AD-A201 628

OTIC FILE COPY

AN ANALYSIS OF SCHEDULE DETERMINATION
IN SOFTWARE PROGRAM DEVELOPMENT
AND SOFTWARE DEVELCPMENT
ESTIMATION MODELS

THESIS

Crystal D. Blalock, B.S.
Captain, USAF

AFIT/GCA/LSY/88S-2

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

| Tuis dccament has been
|l oilie relecse cmd saleg 2
Coura e) nalaitedl, A EYE

88 12 20 43

03"

1

AFIT/GCA/LSY/885-2

AN ANALYSIS OF SCHEDULE DETERMINATION
IN SOFTWARE PROGRAM DEVELOPMENT
AND SOFTWARE DEVELOPMENT
ESTIMATION MODELS

THESIS

Crystal D. Blalock, B.S.
Captain, USAF

AFIT/GCA/LSY/88S~2

Approved for public release; distribution unlimited

The contents of the document are technicaily accurate, and no
sensitive items, detrimental ideas, or deleterious information is

contained therein.

Furthermore, the views expressed in the

document are those of the author and do not necessarily reflect
the views of the School of Systems and Logistics, the Air
University, the United States Air Force, or the Department of

Defense,.

Anregeston For

Tyrts oRasl

 puic T8

i Umanncunced 0O
+

o Jantification

; By
Dist1"1t_nu't.§Lo;1/_~
_-—Availabil ity Codes
”"“”ﬂAbafl”éﬁE]&i
Dist Special

-l

QuAaLITY
INSPECTED

2

AFIT/GCA/L8Y/888-2

AN ANALYSIS OF SCHEDULE DETERMINATION
IN SOFTWVARE PROGRAM DEVELOPMENT AND
SOFTVARE DEVELOPMENT ESTIMATION MODELS

THESIS

Presented to the Faculty of the 8chool of Systems and Logistics
of the Alr Force Institute of Technology
Alr University
In Partial Pulfillment of the
Requirements for the Degree of

Master of Science in Cost Analysis

Crystal D. Blalock, B.S.

Captain, USAP

September 1988

Approved for public release; distribution unlimited

Acknowledgements

Analyzing schedule in software development programs was
a challenging endeavor. It required the inputs and
assistance of key individuals throughout the field to make
this research effort a success. I would like to acknowledge
those individuals.

In order to determine the variables that contribute most
to schedule in software development programs, interviews of
program managers/engineers and other experts in the £ield had
to be conducted. But, before those individuals could be
interviewed, they had to be identified. I would like to
thank Captain Joe Dean, Mr. Brad Donald, Mr. Dave Hansen, and
Mr. Tom Bernard for supplying these names to me. I am also
sincerely grateful to all the people I interviewed. I
appreciate the time they took from their busy schedules to
review my questionnaire and then talk to me personnally.

To successfully analyze the software estimation models 1
chose for this thesis, I first had to have access to them. I
am thankful to Professor Daniel V. Ferens for allowing me to
use his copies of the models he has access to for academic
purposes. I am also grateful to Aeronautical Systems
Division for allowing me access to the PRICE-8™ model and to
Mrx. Jim Otte for providing me as#istance in operating this
model. Second, I needed data to input into these models in
order to make a comparison. I am once again thankful to
Captain Joe Dean for providing me with this data.

11

Pinally, I would like to sincerely thank my friend,
Captain Mark Pohlmeier for all the assistance he has given me
while I worked on this research effort. He has been a source
of knowledge, motivation, inspiration, comfort and friendship

that I shall never forget.

111

Irademark Acknowvledgements

PRICE-8 is a trademark of RCA, Incorporated, a subsidiary of
General Electric, Incoxporated.

SLIM is a trademark of Quantitative Software Management,
Incoxporated.

SoftCost-R is a trademark of Reifer Consultants,
Incorporated. ‘

SPQR/20 is a trademark of Software Productivity Research,
Incorporated.

System-3 is a trademark of Computer EBconomics Incorporated.

iv

Acknowledgements
Trademark Acknowledgements
List of FPigures
List of Tables
List of Equations
Abstract
I. INTRODUCTION

General Issue .
Definitions . .

Computer 80£tvaze
Computer Software

(C8CI1)
Cost Model
Milestone .
Schedule .

8chedule Risk
Software Develop-cnt P

*

*

*

L] L) L] .

Virtual Machine .
Specific Problem .

Justification .
Assumptions . .

Research 0bject1ves

*

Co-ponent

Configuration

Investigative Questions

Scope and Limitations

II. Literature Review . .

software Devolopnont . .
Determinants of Schedule

DOD standard 2167
Software Development lsttnation uodels

L

* 9 L []

¢ o & o & o o

Risk

The Constructive Cost

PRIC‘-S . .

SLIM . . .

SoftCost-R

SPQR/20 . .

System-3 .

III. METHODOLOGY . . .
Introduction .
Question One .
Question Two .

e« ® o o

[L J [3 L] L]

-
L]
L]
]

) 4

* 8 ¢ o & o o Gkt v

e o 0 o o o o e o o

Model

s & o & o

(csc)

t/p

4

o

.
L] - L] [}

It

L)

® o & o o

¢ o o o o o ¢ e o o s s B s o o

gr

s & o ®
e ©® 9 ¢ 9

(COCOMO)

L] . L) * [)

. . [) L) .
e * o L]
L] L [) L] L]

L] . . L
.« © ¢
L . -]

® e ® & @ @ & ¢ & ¢ * o o

Page
i1
iv

viil

ix

]
199

- NV} SO eadbsaWwwWwww NN

Question Three . . . « ¢ ¢ ¢ ¢ o o« o o o o o @ 36
Question Four . . . ¢« ¢ ¢ ¢ o o ¢ o o o o e @ 38

Question Pive ¢ ¢ ¢ o o o o« o o e 38
Iv. Flndlngs L] * * L 4 e . . L] L] L] * L L] L] * L] L] L] L] L] * 39
Int:oductlon e ¢ o o o o e s s e s e e e 0 s s 39
Question One . . . ¢« ¢ ¢ ¢ ¢ o o« o o o o o o 39
Intzoduction . . . ¢ ¢ ¢ ¢ s 4 0 ¢ o e . 39
Software Development Phases 40
Lines of code . . e o ¢ & ¢ ¢ o o o o o 42
Reguirements Definition e« o o v e 4 o o 44
Complexity . . . o« o e e o o o e 48

Woxrk Breakdown stzucture (HBS) e o e o o 49
Amount of Prior Planning Performed . . . 52
Software Development Standards 53

Use of Management Principles 54
Software Programmer Ability 56

Data Base Requirements 58
Allowance foxr Testing 58

Use of Software Development Tools 59
Identification of Resource Requirements . 60
Other Pactors . . ¢ ¢ ¢« ¢ ¢ ¢ o o o s o o 61
Conclusion . . . « ¢ ¢ o o o o o o o o o 62
Question TWO . . . ¢ « ¢ ¢« o o o o s o o o o o 62
Review of Literature c o o o @ 63
Discussion of Interview Results e o o o o 67
Question Three . . « « « ¢ ¢ ¢ o & e o o o o 75
Software Development 8Schedule rheo:y N 75
Review of Models Selected for Analysis . 17
Description of the Data 77
Analysis of Results by Model 79
COCOMO . . . ¢ o &+ o o o « o o o o« o 79

PRIC‘-S . o - . 83
SOftCOSt-R ¢« o o o e o e e e e e o » 34

SPQR/20 . . ¢ ¢ ¢ « o ¢ o o o s o o 84

8”t0."3 e e o o ® o ® 6 e e & & e o 85

Summary of Results ¢« ¢ ¢ ¢ & 86
Question Pour . . . ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o 87
Question ’ive L L] * . L] L] L] [] -* L] * L[] L * * * 91

v. Conclusions and Recommendations ¢ ¢ « & 93
Conclusions . . ¢ ¢« ¢« ¢ ¢ o ¢ ¢ o 6 e o e o« 93
Recommendations ¢ « ¢ ¢ o ¢ ¢ o & 95

Appendix A: Intexview Questionnaire For DOD Program
Managers/Bngineexrs ¢ ¢ ¢ ¢ ¢ e s e e e e e e 97

Appendix B: Interview Questionnaire For Software
Development Bxperts (DOD and Comercial) 104

vi

Appendix C:
Appendix D:

Appendix B:
Appendix P:
Appendix G:

Appendix H: SoftCost-R Resources Bstimate

Mitre Project Data

Appendix I: SPQR/20 Input Values

Appendix J:
Appendix K:

Appendix L:

Appendix M:
Multipliers

Blbliogtaphy e ® e © o o o e

vI TA * . L] L] L] * . L4 . L L L) L

vii

SPQR/20 Summary Bstimate

System-3 Input Values .

L]

System-3 Summary Report .

SoftCost-R Input Values . .

PRICE-8 (MODE 2) Input Values .

COCOMO Software Development Effort

PRICE-S (MODE 2) Bstimation Summary

Intermediate COCOMO Cost Driver Ratings
And Effort Multipliers For Project #24

Page
105

123
124
128
129
131
132
134
135
137

138
139
145

Figure

I. Software Development Project Feedback Loop .

IXI. Rayleigh-Norden Curve .

viii

*

Page
L] 55
. 76

Table Page
1. COCOMO Factors By Catexrory . . . « « o ¢ ¢ o o o & 19

2. PRICE-S Cost Elements and Associated
Development Phases ¢ ¢ ¢ ¢ ¢ o ¢ o o o & 21

3. Pactors Consistently Identified By Bxperts
as Affecting 8chedule ¢ ¢ ¢« ¢ o ¢ o o 62

4. Model Input Parameters Identified As Having
The Highest Correlation With Schedule 74

S. Estimated Project Duration by Model (in
mnths) L] L] * L] [] L] L * L] L] * L] L J [] [] * * * * L] a 7

i1x

Equation
1. Intermediéte COCOMO Organic Equation
For Effort L] . L L] L] . ~e . L] . . . L] L] [] L] []
2. Intermediate COCOMO Semi-Detached Equation
For Effort e o 8 o 8 s o s 8 e s s e o o ¢
3. Intermediate COCOMO Embedded Bgquation
For Effott L] L] L] L] L] L] L] L] L] * L] * L] L] [] * L]
4. Norden Equation For Cycles Of A Project e e e
S. Basic COCOMO Embedded Equation For EBffort . . .
6. Intermediate COCOMO Adjusted Estimating Equation
1. Basic COCOMO Embedded Equation For Schedule o o
8. ESD Recalibrated Basic COCOMO Embedded Equation
por Effo:t . L] L] L] L] L] * . * L] L] . L 2 . L] * L]
9. ESD Recalibrated Basic COCOMO Embedded Equation
For SChedule * L] L] * L] * & L] [] L] * L] L]
10. ESD Recalibrated Nominal Intermediate COCOMO
Bquation For Bffort ¢ . ¢ ¢« ¢ ¢ o o &
11. ESD Recalibrated Adjusted Intermediate COCOMO
Bquation For Schedule « ¢« + + ¢ o o
12. PRICE-S Model Equation For Schedule c e e e e s

Page

. 716
. 79

APIT/GCA/LSY/888-2
Abstract

S Accurate schedule estimation in software development

progréns is important because delays in the schedule of a
softwvare development program can cause delays in the entire
schedule of a weapon system. |

In order to more accurately predict the schedule of a
software development program, estimators need to know which
development factors affect schedule. Thls thesis reports
twelve factors i1dentified as heavily influencing software
development program schedules. These factors were determined
through extensive reviews of literature written by software
development experts and from interviews with DOD Program
Managers/Engineers and commercial experts who have had
experience with software development ptoéra-s.

Also, there are many commercial software development
estimation models on the market today. Five of these models
were analyzed for thelr accuracy in predicting software
development programs. The models analyzed were COCOMO,
PRICE-8, SOPTCOST-R, SPQR/20, and S8YSTEM-3. 1Inputs to these
models were also analyzed for their correlation to schedule

prediction. (W;fﬂ~) (;,_m~“,~

x1

AN ANALYSIS OF SCHEDULE DETERMINATION
IN SOFTWARE DEVELOPMENT PROGRAMS AND

SOFTWARE DEVELOPMENT ESTIMATION MODELS

I. INTRODUCTION

General Issye

In today's Defense world, the use of the computer 1is no
longer a new phenomenon. The widespread use of computers in
military weapon systems has made software development cost an
important part of a weapon system's cost estimate. The
ability to determine the cost of the softwu;e used in these
computers, however, is still in a growth state. Volume I of
the Doty Associates, Inc. Software Cost Estimation Study
expands this belief.

Since the advent of modern computers, it has been

common for the cost and time required to develop

software, particularly for large programs, to

exceed initial estimates. In addition, the

increased sophistication of software applications

over the past ten years has made these erroneous

estimates more significant in terms of absolute

costs (18:1].
Although this study was written in 1977, these statements
still hold true today. Barry Boehm, developer of the COCOMO
software development program estimation model, continues on
the need for software cost estimation.

There is no good way to perform a softwvare cost-
benefit analysis, breakeven analysis, or make-or-

1

buy analysis without some reasonably accurate

method of estimating software costs, and their

sensitivity to various product, project and

environmental factors (5:30].

The schedule of the software development project is one
major contributoxr to the project's cost. S8chedule risk, an
aspect of scheduling, has a large impact on how wmuch
additional cost may be incurred. Alan Wingrove, in his
recent article, "The Problems of Managing Software Projects,"”
suggests schedule is even more important in larger sized
software development programs when he states,

From the evidence it would appear that any project

which involves a significant software content runs

a high risk of being completed late and costing

significantly more than budgeted [46:3]).

Because of today's more advanced and complex software
that is continuously being developéd for national défonse,
schedule and schedule risk is an area that must be frequently
examined in order to develop new and more precise methods for
its estimation. When schedule is accurately estimated, cost

estimates will improve with accuracy and overruns will be

curtalled.

Refinitions
Before continuing the introduction, some key terms that
will be used throughout this research effort will be defined.
Computex gSoftware Component (C3C). A CSC is a lower
sub-division of Computer Software Configuration Items (CSCls)
or CSCIs that have been partitioned into smaller units
(21:3).

Computer Software Configuration Item (CSCI). CSCIs are

computer programs, or groups of computer programs satisfying
common functions. They are managed as separate entitles
(21:3); each CSCI follows its own development cycle. CSCls
will be discussed later in a review of DOD-Standard (DOD-8Std)
2167. |

Cost Model. The AFSC Cost Estimating Handbook defines
cost model as "an estimating tool consisting of one or more
cost estimatipg relationships, estimating methodologies, or
estimating techniques used to predict the cost of a sys-
tem..." (41:8-2).

Milestone. John Boddie, author of Crunch Mode:
Building Rffective Systems on a Tight Schedule, states, "A

milestone event is an event that must occur 1f the ptbject is
to be completed. The combination of the event and the date it
should occur comprise a milestone (3:58).

Schedule. A "timed plan” for completing a work package
(12:146). 1In his article, "Managing Software Development
Projects for Maximum Productivity,”™ Norman R. Howes states:

The purpose of scheduling 1s not only to predict

when a job can be completed given the sequence of

work and the resources available, but also to

establish start and end dates for each work package

(23:291.

Schedule Risk. Schedule risk is the probability of a

software development program not being completed within the

time frame for which it has been budgeted (41:A-65).

Software Development Proiect/Program. A software
development program or project is the process of engineering
softwvare to be used in conjunction with some type of
hardware. Paul Rook continues this definition in the article,
"Controlling Software Projects."

The clear emphasis in the modern approach to

softwvare engineering is to focus attention on the

overall development process. This is the aim of

structured software development, which breaks down

the project into a serlies of distinct phases, each

with well defined goals, the achlievement of which

can be verified, ensuring a sound foundation for

" the succeeding phase [37:7].

And finally, as another example, Norden defines a
development project as "a finite sequence of purposeful,
temporally ordered activities, operating on a homogeneous set
of problem elements, to meet a specifled set of objectives .
. oM™ (27:74).

virtual Machine. Boehm states that "for a given
software product, virtual machine is the complex of hardware,
and software it (the computer] calls upon to accomplish its

task (6:510).

Specific Problem

Because delays in schedule can have a substantial
adverse affect on costs, program managers need to know how
and to what extent schedule risk should be included in

software development cost estimates.

Justification

The Cost Analysis Branch of the Aeronautical Systems
Division (ASD/ACC) of Alr PFPorce Systems Command at Wright-
Patterson Alr Force Base has requested that AFIT thesis
research be done in the area of software development cost
estimating (43). 8chedule risk plays an important part in
accurately estimating the cost of'a software development
program. Determining how and to what extent schedule risk
should be included in soffware development cost estimates
will increase the accuracy of the estimates and allow weapon

system program managers to better bddget their resources.

Assumptions

The following asspmptions are made for this research: .

1) The manner in which schedule risk is incorporated
into current software development cost models can be inferred
from current literature and software development cost model
documentation.

2) Historical data on estimated versus actual costs of
softwvare development programs can be obtained from EBlectronic
Systems Division (ESD), Cost Analysis Branch (ACCR).

3) Cases of software development programs at ESD where
delays in schedule were reported are available for review.
Cases of software development programs which w&:e on or ahead
of schedule will also be avallable for review.

4) Software development cost analysts, determined to be
experts in the field, interviewed throughout the Air Forxce

5

and in private industry, have sufficient knowledge to answer
questions regarding the determination of schedule risk in

software development cost estimates.

Beaeaxch Objectjves

In order to thoroughly investigate and derive a
significant conclusion to the research problem, the following
research objectives were achieved:
| 1) Gained sufficient knowledge in the subject of
softwvare development programs to understand the estimation
process. Particularly, gain knowledge in the area of schedule
and schedule risk in software development programs to be able
to determine improved methods for determining it;

2) Deve!opgd adegquate expertise in using the designated
cost models to be analyzed so that the extent to which the
.nodels incorporate schedule risk can be assessed;

3) Determined the relative importance of schedule risk
with respect to other cost drivers in softwvare developnent‘
cost models;

4) Determined to what extent schedule risk has been
previously, and currently should be incorporated into cost
models based on its determined importance.

S) Developed criteria, based on this research, that
program managers can use when determining how schedule xisk

can more accurately be incorporated into a cost model.

Investigative Questions

The following investigative questions are raised to

support the research objectives:

1)

2)

3)

- 4)

5)

What are the factors affecting a software
development program schedule?

WVhat is the importance of schedule risk to a
software development program?
a) To what degree do program managers consider
schedule and schedule risk?

Vhat methods for determining schedule risk are
currently used in software development cost models
and have they been tested and/or validated?
a) Which of these methods appear to be
most valia?

In cost models, what is the significance
of schedule risk?

a) 1Is schedule risk an independent variable or
does its significance depend on the value
of other independent variables in the cost
-models such as size of the program, number
of programmers required, or level of
software sophistication required?

Can any of these methods be combined or
incorporated into a new and more accurate method
for accounting for schedule risk in cost models?

Scope and Limitations
The following limitations will define the scope of this

research effort:

1)

Only four or five current software development cost

models were chosen for analysis.

2)

The selection of the cost models depended on the

availability of thorough documentation for each model, the

availability of the model itself and the ability to access

these models to run case study data.

3) Only one project from the data base was run for
analysis un each of the models.

4) Interviews with program managers who have been
involved in softwvare development programs were arranged
through points of contact at various product divisions
throughout Air Porce Systems Command androther USAP nﬁjor

commands.

II. Literature Review

The process of software development is a very popular
topic among a broad base of people ranging from specialists
in computer programming, who are interested in all the
intricaclies of programing new software, to general program
managers who are only interested in the end result.
Consequently, there has been a great deal of literature
written on software development ranging from very technical
to very general. However, only a small portion of this
literature specifically addresses schedule and schedule risk
as a component in software development cost estimating.

The putpose of this chapter will be to address current
views on software development cost estimating and, specifi-
cally, what are considered to be some of the determinants of
schedule. A review of the current Department of Defense
Standard directing the development of software will be given,
and cost models that will be used in this research effort

will be discussed.
doftware Development

The increase in size of many current software
development projects and the common occurrence of overrunning
schedule with its associated increased costs has caused many

major corporations and the DOD to examine ways of improving

their software development techniques. A representative from

TRV, Inc. gives three reasons why examining software
development more closely is important.

1) Our customers have shown a growing

unwillingness to accept cost and scheduie overruns

unless the penalties were increasingly borne by the

softwvare developer.

2) Partly as a consequence of 1), we have entered

into software development contracts where both

adherence to predicted costs and on-time delivery

were incentived. That means we made more wmoney if

we could predict accurately the cost and the time

it would take to do the job.

3) Ve found that we could improve our estimates

only by improving our understanding of exactly what

steps and processes were involved in software

development, and this understanding enabled us to
manage the effort better. The better management,

in turn, improved our estimates (47:156).

For these reasons, it is also important that personnel in the
DOD examine the processes that comprise software development
and understand what occurs at each phase.

As noted above, software development is a multi-faceted
development process. It is best managed and understood when
broken down into distinct phases. Norman R. Howes, author of
"Managing Software Development Projects for Maximum
Productivity,"” glves an interesting perspective on the -
software development process. He theorizes that software
development management has two distinct parts: project
planning and project execution (23:27). He also says that
these two parts each contain several distinct sub-parts.
~With respect to schedule the main part that should be
analyzed, according to Howes, is "project planning."” Howes
1ists five sub-parts to project planning: subdivision of

10

work, quantification, sequencing of work, budgeting, and
finally scheduling (23:27).

Normally, software development is divided into subsec-
tions for different phases of the development. An example of
division is the Brown & Root Integrated Control System, which
Howes helped in creating, a‘developnent management system
that divides software development into a "series of
decompositions based on how the work will be performed”
(23:27). The resultant hierarchy is called a "work breakdown
structure® (WBS) (23:27). The concept 1is often used by other
software development teams to better control all aspects of
the project. .

Jack Cooper explains basically the same idea for
softwvare development schedules. He states that an effective
way to develop a schedule is to 'appzoach the task the same
way you would approach the top-down design of a software
system" (14:24). He says that when developing the schedule,
start at the top of the project and "decompose it into its
first line major tasks™ (14:24). Next, the task can be
further decomposed into more comprehensive sub-tasks until
"the level is reached where tasks cannot be sub-divided any

further” (14:24).

Retexrminants of Schedule Risk

Another area of interest to this research effort is the
determinants of schedule risk as perceived by experts. These
determinants are important to any software development

11

project and can vary widely depending on expert opinion and
the particular case to which the schedule risk applies.
Cooper in the article "Software Development Management
Planning® reiterates this point, "Another critical action to
be taken before proceeding . . . is to identify all of the
potential risk areas®™ (14:23). He goes on to state, "Many of
the high risk areas should be included on the project's
critical path" (14:23). VWhile all determinants are
important, this review will focus on specification,
experience, planning, and complexity.

One of the major determinants of schedule risk has to do
with specification. If the requirements for the software are
not properly specified and defined, accurate schedule
determination will be difficult. Wwalt S8cacchi, in his
article "Managing Software Engineering Projects: A Soclal
Analysis," talks about specification; he states, "Problems
found in specifications may be due to oversights in their
preparation or conflicts between participants over how they
believe the system should function" (38:54).

Another factor that can determine schedule risk is
experience, specifically, experience that the software
developers have with the type of software being developed.
The Doty Assoclates, Inc. report highlights this area when
analyzing sizing of the program and experience of the
developer at the same time. If the developer determines size

estimates in man months and secondary resources based on

12

experience, then the chance for error will depend on the
similarity of his/her previous experience to the new
development (18:72). The sizing of the software development
program will in turn determine its schedule.

The level of planning involved is also a determinant of
schedule risk. Generally, the more planning that goes into a
software development project before it starts, the greater
the chances it will run on schedule. According to R.S. Hurst
in the article "SPMMS-Information Structures In Software
Management, "

Planning includes planning the project, planning

the product and planning the use of resources; |t

includes choosing the processes to be applied

within the project and determining the nature of

the support the project will need. A plan has to

describe the relationships between the tasks, the

intermediate outputs and the responsibilities of

personnel [24:50]. ' .

One last major determinant of schedule risk discussed
here is complexity. The more complex or sophisticated the
software that 1is being developed, the higher the probability
there will be delays or deviations in schedule. 1In one study
of product-related factors on productivity, it was found that
a large percentage of complex code was associated with low

productivity (44:146). Low productivity is often associated
with schedule delay.

DOD gtandard 2167
DOD standard (DOD-STD) 2167, "Defense System Software

Development," is the Department of Defense (DOD) standard

13

which establishes "requirements to be applied during the
acquisition, development, and support of software systems
(16:1/2). DOD-STD 2167 is the result of a development
process started in 1979 to standardize acquisition,
development, and support standards and policles (11:1).
Prioxr to DOD-STD 2167, DOD-STD's 483, 490, 1521A, and 1679
provided the guidelines for software development (11:1).
Cheadle believes the new standard impacts software parametric
modeling "because it requires specific documentation to be
reviewed at specified design reviews (11:1). ‘

One important aspect of DOD-STD 2167 is that it breaks
the software development process into the following major
activities, which it says may overlap or be applied
iteratively: _

1) System Requirements Analysis/beéign

2) Software Requirements Analysis

3) Preliminary Design

4) Detalled Design

5) Coding and Computer Software Unit Testing

6) CsC Integrafion and Testing

7) CSCl Testing

8) 8System Integration and Testing (16:9).

DOD-STD 2167 also calls for formal reviews and audits to
be conducted at specified points during these software
development activities. DBetween System Requirements Analysis

and System Design is the System Requirements Review (SRR);

14

between System Design and Software Requirements Analysis is
the System Design Review (SDR); between Software
Requirements Analysis and Preliminary Design is the Software
Specification Review (SSR); between Preliminary Design and
Detailed Design is the Preliminary Design Review (PDR);
between Detailed Design and Coding and CSU testing is the
Critical Design Review (CDR); between CSC Integration and
Testing and CSCI Testing is the Test Readiness Review (TRR)
(16:10). After CSCI Testing, three more reviews occur before
Testing and Bvaluation and finally Production and Deployment.
These reviews are Functional Configuration Audit (FCA),
Physical Configuration Audit (PCA), and Formal Qualification
Review (FQR) (16:30).

Cheadle believes the additional regimentation of the
review process and the introduction of the new Software
Specification Design Review (the SSR) was initiated "because
contractors and contracting agencies were still discussing
requirements at the Critical Design Review" (11:1). Cheadle
states, "If the contractor, user and customer are still
identifying requirements at the CDR then the project is in
danger of overrunning and missing the schedule™ (11:1).

Bruce and Pederson state during the Preliminary Design
Phase, "requirements analysis tasks are performed to
establish a requirements baseline" (8:8). They go on to
state "the requirements are then analyzed and allocated to

functional software areas which results in a preliminary

15

design (8:8). This preliminary design will provide the
baseline for the Detailed Design phase (8:8).

Next, further analysis and design work on the
preliminary design baseline results in the detailed design,
which forms the baseline for Coding and CSCI Testing (8:8).
During this phase the actual coding and testing activities
occur (8:8).

This new structure seems to be an attempt by the DOD to
standardize the phases of the software development process.
However, often, many experts in software development have
different definitions for activities of a softwvare
development project from those of DOD-Std 2167. Bruce and
Pederson state that software development proceeds through
three distinct phases: Preliminary Design, Detailed Design
and Implementation and Operation (8:8). -They also note that
it is often very difficult to determine the actual status of
any of these development activities (8:8). Bruce and
Pederson state, "Often five or six development steps are
completed and three fourths of the calendar time and budget
is expended before any proof of progress or quality is shown

e o oM (8:8).

doftware Development Estimation Models

This research will be conducted with the aid of
commercially and DOD-developed software development cost
models. There are many of these types of cost models
available for use today. The cost models to be used in this

16

analysis will be determined by the extent to which thorough
documentation is available on the model. The following
paragraphs describe cost models that are candidates for use
in this research effort.

The Constructive Cost Model (COCOMO). COCOMO is one of
the more popular software cost estimating models on the
market today. This is probably true because its developer,
Barry W. Boehm, provides extensive documentation as to how it
was developed and how it works. Users can make adjustments
to the model to fit their own scenarios.

Boehm emphasizes the prlmaiy reason he developed the
COCOMO model was to help managers understand "the cost
consequences of the decisions they will make in
commissioning, developing, and supporting a software product"
(4:13). Boehm describes the different COCOMO models.

COCOMO is actually a hierarchy of three

increasingly detailed models which range from a

single macro-estimation scaling model as a function

of product size to a micro-estimation model with a

three level work breakdown structure and a set of

phase-sensitive multipliers for each cost driver

attribute (4:13).

In this research effort, the Intermediate COCOMO model
(the second of the three models described above) was
analyzed for its techniques in incorporating schedule. The
Intermediate COCOMO model is an extension of the Basic COCOMO
model (described above as a single macro-estimation scaling

model). The Basic COCOMO model is good for quick, early

rough order of magnitude estimates of software costs, but its

17

accuracy is limited because of the lack of additional factors
used to compute the estimates (4:58). The Intermediate
COCOMO model has potential for greater accuracy and a higher
level of detail, making it more suitable for cost estimation
in the more detailed aspects of software product development
(4:58).

Boehm stated, "There are many candidate factors to
consider in developing a better model for estimating the cost
of a software project"™ (5:115). To narrow this large number
down to a manageable size Boehm subjected each factor to two
tests: |

1) General Significance--The test for general
significance eliminates those factors significant only on a
small number of speclalized occasions (5:115).

2) Independence--The test for lndeéendence eliminates
factors strongly correlated with product size and compresses
factors usually highly correlated on size projects into a
single factor (5:115).

The ‘result of this narrowing of the number of factors is
the Intermediate COCOMO currently uses 16 different cost
drivers which are divided into four categories to estimate
cost (21:9). These categories are Product Attribute,
Computexr Attributes, Personnel Attributes and Project
Attributes (5:116). The factors for each category are
listed in Table 1.

18

Table 1
COCOMO Pactors By Category (5:115-116)

Pxoduct Attributes

8oftware Rellability (RELY)
Data Base Size (DATA)

Product Complexity (CPLX)
Requirements Volatility (RVOL)

Computer Attributes

Bxecution Time Constraint (TIME)
Main Storage Constraint (STOR)
virtual Machine Volatility (VIRT)
Computer Turnaround Time (TURN)

Beraonnel Attributes
Analyst Capability (ACAP)
Applications Bxperience (AEXP)
Programmer Capability (PCAP)
Virtual Machine Experience (VEXP)
Programming Language Bxperience (LEXP)

Broject Attributes

Modexrn Programming Practices (MODP)
Use of Software Tools (TOOL)
Required Development Schedule (SCHED)

Note: Requirements Volatility was added in 1986 (21:9).

The Intermedlate COCOMO software development effort
first begins by generating nénlnal effort from scaling
equations (5:117). The equations for the various types of

software are as follows:

Orxganic MMrem = 3.2 (KDS8I)2*-°% (1)
Semi-detached MMrnew = 3.0 (KDSI)*-*= (2)
Embedded MMrem = 2.8 (KDSI)2-2° (3)

where,
MM is man-months,
KD8I is thousands of deliverable source instructions.

19

These nominal estimates are then adjusted using ratings with
respect to the other 16 cost driver attributes described
above (5:117). The COCOMO model also uses the Rayleigh
distribution to give approximations to the labor
distributions for the software development effort (5:68).

The output of the Intermediate COCOMO model is the level
of effort in person-months (5:115). A COCOMO person-month
consists of 152 hours of working time "which was found to be
consistent with practical experience with the average monthly
time off due to holidays, vacations and sick leave" (5:59).
COCOMO estimates in person-months instead of dollars because
of "the large variations between organizations in what |is
included in labor costs . . ." (5:59).

PRICE-8. PRICR-8™ is a commercially ava;lable (GE,
Inc.) macro-cost estimation model develop@d primarily for
embedded system applications. The model consists of
parametric methods to estimate costs and manpower for
softwvare development (41:8-21). The AFSC Cost Eatimating
Handbogok further describes PRICE-S.

PRICE-S estimates probable cost on the basis of

project scope, program composition, processor

loading, and previous organizational performance.

Operational and testing reguirements are

incorporated, as well as technology, growth and

inflation, to generate estimates of cost . . .

(41:8-21).

In addition to cost, PRICE-8 will derive schedules of

work. To do this, the model examines schedule constraints

that have been imposed within the model (34:1-2). Costs are

20

also adjusted to account for acceleration, stretch-out, and
phase transition inefficlencies (34:1-2).

The basis for PRICE-8 is a comparison of new
requirements to analogous estimates in the past (34:1-2).
The model relies heavily on the experience and judgement of
managers using the nodoi. PRICE-S incorporates this
experience into variables which "describe the significant
technological and cost differences between individual
projects and organizations (34:1-2).

PRICE~-S outputs values for six cost categdzies in each
of the nine development phases as prescribed by DOD-8TD 2167.
Table 2 displays the cost elements and the corresponding
development phases as described in the PRICE-8 manual (34:I-
1):

Table 2

PRICE-8 Cost Elements and Assoclated Development Phases

Cost Element Revelopment Phases
Design System COncept-

Programming System/Softwvare Requirements
Data Software Requirements

System Bngineering/ Preliminary Design

Program Management Detail Design

Quality Assurance CSC Code/Unit Test
Configuration Management CS8CI Test

System Test and Evaluation
Operational Test & Evaluation

21

The PRICE-8 model calculates cost in terms of effort
(either person months or person hours) and a typical schedule
for the development program (34:I-1). PRICE-S will also
perform sensitivity analyses and summarize effects of
uncertainties (34:1-3).

PRICE-8 ihputs are grouped into nine categories as
follows:

1) Project Magnitude--the number of source lines of
code (SLOC) to be produced.

2) Project Application--called Abplication, tells what
type of project.

3) Level of New Design and Code--amounts are specified
by the user. _

4) Productivitj—-entails organizational capabilities,
experience and individual talents of the activity that will
accomplish the work.

5) Utilization--effort reguired to £it a software
program into a processor.

6) Customer Specifications and Relliability
Requirements--called Platform, summarizes operational
requirements. Also used to describe the transportability
requirements of a software project or how often a program
will be moved from one type of hardware to another.

7) Development Environment--called Complexity,
describes the effects of environmental factors that can

directly affect schedule time.

22

8) Technology Growth--based on the possibility of using
new, innovative development technigues that make the
development process more efficient. The key drivers here are
Productivity Factor, Application and Time.

9)- System Integration-~factor based on the necessity to
nergd two or more related software products into one system.
PRICE-S will develop time and schedule estimates for this
activity the same as it does for individual sub-systems
(34:1-11).

Regarding schedule, PRICE-S basically takes the
Judgenment of experienced managers, engineers and estimators
to determine the impacts of the key cost drivers and
incorporates this knowledge into the model (34:1-12). As
with any values based on expert judgement, these values
would be subjective. However, the PRICBE-S Manual states that
as much as possible, "actual recorded data is used to
formulate, test, and verify those assessment processes"”
(34:1-12). The PRICE-8 Manual also acknowledges that data
does not always exist. The manual gives the example that "the
impact of schedule variations on cost cannot be statistically
processed" (34:1-12). S8Since there was only one schedule for
programs in the past, it is not certain wvhat would of
happened had that schedule been shorten or lengthened.
PRICE-8 contends, however, that by knowing actual schedules

differ from the original planned schedule, cost impacts can

23

be modeled through studying the processes employed to manage
the schedule (34:1-12).

PRICE-8 uses the planned completion date for Software
Specification Review (SSR) and the Complexity factor to
generate an "“internal reference schedule® which is used to
calculate effort penalties (34:1-B). |

When additional dates are entered (other than 8SR),

new schedule dates are calculated to meet schedule

constraints and they are compared with the

internally calculated reference schedule. This

comparison is used to calculate effort penalties

assoclated with phase acceleration, stretch-out,

and deviations from reference schedule (34:1I-B8].

PRICE-S outputs cost in person-months or hours by the
softwvare the life cycle phases listed in DOD-STD 2167. It
will also list schedule information by review milestone (e.g.
SRR, SDR, etc.) (34:1-3). -

SZIH- The Putnam Software Ljifecycle Model (SLIM™)
model is a software cost estimating system avalilable from
Quantitative Software, Inc. (31:1-1). The model is based on
much of the theory developed by Mr. Lawrence Putnam (31:1-
1). S8SLIM is a fully interactive model and is used to
generate projections of cost, time, personnel and machine
resources for developing computer softwvare systems. It is
designed to handle a front~end estimating problem because it
requires certain estimate information from the start (31:2-

3).

Inputs for SLIM consist primarily of three SLOC

24

estimates: minimum, most likely, and maximum (21:14). The
following other inputs are also required:
1) Language
2) 8System Type
3) Descrxiption
4) Percentage of hardware memory used
5) Rxperience
6) Modern Practices (perxrcentage use of new development
techniques)
7) Teéhnology Pactor (measure of difficulty)
8) Other Pactors (including labor rates and economic
factors) (21:14).
The AFSC Cost Estimating Handbook describes SLIM
outputs.
The model provides the following ouﬁputs:v
Identification of minimum cost, minimum time,
and all feasible solutions for a particular
software development project
Estimates of monthly man-loading

Optimum schedule for completion with associated
milestones

Risk profiles for schedule and effort

Identification of constraints on manpower ap-
plication and completion schedules (41:8-24).

As noted above, SLIM gives the minimum feasible time.

The user may then use this time schedule or he may
specify a longer time in which he can take
advantage of the trade-off law. This law is in
essence a quantification of the Brooks' traze-off
law which states that one can greatly reduce the

25

cost and effort by taking a little more time
(31:1-110

SLIM has a "design-to-cost" function which will
generate feasible time schedules given user-specified
constraints. SLiH will check user-specified cost and time
inputs for feasibility and éonsistency with past data (31:1-
1).

SLIM also has an optional life cycle output that will
derive person-months, schedule, and person loading profiles
(21:15). William G. Cheadle stated that SLIM gives the
shortest schedule first and then "it implies you can save
money by moving the time out to the optimum schedule® (10).

SLIM relies heavily on the Rayleigh-Norden Curve to
allocate resources during a project. The manufacturers of
the SLIM model contend that th§ approach used for a software
estimating problem depends on where one is in the software
life cycle (31:2-3). They further contend that the software
development program problem is a "pure estimating problem"
during the feasibility and function design phases (31:2-3).
It is pure estimating because the problem uses phenomenology
and past experience (data) to forecast a future event (31:2-
3). The developers of SLIM found that in this scenario a
model of observed behavior would be appropriate. They also
wanted a model that allowed the time to vary and had input
parameters of development time, development effort and cost
(31:2-3). For these reasons they chose the Rayleigh-Norden
curve as the basis for their model (31:2-3).

26

SoftCost-R. SoftCost-R™ is based on the model Dr.
Robert Tausworthe of the Jet Propulsion Laborxratory developed
for NASA in 1981 (42:1-2). This model is also based on the
Rayleigh-Noxden curve as well as Putnam theory developed in
SLIM (42:1-2). .

SoftCost-R bases its estimates from inputs from the
factors size, management, staffing, complexity and
environment which is input at the beginning of the model
operation (42:1-2). From this information, SoftCost-R
computes a resource estimate in thxeg steps:

1) Size in Kilo Source Lines of Executable Code (KSLEC)

is computed. |

2) Productivity as a function of technological and

environmental factors is computed.

3) Effort is computed by dividing total size by

productivity (42:1-2).
A standard WBS is also used to produce the task plan and
schedule to be used during initial project planning stages
(42:1-2). 8SoftCost-R also incorporates a version of COCOMO
(COCOMO-R) in conjunction with SoftCost-R into the estimate
as a sanity and reasonableness check (42:1-3).

Outputs of SoftCost-R include an optimal tlne-solutlon
in terms of time, cost and effort, and the statistical
confldence associated with the estimate (21:16). The

estimate of the resources required to complete the project is

27

defined in terms of the project factor data (listed above)
(42:3-22).

Regarding schedule, initial inputs into the SoftCost-R
model determine how SoftCost-R will determine schedule.
"Estimate Date™ and "Project Start Date"™ are two inputs used
to conpile Gantt and PERT charts (42:1-3). Oncé the option
of elther Gantt orxr PERT chart is selected, the model will
display effort and duration values oflglnally input at the
beginning of the program and then give the user the
opportunity to change these values if further knowledge |is
- available (42:3-30). The Gantt and PERT charts are geared to
- DOD-STD 2167. Anofher option, "what-if" has the capability
of displaying the effects of varying the schedule on a given
budget and -vice versa (42:3-24).

SPQR/20. The Software onductivity; Quality, and
Reliability Bstimator (SPQR/207™) was developed in 1986 by
Software Productivity Research, Inc. (39:1). 8PQR/20 is
designed to be the quick estimator version of this model.
The number "20" represents the approximate number of input
variables required for the model's predictions (39:2).

Features of SPQR/20 include prediction of schedule by
phase, effort and costs by -activity, and ;taff sizes (39:1).
SPQR/20 will also predict complete development cycles from
planning through delivery, maintenance and enhancements for
five years after delivery, defect levels of software

projects, defect removal efficiencies of reviews and tests,

28

- and the quality and rellablility of the delivered software
(39:1).
SPQR/20 is designed to estimate "all of the direct labor
- applied to software development and maintenance® (39:2). The
following are the major activities included in 8SPQR/20
estimates:

1) Planning

2) Requirements

3) Design

4) Coding

5) Integration

6) Testing

7) Documentation

- 8) Management
9) Central maintenance
10) EBnhancements (39:3).

Another interesting aspect is S8PQR/20 uses “function
points® to predict new source code size. The PFunction Point
technigque was developed in 1979 by A.J. Albrecht of the IBM:
Coxporation (39:50).

Prior to the Function Point technique, softwvare

productivity was alwvays measured in terms of lines

of code such as cost per source line or lines of

. code per man month. Unfortunately, this metric
cannot safely be used for high-level languages,

since productivity rates in lines-of-code form

. actually move backward as real productivity
improves (39:50).
In other words, there are some non-coding efforts that

will remain as fixed costs in person months despite the use

29

of a high-level language that reduces the amount of effort
for coding. The non-coding efforts are requirements, design,
documentation, and management. Lines of source codes,
coding, and integration and test are the coding efforts
affected by the use of a high-level language (39:50). As in
any process where there are fixed costs involved, when there
is a decline in the number of units produced (or in this case
a reduction in lines of code due to use of a high-level
language), the cost per unit (or source code) must increase.

The Function Point techﬁlque attempts to compensate for
the use of high-level languages by placihg weights on
parameters that Albrecht determined to embody the
functionality of a program. These parameters are: number of
inputs, number of outputs, number of inquiries, number of
dafa files, number of intexrfaces (39:51). When the
parameters are weighted, they are also adjusted for
complexity and then summed to derive a function point total
(39:51). This Function Point value is input into the model
to estimate new source lines of code.

The advantages of using the Punction Point technique as
noted by the developers of SPQR/20 are:

1) Punction Polints aze'ihdependent of source code,

and do not penalized high-level languages; 2)

Function Points can be applied early in a software

li1fe cycle, such as during the design phase; 3)

Function Points can be used to predict source code

size . . . (39:51).

The disadvantages of the Function Point techniqgue lie in
the ambiguity that exists in defining the PFunction Point

30

parameters and the subjectiveness in the treatment of the
complexity adjustment (39:51).

output of SPQR/20 covers six aspects of software
development programs. The first output is a risk and quality
estimate. Next, is a defect removal and reliability
estimate. Next, are fhe main development and maintenance
cost estimates. Finally, normalized management information
is output;

System-3. S8System-3"™ is a software cost estimating
model developed by Computer Bconomics, Inc. and is based on
work done by Dr. Randall Jensen (13:1-1). Dr. Jensen
explains the basic equation used in System-3 In the article
“An improved Macrolevel Software Development Resource
- Bstimation Model™. Using a technology constant based on
technology input parameters and the Rayleigh-Norden curve,
System-3 computes the required software development effort in
staff-months and dollars (25:1).

J8-1 and JS-2 were the predecessors of System-3. JS-1
was introduced in 1982 after 3 years of development by CEI
(13:1-3). JS-2, introduced in 1984, was a refinement of JS-1
and had many advantages over JS-1. The JS-1 produced
estimates for the Development Phase only but J8-2 also
produced estimates for the Requirements and System
Integration Phases (13:1-4). Each parameter is further
estimated at its minimum, most likely and maximum (13:1-4).

CEI purports that these improvements allow users to estimate

31

even their uncertainty and further increase overall
estimation accuracy (13:1-4).

Another feature of JS-2 was the analysis it provides for
the cost and schedule required to "change, enhance and
modify" pre-existing software as opposed to re-building all
new (13:1-5).

Finally, JS-2 determined cost and schedule risk for

different bidding situations from fixed price bids

(wvhere a higher probabllity of completion is

required) to simpler situations where "most likely”

estimates are needed. These features were firsts

in parametric estimating (13:1-51.

In the spring of 1986, CBI replaced J8-2 with a new,
furthexr improved product, the System-3 (13:1-5). Some of the
key estimates of the new System-3 include: minimum
development time, minimum cost within a schedule, staffing
projections and plans, operational support costs, project
level cost summaries, software to software estimation,
incremental development estimation, system conversion
estimation and risk evaluation and ieductlon
(13:1-7). 8ystem-3 will also generate reports on schedule
risk, cost risk, dollars by month and differences from
baseline. Finally, System-3 can generate graphs on such
areas as risk analysis and effort versus schedule tradeoffs
(13:1-7).

Inputs into System-3 fall under the following four basic
parameter c;teqozles: size or source lines of code (SLOC),
complexity, development capability, and environment (13:1-

11). Minimum, most likely, and maximum values must be input

32

for each factor. System-3 also requires SLOC inputs
(21:18).

Regarding schedule, System-3 contains a "view window"
which shows what effect a change in an input parameter will
have on development cost and schedule (21:18).

Outputs of System-3 consist of summary reports of effort
(in dollars and staff-months). 1Included in the reports are
development time, the computed technology constant, and the
effective size (21:18).

33

III. METHOROLOGY

Introduction
The purpose of this chapter is to describe the

methodology that will be used to arrive at answers or
conclusions for the Investigative Questions posed in Chapter
I. The Investigative Questions are designed to go from the

general to the specific.

Question One

WVhat are the factors affecting a software development
program schedule?

This question will be answered in terms of the views
experts in the field of software development and software
engineering have toward schedule risk. An understanding of
these views regarding schedule risk will be obtained from
reading current literature in the form of books, periodicals,
and professional journals on the subject. A particular |
journal, the lnatitute of Electronic and Electrical Engineers
(IBEE) Iranaactions on Software Engineering, has numerous

articles written by experts in the area of software

development and is published monthly.

Question Two

Vhat is the importance of schedule risk to a software
development program?
a) To what degree do program managers consider
schedule risk when estimating the cost of a
softvare development program?

34

The first part of this question will also be determinead
after a review of current literature written by experts in
the field.

The sub-part to this question will be determined aftex
interviewing DOD program managers and experts in private
industry who have been involved in software development
projects.

An interview will be used as opposed to a survey because
of the "depth and detail of the information that can be
secured™ (20:160). Also the quality of the information
should be better than 1f obtained by a survey because the
interviewer "can note conditions of the intexview, probe with
additional questions, and gather supplemental information
‘through observation® (20:160).

Costliness is one disadvantage of lﬁtezﬁleus (20:161).
Costliness of interviews will not be a factor in this
research.effort because of the ease of reaching program
managers located on the same base (Wright-Patterson AFB).
Reaching program managers at ESD and other divisions of AFSC
will also not be costly because they wilihbe interviewed via
Autovon.

Vhen interviewing program managers at divisions other
than ASD located at Wright-Patterson over the telephone,
one possible limitation should be considered. The length of

the interviews may not be as long as those conducted at ASD

35

interviews., This was considered when evaluating the answers
given by interviewees.

The number and identity of the interviewees will be
determined by contacts from the various product divisions in
Alr Force Systems COnnhnd. Preferably, the number to be
interviewed should be at least five program managers fron
each Division (total of twenty program managers). This
number should be sufficient to cover the spectrum of views
program managers have regarding schedule risk in software
development programs without the answers becoming repetitive.

The questions ranged from the general to the specific
and will be open-ended type questions. Two questionnaires
were used. One was for DOD Program Managers and Engineers
and the 6ther was for Software Development Experts (DOD and
‘COmnezcial). The exact 1list of quesfions was determined
after a review of literature was made. Once the questions
.were determined, they were reviewed by selected AFIT faculty
and colleagues for clarity and content. The interviewer
practiced asking the questions on colleagues before the
actual interviews in order to become familiar with the
questions. The guestions used in the interviews are given in

Appendix A and B.

Question Thxee

Vhat methods for determining schedule risk are currently
used in software development cost models and have they
been tested and/or validated?

a) Which of these methods appear to be most valiadz

36

The answer to these investigative questions was
determined from an analysis of selected standard software
development cost models.

The selection of these cost models was based on the
availability of documentation on exactly how these models
vere derived and avallébility of access to these models for
generating case estimates. Models considered for use were:

1) cCoOnstructive COst MOdel (COCOMO) (5:29),

2) PRICE-S (34:1-1),

3) Putnam-SLIM (31:1-1).

4) Systems-3 (13:1-1).

5) 8oftCost-R (42:1-1).

6) S8SPQR-20 (39:1-1).

These cost models were discussed previously in the Background
section of Chapter I and extensively in Chapter II.

The analysis of these cost models was sufficient to
determine how schedule risk wasilncorporated into these
models and what comprises schedule risk.

Historical cost data on software development programs
conducted in the DOD was run on the models and a comparative
analysis of the estimates given by each model was made.
Also, each estimate was compared to the actual cost of the
software development program that generated the data to

determine their accuracy.

37

Question Four

In cost models, what is the significance of
schedule risk?

a) 1Is schedule risk an independent variable ox
does its significance depend on the value of
other independent variables in the cost models
such as size of the program, number of
programmers required, or level of softwvare
sophistication required?

The answer to this Investigative Question was also
determined by reviewing the answers given by program managers
and experts in the f£ield to the guestionnaire and by
analyzing the selected cost models and reviewing the
avallable documentation on the regression techniques used to

derive these models.

Question Five

Can any of these methods be combined or incorporated

into a new and more accurate method for accounting for

schedule risk in cost models? ’

The answer to this investigative question was derived
from a culmination of the answers to the investigative

questions above.

38

IV. Eindings

Introduction

The purpose of this chapter is to discuss the findings
of this research and to discuss the answers to each of the
investigative questions posed in Chapter III. Each of the
investigative questions are addressed independently;
findings from this research relate to more than one

investigative question.

guestion One

What are the factors affecting a software development
program schedule?

Introduction. Frederick P. Brooks, Jr., author of The
Mythical Man-Month, states, "Most software projects have gone

awry for iack of calendar time than for all other causes
combined" (7:14). This regard for the effects that a
schedule can have on a software development program seems to
be universal among experts in the field. Therefore, it is
important that the factors affecting schedule should be
identified so that steps to control these factors can be
taken.

Chapter III stated that the answer to this question was

determined from analyzing the views of the leading experts in

the flield of software development estimation. The experts!'
views were found by researching articles and conference

papers found in common professional journals and articles of

39

the software engineering field. Books and tutorials by noted
software development experts were researched as well. The
general conclusion is there are many factors that go into the
estimate of a software development program, and the answer to
this question can be as broad as the entire software
development program estimation process itself. This section
will begin with a discussion of the views of the experts
examined in this research. Next, their views will be
summarized, and finally conclusions will be drawn from the
summary.

Software Development Phases. ‘Before discussing the
factors involved in the estimation of a software development
program, a review of the broader topic of the software
development 1life cycle is appropriate. As noted in Chapter
11, DOD-STD 2167 gives a very complete description of all the
phases of the software development life cycle. These phases
are, in order of earliest to latest: System Requirements
Analysis/Design, Software Requirements Analysis, Preliminary
Design, Detailed Design, Coding and Computer Software Unit
Testing, CSC Integration and Testing, CSCI Testing, and
System Integration and Testing (16:9).

Many experts break down factors that are used in
software development program estimation by life cycle phase
and others still will group the factors by the more general
headings of "product related factors" or "process related"

factors". J.D. Aron reports that the System Development

40

Corporation in the Programming Management Project spent years
analyzing data to identify factors affecting a progranm's
schedule (2:262). They concluded that key variables fall
into three groups: uniqueness, development environment, and
job type and difficulty (2:262).

Another expert, Stephen P. Kelder, identifies projects
as having five distinct phases: pre-initiation period,
initiation period, project duration, project termination, and
post-termination period (26:53). Kelder identifles various
factors that occur in each phase that can affect schedule.
Still another expert, Alan J. Driscoll, describes the
software development process in three stages: analysis and
design, implementation, and verification (19:46). Finally,
William S. Donelson has yet another idea of what the phases
of the life cycle of a software development program should
be. He says the life cycle has the following nine phases:
problem definition, project organization, problem analysis,
system definition, system review and approval, detail design,
programming and testing, training and implementation, and
post-implementation review (17:74-75).

The point here is that although the standard for
software development programs with the DOD is DOD-STD 2167,
phases of this life cycle may have other slightly different
titles or certain phases may be combined into a larger
singular phase in private industry. This may be confusing to

some when trying to identify which phases of the 1ife cycle

41

are assoclated with which factors that affect schedule.
Also, another problem that may arise from this is that
parties involved in a software development effort, because
they have different definitions for the phases of the
software development life cycle, may also have different
ideas for where critical events in the software development
life cycle should occut}

For this research effort, the life cycle phases
described in DOD-STD 2167 will be used. Also, if factors are
grouped in the discussion, they will be grouped by the
categories identified in the COCOMO estimation model. Those
categories are: size attributes, product attributes,
computer attributes, personnel attributes, and project
attributes (6:502). The following section discusses each
factor found by various experts to affect software .
development program schedule.

Lines of code. As Putnam (who' is well known for
developing the SLIM estimation model) states, "The earliest
efforts at software cost estimation arose from . .
measuring average productivity rates for workers (30:ii). An
estimate of the total job was made by compiling these rates.
The estimate was "usually in machine language instructions"™
also known as "lines of code" (30:1ii1). Machine lanquage
instructions were used in early years because the factor was
related to memory capacity "which was a severe constraint

with early machines (30:1i). To determine the schedule of

42

the project, one merely took the project estimate in machine
language instructions and divided it by the budgeted manpower
(30:11). Putnam adds that if thlis method produced a

schedule that was unacceptable to the user then "the manpower
level (and budget) was increased until the time to do the Jjob
met the contract delivery date" (30?11).

The constraint of memory capacity is not a big problem
with the computers used today for software development
programs. Brooks has shown in his book, The Mythical Man-
Month, that adding manpower to a software project will not'
decreasé its schedule (especially if it is already over
schedule), but 1t will in fact increase schedule (7:19).

For these reasons, the number of lines of code a spftwaze
program is expected to contain does not aépear to be a good
determinant by itself of what the software development
program schedule will be.

Putnam adds to this conclusion by saying that most
program managers do not have a good idea of how to estimate
how many lines of code a program will take anyway. He says
that estimating size "has largely been an intuitive process
in which most estimators attempt to guess the number of
modules and the number of statements per module™ (32:1).
Putnam contends that this may be an effective way to
estimate small projects (less than 10 person years of
effort), but using this method on large projects has been

proven ineffective (32:1). Wendt and Evans agree with

43

Putnam's beliefs and say that the programmers will not be
much help when estimating lines of code for a program

elther.

First of all, most progzan-efs do not know how to
estimate lines of code, and wonder what it has to
do with anything, anyway. Programmers do not want
to code the same application over and over again,
and before they get to the point where they could
tell you how many lines of code a particular
application will take, they have requested to
change areas or even moved to another company
looking for a different software challenge
(45:1058).
Wendt and Bvans also point out that, while counting
- 1ines of code appears to not be a very efficient way of
estimating the size of a software program, there is no other
convenient measure available and subsequently this parameter
persists (45:1058).

As a counter argument to these beliefs that the number

of lines of code is not a good predictor of schedule, Roger
S. Pressman, author of Software Engineering: A
Practitioner's Approach, states that a program of large size
could be a good predictor of a longer schedule because “as
size lnczéases, the interdependency among various elements of
the software grows rapidly” and subsequently it becomes
difficult to break the software down into more manageable
elements (29:81).

Reguirements Definition. Many experts in the field of
software development contend that this factor is one of the
most critical to a successful software development program
which is completed on time and at target cost. Yet, Phillip

44

Bruce and Sam M. Pederson, authors of The Software
Development Project: Planning and Management, say, "less
effort is often devoted to the initial requirements
definition, costing, and scheduling of a projecé than any
other part of the development cycle" (8:16). Wingrove
states that, "For anything other than a very small or simple
project, this perfect requirements document is an
impossibility" (46:4).

Requirements for the software program are specified by
the user in the System Requirements Analysis/Design phase of
the software development life cycle. At this time, the user
tells the developer, as precisely as he/she can, what the
software program must do. Many have found that und?slrable
consequences such as delays in schedule result when the user
is not closely involved ih the requirements definitlon
process. Wolverton emphasizes this point when he states,

Thorough and continuous involvement of the customer

in the development process has been a reality of

several large software developments. Nothing takes

the place of competence and communication when it

comes to understanding the customer's or sponsor's

requirements (47:176]).

Wolverton also points out that translating total system
requirements 1s a crucial first step in any software
development project (47:176).

Driscoll explains the effect a requirements definition

that is not thorough or complete can have on software

development schedule.

45

The effects of an adequate or inadequate

requirements analysis or definition ripple through

all phases of software development, including

design. Changes in requirements cause changes in

design and these in turn usually cause schedule

changes [19:47].

It is evident from this statement that it is not exactly the
poor requirements definition itself that will cause a
schedule to slip; instead, it is the inevitable changes that
will occur later in the software development llfe cycle
because of the poor definition that cause schedules to fall
behind. Edmund B. Daly states,

. « o historical analysis of completed GTE

Automatic Electric Laboratories' projects indicates

that over 50 percent of all development hours are

spent correcting bugs which result from faulty

design [15:294].

Putnam also believes that changes in the requirements
will, if not initially, eventually affect the schedule in
disproportionately large amounts (33:79). He gives an
example with the Army Computer Systems Command data where a
program had a small change in the requirements which
resulted in a major change in the schedule a year later
(33:79). Putnam states, "This shows that even a modest
perturbation of the system can have definite effects on large
systems, and that these effects may not be apparent until a
much later time" (33:79).

Bruce and Pederson emphasize that spending extra time
firming up the requirements before the Detailed Design Phase
can actually shorten the overall time and decrease the costs

required for the software development program (7:17). They

46

contend that the requirements definition is "the basis for
the analysis of many other costing factors, including
difficulty, interfaces, size, tools, use of existing software
and data base complexity® (7:17). Wendt and Evans agree

with this statement when they state, "Software managers are
forced to derive complete sizing of software systems based on
incomplete requirements and system specifications"

(45:1058).

At times, the requirements definition may be well
specified in the beginning, but there are still changes in
the requirements during the software development life cycle.
This occurrence brings to light another factor that is
related to requirements definition and will also affect
schedule, which is termed as the "stability of the
requirements."” This factor is not discussed as fzequently-in
literature probably because it is so closely related to
requirements definition. No matter how detailed the
requirements are defined, 1f they are not stable, changes in
these requirements will result in schedule slippage. Many
experts contend that 1f the requirements are not stable and
there are major changes during the development cycle, the
schedule should be discarded and a new one estimated as if a
new software development program is being started.

Prom this discussion, it is surmised that adequately
defining the requirements of a software development program

is a factor that has a major affect on software development

47

L

schedule. Adequately defined requirements will allow the
estimator to more accurately predict the schedule of a
development program.

Complexity. A general definition for complexity is the
degree of difficulty of a given kind of software routine
(47:166). Complexity is typically associated with
productivity in generating lines of code. It is commonly
believed that the more complex a program, the more lines of
code it will take and, thus, productivity will be slower.
Putnam agrees fhat complexity has an effect on productivity.
After examining very large software programs which required
hundreds of lines of code to complete, he contended "it
became apparent that severe departures from constant
productivity rates were present and that the productivity
rate was some function of the system complexity"” (30:11).

Wolverton contends that determining the degree of
complexity (not defining the requirements, as others have
stated) of a software program is "the most crucial step in
the estimating process, for it establishes the cost of the
routine with all direct and indirect changes amortized
against 1t" (47:166). In other words, knowing how complex a
program will be will give a better clue as to how many lines
of code the program will take. Boehm states that, "Some
studies have lumped a wide variety of effects into the
'‘complexity' attribute and obtained relgtively high

productivity ranges as a result . . ." (6:505). This shows

48

that what determines the degree of complexity of a program is
very judgmental. While it is apparent by many that
complexity of a program does have an effect on that

program's development productivity and subsequently its
schedule, it is still difficult to pinpoint how to define a
software program as being complex.

Work Breakdown Structure (WBS). Many experts believe
that the existence of a Work Breakdown Structure in a
software development program is vital to that program staying
on schedule. Pressman states, "The degree of broject
structure also has an affect on estimation risk" (29:81). He
refers to structure as to the ease with which a program can
be broken down into a WBS or "compartmentalized" (29:81).
Bruce and Pederson state the central theme of theit book 1is
that "all software projects ; . » should be planned and
managed along structured guidelines" (7:1). Having
structure to a software development program is the primary
reason many experts stress that a successful software project
will have a complete WBS.

Wendt and Evans say, "Assembling the specific production
tasks into a WBS is the heart of the structure which will be
used for cost and schedule control (45:1060). They go on to
say that because the product tasks cannot be identified in
detail at the beginning of a program, the estimator must rely
on the WBS to develop early estimates of cost and schedule

(45:1060) .

49

Paul Rook glves a good explanation of the importance of
a WBS to a software development program:

The clear emphasis in the modern approach to

softvare engineering 1s to focus attention on the

overall development process. This is the aim of

structured software development which breaks down

the project into a series of distinct phases, each

with well defined goals, the achievement of which

can be verified, ensuring a sound foundation for

the succeeding phase. It also breaks down the work

to be performed into a serles of discrete

manageable packages, and creates the basis for the

appropriate organisational [(sic] structure. This

allows overall planning of 'how' the software is

going to be developed as well as considering 'what'

is going to be developed as the product [(37:71].

Howes also advocates decomposition of the software
development into "work packages®" which he says can be managed
from beginning to end by one person. He says once the
components are broken down to this level in the WBS, then
estimation should take place for each component (23:28).
Finally, Howes says, "The schedule for your project is the
composite of all work package schedules™ (23:29). Bruce and
Pederson agree with this when they say by structuring the
program, one can "reduce the estimating task to a large
number of more precise estimates rather than a single task"
(7:20).

Jack Cooper contends that partitioning into smaller
packages allows managers to avoid "having to resort to
percentages in status tracking” because partitioned packages
will be small enough that "they can be considered either not

started or completed (0 to 100% complete)™ (14:24).

50

The size of these "discrete manageable packages" and
adding the schedules for each package together to get a full
schedule has been the subject of some discussion in
literature.

Brooks has sald, and many in the field seem to agree,
that by continuing to partition a program into smaller and
smaller components, in order to have the work progress more
quickly by adding more programmers, does not always work
(7:19). Brooks states,

Since software construction is inherently a éystems

effort - an exercise in complex interrelationships

-communication effort is great, and it quickly

dominates the decrease in individual task time

brought about by partitioning. Adding more men

then lengthens, not shortens, the schedule [7:19].

The key here is communication. Brooks believes that
many tasks that are partitioned still requize communication
among other sub-tasks in order to be completed (7:17). This
extra effort in communication more than offsets any gain in
schedule that might be had by partitioning the tasks in
order to add more programmers to development program.

Another point that Brooks makes ls that a task by itself
has a probabllistic effect on schedule (7:14). Wwhen that
task is partitioned into smaller sub-tasks, each of these
sub-tasks also have a probabilistic effect on schedule.

When these sub-tasks are chained together to form the task,

"the probability that each will go well becomes vanishingly
small” (7:14).

51

In summary, having a WBS can help to predict the
schedule of a software development program in its beginning.
However, there is a point at which further partitioning of
tasks 1n a WBS may work to lengthen a schedule rather than
shorten it. This 1s due to the problems of communication
required between the programmers and the greater probability
of more errors within each task.

Amount of Prior Planning Performed. Another factor
somewhat related to the WBS, and stated by many experts as
having an inverse affect on software devélopment schedules,
is the amount of prior planning performed. Cooper states,
"The lack of comprehensive planning prior to the initiation
of a software development project is a very pervasive
failing" (14:22).

A good software development plan, Cooper says, will
contain "a description of the development organization, the
technical approach, the milestones and schedules, and the
allocation of resources" (14:22). The benefits of an
adequate plan include "providing the developer with the means
to coordinate schedules, control resources, initiate actions,
and monitor progtess of the development effort" (14:22).

Rook states a good plan is based on the WBS which is produced
during the work definition process (37:9).

As stated earlier, the results of inadequate planning

can pe disastrous. Wendt and Evans say inadequate planning

can result in "a pattern of unanticipated project activities

52

and frequent unplanned development catastrophes and crises"
(45:1055).

After analyzing the planning factor, it is evident that
if the software development program has no plan or a poor
plan from its onset, the estimator can assuredly add many
more person-months to the schedule estimate.

Software Development Standards. Software development
standards (sometimes called software metrics) are standards
for development practices that have been documented as
ocgurring én past software development projects (29:82).
Many experts believe schedules can be predicted more
accurately if standards that have worked in the past are
used on current projects. Pressman emphasizes this belief in
the following statement:

By looking back we can emulate things that worked

and improve areas where problems arose. When
comprehensive software metrics for past projects

are avallable, estimates can be made with greater

assurance, schedules and overall risk can be

reduced (29:82]).

Using standards may, in fact, improve the prediction of
schedules, but the problem lies in the avallability of these
standards. As Wolverton states, "There are virtually no
obJective standards or measures by which to evaluate the
progress of computer program development"™ (47:156). Bruce
and Pederson agree when they say, " The second major problem
in estimating software development costs is the lack of
accurate measures of prior costs . . ." (7:17). They also

belleve that "without reference standards it is nearly

53

impossible to accurately estimate the cost of a new project"
(7:17).

In conclusion, it is commonly agreed that standards,
when available, will enhance the ability to accurately
predict schedule.

Use of Management Principles. Another factor that
experts have mentioned in literature and is related to
software development standards is the use of management
principles. Surprisingly, experts often mention software
prﬁjects as having failed simply because there were no
standard management principles or policies existing to guide
the project. Thayer and Pyster commented that, in the 1960s
and early 1970s, "chaos" existed in software development
primarily because managers had no systematic approach
available to them for managing large software projects
(40:2). This time of chaos is pasf, and today there 1is a
more widespread use of standard management principles for
managing software development projects. Thayer and Pyster
state,

Since 1970 great strides have been made in

understanding how the manage large software

development projects. There have been many

successful deliveries of major defense and space

systems; perhaps the most well-known of the 1980's

is the Space Shuttle software for NASA [40:2].

Thayer and Pyster also state that TRW, Inc. (a leader in
the software development industry) requlires project managers
of large projects to follow a standard set of software

development policies (40:2). Finally, Thayer and Pyster
54

comment that current advances in management science can be
applied as management principles for software development
projects, particularly in the area of scheduling (40:2).

T.K. Abdel-Hamid and S.E. Madnick developed a model that
helps software development project managers decide when to
use particular management principles and tools (1:15).
Through thelr research, Abdel-Hamid and Madnick found that,
in software development projects, a "feedback loop" similar
to Figure I exists (1:19). They explain through various
techniques anrestimate is produced, and from this estimate a
schedule is developed. This schedule is then the basis for
management actions and these actlons or principles used
affect worker performance. Worker performance is the input
for future estimates and the loop starts ‘again (1:19).

Figure I
Software Development Project Feedback Loop (1:19)

T
S I

Abdel-Hamid and Madnick's polint i1s that "knowledge of
project schedules was found to affect the real progress rate
that is achieved™ (1:19). They also say that all the
dynamics of this loop affect the schedule of a software
development program; therefore, they conclude scheduling is

55

not just producing better estimates but encompasses a whole
host of other management problems requiring the use of
management principles as well (1:19).

Wolverton says that, at TRW, they have established five
management principles that "apply throughout the software
development cycle to reduce the problem of control to
manageable size"” (47:157). These principles deal with: 1)
Producing adequate software documentation that management can
use to control the project; 2) Conducting technical reviews
to acﬁulte customer approval of the software criteria before
a schedule is developed; 3) Controlling the softwvare
physical media to "assure use of a known configuration”
throughout the development life cycle; 4) Application of
software configuration management, controls and procedures;
S) Developing a data reporting, repository, and control
system for use by developer and user (47:157). Thqse
principles would be a good basis for other software
developers when establishing their own management principles.

Software Programmer Ability. Many experts believe that
there are characteristics about the person programming the
software and characteristics about the software that relate
to the programmer that affect the software development
program. Aron believes that such factors as programmer or
programming team familiarity with the "hardware, software,
and subject matter of the project" will affect the schedule

of the development program (2:262). Aron also says the

56

development environment in which the programmers must work
will affect productivity. 1If the environment contributes to
poor communication because of dispersion of the programmers
or 1f the facilities are unpleasant, costs will increase due
to reduced productivity (2:262).

Kelder says one misconception estimators have when
rating the ability of a programmer at the beginning of a
software development program is that programmers are
considered "universally expert" and to be equally competent
"analysts, designers, programmers, librarians, and
documentation specialists™ (26:55). Program Managers will
assign any of the functions to the programmer with little
regard for the programmer's ablility and "invariably, this
results in project delay" (26:55).

Boehm circumvents this rating of the individual
programmer by saying, "the important attribute to rate is not
average individual . . . programmer capability, but the
effective . . . programmer team capability" (6:509). He
prefers also to include in the rating such non-tangible
factors as "team's cohesiveness, communicativeness, and
motivation toward group versus individual achievement" in the
programmer rating (6:509).

Statements made by experts in the software development
fleld suggest that accurately rating the programmer and
programmer team is Important when attempting to accurately

predict the schedule of a program. The problem occurs when

57

trying to quantify factors such as motivation that are
difficult to identify on the surface.

Data Base Requirements. Data base requirements occur as
a result of the outputs (reports, cathode ray tube (CRT)
screens, audio response, graphics, etc.) the user requires of
the software development program. As Donelson states once
the user has defined the reporting requirements, "the systems
analyst must then determine the data base requirement to
support this reporting capability" (17:73). Donelson also
urges the user to "particlipate aggressively in this data
. base definition activity" to ensure an acceptable product
(17:73).

Boehm says the factor to be considered is really the
"overall size of the data base to be designed, assembled, and
validated prior to acceptance" (6:502). 'He also states,

Relatively little has been determined about the

effect of this factor. The Doty study indicated it

had a 'minor' effect, but no gquantitative data were

given. The Air Force Industry Software Cost

Estimation Workshop considered it an important

factor but provided no estimates on the magnitude

of its effect [6:504].

From a review of the literature it is evident that
several experts see the data base requirement as affecting
the software development effort, but, as of yet, no
conclusive evidence exiéts to show the extent of the effects.

Allowance for Testing. Thils factor describes the amount
of time allowed in the life cycle for System Integration and

Testing. Ideally, if the software program 1s developed

58

correctly and perfectly, the amount of time required for
testing and debugging should be zero; however, this is never
the case. Brooks elaborates,

No parts of the schedule are so thoroughly affected

by sequential constraints as component debugging

and system test. Furthermore, the time required

depends on the number and subtlety of the errors

encountered. . . . Because of optimism, we usually
expect the number of bugs to be smaller than it

turns out to be. Therefore, testing is usually the

most mis-scheduled part of programming [7:19].

Donald J. Reifer, developer of the SoftCost-R software cost
estimation model, says that one component of a sound
technical approach to software development is that adequate
attention be placed on testing (35:126).

There are tools currently available to assist in
detecting errors in software and assist in making the test
phase of the life.cycle as efficient as possible. However,
as Wingrove notes, "Reports of a lack of discipline on test
methods and metrics can have catastrophic consequences for
interfacing and integration"™ (46:5). This in turn could lead
to further schedule delay.
| The main point regarding test is that it should not be
optimistically shortened when developing the development
program schedule; but instead, it should be realistically
lengthened. Also, tools to aid in testing should be used to
increase efficiency.

Use of Software Development Tools. As mentioned above,
several experts believe the use of software tools may

increase efficlency in the test phase of software

59

development, but many experts believe that using software
tools may also increase productivity in other phases of
software development.

Rook states, "The earliest tools were concerned with the
production of code" (37:7). Today, however, there are many
more tools avallable to the developer that will assist in
"specification, design, estimating, planning, documentation
and configuration management"™ (37:7). Bruce and Pederson
highlight the importance of software development tools.

With the recent growth in the number of

minicomputer - and microprocessor - based systems

being developed, this factor has become

increasingly important. The cost estimator must

consider how the software will be developed,

tested, and maintained and what tools will be

needed to accomplish these tasks. For systems

developed for large-scale computers, a host of

compilers, data base managers, editors, display
interface packages, flow chart packages, plot
packages, utility routines, and test data

generation tools are generally available [8:22].

The benefits of using software development tools are
numerous and only limited by the number of tools available.
Rook contends that software development tools can

assist in increasing productivity and visibility of

work achlieved, provide source of data for future

proposal preparation, estimation and project

planning, and maintain continuity between projects

[37:71.

The conclusion is that, when software development tools are
available, they should be used to decrease development

schedule.

Identification of Resource Reguirements. Identifying,

as precisely as possible, the resources reguired to complete

60

the software development program, many experts bellieve, is
vital to accurately predicting the software development
schedule. Brooks relates a story of one Program Manager who
found schedules consistently taking twice as long as
estimated. After investigation, "thg estimation error could
be entirely accounted for'by the fact that his teams were
only realizing 50 percent of the working week as acfual
programming and debugging time (7:89). This was due
primarily to the unavailability of resources because of
"machine downtime, higher-priority short, unrelated Jjobs,
meetings, paperwork, company business . . . "™ (7:89).
Resources were not properly identified because "an
unrealistic assumption about the number of technical work
hours per man-year" was made (7:90).

Pressman also notes that determining the availability of
the target machine (machine on which the software will be
used) is important when estimating schedule (29:85). Extra
time should be taken so that all resources that must be used
during the development program can be identified and their
avallability determined in order that program schedule can
more accurately be estimated.

Qther Factors. There are other factors that while not
elaborated on in detail by experts, they are often mentioned.
These factors are listed below.

1) Use of a Higher Order Language vs. assembly language
(47:159)

2) 1Interface Requirements (15:290)
61

3) Reliablility Requirements (8:21)
4) Type of software to be developed (47:159)

S) Type of contract for the development program
(47:159).

6) Recurring neglect for software maintenance
(38:52).

Conclusion. After a review of the current literature on
software development, written by notable experts in the
field, twelve factors have been identified as consistently
being mentioned by experts as affecting software development
schedules. These factors are presented in Table 3 below.
Other factors have also been mentioned by experts, but not as

frequently, or in as much detail, as these twelve.

Table 3

Pactors Consistently Identitied.ay Experts
As Affecting 8Schedule

1. Lines of code

2. Requirements definition

3. Complexity

4. Work Breakdown Structure

S. Amount of prior planning performed
6. Software development standards

7. Use of management principles

8. Software programmer ability

9. Data base requirements

10. Allowance for test
11. Use of software development tools
12. 1Identification of resource requirements

Question Two

What is the importance of schedule risk to a softwvare
development program?
a) To wvhat degree do program managers consider
schedule risk when estimating the cost of a
software development program?

62

The first part of this question was answered by a review
of current literature. The sub-part to this question was
determined after interviewing program managers and engineers
from the various product divisions of AFSC who have had
experience in software development and experts in the fleld
of software development in private industry. |

Review of Literature. To determine thé importance of
schedule risk on a software development program, one can
examine what program managers and engineers who have managed
or who are currently managing softﬁare development programs
have said about schedule risk and how it has affected their
programs. As seen earlier in the review of literature
supplied in answer to Investigative Question One, software
development program managers/engineers and experts have shown
a keen interest in schedule from thelr readiness to discuss
the factors that affect schedule in thelr writings. Because
many of-these people are very concerned with the factors that
affect schedule in their development programs, it would also
seem they would be concerned about the schedule risk (or the
probability of the program not being completed on time)
assoclated with their program.

For a software development program manager, the reasons
for placing importance on schedule risk become intuitively
obvious. The first and far most importantvreason is
allocation of resources. When the schedule of a software

development program is set, resources are allocated to the

63

fulflillment of this schedule. 1If the schedule slips, more
time (an allocated resource) is required and subsequently
more resources that were not planned on being allocated to
the program must be aliocated. These later allocated
resources are usually more costly because of the fact they
were not allocated for in the first place..

Bruce and Pederson emphasize the importance of schedule
risk when they contend one of the major problems in
estimating software development costs is the "high level of
risk and uncertainty in thé estimate™ (8:16). They bellieve
that schedule risk and uncertainty are basically
attributable to three factors. These factors are: 1)
requirements are subject to change; 2) innovation may be
required during the development process; 3) risks are
inherent in the software development process because errors,

which are inevitable, may cause iteration over prior
.activities (8:16).

Rook has slightly different ideas on the factors that
combrise schedule risk. He says the sources of risk can be
placed in three main categorles (37:8). These categories
are: 1) perturb;tions, which he defines as requirements
change, and detection of problems, errors and fallures; 2)
personnel, defined as the wrong people available, and too
many/too few people available; 3f project environment, which

comprises an undefined methodology, unknown quality, errors

64

detected late, and inadequate control, technical skill,
support and visibility (37:8).

Donald J. Relfer, author of "The Software Engineering
Checklist," also relays the importance of schedule in his
writing. In his article, he lists schedule risk as one of
the top items management should place on thelir software
engineering checklists (35:127). He says the manager should
ask, "Is the software development schedule reasonable and has
adequate time been allocated for test?” (35:127). He
believes the typical software development schedule does not
allocate sufficient time for test and ;ubsequently increases
the program's schedule risk (35:127).

Thomas H. Bruggere, author of "Software Engineering:
Management, Personnel and Methodology," gives his perspective
on the importance of examining schedule risk. He says that
schedule risk should be examined throughout every phase of
the software development life cycle.

Problems that are discovered during one phase of

the project must be fed back to an earlier phase to

be fixed. Obviously, the later a problem is

discovered and the farther back it must go to be

solved, the more expensive the solution [9:25].

He also emphasizes that because schedule risk is an important
area for examination, program managers should utilize the
review process to ensure design goals and specifications are
being met (9:26). He also bellieves that program managers

should closely track schedules to ensure the project will be

completed within allowable time limits (9:26).

65

Driscoll states there are twvo areas where the program
manager can protect the program from cost and schedule
impacts of changes and thus reducing schedule risk. These
areas are planning and configuration management (19:47).
Driscoll explains substantive, early planning can work to
reduce schedule risk by "providing schedule flexibility, and
adegquate computer size™ (19:47).

The second reason those involved with software
development programs are concerned with schedule risk is
political. It becomes a great embarrassment to all those
involved when a project slips its schedule. Often the
success of a project is not judged by its total quality but
by whethex oxr not the project was completed on time and on
cost.

Dx. Fred Brooks was part of the -nndgegont team charged
with developing the massive software for the IBM 360 system.
He commented after the project's completion, "the effort
cannot be called wholly successful . . ." (7:78). Reasons
Brooks cited for the project's fallure were "the product was
late, it took more memory than planned™ and the "costs were
several times the estimate” (7:78). Brooks references
schedule as the first factor contributing to failure in the
08/360 project and demonstrates the importance software
development program managers, and those for whom the software

is being developed place on schedule.

66

Howes contends that one way to counteract schedule risk
is to develop a proven methodology for conducting the
software development and stick with it (23:34). He believes
schedule risk can be reduced by using a proven methodology to
develop a WBS (23:34). From this WBS cost and schedule
estimates can be made. The WBS can also be used to produce a
baseline for more accurately measuring the progress of the
schedule (23:34).

Dlscussion of Interview Results. To what degree do
program managers and engineers consider schedule and schedule
risk? The answer to this question was deduced from an
examination of two areas: 1) the degree to which program
managers/engineers consider, in their estimates, the factors
that were determined to affect schedule risk; 2) the
importance program managers/engineer§ place on the factors
they have determined from their experience affect schedule
risk. By examining the concerns of those in the field toward
the factors that affect schedule, a deduction can be made as
to how schedule 1Is considered when developing a software
development program estimate. The interviewees were also
asked other questions related to software development (see
Appendices A & B), and the results of these questions will be
briefly discussed also.

Twénty people, comprised of program managers and
englineers from the various product divisions of AFSC, and

persons considered to be expert or experienced in the area of

67

software development in private industry were interviewed
using the questionnaires in Appendices A & B. Their
opinions on the factors affecting schedule and the importance
placed on schedule risk were as varied as their baékgrounds.
The following paragraphs are a summation of the interviews.
Note: While conducting these interviews, it was made clear
to those being interviewed that it was not the intention of
this author to guote persons' opinions speciflically;
however, the interest here is to get a general consensus on
answers to the questions asked in the interview. Particular
DOD software development programs are discussed in a general
sense, and not specifically identified.

By far, changes in requirements was identified most as
having the gteatest impact on the schedule of a software
development program; howeve?, reasons given by reépondents
for these changes in requirements varied.

Those interviewed who were contracting with the
government to develop software unanimously identified changes
in the specification of requirements by the user as being the
reason for requirements changes during software development.
The contractors often stated that in the early stages of
software development, the users do not know exactly what they
want the software to perform. 1In fact, users, at times, may
not even finalize the requirements until the later phase of

Critical Design Review (CDR).

68

DOD program managers and engineers also gave reasons for
requirements changes. Contrary to what the contractors have
stated, one respondent indicated that the problem was the
contractor often did not understand what the user wanted.
Another stated that requirements changed because there was a
change in the standards for the weapon system for which the
software was being developed. This appears to be a unique
situation. Other reasons for requirements changing were
changes in the hardware for which the software was being
developed and changes in concerns for the performance of the
software (e.g., safety concerns on an avionics system).

One representative of a company that markets a software
development program estimation model stated that while he
worked for the DOD he was involved in a software development
program that actually underran its schedule. The
representative said the reason the program did not overrun
its schedule was because the schedule was set at no greater
than 14 months from the beginning of the development program.
The program manager of the program also stated that there
would be no changes in the software requirements allowed, in
other words, no Engineering Change Proposals (ECPs). This
rule was held throughout the development process, and as a
result, no delays in schedule occurred as a result of
requirement changes. In fact, as was noted earlier no delays
occurred at all and the program was completed slightly under

schedule.

69

This example ralses an important point. By not allowing
requirements to change once a software development program
has started, this example has shown that it is possible to
meet or underrun an estimated schedule.

The complexity of the software being developed was
another factor often mentioned by the respondent as affecting
the software development schedule. Complexity in itself is a
very broad term. Depending on which software development
estimation model is used, complexity can include such areas
as the structure of the software (i.e., one module versus a
string of modules that must be integrated), what type of
language is used (i.e., higher order versus assembly) and
what are the display requirements (i.e., simple input/output
versus interactive). Generally, the more sophistlcated these
variables become, the more complex the software. One
respondent stressed that complexity is a subjective factor
because it is basically one person's opinion. A programer
experienced in the more sophisticated software complexity
variables may not rate the software being developed as
complex as a programmer with less experience. The respondent
went on to suggest that the development of industry standards
in the area of determining the complexity of a software
program would be beneficial.

The number of development sites, and whether or not the
hardware and software are being developed concurrently, are

two more factors mentioned by several interviewees as greatly

70

- .

atfecting the schedule of a software development program.

One respondent sald that in a typical system program office
(SPO) scenario there will be a very general specification for
the software and a very §enera1 specification for the
hardware. Both the hardware and software will be developed
at different development sites. Problems that affect
schedule occur when the hardware and software are complete
and the integration of the two is attempted.

Also mentioned by the respondents as affecting schedu;e
was experience level. The experience of the programmer was
mentioned most often. Examples of programmer experience are
the degree to which the programmer is familiar with the
language being used to develop the software, and the
experience the programmer has with similarly structured
programs. One respondent also said that the experience the
contractor as a whole has with the tybe of software being
developed will greatly affect schedule.

The use of software tools was one more factor mentioned
frequently by the interviewees as affecting software
development schedule. Many agreed that if good software
tools are avallable, and the programmers are trained in their
use, schedule can be reduced considerably.

Surprisingly, the number of lines of code and type of
code being developed were factors not mentioned often by the
respondents as affecting schedule. This is surprising

because of the heavy dependence of estimation models on

71

predicted lines of code for determining schedule. The
response may be an indication that estimators' ability to
predict the number of lines of code for a software
development proézan is improving, and, subsequently, this
factor has less affect on schedule. One respondent did note
that software that can be developed from reusable code ind
that requires simple inputs/outputs, will help to minimize
schedule delays.

Another factor mentioned as affecting schedu;e was
whether or not the contract is a military contract because of
the additional documentation and formal reviews required by
military contracts. One respondent noted that his firm
continuously experienced schedule slippage because of the
time it took to get documents reviewed and approved by
government personnel. '

Finally, the factors time and memory constraints, the
facilities available, the database requirements, whether the
target computer was also the development computer, and use of
management principles were also briefly mentioned by one or
more respondents as factors which affect schedule.

One aspect that was noticeable throughout all the
interviews was that the interviewees were all very adamant
about the factors they believe affect schedule. The
respondents also agreed that stronger control of these
factors would work to reduce schedule. This gives the

indication that software development program

- 72

managers/engineers and experts in the software development
field place importance on determining the factors that affect
development schedule, and effectively controlling these
factors.

In addition to being questioned on the factors that
affect schedule in software development, the intefviewees
were asked other questions concerning software development in
order to obtain a more rounded picture of what is going on in
the field. The results of these additional questions are
discussed below.

The interviewees were asked typically, what type of
software programs they had experience with. The majority had‘
experience with large software development programs (large
being greaterlthan 20000 lines of code). The programs under
development ranged from management information systems to
avionics systems to flight control systems and simulators.

The interviewees were also asked which software
development cost models they were familiar with. All of the
respondents were familiar with, or had heard of, the Boehm
COCOMO model. Many were also familiar with System-3 and
Price-S. Other models mentioned were the Putnam SLIM model,
the Tecolote Research, Inc. model and the Ballistic Missile
Office (BMO) model.

The respondents were also asked whether they thought a
schedule risk factor, which would affect the probablility of

the schedule being predicted by the model actually occurring,

73

should be incorporated into the cost model; or should
schedule be predicted by combining weights of other factors.
The majority of the respondents felt that the probability of
meeting the schedule of the software program should be
determined from a combination of factors, and not from a
single schedule risk factor input by the user.

Finally the respondents were asked to rate the
correlation of all of the input factors used in the five
models being analyzed to schedule (see Appendix A,
Attachment 1 for display of the factors and rating scale).
The results from this guestion were tallied. Requirements
volatility was identified by the respondents as the
estimation input parameter having the highest correlation
with schedule. Requirements volatility is an input patanQEEI"
for PRICE-8, SoftCost-R, SPQR/20 and Syséen-3 and the updated
COCOMO model. The top ten input parameters identified by the
interviewees as havlhg the highest correlation with schedule

are summarized in Table 4.

Table 4

Model Input Parameters Identified As Having
The Highest Correlation With Schedule

1. Requirements Volatility

2. Amount of Hardware Under Concurrent Development

3. Bffort EBxpended During Integration and Testing
Phase

4. Development Computer Accessibility

5. Applications Experience With Similar Projects
(Tie)

S. Deliverable Lines of Source Code Excluding
Documents

6. 8chedule Constraints

74

Table 4 (cont.)

Model Input Parameters Identified As Having
The Highest Correlation With Schedule

7. Complexity of the Logical Design
(Tie)

7. Development Computer Availability

8. Number of Lines of New Source Code

9. Level of Interface With Other Projects or

. Organizations
10. Logical Complexity
Question Three

Wvhat methods for determining schedule are currently
used in software development cost models and have they

been tested and/or validated?
a) Which of these methods appear to be most valid?

Scftware Development Schedule Theory. Most software
estimation models rely on the theory of the Rayleigh-Norden
curve as the basis in determining program schedules. Lord
Rayleigh, the British Nobel Laureate, originally described
the curve that is now used to depict the software project
life cycle pattern (32:4). Peter Noxrden of IBM was the first
to relate the software project life cycle to the Rayleigh
curve (36:1i1).

Norxrden showed that complex rxesearch and development
projects are composed of overlapping phases of well defined
manpower build-up and phase-out (27:80). He calls this
relationship the Life-Cycle Manpower Model (27:79). These
cycles, when placed together, comprise a larger cycle in its
entirety (27:80). This bell-shaped curve is called the

Rayleigh-Norden curve (see Figure II).

75

Figure I1I
Raylelgh-Norden Curve (27:80)

NOogLOoOTIMX

R

Time
Typically the Rayleigh-Norden curve has a long tail to
the right. Relfer states, "The fact that these cycle curves
have long tails explains why projects slip. Wwhen the project
is 90% done in work, it is only 2/3 done in time™ (36:11).
Norden says each cycle can be described by the equation:

-at:
y' = Kate (4)

where,
Y' = manpower utilized each time period,

K = total cumulative manpower utilized by the end of
the project,

a = shape parameter (governing time to peak manpower),
t = elapsed time from start of cycle,

e = the base of the natural system of logarithms
(27:80).

Norden states that because the linking relationships of
the cycles have been "encouragingly stable” over a wifa range
of projects for a number of years, projections of manpower

and time requirements can be made on the basis of these

76

cycles (27:84). This 1s precisely what many companies have
done in developing their estimation models.

Review of Models Selected for Analysis. To answer this
investigative question, data was run on five softwvare
development estimation models currently in use by the DOD and
private industrxy. The models were selected based on theii
avalilablility for use with this research effort.

The models selected for discussion and analysis were:

1) CoOnstructive COst MOdel (COCOMO) (4:4),

2) Price-8 (34:1-1),

3) Softcost-R (42:1-1),

4) 8ystem-3 (13:1-1),

5) 8PQR/20 (39:1).

The Putnam SLIM estimation model was not selected for
analysis because it was not easily accessible for use.

Description of the Data. To evaluate these models for
thelr accuracy in predicting the schedule of a softwvare
development program, data from an actual software development
project was run on each of the models. The data is presented
in Appendix C. EBach model determined what the schedule for
the project should be and this result was compared to the
actual schedule for the project.

The data on the software development project was
obtained from the Software Cost Data Base which was compiled
by Paul G. Funch of the MITRE corporation for use at MITRE

77

and the Blectronic Systems Division, Hanscom AFB, MA and is
not authorized for public release (22:v).

The Softwvare Cost Data Base was complled in 1987 for two
reasons. First, analysts at MITRE and ESD have found that
softwvare estimation models are often based upon data bases
that may not represent ESD programs, "which are typlcally
large, embedded, complex, highly reliable, real-time,
military applications®™ (22:v). 8econd, "the accuraclies of
cost estimates are not evaluated at the completion of
projects since there is not budgetary justification to do so"
(22:v). Therefore, little historical data exists to
"enhance the personal experiences of cost analysts and
software project managers® (22:v). _

The Software Cost Data Base consists of 26 projects and
comprises "a total of 110 computer software configuration
items (CSCI)" (22:vi). The sizes of the projects widely
vary. The largest project in the data set has well over 1
million lines of code and the smallest has 9000 lines of code
(22:a-11).

One average project was selected from this data base to
run as a test case in each of the models. Number of lines of
code (LOC) was the variable used as the basis for determining
an average project. Projects at the high and low extreme
ends for LOC were eliminated from the calculation and LOC for
the remaining projects were averaged together. The average

number of LOC for the data base was 178,663. The project

78

having an LOC count closest to this number was project #24
with 185,600 LOC; therefore, project #24 with modules A, B,
C, and D was chosen as the test project to be run on each of
the models.

Analysis of Results by Model. The data from project #24
was used as input to each of the sbftwate development
estimation models selected fdt analysis. The following
paragraphs are a discussion of the resulting output by model.

COCOMO. COCOMO, as noted earlier in Chapter 1II, is
a non-proprietary software development model developed by
Barry Boehm. After accumulating the data for the data base,
Paul G. PFPunch, developer of the Softwvare Data Base, used the
data to evaluate COCOMO's ability to estimate the type of
softwvare programs commonly developed at BSD.

Funch examined five of the COCOMO equations. Among fhe
equations Funch examined were the effort and schedule
equations for the embedded mode of the Basic COCOMO
Intermediate COCOMO models (22:vii). Tuese equations were
selected for use in this research. Recall, the Basic COCOMO
equation for effort in the embedded mode is:

MM = 3.6(KDSI)*-2° (5)
where MM is the number of man-months required to develop the
software product and KDSI is the number of thousands of
delivered source instructions (4:75). The Intermediate
COCOMO Nominal effort estimating equation for the embedded

mode is:

79

MMram = 2.8(KDSI)%-2° (3)
wvhere MMnos is the nominal estimate of man-months required to
develop the software product (4:117). With the Intermediate
COCOMO model, this nominal estimate is adjusted "by applying
effort multipliers determined from the project's ratings with
respect to the other 15 cdst driver attributes™ (4:117).

The Intermediate COCOMO adjusted estimating equation is:

MMaws = (MMnaa) (EAF) (6)
where EAP are the product of the effoxrt adjustment factors
found by rating the 15 cost driver attributes (4:120). To
determine schedule or duration (TDEV), the result of this
equation is input back into the Basic equation for schedule:

TDEV = 2.5(MM)°-2= (4:75). (7

Using the agi;naxg_ggg;_nggg_nggg, Funch recalibrated
the Basic and Intermediate COCOMO estimating equ;tlon by
"fixing the exponent to the value established by Boehm and
calculating the best f£it coefficient® (22:vi). The
recalibrated Basic COCOMO equations for effort and schedule
are:

MM = 6,5(KDSI)*-=° (8)

TDBV = 3.8(MM)°-2= (9)
The Intermediate COCOMO estimating equations as recalibrated
by Punch are:

MMnom = 3.3(KDSI)*-2° (10)

MMaws = 3.3(KD8I)*-2° (BAF) (22:ix). (11)

Punch states that the Boehm schedule equation for the
embedded mode usually underestimated durations of projects in
the ESD/MITRE data base (22:viil). PFunch recalibrated the
coefficient using 12 projects (22:vii).

Funch states that when this recalibrated schedule equation
(shown above) was used with the data in the Software Cost
Data Base, "the estimates were found to be within 30% of the
actuals 67% of the time®™ (22:vii). Punch notes that this
performance is nearly identical to that of the Boehm schedule
equation on the COCOMO data base (22:vii). Also, Funch
states, "The Boehm COCOMO schedule equation for the embedded’
mode underestimated the durations of all but one project in
the ESD/MITRE Data base" (22:v11;). He says, however, "the
recalibrated equation . . . predicts schedules 52% longer
than the Boehm equation" (22:v111).

S8imilarly, the Boehm Basic model effort equation. for the
embedded mode, Funch found, tended to underestimate actual
subsystem efforts (22:vii). The coefficient for this |
egquation was recalibrated using 17 subsystems (22:vii).

Funch notes that the value of 6.5 differs significantly from
the Boehm coefficient; however, when the recalibrated
coefficient effort equation was used, “the estimates were
found to be within 20% of the actuals 35% of the time"
(22:vii). Funch states this performance "exceeds the
performance of the Boehm Basic equation on the COCOMO data
base, which had actuals within 20% of the estimates only 21%

81

of the time"™ (22:vil). Funch states that the recalibrated
Nominal Intermediate model equations for effort in the
embedded mode (and semidetached mode) provided "marginally
better fits to the subsystem data"™ (22:vii).

Because of the established ability of the recalibrated
equations to better estimate ESD-type software development
projects, the data from project #24 was run on the
recalibrated equations. The recalibrated Nominal
Intermediate model equations,

MMrem = 3.3(KDSI)*-2° (10)

MMadj = 3.3(KDSI)*-2° (BAF) (11)
were used to calculate effort and the recalibrated Basic
COCOMO equation,

TDEV = 3.8(MM)°-2= (9)
was used to calculate séhedule or duration for project #24.

Appendix D gives the ratings and effort multipliers
given to each of the COCOMO Intermediate model cost driver
attributes. The effort multipliers were used to compute the
Bffort Adjustment Factor. The following is the calculation
for schedule using the Funch recalibrated COCOMO Intermediate
equation for effort and the recalibrated Basic COCOMO
equation for schedule:

BAF for Project #24 = 2,83 (see Appendix D),
KD8I for Project #24 = 30200,

MMrom = 3.3(30.2)*-2° = 250.16

MMaws = (250.16)(2.83) = 707.96

82

TOEV = 3.8(707.96)°-*= = 12.5 months
Actual duration for Project #24 was 26 months, twice that of
the COCOMO model prediction.

PRICE-S. The project data was run in the PRICE-S
MODE 2--CSCI with components model because the data for the
project was avalilable by components A, B, C, and D. This
author felt the PRICE-S model was not as user-friendly as the
othex commercial models used in this analysis; the data is
more difficult to input interactively because the model does
not prompt the user for the inputs. The user can also input
data from a separate file that must be written. The data flle
is not difficult to write, but it requires moxre time than
just inputting the values directly into the model and having
the model immediately compute the result.

The values input.fron the data for éacﬁ varlable in the.
PRICE-8 model are given in Appendix E. The output from the
model is given in Appendix F. Recall, the actual duration of
Project #24 was 26 months. Th!s is number accounts for the
time frame from System Design Review (8S8DR) through Formal
Qualification Test (FQT). The PRICE-S model estimates the
duration from System Concept (two phases before SDR) through
Operational Test and Evaluation (OTE) (three phases after
FQT). Por the corresponding time frame for the project data
(SDR through FQT), PRICE-S estimated the duration to be 30.4

months.

83

8oftCost-R. SoftCost~-R, as described earlier, is a
software development program estimation model developed and
marketed by Reifer Consultants, Inc. It is a menu driven
model that this authoxr found to be Very user friendly
primarily because inputs are done interactively. To
initialize an estimate, SoftCost-R asks the user to answer
questions in four different menus: Management Factors Menu,
Staffing Factors Menu, Complexity Pactors Menu, and
Environmental Factors Menu (42:11).

The inputs by variable used for Project #24 with
S8oftCost-R are given in Appendix G. The output given for the
data inputs is presented in Appendix H.

S0ftCost-R predicted the duration of the project to be
21.1 months. Recall again, the actual duration was 26
months. | ‘

8PQR/20. SPQR/20 asks the user to input values for
variables interactively through three menus. The first menu
is titled SPQR/20 Input Variables. 1t contains general
questions about the project such as what type of estimate is
required (i.e. cost versus schedule or both), what is the
maximum staff size and what is the average work week
(39:10).

The second menu is titled Environmental Inputs. It
contains questions about area such as program design, staff

experience and amount of reusable code (39:18).

84

The third menu is titled Complexity and Source Code
Input Parameters and contains questions about the complexity
of the new code being developed (39:21).

There are two additional menus. The first, Base Code
Input Parameters is used when the software being developed is
an enhancement or maintenance to existing software (39:26).
The second is titled PFPunction Point Enputs and is used when
the user wants SPQR/20 to predict the number of new lines of
code that will be developed (39:27).

The SPQR/20 model will estimate dev@lopnant schedule
from the planning activity through the integration/test
activity (39:36). The duration estimated £o:‘the
requirements, design, coding and integration/test activities
was used in this analysis because it wmost closely describes
the time frame given for the duration of Project #24. The
data which was input into the SPQR/20 model is given by
variable in Appendix I. 8PQR/20 estimated the duration of
the project to be 29.21 months. Recall again, the actual
duration for Project #24 was 26 months. The summary output
from the model is shown in Appendix J.

System-3. System-3 is also a fairly user friendly
model that is also menu driven. One of its menu features
allows the user to break down a large project being estimated
by groups within the project, by tasks within the group and
by elements within the tasks. For this analysis, the data

was run at the project level because the specific information

85

required to run modules A, B, C, and D at the group level was
not available.

System-3 also has eight menu screens for input of
variable data. These screens are titled Developer
Technology, Environmental-Computer, BEnvironmental-Product,
Bnvironmental-support, sizo & Complexity Summary, Development
Constralints, Reuse~Rebuild Impact, and Financial PFactors
(13:20). The values input at each of these menu p:onﬁts is
given in Appendix.x.

System-3 calculated a nininﬁ- time estimate for
development time and integration time as 24.69 months.
System-3 also calculated tequlte-enté time, however, this
time wvas not included because it was not included in the
actual duration time of 26 wonths for Project #24. The
output given for the Project #24 data is given in Appendix
L.

Susmary of Results. The schedule times given by the
five models analyzed for the Project #24 data is summarized
in Table S5 below. System-3 most closely estimated the
duration for Project #24 with a difference of 1.31 months
below the actual duration. The model that predicted farthest
fxrom the actual was the ESD recalibrated COCOMO model wlth.a
difference of 13.5 months under the actual schedule. All of
the other four models estimated duration within five months

of the actual schedule.

TABLE 5
Estimated Project Duration by Model (in months)

Months Actual DRifference
ESD Recalibrated.

COCOMO 12.50 26 13.50 (under)
PRICE-S (MODE 2) 30.40 26 4.40 (over)
SoftCost-R 21.10 26 4.90 (under)
SPQR/20 29.21 26 3.21 (over)
System-3 24.69 26 1.31 (under)
Question Foux

:?s:gst models, what is the significance of schedule

a) 1s schedule risk an independent variable or
does its significance depend on the value of
other independent variables in the cost models
such as size of the program, number of
programmers required, or level of software
sophistication required?

The models selected for this analysis were the same ones
used in the analysis for investigative question three. As
noted earlier, all of the models, except the COCOMO model
were found to contain proprietary algorithms. The main
difference between each of the models in their determination
of schedule was the factors the models used as inputs to
determine a program's estimate.

The Boehm COCOMO model, as mentioned earlier, has 15
effort multipliers. All the multipliers influence schedule
to some degree because they are all used to determine effort

which, in turn, is used in the COCOMO schedule equation. By
87

far, the most significant influence on schedule, however, is
lines of code. The predicted number of lines of code is used
directly to determine effort.

' After examining the range of values Boehm assigns each
of the effort multipliers (see Appendix M for values), it is
evident that those with the possibility of most significantly
influencing effort (and schedule) in descending orxrder of
influence are: execution time constraint, product
complexity, main storage constraint, analyst capability,
programmer capability and :equired’soitwaze reliability. The
other nine effort multipliers have a relatively lowver
influence on effort.

PRICE-S uses a series of equations to determine the
schedule of a software development program. PRICE-8 computes
.schedules for design (preliminary and detail), code (unit and
CSC), and test (CSCl). Most of actual values used by these
equations are proprietary, but the factors used to compute
the equations are not. The schedule equations for PRICE-3
rely heavily on these factors:

1) NBWD - represents amount of code requiring new
design (28).

2) NBEWC - represents amount of new code required
(28).

3) B8SLOC - source lines of code required
(34:11-A10).

4) APPL - the user defined application value

that describes the application mix
of the software (34:11-A12).

5) UTIL - the factor describing the fraction of
available hardware cycle time or total
memory capacity used (34:11-A4).

6) CPLX1 - the factor which provides a quantitative
description of the relative effort of
complicating factors on the software
development task. Complicating factors
are product familiarity, personnel
skills, software tools, and any unusual
factors present in the development
environment that affect the development
schedule (34:11-A8).

7) PROFAC - an empirically derived parameter which
includes such items as skill levels,
experience, productivity, and
efficiency (34:11-A10).

8) PLTFM - a value ranging from 0.6 to 2.5 which is
a measure of the customer's requirements
for portability, reliability,
structuring, testing and documentation
required for acceptable contract
performance (34:11-A2).

* 9) ZITECH - a technology improvement factor
(28).

The equation for schedule in the PRICE-S model |is

8 r
Schedule = a * P * ¥r ¢ CPLX1 (12)-

where,
e, 8, I' = proprietary values
and,
(] B r
F = K * PROFAC * (PLTFM/K) * ZTBCH

8
WT = SLOCm * 8 * UTIL

where,
K = proprietary value
SLOCm = SLOC * APPL
8 = required effort (28).
89

While PRICE-S uses all these values mentioned in the
schedule equation, it appears that the key value that is
input first, and the basis for the rest of the equations, is
SLOC.

It is not clear wvhat types of equations the remaining
three models analyzed; SoftCost-R, SPQR/20, and System-3;
use to derive sche@ule because no indication is given in
their documentation. However, after running the models, it
is clearly.evident to this author that these models also rely
heavily on the predicted number of lines of code to predict
schedule. One nodel; SPQR/20 will predict lines of code for
the user with a technique discussed earlier called Function
Points.

The other inputs to these models (that also affect
schedule to some degree that is pzop:letdry) are basically a
variation of the 15 effort multipliers developed by Boehm for
the COCOMO model. One might assume that the factors: known to
way heavily on schedule for the COCOMO equation, such as
product complexity, analyst capability, and required software
reliabllity, would also weigh heavily in these proprlietary
models.

In conclusion, it is evident from examination of the
equations used in COCOMO and PRICE-8 that schedule and
schedule risk are significant determinants in calculating
these model's estimates. Schedule risk is a function of the

values of many varlables as can be seen by the variety of

90

variables used as inputs into all five of these models. For
some models schedule is taken into direct consideration when
the models ask if there are any schedule constraints
involved; however, none of the models analyzed here asks for
a single schedule risk input. All appear to derive schedule
risk from a combination of the other variables. The heaviest
weighted of these variables in determining schedule is number

of lines of code.

Question Five

Can any of these methods be combined or incorporated

into a new and more accurate method for accounting for

schedule risk in cost models?

To address this question, a clarification of the term
methods must be made. Methods in this gquestion means the
processes through which the five models greviously analyzed
predict schedule. As noted eazlief, this process in all the
models except COCOMO is proprietary. Therefore, it is really
uncertain to someone not having knowledge of all the
proprietary algorithms whether or not any of the methods can
be combined or incorxporated into a new more accurate model.

However, one can observe from using the models on a
test case, that they all basically require the same inputs in
various forms. Therefore, because these inputs are the crux
of the equations used to predict schedule, more emphasis

should be placed instead on more accurately determining the

values for these variables. That will happen when (and 1if)

91

-+

standards are developed for making the estimation of these
variables as objective as possible.

Por instance, complexity of the program is a relatively
subjective input variable that can vary depending on the
experience of the programmer making the estimation and not
actually performing the work. The programmer working on the
program may have a different value for the complexity of the
program. In the same light, methods for accurately
_ estimating another crucial input variable, lines of code,
should be investigated as well.

In conclusion, it is uncertain because of the
proprietary nature of these equations whether they can be
combined or incorporated to make a more accurate model;
however, it is certain that methods toi more accurately
estimating the variables input into these models should be

developed.

92

V. conclusions and Recommendations

conclusions

The schedule of a softwvare development program can be
affected by a large array of varying factors. This reseaxch,
however, has identified twelve of these factors as having the
greatest impact on the schedule of a software development
program. Determination of these factors was made through
extensive reviews of literature written by experts in the
software development field. The twelve factors identified
were: lines of code, requirements definition, complexity,
work breakdown structure, amount of prior planning performed,
software development standards, use of management principles,
allowvance for tesf, use of software development tools and
identification of resource tequirencnts.'

These factors were confirmed through interviews with DOD
program managers/engineers and commercial software
development estimation experts as heavily influencing the
schedule of software development programs. The factor most
often mentioned in these interviews as causing delays in |
schedule was requirements definition. The interviewees
agreed that the requirements of the software development
program are elither inadequately specified at the beginning of
development or they are not firm requirements and
subsequently changes causing delays are made during

development.

93

Because changes in requirewments definition was
identified most often as being the primary cause for software
development schedule slippage, software development program
managers should investigate ways to more accurately determine
the requirements of a program.

Five software development models were analyzed using a
data base developed by Electronic System Division of Ailr
Porce Systems Command. The five models chosen were an ESD
recalibrated COCOMO model, PRICE-S8, SoftCost-R, SPQR/20 and
System-3. Using data from one BSD software development
project as a case study, 8ystem-3 was shown to predict its
schedule with the most accuracy by predicting the schedule
within 1.31 months of the actual. The next most accurate for
this case was SPQR/20, then PRICE-8, and then SoftCost-R.

The worst predictor of the caase’s schedule was the ESD
recalibrated COCOMO model. Its prediction was 13.5 months
under the actual.. In summary, it is evident from this case
that all of the models analyzed except the ESD recalibrated
COCOMO model did very well at predicting the project's actual
schedule. These four models' predictions were all within
five months of the actual schedule.

An examination of the equations used in the COCOMO model
and the PRICE-8 model has revealed that these models use a
combination of variables to predict schedule. 8Some are more

heavily weighted than others. It can be assumed that is also

94

the case with other three models analyzed whose equations
used to determine schedule are proprietary.

To develop a more accurate model for predicting the
schedule of a software development program, emphasis should
be placed not on developing new models but on developing
better methods for accurately predicting the variables which

are input into these models.

Recommendations

Further research in the area of schedule determination
for software development programs is needed in order to help
estimators more accurately estimate these schedules. The
following paragraphs are suggestions for areas of continued
research.

Twelve factors were identified as heavily affecting the
development schedules of software. The number one cause of
delays in schedule identiflied appears to be inadequate
definition of requirements. Further research should be done
to determine what are the reasons for changes in requirements
definition and how can changes in requirements definition be
reduced.

Because of time limitations, only one project, Project
$24 data was input into each of the five software estimation
models being analyzed and an estimate was calculated. It is
realized that one data point may not give a complete picture
of the accuracy of each of the models at predicting schedule.
Therefore, the remaining twenty-five data points of the ESD

95

Software Cost Data Base, developed by Paul G. Funch, should
also be input into eéch of the models and allow the models to
calculate estimates for these points as well. From this
data, the standard deviation of estimates from actual
schedules shouléd be calculated for each model. By using
twenty-six data points, a more accurate picture of each
model's schedule estimation capabllities can be presented.

Thexre are several other software development estimation
models avallable today besides the five models analyzed here.
These models should be identified and the data from the ESD
Software Cost Data Base should be used as a test case to
determine the accuracy of these models in ptedicting.schedule
also.

Using the ESD gSoftware Cost Data Base for data, the
twelve factors identified in this research as heavily
affecting schedule should be regressed against schedule to
determine which factors are the most highly correlated with
schedule. Once this is determined, a model can be developed
from these factors that will predict the schedule for the

types of software programs developed at ESD.

96

1)

2)

3)

4)

5)

APPENDIX A:

INTERVIEW QUESTIONNAIRE

FOR DOD PROGRAM MANAGERS/ENGINEERS

What type or types of software development programs
have you managed recently (i.e. large or small
content, what weapon system was the software being
developed for)?

Upon completion, did the software development
program overrun or underrun its cost estimate?
a) What was the initlal estimate for the

program?
b) What was the final cost of the program?
c) Were there changes in the software
requirements during the program?
1) 1If so, at what phase and why?

Oon completion, was the software development program
on schedule, over schedule or under schedule?
a) What was the original schedule?
b) What was the final schedule?
c) Were there changes 1in the software
requirements?
1) 1f so, at what phase and why?

If the software development program ran over or
undexr schedule, in your opinion, what were the
factors that caused this over or underrun (i.e.
complexity of the software being developed,
experience of the programmers, number of
programmers used, changes in requirements)?

Was a software development cost model (or models)

used to estimate the cost of the software
development program? If so, what model was used?

97

6)

7)

8)

Most software development cost models use
proprietary algorithms to develop program estimates.
In your opinion, how do you believe schedule risk
was incorporated into the software development cost
model you used to determine the cost of the program
(1f a software development cost model was used)? 1In
other words, which factors that you input to the
model do you feel contributed most to

determining the schedule of the program? (Factors
for each cost model being analyzed provided

in Attachment 1).

NOTE: Factors are given at the end of this

Appendix.

From your experience with software development
programs, what factors 3o you conslider important or
significant when determining the schedule and/or
schedule risk of a software development program?

Do you think a schedule risk factor, which will
affect the probability of the schedule being
predicted by the model actually occurring, should be
incorporated into the cost model; or do you think
schedule should be predicted by combining weights of
other factors such as program complexity? '

98

ATTACHMENT 1 (page 1 of 5)

The various input factors listed below are used by the
software development program estimating models being
analyzed. You are asked to rate each of the factors in terms
of to what extent you believe they affect the schedule of a
software development program using the following scale:

0 1 2 3 4 S
Very Very
Don't Low Low Somewhat High High
Know Correlation Correl. Correlated Correl. Correl.

¥ o4 O &
Rating Factors é? O £ & &
R A
S & & @ g
Factors Common to 3 or more models
1. sSpecification (SPEC) =
functional, procedural, X XX
both or other.
2. Reqgulrements Volatlllty
(RVOL) _ X]1X1X
3. Main Storage Constraint
_(STOR) X X X
4. Computer Turnaround Time
____(TURN) , _ X1 1 X)X
5. Use of Software Tools (TOOL) X] X[X X
6. Applications Experlence X[x| x X
with similar ?rojects (AEXP)
. verage Experlence xtxlx
with Techniques used (TECH)
8. Programming Language X1 X X
Experience (LEXP)
%. Analyst Capabllilty (ACAP) XTI XTX
10. oftware pProduc
Complexity (CPLX) XIXJX]X]X
il. BeIEverable LInes of Source x!lx iﬁ
Code Excluding Documents
(DSLOC)
T2. Llines of Source Code X x| x
Documentation (DocLOC)
13. Reusable Code From Similar xlxlx|x
Projects
—

99

ATTACHMENT 1 (page 2 of 5) o
o 2 5‘? S X
F N Q\ &
Sis52 48
Rating Factor § & § @ &
Factors Common to 2 models
1. Use of Modexrn Programming X X
Practices (MODP)
2. Virtual Machine Volatility X
(VIRT)
3. Execution Time Constraint X X
(TIME)
4. Number of Development Sites X X
(SITES) _
S. Virtual Machine Experience X X
_(VEXP) ___ o
6. Programmer Capablility (PCAP)
7. Special Display Requirements x| x
(Display)
8. Bffort expended during the
integration and testing X
hase (BFTit)
3. AggIIcaEIon Complexit
10. Number of llnes of new X X
source code
11. Number of lines deleted from- X X
existing modules
12. Number of existing modules X X
equi
13. BExisting LOC = pre-existing X X
code prior to task development
14. Monthly Pay Average XI X
Unique Factors by Model
System-3
1. Annual Inflation (Financial) X
2. Max Rffort-Person Months X
3. (Estimate) ProbablIlty Re?uized X
4. Real Time Operation (RTIM
5. Rehosting 8T) — 1H
6. Relaxed Schedule (Min. A
7. Regquirements - % Development X 4
8. Requirements Effort Complete X
at Contract Award
9. Resource Dedication (RDED) X 4

100

a;
ATTACHMENT 1 (page 3 of 5) P .
o L85 i
F 8 O N 4
L & & &
§ & 9L
Rating Factor c & § § &
Unigue Factors by Modeli (continued)
System-3 (continued)
10. Resource Locatlon (RLOC) X
1T, Staff - Requirements staif,
Project staff, Development X
staff .
12. System (Virtual Machline) X
Complexity (SYST)
13. Bffective Productivity =
average lines of code X X
completed by project
person per month
SPQR/20
1. BEstimate Scope (Prototype, X
Module, System)
.. on3ect Bstimating Goals
3. Outpu etric (man-months, A
years, etc.) X
4. Exempt Personnel
5. Average Work Week X
6. Average Work Year X
. Other Costs (holds costs X
hot estimated by SPQR/20)
. Project Class (Personal X
program through military
contract)
9. Office Faclilitles X
10. Reusable Code Lanquage X
1l. Reusable Code Language Level X
12. Logical co ex
13. New Code Structure X
14. New Code Data Complexity
15. New Code Language
16. Language Level X
17, Base Logical complexity
18, Base Code Complexity X
19. Database complexity X
20. Base Code Language
1. Base Code Language level
22. Base Code 8ize X

101

a;
!
ATTACHMENT 1 (page 4 of 5) & s O
‘P§ o x
8 & o &
588
Rating Pactor ,5‘5-8 0 &
Unigue Factors by Model (continued)
Softcost-R
1. Number of lines changed in
other ways in existing X
modules
2. Number of lines deleted as X
entire modules
3. Phase of the 1lfe cycle "X
softwvare work begins
4. Bxpected user Involvement X
in requirements definition -
S, CusEpmer?IanemeEon X
organizational interface
complexity
6. Level of interface with other X
 4)
7. Bfficiency of implementing X
organization
8. N of programmers doing X
design and will work
development -
9. Type of technical reviews X
~held
10. Number of I/0 items X
generated per 1000 lines
il. vera complexity of the X
data base architecture
l2. Eoanexity of the logical X
design
13. § of the program in assembly X
lanquage
14. of total task will be eas
15 8§ of total task will be hard X
16. Classified Security
environment for computer X
Y/N?
17. Amount of hardware under X
concurrent development
18. Dcveiopnent computer X
accessibility
13. Development computer X
\/ b
20. Maturity of system and X
support software

102

Rating

ATTACHMENT 1 (page 5 of 5)

Factor

Coconp

Unique Factors by Model (continued)

21.

SoftCost-R (continued)
Overall adverse constralints

22.

on program design
) oE program which is real-
time and multi-tasking

23.

Software adapted to multiple
environments (Y/N?)

eq.

Adaptation required to
change from development

to operational environment
(Y/N?)

el B] B

PRICE-S
INTEGI = the level of
difficulty of integration
and testing the CSCIs to
the system level

SCHEDULE = start of the
system software development-
activities and completion
dates for activities which
support the software

development phases
LANG = source language to

used

CPLXZ = quantitative

description of the relative
effect of complicating
factors on the softwvare
development task caused by
hardware/software
interactions. Factors
include new hardware
development and hardware
developed in parallel

Reliability (RELY)

COCOMO
Required Software

Data Base S8ize (DATA)

2
3.

Schedule Constraints (SCHED)

] o

103

1)

2)

3)

4)

$)

6)

7)

8)

APPENDIX B:

INTERVIEW QUESTIONNAIRE
FOR SOFTWARE DEVELOPMENT EXPERTS
(DOD AND COMMERCIAL)

Vhich softwvare development cost model are you
familiar with? (Choose one or more)

a) COCOMO

b) Price-8

c) Putnam-SLIM
4) Softcost-R
e) System-3

£) SPQR/20

Upon completion, did the software development
program you have been involved with, and used
this model(s) for an estimate, overrun or
underrun its cost estimate?
a) Vhat was the initial estimate for the
program?
b) What was the final cost for the program?
¢c) Were there changes in the software
requirements during the program?
1) If so, at what phase and why?

Same as Questionnaire for DOD Program Managers/
Engineers.

Same as Questionnaire for DOD Program Managers/
Bngineexs.

Same as Questionnaire for DOD Program Managers/
Englineers.

In your opinion, how is schedule risk
incorporated into this software development cost
model? In other words, which factors input in
the model contribute more to determining the
schedule of the program? (Pactors for each cost
model being analyzed are provided in Attachment
1).

NOTE: See Appendix A, ATTACHMENT 1 for
questionnaire attachment.

Same as Questionnaire for DOD Program Managers/
Engineers.

Same as Questionnaire for DOD Program Managers/
Engineers.

104

APPENDIX C:
Mitre Project Data
Project # 24 (A,B,C,D) 24 _A B

Description of Factors
Descr = Misslon Description
1= C3 system
2= radar system bd 2 2

3= simulation
4= training system

swincl = Major Software bd 3.8 3.8
Function

SWfnc2 = Major Software 4.1 15.3
Function

SWEnc3 = Major Software

Function 5. 17.2

0N W
[,

#CSCI = Number of CSCls o ®

Simul = CSCIls simultaneously bod * bd
resident on Target Computer
are assigned same number.

Specif = Specification
1= functional bd 1 1
2= procedural
3= 1 + 2
4= Other - match analogous programs

Design = Design Method
1= Top down * 1 1
2= bottom up
3= jterative enhancement
4= hardest first
5= 1 + 2
6= 1 + 3
7= 2 + 3
Develop = Development Method
Same as above * 1

Coding = Coding Method
1= structured code bd 1
2= other, pseudostructured code
3= other, by modules

105

11.3

13.3

17.1

‘.9

5.3

7.1

Project

Mitxe Project Data (page 2 of 18)

24 24 A

Description of Pactors

Testing
i=
2=
3=
4=
S=
6=

1=
8=
9=

= Testing Method

top down (stubs)

bottom up (drivers)
specification driven

structure driven

Other, input/output

other, module level testing and
applications software testing
1+ 2

1 +3 8
2 + 3 + 4

10= 3 + 4 + 6

1l1=

1 +2+3+ 4

V-V = Validation/Verification
Method

1=
2=
3=
4=
S=
6=

peer review

walk throughs

proof

none

1+ 2 bl
1 +2+3

Formal = Formalisms Methods

1=
2=
3=
4=
S=
6=
1=

program design language bd
HIPO charts

flowcharts

1 +2

ey
+++
NWW

+ 3

Software Development Togls Used

T™viow =

of tools used from list:

Assembler *
Basic Linker

Basic Monitor

Batch Debug Aids

106

Mitre Project Data (page 3 of 18)

Project #24 (A,B,C,D) 24 A B
Descxiption of Factors
Tiow = § of tools used from list: * 2 2

Higher Order Language Compiler
Macro Assembler
Simple overlay linker
Basic Source editor
Language Independent
Monltor
Basic Library Alds
Basic Database Alds

Tnom = § of tools used from list: * 2 2
Real-time or Time-sharing
Operating system
Extended Overlay Linker
Database Management System
Interactive Debug Aids
Simple Programming
Support Library
Interactive Source
Editor

Thigh = § of tools used from list:* 1 1
Virtual Memory
Operating System
Database Design Ald
Simple Program Design
Language
Performance Measurement
and Analysis Tools
Programming Support
Library with Basic Con-
figuration Management Alds
Set-use Static Analyzer
Basic Text BEditor & Manager
Program Flow and Test Case
Analyzer
File Manager

107

Mitre Project Data (page 4 of 18)

Project #24 (A,B,C,D) 24 A B c »)
Rescription of Factors
Tvhigh = § of tools used from
list: * 3 3 3 3
Full Programming Support
Library

Documentation System
Project Control System
Requirement Specification
Language and Analyzer
Extended Design Tools
Automated Verification
System
Pault Report System
Crosscompilers
Instruction Set Simulators
Display Formatters
Data Entry Control Tools
Communications Processing
Tools
Conversion Alds
Structured Language Tool

Tother = § of other Tvhigh tools
used not listed above. b 0 0 0 0

Tcalc = Calculated Tool Parameter
(Ranges from 1 = vlow to
5 = vhigh) * 3.26 3.26 3.26 3.26

MODP = Use of Modern Programming * .91 .91 .91 .91
Practices
1.24 =vlow
1.1 = low
1 = nom
.91 = high
.82 = vhigh

Begin = COCOMO Project starting R
date (SDR) mm.yy 9.82 9.82 9.82 9.82 9.82

End = COCOMO Project completion
date (FQT) 10.84 10.84 10.84 9.84 10.84

Duration = Project duration 26 26 26 25 26

108

Mitre Project Data (page 5 of 18)

Project #24 (A,B,C,D) 24 A B (o] D
Deacription of Factors
Actual Schedule Milestones

Note: PDR = Preliminary Design Review
SDR = System Design Review
CDR = Critical Design Review
Int = Beginning of Integration
and Testing

FQT = Formal Qualification Test # of months
PD = PDR - SDR (or Contract Award) * 7 7 7 7
DD = CDR - PDR bad 6 6 6 6
CUT = Int-CDR ® 6 6 6 6
IT = FQT (or Complete
CPCl integration)
- Int bd 6.5 6.5 5.5 6.5
TOT = Total Project Time
(PD + DD + CUT + IT) bd 25.5 25.5 24.5 25.5
System Documentation
{Project Level)
DOCl = System Engineering
Management Plan (# pages) * * * * *
DOC2 = Computer Program Development 33(total)
Plan (# pages)
DOC3 = System Test Plan (# pages) * * * * *
DOC4 = Other Documentation

(# pages) x ® * * .

SCnum = Software Change history:
of requirements changes
during software
development phases =
of changes approved. * * L4 * *

SCloc = Change in DSLOC resulting
from the requirements
changes * * ® * bl

SCsm = Change in effort resulting
from the requirements
changes = § staff-months

109

Mitre Prodiect Data (page 6 of 18)

Project #24 (A,B,C,D) 24 A B c D
Description of Factoxs
RVOL = Requirements Volatility Not given

.91 = low (Essentially none)
1.0 = nom (small, noncritical
redirections)
1.19 = high (Occasional moderate
redirection)
1.38 = vhigh (Frequent moderate
or occasional major)
1.62 = ehigh (Frequent major
redirection)

DRevelopment and Target Computer Data

VIRT = Virtual Machine Volatility
.87 = vlow (no major changes;
minor change every 12
months)

.87 = low (maj. changes every .87 .87 .87 .87 .87
12 mos; minoxr changes
every month)

1.0 = nom (maj. changes
every 6 mos minorx
changes every 2 weeks)

1.15 = high (maj changes every
2 mos; minor changes
every week)

1.3 = vhigh (maj changes every
2 weeks; minor changes
every 2 days)

STOR = Main Storage Constraint
(CPU Memory Percent Utilization)
Maximum 8 of processing time used
by any group of CSCIs executing
concurrently on single machine.
1.0 = nom (<=50%)
1.06 = high (51-70%)
1.21 = vhigh (71-85%)
1.56 = extra hi (86-95%) 1.56 1.56 1.56 1.56 1.56

110

Mitre Project Data (page 7 of 18)
. Project #24 (A,B,C,D) 24 A B C _D

Descxiption of Factors

TIME = Execution Time Constraint

(Bxecution Time Percent

Utilization)

Maximum & of processing

time used by any group of

CSCls executing concurrently

on single machine
1.00 = nom (<=50%)
1.11 = high (51-70%)
1.30 = vhigh (71-85%) 1.3 1.3 1.3 1.3 1.3
1.66 = ehigh (86-95%) :

MemCE = CPU Memory Constraint
Bvaluation :
Measures required to
satisfy the reserve
memoxry reguirement
1 = no mem economy measures
req'ad
2 = some overlay use or -
segmentation reqg‘'d
3 = extensive overlay
and/or segmentation
req'd) 3 3 3 3

4 = complex memory
management economy
measures req'd

TimCE = CPU Time Constraints Evaluation
Percentage of software
that requires special
coding effort to enhance
timing performance '
= no software is cpu
time constrained
= (25% of source code
is time constrained 1 1 1l 1
a 25-50% of source code
is time constrained
= 50-75% of source code
i1s time constralined
= >75% of source code
is time constrained

N e W N e

111

Mitre Project Data (page 8 of 18)
Project #24 (A,B,C,D) 24 _A B c D

Desacxription of Factors

TURN = Computer Turnaround Time
.87 = low (interactive) _
1.00 = nom (ART<4hr) 1 1 1 1
1.07 = high (ART<12hr)
1.15 = vhigh (ART>12hr)
ART = Avg Response Time from job
submission until results
are back in developer's
hands ("logo-to-hardcopy")

Percentage of Source Instructions Developed by Each Access
Mode: .
Batch = Batch = 8 of total DS1I 0 0 0 0 0

DedP = Dedicated Processor ’ 100 100 100 106G 100
= § of total DSI
TBhp = Test Bed with High
Priority (% of _ _
total DSI) 0 1) 0 0 -0
Int = Interactive
(S of total DSI) - 0 0 0 0
P/T = Avg Number of Engineers/
Programmers per Terminal
which are readily accessible
to the development team
(maximum #) not given

Sites = § of Development Sites
and when there are
multiple CSCIis, this #
should indicate the site
(coded by #) at which
each CSCI was developed 1 1l 1 1 1l

112

»

Mitre Project Data (page 9 of 18)
Project #24 (A,B,C,D) 24_ A B c D

Deacription of Factors

TOOL = Use of Software Tools

1.24 = vlow (Basic
microprocessor
tools)

1.10 = low (Basic
minicomputer
tools)

1.00 = nom (strong
minicomputer
or basic
maxicomputer
tools)

.91 = high (strong
maxicomputer
tools) .91 .91 .91 .91 .91

.83 = vhigh (advanced
maxicomputer
tools)

ABXP = Application Experience '
with Techniques Used 1.13 1.29 1.29 1.29 1.29
1.29 = viow (<4mos))
1.13 = low (5 mo - 3 yrs)
1.00 = nom (3 yrs - 6 yrs)
.91 = high (6 yrs ~ 12 yrs)
.82 = vhigh (>=12 yrs)

Tech = Avg Experience with
Techniques Used bt 1 1 3 3
1 = 1-4 mos. avg. experience :

LEXP = Programming Language
Experience 1.14 1.14 1.14 1.14 1.14
1.14 = vliow (<= 1 mo. avg. exp.)
1.07 = low (4 mos ~ 1 yr)
1.00 = nom (1 yr. - 3 yr)
.95 = high (>= 3 yxs)

113

Mitre Proiect Data (page 10 of 18)

Project #24 (A,B,C,D) 24 A B_ c D
Description of Factors
VEXP = Virtual Machine

Experience 1.21 1.21 1.21 1.211.21

(development and

target computer

hardware, operating
systems and architecture)

1.21 = vliow (<= 1 mo. avg. exp.)
1.10 = low (4 mos. - 1 yr.)

1.00 = nom (1 yr. - 3 yrs)

.90 = high (>= 3 yrs)

88/T = Average Experience with

Support Software/Tools . 1 1 4
1 =<1 wmo.
3 = 4 mos. -1 yr.
4 =1 yr. - 3 yrs.
S = 3 yrs, - 6 yrs.

PCAP = Programmer Capability 1 1.17 1 .86 .86
Avg. personnel quality
with respect to overall
industry population.
Based on the programming
team's aptitude for
programming/designing
softwvare, efficliency
and thoroughness, and
ability to communicate
and cooperate.

1.42 = vlow (15th percentile)
1.17 = low (>35th percentile)
1.00 = nom (>55th percentile)
0.86 = high (>75th percentile)
0.70 = vhigh (>90th pexcentile)
ACAP = Analyst Capability 1 1.19 1 .86 .86

Avg. personnel gquality
as described above
1.46 = vlow (15th percentile)

1.19 = low (>35th percentile)
1.00 = nom (>55th percentile)
0.86 = high (>75th percentile)
0.71 = vhigh (>90th percentile)

114

Mitre Project Data (page 11 of 18)

Project #24 (A,B,C,D) 24 A

B c D

Reacxiption of Factors

MpAvail = %; Degree to which manpower
.loading levels are
constrained by personnel
avajlability or budget
limitations (100% = no
manloading constraints) 100 100

PkMload = Peak Software Development
Team Manloading over the
course of the project (#) 33 15

RELY = Required Software
Reliability - 1.15 1.15
.75 = vlow '
.88 = low
1.00 = nom
1.15 = high
1.40 = vhigh

CPLX = Software Product ’
Complexity 1.15 1.3
.70 = vlow ’
.85 = low
1.0 = nom
1.15 = high
1.30 = vhigh
1.65 = ehigh

SpecQ = Quality of Specification * 0
0 = very precise
1 = precise
2 = {mprecise

DSLOC = Deliverable Lines
of Source Code
Excluding

100 100 100

2 6 11

1.15 1.15 .88

1.15 1.15 .85

Documentation 185600 87700 18300 29500 50100

DocLOC = Lines of Source Code

Documentation 180400 108200 20000 16000 36200

115

Mitre Proiject Data (page 12 of 18)

Project #24 (A,B,C,D) 24 A B _C D
Description of Factors
DATA = Data Base Size .94 .94 .94 .94 .94
.94 = low (D/P<10)
1.00 = nom (10<D/P<100)
1.08 = high (100<D/P<1000)
1.16 = vhigh (D/P>=1000)
D/P = Data Base Sjize in Bytes or Characters
LOC .
Size Breakdown by Operation as % of LOC
DSR = Data Storage and Retrieval (%) * 0 S 10 4
OLC = On-Line Communications (%) b 10 5 0 11
RTC&C = Real-time Command and : h
Control (%) * 0 0 0 0
IntOp = Interactive Operations * 35 0 0 12
MathOp = Mathematical Operations (%) * 55 90 10 31 H
String = String Manipualtion (%) * 0 0 80 42
0S8 = Operating Systems (%) * 0 0 0 0
Operational Response Requirement as % of LOC
RT = Real-Time (%) bd 55 41 0 16
OL = On-Line (%) * 35 0 0 0
TC = Time-Constrained (%) * 10 0 0 84
NTC = Non-Time Critical (%) b 0 59 100 0
Source Statement Type Mix as % of LOC
Logic = Logical (%) * 20 20 60 32 :
Commnd = Command (%) * 30 10 10 33 -
Math = Mathmatical (%) * 40 60 10 31
DatMan = Data Manipualtion (%) * 0 0 10 0
116

Project

Mitre Project Data (page 13 of 18)
#24 (A,B,C,D) 24 p.\ B (o] D

Rescxiption of Factors

DatDcl

Display

HOL = H

ASSMBLY

HOLang

ADPLOC

Design

Code =

Integr

= Data Declaration (%) * 10 10 10 (4]

= Special Display
Requirements * 3 1 not given
0 = none

simple input/output

user friendly

interactive

complex requirements/

severe impact

Languages Used as % of Total Equivalent DSI
igher Order Language (%) 77.4 86.4 95.6 1.0 100

1
2
3
4

Assembly Language (%)
{100-HOL) 22.6 13.6 4.4 99.0 0.0

Higher Order Language
Used (Name) Jovial " " " "

Reusable Code From Similar Projects

of DSLOC adapted
from existing ‘ :
software 155400 72800 15900 24100 42600

% Design Modification
regquired (of the
original ‘design) 3.1 0.0 30.0 0.0 0.0

% Code Modification
required 2.9 0.0 15.0 0.0 5.0

= % Code Integration
required 29.9 50.0 50.0 0.0 5.0

117

Mitre Project Data (page 14 of 18)

Project #24 (A,B,C,D) 24 A B C
Descxription of Factors
CPI = Conversion Planning Increment not given
0 = None
1 = Simple conversion schedule,
acceptance plan
2 = Detalled conversion schedule,
test and acceptance plans
3 = Add basic analysls of existing
inventory of code and data
4 = Add detalled inventory, basic
documentation of existing
system '
5 = Add detailed inventory, detaliled

documentation of existing system

DOCUM = Documentation Total
(# of pages)

SFtot = Software Fallure History
(Total of design and coding
errors documented as Software
Trouble Reports, Software
Problem Reports
(Total # of STRs, SPRs, etc)

IncrDev= Incremental Development'
(Can, or should an
incremental costing
approach be used?)
(Y/N?) yes yes

D&Tcomp = Development and Target
Computers (Same or
Different?) same same

CsChata = CSC Level Data
(Is there any?) bd yes
(Y/N?)

SCED = Schedule Constraint 1 1
1.23 viow
1.08 low
1.00 nom
1.04 high
1.10 vhigh

118

not given '

not given

yes

yes

yes yes

same same

yes yes

Mitre Project Data (page 15 of 18)

Project #24 (A,B,C,D)

Rescription of Factors

EFTpd = Effort expended
during the
preliminary design
phase

(# of staff-months)
EFTA4dd

= Effort expended during
the detailed design
phase

(# of staff-months)

-
=

EFTcut Effort expended
during the coding
and unit testing
phase (# '

staff-months)

EFTit Effort expended during
the integration and
testing phase (# of
staff-months)

EFTtot = Total Effort
Expended in
software
Development (#

of staff-months)

Eunits Units in which
effort was
provided

1 staff-months

2 staff-hours

- Conversion factor
from staff-months
to staff-hours (#)

Convfac

Normalized total
effort
(# staff-months)

EPTcal

24 A B

46.22 13.61 2.74 19.8 10.07

130.76 60.3 9.66 16.52 44.28

95.66 48.85 10.13 13.69 22.99

62.54 38.26 5.45 2.18 16.65

335.18 161.02 27.98 52.19 93.99

152 152 152 152 152

335.2 161.0 28.0 52.2 94.0

119

Project #24 (A,B,C,D) 24

Mitre Project Data (page 16 of 18)

A

Description of Factoxs

Months

= Period of time over
which EFTcal value
was determined
(# of months) 26

Delta T = Difference between the

TotEDSI

Mode =

time over which effort
was expended and the
duration of the software
development. Positive
values indicate that
EFTcal includes effort
outside the COCOMO-
defined software
development period.
Negative values indicate
that the effort data

'is incomplete EDSI

= Equivalent number

of Deliverable Source
Instructions for

adapted LOC. (#) 0.0

= Total Equivalent
number of
Deliverable Source .
Instructions (#) 17207

COCOMO mode of software
development, as defined
in table below E
0 = Organic
- 8D = Semi-Detached
E = Embedded
FW = Firmware

Concurnt = CSCIs which were

concurrently

developed are

assigned the same

number (#) *

120

26

0.0

10920

24

5009

sD

23

-200

0

SD

26

0.0

1278

SD

Mitre Project Data (page 17 of 18)

Project #24 (A,B,C,D) 24

A

Description of Factors

COMMENTS = Unusual aspects of programs,
development method, or other

B c. D

possible cost-impact information.

24 Missing CDAs taken from #19; Effort doesn't incl B-5

generation.
24A Orig. est. 94.4 KDSI; Adapted code from #23
24B Orig. est. 28.6 KDSI; Adapted code from #23
24C Orig. est. 47.3 KDSI; Adapted code from #23
24D Orig. est. 66.4 KDSI; Adapted code from #23
Executive = Customer of the contractor: ESD/0OC
PQT-1 = Date of first

Preliminary

Qualification

Test (mm.yy) hd 11.83 10.83 12.83 12.83
Incr-1 = Total DSI accepted

at PQT-1

Project #24 ®

PQT-2 = Date of second Preliminary
Qualification Test

Incr-2 = Total DSI accepted at PQT-2

PQT-3 = Date of third Preliminary
Qualification Test

Incr-3 = Total DSI accepted at PQT-3
(Does not include 1Incr-1
or Incr-2)

PQT-4 = Date of fourth Preliminary
Qualification Test, 1f any

Incr-4 = Total DSI accepted at PQT-4

(does not include Incr-1,
Incr-2, or Incr-3)

121

not

not

not

not

not

not

given

given

given

given

given

given

Mitre Project Data (page 18 of 18)
Project #24 (A,B,C,D) 24 A B _C D

Description of Factors
Dffclty

Putnam's Difficulty Factor;

This is also the initial

slope of the Rayleigh

curve that is fit to the

manloading curve.

(4*(total effort)/

Development Time)2 1.02 1.54 0.39 * 1.47

Productivity = Total

(new + equivalent

modified) LOC/

Calibrated effort

(fxrom SDR through

FQT)

(TEDSI/EFTcal) 141.4 160.4 264.8 103.5 93.4

Product

3

Adaptation Adjustment
Factor = .4 x Design + :
.3 x Code + .3 x Integr 11.1 15.0 31.5 0.0 3.0

CAF

Conversion Adjustment
Factor = AAF + CPIl 11.1 15.0 31.5 0.0 3.0

NewDSI = New lines of code
developed = Delivered
LOC - modified LOC 30200 14900 2400 5400 17500

Qeft = Qualify factor for effort _
data Code # 5 5 5 5 5

Qsize = Quality factor for
TEDSI data Code #

Date = Midpoint year of the
development = (date
of SDR + date of
FQT)/2 1983 1983 1983 1983 1983

EAF = Effort Adjustment
factor = Product
of all COCOMO DEMs
(%) 2.83 5.09 3.23 2.09 1.18

122

APPENDIX D:

Intermediate COCOMO Cost Driver
Ratings and Effort Multipliers for Project #24

Cost Driverx Rating Effort Multipliex
RELY H 1.15
DATA L 0.94
CPLX H 1.15
TIME VH 1.30
STOR EH | 1.56
VIRT VL 0.87
TURN NOM 1.00
ACAP NOM 1.00
AEXP L 1.13
PCAP NOM 1.00
VEXP VL 1.21
LEXP VL 1.14
MODP H 0.91
TOOL H 0.91
SCED NOM 1.00

EAF = 2.83
123

APPENDIX E:

PRICE-S (MODE 2) Input Values
Project 24 A,B,C,D '

ITEM DESCRIPTORS
Platform 1.8 Mgmt Complexity 1.00 External Integ 0.50

COMPONENT 1 titled: PROJECT 24 A
DESCRIPTORS

Internal Integration 0.50 External Integration 0.50
Utilization Fraction 0.75

SCHEDULE
Software Spec Review 982 Preliminary Design Review 0
Critical Design Review 0 Test Readiness Review 0
Functlional Config Audit 0
LANGUAGE 1 DESCRIPTORS
Language JOVIAL Souxce Code 75773
Complexity 1 1.00 Complexity 2 1.00
Non-executable SLOC 0.10 Productivity Factor 4.00
Application Categories Mix New Design New Code
User Defined (APPL=0.00) 0.00 0.00 0.00
Data S/R 0.00 0.00 0.00
Online Comm 0.10 0.17 0.17
Realtime C&C 0.00 0.00 0.00
Interactive 0.35 0.17 0.17
Mathematical 0.55 0.17 0.17
String Manip 0.00 0.00 0.00
Opr Systems 0.00 0.00 0.00
LANGUAGE 2 DESCRIPTORS
Language ASSEMBLY Source Code 11927
Complexity 1 1.00 Complexity 2 1.00
Non-executable SLOC 0.10
Productivity Factor 4.00
Application Categories Mix New Design New Code
User Defined (APPL=0.00) 6.00 ~ 0.00 0.00
Data S/R 0.00 0.00 0.00
Online Comm 0.10 0.17 0.17
Realtime C&C 0.00 0.00 0.00
Interactive 0.35 0.17 0.17
Mathematical 0.55 0.17 0.17
String Manip 0.00 0.00 0.00
Opr Systems 0.00 0.00 0.00
124

|

PRICE-S (MODE 2) Input Values
Project 24 A,B,C,D

COMPONENT 2 titled: PROJECT 24 B
DESCRIPTORS

Internal Integration 0.50 External Integration 0.50
Utilization Fraction 0.75

SCHEDULE
Software Spec Review 982 Preliminary Design Review 0
Critical Design Review 0 Test Readiness Review 0
Functional Config Audit 0

LANGUAGE 1 DESCRIPTORS
Language JOVIAL Source Code 17495
Complexity 1 1.00 Complexity 2 1.00

Non-executable SLOC 0.10
Productivity Factor 4.00

Application Categories Mix New Design New Code
User Defined (APPL=0.00) 0.00 0.00 0.00
Data S/R 0.05 0.26 0.26
Online Comm 0.05 - 0.26 0.26
Realtime C&C 0.00 0.00 0.00
Interactive 0.00 0.00 0.00
Mathematical 0.90 0.26 0.26
String Manip 0.00 0.00 0.00
Opr Systems 6.00 0.00 0.00

LANGUAGE 2 DESCRIPTORS .

Language ASSEMBLY Source Code 805

Complexity 1 1.00 Complexity 2 1.00

Non-executable SLOC 0.10
Productivity Factor 4.00

Application Categories Mix New Design New Code
User Defined (APPL=0.00) 0.00 0.00 0.00
Data S/R 0.05 0.25 0.26
Online Comm 0.05 0.26 0.26
Realtime C&C 0.00 0.00 0.00
Interactive 0.00 0.00 0.00
Mathematical 0.90 0.26 0.26
String Manip 0.00 0.00 0.00
Opr Systems 0.00 0.00 0.00

125

PRICE-S (MODE 2) Input Values
Project 24 A,B,C,D

COMPONENT 3 titled: PROJECT 24 C

DESCRIPTORS

Internal Integration 0.50
Utilization Fraction 0.75

SCHEDULE '
Software Spec Review
Critical Design Review
Functional Config Audit

LANGUAGE 1 DESCRIPTORS
Language ASSEMBLY
Complexity 1 1.00

Non-executable SLOC 0.10
Productivity Factor 4.00

Application Categories
User Defined (APPL=0.00)
Data S/R
Online Comm
Realtime C&C
Interactive
Mathematical
String Manip
Opr Systems

External Integration 0.50

982 Preliminary Design Review 0
0 Test Readiness Review

0

Source Code
Complexity 2

Mix

0.00
0.10
0.00
0.00
0.00
0.10
0.80
6.00

126

29500
1.00

New Design
0.00
0.18
0.00
0.00
0.00
0.18
0.18
0.00

New Code
0.00
0.18
0.00
0.00
0.00
0.18
0.18
0.00

0

PRICE~-S (MODE 2) Input Values
Project 24 A,B,C,D

COMPONENT 4 titled: PROJECT 24 D

DESCRIPTORS

Internal Integration 0.50
Utilization Fraction 0.50

SCHEDULE
Software Spec Review
Critical Design Review
Functional Config Audit

LANGUAGE 1 DESCRIPTORS
Language JOVIAL
Complexity 1 1.00

Non-executable SLOC 0.00
Productivity Factor 4.00

Application Categories
User Deflned (APPL=0.00)
Data S/R
Online Comm
Realtime C&C
Interactive
Mathematical
String Manip
Opr Systems

External Integration

0'50

982 Preliminary Design Review 0
0 Test Readiness Review

0

Source Code
Complexity 2

Mix

0.00
0.04
0.11
0.00
0.12
0.31
0.42
0.00

127

50100
1.00

New Design
0.00
0.19
0.19
0.00
0.19
0.19
0.19
0.00

New Code
0.00
0.19
0.19
0.00
0.19
0.19
0.19
0.00

0

APPENDIX F:

PRICE-S (MODE 2) Estimation Summary

Project 24 A,B,C,D

COST8 IN PERSON

Design Prog Data

8ys Concept 0. 0. 0.
8ys/SW Reqt 0. 0. 0.
8¥ Reguirement 134. 0. 28.
Prelim Design 917. 16. 20.
Detall Design 130. 60. 28.
Code/Test 93. 67. 22.
CSCI Test 145. 146. 52.
System Test 0. 0. 0.
Oper T & B 0. 0. 0.
Sub-Total 599. 289. 150.

Purchased Cost - -

TOTAL - -

MONTHS

8/PM Q/A Connflg

0.
o.
49.
'33.
‘3.
33.
68.
o.
o.

226.

SCHEDULE INFORMATION

Concept Start S8SEP 81

8SR NOV 81 (3.5)
SDR FEB 82 (2.3)
88R SEP 82 (7.2)
PDR JAN 83 (4.0)
COR JUN 83 (5.1)

NOTE: The time frame considered for comparison

in bold print.-

TRR
FCA
PCA
FQR
oTE

0. 0.
o. 00
26. 25.
18. 18.
25. 27.
21. 23.
48. 55.
0. 0.
o. o.
138. 148.
ocT 83 (4.1)
AUG 84 (10.0)
NOV 84 (3.1)
FEB 85 (3.1)
OCT 85 (7.7)

SUPPLEMENTAL INFORMATION

Source Lines of Code

Souzce Lines of Code/Person Month

128

185600
144.0

Total
o.

262.
203.
313.
259.
S514.

o.

0.

1550.
0.
1550.

is highlighted

APPENDIX G:
SOFTCOST-R INPUT VALUES
Project #24

SIZING FACTORS

Lines of executable source code: MAX AVG MIN
New: 34.7 30.2 25.6
In existing modules requiring

modification: 5.2 4.5 3.8
Deleted from existing modules: 0 0 0
Added to existing modules: 0 0 0
Changed in other ways in existing

modules: , 0 0 0
Deleted as entire modules 0 0 0
Retested but remained unchanged 0 0 0

Percentage of source code developed that will be
delivered = High

MANAGEMENT FACTORS

Phase of the life cycle software work will begin: System
Requirements Phase '

Percentage of total software requirements:
Well established, stable, and will not change before
delivery: 85
Will change slightly before delivery (under baseline -
control): 15
Will change more drastically before dellvery (under
baseline control): 0

Complexity of software requirements: High
Expected user involvement in requirements definition: Low
Customer experience in the application area: Low
Customer/implementor organizational interface

complexity: Medium
Level of interfaces with other projects or

organizations: High
Efficlency of implementing organization: Medium

129

SOFTCOST-R INPUT VALUES
Project #24
STAFFING FACTORS

Overall personnel qualifications of the team: Low

Percentage of programmers doing design and working
development: High ‘

Team's experience with projects of similar size and
complexity: 1low

Average staff experience (in years): 3

Staff experience with:

the operational computer(s): Low
the programming languages: Low
top-down methodology: Medium
team concepts: Medium
structured programming: Low
Type of technical reviews held: High

COMPLEXITY FACTORS

Number of different 1/0 items generated per 1000 lines: Low
Overall complexity of the data base architecture: Low
Complexity of the logical design: Medium
Percentage of the: .

program will be in assembly language: 22

program will be storage optimized: 90
program will be timing optimized: 78
total task will be easy: 84
total task will be hard: 16

ENVIRONMENTAL FACTORS

Classified security environment for computer: Y

Amount of hardware under concurrent development: Medium

Percent of work done at primary development site: High

Development computer accessibility: High

Development computer avalilability: High

Software development tools/environment reliability: High

Maturity of system and support software: Medium

Overall adverse constraints on program design: Medium

Percent of program which is real-time and multi-tasking: Low

Software will be adapted to multiple environments: N

Adaptation required to change from development to
operational environment: Medium

130

APPENDIX H:
SOFTCOST-R RESOURCES ESTIMATE

PROJECT #24
Calculated:

Effort (person-months):

Duration (months):

Average Staff (persons):

Productivity (SLEC/person-month):

Adjusted source lines of executable code (KSLEC):
Confldence:

131

126.
21.
6.
249.
31.
10.

WkNO O

APPENDIX I:
SPQR/20 INPUT VALUES

Project #24

ESTIMATE AND FINANCIAL INPUTS

EBstimate Type: New Program

Estimate Scope: Complete stand-alone program

Estimate Goals: Find the normal average of staff size,
schedules, and quality

Maximum Staff Size: MNormal

Minimum Staff S8ize: Normal

Output Metric: Work Months (Default)

Staff Availability: 100%

Bxempt Technical Staff: 100%

Average Work Week: 40 hours

Average Work Year: 220 days

Average Monthly Salary: 5000 (default)

Other Project Costs: 0

PROJECT CLA8S: Bxternal program developed under Military
Specifications
PROJBECT TYPE: Embedded or Realtime program

ENVIRONMENTAL INPUTS

Project Novelty: Punctional repeat, but some new features

Office Pacilities: Doubled offices and good facilities

Program Requirements: Pairly clear user requirements

Program Design: New designs and partial automated graphics/
text design support

User Documentation: Programmers or users with fully
automated graphics/text support

Response time: One to five second response time in the
norm

staff Bxperience: Majority of new hires or novices, with
few experts

Source Code Reusability: Bxtensive use of reusable code
(>75%)

132

SPQR/20

Project #24

REUSABLE CODE LANGUAGE

INPUT VALUES

Source Language: Mixed languages

Language Level: 3

REUSABLE CODE SIZE (KLOC):
REUSABLE FUNCTION POINTS:
LINES PER FUNCTION POINT:

NEW PROJECT COMPLEXITY

155.4
1,456
106.73

Logical Complexity: Algorithms and calculations of average

complexity

Code Complexity: Falr structure, but some complex modules

and paths

Data Complexity: Simple data with few variables and low

complexity

NEW CODE SOURCE LANGUAGE

Source Language: Mixed languages

Language Level: 3

NEW CODE SIZE (KLOC): 30.2

133

APPENDIX J:

SPQR/20 SUMMARY ESTIMATE

PROJECT #24
MODE 1: Normal Average

START DATE: SEPTEMBER 1982

PROJECT DEVELOPMENT ESTIMATE

ACTIVITY SCHEDULE EFFORT
(MONTHS) (MONTHS)
Planning 1.33 1.33
Requirements 2.08 5.61
Design 8.7C 26.83
Coding 10.20 33.76
Integration/Test 8.22 28.18
Documentation 11.05 22.44
Management 23.17 20.40
Development 30.54 138.55
Overlapped 23.17
0.00

Unpald Overtime

134

SECURITY: NONE
END DATE: AUGUST 1984

APPENDIX K:
System-3 Input Values
Project #24

Minimum Nominal Maximum
DEVELOPER TECHNOLOGY
APPLication Complexity
Analyst CAPability
Application EXPerience
MODern Practices, use of
Programmer CAPability
TOOL support, automated
TURNaround, logon-hardcopy

2.0

oL wwno

ounuvuyownmo

NNWIOWN

[SICS RFL RN =NV}

onuitunwn

NN
L) L] - .

ENVIRONMENTAL - COMPUTER
DISP req'mt, speclal
MEMory Constraint
TIMe Conrtraint
Real TIMe

NO O
L) . L) L]
NoOooo
NO W
L] .

OCOoOOoON
NO o
L] L]

OO ™

ENVIRONMENTAL - PRODUCT
SPECification Level
QUALity Assurance Level
TEST Level
Requirements CHanGe vol
ReHOSTing develop->target
LANGuage type rating
Language EXPerience
SYSTem complexity-virtual
System EXPerience-virtual
Vvirtual Mach. voLatility

[. L] . L]
OUVMOUNMOOWOOO
. L] L]

VOOUNMOOWOOO

CONOKFHOF & B
L] L] [L]
NE=ENMHEHEQEAODN
.
NFHENOMNNFEOMBOIOON
NOOOO0COOOOCO

ENVIRONMENTAL - SUPPORT
MULTiple site development
Resource DEDication
Resource/support LOCation

(= X5 K=
(==]
[
(=N =N =]
[o R]
[
oO0o
(= NN

SIZE & COMPLEXITY SUMMARY
New Lines of Code 25670 30200 34730
Existing Lines of Code 132090 155400 178710
Lines to be Deleted 0 0 0
Lines to be Modified 3830 4507 5183
Complexity 11.0 11.0 11.0

DEVELOPMENT CONSTRAINTS
Staffing Rate (Persons/Yr) 0.0
Maximum Staff (Persons) 0.0
Maximum Effort (Pexrson Mos) 0.0

0.0 0.0

135

System-3 Input Values

Project #24

Minimum
REUSE - REBUILD IMPACT
% Design Effort Needed 16.0
% Implement Eff. Needed 16.0
§ Testing Effor* Needed 16.0

FINANCIAL FACTORS
Average Staff Pay Rate 1100
Target Schedule
% Requirements Effort
Req's Eff. Complete @ C/A
Reg's Schedule Constraint
% Integration Effort
Avg. Annual Inflation

ONOO®WOO
O« O0O00OO

136

Nominal

Maximum

APPENDIX L:
System-3 Summary Report
Project #24
(Minimum Time) Estimate

FULL SCALE DEVELOPMENT

Development Time 20.74 Months
Development Effort 272.69 Person Months
Project staff, Peak 19.93 Persons
Actual Staffing Rate 19.01 Persons/Year
Productivity 127.28

Lines/staff/Month

REQUIREMENTS AND INTEGRATION
Requirements Time 8.82 Months
Requirements Effort 53.32 Person Months
Total Requirements Cost 584.65 K-Dollars
Integration Time 3.95 Months
Integration Effort 79.08 Person Months

Complexity 11.00

Basic Technology Rating $730.08

Effective Technology Rating 2279.33

Effective Task Size - 29696 °

Total Task Size 185600

137

v

APPENDIX M:

COCOMO Software Development Effort Multipliers (5:118)

Ratings
Very Low Nominal High very Extra
Low High High
Product Attributes
RELY .75 .88 1.00 1.15 1.40
DATA .94 1.00 1.08 1.16
CPLX .70 .85 1.00 1.15 1.30 1.65
Computer Attrlbutes
TIME 1.00 1.11 1.30 1.66
STOR 1.00 1.06 1.21 1.56
VIRT .87 1.00 1.15 1.30
TURN .87 1.00 1.07 1.15
Personnel Attributes
ACAP 1.46 1.19 1.00 .86 .71
AEXP 1.29 1.13 1.00 .91 .82
PCAP 1.42 1.17 1.00 .86 .70
VEXP 1.21 1.10 1.00 .90
LEXP 1.14 1.07 1.00 .95
Project Attributes :)
MODP 1.24 1.10 1.00 .91 .82
TOOL 1.24 1.10 1.00 .91 .83
SCED 1.23 1.08 1.00 1.04 1.10

138

10.

Bibliogxaphy

Abdel-Hamid, T.K. and 8.BE. Madnick. "An Inegrative
Approach to Modeling the Software Management Process: A
Basis for ldentifying Problems and Bvaluating Tools and
Techniques, " Proceedings of the IEEE Computer Soclety

15-23. New York: IEEB Computer Society Press, 1903:

Aron, J.D. "Bstimating Resources for Large Programming
Systems,"

Techniques Conference Sponsored by the NATO Science
Committee. 262-266. New York: Mason Chaster, 1969.

Boddle, John. -G H
. Englewood Cliffs NJ: Prentice-
Hall, Inc., 1987.

Boehm, Barry W. “Softwvare lngineeting Economics,™ IEEE
SE-10: 4-21
(January 1984).

Boehm, Barry W. gSoftware Engineering Economics, New
Jersey: Prentice-Hall, Inc. 1981.

Boehm, Barry W. "Software Life Cycle Pactors,"™ Handbook
of Software Engineering. EBdited by C.R. Vick, Ph.D. and
C.V. Ramamoorthy, Ph.D. New York: Van Nostrand
Reinhold Company, 1984.

Brooks, Frederick P., Jr. = i
. Reading MA: Addison-
Wesley, 1975.

Bruce, Phillip and Sam M. Pederson. ZIThe Software
i « New
York: John Wiley and Sons, 1982.

Bruggere, Thomas H. "Software Engineering: Management,
Personnel and Methodology," Proceedings,. Fourth
International Conference on Software Engineerxing

368. New York: IEEB Press, 1979.

. 361-

Cheadle, William G, Manager, Technology Implementation
and Support Martin Marietta Astronautics Group. Personal
Interview. Martin Marietta Corporation, Denver CO, 22
February 1988,

139

11. Cheadle, William G. "DOD-8TD-2167 Impacts on Software

Development,™ 18PA Journal of Parametrics: ¢, December
1986.

12. Commonwealth Books, Inc. Naw Webstex's Vest Pocket
Rictionary, Pramingham MA: Dennision Manufacturing
Company, 1976.

13. Computer Bconomics, Inc., CRI Presents System-3, Marina
del Ray CA: CRBRI, Inc. 1987.

14. Cooper, Jack. "S8oftware Development Management
Planning," IEER Transactions on Software Engineexing,
SE-10: 22-26 (January 1984).

15. Daly, Bdmund B. "Management of Software Development, "
S8R-3: 289-
299 (May 1977).

16. Department of Defense. Dafanse System Software
Development. Military Standard 2167. Washington: DOD,
27 October 1987.

17. Donelson, William 8. "Project Planning and COnt:ol,'l
Datamation: 73-80 (June 1976).

18. Doty Assoclates, Inc.

: . Technical
Report No. 151. New York: Rome Aixr Development Center,
Pebruary 1977.

19. Driscoll, Alan J., Lt.Col. "Software Visibility and the

Program Manager, " Dafanae Systems Management, l: 48-56.
(Spxing 1977).

20. Ewmory, C. William. Business Research Methods.
Homewood IL: Ixwin, 198S.

21. Perens, Daniel V.
Rarametric Cost Estimating, Wright-Patterson AFB OH:
Alr Porce Institute of Technology, 1987.

22. Punch, Paul G. 3oftware Cost Data Base. Contract
r19628-86-C-0001. Bedford MA: The MITRE Corxrporation,
October 1987.

23. Howes, Norman R. "Managing Software Development

Projects for Maximum Productivity,"
Software Engineering, SE=10: 27-35 (January 1984).

140

24.

25.

26.

27.

28,

29.

30.

31.

32.

33.

34.

Hurst, R.8. "SPMMS-Informatlion Structures In Software

Management, " goftware Engineering Journal, 1l: 50-57
(January 1986).

Jensen, Randall W. "An Improved Macrolevel Software
Development Resource Estimation Model,"™ Pourteenth
Institute of Electrical and Electronic Engineers, New ’
York: 1981

Keider, Stephen P. “Why Projects Fail," Datamation:
$3-55 (December 1974).

Norden, Peter. "“Useful Tools for Project Management,"
Management of Production, edited by M.K. Star.
Baltimore: Penguin Books, Inc., 1970.

Otte, James E. Handout distributed at the Presentation
of PRICE Software Model to ASD BEngineers. Aeronautical
Systems Division, Alr Force Systems Command, Wright-
Patterson AFB OH, 1988.

Pressman, Roger S. JSoftwara Engineexing: A
' . New York: McGraw-Hill Book
Company, 1987.

Putnam, Lawrence H. and Ray W. Wolverton.

"Introduction,” Tutorial - Quantitative Management:
edited by Lawrence H. Putnam

and Ray V. Wolverton. New York: IEEBE Press, 1977.

Putnam, Lawrence H. SLIM User's Guide, McLean VA:
Quantitative Software Management, Inc., 1980.

Putnam, Lavrence H. "The Software Life Cycle: BEvidence
And Poundation,"” = H

edited by Lawrence H. Putnam
and Ray W. Wolverton. New York: IEBER Press, 1977.

Putnam, Lawrence H. "The Software Life Cycle:
Practical Application to Bstimating Cost, Schedule and
Providing Life Cycle Control," =

H edited by
Lawvrence H. Putnam and Ray W. Wolverton. New York:
IREE Press, 1977.

RCA PRICE Systems, RCA PRICE-S Reference Manual, Cherry
Hill NJ: RCA, 1987,

141

3S.

36.

37.

38.

39.

40.

41.

42.

43.

44.

‘5'

Relfer, Donald J. "The 8oftware EBngineering Checklist,"
126-128. Bl Segundo CA: American Institute of |
Aeronautics and Astronautics, 1977.

Reifer, Donald J. TIutorlal: sSoftware Management. Los
Angeles: IEEE Computer Society Press, 1981.

Rook, Paul. "Controlling Software Projects," gSoftware

Software Proiects, 1: 7-16 (January 1986).

Scacchi, walt. “"Managing Software Engineering Projects:
A Soclal Analysis,”
Engineering, SE-10: 49-59 (January 1984).

Software Productivity Research, Inc. Usex Guide:
S8PQR/20, Cambridge MA: Software Productivity Reseaxch,
Inc., 1986.

Thayer, Richard and Arthur B. Pyster. "Guest Bditorial:
Software BEngineering Management,” Software Engineering
Journal: gSpeclal Issue on Contxolling Software

Proiects, 1: 2 (January 1986).

The Analytic 8ciences Corporation. The AFSC Cost
Bstimating Handbook Series. Yolume 1, “AFSC Cost
Estimating Handbook," Reading MA.

Van Patten Kinq, C., J. Bruscino, P. Kane and D. Reifer.
- Torrance CA: Reifer
Consultants, Inc., 1987.

Vogel, Donna. "“Possible Software Cost Topics for AFIT
Theses." Briefing to Graduate Students in Cost
Analysis. Air Porce Institute of Technology (AU),
Wright-Patterson AFB OH, 19 October 1988.

Vosburgh, J., B. Curtis, R. Wolverton, B. Albert, H.
Malec, 8. Hoben, and Y. Liu. "Productivity Pactors and

Programing Environments,” Proceedings of the 7th
International Conference On Software Engineering. 143-
152. New York: IBEE Computer Society Press, 1984.

Wendt, Major H. and M.V¥. Bvans. “Cost/Schedule
Management for Software Development,"

2nd_AFSC Standardization Conference. 1053-1069.
Dayton OH: Alr Poxrce Systems Command, Aeronautical
Systems Division, 1982.

142

46.

47.

Wingrove, Alan. "The Problems of Managing Software
Projects," H

on _Controlling Software Projects, 1l: 3-6 (January
1986).

wblverton, Ray W. "The Cost of Developing Large-Scale
Software, "

Tutorial - Quantitative Management: Software
Cost Estimating, edited by Lawrence H. Putnam and Ray W.
Wolverton. New York: IEEE Press, 1977.

143

VITA

Captain Crystal D. Blalock received the degree of
Bachelor of Science in Business Administration with Honors
from the University of Tennessee at Knoxvlille in 1983, Hex
major concentration was in Operations Management. Upon
completion of Officer Training School in San Antonio, Texas,
she was commissioned as a Second Lieutenant in the USAF on 28
March 1984. She served as a Budget Analyst at the Oklahoma
.City Air Logistics Center, Tinker AFB, OK and as a Cost
Analyst at the ﬂéronauﬁical System Division, Wright-Patterson
AFB, OH prlor to entering the School of Systems and
Logistics, Graduate Studies in COSk Analysls, Alr Force

Institute of Technology, in Quly 1987.

144

L)

UNCLASSIFIED

REPORT DOCUMENTATION PAGE mm 0704-0188
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
- UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
th. DECLASSIFICATION / DOWNGRADING SCHEDULE dgstribution un limited.
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
H AFIT/GCA/LSY/88S-2
6a. NAME OF PERFORMING ORGANIZATION .] 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
School of Systems and (f applicable)]
Logistics AFIT/LSQ :
"6c ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433-6583

8a, NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL] 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) _
8c ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS —
: PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. | NO. NO. ACCESSION NO.

11. TITLE (include Security Classificati - .]
AN ANATYSTS Y SF S ULE DETERMINATION IN SOFTWARE DEVELOPMENT PROGRAMS

AND SOFIWARE DEVELOPMENT ESTIMATION MODELS (UNCLASSIFIED)

[12. PERSONAL AUTHOR(S)
Blalock, Crystal D., B.S., Captain, USAF

[13a, TYPE OF REPORT 13b. TIME COVERED —]14. DATE OF REPORT (Vear, Month, Day) |15. PAGE COUNT
M.S. Thesis FROM T0 1988 September 159

16. SUPPLEMENTARY NOTATION

17, COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identity by biock number)
FIELD GROUP SUB-GROUP - Cost Analysis, Estimates, Costs, Schedule,
8? 273 : - Computer program, Cost models

1

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Thesis Advisor: Daniel V. Ferens
Professor of Systems Management

Approved for pyblic release 1AW AFR 190-1,
WILLIAM A, W 17 0ct 88
Associate Dean .

School of Systems and Logistics

Alr Force institute of Technology (AU)
Wright-Patterson AFB OH 45433

>

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABS SECURITY CLASSIFICATION
L ®uncassireounumiten O same as . [Donc users | UNCLASSIFIED
222. NAME OF RESPONSIBLE INDIVIDUAL — |225 TELEPHONE (inciudy Ares Code) | Z3¢. OFFICE SYMBOL
Daniel V. Ferens 7513) 255-%45 AFIT/LSY
DD Form 1473, JUN 86 Previous editions are obsolete. RITY 1E) N QF THIS PA
UNCLASSIFIED

L

UNCLASSIFIED N
Block 19: -

Accurate schedule estimation in software development
Programs is important because delays in the schedule of a
software development program can cause delays in the entire

schedule of a weapon system.

' In order to more accurately predict the schedule of a
software development program, estimators need to know which
. development factors affect schedule. This thesis reports

. twelve factors identified as heavily influencing software
development program schedules. These factors were determined
through extensive reviews of literature written by software
development experts and from interviews with DOD Program
Managers/Engineers and commercial experts who have had
experience with software development programs.

Also, there are many commercial software development
estimation models on the market today. Five of these models
were analyzed for their accuracy in predicting software
development programs. The models analyzed were COCOMO,
PRICE-S, SOFTCOST-R, SPQR/20, and SYSTEM-3. Inputs to these
models were also analyzed for. their correlation to schedule
prediction. ‘

UNCLASSIFIED

