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I. INTRODUCTION

There is considerable uncertainty about the chemical and physical

processes ocurring in solid propellant combustion. Detailed probing of the

gas phase region adjacent to the burning surface of the propellant is

necessary for a more complete understanding of the combustion process.

Spectroscopic experiments which identify and track the behavior of

intermediate combustion products can provide information for developing

reaction networks which assist in the characterization of the combustion

chemistry.

Many articles have been written concerning the detailed chemical

processes occurring in solid propellant combustion and two review articles by

Fifer1 and Lengelle, et al., 2 well describe the important contributions. When

considering only the spectral studies that employ visible and/or uv radiation

the publication list is much smaller. Double bare propellants have been

studied with emission and absorption techniques.'94 In these studies

blackbody temperature estimates, line emission signals from impurity metallic

species and a C radical species were reported for the final flame zone

(explosion zone). Ammonium perchlorate (AP) and nitramine propellants (HMX -

cyclotetramethylenetetranitramine and RDX - cyclotrimethylenetrinitramine)

have been studied more extensively in the recent past. Emission intensity

profiles of several chemically active transient species have been obtained for

AP and nitramine propellants. CN5- 7 and OH6 ,7 profiles were measured for both

types of propellants whereas an NH profile is published only for a nitramine

propellant.6 Equilibrium may not be achieved during combustion; thus,

energetic species which emit visible/uv radiation are not necessarily

equilibrated with respect to the partitioning of energy in their electronic,
vibrational and rotational energy levels. Consequently emission intensity

profiles are not always good indicators of actual species concentration.

Nonetheless there is such a scarcity of actual data on transient species

occurring in propellant combustion (absolute concentrations are virtually non-

existant) that the shortcomings of the emission technique are not yet a

serious drawback. A number of techniques which optically probe the region of

interest have a better potential for determining absolute concentrations.

Laser induced fluorescence (LIF) measurements have been published which
illustrate fluorescence intensity profiles of CN and OH8 in AP propellant

combustion and of CN,8 '9 NH,9 OH,9 and NO ,
9 in nitramine propellant

combustion. A gas phase temperature profile has also been determined from the

rotational structure of OH.9 Coherent anti-Stokes Raman scattering (CARS)l
0

has been applied to a nitramine propellant burning in room air. Several

transient species were identified (HCN and NO) and a two point profile with

concentration estimates has been determined.

In this paper M-30, a common triple base propellant used for long range

artillery and tank rounds, has been chosen for the initial studies. See Table

1 for the composition. Several reasons led to this choice of propellant.

First, it has no apparent dark zone; thus the flame sits close to the

propellant surface providing one local-hot region for spectral emission of

intermediate species. Second, cylindrical sticks of this propellant were

available. Spectroscopic studies have been carried out in a windowed strand
burner. Spatially resolved uv-visible emission spectra for M-30 burning in a

nitrogen environment have been obtained over a pressure range from 0.35 to

1.5 MPa. Species identification, spatial profiles of CN, NH and OH and a
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blackbody temperature estimate have been extracted from these emission
spectra. Moreover, estimates of reaction zone lengths have been made from NH
and CN emission intensity profiles. These results are then compared with
other published reaction zone length values.

Table 1. Propellant Ingredients

Composition Wt. % M-30 AP API HMX1 HMX2

Nitroquanidine 47.7
Nitrocellulose 28.0
Nitroglycerin 22.5
Ethyl Centralite 1.5
Sodium Aluminum Fluoride 0.3
Ammonium Perchlorate 78 87
Polybutadiene Binder 22 13
HMX 73 80
TMETN* 17
Polyester Binder 20

*Trimethylolethanetrinitrate

II. EXPERIMENTAL

An assembly drawing of the windowed strand burner constructed and used
for the data reported here is shown on Figure 1. The goal of this design was
to produce a compact vessel that would be versatile and time efficient. It is
composed of four distinct parts: a base plate, main chamber, top piece and
five window assemblies. All of these pieces screw rather than bolt together
thus minimizing the time it takes to change propellant samples and windows. A
video camera, used for burn rate measurements, eliminates the need for the
time consuming operation of installing fuse wires in the propellant samples.
This vessel was constructed from 304 stainless steel and has an overall height
of 25 cm. It has an outside diameter of 15 cm and an inside diameter of
7.6 cm. The internal volume is approximately 0.9 liters. Five optical ports
with a 2.5 cm clear aperture are available for use. Depending upon the
experiment either normal incidence or Brewster's angle windows can be
installed. The four ports which are opposed are currently used for
experiments. The fifth port, located at the top, is for possible future use
in radiation-augmented burning studies. To have the propellant burn in a
cigarette fashion a flow of a nonreactive gas (nitrogen) around the propellant
stick is required. The route of regulated nitrogen through the flow
straighteners and out the exit orifice is illustrated on Figure 2. A 0.64 mm
exit orifice was used. This provided a nitrogen flow rate of about four times
the propellant gasification rate over the pressure range studied. Possible
pressure transients which may occur during a propellant burn are minimized by
the four liter surge tank plumbed to the strand burner. Ignition of the
propellant, not shown, is accomplished by rapidly'heating a small diameter
nickel wire which has been placed on the propellant surface. The helium-neon

(HeNe) laser is used for several purposes: optimizing the collection optics
used for gathering the emission signals, measuring the transparency of the
combustion gas and determining the position of the burning propellant surface.

8
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Figure 1. Strand Burner Assembly Drawing

A top view of the strand burner and associated optical systems are shown
on Figure 3. Burn rates of the propellant samples are obtained with a video
camera and macro lens. These video records also verify whether the propellant
burns in a cigarette fashion with a horizontal, flat burning surface.
Emission signals from the propellant sample are collected and focussed onto a
0.1 mm horizontally oriented entrance slit by two convex lenses with a
magnification of two. The resulting spatial resolution is 0.1 mm full width
at half maximum (FWHM). This resolution has been experimentally verified by
recording the signal produced from various size illuminated slits as a
function of position. A 0.25 m monochromator disperses the emission signal
onto an intensified linear photodiode array and a computer is used for
acquisition, manipulation and storage of the optical data. For the emission
spectra taken here a 1180 grooves per mm grating has been used in the
monochromator. This combination gives a spectral resolution of about 0.3 nm.

In a typical experiment the following sequence of events would occur.
The propellant sample and ignition wire are installed in the strand burner.
After closing the vessel it is then pressurized to the desired pressure and
the video recording system turned on. Propellant burning is now initiated by

9
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switching on a power supply to heat the ignition wire. This switch also
triggers a digital oscilloscope which records the HeNe photodiode output. Two
methods have been used to initiate emission spectrum accumulation by the
photodiode array. The simpler method is a manual start performed by the
experimenter. The video camera real-time display provides the experimenter
with a rough idea of when to start. Alternatively, the change in the HeNe
photodiode output that occurs when the HeNe laser impinges on it has been used
as an automatic start for emission spectra accumulation. Unfortunately this
triggering method misses part of the data where the propellant surface is just
entering the sampling volume but has not burned down to a position where there
is no solid blocking the path of the HeNe. Once the photodiode array is
triggered it repetitively scans and resets 120 times while storing each of
these 120 scans into buffer memory. The total data accumulation time
(typically 5 to 10 s) as well as the time for each scan can be varied over a
wide range. An example of a portion of the multiple emission spectra obtained
during a single propellant burn is shown on Figure 4. In this case the time
used for each scan was 16 ms and the time between active scans was 48 ms; thus
the emission was sampled every 64 ms. In the wavelength region shown on
Figure 4 the time variation for CN (388 nm region or equivalently 3880
angstroms region) and K (405 nm) are represented for M-30 burning in 0.66 MPa
(6.6 atm) of nitrogen. This temporal variation of the emission spectra can be
converted to a distance from the propellant surface by using the burn rate of
the propellant as determined from the video record. Emission intensities for
individual species, calculated by integration of their spectral features, can
be determined as a function of distance from the propellant surface. It
should be noted that the CN and NH (336 nm) species are relatively short
lived; that is, they appear close to the propellant surface and typically are
consumed at distances less than 2 mm from the burning surface. Considering
this small extent, a shadowing effect occurs which can alter the emission
intensity profile; see Figure 5. Previous investigators have discussed this
effect5 ,93 1 and in one case a trial and error method5 was used to extract a
"corrected" profile. Since future experiments to measure the transient
species involve a technique (optical absorption) that is not influenced by
shadowing, no significant attempt has been made to account for shadowing. A
final comment about this effect is that it goes in a direction that makes the
intensity profiles appear narrower than the actual case. This observation,
together with a comparison of the present data for NH and CN with the
published data of Branch, et al., 12 on a low pressure flame suggests one
possible correction. The low pressure flame data look much more symmetric
than the present data which have a rather abrupt rise. If this abrupt rise
were altered to be symmetric with the fall off, the FWHMs reported here for CN
and NH would be increased by about 25%. Non-horizontal burning of the
propellant surface will also compromise the spatial resolution of the emission
intensity profiles. The video record has a resolution of about 0.15 mm for
the detection of this effect and provides a quality control on acceptable
propellant strand burns. Lastly, the propellant surface moves during the data
accumulation and readoff of the photodiode array. For these experiments the
scan time was 16 ms and the burning rate varied from about 1 to 3 mm/s
depending on the pressure. Thus the burning surface moves at most 0.05 mm
during an emission scan.
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Figure 5. Detail of the Optical Collection System Showing the Geometry
that can Cause a Shadowing Effect. The angle of collection has been

exaggerated for clarity. At positions where the propellant surface is
closer to the optical focus point of the collection lens part of the

light emission will be blocked from view by the propellant.
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III. RESULTS

One of the more important measurements for characterizing a propellant is
the burn rate as a function of pressure. Moreover, this parameter is required
in the present context to be able to plot emission intensity as a function of
distance. The propellant samples for study are small solid cylinders 6 mm in
diameter and 20 mm long. To minimize ignition effects and different
temperature gradients close to the propellant strand stand, only the middle
10 mm was observed for burn rate measurements. A macro lens magnified the
propellant strand nine times and the video record of the burn enabled the burn
rate to be determined with an estimated absolute accuracy of ±8%. A
comparison of the present results with unpublished data of Miller 1 3 is shown
on Figure 6 and the agreement is excellent.
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Figure 6. A Comparison of Burn Rate Data for M-30 Propellant at
Moderate Pressures

A coarse emission spectrum for M-30 burning at 0.6 MPa (6.6 atm) is shown
on Figure 7. The wavelength range extends from 300 to 680 nm. The emission
detection system could only capture approximately 50 nm of spectra at a time
so Figure 7 is a result of piecing together eight individual spectra. A
standards lamp was employed to calibrate the detection system for wavelength
sensitivity and geometric effects; hence the emission intensity is an accurate
relative intensity profile with small line emissions omitted. Enormous sodium
D lines emissions are observed which dominate the detection system for more
than a 50 nm range. The small amount of sodium aluminum fluoride used as a
muzzle flash supressant has produced the overwhelming majority of visible
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emission. A portion of the spectrum removed from the sodium line emission is
shown in greater detail on Figure 8. Assuming the emission to be dominated by
continuum blackbody radiation and the emissivity to be wavelength independent
over this range a temperature characteristic of the combustion gas can be
calculated from Planck's radiation equation. A least squares fit to the data
results in a temperature of 2587 K with a standard deviation of 189 K. This
temperature is less than the calculated adiabatic value of 3040 K; this is
not too surprising since the measurements were made at 0.66 MPa (6.6 atm)
where it is probable that the chemistry has not reached completion. What is
assumed in the above analysis is that continuum chemiluminescence is
negligible. This means concentrations of common combustion species such as
NO2 and combustion reactions like CO + 0 that exhibit broad -and
chemiluminescence over this wavelength region are neglected. In some cases
this is certainly not true; i.e., close to the propellant surface where these
species can exist. On the positive side the data of Figure 8 are evenly
distributed about the least squares fit which means that the emission data
have a wavelength dependence characteristic of blackbody emission. A serious
attempt to obtain gas phase temperature profiles using this technique should
employ a much coarser grating so that at any given time a larger portion of
the wavelength spectrum would be sampled.

U4

1.4M" -

0.

0.2-

11I
U-

24 1 6

Figure 7. Calibrated Emission Intensity Versus Wavelength from
300 to 680 nm for 1430 Burning at 0.66 lia. Only the overwhelming

line emission from the sodium D lines have been included in
this coarse emission spectrum.
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Figure 8. Calibrated Emission Intensity Versus Wavelength Over a
Much Reduced Range, 390 to 530 nm. This profile is a subset of the

profile of Figure 7. The solid line is a least squares fit to the data
to extract a blackbody temperature.

Spectroscopic observation of the 388, 336, and 307 nm wavelength regions
provided the necessary emission data to allow spatial profiling of CN, NH, and

OH over a pressure range from .35 to 1.5 MPa. Representative emission
spectra from the region which includes CN, NH, and OH emission are shown on
Figures 9a, b, c, respectively. Multiple emission spectra are used to obtain
the CN, NH and OH emission intensity versus distance from the propellant
surface. These profiles are shown on Figures 10, It, and 12, respectively.
The negative distances indicate that the propellant has not burned past the
detection volume. Reaction zone lengths have been determined from the FWHMs
of these types of profiles and the results together with other published
values5 ,

'
, 9 for other propellants are listed in Table 2. The propellant

ingredients are listed in Table 1. There is such a scarcity of reaction zone
length data for solid propellant combustion that the data in Table 2 include
two formulations of ammonium perchlorate (AP and AP1) which are composite
propellants, three kinds of nitramine propellants (HMX - neat; HMXI and HMX2 -

composite) and a triple base propellant (M-30). HMX and HMX2 are reported to
have dark zones while HMXL, AP, and M-30 do not. These and other differences
in the various ptopellants studied make quantitative comparisons of dubious
value and point out a need for experimental efforts to focus on a few standard
propellants. Qualitatively, the values of Table 2 generally agree to well
within a factor of three and the reaction zone lengths are mostly larger than
that of a simple atmospheric pressure flame (0.5 mm). In the present study it

15
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Figure 9. Emission Intensity Versus Wavelength for M-30 Burning at 0.66 Pa
These spectra have not been corrected for either wavelength sensitivity or

geometric effects. (a) CN emission is readily observed over the region from
385 to 390 nm. Potassium emission is detected at 405 nm. (b) NH emission
is observed at 336 nm, CN at 359 nm, and Na at 330 nm. (c) OH emission

is observed in the 305 to 310 nm region. A prominent peak at about
295 nm has not been identified.
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Table 2. Summary of Reaction Zone Lengths for Various Propellants

Reaction Zone Investigator &
Species Length Pressure Propellant Technique

CN 2.0 mm I atm AP Povinelli - Emiss
CN 2.5 mm I atm APi Edwards - Emiss
CN 0.7 mm I atm HMX Parr - PLIF
CN 0.6-0.4 mm 1-8 atm API Edwards - LIF
CN 0.5 mm 7-35 atm HMXl Edwards - LIF
CN 1.8-0.5 mm 18-35 atm HMX2 Edwards - LIF
CN 1.5-1.2 mm 6-15 atm M-30 Present work - Emiss
NH 0.5 mm I atm HMX Parr - PLIF
NH 1.2 mm 35 atm HMX1 Edwards - Emiss
NH 1.0-0.7 mm 6-15 atm M-30 Present work - Emiss

has also been observed that to about 0.1 mm both NH and CN appear at the same
place but CN extends further out in the propellant combustion gas. The data
that supports this conclusion comes from the larger reaction zone lengths
observed for CN and from the data of Figure 13. In order to produce the data
in Figure 13 the spectrometer was set analogous to that for recording the
emission spectrum shown on Figure 9b. Here NH appears at 336 nm but now a
vibrationally excited band of CN can be observed at 359 nm. This excited band
of CN is much weaker than the 388 nm band but its emission intensity profile
indicates that CN appears about 0.1 mm closer to the propellant surface than
NH.
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Figure 13. Emission Intensity for NH (Solid Line) and CN (Dotted Line)

Versus Distance from the Propellant Surface. The emission intensities
were recorded simultaneously for M-30 burning at 0.66 MPa.

Better signal-to-noise characteristics are observed for CN and NH

emission profiles relative to the OH emission profile shown on Figure 12.

Nonetheless, the OH emission intensity rises sharply and extends further out

into the flame zone than does either CN or NH. This behavior is found in most
flame systems.

IV. FUTURE WORK

Future studies include determining the applicability of employing

broadband uv-visible absorption as a combustion diagnostic for these strand

burner studies. Should absorption measurements prove feasible a variety of

concentration profiles for intermediate combustion species could be
obtained. With sufficient spectral resolution temperature profiles may also
be extracted.

LIF is also planned to be used to profile intermediate combustion species
such as NCO.
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