT.127) THEN
IU=IU-256
ENDIF
BYTEU(J)=IU
CONTINUE
WRITE (3'I+1) (BYTEU(N),N=0,127)
CONTINUE
CLOSE (UNIT=2)
CLOSE (UNIT=3)
STOP
END

C
C ************ TO COMPUTE THE GAIN MATRIX ************
SUBROUTINE RLS(P,X,AA,N,E,Q)
DIMENSION P(0:3,0:3),X(0:3),AA(0:3),TEMY(0:3,0:3),
* GAMA(0:3),TEMC(0:3)
DO 30 L=0,3
TEM=0.
DO 20 K=0,3
TEM=TEM+X(K)*P(K,L)
30 GAMA(L)=TEM
GAM=Q
DO 40 K=0,3
GAM=GAM+GAMA(K)*X(K)
40 DO 50 L=0,3
TEM=0.
DO 50 K=0,3
TEM=TEM+P(L,K)*X(K)
50 TEMC(L)=TEM
DO 70 L=0,3
DO 70 K=0,3
70 TEMY(L,K)=TEMC(L)*GAMA(K)
DO 80 K=0,3
DO 80 L=0,3
80 P(K,L)=(P(K,L)-TEMY(K,L)/GAM))/Q
DO 100 K=0,3
TEM=0.
DO 90 L=0,3
90 TEM=TEM+P(K,L)*X(L)
100 TEMC(K)=TEM
DO 110 K=0,3
110 AA(K)=AA(K)+TEMC(K)*E
Q=.99*Q+.01
RETURN
END
APPENDIX F. RLS ALGORITHM IMPLEMENTED IN AN ADAPTIVE LINE ENHANCER

C THIS IS A VAX/VMS FORTRAN PROGRAM THAT IMPLEMENTS A TWO DIMENSIONAL 2X2 ADAPTIVE RLS FILTER WITHIN AN ADAPTIVE LINE ENHANCER

C

INTEGER M,N,K,J
BYTE B(0:127),BYTEU(0:127),BYTEY(0:127)
INTEGER*4 INTY(0:127,0:127),INTU(0:127,0:127),IU,IY
REAL*4 A,FMINU,FMAXU,FMINY,FMAXY
REAL*4 AA(0:3),E(0:127,0:127),U(0:127,0:127)
REAL*4 P(0:3,0:3),X(0:3),IM(0:127,0:127)
REAL*4 W(-1:127,-1:127),Y(0:127,0:127)

C

******VARIABLE DEFINITIONS******
A=NOISE AMPLITUDE
S=NOISE VARIANCE
AM=NOISE MEAN
AA=FILTER COEFFICIENTS
IX=SEED
IM=INPUT IMAGE
W=WHITE GAUSSIAN NOISE GENERATED BY SUBROUTINE
U=SIGNAL PLUS NOISE(IM + W)
Y=FILTER OUTPUT
E=ERROR(U - Y)
WW=DELAYED VERSION OF SIGNAL PLUS NOISE(U)
Q=WEIGHTING FACTOR
P=INVERSE OF COVARIANCE MATRIX
FMINU,FMAXU,FMINY,FMAXY=PARAMETERS
MXM=ARRAY SIZE
NXN=FILTER SIZE

******INITIAL VALUES*******
M=128
N=2
Q=1.
A=1.
AA(0)=0.
AA(1)=0.
AA(2)=0.
AA(3)=0.
S=40.
AM=0.
IX=65539
FMINU=1.E+10
FMAXU=-1.E+10
FMINY=1.E+10
FMAXY=-1.E+10
C

OPEN AN IMAGE FILE, CONVERT THE BYTE DATA INTO INTEGERS

C AND THEN PLACE THESE VALUES IN A MATRIX*********

OPEN (UNIT=1, NAME = 'HOUS1G.DAT', TYPE = 'OLD', ACCESS =
* 'DIRECT', RECORDSIZE=32, MAXREC=128)

DO 100 K=0,127
 READ(1,K+1) (B(L),L=0,127)
 DO 110 J=0,127
 IF(B(J).LT.0) THEN
 IM(K,J)=B(J)+256
 ELSE
 IM(K,J)=B(J)
 ENDIF
 110 CONTINUE
100 CONTINUE
CLOSE (UNIT=1)

C

BUILD INITIAL 'P' MATRIX********

DO 1 K=0,(N**2-1)
 DO 5 J=0,(N**2-1)
 IF(K.EQ.J) THEN
 P(K,J)=100.
 ELSE
 P(K,J)=0.0
 ENDIF
 5 CONTINUE
1 CONTINUE

C

*******ADD WHITE GAUSSIAN NOISE TO THE IMAGE AND SET THE
C VALUES OUTSIDE THE IMAGE TO ZERO*******

DO 10 K=-2,M-1
 DO 20 J=-2,M-1
 IF ((K.LT.0).OR.(J.LT.0)) THEN
 W(K,J)=0.
 IM(K,J)=0.
 ELSE
 CALL GAUSS(IX,S,AM,V)
 W(K,J)=V*A
 ENDIF
 U(K,J)=IM(K,J)+W(K,J)
 20 CONTINUE
10 CONTINUE

C

*******COMPUTE THE DELAYED VERSION OF THE SIGNAL
C PLUS NOISE MATRIX(U)******

DO 45 K=-1,127
 DO 46 J=-1,127
 IF((M.LT.-1).OR.(N.LT.-1)) THEN
 WW(K,J)=0.
 ELSE
 WW(K,J)=U(K-1,J)
 ENDIF
 46 CONTINUE
45 CONTINUE

C

*******CALCULATE ERROR BETWEEN ADAPTIVE FILTER OUTPUT

60
C AND KNOWN FILTER OUTPUT. USE THIS ERROR TO UPDATE

C FILTER COEFFICIENTS AND THE 'P' MATRIX **************

DO 40 K=0,M-1
DO 50 J=0,M-1

Y=AA(0)*WW(K,J)+AA(1)*WW(K-1,J)+AA(2)*WW(K,J-1)+
* AA(3)*WW(K-1,J-1)
E(K,J)=U(K,J)-Y(K,J)
EE=E(K,J)
X(0)=WW(K,J)
X(1)=WW(K-1,J)
X(2)=WW(K,J-1)
X(3)=WW(K-1,J-1)
CALL RLS(P,X,AA,N,EE,Q)

50 CONTINUE
40 CONTINUE

C

C ********CHANGE SIGNAL PLUS NOISE AND FILTER OUTPUT

C INTO BYTE DATA AND WRITE TO A FILE*****

OPEN (UNIT=3,NAME='SIGNOISE.DAT',TYPE='NEW',ACCESS=
* 'DIRECT',RECORDSIZE=32,MAXREC=128)
OPEN (UNIT=4,NAME='FILTERED.DAT',TYPE='NEW',ACCESS=
* 'DIRECT',RECORDSIZE=32,MAXREC=128)

DO 700 I=0,127
DO 750 J=0,127

IF(U(I,J).LT.FMINU)THEN
 FMINU=U(I,J)
ENDIF
IF(U(I,J).GT.FMAXU)THEN
 FMAXU=U(I,J)
ENDIF

750 CONTINUE
700 CONTINUE

IF (FMINU.LT.0) THEN
 FMAXU=FMAXU-FMINU
ENDIF

DO 400 I=0,127
DO 450 J=0,127

IF(FMINU.LT.0)THEN
 U(I,J)=U(I,J)-FMINU
 U(I,J)=U(I,J)*255./FMAXU
ELSE
 U(I,J)=(U(I,J)-FMINU)*255./FMAXU
ENDIF
IU=NINT(U(I,J))

450 CONTINUE
WRITE (3'I+1) (BYTEU(N),N=0,127)

400 CONTINUE

DO 800 I=0,127
DO 850 J=0,127

IF(Y(I,J).LT.YMINY)THEN
 YMINY=Y(I,J)
ENDIF

850 CONTINUE
800 CONTINUE
IF(Y(I,J).GT.FMAXY)THEN
 FMAXY=Y(I,J)
ENDIF
850 CONTINUE
800 CONTINUE
IF (FMINY.LT.0) THEN
 FMAXY=FMAXY-FMINY
ELSE
 Y(I,J)=(Y(I,J)*255./FMAXY-FMINY)*255./FMAXY
ENDIF
IY=NINT(Y(I,J))
IF(IY.GT.127) THEN
 IY=IY-256
ENDIF
BYTEY(J)=IY
950 CONTINUE
WRITE (4'I+1) (BYTEY(N),N=0,127)
900 CONTINUE
CLOSE (UNIT=3)
CLOSE (UNIT=4)
STOP
END

C
****** TO COMPUTE THE GAIN MATRIX *******
SUBROUTINE RLS(P,X,AA,N,E,Q)
DIMENSION P(0:3,0:3),X(0:3),AA(0:3),TEMY(0:3,0:3),
* GAMA(0:3),TEMC(0:3)
DO 30 L=0,3
 TEM=0.
 DO 20 K=0,3
 TEM=TEM+X(K)*P(K,L)
 20 GAMA(L)=TEM
 GAM=Q
 DO 40 K=0,3
 GAM=GAM+GAMA(K)*X(K)
 40 DO 60 L=0,3
 TEM=0.
 DO 50 K=0,3
 TEM=TEM+P(L,K)*X(K)
 50 60 TEMC(L)=TEM
 DO 70 L=0,3
 TEM=0.
 DO 80 K=0,3
 TEM=TEM+P(L,K)*X(K)
 80 TEMC(L)=TEM
 DO 70 TEY(L)=TEMC(L)*GAMA(K)
 DO 80 L=0,3
 TEM=0.
 DO 90 K=0,3
 TEM=TEM+P(K,L)*X(K)
 90 80 P(K,L)=(P(K,L)-(TEMY(K,L)/GAM))/Q
DO 100 K=0,3
 TEM=0.
DO 90 L=0,3
 TEM=TEM+P(K,L)*X(L)
100 TEMC(K)=TEM
 DO 110 K=0,3
110 AA(K)=AA(K)+TEMC(K)*E
 Q=.99*Q+.01
 RETURN
END
LIST OF REFERENCES

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Distribution List</th>
</tr>
</thead>
</table>
| 1. | 2 | Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145 |
| 2. | 2 | Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002 |
| 3. | 1 | Chairman
Electrical and Computer Engineering Department, Code 62
Naval Postgraduate School
Monterey, CA 93940-5000 |
| 4. | 2 | Dr. Murali Tummala
Electrical and Computer Engineering Department, Code 62
Naval Postgraduate School
Monterey, CA 93940-5000 |
| 5. | 1 | Dr. Charles Therrien
Electrical and Computer Engineering Department, Code 62
Naval Postgraduate School
Monterey, CA 93940-5000 |
| 6. | 1 | Professor Will Gersch
Department of Information and Computer Sciences
University of Hawaii
Honolulu, HI 96822 |
| 7. | 1 | Patrol Squadron Forty-Seven
Attn: Lcdr. A. R. Topp
FPO San Francisco
San Francisco, CA 96601-5920 |
| 8. | 1 | Naval Underwater Systems Center
Attn: Lt. R. E. Reinke
New London, CT 06320 |
| 9. | 1 | Patrol Squadron Nine
Attn: Lcdr. Steven L. Wilstrup
FPO San Francisco
San Francisco, CA 96601-5905 |
| 10. | 1 | Ocean Systems Center
Commander
Naval Ocean Systems Center
San Diego, CA 92152-5000 |