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Block 20 continued

Light reflection from a surface is usually modeled as having two components: the interface
(specular) reflection and the body (diffuse) reflection. For a surface of inhomogeneous material, the
spectral compositionof the interface reflection component is often similar to that of the illuminant.
The problem of computing the illuminant chromaticity from the shading of a single smooth surface
is to separate these two components. An image of an illuminated uniform wall, according to the
above model, gives only one physical constraint about the illuminant chromaticity, not enough to
determine a unique solution. However, since the spatial scale over which the interface reflection
changes significantly is much smaller than that of the body reflection, it can be shown that one can
effectively exploit the scale difference to find a unique solution, which is often very accurate. The
method can also be generalized to compute the illuminant chromaticity for a nonuniform smooth
surface.
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1 Introduction

When we walk through many rooms inside a building with different lightings in various
locations, we are always aware of the change of the illuminant color. Although there are
few quantitative measurements available, our experiences tell us that the human visual
system seems to be able to perceive qualitatively the scene illuminant quite well. Even
w ,cn we have difficulty judging the "true" color of a piece of fabrics under certain indoor
lighting (an illustration of the breakdown of color constancy), we seldom fail to tell the
color of the illuminant even without looking at it directly. This effortless perception of
scene illumination does not depend on stereo or motion, as our experience in watching
projection slides of still natural scenes can tell us. It does seem to depend on the presence
of gradual shadings on the object surfaces. It is well known that color patches of uniform
chromaticity and luminance do not give the perception of illumination. This is called the
aperture (or film) mode of color pe:ception. In order to give an impression of illumination,
the surface shading has to have gradual variations. This is called the surface mode of color
perception, that is, the perceived color seems to belong to the object surface [7].

Computing the scene illuminant color from a given color image is not a simple problem.
The difficulty is that the recorded color image irradiances are functions of the illuminant,
the surface shape, and the surface reflectances. Without knowing any two of them, there
are infinite possible solutions (a mathematically ill-posed problem [9]). Recent work [51 [12]
suggests that the specular (interface reflection) component of surface reflection can be used

to compute the illuminant chromaticity. Since this method for computing the illuminant
color is based on the idea of finding the converging point of the surface chromaticity loci, we
will call it the chromaticity convergence method [5), which is explained in the next section.

2 The Reflection Model and the Chromaticity Diagram

The general light reflection model of a uniform surface for a three color imaging system
used in the chromaticity convergence method is as follows (see [6] for details). Assume that
the incident radiance on a surface can be written as:

L(O ,= c(A)L0(Oi,) (1)

with c(\) normalized to one at its maximum, and O and 4i are the incident angles. Let
Rr(A), Rg(A), and Rb(A) be the spectral responsivity functions of the color imaging system,
and

L, = Jc(A)R,(A)dA

L, = Jc(A)R,(A)dA (2)

Lb - I c(A)Rb(A)dA,

then

E,(x,y) = kLr(pf(X,y)+ph(x,y))

1!



E9(x,y) = kLg(pqf(x,y)+psh(x,y)) (3)

Eb(x,y) = kLb(p 6f(x,y) + ph(x,y)),

where x and y are the spatial coordinates on the image plane, and r, g, and b indicate
the conventional red, green, and blue channels or any other combinations of them. Er,
Eg, and Eb are the red, green, and blue image irradiances, p,, p., and Pb are the diffuse
(body) reflectance factors, p, represents the specular (interface) reflectance factor, and
f(z, y) and h(x, y) represent the factors dependent on the imaging geometry and surface
shapes. This reflection model makes a strong assumption that the reflectance factor of the
interface (specular) reflection component is independent of the imaging geometry as well
as the spectral responsivity of each color channel. We will call this reflection model the
neutral interface reflection (NIR) model. This assumption, of course, is not strictly true in
practice (especially for homogeneous material, as discussed in detail by Cook and Torrance
[1]), but there axe experimental data showing that it is a reasonable approximation for
many types of surface material [6]. Although the NIR model is a special case of a more
general model, the dichromatic reflection model, described by Shafer [10], which does not
assume that the interface reflection is neutral, it is often used in real applications, because
of its good approximation and simplicity.

In general, one can not recover the absolute magnitudes of both the light source intensity
and the reflectance factor at the same time from the image irradiance signal alone, because
if one raises the intensity by a factor of 2 and reduces the reflectance factor by a factor of -

2, the image irradiance will remain the same. Therefore, it is useful to define quantities
which would specify the color of the light, independent of its intensity. For this purpose, the
chromaticity of a given beam of light irradiating the image plane is defined by the following
ratios [11] (The standard notations for CIE chromaticity coordinates are x, y, and z. To
avoid confusion with the spatial coordinates, we will use u, v, and w in the text, and use
x, y, z in the figures where CIE chromaticity diagrams are used.):

u = E 7/(E,+E 9 +E 6),
v = Eg/(E, + E9 + E6), (4)

w = Eb/(E,+Eg+E).

Since u + v + w = 1, one needs only u and z7 to specify the chromaticity coordinates of
the light. It is also easy to see that they are independent of the light intensity. One
useful property of the chromaticity coordinates is that if one additively mixes two lights
to produce the third light, then the chromaticity coordinates of the third light is a linear
combination of the chromaticity coordinates of the first two lights. Let (ul, vi) and (u 2 ,
v2) be the chromaticity coordinates of the first two lights, and let the "total irradiance"
E = Er + Eg + LJ. of the first light be El and that of the second light be E 2, then it can
be easily shown that the chromaticity coordinates of the mixed light are:

U3 = E , E2 )U2,
E + E2

)  +(El + E)u2,

V3 = ( 1E,1 )v13l + ( E 2 )v 2, (5)

2



The important consequence of this property for the N!R model is that since the light
reflected from a uniform surface is the additive mixture of the interface reflection component
and the body reflection component, its chromaticity locus will fall on a straight line segment
connecting the chromaticity of the interface reflection and the chromaticity of the body
reflection. Therefore, each uniform surface will show up in the chromaticity space as a

CnE 1931 Qummaticity Diagima

U,\
' -- b700=m

Figure 1: The chromaticity convergence method requires two surfaces of different colors.

short line segment. If there are two uniform surfaces of different colors, the intersection

point is the chromaticity locus of the illuminant (see Figure 1). This is the essence of the
chromaticity convergence method for determining the illuminant color.

3 Can One Compute the Illuminant Color From A Single
Surface?

The theory behind the chromaticity convergence method requires at least two surfaces of
different colors be present in the scene in order to compute the illuminant chromaticity.
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The two surfaces have to reflect the illuminating light as mixtures of the specular and the
diffuse components in various proportions.

However, if one looks at a uniform wall illuminated by a spot light, one has a strong
impression not only of the shading variations, but also of the color of the light source. How
can it be possible for us to perceive that it is a white wall illuminated by yellow light,
but not a yellow wall illuminated by white light? Since there is only one surface in the
image, the theory of the chromaticity convergence method tells us that the light source
chromaticity is constrained to be along a straight line in the chromaticity diagram, having
infinitely many possible solutions.

Some thought will lead us to the following two possible solutions:

1. In the evolution process, the visual system had a long period of time to learn about the
regularity of the color variations in the natural illuminants, e.g., sunlight, skylight, and
fire. From early morning to late afternoon, daylight (sunlight plus skylight) continues
to change its color, depending on the solar angle, the clouds, and the water vapor
content of the air mass. The chromaticities of daylight in various phases of the day
and various amount of cloudiness had been systematically measured [3]. Their loci
on the CIE 1931 chromaticity diagram is a fairly smooth curve, almost parallel to the
chromaticity loci of blackbody radiation at various temperatures. Furthermore, many
man-made light sources have similar regularity in their chromaticity distributions.
Partially due to this reason, color temperature has been used to specify the light
source color [11]. Figure 2 shows the CIE daylight locus and the chromaticity locus of
the CIE standard illuminant A. If this chromaticity curve is used as a constraint, then
the straight line chromaticity loci of the light reflected from a single surface can be
extended to intersect with this illuminant curve, yielding a unique solution. If the true
illuminant chromaticity is not on the illuminant curve, the computed solution will be
incorrect. Therefore, this solution, although biologically feasible, is not physically a
good solution.

2. The chromaticity convergence method needs two surfaces because it does not assume
any knowledge about surface shape, lighting geometry, or physical characteristics
other than those explicitly expressed in the NIR model. For example, the specular
reflection is more angle dependent than the diffuse reflection. If our visual system is
aware of the difference, it may be able to compute the solution uniquely. As we will
show later, this is indeed possible.

4 The Solution from the Smoothness Constraint

If we inspect thb, :,nage irradiance equations 3 for a uniform surface, we will discover that by
subtracting a properly scaled green irradiance signal from the red irradiance signal we can
completely cancel spatially either the interface reflection component or the body reflection
component. For example,

E kL,(prpg)f(x,y) (6)
L9
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E (x,y)- ,='P', ° "y )  kLrp,(1 - ?r)h(xy)' (7)

Lgpq Pg

The important implication is that if we can find the proper factors, we can completely
recover the shapes of the two reflection components, and the proper factors happen to
determine the chromaticity of the illuminant. It is also true that the difference signal need
not be from the red and the green signals. Any other combination of the three image
irradiance signals will also serve well. If we want the factor to come out as the chromaticity
of the illuminant, we can define:

E(x,y) = Er(x,y) + Eg(x,y)+ Eb(x,y)

= kL(pf(x,y) + p.h(x,y)), (8)

where

L = Lr+Lg+Lb,

p = (Lrpr + Lgpg + Lbpb)/L. (9)

Now, the difference signals become:

LrE(y)- (--Exl)= kLr(pr - pfzy

E(x,y) - (/)E(x,y) kLg(pg - p)f(x,y) (10)

Eb(X,y)- ( )E(x,y) = kLb(Pb-- p)f(x,y)

and the factors Y , and -e are precisely the chromaticity coordinates of the illuminant.
Similar expressions can be written for the h(x, y) component:

E,(x,y)- (kLrp)E(x,y) - kLrp,(1- )h(x,y)
Lp P

E(x,y)- (---p)e(x,y)= kLgp,(1- -- )h(x,y) (11)
P

E6(z,y) - ( b)E(x,y) - kLbp,p(1 - )h(,y)
Lp P

Now we know that we can recover the shape of one of the reflection components by
computing E, - sTE, if we can select Sr "properly". The remaining question is how to
define what we mean by "properly". If we have some prior knowledge about the functions
f(x, y) or h(x, y), then we can continue changing the factor sr until the resulting difference
signal E, - srE behaves the way we know it should. The knowledge need not be precise
or even quantitative. It serves only as a criterion for selecting the right 8,. One obvious
choice for the needed constraint is to require that the reflection component f(x, y) be the
smoothest function among all the possible alternatives in the family of functions generated
by E, - sE. The choice does have a good physical basis, because when the two reflection
component%, each having its own shape arc mixed tutelhcr, the con bined functioi, is not
as smooth as the smoother component alone. This is true bocaus( of the following two
reasons:
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1. The spatial scale at which the irradiance change occurs is, in general. much smaller
for the specular (interface) component than for the diffuse (body) component. The
diffuse component as modeled by a Lambertian surface varies as a function of cosine,
while the specular component is typically modeled as the cosine function raised to
the 20th or 40th power. Therefore, of the two reflection components the diffuse
component f(x, y) is almost always the smoother one.

2. The peak of the diffuse component rarely occurs at the same place as that of the
specular component, because the former is at the place where the surface normal is
pointing to to the light source, while the latter occurs at the place where the surface
normal is approximately the bisector of the angle between the source vector and the
viewing vector. Any slight mixture of the specular component h(x, y) with the diffuse
component f(x,y) will create an extra "bump" in the irradiance signal. Therefore,
if the factor s, is not selected properly, the difference signal E, - sE will not be as
smooth as when it is.

One possible violation of the first condition is when the light source is very close to
the illuminated surface, and therefore creates a sharply changing f(x,y) because of the
inverse square fall-off of the light intensity, and because of the large change of the incident
angle within a short distance. Also, a surface with large curvatures has similar effect.
Another possibility is a microscopically (in terms of the resolution of the imaging system)
very rough surface, making the specular component very non-directional. Violation of the
second condition can happen under the single light source assumption only when the light
source is located on the optical axis of the imaging system, a physically unlikely situation.
With multiple light sources and mutual illumination among surfaces, the second condition
can be violated, but not frequently. In most practical cases, the two types of violation are
rare, and the smoothness constraint should give a fairly reasonable answer.

It is important to understand that the smoothness constraint here refers to the as-
sumption that the body reflection function, f(x,y), is much smoother than the interface
reflection, h(x, y). It does not imply that the underlying surface has to be macroscopically
smooth. Because the relations between the surface shape and the shape of the image ir-
radiance can be very complicated, smoothness in the shape of the image irradiance signal
does not imply smoothness in the surface shape, and vice versa.

It seems that equations 10 and 11 would give two "good" solutions for selecting the
"proper" s,. However, as a consequence of the smoothness constraint, the solution in
equation 10 is chosen most of the times, because the body reflection component f(x, y) is
Imost always smoother than the interface reflection component h(x, y).

The next question is how to define smoothness. For computational reasons, we choose
the laplacian operator for its symmetry. It is very likely that another choice of measure of
smoothness could give equally good or better results. We can now put the problem in the
following mathematical form: select s, and sg such that the following are minimized:

v)- rE(X,y)Jddj
f[V2E,.(X, ) _s,. ~xy) )]dxdy,

J[V2 (E,(x, y) - .,E(x, dxdy. (12)
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The solution turns out to be quite simple:

f V 2 E (x. y)V 2E(x, y)dxdy
S - f V 2E(x, y)V 2 E(x, y)dxdy

f V2 E0 (x, y)V 2 E(x, y)dxdy (13)
I, = f V2E(x,y)V 2E(x,y)dxdy

The solution given by 13 has the following nice property. As we have seen in Section 2,

the chromaticity of the light reflected fron a uniform surface falls on a straight line pointing

toward the illuminant chromaticity. Let the straight line equation be: au + by = c, i.e.,

a(= ) + b(--) = c, (14)

or,
a(E,) + b(Eg) = c(E). (15)

It can be shown that the solution given by 13 is also on the same line, and therefore it sat-

isfies the (only) constraint which can be derived from physics without making assumptions

about the surface shape and imaging geometry. That means the solution is guaranteed to

be a feasible solution. This is true because the solution in 13 is still a linear combination
of the irradiance signals. The proof is as follows:

a(sr) + b(sg) = a( f V 2 E .V 2 E d x d y ) f V2 EV2 Edxdy
V 2EV 2 E f V 2 EV2 Edxdy

f V 2(aEr + bEg)V 2 Edxdy

f V2 EV 2Edxdy

f V 2 (cE)V 2 Edxdy
f V 2EV 2Edxdy

- C.

If we expand the solution 13 in terms of the function f(x, y) and h(x, y), we get the

following expressions:

. ) f(p2(V2h)2 + prp(Vf)2 + Ps(pr + p)V 2hV 2f)dxdy

= (,) f(p(V 2 h)2 + p2(V 2f) 2 + ? pV2hVW2 f)dzdy
SLD ) f(p(V 2h) 2 + p9p(V 2f) 2 + Po(Pg + p)V 2hV 2f)dzdy

L= f(p2(Vh)2 + p2V 2 f)2 + 2pspV 2hV 2 f)dxdy (16)

They show that the chromaticity estimation is accurate only when the term p.s(V 2 h(z, y)) 2

is much larger than the sum of the other terms, and this suggests methods to improve the

accuracy of the estimate. For example, we can give more weight to the regions of large

irradiance because the specular reflection region is often brighter than the neighboring
regions. Another way is to compute the rate of chromaticity change at each pixel and

use it as a weighting function, because only when the specular reflection is significant in
magnitude relative to the diffuse reflection would it cause a noticeable chromaticity change.
The following section will show how well the estimator works, and when it could fail.

8



5 Estimating the Illuminant Chromaticity

5.1 From the Shading of A Uniform Surface

The estimator derived in the last section allows us to estimate only the illuminant chro-
maticity. In order to show how well the estimator works, we also estimate the chromaticity
of the body reflection component, so that we can plot both components at the same time.
For a uniform surface, the algorithm computes the chromaticity distribution of all the pix-
els. Because this is a uniform surface, the chromaticity loci is a straight line segment in the
chromaticity space. To compute the chromaticity of the body reflection component, the
algorithm simply takes the end point of the line segment that is farthest away from the es-
timated illuminant chromaticity. This is equivalent to the assumption that the pixel which
has the most "saturated" color has only a negligible amount of interface reflection, com-
pared with its body reflection. Knowing the chromaticities of both :eflection components,
we can separate the two components by simply projecting the red, green, and blue irradi-
ance signals to the two vectors representing the reflection components in the (E,, E9 , Eb)
space.

Separation of reflection components had been studied by by Klinker, Shafer, and Kanade
[41, and by Gershon, Jepson, and Tsotsos [2]. The former group searches for a "skewed T"
signature, while the latter searches for a "dog leg" distribution in three-dimensional color
space. Both methods require that the specular reflection component rise and fall in a very
short spatial distance within which the diffuse component is essentially constant. Although
the illuminant chromaticity estimator developed here is based on the same idea that the
rate of change in the specular reflection component is larger than the diffuse component, the
requirement is less stringent because the estimator does not explicitly search for signatures
or patterns.

Let us start with experiments on one dimensional signals. A point light source is
positioned in front of a plane. The plane is tilted at an angle of 9 with respect to the
optical axis of the camera (see Fig. 3). The spatial coordinate system has the origin at the
center of the image plane. The z axis, x = 0, corresponds to the optical axis.The focal point
is located at (x = 0, z = f). The object plane intersects with the z axis at z = -d. The
light source position (xs, zs) and the angle 6 are changed to produce different irradiance
signals on the image plane. The focal length f is chosen to be 50mm. The distance from the
image plane to the center of the surface is 395cm. The light source chromaticity is (0.3333,
0.3333), and the surface reflectance factors (Pr,Pg,pb) are (1.0, 0.8, 0.4). The specular
reflection is calculated according to Phong's model [8] with the cosine raised to the 20th
power. The specular reflectance factor p, is 2.0. Two values for the angle 0 are used: 50
and 38 degrees. _

Figures 4, 5, 6, and 7 show the results of the estimation for different light source
positions. The top graphs show the input image irradiance signal from the red channel.
The dotted curves are the true reflectiun components, f(x), and h(x). The bottom graphs
show tiO estiInated illiiduant clirornaticity, tdie h two s tinated reflction componenlt.s.

As can be seen, the estimate is, in general, very accurate. The performance begins to
deteriorate when the light source gets very close to the camera (see Fig. 5) or when the

9I
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Figure 3: A point light source illuminating a tilted planar surface.
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Ljght soutre at (xs. zs): 128cm. -325cmn. Dluminant chromaticity: (0.3333. 0.3333). Angle :50 degymc.

Input Image Irradiance

Estimated Comnponents

(u, v): (0.3324, 0.333 1)

Figure 4: Separation of reflection components. Example 1.



Light soumrce at (xs, zs): 11 1cm. -425cm. lluminant chromaticity: (0.3333. 0.3333). Angle: 50 degiees.

Input Image Imrdiance

'Ai

• ---------- °

Estimated Components

(u. v): (0.3457,0.3364)

Figure 5: Separation of reflection components. Example II.

12



Light source at (xs, za): 183cm, -106cmn.Mluminant chromaticity: (0.3333. 0.3333). Angle : 38 degrees.

Input Image Irradiance

Estimated Comnponentsa

(u, v):. (0.3338,0.3334)

Figure 6: Separation of reflection components. Example Ill.
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Ught sum*ze at (xs, zs): -35cm. -91cm. Tlluminan chrinaticity: (0.3333,0.3333). Angle : 38 degmes.

Inpkt inage Irradiance

Estimat Cmopnmi

(u, v): (0.3M9, 0.3323)

Figure 7: Separation of reflection components. Example IV.



specular component is very weak (see Fig. 7). When the light source gets very close to the
camera, the light incident angle changes so fast from one point to another that the diffuse
component is no longer "much smoother" than the specular component. In the case of Fig.
5, the light source is only 65.75 cm away from the object plane surface, and neither one of
the two components looks much smoother than the other.

To test the estimator on two-dimensional images, we replace the plane with a sphere
whose center is 395cm away from the image plane. The radius of the sphere is 120cm. The
point light source is located at x = 300cm, y = 300cm, and z = 400cm. The specular
reflectance factor is 2.0, and it is modeled as the cosine raised to the 40th power. In this
experiment, the illuminant chromaticity is changed from image to image, and the estimator
is applied to each image to estimate the illuminant color. The following table shows the
results:

image p, p, p true illuminant (u,v) estimated illuminant (u,v)
wOO 1.0 0.4 0.6 0.5027 0.3995 0.5757 0.3326
wOOl 1.0 0.4 0.6 0.2631 0.4245 0.3128 0.3780
wOO2 0.4 0.6 1.0 0.5027 0.3995 0.4702 0.4109
w003 1.0 0.4 0.6 0.1566 0.3586 0.1878 0.3253

As we discussed in the last section that there are several ways to improve the estimation
results by selectively weighting each pixel differently, i.e., to select s, and . such that the
following are minimized:

J (W (x, y))[V 2(E(x, y) - sE(x, y))] 2dzdy,

fJ(V(x, y))lV'(Eg(x, y) - sg E(x, y))]2dxdy. (17)

The solution becomes:

f W(x, )V 2E(x,y)V2 E(z,y)dxdy
f W(X,y)V 2 E(x,y)V2 E(x,y)dxdy

f W(zy)V 2 Eg ( Xy)V 2 E(x y)dxdy (18)

f W(, y)V 2E(z, y)V 2 E(z, y)dxdy(
It can easily be shown that the modified solution still satisfies the chromaticity collinearity
constraint. So the improvement incurs some cost for computation, but does not sacrifice the
original nice property. Since the highlight is always brighter than its surrounds, a simple
weighting scheme is to make W(x, y) a function of the image irradiance. The following table
shows how much the estimation accuracy can be improved by a simple weighting function
W(x,y) = (E(T, y)) 4 .

image PT p, Pb true illuminant (u,v) estimated illuminant (u,v)
wOOO 1.0 0.4 0.6 0.5027 0.3995 0.5037 0.3985
wOOl 1.0 0.4 0.6 0.2631 0.4245 0.2638 0.4238
w002 0.4 0.6 1.0 9.5027 0.3995 0.5022 0.3996
w003 1.0 0.4 0.6 0.1566 0.3586 0.1570 0.3581

Fig. 8 shows the red record of one of the images (wOOO). Fig. 9 shows its estimated specular
component, and Fig. 10 its estimated diffuse component.
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Figure 8: An image of a uniform spherical surface.

Figure 9: The estimated interface reflection component 0! Figure 8.
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Figure 10: The estimated body reflection component of Figure 8.

fO 5.2 From the Shading of A Non-uniform Surface

Extension of the above illurninant estimator to a non-uniform surface is conceptually
straightforward. If we examine equations 6 and 7, we find that the derivation of the
estimator based on the smoothness constraint still applies to the case of a non-uniform
surface, provided that we can detect and exclude, from our computation of laplacians, the
edge pixels between regions of different body relectance factors. Although it is well known
that edge detection itself is difficult and sensitive to noise, the situation here is not as bad,
because we can afford to exclude the false edges caused by noise from our computation
without losing much of the essential information for illuminant color estimation.

If the non-uniform surface consists of two differently colored uniform regions i and j,
then

s , fi,, V 2 Edxdy
f,, V 2 EV2 Edxdy

(a) v 2 E v 2 Edxd V 2 EV 2 Edxdy (19)

f, V 2 EV.2 Edx dy f.V2EVEdxdy

where,

fj V 2 EV 2 Edxdy
i-'; V 2 FV 2 Edxdy

f 3 V'EV'Edxdy

f,,., V 2 EV 2Edxdy
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The illuminant estimator extended this way therefore has a very good physical inter-
pretation: it is the weighted average of the estimates made by each uniform region on the
non-uniform surface. This is true even if the uniformly colored regions are not connected
together, because the relation between f and h should hold in each region. For example,
on a tiled surface, all the areas covered by the same colored tiles are combined together to
make one estimate, which is in turn combined with estimates from other colors. Therefore,
in principle it does not matter how many regions any color is broken into. Of course, in
practice, the boundary pixels have to be excluded, and therefore there is additional loss of
information for every breakup.

To generate images of non-uniform surface, random rectangles of different sizes and
colors are mapped to the surface of a sphere. The center of the sphere is placed again at
395cm away from the image plane. The position of the light source, and the distribution
of tho colors of the random rectangles are changed to generate images with different shad-
ing and color distributions. To exclude the boundary pixels between regions of different
colors, two approaches are tried: (1) exclude pixels whose laplacian magnitudes are above
a predetermined threshold; (2) exclude pixels which are explicitly detected as boundary
pixels. The idea behind the first approach is to treat any pixel with an unusually large
laplacian magnitude as coming from physical events not related to the scale difference of
interest to the estimator. It requires the determination of a threshold, and the practical
question is how sensitive is the estimate to the exact value of the threshold. We pick two
images, compute their histograms of laplacian values, and select the threshold as 0.75 times
the average value of the non-zero laplacians. We use this threshold to process 12 images.
The first four images, rOO to r003, are generated with the red, green, and blue reflectance
factor distributions having equal means, and the light source located at x = 300cm, y =
300cm, and z = 400cm. We are particularly interested in comparing our estimate with the
estimate given by the gray-world assumption, which takes the average image irradiances of
the red, green, and blue records as the illuminant color. The results are shown as follows:

image true illuminant (u,v) estimated illuminant (u,v) gray-world estimate (u,v)
r000 0.5027 0.3995 0.4552 0.3991 0.4849 0.4176
r001 0.2631 0.4245 0.2080 0.4864 0.2552 0.4192
r002 0.5027 0.3995 0.5046 0.3904 0.4956 0.4009
r003 0.1566 0.3586 0.0999 0.2762 0.1495 0.3718

As can be seen in this case, the gray-world estimates are in general more accurate. We then
generate two more sets of images (sOOO - s003, and fOOO - f003) which do not have equal
means in the red, green, and blue reflectance distributions. The sODO - s003 images have
the light source located at the same position as that of the r000 - r003 images, while the
light source of the fOOO - f003 images is located at x = 300cm, y = 300cm, and z = -100cm.
The results are shown as follows:

image true illuminant (u,v) estiniated illuminant (u,v) gray-world estimate (u,v)
sO00 0.5027 0.3995 0.5196 0.3542 0.6761 0.2622
s001 0.2631 0.4245 0.2780 0.4445 0.4435 0.3141
s002 0.5027 0.3995 0.5269 0.3775 0.6918 0.2453
sO03 0.1566 0.3586 0.1509 0.2705 0.2830 0.3122
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image true illuminant (u,v) estimated illumi~iant (u,v) gray-world estimate (u,v)

f000 0.5027 0.3995 0.503 1 0.3857 0.6700 0.2707
fool 0.2631 0.4245 0.2897 0.3668 0.4550 0.2815
f002 0.5027 0.3995 0.5322 0.3395 0.7096 0.2218
f003 0.1566 0.3586 0.1358 0.2679 0.2836 0.3250

This time the failure of the gray-world estimation is serious indeed. Comparatively, our
illuminant estimator is .mn-o accurate. If we raise the threshold by 20%, the results remain
about the same, the reason being that most edges are very sharp in these synthetic images.
There are edges in the very dark shadings which are included in the computation of the
estimate. They are not separable from the shading simply by thresholding, and are the
major sources of the error.

The second approach is to use edge detection to locate the boundary pixels. A simple
gradient edge detector with non-maximum suppression is applied to the individual red,
green, and blue records. Any pixels detected as edges in one of the color records are
declared as color edges. To ensure that all region boundaries are excluded properly, pixels
which are less than two pixel away from the detected color edges are also excluded from
the laplacian computation. Fig. 11 shows the red record of the image rOOO, and Fig. 12a,

Figure 11: An image of a non-uniform spherical surface.

its excluded pixels from edge detection. The following table shows the estimation results:
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Figure 12: The excluded edge pixels of Figure 11.

image true illuminant (u,v) estimated illuminant (u,v) gray-world estimate (u,v)
fO00 0.5027 0.3995 0.5129 0.3881 0.6700 0.2707
fool 0.2631 0.4245 0.2872 0.4239 0.4550 0.2815
f002 0.5027 0.3995 0.5118 0.3942 0.7096 0.2218
f003 0.1566 0.3586 0.1710 0.3487 0.2836 0.3250

We now apply the simple weighting function W(x,y) = (E(xy))" as we did in the uniform
surface cases to improve the estimates. The following tables show the results:

image true illuminant (u,v) estimated illuminant (u,v) gray-world estimate (u,v)
rOOO 0.5027 0.3995 0.5032 0.3992 0.4849 0.4176
rOOl 0.2631 0.4245 0.2634 0.4252 0.2552 0.4192
r002 0.5027 0.3995 0.5001 0.4019 0.4956 0.4009
r003 0.1566 0.3586 0.1571 0.3597 0.1495 0.3718

image true illuminant (u,v) estimated illuminant (u,v) gray-world estimate (u,v)
fooo 0.5027 0.3995 0.5040 0.3986 0.6700 0.2707
fool 0.2631 0.4245 0.2651 0.4219 0.4550 0.2815
f002 0.5027 0.3995 0.5043 0.3978 0.7096 0.2218
f003 0.1566 0.3586 0.1589 0.3580 0.2836 0.3250
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image true illuninant (u,v) estimated illuminant (u,v) gray-world estimate (u,v)

sO00 0.5027 0.3995 0.5040 0.3986 0.6761 0.2622

S001 0.2631 0.4245 0.2658 0.4231 0.4435 0.3141

s002 0.5027 0.3995 0.5045 0.3981 0.6918 0.2453

s003 0.1566 0.3586 0.1584 0.3589. 1 0.2830 0.3122

If we move the light source to z = 300cm. y = 300cm, and z = 40000cm, we have the

following results:

image true illuminant (u,v) estimated illuminant (u,v) gray-world estimate (uv)

gOOO 0.5027 0.3995 0.5039 0.3987 0.6799 0.2576

gool 0.2631 0.4245 0.2659 0.4219 0.4380 0.3294
g002 0.5027 0.3995 0.5046 0.3977 0.6830 0.2566

1 g003 0.1566 0.3586 0.1581 0.3591 . 0.2840 0.3059

As can be seen, all the estimates are consistently very accurate. They are now better
than the gray-world estimates even when the images are generated by gray-world statistics
(images rOOO to r003).

It should be pointed out that the laplacian signal of the interface reflection component

h(x,y) is relatively small compared with that of a reflectance edge. If any reflectance edge
pixel is not excluded from the estimation, the result can be very wrong. For example, the
gradient edge detector sometimes computes the location of the true edge incorrectly. If
we have not had excluded pixels which are neighbors of the detected edges, the estimation
results will be useless for some images, as can be seen in the following tables. The columns

marked as 1-pixel and 2-pixel are the estimation results from excluding pixels which are
less than or equal to one and two pixel distance away from the detected edges.

image true (u,v) edge alone (u,v) 1-pixel (u,v) 2-pixel (u,v)

fOOO 0.5027 0.3995 0.5044 0.3982 0.5041 0.3985 0.5040 0.3986
fOOl 0.2631 0.4245 0.4059 0.3412 0.2653 0.4216 0.2651 0.4219
f002 0.5027 0.3995 0.5487 0.3622 0.5044 0.3977 0.5043 0.3978
fo03 0.1566 0.3586 0.1621 0.3537 0.1598 0.3569 0.1589 0.3580

6 Concluding Remarks

Light reflection components usually have different spatial scales. The interface (specular)
reflection component typically has a much finer scale than the body (diffuse) component.
Because of this scale difference, one can effectively separate them by imposing a smoothness
constraint to extract the shape of the dilTuse component. In doing so, an estimate of
the illuminant color can be obtained. This illuminant estimator happens to satisfy the
chromaticity collinearity constraint automatically, which makes it particularly attractive
for applications. When it is generalized to a non-uniform surface, it essentially computes
the weighted average of the individual estimates made by each of the uniformly colored
regions, provided that one can eliminate the edge pixels.
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The estimator has been tested on computer generated images with reasonably good
performance. Unlike the gray-world estimator, it is quite immune to heavy bias in the
reflectance statistics of the scene. However, in order to use it for a non-uniform surface.
explicit exclusion of edges is necessary. Fortunately, one need not worry about false edges
because they can be excluded from the estimator without much loss of information. On the
other hand, one has to worry about undetected edges because their inclusion in computing
the estimator can introduce a large error in the estimation.

The estimation accuracy can be greatly improved by weighting each pixel with a function
of its irradiance. Other types of weighting function and definition of smoothness can be
used, but are not pursued in this work. One final question one might ask is: Can this
estimator be applied to images with many surfaces ? The answer is yes if all the surfaces
are spatially near each other in depth. For surfaces far away from each other, one has to
distinguish the scale difference due to depth from the scale difference between the reflection
components. Compared with the chromaticity convergence method, the illuminant-color
estimator developed here is simpler in implementation. It works well for a single surface, and
does not explicitly search for straightline signatures in the chromaticity space. Furthermore,
the computation is more local and therefore potentially can take better care of images
with multiple light sources. However, the chromaticity convergence method does not use
the difference-in-spatial-scale assumption, and would not have any problem when several
surfaces are at different depths. Combination of the two methods to compute a robust
estimation of the scene-illuminant chromaticity is a subject of future research. 6
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