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1. PROBLEM DEFINITION

The decentralized detection problem is defined as follows. There are M 2 2 hypotheses H1 ,

H2,..., Hu with known a priori probabilities P(H,) > 0 and N sensors. Each sensor i obtains an

observation y,, where yi is a random variable taking values in a set Y. We assume that Y1 ,..., YN

are conditionally independent (given the true hypothesis) and identically distributed with known

conditional distributions Py (. I H,). Each sensor i evaluates a D-valued message U,, E .1,..., D},

as a function of its observation, and transmits it to a fusion center. Finally, the fusion center

declares one of the alternative hypotheses to be true (Fig. 1).

Let -yj, :Y - {1,..., D},i 1, 2,..., N, be the function (to be called a deiion rule) used by the

ith sensor to determine its message u,; that is, %. = l,(y,). Let u,0 E {1,... ,M} be the decision of

the fusion center. This decision is made according to a decision rule -Yo ()'1,..., D -. (1,..., M};

that is, uo = yo(ul,... ,uN). We say that the fusion center makes an error if uo = i and H, is

not the true hypothesis. The probability of error is completely determined by the statistics of the

observations and by the decision rules -10, -,. - ., yNv; it will be denoted by JN (-y0,... NyN). Our

problem is to choose the decision rules 70,'1,... , N of the sensors and of the fusion center so as

to minimize the probability of error.

The above described problem and its variations have attracted substantial interest [TeSSI],

[KuP82], [EkT82], [Tsi84], [TeV84], [TsA85], [PaA86], [HoV86], [ChV86], [Sad861, ISri86a], [Sri86b],

[ReN87a], [ReN87b], [TVB87]. It was first introduced in [TeS81] for the case of two hypotheses

(M = 2), two sensors (N = 2), binary messages (D = 2), and for a fixed choice of the fusion center's

decision rule -yo. It was shown in [TeS81] that under the conditional independence assumption, each

sensor should evaluate its message ui using a likelihood ratio test with an appropriate threshold.

(This conclusion is not valid if the conditional independence assumption is removed in which case the

problem becomes computationally intractable [TsA85].) The optimal thresholds in the likelihood

ratio tests of the different sensors can be obtained by solving a system of nonlinear equations. It

is important to emphasize that the optimal decision rules for the decentralized problem are not,

in general, the same as those that would be derived using the classical theory, independently for

each sensor This is bccause the optimal decision rules are chosen so as to optimize systemwide
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performance, as opposed to the performance of each individual sensor.

The performance of a decentralized detection system is generally inferior to that of a centralized

system in which all raw data available are transmitted to the fusion center, due to the loss of

information in the local processing. However, decentralized detection is often more practical due

to the reduction of the communication requirements, as well as because the processing of the data

is shared by a number of different processors. On the other hand, decentralized detection problems

are qualitatively different and much more difficult than the corresponding centralized detection

problems. For this reason, there are very few such problems that have been solved analytically. In

fact, most of the theoretical research available is limited to the derivation of necessary conditions

for optimality, and these can only be solved numerically. In contrast, in this paper, we identify a

special case for which an explicit solution can be obtained analytically.

We now define the particular problem to be studied. We assume that there is a one-to-one

correspondence between observations and hypotheses and, more specifically, Y = (1,..., M). We

assume that the conditional distribution of the observation y of any sensor is given by

Pr(y = i I H-) = Py (i I H,) = (- if,#i,

1-(M-1)C, ifj=i,

where e is a scalar satisfying 0 < c _ 1/(M - 1). In other words, the observation of a sensor

indicates the true hypothesis with probability 1 - (M - 1)c, or it indicates a false hypothesis in

which case each one of the false hypotheses is equally likely (probability e). Furthermore, we assume

that the number of sensors is large and we will be looking for an asymptotic solution, as N -* oo.

Our model is undoubtedly too structured to be an exact representation of a realistic problem,

the main drawback being the assumption that there is a one-to-one correspondence between hy-

potheses and possible observations. This assumption becomes fairly reasonable, however, in the

following situation (see Fig. 2). Each sensor i receives some observations z, that it processes in

some predetermined way, and comes up with a preliminary decision Vi E (1,..., M) on the identity

of the true hypothesis. Then, each sensor i transmits to the fusion center a function "y7(y,) of its

preliminary decision y,. Notice that we are restricting here the message to be a function ot the

processed observations instead of the raw observations. While such a restriction may result to some

loss of performance, it is quite natural in certain contexts, especially if each sensor has a reason to
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come up with a preliminary decision in a timely manner.

The above discussion notwithstanding, our interest in this particular problem arises mainly

from the fact that an explicit solution can be obtained, as will be demonstrated in the sequel.

Furthermore, the solution to be derived provides insights and intuition on the nature of optimal

solutions to more general problems for which explicit solutions are not possible. Such insights are

very valuable because they can suggest interesting numerical experiments and heuristic guidelines

for coping with more difficult problems.

The remainder of this paper is organized as follows. In Section 2, we outline some results from

[Tsi88] that will be needed later. In Section 3, we introduce some notation and terminology, and

some simple preliminary facts. In Section 4, a complete solution is derived for the cmae where the

noise parameter c is small and the number of sensors is large. In Section 5, we provide a partial

extension of the results of Section 4 to the case of a general noise parameter c. Finally, in Section

6, we study the tradeoff between the number of sensors and the communication rate of each sensor

when there is a constraint on the total communication rate from the sensors to the fusion center.

2. BACKGROUND.

As mentioned in the introduction, we will be looking for an asymptotic solution to our problem,

as the number of sensors N becomes very large. The basic theory concerning such an asymptotic

solution has been developed in [Tsi88] and we review here the facts that will be needed. Some ex-

perimentation [Po188] has shown that the asymptotically optimal decision rules perform reasonably

well for moderate numbers of sensors.

We use r to denote the set of all possible decision rules. Due to the finiteness of the observation

set Y and of the message set {1,..., D}, it is seen that the set r is also finite. We introduce the

shorthand notation -yN to denote a possible choice (yo, yl,.. , -yj) of decision rules for the N-.ensor

problem. With a reasonable choice of -I, the probability of error JN (-IN) converges exponentially

to zero as N increases. For this reason, we focus on the exponent of the error probability, defined

by

o N 7' (1)
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Let RN = infi, rN (-IN), where the infimum is taken over all possible choices of decision rules for

the N-sensor problem. Thus, RN is the optimal exponent. As N tends to infinity, RN has a limit

[Tsi88] which will be denoted by A*. In the sequel, we will be concerned with choosing the decision

rules so that the corresponding error exponent approaches the optimal exponent A*.

Consider a sensor that uses a particular decision rule -y E r. Conditioned on Hi, the probability

that the transmitted message takes a particular value d E 1,...., D} is given by Pr('y(V) = d Hi).

For every i,j E {1,... , M} and every decision rule y E r, we define a function .% :1 0,1 -

[-oo, +oo) by

j (-Y,8) = log [I (Pr(-y(y) = dI H) ) (Pr(I(V) = d I H))] . (2)

(The convention 00 = 0 is used in this formula.) It is easily verified that gii(-y, a) _5 0 for every i,j,

-y E r, s E [0,1], and it is also known that p(%-y,s) is a convex function of a, for every i,j, -y E r

[SGB67]. Furthermore, as long as there exists some y E Y such that Py (y I Hj) " Py (y I Hj) 9 0,

then ;4j(-Is) > -oo, for every a E [0,1]. This turns out to be always the case for our problem

except for the uninteresting situation where M = 2 and e = 1.

The optimal exponent is given by [Tsi88]

A* = min max min EZisiA7,8)' (3){ t is .j r ) { { , m " e)1 } , p e o , i ) -Y r

where the outer minimization is carried out over all choices of {z, I -Y E r} satisfying z, _ 0 for

all -y E r, and F1r z, = 1. In the sequel, we use z to denote a vector {z, I y E r). Furthermore,

we use X to denote the set of all such vectors which satisfy the constraints just stated.

The variable z7 in Eq. (3) should be interpreted as the fraction of the sensors that use decision

rule -y. More specifically, let us fix some z r X. For each y E r, let [Nz, J sensors use decision rule

-y. (If for some -y the value of Nz is not integer this determines the decision rules for fewer than

N sensors. However, the remaining sensors constitute a vanishingly small fraction of the total, as

N --* co, and are inconsequential.) Then, the asymptotic exponent (as N - oo) of the probability

of error is given by (Tsi88]

max rain zA&Y'a). (4)
{{ O)IJ01j).E1 ) o,} r



In particular, if the fractions z, are chosen to minimize the exponent in Eq. (4), then the optimal

exponent A* is obtained (compare with Eq. (3)]. Notice that the problem formulation has taken a

somewhat different, but equivalent, form: instead of choosing the decision rule of each sensor, we

are now trying to choose the fraction z, of the sensors that use a given decision rule -, E r.

Equation (4) has a simple interpretation. The quantity minE1io,11 e ,r z0uj(-ys) is the ex-

ponent in the Chernoff bound for the probability of confusing hypotheses H, and Hi ([VaT68],

[SGB67]), and such a bound is known to be asymptotically tight. The maximization over all i and

j in Eq. (4) corresponds to the fact that the dominant term in the probability of error comes from

the wor3t (i.e., the largest) of the exponents corresponding to the different pairs.

The outer minimization in Eq. (3) appears to be simple because it involves linear constraints and

a cost function which is linear in the variables z. However, the inner minimization (with respect

to 8) severely complicates the computation of A* and of the optimal values of the variables z. In

the next two sections, we get around this difficulty by exploiting the symmetry of the problem to

remove the dependence on s.

3. PRELIMINARIES.

Consider a decision rule -y : Y '" {1,..., D) and let Yd., = {y I -y(y) = d). We notice that the

sets Yd, - 1,... , D, are disjoint and their union equals Y. Thus, a decision rule determines a

partition of Y into D disjoint sets. It is possible that two different functions -1 : Y -- 1,..., D}

and Y/ : Y #-4 {1,.. ., D) determine the same partition. [For example, consider the case where

Y(y) = D + 1 - -y(y).] On the other hand, if -1 and 'Y determine the same partition, then each

one of the messages -1(y) and -Y(y) conveys the same information to the fusion center, and the

two decision rules can be considered equivalent. From now on, we will not distinguish between

equivalent decision rules and we will consider them to be identical. We are therefore adopting the

alternative definition that a decision rule is a partition of Y into subsets Y 1,,,... ,Y.,. We assume

that the sets Yd,, are arranged in order of increasing cardinality; that is, 1Y1,7 I ... 5 IYo, I .

Definition: Two observations i,j E Y are separated by a decision rule -y if i and j belong to

different elements Yd,, of the partition corresponding to -y. We let rj be the set of all -Y E r that

6



separate i and j. The number of separation& corresponding to a decision rule -Y is defined as the

number of (unordered) pairs of observations i,j E Y which are separated by 7-

Notice that an M-ary hypothesis testing problem can be viewed as a collection of several binary

hypothesis testing problems, one for each pair of hypotheses. The number of separations corre-

sponding to a decision rule - can be interpreted as the number of binary problems for which a

message 7(yj) provides useful information.

Definition: Let bk,..., 6D be a collection of nonnegative integers satisfying 61 < 62 _< ... _< 61

and ' x 6 = M. The -6z' C.. is the set of all -y E r such that IYd,, = 6 d for every d.

These definitions are illustrated in Fig. 3.

Let L be the number of different classes. In order to facilitate notation, we assume that the

different classes have been arranged according to some arbitrary order and we will use the simpler

notation Ct to denote the lth class, I = 1,... , L. Thus, the set r of all decision rules is equal to

uL=1 C1 .

It is seen that the number of separations is the same for all decision rules belonging to the same

class Ct [see Fig. 3], and will be denoted by St. In particular,

I D

= - 6d),

where 6,...,6D are such that C, = C ...... i'. [The factor 1/2 in Eq. (5) is present because

otherwise each unordered pair would be counted twice.]

Let Qe be the cardinality of the set of all triples (i,j,-) such that 7 E C, and 7 separates i and

j. [The two triples (i,j, 7) and (j, i, 7) are only counted once.] Since the number of separations

corresponding to any - E C is St, we see that Qt = JCal" Se. On the other hand, every pair (i,j)

is separated by exactly IC n In , elements of Ce. By symmetry, the cardinality of C1 n r,, is the

same for every i and j. Furthermore, since there exist M(M - 1)/2 different (unordered) pairs

(i,j), we conclude that Qt = IC, nri,).I • M(M - 1)/2. By equating the two alternative expressions

for Qe, we obtain

lC , ln F, I Me (6)
Ice I M(Af- 1),

7
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Let M = 5, D = 2. The decision rules in (a) and (b) belong to the class C 2
.
3 and the corresponding

number of separations is 6. The decision rule in (c) belongs to the class C 1' and the corresponding

number of separations is 4.



a fact that will be useful later.

We now derive the form of the functions p ,(y, o). Suppose that i E Y,, andj E Y,. Using

the notation 6, = IY,,. I and 6, = IYc,. 1, it is seen [cf. Eq. (2)] that

A&(%o) = log [(1 - (M - 6)) (6) + (6) -(1 - (M - 6),) + (M-6,b - 6)c],

if 96,

and

Aii(7 8) = 0, if 1 = . (8)

Notice that the case Yi = 5 [cf. Eq. (8)] corresponds to the case -Y € I',. Finally, from either Eq.

(2) or Eq. (7), it is seen that

A.(y, a) = 'p(, 1 - a), (9)

which will be useful later.

4. THE SMALL NOISE CASE.

In this section, we derive the solution of the problem under consideration for the case where the

noise parameter c is small. This is accomplished by showing that the minimum with respect to 8

in Eq. (3) is approximately attained for 8 = 1/2, which allows us to eliminate 8.

Lemma 1: Fix some co such that 0 < co < 1/(M - 1). Then, there exist constants G, and G2

such that, for every c E (0,co), every i,j E {1,.. . ,M) such that i$ , and every z E X, we have
1 1

G, + - loge E z < mn F,7m(-y,,) < G2 + log E F,
'YEr,, -Y [oI]j

Proof: We first prove the right-haud side inequality. Consider some -y E r. and suppose that

i E Y,,, j E Ye,.,. We have [cf. Eq. (7)]

e-'.' /2 ) =(1 _ (M - 6 )e )1 2 (6,,)1/2 + (bf)1/2(1 (M - 6C))1/ 2 + (M -6, - 6)

!5(6"f)1/2 + (brf)1/2 + (W - 6, - m), 2 <H 2C1/,

where H2 = 6/ 2+6/2+M-6, _6( > 1. Taking logarithms, we obtain pq.(-t 1/2) :_ G2+ (log )/2,

where G = log H2 > 0. Furthermore, if -Y ri,, we have 4.(-1, 1/2) = 0 [cf. Eq. (8)]. It follows

8



that

If a minimization over 8 is carried out, the resulting value is no larger than the one corresponding

to a = 1/2, and this proves the right-hand side inequality.

We now prove the left-hand side inequality. We fix some i, j, some -y E i,., and some s E 0, 1/21.

We assume again that i E Y,,, and j E Ye,. . We have

ei&,() (I - (M - 6,0, (C, + (f W-)a(1- (M - 6r)E)' + (M - 6, - ,)

(1- (M - 6)) 1 -(6 2! > (i - (M - 8q)c)E ? (1- (M - 1)o)c" = Hie#> H, 1 /
2

,

where H, = 1 - (M - l)co > 0. Taking logarithms, we obtain Aj,(y,s) ? G, + (log c)/2, where

G, = log H, < 0. The same conclusion is obtained by a symmetrical argument for the case

s E 11/2, 1]. Using again the fact that Jsj (-y, s) = 0 if o t1., we obtain

mmn X-7j Zq) E x, min : (Ys) 7 I loge+ C, > , + Iloge, Z z,,

eE10,lj IEr tEr ",# 2Er, 2 E

which completes the proof. Q.E.D.

We notice that as c approaches zero, logc tends to -co, while the constants G1 , G2 of Lemma I

remain unchanged. Therefore, by retaining the dominant term, A* can be approximated, for small

e, by

A min max loge z,. (10)
2 EX ~ ,E.

Since log c is negative, an equivalent optimization problem is

max rin z,. (11)

We now derive the solution of (11).

Proposition 1: Let S" = max, St. Then, a vector z E X is an optimal solution of the problem

(11) if and only if the following two conditions hold:

(i) The value of Z-er,, z, is the same for every pair (ij) such that i 0 j.

(ii) If -1 E C, and St < S', then z, = 0.

9



Furthermore, the optimal value of (11) is equal to 2S'/(M(M - 1)).

Proof: Suppose that a vector z* E X satisfies conditions (i) and (ii), and let c be such that

C = xr, z;, for i A j. Summing over all unordered pairs (i,j), we obtain

CM(M- 1) = = s s.
{( ,j)lIsj -yrj yer f(ij)l~ery} -Ir

[Here we used the fact that if -1 E Ce, then the cardinality of the set {(/,j) [ E ri,} is Se, by

definition; we then used property (ii) to replace Se by S .] We conclude that if conditions (i) and

(ii) hold, then c = 2S/(M(M - 1)).

In order to show that the vector z* is actually optimal, it is sufficient to show that

min E X17 <5 2S"
mmY Y - M(M- 1)'

for every vector z E X. We use the elementary fact that the minimum of a set of numbers is no

larger than their average, to obtain

M(M-1) min Z- , Z5 Zz =Z Z
2 {(',)I'#i) ,7r, {(e,)Ii) ' ,, Y iEci (I,)#7Er. (12)

t -yECj I 7ECC

as desired. We conclude that z ° is optimal.

For the converse, let us suppose that a vector z E X is optimal. We have already established

that the optimal value of the objective function under consideration is equal to 2S*/(M(M - 1)).

Therefore, all inequalities in Eq. (12) must be equalities. Since the first inequality in Eq. (12) is

not strict, condition (i) follows. Furthermore, since the second inequality in Eq. (12) is not strict,

condition (ii) follows. Q.E.D.

Using Prop. 1, one optimal solution for the problem (11) is the following. Choose a clas Cf.

such that St. = S" = maxe Se and let

0, if -Y 0Cf., (13)

It is seen that this vector z is feasible (z E X) and satisfies the optimality conditions of Prop. 1.

Let us point out that an optimal solution of the problem (11) is in general not unique. The solution

provided by Eq. (13) can be singled out because of its special symmetry properties.

10



The c!ass Ce., which is a class of decision rules with a maximal number of separations, should

be viewed as a a "best" class: according to Prop. 1 only decision rules in such a class should be

used. This is very intuitive because each I E Ce provides information to the fusion center which

is useful in discriminating Se pairs of hypotheses (by the definition of Se). The larger the value

of S1, the larger the contribution of a decision rule y E St in discriminating between the different

hypotheses.

We now proceed to determine the best class Ce.. Suppose that Ce. = C"'..D6, for some integer

coefficients 61...., 61) whose sum is equal to M. Suppose that there exist some q and C such that

6,- b > 1. Consider anew class C, -C 1.. where6' = 4- l , 6 ' = +1, and 6d=dif

d 6 q and d i . Using Eq. (5), we obtain

2(s . - St) 6(M - 6c) + 6 (M - 6S ,- 8(M -- )- 8q(M -)

(- + 1) (M - k - 1) + ( n - 1)(M - 6+ + 1) - 6C(M- 4) - bn(M- 6 )

= 2(b, - b, - 1) > 0,

which contradicts the optimality of St.. This shows that 184 - 4, 1 < 1 for all F1, . Given that the

average of the coefficients 6 d must be equal to MID, it follows that for every d we must have either

bd = [M/DJ or 6d = [M/D1. In particular, if M is divisible by D, then 6d = MID for every d. If

M is not divisible by D, the number of &'s for which bd = LM/dJ is uniquely determined by the

requirement F-,= bd = M.

We conclude that with decision rules belonging to the best class Cf., the corresponding partitions

of the observation set Y are as even as possible. For example, if D = 2 and M is even, the set Y is

to be partitioned into two subsets with equal cardinalities. Also, for the example of Fig. 3 in which

M = 5 and D = 2, the best class is the class C 2.3 . Notice that C 2
.
3 has 10 different elements; thus,

an optimal solution is to divide the sensors in ten groups of equal cardinality and letting all the

sensors in each group use a particular decision rule belonging to the class C 2
.
3 .

5. THE GENERAL CASE.

We now consider the case where c does not tend to zero but is fixed instead at some nonzero

value in the range 0 < c < 1/(M - 1). Unfortunately, despite the symmetry of the optimization

11



problem defining A*, symmetry considerations alone are not sufficient to ascertain that the optimal

value of the vector z possesses symmetry properties similar to the ones obtained in the previous

section. We demonstrate this by means of a simple example.t

Example: Let there be three hypotheses (M = 3) and let the meages be binary (D = 2). In

this case there are exactly three decision rules, the following: the ith decision rule yj, i = 1,2,3, is

defined by -yi(i) = 1 and -yi(j) = 2 ifj 6 i. Notice that IP12('1s,S) = P13('12,S) = P23(Y,S) = 0,

for every a. Let

v(a) = log [(I - 2) 1 ' + (2)1"(1 - c)'].

It is seen [cf. Eq. (2)] that pi(-,i,a) = v(s) and p/ (y.,s) = v(1 - s), for every i j. Substituting

in Eq. (3), and using the notation zi = z., we obtain

A= min max{ min [X1 12 ('1,8) + z 2p1 2 ('12 ,S) + Xsp12 ('13, )],
zEX SE[0,1]

mi~n [Xz Jp13 (Y I )) +2 P 13(72, 1) + X3 P 1 3 (7 3 , 8)
&E 0,11

rain [,p23 ('1., 8) + Z2jA23(72, 8) + zsI23 ('Y3,8)] }
=minmax{ min [zv(S)+z 2 v(1-8)],

min [XzI() + Z3 V(1 - 8)],
O10, ij

mi [Z2zV(a) + (1 - a)] }.
OE 10. 11

Consider the symmetric solution (z. = 1/3 for each i). The corresponding exponent is seen to

be 1 min.E0,jlo[v(s) + v(1 - s)] = 2v(). (The last equality follows because we ate minimizing a

convex function which is symmetric around the point 1/2.) Let us now consider the nonsymmetric

solution z, = Z2 = 2, z3 = 0. The corresponding exponent is equal to

max IV( ), .miii

In particular, if 1 minEO,l.1 V(S) < 2v(2), then the symmetric solution is not optimal. We have

investigated this issue numerically by computing the value of the exponent corresponding to differ-

ent vectors x E X (over a fairly dense grid of points in X and for a few different values of c) and

t This example also corrects an error in a corresponding example in [Tsi88].
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we have reached the conclusion that the symmetric solution is always the optimal one. However,

an analytical method for establishing that this is the case is not apparent, even though it can

be proved that the symmetric solution is a strict local minimum. (The proof of the latter fact is

outlined in the Appendix.)

Without any guaranteed symmetry properties, little progress can be made analytically towards

the computation of A*. For this reason, we shall impose a symmetry requirement and proceed to

solve the problem of Eq. (3) subject to this additional constraint. Motivated by the structure of an

optimal solution for the low noise case [cf. Eq. (13)], we require that the value of z, be the same

for every -t belonging to the same class. Given any vector z E X satisfying this requirement, let

Yti = , z. We then have z, = ye/ Cel for every -1 E Ce. Using this expression for x., the

minimization problem of Eq. (3) becomes

L
A* = min max min (14)

-= "vECt

where the variables y1,...,JL are subject to the constraints ie >- 0, for each t, and e= 1.

Proposition 2: (a) Fix some class Cf. Then, the value of

I
ICEn ECj A(7,/2

is the same for all i,j such that i: j, and will be denoted by *,.

(b) Let t be such that St. kr I = maxe Slael. Then, the choice y,. = 1, and yie = 0 if 1 $ t', is

an optimal solution of the problem (14).

Proof: (a) This is evident from the definition of pi,(% 1/2) and symmetry considerations.

(b) Fix some pair (i,j), with i $ j. For any -y E r, define a new decision rule (-y) in which the

positions of i and j in the partition corresponding to -y are interchanged (see Fig. 4). It is seen

that a is a one-to-one and onto mapping of any given class Cf into itself. Furthermore, it follows

easily from the definition of p,, that p,-(o(y),s) = s,(y, a) = piy('y, 1 - s). Therefore,
1 . . 1 r

2E+ , = + Aii (-Y' 0) I1)
'JECt 2 ,EC 1  ,ECI

13
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(a) (b)

Figure 4

A decision rule -y is shown in (a) and the corresponding decision rule (-y) (in which the positions

of i and j are interchanged) is shown in (b).



Thus, the expression in the left-hand side of Eq. (15) is symmetric, as a function of 8, around the

value s = 1/2. It follows that the minimization with respect to s in Eq. (14) involves a finction

which is convex and symmetric around the point a = 1/2. Hence, the minimum is attained at

a = 1/2 and Eq. (14) simplifies to

A* = rain max ALLz
..... me m/2). (16)

-ECt

Now, using part (a) of the proposition,

1 1n _ I MeatIC- Z l (-y, 1/2)-(',1/2)= C ck, =M(Ml~n (17)

where we have made use of Eq. (6) in the last step. We now use Eq. (17) to further simplify Eq.

(16) and obtain

= m 2y
e=n M(M- 1)S t a r  (18)

Notice that the inequality a :5 0 holds for each t. Therefore, an optimal solution to the opti-

mization problem of Eq. (18) is obtained by choosing a class Ct. for which the value of Silat is

maximized and letting Yt. = 1, and yt = 0 if I $ t. Q.E.D.

Our conclusions are therefore similar to the small noise case. In particular, there exists a best

class and all decision rules to be used should belong to a best class. The nature of the best class is

interesting. The constant at can be interpreted as a measure of the contribution of an "average"

element of Ct to a pair of hypotheses which are separated by that decision rule isee Prop. 2(a)]. The

product StIatl weighs the number of separations of a decision rule in C by the "quality measure"

at and the value of this product is used to determine a best class.

The identity of the best class cannot be determined analytically because the formulas for the

coefficients at are somewhat cumbersome. On the other hand, for any given value of c, the value

of at is easy to compute numerically. We have done so for the case where D = 2 and for M =

5,10,20,30 [Poly88]. We summarize the results. When c is very small, then the optimal class

is the one which partitions evenly the observation set, in agreement with the results of Section

4. Interestingly enough, this same class remains optimal for larger values of e as well, up to

approximately 1/M. At about that point, the identity of the optimal class changes, and the
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optimal class is a most uneven one, namely the class Cl -m-. This latter class remains the best

one for all e up to 1/(M - 1) (which is the largest allowed value for c).

The case c = 1/(M - 1) has an interesting interpretation. Here, the probability Pr(y = i I H,)

is equal to c if i:0 j, and is zero if i = j. Thus, an observation y = i provides absolute proof that

Hi is not the true hypotheses. If the sensors use decision rules -1 E C'-1 '- 1 of the form -1(i) = 1

and -y(j) = 2, for j 0 i, then a message with the value I allows the fusion center to eliminate one

of the hypotheses. On the other hand, if decision rules in classes other than C 'u - I are used, then

the fusion center is not able to make unequivocal inferences. This argument suggests that C ' M-

is the optimal class, as confirmed by our numerical experiments.

6. DESIGN OF THE OPTIMAL COMMUNICATION RATE FOR TE SMALL

NOISE CASE.

A fundamental design problem in decentralized decision making concerns the choice of the com-

munication rate (or available bandwidth) between the different decision making units. Such design

problems are usually very hard and very little analysis is possible, except for simple situations. For

this reason, the solution of even idealized problems can provide valuable intuition. We consider

such a design problem, in the context of our decentralized detection problem, under the small low

noise assumption.

We express the communication rate of each sensor as a function of the variable D. In particular,

we view the number [log 2 D] as the number of binary messages that each sensor must transmit to

the fusion centert. Clearly, a higher value of D leads to better performance (smaller probability

of error at the fusion center) since a decision is made with more information. On the other hand,

communication resources may be scarce, in which cue an upper bound can be imposed on the total

t In an alternative formulation we could use log 2 D instead of [log 2 D]. Which one of these

choices is more appropriate could depend on the particular coding method used for transmission.

In any case, our subsequent results can be shown to remain valid under this alternative formulation

as well.
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communication rate in the system. Accordingly, we assume that

N iIc 2 DI _< K, (9)

where K is a given positive integer. Given such a constraint, we pose the question: "Is it better

to have few sensors communicating at high rate, or more sensors communicating at low rate"? We

formulate the above described problem in mathematical terms. We view the optimal error exponent

A* as a function of D and we use the more suggestive notation A'(D). Furthermore, we consider

the small noise case for which we can use the approximation [cf. Eq. (10) and Prop. 1]
A(D) = S'(D) (20)

AM(M- 1)'

where [cf. Eq. (5)

S*(D) = max E 6d(M - 6d), (21)
d=1

and AD is the set of all vectors 6 = (bl,... ,6D) such that each 6 d is a nonnegative integer and

-D 6 d = M. Recall that the error probability behaves, asymptotically as N --+ oo, like e NA ' (D)

We are then led to the problem

min NA* (D) (22)
D

subject to the constraint (19). (Of course N and D are also constrained to be an integer larger

than 1.)

Proposition 3: An optimal solution of the problem defined by Eqs. (19) and (22) is given by

D=2, N= K.

Proof: We use Eqs. (20) and (21) and the fact that logc is negative to formulate the problem (22)

in the form

max NF(D), (23)D

where

F(D) = max a6,(M - 6). (24)

Let us recall that the optimization problem in the definition of F(D) was solved in the end of

Section 4. In particular, it is seen that

M', if M is even,

2 = - if M is odd,
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and

DD

[The above inequality is obtained because 6, = = 6D = MID is the optimal solution in Eq. (24)

when the integrality constraints are relaxed.]

We compare the solution N = K, D = 2, with the solution N = [K/2J, D = 3. It is easily

verified that

K .-1 >_M 2 I- VM2
2 T \3

which shows that the solution with D = 2 is preferable. Similarly,

KM2 - 1 >K M211-\2!2
2 2 2 4/

and D = 2 is also preferable to D = 4. Finally, if D > 4, then [log 2 D > 3 and N < K/3. We

have
M 2 -1 >K K 1)

K -- M _>-M 2 (1--;, VM>2, VD>4,
2 3 3 3 DI

and D = 2 is again preferable. Q.E.D.

Generally speaking, intuition suggests that it is better to have several sensors transmitting

low rate but independent information, rather than few sensors transmitting detailed information.

The above result corroborates this intuition, at least for the particular problem under study. An

alternative statement of this result, which is pertinent to organizations involving human decision

makers, is the following: if a decision maker is to receive a set of reports of a given total length, it

is preferable to receive many partial but independently drafted reports, rather than a few lengthy

ones.

7. CONCLUSIONS

We have considered the asymptotic (as the number of sensors goes to infinity) solution of a par-

ticularly simple symmetric problem in decentralized detection. While the problem is very idealized,

the conclusions obtained agree with intuition and could be useful as guiding principles for more

general problems. Roughly stated, the following guidelines suggest themselves:

a) It is preferable to have several independent sensors transmitting low rate (coarse) information
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instead of few sensors transmitting high rate (very detailed) information. (Of course, this guideline

is meaningful if it is assumed that the addition of more sensors does not lead to increased "setup"

costs; in other words, it is assumed that many sensors are readily available and the only question

is whether they can be usefully employed.)

b) An M-ary hypothesis testing problem can be viewed as a collection of M(M - 1)/2 binary

hypothesis testing problem. Under this point of view, the most useful messages by the sensors

(decision rules) are those which provide information to the fusion center that is relevant to the

largest possible number of binary hypothesis testing problems.

To what extent the above two guidelines can be verified analytically or experimentally in more

realistic problems is an interesting question which is left for further research.

APPENDIX

We outline here a proof that the symmetric solution (z, = 1/3, for i = 1,2,3) is a strict local

minimum for the problem considered in the example of Section 5. The problem under consideration

can be stated as:

*= rain F(z),
sEx

where

F(z) -max F,,.(x), (A.1)
i<i

and

Fj(z) = min I, (s) + z.I'(1 - s)],
,E to, I

where i,j E (1, 2,3). Let z = (1/3, 1/3,1/3). The function v(.) is striclty convex and continuously

differentiable, and the minimum in the definition of Fi,(z*) is uniquely attained at a = 1/2. We

can then use Danskin's Theorem (Dan67] to obtain

F, . = (I) + I=]1 0, if koiandkqj;
-z() I zi +zkJJ = (I), ifk=iork=j.

Consider any direction d E W, d 0 0, in which z' can be perturbed without leaving the set X.

[That is, d= (d,d 2 ,d 3 ) with d, + d2 + d3 = 0.] The chain rule yields

8F,=(z + ad) Zdk 8I,,.(z ) - (d. + d)!v (A.2)
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Notice that the assumptions d # 0, di + d2 + d = 0 imply that there exist some ij such that

d, + di < 0. Since v(1/2) < 0, it follows that for every choice of d, the left-hand side of Eq. (A.2)

is positive for some pair (ij). Thus, for each direction d, some function F 3 (z) has to increase.

Taking Eq. (A.1) into account, F(x) must also increase. From this point on, it is only a small step

to show that F(x) is larger than F" (z) in a neighborhood of z', i.e., that z" is a local minimum.

(The details of this last step are omitted.)
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