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K ABSTRACT

SMITE is a novel computer architecture implementing a new security policy model

which is proposed for use in Government and Military environments where high

assurance of complex confidentialty and integrity based security policies is
required.

This report records the results of a one year contract (Agic/2711) carried out

by TSL Communications Ltd. This provided a peer review of the proposed

architecture, characterised the essential architectural elements and

formulated the security oriented top level model. In this way it provided a

baseline definition of SMITE to aid the future way forward for the project.
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1. INTRODUCTION

1.1. Project Background

SMITE has resulted from a program of research into Multi-Level Computer
Security begun by RSRE over a decade ago. At that time RSRE were working on a
number of simple separation approaches to security with projects involving
industry and academia such as,

Secure User Environment (SUE), out of which came the Distributed

Secure System (DSS) development and Rushby's Proof of Separability
approach to verification of separation kernels,

Secure Network Interface Protocol (SNIP). which involved investigation
of the problems of plaintext bypass in an encryption device where
headers for protocols must be passed unencrypted,

and finally, Secure Packet Front End (SPFE), investigating the security
requirements for packet switching store and forward systems.

Just prior to this work the USA had launched its Computer Security Initiative,
involving the setting up of the National Computer Security Center to coordinate
the industrial and academic efforts into computer security and to widely
disseminate the requirements for security. The impetus for this initiative was a
result of a study into the problem which culminated in the Anderson Panel
Report.

RSRE issued a contract for a study to produce recommendations for the best
use of effort towards similarly widening the knowledge of the issues and
requirements for computer security in the UK.

This contract, awarded to Plessey, resulted in a comprehensive report on
computer security in computer networks [Andrews81]. This report made
extensive use of the experience gained in the USA and provides a comprehensive
review and discussion of the problems and technological solutions involved in
Multi-level Computer Security. The reader requiring such background is strongly
recommended to review this report, which despite its age is still relevant.

The Plessey report recognised that the then current RSRE projects formed a
low-level application of existing techniques to existing problems and thus
formed an approach which we might with hindsight characterise as a "nuts and
bolts" approach. As a way forward the report recommended the immediate
deployment of effort to produce a "mid-range" Trusted Computing Base (TCB)
system for limited functionality network devices that would be required in the
near future. In the background a longer term research effort should be
mounted to produce highly secure general purpose computer systems.

The report identified three phases for this Secure Communications Processor
project. Phase one, or SCP1, was a collective term for the low level
approaches such as SUE and SNIP etc, SCPZ was the development of the
mid-range TCB based on current hardware and software developments, and
finally SCP3, the general purpose computer system, for which specialised
hardware and software techniques could be applied [BarnesBS2.
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SMITE is in fact the name of the third phase, SCP3, project [isemanB6a,
Wiseman8b]. The name has been changed in recognition of the fact that SMITE
is u general purpose computer system and is not limited to network component
functionality as the term SCP3 might imply.

1.2. Technical Background

The SMITE proposals for secure system development have been influenced from
a number of sources which will be referenced throughout this document.

Our approach to policy issues has been profoundly influenced by the many
useful discussions and workshops which arose from the Clark-Wilson paper, "A
Comparison of Commercial and Military Security Policies" [Clark87]. The manner
in which this influences the SMITE approach is discussed fully in the next
"Overview" section, but briefly, the concept of the requirement for
consistency between the internal system state and the external environment,
presented in their model as the Separation of Duty concept. is shown to be the
fundamental security mechanism of not only integrity but confidentiality and
assurance in general.

Our modelling approach is basically that expounded in the seminal 'Mathematical
Foundations" paper of Bell-LaPadula [Bel173a], however our model, the notions
of confidentiality, the axioms, and techniques used are profoundly different
from those found in the later papers [Bell?3b,Bell74 and Bell?6]. Our

approach has been influenced from a number of sources such as Bell-LaPadula,
McLean [McLeanB7] and various information flow techniques such as
Non-Interf erence I Goguen8Z) and Separability [Rushby8 I •

The model is sufficiently powerful to express such notions, as well as those of
integrity exemplified by Biba [Biba77, Clark and Wilson's well formed
transactions and their formal notion of Separation of Duty within a consistent
framework.

Our approach to assurance issues of security polices, system designs and
implementations draws from discussions at workshops of the DTI's Commercial
Computer Security Centre and at a UK interest group on Integrity policies
formed because of interest in the Clark-Wilson paper.

The architecture and software development approach proposed is a direct

development of work by RSRE's CCZ division and is a capability architecture
supporting a first class procedure regime. [Foster82a, Foster8Zb, Foster83,
CurrieBZ, CurrieBS]

The existence of a team with the experience and inspiration to draw these many
disparate elements together into the SMITE proposals is entirely due to the
foresight and perseverance of RSRE's CCl division in maintaining the SCP
research program, which has produced convincing demonstrations of research
results such as SCPZ and DSS.

Introduction 2

• . ----"i .: - ...... .. . ..4



1.3 Structure of the Remainder of the Document

Section 2, Overview, is a fairly expansive, informal presentation of the overall
SMITE approach to security. It develops concepts of security from scratch and
relates these concepts to existing work and practice in an entirely informal
manner. The section therefore has a tutorial appearance giving background
material. Usually, after having described a section as tutorial, the
experienced reader is encouraged to skip the section and proceed directly with
the "meat" of the subject. In this case we strongly advise against this
approach for the folloing reason.

The flavour of the SMITE approach to security is that it is a coherent,
balanced approach to the whole problem of security but with no loss of riSour in
the approaches to individual aspects of security such as confidentiality,
integrity or assurance. Ultimately, it is our belief that the presentation of the
SMITE approach will satisfy all partisan readers that their area has not been
sacrificed for the sake of consensus.

In order to argue this in a document aimed at a general readership, it is
necessary that readers approach the arguments presented with their
preconceptions and connotations of words and phrases temporarily laid aside and
use only the definitions and concepts presented within this document. It is in
order to develop this frame of mind in the reader that Section 2 has been
provided. It is only when the complete presentation of the approach has been
thus read, and hopefully digested, that the readers should return to their
critical approach. By this means it is hoped that any criticism of the approach
is of a fundamental nature rather than the usual annoying misunderstanding of
terminology.

Section 3, Security Policy Model, presents the formal policy modelling approach
followed by a model and axioms which capture the concepts developed in the
Overview. The basic execution nature of the model is shown to consist of a
small number of basic transitions which can be embodied in a relatively small
number of transition rules. Allthough the model elements and transitions are
quite simple it is shown that it is sufficient to model complex applications and
general purpose computer systems.

Section 4, The SMITE Architecture, describes the underlying architectural
features which are required to implement the policy model. It then goes on to
describe the intended architecture for use in the SMITE project and describes
the correspondence between the architecture and the policy model in an
informal manner. In an operational development the correspondence would be
formally demonstrated by continuing the refinement of the model to design, to
implementation. The architecture proposed is believed to be the best available
for implementing the model and the informal presentation is actually felt to be
sufficient for the purposes of providing firm evidence that the model can be
implemented to high assurance.

Section 5, Future Plans, discusses future research and development which
could usefully be carried out to progress both the SMITE project and the
application of the modelling approach to a wider range of sy;tem and problems.

3 Introduction
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2. OVERVIEW

Because of the radical nature of the SMITE approach this section will attempt
to develop from scratch the notions of security which we hold as fundamental,
using only the intuitive notions in wide circulation. Our test of acceptability of a
notion, or defintion of a term, is the legal one of "the view of the man on the
Clapham Omnibus", represented by the English Dictionary.

In doing this we will relate these issues to existing work by presenting
interpretations of such works in the terms which we develop. While this leads to
a rather tutorial appearance it has the advantage that it allows us to discuss
our relationship to existing work without misunderstandings due to unstated
assumptions and connotations which experienced readers may bring with them.
Such readers may still disagree with our conclusions but the disagreements will
at least be on fundamental issues rather than details of the presentation.

OVERVIEW 4



2.1 What is SecuritW?

SMITE is an approach to producing secure information systems. This leads us to
ask what is security? A standard dictionary definition is as follows.

security n. 1 the state of being secure. Z assured freedom from poverty or

want .... Archaic carelessness or overconfidence

ecure adj. 1 free from danger, damage etc. 2 free from fear, care
etc ..... Archaic careless or overconfident. [From Latin securus free from
care, from se- without + cure, care I

This gives us the typical manufacturers view of a customer defintion of
security, "I want a system that I don't care about because I am assured that
it is free from all the etc's which might assail me in the future but which I
can't enumerate at the moment".

The archaic definitions of carelessness and overconfidence seem to shout out
from the past the dire consequences of such an approach and echo the concerns

of the modern prophets of doom, "No security is better than illusory security".

A sophisticated view of security in these terms can however be described as

assurance of freedom from fear of specified attacks against specified
elements of a system. To define security in these terms is a tripartite affair,

i. specify which properties of which elements of the system are
important,

ii. specify what protection from which attacks a threat analysis
requires,

iii. specify how much assurance is required that such defences are

successful.

Taken in its general English sense this definition of security is not at odds with
either military or commercial security practice.

2. 1.1 IIILITARY SECURITY

The military and government arena has in the past taken a more defintive
approach to security and attempted to codify and lay down standards for
secure systems. An impartial view of these attempts shows that quite naturally
they have emphasised a particular property, confidentiality, as paramount to
security.

In codifying these concepts the military have produced many formal definitions,
or models, of confidentiality. A dictionary analysis of this term will suffice for
our discussions here and is as follows.

5 What is Security



Canfidential adj. 1 spoken,written, or given in confidence; secret; private.
2 entrusted with anothers confidence or secret affairs.

Confidence n. 1 feeling of trust in a person or thing ....... 4 something
confided or entrusted. 5 In confidence as a secret.

Secret adj. I kept hidden or separate from the knowledge of others. 4
able or tending to keep things private or to oneself.

private adj. 1 not widely known; confidential; secret. [from Latin privatus
belonging to one individual]

Confidentiality from the above seems to be about knowledge of things and its
distribution amongst individuals.

The aspect of confidentiality that things are kept secret or private is an easily
stated and implemented requirement for the discrete identification of things and
ensuring that they are attributed to only one individual, an isolation policy.

policy n. 1 a plan of action adopted or pursued by an individual,
government, party, business, etc.

The assurance of such a policy can be very high because it is basically saying
that if you want something done in such a way that no one else knows about it -
do it yourself .

The notion that distribution of things amongst individuals is allowed "in
confidence" in the definition recognises that in reality this isolation policy is
not practical and that one is forced to delegate tasks. This problem of
delegating or sharing a task with others leads to a quite natural extension of
isolation policy as follows. If things are isolated and are secret, that is
private, known only to one individual, then if an individual can establish a basis
of trust in another individual he may pass knowledge of a secret thing to that
other individual.

In this light a generic confidentiality policy requires that things are isolated
and attributable to individuals, lays down the means by which a basis of trust in
individuals is established. ie that they don't pass on or leak secrets given to
them, and requires that things are not delegated to multiple individuals other
than as permitted by properly established trust.

Z. 1. Z COIIERCIAL SECURITY

Some have argued that impartial analysis of commerical security shows it to be
biased to a particular property, integrity.

a iIi
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integrity n. 1 adherence to moral principles; honesty. Z the quality of
being unimpaired; soundness. 3 unity; wholeness (see INTEGER).

Intage. n ....... Z an individual entity or whole unit [ from the Latin

untouched, entire from tangere, to touch]

honest adj. 1 not given to lying, cheating, stealing etc. ; trustworthy.

smounm 2 adj. I free from damage, injury, decay etc ...... 5 valid, logical
or justifiable.

Integrity from the above, and as it is normally used in the context of security,
is the notion that things have "desirable" properties such as that they are
undamaged, valid, unimpaired etc.

As with the simple secrecy or privacy notion of confidentiality addressing this
simple requirement can again be fulfilled w'th high assurance by a policy of "do
it yourself if you want it done right". In the same way therefore it is not
surprising that in reality this is not practical and we require a basis of trust
for delegating tasks.

Therefore a generic integrity policy requires that things are discretely
identifiable and attributed to an individual, lays down a basis for establishing
trust of individuals ie they don't damage it, render it invalid etc, and requires
that things are not delegated to multiple individuals other than as permitted by
properly established trust.

Z. 1.3 ESTABLISHING TRUST IN INDIVIDUALS

For both confidentiality and integrity, once we are beyond the "do it yourself"
syndrome, we are therefore concerned with establishing trust in individuals.
Thus individuals are "studied" or "investigated" to see if there are any past
behavioural traits of, or future predispositions to, engaging in activities which
are prejudicial to the properties of the tasks or information we are delegating
to them. Once this is done we can issue a certificate to individuals, and
appraise them of the properties or procedures which they must uphold when
handling the delegated task or information. For confidentiality individuals
therefore are required to label data correctly and only give it to individuals
who are cleared and have a need to know. For integrity individuals must not
defraud the company or allow others to do so.

In this way we are depending on the cooperation of all delegated individuals to
uphold the common aim of the policy, that is we assume they all share the same
objectives. Now while this is a reasonable assumption it only provides us with
assurance that our policy is being complied with to the level established by our
behavioural checks on individuals. Recognising that these checks are fallible,
that an individuals motivation to uphold the policy may change between checks
(assuming they are periodic! ), and that in a complex task being cooperatively
carried out by many individuals mistakes and oversights can occur, it is
reasonable that we seek additional assurance by arranging that the collective
system used by the individuals to achieve their common delegated task makes it
as difficult as possible to violate the policy. That is we seek to control the
actions of the individuals.

7 What is Security
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Obviously, if we control every action of every individual we are actually doing
the job ourselves which we know is secure but impractical. Therefore we must
leave individuals a degree of discretion in their actions but seek to limit the
damage caused by an errant or subverted individual.

Together, this "loose" control of individuals behaviour plus an a priori means of
labelling the degree to which individuals share objectives for the remaining
uncontrolled behaviour is the basis of trust which allows us to delegate tasks
to others.

The "them" and "us" of these and the following discussions should not be taken
to mean peer users of the system. The view we are taking is the wider view that
the Government, State, Nation, or Company delegates tasks to its citizens,
inhabitants, or employees etc but requires that the interests of the corporate
body is upheld. In the case of the government and its citizens those whose
interests are being protected and those who might subvert them are one and the
same population, in the case of a company it is the shareholders whose
interests are protected from management and employees, which may be a
disjoint population.

Inlividuals "Motivmtion"

For commercial or government sensitive but unclassified arenas a notion of
security enforcement based on individual background checks to establish an
individual's loyalty may be considered unacceptable because of concerns for
individual privacy and civil rights issues. Clark-Wilson have shown however, that
in the commercial sector this same goal is achieved in practice without
background checks because of implicit assumptions which can be formed about an
individuals "motivation".

The example that springs to mind is that a highly paid, career oriented manager
of a Bank is unlikely to collude with lowly paid counter clerks in a petty fraud.
Thus if transactions by the clerks require a final counter signature by the
manager, who is known to make random spot checks on the veracity of the
transactions, fraud by counter clerks is inhibited. Major fraud by the manager
alone is prevented by the Bank organisation which does not allow highly placed
individuals to carry out the basic transactions, only to countersign and check
them. Major fraud by the manager in collusion with his staff is also prohibited
by the paradoxical motivation of the clerks not to cooperate, "The big fish
never go to prison, its always the little guy who carries the can".

This notion of separation of duties amongst individuals who, by background
check, assumptions about motivations, or some combination of the two, can be
assured of carrying out a task without collusion to violate policy, is only
applicable to ensuring the integrity of tasks. Confidentiality cannot be ensured
by this means. For confidentiality it only takes one subversive or accidental
action by one individual to disclose a secret thus the more individuals that
acquire knowledge of it the greater the chance of disclosure. Conversely for
integrity, individuals able to complete the whole task may be subverted or
careless thus by ensuring that many individuals must cooperate in a highly
coordinated manner the chance of undesirable results is reduced.

Because of this divergence of properties it may not seem clear how these two
aspects, confidentiality and integrity, are coordinated into a coherent notion of
security.
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Z. 1.4 TOTAL SECURITY

The most obvious relationship of these two mechanisms is that while the only
reason for wanting a task of information processing to be carried out at all
presupposes that it will be done correctly, we require it to be carried out in
confidence. In other words confidentiality control supercedes integrity control.

In a system of confidentiality controls, if we are to avoid "doing it ourselves"
but at the same time retain assurance that confidentiality is upheld, we are
forced to implement the controls so as to make the worst case assumption of
the behaviour of individuals in terms of the sensitivity labels of information
they produce from initially labelled information. For this reason there is a
constant need to "trim" overclassified, generated information. If the system in
its application role within an organisation is taken into account, there also
arises needs to change the sensitivity labels of information in the machine to
reflect the changed perceptions of the environment. For these reasons there is
a requirement that individuals can change the control mechanisms that are
implemented to effect controls on individuals. There is obviously a requirement
for maintaining the integrity of these controls in the sense that an
inappropriate or fraudulent change is not made. In other words in practice
integrity control is a prerequisite for implementing confidentiality control.

In outline the basis of trust laid down by the system policy is that individuals
have two authorisation attributes, a sensitivity label and their identity, and all
objects manipulated by individuals similarly have two attributes, a sensitivity
label reflecting their contents and a history of the identities of individuals who
have modified them. Confidentiality says that in order to observe the contents
of something on the system the observing individuals sensitivity label must
dominate the observed objects sensitivity label. Integrity says that in order to
modify something the modifying individual must not be involved in the history of
the object.

Obviously there are supporting requirements to these, for example that labels
are updated to reflect contents and history of modifiers etc, but these are
the main pillars of the systems policies basis of trust.

In practice there is a third area of security which in reality is totally at the
discretion of the individuals as to how well it serves their purpose. This is
therefore usually referred to as discretionary security which doesn't mean
that it is not enforced by the system.

2.1.5 DISCRETIONARY SECURITY

Discretionary security is in reality an extension to the concept of the original
"do it yourself if you want it done right", isolation policy. If I generate
information on the system marked in a manner such that only I can observe or
modify it then, provided I have assurance that this works, I do not need to
concern myself with the adequacy of the systems confidentiality or integrity
controls.

This is simply the notion of access control list for objects, listing the
identities of individuals who can observe or modify them. If the system creates
all objects such that the creators identity is the only one present in the initial
list for the object then no onr else can access the object. Those who wish or
have to risk the threats of sharing and cooperating with others can extend the
access control list of objects "safe in the knowledge" that the confidentiality
and integrity constraints of the system will limit their risk exposure.

9 What is Security



In reality, unless the individual built the system from its RadioSpares parts,
toggled in every binary bit of a monitor and bootstrapped up to the final system
of compilers and application task software, the individual is dependent on the
classification and separation of duty aspects of all those involved in producing
and running the system he is using, even a standalone PC.

However, discretionary security can be used within a system policy of
confidentiality and separation of duty to enforce useful mandatory aspects of
an application policy. For example, the cheques in the Bank example have to be
countersigned by the Bank manager, not just someone who is not a counter
clerk, such as the catering staff! This is an additional application specific
constraint above the system policy of separation of duty.

2. 1. THE SMITE APPROACH TO TOTAL SECURITY

The SMITE notion of security is for a general purpose computer system,
including user programming, which embodies a system policy of confidentialty
and separation of duty. Discretionary security is considered an additional
application specific aspect which does not violate the system policy. The model
presented in section three includes a single access control list element to show
how this feature integrates with the system policy.

2. 1. 7 ASSURANCE OF SECURITY

It is rather a long time since we have heard any views from the Clapham Omnibus

as opposed to proponents of this or that model. So....

assurance n. 1. a statement, assertion, etc, intended to inspire confidence.
2. a promise or pledge to support. 3. freedom from doubt; certainty. 4.
forwardness, impudence. S. (Chiefly Brit. ) insurance providing for
certainties such as death as contrasted with fire or theft.

insurance n. 1. a. the act, system, or business of providing financial
protection for property, life, health, etc., against specified
contingencies, such as death, loss, damage, and involving payment of
regular premiums in return for a policy guaranteeing such protection. 2. a
means of protecting or safeguarding against risk or injury.

Taking rather liberal interpretations of these terms in the context of computer
security we would characterise the current approaches to assurance as being
heavily weighted to the provision of certainty by means of insurance, that is a
guarantee. For many the Basic Security Theorem of Bell-LaPadula, being an
inductive proof, provides an absolute guarantee and any formal notion of
security which falls short of this is unacceptable. Our expression of a notion
of security emphosises the ultimate reliance on fallable human assumptions of
clearances, and shared objectives and provides a method, separation of duty,
which increases the probablity of success of those objectives. In this it falls
short of an insurance guarantee. However, by expressing the iotions clearly
and unambiguosly by means of a formal model we can provide assurance in terms
of providing a statement or pledge intended to inspire confidence within clearly
defined boundaries and dependencies.

What is Security 10



III

The degree to which the differences of these approaches are perceived as low
or high assurance must always remain a subjective decision of the reader. Our
policy approach may appear as an insurance policy hedged around with small
print escape clauses whereas Bell-LaPadula is a bold assertion of guarantee.
To continue the analogy however we can argue that in reality the bold policy has
been renowned for "not paying up claims" and has led its holders into
precipitous action beyond that which could legitimately be expected. In
constrast our policy leads to an honest appraisal and acceptance of risks.

The main area of precipitous action is that Bell-LaPadula is really only a
cast-iron policy in applications where subjects and objects and their levels are
static, with information flowing amongst them according to the simple inductive
rules. In any system where these preconditions are violated, which includes all
practical systems, the system is in reality dependent on the "correct"
behaviour of cooperating "trusted processes". The statement of this
correctness and the nature of the dependencies is not addressed at all within
the Bell-LaPadula model. It is this major deficiency which our modelling
approach attempts to address. The apparently small part played by the
inductive nature of the model in our approach is thus not a fault of our notion of
security but results from exaggerated emphasis of its role in Bell-LaPadula.

11 What is Security

t4.... ...... ...

... •. . . . .l.I.I.. .I I



3. SECURITY POLICY MODEL

The SMITE Security Policy modelling approach is a state transition based model

which can express notions of security such as government confidentiality,
integrity issues. and commercial policies with equal facility and in a coherent
manner.

The approach is suitable for use in high assurance systems where proof of

consistency with security axioms is required and can be refined to
implementation in a straightforward manner for the SMITE architecture.

SECURITY POLICY MODEL l

=7



3.1 Basic Model ing Approach

The model is based on a simple state transition machine. It thus consists of two
major parts, a definition of the state elements and a definition of the state
transition rules.

The model elements are relations on abstract sets of entities and attributes.
These are represented by the following 2 types.

[EA]

The machine can be pictured as a set of entities and attributes with a subset of
attributes associated with a subset of entities. There will be some attributes
not associated with any entities and some entities with no attributes. The
association is a relation in that many entities may be associated with a single
attribute and a single entity may be associated with many attributes.

The Relation F

U E

Attribute I
* Entity

This is the relation F : E " A.

Intuitively these elements are interpreted as representing a computer system
as follows. Entities are considered to represent the active and passive
components of the system which are visible to each other and can be detectably
changed by other entities, for example one may think of active entities as
processes and passive entities as directories etc. Attributes are considered to
represent immutable components of the system which are only visible, or can be
"accessed" by, some subset of entities. Thus if one thinks of attributes as
write once files a file may only be accessed via the directory in which it
resides. Many directories may have links to a single file etc. The relation F
captures the notion of which entities have access to which attributes.

A simple bare machine could be represented as a number of process shells and
some memory segments. These would be active and passive entities because
they may change. The attributes of the system would be the integer values
stored in the memory and process registers. Integers do not change, they are
merely replaced by other integers using store operations.

13 Basic Modelling Approach
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Only entities and attributes in the relation F are considered to "exist" on the
system. Adding or removing elements to the domain and range of F is regarded
as creating or destroying processes, directories and files etc.

Intuitively one may think of entities containing the addresses of attributes and
thus the notion that the only thing that changes in the model is the relation F,
and the concept that entities "change" can be linked. The components of a
system that exist are addressed by some other component of the system hence
the state of the machine at any time can be captured by the relation F.
Formally of course attributes and entities are simply inscrutable members of
the given sets and do not have a notion of structure or change.

These notions are represented formally by a schema describing the machine
state.

F: E."A

The requests that can be made of the machine to change state are thuis defined
in terms of the state elements and are considered to originate from an entity.

requestor : E
request : V

Intuitively this can be read as an entity, "requestor", requesting that the
machine state be modified with the state components given by "request".
Adopting the notion of a requestor represents the decision that we are modelling
purposeful. directed state transitions and not spontaneous processes of
nature. The "request" component represents a subset of the machine state
accessible to the "requestor" which are essentially the parameters of the
request. A request result in three basic state changes. The request may
"create" new entities or attributes in F, it may add or remove mappings between
existing entities and attributes, or it may "destroy" existing entities or
attributes by removing them from F.

The set of decisions that the state machine can make in reponse to a request
are defined as

D e { "yes","no"}

The set of valid state transitions that a system can make is represented by a
state transition relation defined as

_1

r? : R
d! :D

vv' . V

r7 .requestor a dom v.F
r?.request.F c v.F

Basic Modelling Approach 14
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The choice of decision made by the machine in reponse to a particular request in
a particular state are considered as subject to state transition rules

~represented by

r? Riv~v ' :IV
A system design will def ine a set of such rules f'or the system each differing in
the constraints expressed in its predicate. For the model to be of use it is
important that its behaviour is predictable. To this end the set of rules must
define W in such a way that only one rule can cause a state change for any
request in any state. Thus permitted transitions are of the following form

Transition
W

U : bag p

U rule : p I rule.r? = r? A rule.v v A rule.v' v'

( w( rule ) = 1 A d! = "yes" )
v ( u( rule ) = 0 A d! = "no" A rule.v' = rule.v

This states that the system response is "yes" and the resultant state is a
request permitted by a single rule, or, if no rule is applicable the response is
.no" and no change of state occurs.

The behaviour of a particular run of a system defined by W and an initial state,
zO, can be recorded in terms of its sequence of inputs, outputs and states.
Such a record is called an appearance of the system.

Appear ance

permitted P Transition
x seqR
y seqD
z :seq V
zO V

x= Ny = #Z

V n:N i2 5 n ; #x .
3 t permitted .

t.r7 = x(n) A t.d' = y(n) A t.v = z(n-1) A t.v' = z(n)

3 t permitted •
t.r? = x(1) A t.d! = y(1) A t.v = zO A t.v' = z(1)

We use this modelling approach to describe the required security behaviour of
computer systems.

1S Basic Mlodelling Approach
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3.2 The Elements

To use the model for our approach to security requires that we refine the
components of the system state relation F.

First we require a set of classification/clearance attributes which define the
mandatory basis of trust; labels for entities.

CLASS :F A

Second we require an attribute which designates whether a requestor entity is a
process initiated by a user and which may be assumed to contain Trojan Horses
or whether it is a trusted process, created by the system, running trusted
software which faithfully represents the intentions of the individual; the
trusted path.

TRUSTED :F A

Third we require a set of unique identifiers for individuals for use in separation
of duty control. This element is also used for discretionary security aspects.

ID : PA

Finally, all other attributes are assumed to be information attributes as

required to carry out application tasks.

These sets are used by the following relation and function subsets of F.

Class is a partial function giving the classification/clearance of an entity.

Id is a partial function giving the identity of the individual for which requestor
entities are acting and other entities have been created.

Trusted is a partial function defining whether a requestor is the individual's
faithful proxy or an active entity of unknown predilictions.

Mods is a relation giving the identity of entities which have requested changes
to an entity.

Acl is a relation giving the identities of entities which are permitted to observe
or change an entity and represents discretionary security aspects.

The system state of the basic model is thus unchanged, but we have provided a
nomenclature for examining components of the state.

F E. A
Class E CLASS
Id :E ID
Trusted E .n TRUSTED
Pods :E.. ID
Acl :E ID

F : Class U Trusted u Mods U Id U Acl

The Elements 15
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The set of classification labels are formed into a lattice in the usual manner.

T,i. CLASS
_ : partialorder( CLASS

lub . ( CLASS CLASS ) CLASS
LUB_ : CLASS - CLASS

d 11,12 CLASS; Is : P CLASS
T 11

11 Z
11 lub 12 z 11
11 lub 12 a 12
U 1 CLASS I I Z 11 A 1 a 12

1 • 11 lub IZ
I 1 is.

LUB Is z 1

The sets of attributes are not required to be disjoint. This is because it may be
useful to consider that different active entities consider an attribute to be
different things. However, it may be necessary to restrict this to make
analysis tractable.

17 The Elements
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3.3 The Axioms

The model is a state transition model and the axioms expressed fall into two
interdependent types, state axioms and transition axioms. The state axioms are
constraints on the domain of the state elements such that the transition axioms
are complete. In all cases the first transition axiom is that the state axiom is
upheld in order that the inductive sequence of states is complete. Because the
state axioms are upheld inductively by the first state transition axiom the
state axioms are effectively constraints on the initial state only.

The model axioms are presented in two stages. For the first stage, each
aspect of security, Confidentiality, Separation of Duty, and Discretionary
Access. are considered separately. In the second stage the separate axioms
are condensed into the "real" security axioms of the model. The axioms for the
three areas do not standalone and thus close examination of these in isolation
may unsettle ones intuitive notion of security. These standalone versions have
been presented to aid initial comprehension and may lose some rigour because of
this, thus all close examination should be constrained to the final set of
axioms.

3.3.1 CONFIDENTIALITY

Confidentiality is concerned solely with the Class and Trusted subsets of F.

The Secure State Axiom

A general notion of the execution of the model is that only entities and
attributes in the relation F "exist" on the system. For this reason Class is a
partial function because not until an entity has been "created" with some
attribute "contents* can we decide its appropriate classification. For our notion
of security control we require that all entities which "exist" are classified so
that the transition axioms, which decide appropriate classifications for
entities, are comolete. This requirement is expressed as a state axiom.

The Secure State Axiom

Vv: V.
dam v.Class = dom v.F

Trusted is a partial function, not only because of the execution notion above
but more fundamentally because not all entities which exist are active entities
faithfully representing the behaviour of individuals in the requests that they
issue. We have no state invariant or initial state requirement on trust but
obviously, as with all initial state aspects. it must be appropriate for the
system it generates.

The Secure Transition Axioms

The first transition axiom is trivially that the Secure State Axiom is upheld,
that is, that all entities in the new state are classified in the new state.

(i) Uphold the SSA

U t : Transition
dam t.v'.Class doa t.v'.F

We view a classification as a ceiling on the authority to observe the contents of
classified entities which we are modelling as attributes.

The Axioms 18
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In terms simply of our entity and attribute relation F, which subsumes all other
aspects of the system, we can define the notion of observe as follows.

A requestor nominates a subset of the machine state in a request for a state
transition which results in all of the entities in the domain of the subset being
"observed" and possibly some of them being changed. An entity has changed if
it has attributes it did not posses before the state change.

Thus our axiom for observe access to entities is as follows.

(ii) Raquestor domintas all Observed Entities

U t : Transition; e : E

e e dam t.r?.request.F

t.v.Class(t.r?.requestor) a t.v.Class(e)

Untrustworthy entities running on behalf of individuals may include Trojan Horse
software which attempts to signal secrets to lower levels by changing the
system state in a manner which can be detected by lower level entities. To
prevent these contingencies we require a third axiom which uses the trusted
notion to restrict all such changes to the trustworthy entities running on behalf
of the individual. Changes which can be detected by an entity are the change of
attributes of entities it can observe and the creation and deletion of entities in
general.

iii) Untrusted Requestor Does Not Signal Downwards

U t : Transition I t.r7 .requestor 9 dam t.v.Trusted
Higher 4 t.v'.F = Higher 4 t.v.F
dam t.v'.F dam t.v.F

where
Higher {e : E I t.v.Class(e) z t.v.Class(t.r?.requestor)}

This axiom can be circumvented by an untrusted entity modifying the trust
relation of the system to mark itself or some other entity as trusted.
Therefore we must include the notion that only trusted entities can engage in
transitions which modify the trust relation.

(1v) Untrusted Requesters do not Change Trusted

Ul t : Transition It.r?.requestor 9[ dam t-v. Trusted•

t.v.Trusted= t.v'.Trusted

These axioms do not prevent an individual from entering secrets and downgrading
them to unclassified, nor do they prevent an individual raising his or someone
elses clearance, if such a transition rules exists in the system. This may seem
a little radical and insecure. Note however that an individual by the very notion
of his clearance is trusted not to declassify classified material so this is

maybe not so radical for most downgrade opportunities. However, most real
world policies would not let a single individual make a radical change, say more
than one level, or a change in material above a certain level without
confirmation from another individual. This is concerned with the protection of
the integrity of classification labels against fraud by a subverted individual.
Thus this is properly the concern of separation of duty and not confidentiality
axioms. Similarly an individuals clearance is not a matter of his own choosing
but is subject to separation of duty

19 The Axioms
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3.3. 2 SEPARATION OF DUTY

Separation of Duty is concerned with the Id and Mods subsets of F.

The Secure State Axiom

Entities are created on the system at the behest of individuals in order to
achieve their alloted task in cooperation with other individuals. Thus all
entities can be considered to be "owned" or "instigated" by an individual. The
partial function Id is the model representation for determining this identity.
The function is partial because not all entities "exist" however we require that
all entities that exist are attributed an individuals identity.

Mods is a relation giving the identities of all individuals whose entities have
been involved in changes to the entity. Creation of an entity is counted amongst
our definition of a changed entity, thus all existing entities have both an Id and
a Mods giving us our secure state axiom as follows. Note that the initial Mods of
a created entity does not necessarily include the same identity as the Id.

The Secure State Axiom

dom v.Id = dam v.F
dam v.tMods = dam v.F

The Secure Transition Axioms

As usual we must uphold the SSA.

(v) Uphold the SSA

U t : Transition
dam t.v'.Id = dam t.v'.F
dam t.v .Mods= dam t.v'.F

Separation of Duty says that changes to an entity can only be undertake.I by an
individual who has not been previously "involved" with changes to the entity. We
can observe that there are many different interpretations of the word
"involved" which lead to separation of duty constraints of varying "strength".

For example, if we simply record in the Mods of an entity the identity of all
requesters, obtained by Id, who have changed the entity and require that the
identity of the new requestor, also by Id, is not in that list we have an
apparently strong definition of separation of duty.

The Axioms 20
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However, if the requestor has been instigated under a new Id by a previous
modifier of an entity we would in the real world regard him as a "front man"
instigated soley to avoid our check. It may be thought that we could require an
axiom that all transitions maintain the correctness of Id, that is a process
which allocates another process cannot pretend that the new process is
someone elses. This is precisiely the transition made by the "login" process of
a general purpose computer system, which is why we said that Id and Mods of a
new entity are not always the same. Therefore a stronger definition of
separation of duty is that the list of those involved with the requestor entity,
its fods, must not share any members with the list of those involved with the
entity to be changed, also by Mods. Thus we have not just a "broker" but an
"honest broker". This approach would not let the system log on the programmer
wno wrote the login program, or any other system programmer who wrote any of
the software involved in getting from the bootstrap stage to the running of the
login process!

There is an even stronger form of separation of duty. If the attributes which a
requestor uses to change an entity are obtained from entities which are involved
with that entity some form of influence may be exerted on the "honest broker"
requestor. That is, if those involved with an entity can restrict the choice of
changes the honest broker can make separation of duty may still be subverted.
Thus for the greatest assurance we require an honest broker who is subject to
no preconditions by either side. This form of separation of duty would not allow
the login process to log on someone who had changed the datafile read by login
in order to assign initial clearances etc to the new entity.

This, the strongest form of separation of duty requires a history of changes
defined as follows.

(vi) Record History of ell Changes

Ul t : Transition .
t.v'.Mods( Changed I =

t.v.Mods( Changed I U
t.vMods( {t.r?.requestor}) U
t.v.Mods( Observed I

where
Changed a {e % E I t.v'.F({e}I s t.v.F({e})}
Observed a dom t.r?.request.F

Under this definition the history of changes of an entity recursively includes
all the identities of those who changed the requestor and not simply the
requestor.

Strict Separation of Duty uses this history as follows.

(vii) Strict Separation rf Duty

fd t : Transition
t.v.fMods( {t.r?.requestor} ) n t.v.Mods( Changed ) = {}
t.v.Mods( {t.r?.requestor} I n tv.Mods( Observed I = {}
t.v.Mods( Observed n n t.v.Mods( Changed ) {}

where
Changed a (e : E I t.v'.F({e}) P t.v.F({e}M}
Observed a dom t.r?.request.F

Unfortunately this definition is too strict!
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Consider a secure initial state. The initial process has an Id and a Mods. The
only possible behaviour which it can engage in under this definition is to observe
himself, a transcendental meditation fanatic. While a life of meditation is fine
for Nirvarna back on earth we have to get things done. In order to achieve this
we can relax the strict interpretation of separation of duty, or, relax the
definition of the labelling requirement, or, both.

Note that these relaxations involve the transition rules being exempt from
aspects of the axioms and not individual request ors.

For each transition rule in a system design :i.ich is relaxed the designer must
be prepared to show, and the procurer agrer. that the relaxations are
justified in pursuance of the procurers stated r~quirements, and that no
transitions counter to the procurers requirements are accidentally admitted.

Thus the definition of Strict Separation of Duty is a good starting point to
negotiate down from, if you have to. The task of enumerating all state
transitions and making these justifications may seem so onerous and error prone
for a complex system, that the notion of some form of separation of duty adds
nothing to assurance of security. Firstly, we can admit this is true but it is
true of a Bell-LaPadula system where the formal guidance ends at "if levels
change then its a trusted process", with no means of assessing the comple,
interactions of many trusted processes, each making intuitively "safe"
exceptions to the axioms. Secondly, and more constructively, we will show that
the use of typing as an approach to structuring the entity-attribute relations,
and their associated transitions, does increase assurance of an otherwise
complex task.

For confidentiality we appealed to the notions of separation of duty to act as a
basis of trust which upholds elements of the system upon which confidentiality
rests, integrity of the sensitivity labels. Relaxing the separation of duty
constraints for transitions similarly requires a basis of trust to which we can
appeal. This is commonly vested in the final authority of a particular individual
or group of individuals.

Consider the example of the initial assignment of clearance to individuals from
the original confidentiality aspects of the model. This is usually carried out by
cleared individuals, who may be lower than the clearance which is to be
assigned to the individual under investigation, who have no connection with the
individual, and who are the delegated individuals whose job is to assign
clearances to people. This last aspect is important. By the particular
identity, Jones of the Ministry of Clearances, bolstered by separation of duty
and some minimal degree of trust, it is possible for a clearance to be assigned.
A lowly cleared, independent teaboy from the Ministry of Agriculture and
Fisheries, could not grant an individual a clearance even though he satisfies
separation of duty, confidentiality, and trust.

This aspect of security is commonly called discretionary security.
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3.3.3 DISCRETIONARY ACCESS

Discretionary security is commonly associated with the notion of a requestors
identity and a list of permitted identities associated with each accessed entity,
an Access Control List. It is called discretionary because deciding the contents
of an Acl is left to the discretion of some individual. Note this discretion is not
for any individual but "some" individual. Thus altering an Acl is subject to some
other Acl etc. It is precisely because of the difficulty of predicting the
possible behaviour of a system based entirely on the discretion of a large
number of individuals modifying Acl's that the "loose" control notions of
classifications/clearances and separation of duty were introduced. The fact
that we end up appealing to such notion in order to close a notion of
confidentiality dependent on a notion of separation of duty appears to imply
that the notion of security we have defined is based on a circular argument.
This is not so only on a "well designed system" where the individuals responible
for closing the systems notion of security are not the same as the individuals
being subjected to those controls, an ultimate application of separation of
duty. On a well designed system the notion is a hierarchy with the top
individuals ultimately trusted and responsible for the safe operation of the
system. If the system manager is also one of the delegated workers the fact
that a model of this is a vacuous circular argument should not come as a
surprise because that is exactly what the security of such a system is -
vacuous.

For those who find this notion of security a little radical it is possible to add
further constraints which reduce the assurance task by reducing the
functionality of the system permitted. For example, if the model is constrained
such that the Class partition of F doesn't change this model is equivalent to
(original) Bell-LaPadula (Bell3a]. We will now formalise the notions of
discretionary security and then combine the axioms of all three aspects of
security into a single set of axioms.

Discretionary access is concerned with the Id and Acl partitions of F.

The Secure State Axiom

For simplicity we will consider a simple Acl for all entities which when initially
created contains only the Id of the created entity. Inclusion of another
identity in the Acl by the "owner" allows the new identity equal rights to the
"owner", that is it too can modify the Acl. It is in this aspect that the example
is simpler than the real aspects of discretionary access control.

Acl is a relation because many entities may be granted access. It does not
make sense for an entity to have an "empty" Acl as it would simply linger
around the system to no avail. Thus our secure state axiom is that all entities
are labelled with the identity of an individual and an access control list.

23 The Axioms



The Secure State Axiom

Vv: V.
dom v.Id = dom v.F
dom v.Acl =dom v.F

The Secure Transition Axioms

As before our first transition axiom is that all state transitions uphold the
state axiom.

(viii) Uphold the SSA

U t : Transition .
dom t.v'.Id = dom t.v'.F
dam t.v'.Acl dam t.v'.F

In an analogous fashion to confidentiality, access to an entity involves
observing its contents or modifying its contents. Our simple example of access
control requires that the identity of the requestor is in the Acl of all observed
and changed entities.

(ix) Requestor Is a member of observed entities Acl

V t : Transition; e : E

e e dom t.r?.request.F

t.v.Id(t.r?.requestor) e t.v.Acl(l e})

(x) Requestor is a member of modified entities Acl

U t : Transition .
U e : Changed le e dom t.v.F

t.v. Id(t.r?.requestor) e t.v.Acl(1 e}
where

Changed e -( : E I t.v'.F( {e} ) 0 t.v.F( (e} }

Note that this example provides an all or nothing control from the point of view
of the owner of an entity. Once access is provided to other individuals they may
freely propagate access to others because modifying the Acl of an entity is not
distinguished from modification in general. Combined with the confidentiality
axioms the propagation is limited by classification/clearance and Trust
aspects. Further constraint is properly the subject of separation of duty
control as we are essentially concerned with the integrity of the Acl.

T i
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3.3.4 THE COM1BINED NOTION OF SECURITY

The Secure State Axiom

This is a straightforward collecting together of the individual aspects.

ITie Secure State Axiom

dom v.Class =dam v.F
doe v.M1ods =dam v.F
dam v.Id =dom v.F
dom v.Acl dam v.F

The Secure Transition Axioms

The first of these is a straightforward collection of the axioms required to

uphold the secure state axiom.

(i) Uphold the SSA

U t :Transition
dom t.v'.Class =dom t.v .F
dam t.v .flods =dom t.v' .F
doe t.v'.Id =doe t.v'.F
dam t.v'.Acl dam t.v'.F

We next collect together all those aspects of security expressing constraints
on the relationship between the requestor and the observed entities.

(ii) Observed

V t :Transition; e :E

e is doe t.rl?.request.F

t.v.Class(t.r?.requestor) a t.v.Class(e)
t-v.Mods({t.r?.requestor}) n t.v.Mods( {e} ={
t.v.Id(t.r?.requestr) et.v.Acl( {Ce}

This states that the requestor must dominate all observed entities in Class for
confidentiality, have had no previous involvement with them in Mods for
separation of duty, and be permitted access in Adl for discretionary access.

Similarly we can collect all those aspects of security coverning the requestors
authority to change objects.
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(iii) Changed

Id t : Transition
U : Changed

e e dam t.v.F

t.v.Id(t.r?.requestor) e t.v.Acl( {e} )
t.v.Mods({t.r?.requestor}) n t.v.Mods( {el ) = {}

t.v'.Mods({e}) =
t.v.Mods({e}) U
t.v.Mods({t•r?.requestor}) U
t.v.Mods( Observed )

where
Observed a dom t.r?.request.F
Changed e {e : E I t.v'.F( (e) 3 t.v.F( (e) ) }

This states that for all changed entities if the entity is modified as opposed to
created the requestor must have had no involvement with it in Mods for
separation of duty and must be permitted in Acl for discretionary access. A
post condition is that for modified or created objects the requestors and
observed entities involvement must be recorded in Mods.

These are essentially the main axioms of security. The remaining axioms are
secondary axioms supporting the intent of the main axioms by preventing
behaviour which subverts the intention of the policy.

The first of these is that creation/destruction of entities and modifications of
lower classified entities can be used by untrusted software executing on behalf
of an individual to covertly signal information counter to the policy. These
transitions are therefore constrained to Trojan Horse free software and hence
to the individual who will not signal unless subverted, in which case an individual
has better ways of violating policy than covert channels. This is the trusted
path concept.

(iv) Untrusted Requestor Does Not Signal Downwards

V t : Transition
t.r?.requestor ; dom t.v.Trusted

.-0
Higher 4 t.v'.F = Higher 4 t.v.F
dom t.v'.F = dom t.v.F

where
Higher _ {e : E I t.v.Class(e) a t.v.Class(t.r?.requestor)}

As this is dependent on the notion of trusted path it is imperative that this
designation is not bestowed by untrusted entities upon themselves.

Cv) Only Trusted Requestors Change Trusted

U t : Transition I t.v' .Trusted * t.v.Trusted
t.r?.requestor e dom t.v.Trusted

In reality this transition would be subject to additional constaints of separation
of duty and discretionary security but the requirement that an individual is
accountable for designating entities as Trojan Horse free requires Trusted as
the basic prerequisite.

Finally for Strict Separation of Duty the observed and changed entities must be
uninvolved with each other in addition to mutually uninvolved with the requestor.
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vi) Strict Separation of Duty

I t : Transition; oece : E

oe doam t.r?.request.F
ce e (a : E I t.v'.F({e}) t.v.F({e})}

t.v.Mods( {oe} ) n t.v.Mods( {ce} = {}

3.3.S SLIUMARY

The notion of trusted process as the basis for allowing policy enforcing yet
axiom breaking transitions has long been recognised as too broad a control for
Bell-LaPadula based systems. The use of separation of duty on such transitions
has hopefully been used for such processes in existing systems but by adding
the separation of duty notion formally to our model it makes explicit the desgn
decisions which are made and their effect on the system behaviour. Unlike the
simple notions of security these aspects of the system design cannot be proven
consistent by a simple inductive approach. The model however cannot be said to
be less secure than a Bell-LaPadula based model even if the extra assurance
of a formally stated but "unproven" control is rejected.

The model has dispensed with the notions of *-property, Hierarchy,
Compatability and Tranquility etc of later examples of Bell-LaPadula modelling
and has retained the simple elegance of the basic approach.
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3.'? The Rules

If we consider the generic case of the attribute relation F : E t A , the state
transitions that can be made can be categorised according to their effects on
the domain, range, and mapping of the relation.

To aid the intuitive understanding of the appropriateness of transitions
individual transitions should consist of the smallest single modification required
for modelling events.

The total number of possible modifications can be generalised to the nine
combinations of augmenting, diminishing or leaving unchanged the domain and
range of F.

RANGE

= + -

Propagate Create Destroy Change i
Attribute Attribute Attribute

D (gain/lose)o
Create
Entity ? ?A

I

N Destroy
Entity

Generic Modifications of F

The combinations named are the minimum transitions for carrying out all
modifications of F. The four marked query are valid transitions but can be
expressed in terms of two of the named transitions applied sequentially, they
are thus not "primitive".

In order to preserve the notion of primitiveness of transition rules, the four
create/destroy transitions include the notion that the mappings of uninvolved
entity-attribute pairs remains unaltered, as again such a transition can be
modelled as the sequential application of a create/destroy and a propa9ate
transition if required.

Again in the interests of simplicity the two propagation transitions are limited to
the notion that entities lose or gain references to attributes in the possesion
of other entities without affecting the relationship of those other entities. The
notion of attributes moving from entity to entity is again not primitive as it can
be modelled as gain/lose sequential transitions.

Because of the model concept of functional subsets of F which are subject to
state axioms, such as Class, it is necessary to have a simple transition which
changes an attribute, ie a combined loss and gain of an attribute.
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Thus all possible state transitions can be considered as combinations of these
seven basic transitions.
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3.4. 1 THE SEVN BSIC TRANITIONS

The Fur Crutea/Omutroy Transitions

Creation of entities is defined as a change of state where one or more new
entities mapping to one or more existing *ttributes are added to the system
state relation.

CreateEntity

r? :R
d! •D

v,v' V

v'.F v.F
dom(v'.F - v.F) n dam v.F = 0
rng v'.F = rn v.F

Destruction of entities is defined as a change of state where one or more
entities, possibly with some of their attributes are removed from the state
relation, with the mappings of the remaining entities and attributes unchanged.

DestroyEnt ity

r? :R
d! ."D

vv : V

v'.F c v.F
dom(v.F - v'.F) n dam v'.F = "}

Creation of attributes is defined as a change of state where one or more new
attributes, mapping to one or more existing entities, are added to the system
state relation.

CreateAttribute

d! :D
v,v' :V

v'.F m v.F
dom(v'.F - v.F) r dam v.F
rng(v'.F - v.F) n rng v.F c rng(v'.F - v.F)

Destruction of attributes is defined as a change of state where one or more
attributes are removed from the state relation but all entities remain and their
mappings to the remaining attributes are unchanged.

D estroyAttr ibute ______________

r?: R

v :V

doa v.F doa v'.F
rng(v.F - v'.F) n rng v'.F c rng(v.F - v'.FJ
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The Two Propagation Transitions

The notion of entities gaining mappings to attributes is defined us a change of

state where new mappings do not involve the gain of new attributes or entities.
GainAttribute ______

r? :R
fd! :0

v,v' :V

v'F m v.F
dom(v' .F - v.FJ r. dam v.F
rng(v'.F - v.F) r. rg v.F

The notion of entities losing mappings to attributes is defined as a change of
state where mappings that are lost do not involve the loss of attributes or
entities.

LoseAttr ibute _______Fr?: R
d' :0

dam v.F =dam v'.F
rng(v.F -v' .F) r. mg v' .F

The Functional Change Attribute Transition

The concept of attributes changing is defined as a state change where some
entities have lost and some have gained attributes.

ChangeAttribute

r? :R

v,v' V

dom v.F = dam v'.
rng v.F = rng v'.F
G} c (v.F v'.F) r. v.F
{0- c (v'F -v.F) r. v.F

Analysis shows that these seven transitions have mutually exclusive
preconditions and can therefore be made the subject of seven basic rules which
fulfill the model requirements for Transitions.
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3.4.2 UPHOLDING THE SEJLITY AXMM

In reality a system designer could propose a set of state transition rules of
any complexity desired, provided the effort was expanded to show that it
upholds the axioms of the model. The purpose of considering all transitions to
be combinations of a limited number of simple transitions is to aid in the
synthesis of the system design in a manner which increases the likelihood of
producing a consistent set of rules which can be shown to uphold the axioms.

Ultimately this approach does not reduce the bu-den of proof significantly but
it does increase the confidence that the proof effort will succeed and it does
structure the design and proof effort in a logical manner. The advantages of
these two points should not be underestimated in a system design of any
significant size or complexity.

One obvious logical structuring approach to aid the intuitive understanding of
the system is to consider the security requirements for each of the primitive
transitions applied to the overt information subset of F.

An Intuitive Structuring of The Transition Rules

The first point to consider is that the primary purpose of creating entities and
attributes comprising a system is to achieve some application task. The Class,
Id, Trusted. Acl, and Mods subsets are thus all additional paraphenalia
consequent upon this primary goal of manipulating information by a number of
delegated individuals. In this task it is entities which model the mutable,
shared aspects of the system which these individuals manipulate. The
individuals are modelled by entities distinguished by the Trusted function.

Thus creating or destroying an entity are the primary events for which
consequential changes in the Class, Id, Trusted, etc relations are required.
The creation/destruction of entities falls into two classes, that concerned with
active entities, the individuals and proxies which they instigate, and passive
entities. the system structures which the active entities manipulate.

Having established a structure of active entities sharing access to passive
entities the task of manipulating information can begin.

This is represented by the creation of attributes by active entities, which may
be the distinguished entities representing individuals or proxy processes
instigated in turn by them. their propagation around the passive entities and
finally their destruction when no longer of use. The bulk activity of this
processing, by means of CreateAttribute, DestroyAttribute, LoseAttribute, and
GainAttribute, is constrained by the transition rules' observation of the axioms
with respect to the existing contents of the controlling attribute relations such
as Class, Id, flods etc.

A small part of the processing activity may involve changing the control
attributes themselves, but only as required to enable the main processing
tasks to be accomplished without violation of the security policy.

With this simple overall intuitive structure to guide us we will now examine seven
basic rules corresponding to the seven transitions and show how they uphold the
axioms and investigate what degrees of freedom are left which enable them to
still model useful functions of a general purpose computer system. This is not
meant to be an exhaustive specification of a computer system but does
demonstrate how the approach can be applied in practice.
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The Create Entity Rule

The create entity transition rule will exist in many variants representing the
combinations of the various degrees of freedom in the control attributes of the
new entity.

CreateEntity ________________________

r?:R
v'v' V

r?.requestor e dom v.F
r?.request.F c v.F

v'.F m v.F
dom~v.-F - v.F) n dom v.F {}
rnglvF - v.F) r. mg r?.request.F

do. v'.Cless - dom v'.F
dom v'.Id - do. v'.F
dam v'.Acl - dam v'.F

Ue :Observed
v.Class(r?.requestor) a v.Class(e)
v.Mods({r?.requestor}) nl v.Mods( (el I -(I
v.Id(r?.requestor) e v.Acl( {e} I

Ue :Changed
v'Jlods( {e} l

v.Mods( {(r'.requestor} ) U v.lods( Observed

r?.requestor a do. v.Trusud

Higher 4 v'.F - Higher 4 v.F
v'.Trusted -v-Trusted

where
Observed a dom r?.request.F
Changed a dom(v'.F - v.F)
Higher a {Ce :Changed I v'.Class(e) a v.Class(r?.requestor)}-

Create entity requires a trusted requestor because it may signal through the
domain of F. The freedom of labelling Class is therefore unconstrained by the
axioms. We may expect variants which include the Bell-LaPadula style no
signalling, and modification of Trusted. We may similarly expect variants which

* allow login effects on Id as well as the normal owner transition. The Acl is
similarly used by a number of variants achieving various application effects.

As with all the rules discussed here the above upholds strict separation of
duty. The various variants possible will relax this in different manners
depending on Class or discretionary security for justification.
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The Delete Entity Rul.

-DestroyEntity __________________

r?:R
v,v' V

r?.requestar e dam v.F
r?.request.F Q v.F

VP .F a v.F
dondv.F - v'.F) n dam v'S =

U a :Observed
v.Cless(rtrequestar) a v.Class(e)
v.Mods( {r'.requestor} inA v.Mods( {Ce} ) = {}
v.Id(r9 .requestor) e v.Acl( {e} I
v.Mods( {(el I in v.Mods( ChangedI >

U ea Changed.
v.Mods( {(r?.requestor} ) n v.Mods( {Ce} ) = {}
v.Id(r?.requestor) e v.Acl( 'Ce>

r?.requestor e dam v.Trusted
v'.Trustmd - v.Truutmd

where
Observed a dom r7.request.F
Changed a dom (v.F - v' .F)

Again this rule requires a trusted requestor because of changes in the domain
of F. The variants will therefore be limited soley to the relaxation of the
separation of duty constraints.
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rThe Create Attribute ul

-CreateAttribute ______________________

v'v' -.V

r?.requestor e dom v.F
* r?.request.F c v.F

v'.F n v.F
dom(v'.F - v.F) r dom v.F
rng(v'.F - v.F) n rng v.F ={

V e :Observed
v.Classtr?.requestor) 2! v.Class(e)
v.fods({r?.requestor}) n v.Mods( {e} ) = *}
v.Id(r?.requestor) e v.AclI {e} )

Id e :Changed
v.Id(r?.requestor) e v.Acl( (el )
v.tods({r?.requestor}) n v.Mods( -{el ) = *}
v'.Modst{e})

v.Mods({e}) U v.Mods({r?.requestor}) U v.Mods( Observed I

r?.requestor # dom v.Trusted
Higher 4 v'.F = Higher 4 v.F
v'.Trusted =v.Trusted

Ud oe :Observed; ce Changed
v.Mods( {Coe} ) n v.Mods( {ce} ={

where
Observed a dom r?.request.F
Changed a dom(v'.F - v.F)
Higher a (e :Changed Iv.Class(e) v.Class(r?.requestor)l

This will appear in two variants, trusted requestors being allowed or not
allowed to signal through lower classified entities. Attribute creation cannot
affect the partial function mapping of Class, Id and Trusted but can obviously
modify Adl and Miods. The post condition for Mods is fully specified so there is
no threat with this rule except to Adl. Application oriented variants with
preconditions on modifying Adl may therefore be expected.
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The Destroy Attribute Rule

DestroyAttribute

r? : R
v'v' : V)

r?.requestor e dam v.F
r?.request.F G v.F

v'.F c v.F
dom(v.F - v'.F) ; dam v'.F
rng(v.F - v'.F) n rng v'.F = {}

dam v'.Class = dam v'.F
dam v'.Mods = dam v'.F
dam v'.Id = doa v'.F
dam v'.Acl = dam v'.F

e : Observed .
v.Class(r?.requestor) 2 v.Cless(e)
v.Mods({r?.requestor}) n v.Mods( {e} ) {}
v.Id(r?.requestor) e v.Acl( {e} )

e : Changed
v'.Mods({e}) =

v.Mods({e}) u v.Mods({r?.requestor})

r?.requestor 9 dom v.Trusted -,
Higher 4 v'.F = Higher 4 v.F
v'.Trusted = v.Trusted

where
Changed -a dom(v.F - v'.F)
Observed a dom r?.request.F
Higher a {e : Changed I v.Class(e) a v.Class(r?.requestor)}

Destroy Attribute must not violate the secure state axioms but has no freedom
to modify Class, lods, or Id. Variants allowing trusted requestors to signal or
not to lower levels, modification of trusted, and application variants for
modification of Acl can be expected.
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The GaIn Attrlbute Rule

CGainAttribute _________________________

r? :R
v,v' :V

r?.requestor e dom v.F
r?.request.F g v.F

v'F = v.F
dom(v' .F - v.F) r. dom v.F

* rng(v' .F -v.F) r. mg v.F

Ue :Observed
v.Class(r?.requestor) a v.Class(e)

* v.Mods({r?.requestor}) fl v.Mods( (el I {}Y
v.Id(r?.requestor) e v.Acl( fel )
v.Mods( {e} ) nl v.Mods( Changed ) {

Ue :Changed
v.Id(r?.requestor) e v.Acl( {eY )
v.Mods({r'.-requestori-Y n v.Mods( {e} I Y{
v'.Mods({el) = v.Mods(e}I U v.Mods({r?.requestor})

r?.requestor 9 dom v.Trusted -*
Higher 4 v' .F = Higher 4 v.F
v' .Trusted =v-Trusted

where
Observed a dom r?.request.F
Changed a dam(v'.F - v.F)
Higher a{e :Changed I v.Class(e) v.Class~r7 .requestor)}

Application variants for Acl, trusted requestors being able to signal, and
trusted requestors modifying trusted can be expected.
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The Laiu. Attribute Rule

LoseAttributt ________________________

r? :R
v,v' V

r?.requestor e dom v.F
r?.request.F c v.F

v'Fc v.F
dom(v.F - v'.F) r dom v'.F
rng(v.F - v'.F) r. rg v'.F

dam v'.Class = dam v'-F
dam v'.Mods = dam v'.F
dam v'.Id = dam v'.F
dom v'.Acl = dom v'.F

Ue Changed
v.Id(r?.requestor) e v.Acl( {e} )
V.Mods(r?.requestor}) n v.Mods( (el ={

v '. Mods({el) = v.Mods({Ce}) u v.Mods({r?.requestorl)

r7 .requestor 9 dam v.Trusted
Higher 4 v'.F = Higher 4 v.F
v'.Trusted = v.Trusted

where
Changed a dom(v.F - v'.F)
Higher a (e :Changed I v.Class(e) 2 v.Class~r?.requestor)}

As above but with the constraints of upholding the Secure State Axiom.
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The Chunge Attribute Rule

ChangeAttribute

r? :R

r?.requestor e damn v.F
r?.request.7 c v.F

dam v.7 = dam v' 7
rng v.7 =mrg v' .F
0} c (v.F -v'.F) r. v.F
0- c (v'.F -v.7) r. v'-F

dam v' .Class = dam v' .7
* dam v'.Mods = dam v'.F

dam v' .Id = dam v .7
dam v'.Acl = damn v'.F

Ue :Observed.
v.Class(r?.requestor) 2! v.Class(e)
v.Mads({(r?.requestor}3 n v.Mods( -{el
v.Id(r?.requestor) e v.Acl( (e) )
v-Mlods( {(e) n v-rlads( Changed I = (I'

Ue :Changed
v.Id~r?.requestor) e v.Acl( {e} I
v.Mods({r?.requestar}) n v.Mads( Changed I 1{
v' .Mods((ell v.flods({e}I U v.iods({Cr?.requestorl)

r?.requestor 0 darn v-Trusted -*
Higher 4 v' .7 = Higher 4 v.F
v'.Trusted =v.Trusted

where
Looser a dam (v.7 v'.F)
Gainer a darn (v'.7- v.F)
Changed a Looser U Gainer
Observed a damn r?.recquest.F
Higher e (e :Changed I V.Class(e) 2! v.Clqss(r?.requestor)}

The variants of this rule basically cover the entire span of Bell-LaPadula
trusted process functionality and will exist in the greatest number of variants.-
This family of rules can change anything in the system subject to the
separation of duty. discretionary and optional clearance constraints available
when contructinS the system design. It is the presence of this rule which
enables the full functionality of computer systems to be expressed by the
model. The above is the rule with the least preconditions but strict separation
of duty. As soon as this is relaxed, unless it is replaced with extremely tight
discretionary or another less strong separation of duty constraint appropriate
to the application, an insecure system will result. While expressing individually
very tightly constrained variants of this rule is easy, the combined effect of a
number of variants becomes less predictable.
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3.4.3 BASIC SECURITY THEOREM AND PROOF

Given:

CreateEnt ity, CreateAttr i buteo
DestroyEntity, DestroyAttribute,
LoseAttribute, GainAttribute,
ChangeAttr ibute
}

W = Transition

zO

F :E.. A
Class • E -. CLASS
Id :E -. ID
Trusted E . TRUSTED
Mods :E.- ID
Acl :E. ID

F " Class U Trusted u Mods u Id U Acl

E = {"INIT"}
Class = {INIT" - T}
Id = {INIT" - "Init"}
Trusted = {"INIT" " "TRUSTED"}
Mods = {'INIT" - "Init"}
Acl = {"INIT" . "Init"}
Information = {}

ISYSTEM a Appearance x W xzO

THEOREM.
This system is secure in terms of SSA, STA

PROOF
Omitted.
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1. THE SMITE ARCHITECTURE

This section examines the fundamental mechanisms required to implement the
Security Policy Model. It then introduces the basic architecture of the SMITE
multi-processor by first describing the capability addressing nature of the
architecture, followed by the basic protection mechanisms used to provide the

discrete components of the policy model abstraction, entities, attributes and
the state relation. Finally a section describing the precise mapping of the
implementation mechanisms to the policy model is described.
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li.. I The Basic Requirements of the Model

The basic elements of the policy model abstraction are Entities, Attributes,
their Relationships, and the state transition Rules.

In the formal model entities and attributes are inscrutable elements of the
sets E and A. There is no formal sense in which an entity or attribute is or
contains data or anything else. The only notion of change in the model is the
state relation F.

We are interpretin9 the F relation as representing the notion of access to
attributes by an entity. Our interpretation of the model has no concern for what
a notion of "access" to an attribute means except that the semantics of access
never changes in the face of spatial or temporal multiple access. In real
terms this may be thought of as an attribute being a read-only and/or
executable thing. The important notion of access is that of an entity being able
to "name", "address" or "reference" an attribute and it is simply this which we
are capturing in the F relation. Entities cannot name or conceive of accessing
attributes which are not in the range of their component of F. The model
assumes that all entites can "name", "address", "reference" all other
entities which exist in F.

The model representation of a request is that the "requesting entity" presents
a subset of the entities and attributes "which it can name", "to which it has
access". It is the transition rule which observes, changes and modifies the set
of offered entities and/or the requesting entity with attributes obtained from
only those named entities according to the constraints of the rule. Thus the
state relation is visible only to the transition rules.

In the same way that we are regarding attributes as simply immutable things
which can be named, whereas in reality it is a read-only memory segment or disc
file containing textual data, we can regard the entity as more than simply an
immutable named index value into the centrally stored state relation. The
entities can be interpreted as "containing" the names, or references, to the
attributes in their component of F. In other words F is the sum of the contents
of existing entities. This requires that an entity is represented by an object
which can "hide" its contents from entities but not from transition rules.

Active entities in reality will be processes and attributes will be stored in
memory. As we need to constrain a process' access to attributes we require
memory mapping constraints in our concrete machine. The active entity, a
process, must not have visibility of the mappings or be able to effect them but
can invoke transition rules which can adjust mappings. This is simply the
requirement for a two state machine. Given this, the supervisor state code
represents the state transition rules including the code necessary to
manufacture passive entity and attribute objects held in a filestore.

The model is therefore a generic security model which can be implemented with
any conventional Trusted Computer Base technology.

The architecture proposed for implementing the model in the SMITE project is a
capability addressing processor. Experienced readers may wonder why, having
shown that a conventional TCB approach is necessary and sufficient for the
model's implementation, we are proposing a capability processor. Capability
architectures have a bad reputation as architectures for implementing secure
systems despite the intuitively attractive features which appear to make themideal:. fine grain, flexible, hardware enforced protection.
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We intend to show that this reputation is undeserved and that just as an
insecure machine can be built from the some two state architecture of a
conventional TCB. the fact that insecure machines have been built from
capability architectures should not reflect on the basic architecture.

Our conjecture is that capability machines have failed because they have been
applied to complex tasks with only a simple notion of security to guide the
implementation. By complex tasks we mean complexity beyond the practical
reach of conventional TCB's. In other words we regard the limiting factor as
the models that they have implemented rather than the basic architecture. The
models can only define security for relatively simple tasks. a capability
architecture is more jnwieldy to control then a conventional TCB approach for
such tasks and is therefore not the architecture of choice. Given a model which
permits of complex tasks we conjecture that the conventional TCB approach will
grow in terms of grain and flexibility until it becomes a software implementation
of a capability architecture.

In pursuing this argument it is important that we avoid confusion between the
SMITE meaning of terms, such as capability protection, and the complex
concepts with which a reader with some knowledge of previous capability
architectures may possess. In order to achieve this we will therefore describe
the very simple notions that we use in SMITE before showing its correspondence
to the model.

3
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4.2 The SMITE Basic Architecture

Capability addressing is simply the concept that areas of memory are
addressed by a pointer. The difference between a capability and say a
conventional base or index addressing mode is that a word representing a
capability is fundamentally distinguished from a word representing a scalar
number. Thus in a conventional architecture a word representing a number can be
used in arithmetic instructions by loading it into "accumulator" registers or it
may be used in address calculation of memory store and fetch instructions by
loading it into a "base" or "index" register.

In a capability architecture the registers and words in store used to address
store are typed differently from normal scalar registers and words and the
different roles are enforced by the various instructions of the instruction set.
The typing of words may be achieved by additonal "hidden" tag bits or by
segregation of the store, this being an implementation detail [iseman82].
Capabilities also enforce the bounds of the area of memory addressed, by a
size or range field within the capability, and thus represent a stronger
addressing mode than the conventional base or index register alone where the
memory to be addressed is limited solely by the size of the offset register.

The use of capabilities, of a base-range form. as the only mode of addressing
and the fundemental enforcement of the distinction between capability and
scalar data is the only notion of protection which SMITE implies by the use of
capability protection. A capability cannot be forged or guessed by manipulation
of scalar data, a scalar word with the same bit pattern as a capability word
are not the same, by virtue of the location of the word or by the hidden tag bit
in a segregated or tagged architecture respectively.

There are no instructions to "generate" a capability per se in a capability
machine, instead instructions which generate new objects generate new unique
capabilities to address them. Capabilities can be freely copied to enable
sharing of objects.

Thus far SMITE and previous capability approaches share common concepts. The
differences between SMITE and other capability architectures arises from the
degree and method of use of the additional mechanisms which are built onto the
basic capability pointer and protection idea. A generic development of these
mechanisms and the contrasting uses of SMITE and conventional architectures is
developed below simply to provide the necessary vocabulary for discussing the
SMITE implementation of mechanisms corresponding to constraints of the policy
model.

Words used as capabilities are essentially private data types of the machine
instruction set used in address calculation. Because of this private nature
capabilities and their instructions can be further "typed" by using "spare" bits
of the word, ie those bits not required to form a pointer. This and other exotic
uses of the bit encodings of capabilities has been used extensively in past
capability systems. Thus bits have been used to provide read, write, and
execute access control on the store addressed by the capability, bits have
been used to control entry and exit from "supervisor" or "privilege" states of
code accessed by execute access capabilities, and bits have been used to
provide extensive typing to produce high-level object based language
processors I Tynerdl I. Past efforts to turn the access control nature of read
write access capabilities into full blown policy enforcing architectures, with
security labels and built in "dominates" rules in the instruction set, have also
been attempted.
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SMITE uses the "extra" bits to define a number of different types of
capabilities. SMITE uses the term "block" and "block type" to denote this on
the basis that in practice a capability defines some block of store in terms of a
base and offset. Thus the instruction set is partitioned into instructions which
work on different capability types where the type defines the format and
interpretation of the contents of a block [CurrieBS, CooperB7].

SMITE further defines a single bit for a capability status, "Locked" or
"Unlocked". For each capability type the influence of the lock bit is defined as
a modification on the permitted access to the block contents. For all types
unlocked denotes unconstrained access to the blocks contents. For some types
locked functions as a modification inhibit bit, for other types it may act as a
total bar on access to the block contents. In both cases the protection status
conferred in the locked state may extend to the entire contents of the block or
only to some initial number of words of the block. The instruction set creates
capabilities to blocks in the unlocked or open state and provides an instruction
for locking a capability. (NB, lock is a capability status bit not a block
status). There is an instruction for unlocking a capability, but this only applies
to certain types of block in special circumstances.

In such an architecture Entities and Attributes are capability addressed
blocks. The Relationship between Entities and Attributes is represented by the
capabilities of Attributes stored in Entity blocks. Only a subset of the
capability addresses are equated to Entities and Attributes which may thus
posses capabilities to other blocks which have no corresponding element in the
policy model. These blocks can therefore be regarded as the primitive building
blocks from which Entities and Attributes are built. The policy model and its
axioms are built on the notion that Entities and Attributes are discrete,
independent items related only in the ways explicitly defined by the model.
There is thus an obligation to show a proof of separability on the capabilities
used to build Entities and Attributes.

The instruction set provides mechanisms to manipulate capabilities to blocks and
the contents of blocks in a primitive manner which cannot be cognisant of the
policy model versus primitive permitted operations. We therefore require
"blocking" or "hiding" mechanisms to protect the policy model mappings from
arbitrary instruction set manipulation and yet to allow the application of policy
model rule transitions, which can only be sequential applications of individual
instructions of the primitive instruction set themselves stored in a capability
addressed block.

We will develop the semantics of the required hiding mechanism in a rather
tutorial fashion so as not to introduce any false connotations.

Define a block type for which the capability LOCK bit semantics are any access
versus no access. If the locked capabilities to these blocks are used for
representing Entities no one can alter the relationships or obtain copies of the
attribute capabilities contained therein. In addition if these locked capabilities
are also used to represent Attributes arbitrary modification cannot violate the
separability constraints required of both with respect to primitive blocks.

We require that a sequence of instructions which represer.s a state transition
rule can access the block and manipulate the block contents.
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Note it is the state transition rule which must access the block not the
instigating active entity, the requestor in model terms. Thus we require that
the transition rules are represented in some way which combines not only the
constraints, ie the particular sequence of instructions, but protected access
to entities, ie only they posses the open capabilities. This representation must
exist as a capability addressed block within the system and thus the open
capability within it must be hidden from arbitrary access which could steal it
and carry out unconstrained transitions on the model relationships.

Thus the transition rule representation must have capabilities whose semantics
are that only invocation, or execution, is allowed. These blocks in SMITE are
called closures.

A closure block contains two words. a capability to a block containing scalar and
capability words, and a capability to a block containing scalars which are
interpreted as instructions.

The principle property of the closure type is that closures can only be invoked
and that the two pointers are hidden and inaccessible given only a capability to
the closure block. Conversely, the only view of the system available to a
closure when invoked is its own scalar/capability block and the parameters
supplied by the caller.

In the closure regime sensitive values, such as the open capabilities to entities
and attributes, required by code, such as the transition rules. are stored in
the scalar/capability block. This is used by the transition rule code when
invoked and is inaccessible to the caller, before, durin9 and after the call.
The code of a closure, being software, is almost infinitely variable in the
exercise of checks that can be made upon the parameters of the call in
deciding whether to proceed with the access to the sensitive data structure.

The closure scaler/capability block and code block form a tailored protection
environment upon each call and thus serve in the same way as protection rings,
supervisor states etc of two state machines except that they are not fixed in
either form, function or number by the system but exist in a flexible,
distributed form. This approach was correctly identified in the Plessey ZSO
capability machine [EnglandS), where the enter capability was used to
structure system software in the same way. Sadly this effort failed primarily
for non-technical reasons though as we shall see below there are some other
aspects of the SMITE system which the System 2S lacked.

An implementation conformant with the policy model could be mounted with these
as the basic protection mechanims, a black-box block and closure containing the
open capabilities to the contents of the black-boxes. The system would
probably have to be fairly static in terms of the creation and destruction of
entities and attributes because the system structuring requirements to
instantiate closures containing capabilities to the new objects without security
compromise can become onerous with only closure and black-box protection.

The Plessey ZS0 carried out this instentiation at link time for the system build
using a cumbersome link language. In SMITE the interpretation of execution
access protection is fully supportive of Landin's Closure notion, which includes
run time support.
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The concept of the Closure based software regime is simply that the code of 8procedure is bound to its environment, defined by its code, constants and

non-local variables, to form an independent executable unit which may be
applied to parameters but more importantly can be stored and manipulated as
for any other data. Thus it may be passed as parameters and returned as
results and stored in data structures giving rise to a number of elegant
language and software properties that give the concept another name: first
class procedures, [Currie8Z].

This is simply implemented on SMITE with the closure scalar/capability block
containing the non-locals and the code block the procedure body. The ability to
mix capability and scalar data within a block is an advantage of a tagged
capability architecture such as SMITE which the segregation architecture of the
System Z5 lacked. Absence of this feature adds an extra level of complexity
when mapping a procedures non-locals, which may include scalars and
capabilities, making a simple implementation of the pure software closu-e
concept difficult.

Even with this high level of run-time support on SMITE the instantiation problem
for new black-boxes becomes onerous because of problems which arise from a
system containing both trusted and untrusted code. The problem is essentially
that trusted and untrusted closures cannot be differentiated thus allowing
spoofing during the distribution of the new closures. In order to mitigate this
problem the basic black-box mechanism is extended to a notion of typed
objects.

Instead of instantiating a set of transition rule representations for access to
each instance of black-box we provide a single set which can accept the locked
capability to a black-box as a parameter and then "open" the black box
capability within the protective domain of the closure environment. This requires
the provision of an unlock instruction to produce open copies of locked
black-boxes. In order that we don't regress to the problem of how to stop
arbitrary instruction sequences opening any black-box the unlock instruction for
black-boxes is "keyed" to some unforgeable token passed by closures which are
intended to access black-boxes. This is achieved by the following sematics for
Keyed Blocks, the SMITE name for such selectively opened black-box
capabilities.

A keyed block capability can be locked by any one but can only be unlocked by
someone who can quote the first word of the contents of the block, the "key".
This word cannot be forged, or guessed, if it is a capability for a block which is
known only to the intended closures. For the purposes of the model, this could
be a system wide unique key possed by all state transition closures and used to
lock all entities and attributes. For integrity policies, the transition rules will
naturally partition into groups of rules concerned with partitioned subsets of
entities and attributes. This is normally expressed in the model by means of
attributes for distinguishing such "types". It is relatively obvious therefore to
use the key itself as the representation of such type attributes in implementing
the model. This provides the damage limitation notion of least privilege in the
implementation of the transition rules.

The instantiation of the transition rules is carried out by a closure which
generates a block to get a "key" and then delivers the transition rule closures
with this key as a non local. Provided that the code of this initial closure, and
the transition rules delivered, never deliver the "key" capability, or, open
pointers to blocks containing the "key", as a result, the contents of all blocks
accessed by the locked capabilities are immutable and hidden to all but the
transition rules.
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This is then the sum total of the SMITE architecture requirements for
implementing the model with 'ine grained, flexible, hardw~are enforced

protection: capability addressin9, Open/Lock capability status, Closures,
Keyed Capabilities.
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.3 Implementing the Model Elements

4.3.1 Introduction

The implementation of each of the policy model elements is discussed below in
terms of the essential behaviour requirements implied by the policy model, in
other words the constraints of the refinement proof chain.

4.3.2 AttrIbutes

The essential nature of attributes is that they are immutable, tranquil
objects. Once created there must be no primitive sense in which they can be
modified. There are no constraints other than this on the complexity of
attributes in terms of the primitive objects from which they are built.

The tranquility requirement is required so that when transition rules incorporate
attributes into entities as relationships there is no variety that can be
imparted to subsequent state transitions involving the attribute. For this
reason state transitions require an easy and reliable method to identify
primitive structures as valid candidates for use as attributes.

Implementing attributes as a read only primitive capabilities is not sufficient to
ensure tranquility because a read only capability to the root of a capability
structure does not imply that all elements within the structure are read only.
Furthermore there is no way to know that the subject has not retained write
capabilities to the object or its elements.

Thus we use trusted closures which create attributes by copying a primitive
capability structure into a read only copy within a type protected object. The
copy is unique, because only the creating closure can possibly have write
capabilities to it, wid tranquil, because this closure will not use those
capabilities to alter the attribute and will deliver only the locked capability to
the containing typed object. It is thus labelled as tranquil which can quickly be
identified by state transition rules. As for the basic protection, the use of
many keys for typing attributes instead of a single tranquility key and
additional type information is an optional embellishment and least privilege
mechanism.

The untrusted code of active entities can obtain a read only copy of the
primitive structure inside an attribute, for use in "algorithmic manipulation"
outside of the model, by means of complementry trusted closures which deliver
another copy. If the attribute creating closure stores "read only" capablities
to the primitive copy in the attribute the second copy by the complementary
closure can be optimised to delivery of the read only capability.

These closures may exist as a separate notion from the CreateAttribute family
of state transition rules or incorporated into them as a subroutine but this
trusted functionality is required to uphold the separability proof obligations on
attributes. The "reading" of the attribute contents is an extra model notion
which is not considered within any state transitions, but is required for the
implementation to uphold the explicit requirement of the model that attributes
are immutable.

49 Implementing the Model Elements

-i !



4.3.3 Passive Entities

In terms of its primitive structure a passive entity is little different from an
attribute, a capability structure within a typed object. An entity however is
exempt from the tranquility requirement in as much as the state transition
rules will define permissable circumstances in which an entity may be modified.

The exact choice of the appropriate capability structure within the object,
such that it may fulfill the sematics of the model's state transitions but does
not allow other transitions inadvertently, is of critical importance to the
successful implementation of a secure system.

The sematics of an entity is implementable purely with a structure of a vector
of capabilities to attributes. For state transition/entity "types" which imply a
complex sematics this is obtained at the cost of complexity in the code of the
transition rules in finding attributes within the entity for the particular
transition required. It may therefore provide higher assurance by structuring
the attribute capabilities within the entity object. Great care must then be
taken however that the state transitions do not provide "visibility" of any
variety in the structure over and above the sematics of the type.

4.3.4 Active Entities

An active entity is a closure in the workspace chain of a launched process
block. Not all closures in the workspace chain of a launched process block are
active entities.

Within a process block is a pointer to the current workspace block. This in turn
contains a pointer, in a permanently hidden area, to the current closure. In the
open area of a workspace block are the locals and expression stack of the
closure. A closure may obtain pointers to its local workspace area and its
non-locals and is free to use these primitive pointers in any way it sees fit.

Capabilities to Entities, Attributes and primitive data may be stored in any
manner within these two areas and may be manipulated by the closure at will.

For implementing the security policy constraints as opposed to the basic model
it is important that the control relations and attributes of active entities such
as Trusted, Class etc cannot be modified by the untrusted code of the entity
but only by invoked state transitions.

Thus within the process block is a pointer to a table called the "Process
Context". This table is a vector of word pairs where the first word of a pair is
considered a "name" and the second word the resolved value. If the second
word is a capability arbitrarily complex values can be resolved. If the first
word is a capability then the name cannot be forged. Instructions are provided
which store a new pair resolve a word given a name. Storing a value with a name
that all ready exists in the table is an update.

Any closure can store a word with a new name in this table but only closures
which possess the existing name can update and/or retrieve words from this
table. Thus the control Attributes, which must not be "lost" or substituted by
the untrusted code of the active entity, are stored in this area with capability
names known only to the transition rules.
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A process is launched with an empty context table and an initial closure. This
initial closure must be a trusted closure which will effect either a CreateEntity
state transition which will label the entity, or arrange to inherit the context of
the parent process, before running the intended closure. This intended closure
is the entity and can invoke other closures resulting in a new workspace and an
inherited context. These new closures are thus not entities but just the code of
the entity. If the closure calls a state transition which embodies a
CreateRelation transition the new closure will be running as a new entity with a
changed process context. When this new entity exits the process context must
be restored to that of the existing entity. Thus the process context must be
carried in and restored on exit from closure invocations. This is simply acheived
by caching the process context table in the chain of workspace blocks of the
process.

There are thus two methods of allocating new active entities, as subtasks in an
existing process or as parallel tasks in a new process. A subtask or a parallel
task is not necessarily a new entity. In all four cases trusted closures are
required to ensure the correct labelling in terms of the model transition which
is required.

Capabilities within an active subject will include, in addition to primitive blocks,
those to closures, attributes and other entities which can be passed as
parameters and received as results to and from closures. Closures which are
not transition rules are considered primitive and are subject to the separabilty
proof obligations.

4•3.S Transition Rules

Transition rules are closures.
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S. FUTURE PLANS

5. 1 The Secur ity Pal icy Approach

The concept of confidentiality, separation of duty, and individual accreditation
as three interdependent aspects of security seems to us to be a sound
approach. The adoption of the Bell-LaPadula state transition model approach
was adopted as a well known framework which held out the promise of achieving
the same inductive Basic Security Theorem type approach for the confidentiality
subcomponent of our model. This notion does not stand up in our model, not
because of any shortcoming in the approach, but because it puts the limitations
of the inductive proof in perspective for Bell-LaPadula models. There is
therefore some scope for recasting the model in some other formalism which
may provide other advantages providing the rigid attitude to what constitutes a
"proven and acceptable" policy model can be overcome.

Further work on such other formalisms is required in order to assess the
balance of advantage which accrues. Non-interference, deducability, and
restrictiveness offer advantages in a distributed system architecture but seem
to us to be best used as an analysis technique for establishing useful
properties of a design as opposed to constructive techniques. Thus the use of
state transition models will always be required at some point in a system
design.

5.2 The Policy Model

The model presented in section three is basically the most austere and
restrictive form of our approach to security and represents a first attempt at
formally expressing it. Further work to find the best method of expressing and
demonstrating the approach is required. Only preliminary thought has been
expended on the problems of generating realistic rules with relaxed versions of
the axioms in a manner which exploits the interactions of the three aspects of
security. This has identified that the structuring of state transition rules and
the entities and attributes which they manipulate by use of the Abstract Type
paradigm may make the assurance task tractable. A useful exercise in this
direction would be to recast the RSRE SERCUS specification [HarroldBB] in terms
of the policy model.

For a practical model the useful technique of exploiting the dual nature of
sensitivity labels described in [WoodwardB?] could be utilised.
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