Title: Applied Partial Differential Equations & Numerical Analysis

Abstract:

An hierarchy of uniformly high order accurate essentially non-oscillatory shock capturing algorithms was developed. Some theory and numerical experimentation was done.

A correction to the unsteady full potential equation for flows with strong shocks was obtained. This modification inputs the correct entropy jumps at shocks. Numerical experiments on airfoils were successfully performed.

A new family of paraxial wave approximations was derived and was applied to computational problems in seismology, underwater acoustics and artificial boundaries. Theoretical and experimental results were obtained. The family also included (cont'd on back)

Subject Terms:
- Algorithms, Flow Equations, Airfoils, Seismology,
- Underwater Acoustics, Scalar Wave Equations, Hyperbolic Equations

Additional Information:
- Distribution/Availability of Report: Approved for public release; distribution unlimited.
- Monitoring Organization: U. S. Army Research Office
- Address: P. O. Box 12211, Research Triangle Park, NC 27709-2211
- Funding Organization: U. S. Army Research Office
- Address: P. O. Box 12211, Research Triangle Park, NC 27709-2211
- Report Type: Final
- Date: September 1988
- Page Count: 19
variants of parabolic approximations of scalar wave equations. A method for the computation of highly oscillatory solutions to hyperbolic equations was obtained. A convergence concept which makes analysis possible in the practical situation in which not all frequencies are well resolved is developed. Convergence of an average approximation is established for a general class of methods. Applications to particle methods were also obtained.
Final Technical Report
for ARO Research Agreement #DAAG29-85-K-0190
by
Stanley Osher

List of manuscripts submitted or published under ARO sponsorship during this reporting period, including journal references:

11. Thomas Y. Hou, “Convergence of Vortex Methods for Highly Oscillatory Vor-
ticity Distribution", to be submitted.

Scientific personnel supported by this project and degrees awarded during this reporting period:

Stanley Osher
Bjorn Engquist
Yann Brenier
Ami Harten
Thomas Yizhao Hou – Ph.D., June, 1987

Outline of research findings:
UNIFORMLY HIGH-ORDER ACCURATE NONOSCILLATORY SCHEMES. I
AMI HARTEN AND STANLEY OSHER

Abstract. We begin the construction and the analysis of nonoscillatory shock capturing methods for the approximation of hyperbolic conservation laws. These schemes share many desirable properties with total variation diminishing schemes, but TVD schemes have at most first-order accuracy, in the sense of truncation error, at extrema of the solution. In this paper we construct a uniformly second-order approximation, which is nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time. This is achieved via a nonoscillatory piecewise-linear reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem and an average of this approximate solution over each cell.

THE DISCRETE ONE-SIDED LIPSCHITZ CONDITION FOR CONVEX SCALAR CONSERVATION LAWS
YANN BRENIER AND STANLEY OSHER

Abstract. Physical solutions to convex scalar conservation laws satisfy a one-sided Lipschitz condition (OSLC) that enforces both the entropy condition and their total variation boundedness. Consistency with this condition is therefore desirable for a numerical scheme and was proved for both the Godunov and the Lax–Friedrichs scheme—also, in a weakened version, for the Roe scheme, all of them being only first order accurate. A new, fully second order scheme is introduced here, which is consistent with the OSLC. The modified equation is considered and shows interesting features. Another second order scheme is then considered and numerical results are discussed.
Some New Homogenization Results for Discrete Boltzmann Equations with Oscillatory Data

Thomas Y. Hou

Department of Mathematics
University of California at Los Angeles
Los Angeles, Ca 90024

Abstract. The behaviors of multi-dimensional discrete Boltzmann systems with highly oscillatory data are studied. Homogenized equations for the mean solutions have been obtained. Uniform convergence of the solutions of the oscillatory equations to the solutions of the homogenized equations has been established. Moreover, we find that the weak limits of the oscillatory solutions for the Broadwell type of models are not continuous functions of the discrete velocities. Generalization of the above results to problems with multiple scale initial data is established.

This is a portion of the author's Ph.D. thesis. Research is supported by ARO Grant No. DAAG 29-85-K-0190
Particle Method Approximation of Oscillatory Solutions to Hyperbolic Differential Equations

Bjorn Engquist and Thomas Y. Hou

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA 90024

ABSTRACT

Particle methods approximating hyperbolic partial differential equations with oscillatory solutions are studied. Convergence is analyzed for approximations for which the continuous solution is not well resolved on the computational grid. Highly oscillatory solution to the Broadwell and variable coefficient Carleman model is considered. Numerical approximation of more general systems are discussed. Numerical examples are given.

Research supported by NSF Grant No. DMS 85-03294, ARO Grant No. DAAG 29-85-K-0190
SOME RESULTS ON UNIFORMLY HIGH-ORDER ACCURATE ESSENTIALLY NONOSCILLATORY SCHEMES

Ami HARTEN *
Department of Mathematics, University of California, Los Angeles, CA 90024, U.S.A.; and, Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel

Stanley OSHER* and Björn ENGQUIST *
Department of Mathematics, University of California, Los Angeles, CA 90024, U.S.A.

Sukumar R. CHAKRAVARTHY
Rockwell Science Center, Thousand Oaks, CA, U.S.A.

We continue the construction and the analysis of essentially nonoscillatory shock capturing methods for the approximation of hyperbolic conservation laws. These schemes share many desirable properties with total variation diminishing schemes, but TVD schemes have at most first-order accuracy in the sense of truncation error, at extrema of the solution. In this paper we construct an hierarchy of uniformly high-order accurate approximations of any desired order of accuracy which are tailored to be essentially nonoscillatory. This means that, for piecewise smooth solutions, the variation of the numerical approximation is bounded by that of the true solution up to $O(h^{R-1})$, for $0 < R$ and h sufficiently small. The design involves an essentially nonoscillatory piecewise polynomial reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell. To solve this reconstruction problem we use a new interpolation technique that when applied to piecewise smooth data gives high-order accuracy whenever the function is smooth but avoids a Gibbs phenomenon at discontinuities.

1. Introduction

In this paper we consider numerical approximations to weak solutions of the hyperbolic initial value problem (IVP)

\begin{align*}
 u_t + f(u)_x &= 0 = u_t + a(u)u_x, \\ u(x, 0) &= u_0(x).
\end{align*}

(1.1a)
(1.1b)

Here u and f are m vectors, and $a(u) = \partial f / \partial u$ is the Jacobian matrix, which is assumed to have only real eigenvalues and a complete set of linearly independent eigenvectors.

The initial data $u_0(x)$ are assumed to be piecewise-smooth functions that are either periodic or of compact support.

Let $v^n_j = v^n(x_j, t_n), x_j = jh, t_n = n\tau$, denote a numerical approximation in conservation form.

\begin{equation}
 v_{j}^{n+1} = v_{j}^{n} - \lambda \left(\hat{f}_{j+1/2} - \hat{f}_{j-1/2} \right) = \left(E_{h} \cdot v_{j}^{n} \right),
\end{equation}

(1.2a)
Convergence of Vortex Methods for Highly Oscillatory Vorticity Distribution

Thomas Y. Hou

Department of Mathematics
University of California at Los Angeles
Los Angeles, Ca 90024

Abstract. Vortex methods for two dimensional inviscid, incompressible flow with highly oscillatory vorticity distribution are studied. A homogenization result for Euler equations is obtained up to a finite time. Convergence of vortex methods in the case when continuous vorticity is not well resolved on the computational grid is analyzed. Numerical results are given. Comparisons are made with the corresponding finite difference approximation.

This is a portion of the author's Ph.D. thesis. Research is supported by ARO Grant No. DAAG 29-85-K-0190
BRIEF OUTLINE OF RESEARCH FINDINGS

An hierarchy of uniformly high order accurate essentially non-oscillatory shock capturing algorithms was developed. Some theory and numerical experimentation was done.

A correction to the unsteady full potential equation for flows with strong shocks was obtained. This modification inputs the correct entropy jumps at shocks. Numerical experiments on airfoils were successfully performed.

A new family of paraxial wave approximations was derived and was applied to computational problems in seismology, underwater acoustics and artificial boundaries. Theoretical and experimental results were obtained. The family also included variants of parabolic approximations of scalar wave equations.

A method for the computation of highly oscillatory solutions to hyperbolic equations was obtained. A convergence concept which makes analysis possible in the practical situation in which not all frequencies are well resolved is developed. Convergence of an average approximation is established for a general class of methods. Applications to particle methods were also obtained.
An entropy correction method for the unsteady full potential equation is presented. The unsteady potential equation is modified to account for entropy jumps across shock waves. The conservative form of the modified equation is solved in generalized coordinates using an implicit, approximate factorization method. A flux-biasing differencing method, which generates the proper amounts of artificial viscosity in supersonic regions, is used to discretize the flow equations in space. Comparisons between the present method and solutions of the Euler equations and between the present method and experimental data are presented. The comparisons show that the present method more accurately models solutions of the Euler equations and experiment than does the isentropic potential formulation.

Nomenclature

- \(a \): speed of sound
- \(A_1, A_2, A_3 \): metrics of coordinate transformation, Equation (7)
- \(c \): airfoil chord
- \(h \): time step in computational space
- \(i, j \): indices of grid points
- \(I \): identity matrix
- \(J \): Jacobian of coordinate transformation
- \(k \): reduced frequency based on semichord
- \(M \): Mach number
- \(q \): total speed
- \(r \): distance from point of rotation to a point in the flow field
- \(s \): gas constant
- \(\delta \): entropy
- \(\epsilon, \zeta \): computational coordinate directions
- \(\theta \): polar angle
- \(\theta_s \): airfoil pitch angle
- \(\rho \): density
- \(\rho_j \): computational density
- \(r \): computational time
- \(\tau \): velocity potential
- \(\langle \phi \rangle \): average of quantity across the wake

Subscripts

- \(i \): isentropic
- \(n \): normal to shock
- \(o \): steady airfoil location
- \(p \): pitch axis location
- \(s \): points on airfoil
- \(1 \): minimum airfoil pitch angle
- \(2 \): maximum airfoil pitch angle
- \(f \): free stream conditions

Superscripts

- \(L \): lower side of wake
- \(n \): iteration number
- \(u \): upper side of wake
- \(* \): sonic conditions

Introduction

Modern aircraft typically operate at high speeds where aeroelastic instabilities are more likely to occur. To successfully predict and analyze such aeroelastic phenomena, the aircraft designer needs methods that accurately predict the aerodynamic loads--steady and unsteady--that the vehicle experiences. Since many critical aeroelastic phenomena occur at transonic speeds, methods based on linear aerodynamic theory cannot accurately predict many aeroelastic responses. Thus, it is necessary to use an aerodynamic method that can predict time-accurate solutions of nonlinear flows and that can accurately model shock waves and their unsteady motions.

When shock waves appear in transonic flow fields, aerodynamic loads predicted using potential flow theory can be grossly inaccurate and even multivalued. Multiple solutions of the potential equation were first observed in two dimensions by Steinhoff and Jameson. Salas and Gumbert showed that the phenomenon is not
On Numerical Particle Methods

Yizhao Hou

Introduction

Particle Methods have received a great deal of attention in the past few years. In Fluid Dynamics, Vortex Methods have been successfully used to simulate high Reynolds number fluid flows. They were first introduced by Rosenhead [33] and were subsequently developed by Chorin, Leonard among other contributors (see Ref[25] for a detailed bibliography). Applications of Vortex Methods include turbulent combustion([15],[34]), aerodynamic calculations([26],[9]), flows through heart valves [25] and flows of variable density [1].

In Physics, on the other hand, Particle Methods have been used for numerical solutions of kinetic equations such as Boltzmann equations, Vlasov equations. They are currently used for studying a number of physical phenomena, for instance the lasermatter interaction in inertial confinement fusion problems. See the book of Hockney and Eastwood [18] for more information along this line.

It has been observed in practice that Particle Methods are often used for the problems in which the number of particles is too small for the traditional asymptotic error estimate to be applicable, and yet very useful results are still possible (see, eg. [30]). The previous mathematical analysis for Particle Methods (see, eg. [16], [4], [5] and [32]) have not been able to give a satisfactory explanation to this feature of Particle Methods.
PARABOLIC WAVE EQUATION APPROXIMATIONS

IN HETEROGENEOUS MEDIA

A. BAMBERGER*, B. ENGQUIST**, L. HALPERN***, P. JOLY****

* CENTRE DE MATHEMATIQUES APPLIQUEES. ECOLE POLYTECHNIQUE
91128 - PALAISEAU CEDEX - FRANCE

** DEPARTMENT OF MATHEMATICS - U.C.L.A.
LOS ANGELES, CA 90024 - U.S.A.
Work supported in part by the NSF and ARO under contracts MCS 82-00788,
DAAG 29-82-K-0090.

*** CENTRE DE MATHEMATIQUES APPLIQUEES. ECOLE POLYTECHNIQUE
91128 - PALAISEAU CEDEX - FRANCE
Work partly supported by the ARO under contract DAAG 29-82-K-0090 while
the author was visiting UCLA.

**** INRIA. DOMAINE DE VOLUCEAU-ROCQUENCOURT - B.P. 105 -
78150 - LE CHESNAY CEDEX - FRANCE
Work partly supported by an INRIA-IFP-SNEA (P) contract.

RUNNING HEAD: PARABOLIC APPROXIMATIONS

KEY WORDS: PARAXIAL APPROXIMATION, PARABOLIC APPROXIMATION, WAVE EQUATION.
ABSTRACT

Different variants of parabolic approximations of scalar wave equations are derived and their properties are analysed. These equations are of general form which includes the ones used in seismology, underwater acoustics and other applications. A new version of the parabolic approximation is derived for heterogeneous media. It has optimal properties with respect to wave reflection at material interfaces. The amplitudes of the reflected and transmitted waves depend continuously on the interface. Existence, uniqueness and energy estimates are proved.
ABSTRACT

A new family of paraxial wave equation approximations is derived. These approximations are of higher order accuracy than the parabolic approximation and they can be applied to the same computational problems e.g. in seismology, underwater acoustics, and as artificial boundary conditions. The equations are written as systems which simplify computations. The support and singular support are studied, energy estimates are given which prove the well-posedness. The reflection and transmission are showed to be continuously depending on material interfaces in heterogeneous media.
Abstract. Difference approximations of hyperbolic partial differential equations are studied. The error is analyzed in approximations for which the continuous solution is not well resolved on the computational grid. A convergence concept is introduced with the purpose of making analysis possible and describing the practical situation in which not all frequencies in the solution are well resolved. Convergence of an averaged approximation for linear problems is established for a general class of methods. For special methods and a weakly nonlinear problem it is showed by numerical experiments and in one case by analysis that the discrete approximation converges to the solution of the homogenized equation.
Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes

Chi-Wang Shu
and
Stanley Osher

In the computation of discontinuous solutions of hyperbolic conservation laws, TVD (total-variation-diminishing), TVB (total-variation-bounded) and the recently developed ENO (essentially non-oscillatory) schemes have proven to be very useful. In this paper two improvements are discussed: a simple TVD Runge-Kutta type time discretization, and an ENO construction procedure based on fluxes rather than on cell averages. These improvements simplify the schemes considerably — especially for multi-dimensional problems or problems with forcing terms. Preliminary numerical results are also given.

Fronts Propagating with Curvature Dependent Speed:
Algorithms based on Hamilton-Jacobi Formulations

Stanley Osher
and
James A. Sethian

We devise new numerical algorithms, called PSC algorithms, for following fronts propagating with curvature-dependent speed. The speed may be an arbitrary function of curvature, and the front can also be passively advected by an underlying flow. These algorithms approximate the equations of motion, which resemble Hamilton-Jacobi equations with parabolic right-hand-sides, by using techniques from the hyperbolic conservation laws. Non-oscillatory schemes of various orders of accuracy are used to solve the equations, providing methods that accurately capture the formation of sharp gradients and cusps in the moving fronts. The algorithms handle topological merging and breaking naturally, work in any number of space dimensions, and do not require that the moving surface be written as a function. The methods can be also used for more general Hamilton-Jacobi-type problems. We demonstrate our algorithms by computing the solution to a variety of surface motion problems.
Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes

Chi-Wang Shu
Institute for Mathematics and Its Applications
University of Minnesota
Minneapolis, Minnesota 55455

and

Stanley Osher
Mathematics Department
University of California
Los Angeles, California 90024

Abstract

In the computation of discontinuous solutions of hyperbolic conservation laws, TVD (total-variation-diminishing), TVB (total-variation-bounded) and the recently developed ENO (essentially non-oscillatory) schemes have proven to be very useful. In this paper two improvements are discussed: a simple TVD Runge-Kutta type time discretization, and an ENO construction procedure based on fluxes rather than on cell averages. These improvements simplify the schemes considerably — especially for multi-dimensional problems or problems with forcing terms. Preliminary numerical results are also given.

Research supported by NSF Grant No. DMS85-03294, ARO Grant No. DAAG29-85-K-0190, DARPA Grant in the ACMP Program, ONR Grant N00014-86-K-0691 and NASA Langley Grant NAG1-270

AMS-MOS Classification - Primary 65M10, Secondary 65M05

Key words: Conservation Laws, Essentially Non-Oscillatory, TVD, Runge-Kutta
We devise new numerical algorithms, called PSC algorithms, for following fronts propagating with curvature-dependent speed. The speed may be an arbitrary function of curvature, and the front can also be passively advected by an underlying flow. These algorithms approximate the equations of motion, which resemble Hamilton-Jacobi equations with parabolic right-hand-sides, by using techniques from the hyperbolic conservation laws. Non-oscillatory schemes of various orders of accuracy are used to solve the equations, providing methods that accurately capture the formation of sharp gradients and cusps in the moving fronts. The algorithms handle topological merging and breaking naturally, work in any number of space dimensions, and do not require that the moving surface be written as a function. The methods can be also used for more general Hamilton-Jacobi-type problems. We demonstrate our algorithms by computing the solution to a variety of surface motion problems.
We continue the construction and the analysis of essentially non-oscillatory shock capturing methods for the approximation of hyperbolic conservation laws. We present an hierarchy of uniformly high-order accurate schemes which generalizes Godunov's scheme and its second-order accurate MUSCL extension to an arbitrary order of accuracy. The design involves an essentially non-oscillatory piecewise polynomial reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell. The reconstruction algorithm is derived from a new interpolation technique that, when applied to piecewise smooth data, gives high-order accuracy whenever the function is smooth but avoids a Gibbs phenomenon at discontinuities. Unlike standard finite difference methods this procedure uses an adaptive stencil of grid points and, consequently, the resulting schemes are highly non-linear.
Uniformly High Order Accurate Essentially Non-oscillatory Schemes, III

AMI HARTEN*

Department of Mathematics, UCLA, and School of Mathematical Sciences, Tel-Aviv University, Israel

BJORN ENGQUIST* AND STANLEY OSHER*

Department of Mathematics, UCLA

AND

SUKUMAR R. CHAKRAVARTHY

Rockwell Science Center, Thousand Oaks, California

Received April 11, 1986; revised October 13, 1986

DEDICATED TO PETER LAX ON HIS 60TH BIRTHDAY

We continue the construction and the analysis of essentially non-oscillatory shock capturing methods for the approximation of hyperbolic conservation laws. We present an hierarchy of uniformly high-order accurate schemes which generalizes Godunov’s scheme and its second-order accurate MUSCL extension to an arbitrary order of accuracy. The design involves an essentially non-oscillatory piecewise polynomial reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell. The reconstruction algorithm is derived from a new interpolation technique that, when applied to piecewise smooth data, gives high-order accuracy whenever the function is smooth but avoids a Gibbs phenomenon at discontinuities. Unlike standard finite difference methods this procedure uses an adaptive stencil of grid points and, consequently, the resulting schemes are highly nonlinear.