™ | A o 4T-1mA
; m F“.E ‘m “YI60:4T7-/1

AD-A201 259

Department of
Computer Science and
Electrical Engineering

DTIC

ELECTEJN |

Stmnuaa |

LY K .
S
$ ¢
S E
s
DA

X |
University of Nevada, Las Vegas |
Las Vegas, Nevada 89154 '

T —
—_— . N

‘ whp‘:ﬁcnhm.: | |
| e | 88 1017, 058

\

On Purely Exponential Logic Queries

by

Kazem Taghva'
Department of Computer Science
University of Nevada
Las Vegas, NV 89154

and

Tian-Zheng Wu
Department of Computer Science
New Mexico Tech
Socorro, NM 87801

May 1988 ' DT' C

ELECTE
0CT 1 9168

H -

* The research of this author was supported in part by U.S. Army Research Office under grant

#DAALO3-87-G-0004. , ON STATEMENT A

Approved for public releass;
Distribution Unltmited

!! UNGLASSIFIED MASTER COPY - FOR REPRODUCTION PURPOSES
! TECURITY CLASSIFICATION OF TH1S PAGE
] p
REPORT DOCUMENTATION PAGE lﬁm
1a. REPORT SECURITY CLASSIFICATEN 1b. RESTRICTIVE MARKING
—_W o Lt s
b ' 2a. SECURITY CLASSIFICATION AUTHORITY . 3. DISTRIBUTION/ AVAILABILITY OF REPORT
5. DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited.
W—
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
ARO 24960.19-MA
w*
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE §YMBOL 7s. NAME OF MONITORING ORGANIZATION
Univ. of Nevada, Las Vegas (f applicable)
U. S. Army Research Office
6¢. ADDRESS (Gty, State, and ZiP Code) 7b. ADDRESS (City, State, and ZIP Code)
Dept. of Computer Science & Elec. Engr. P. 0. Box 12211
4505 Maryland Pa;lltvsvzy Research Triangle Park, NC 27709-2211
8a. NAME OF FUNDING / SPONSORING 8b. (gFF;:S::;AgOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION 3
U. S. Army Research Office DAAL03-87-G-0004
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
P. 0. Box 12211 PROGRAM PROJECT TAS WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.
Research Triangle Park, NC 27709-2211
11. TITLE (Include Security Classification)
On Purely Exponential Logic Queries
12. PERSONAL AUTHOR(S)
Kazem Taghva and Tian—Zhena Wu
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) S. PAGE COUNT
Technical FROM TO May 1988 16

16. SUPPLEMENTARY NOTATION
The view, opinions and/or findings contained in this report are those

of . the authqr(s) and should not be, construged as an Qfficial Department of the Army position,
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SuB-GROUP Logic Progamming, Relational Data Model, Dependency,
Recursive Queries.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Purely exponential queries are logic programs of the form:
S(X) « S, S(X2), ..., S(Xpy).
S(X) < AX).

where S and A are predicates of arity m. In this paper, we provide a syntatic
condition under which these queries can be rewritten as linear queries. As an
application of this result, we give a new proof for Guessarian's theorem [4]

on converting binary chained exponential queries to linear queries. Moreover,
an infinite chain of progressively weaker template dependencies is constructed
via expansion of the logic program for transitive closure of a relation R. This
natural chain yields another proof for the result of R. Fagin, et al [3].

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
COuncuassirieornumited T SAMmE as reT.] OTIC USERS Unclassified
32a. NAME OF RESPONSIBLE INDIVIDUAL == {220, TELEPHONE (inciude Area Code) [22c. OFFICE SYMBOL
DD FORM 1473, 34 MAR 83 APR edition moy. be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
: Al ather editions are otsolets. UNCLASSIFIED

Abstract

{
LPutely exponentidvAueriea are logic programs of the form :

\\. S(X) — S(X1), S(Xa), ..., S(Xn). e Gulhos
'\y S(X) — AX). \'\-4—//

where S an'd A are predicates of arity m. In ;hls paper, vge :novtdén syntactic condmoip under
which thele queries can be rewnuen as hneu queries. Asan cppllclmon of this result, w& give s
new proof Io\r Guessarian's theoremW on converting binary chained exponential queries to linear
queries. Moreover, an infinite chain of progressively weaker template dependencies is constructed

via expansion of the logic program for transitive closure of a relation R. This natuzal chain yields

another proof for the result of R, Fagin, etyjﬂ]/] lé'_/},,,ﬂ“ﬂlo , ZZAL W«./ , (k"' }
(L0

Acocession For

NTIS GRA&I FL— |

DTIC TAB]
Unannounsed O
Justification . __J

By
Distribution/
Availability codos
lAvall and/or
Dist Special

, 9

1. Introduction

The tecursive nature of logic programs has Jong been the subject of optimjsation techniques
[2]{7). Recently, the database community has taken interest in extending the expressive power of
relational algebra by augmenting it with function-free Horn style logic queries. This extension
has led to various optimisation techniques|2}{7]. It seems, almost invariably, these techniques are
most efficient in the processing of linear recursive queries. For this reason, there is a genuine
interest in identifying those classes of non-linear recursive queries which can be rewritten as linear
queries. Among these classes are binary chained purely exponential queries{4] and doubly recursive

queries|9).

In this paper, we provide a sufficient condition for a subclass of purely exponential queries
to be equivalent to linear queries. This subclass properly contains the class of binary chained
purely exponential queries. In sddition, as a by product of this work we construct a very natural

progressively weaker infinite chain of lemplate dependencies|3).

2. Preliminaries

A literal is an expression of the form P(X,, X3,...,Xm), where P is a predicate symbol of

arity m and X’s are either variables or constants. A rule is a formula of the form

P(X1, X3,....Xm) : = Qi("1,1,. V1,3, ... i,m),

QY2 1, Y23, Yam) ooy @a(Ya1:Yn2 - .. Yam)

where P(X),X3,...,Xm) and Qi(Y;1,Ys3,...,Yim) for i = 1,2,...,n are literals. A rule
is recursive if P = Q; for some i. A recursive rule is linear if there is exactly one occur-
rence of P on the right-hand side. We will call P(X;, X3,...,Xm) the head of the rule and
Qi(Y1,1, Y13, Y1,m) Qa(Y2.1, Y22, .- ., Yam)s -+, Qu(Yn,1,Yn 20 -, Ya,m) the body of the rule.
The variables appearing in the head of the rule are called distinguished variables, and all other
variables are called nondistinguished. We will also make the assumption that all predicates except

P are denoting base relations (i.c., relations explicitly stored in the database).

Intuitively, a rule states that the tuple (X;,X;,...,Xn) is in P, if tuples
(i, ha m) (Y20, 2,000 Yam), -0 a0d (Ya 1, Ya g, .., Ya,m) arein Q1,Qs, ... and Qq

respectively. A logic program is a finite sequence of rules to be interpreted as s finite digjunct of
rules.

Example 3.1 Let R denote a binary base zelation, then the following prograin represents

the transitive closure of R:

r : T(X,\Y) :- T(X,2), T(Z2,Y).
I
0 {fg : T(X,Y) : - R(X,Y).

Rule 73 states that every tuple in R is also in T, while rule ry states that all other tuples in T

should be obtained by the composition of tuples in T.

Although logic programs in general are evaluated via resolution methods, logic queries in
database settings are evaluated by fixed point techniques due to the restricted form of these
queries. We will demonstrate this technique using the program given in example 2.1. Assume

that the base relation representing R is {(a,b), (b,d), (¢, £)}.

Step 1. T= ., R= {(0; b),(b. c),(c, ,)}'

Step 2: Place the current values of T and R from step 1 into the bodies of rules », and »,.
As the current value of T is @, rule »y will not produce any tuple, while rule »y will add the current
valueof Rto T, i.e.,

T = {(a,b), (b, c), (¢, £)},

R = {(a,d),(5,¢), (c, N)}.

Step 3: Place the current values of T and R from step 2 into the bodies of rules r; and r;.
Rule r; will not add any new tuples to T. Rule r, will add tuples (a,¢) and (b, f) to T, as these
two tuples are the result of taking join over the attribute Z and then projecting over the attributes
X and Y. Hence,

T ={(a,b), (b, ¢),(c,), (a,c), (b, £)},
R ={(a,b),(b,¢),(c, £}}.
Step §: Place the current values of T and R from step 3 into the bodies of rules ry and »;.
Again rule #; will not add any new tuples to T, while rule r; will add the tuple (a, f) to T. Hence,

T ={(a,), (b, c) (¢, 1), (a, €), (b, £), (a, 1)},
R ={(a,b),{b,c),(c. £)}. .

Step 5: Place the curzent values of T and R from step 4 into the bodies of rules »; and ry.

At this time, neither rule produces any new tuples. The procedure terminates and the transitive

closute of R is taken to be the last value of T from step 4.

The above procedure will always terminate due to the existence of the least fixed point(1].

The purely ezponential programs are defined to be programs of the form{4):

S(X,,X,....,X,..) - S(Yl.‘,Y,,,,...,YL,,.),-- -,S(Y,.',,Y..',....,Y,‘,,,.). } ()
.
S(X,,X,,...,Xm) - A(X;,X,....,X...).

The class of purely exponential programs contains s large number of natural examples such
as transitive closure and Cartesian products. Moreover, the recursive rules in purely exponen-
tial programs are essentially template dependencies as defined in [3][8]. We say that a purely

exponential program is binary chained if it has the following form:

S(X,Y) : = S(X,Z)), S(Z1,23), -+, S(Zn-1,Y).
S(X,Y) : - A(X,Y).

Two programs P, and P; defining predicates Sy and S; using the same set of base relations are
equivalent if both Py and P; produce the same relation for S; and S; for all values of the base

relations. For example, the program given in example 2.1 is equivalent to the following program:

{r, : T(X,Y) : - R(X,2), T(Z,Y).
(1)
r2 : T(X,Y) : -~ R(X,Y).

One approach in establishing equivalence is to expand the recursive predicates S; and S; into
disjunct of conjunctions of base predicates. Since programs such as transitive closure are not first
order properties (1], in general the disjunct is infinite. The following infinite sequence defines the

transitive closure of a relation R (commas ate to be intetpreted as and):

4

R(X,Y)

R(X, Z5),7(20,Y) '
R(X, 2o), R(Z0, 2,), R(2,,Y)

R(X, Zo), R(Zo, 21), R(Z:, Z3), R(Z5,Y)

The fizst expression is obtained from rule »; of program (II), the second expression is obtained
from rule 7y of program (II) with the nondistinguished variable Z being renamed 24 and T(Z,Y)
rewritten as R(Z,Y), the third expression is obtained from rule », by rewriting 7(Zs,Y) as
R(Z9,2,),T(Z,,Y) using rule r, recursively and then rewriting 7(2,,Y) as R(Z,,Y) using rule
#3, and so on. It is important that we rename the nondistinguished variables as we expand. Intu-
itively, the first expression represents the base relation R, the second represents all tuples obtained
from R vis one application of transitivity, the third represents all tuples obtained from R via two
applications of transitivity, and so on. Then the transitive closure is defined to be the union of
all relations defined by these expressions. If there is more than one occurrence of the tecursive
predicate, we must systematically expand all occurrences of the predicate by means of a selector

function[6]. In the terminology of first order logic the above infinite sequence can be written as:

{XY | R(X,Y)}
{XY | (32,) (R(X, Zo) A R(Z0,Y))}
{XY | (320)(32,) (R(X, Zo) A R(Z0, Z,) A R(Z,,Y))}

{XY | (320)(32:1)(323) (R(X, Z0) A R(Z0, Z1) A R(Z1,22) A R(Z,,Y))}

Finally, we call a mapping p between variables of expressions ¢; and e; a containment map,

if p maps each distinguished variable to itself and for every literal P(Xy, X3,...,Xp) of ey,

5

then P(p(X1),p(X3),...,P(Xm)) is & literal of e,. The next lemma states the relationship

between a containment map and relations defined by expressions e; and e;.

Lemma 3.1 If p is a containment map from e; to ez, then the relation defined by ez is a

subset of the relation defined by e,.

3. Main Result

In this section, we will establish a sufficient condition to rewrite purely exponential queries of

the form (*) into the following linear queries:

S(X1|X2.---,Xm) = A(),l.lv},l,zv-”lyl,m)n"'vA(}’(n-l),h}’(n-l),’»-")}’(n-l),m)»
S(Yn.hyn.h--'ryn,m)- (")

S(X1, X9, v Xm) 1~ A(Xy, X2,.... Xm).

In order to motivate the readers, we first provide an example of a purely exponential query of

the form (*) which is not equivalent to a linear query of the form (**).
Example 3.1 Consider the following two programs:

{S(Xl.X,.X.) : - S(W,X,,U), S(X,,U,V), S(T,V, Xs).
P‘ :

S(X1, X3, X3) : — A(X,, X3, X3).

{S(XhX),X;) :— AW, X3, U), A(X1,U,V), S(T,V, Xs).
P, :

S(X1, X3, X3) : = A(X), X3, Xs).

Let A = {(6,0,1),(7,1,2),(6,2,3),(8,3,4),(7,4,5)}. In order to see that P, and P; are not

equivalent, we can expand both programs. We observe that the following expression
A(Wy, X3, Ut)A(W, Uy, Vi) A(Ty, W3, U)A(X4, U, V)A(T, V, Xs)

can be obtained by first applying the recursive rule of P; at the leftmost occurrence of S and then

replacing all occurrences of S by A. Now, by assigning (6,0,1), (7,1,2), (6,2,3), (8,3,4) and

6

(1v 4' s) to A(wh X’, Ul)s A(w' Uli VI)| A(Tl' Vll U)' A(X] ' U' V) and A(T. Va xl) mw‘i'd’l
we generate the new tuple (8,0,5) via program P,. It is casy to see that the following is the

infinite expansion of P;:

ey =AW, X3, U), A(X1,U, V), AT\ V, X3),
2] =A(W| x!o U)' A(xlv Ul V)| A(wl ' Vv Ul)' A(To Ul ’ Vl)l A(Th Vlo Xl)v
e3 =A(Wv X,l U)I A(X[, U' V)v A(Wlo V, Ul)' A(Tn Uh Vl)y

A(WI' Vlv U’)’ A(Th Ulo Vl)» A(Tlv Vg, X‘),

We note that the fizst two literals of ¢, is a prefix of e; and the first four literals of e; is a prefix
of e3, and 50 on. We observe that ¢; and e; do not produce the tuple (8,0,5). Because of
the way the variables are chained in e, for & > 3, the first five literals should be assigned to
(6,0,1), (7,1,2), (6,2,3), (8,3,4) and (7,4, 5) respectively. It can be seen that the tuple (8,0,5)

will never be generated.

In the database setting, in addition to the fact that function symbols are not allowed, there is
another restriction which is known as the safety rule[2]. The safety requires that any distinguished
variable should also occur somewhere in the body of the rule. Both function symbols and unsafe

formulas cause nonterminating computations|2].

Deflnition 3.1 Let P(X{, X3,...,Xm) and Q(Y;,Y2,...,Ym) be two literals, & connection
graph from P to Q is a directed graph on m nodes for which there is an edge from node § to node
jiff 2, = y;. A purely exponential query is uniformly connected iff every two adjacent literals in

the body of the rule have the same connection graph.
Example 3.2 Consider the following program:
s(xlv X’l Xa) i S((lv A'3| /‘—3)0 S(Vo t'v U)v S(Xl ' V| V)'

S(xlrxhx‘) H a(xlvxlvxl)-

7

The connection graph from S(U, X3, X3) to S(V,U,U) is shown in Fig. 1.

Fig. 1. The connection graph from S(U, X3, X3) to S(V,U,U)

Furthermore, we observe that the connection graph from S(V,U,U) to S(X,,V, V) is also the

same graph in Fig. 1. Therefore, this program is uniformly connected.

Definition 3.3 Let P be the class of purely exponential programs P satisfying the following

conditions:

(1) P is uniformly connected with no isolated node(i.e., for no node i,
indegree(i)=outdegree(i)=0);

{2) Only adjacent literals in P have common nondistinguished variables;

(3) Every distinguished variable X; occurring at position i of the head,
can only occur at position i of all literals(i.e., typed distinguished vari-
ables).

We will prove that every program in P can be written in the form (+¢). It should be noted
that P is a huge subclass of purely exponential queries, in particular it contains all binary chained

purely exponential queries as defined in [4).
The next lemma is instrumental in proving out main theorem.

Lemma 3.1 Every program P in P has the following properties:
(1) For no node i in the connection graph of P, both indegree(i) and
outdegree(i) are nonsero unless i is a stalionary node(i.c., there is an

edge from i to i?).

! We point out that due to the safety rule, stationary nodes are labeled by distinguished

variables.

(2) If indegree(i)# 0, then the variable at position i of the lefimost literal
of P’s body must be distinguished. Similarly, if outdegree(i)# 0, then
the variable at position i of the rightmost literal of P's body must be

distinguished.

Proof: (1) Let i be a nonstationary node with nonsero indegree and outdegree, then by part(3)
of definition 3.2, every literal of P's body must have a nondistinguished variable at position i. This
implies that the distinguished variable at position i of P’s head will not occur in P’s body which is

a violation of the safety rule.

(2) Suppose indegree(i)# 0. 1If node i is stationary, then we are done as stationary nodes
are labeled by distinguished variables. Therefore, suppose node i is not stationary, in which case
again by part (3) of definition 3.2, every literal of P’s body must have a nondistinguished variable
at position . This again violates the safety rule. A similar argument proves the case for which

outdegree(i)# 0. u

The next lemma states that if we expand a program P of P , then every expression in the

cxpansion of P enjoys the properties stated in lemma 3.1.

Lemma 3.3 Let e be an expression in the expansion of P € P , then e is uniformly connected
and has the same connection graph as P. Moreover, both properties (1) and (2) of lemma 3.1 hold

for e.
Proof: By induction on k, where k is the number of applications of recursive rule of P.
Basis k =0. Obvious from lemma 3.1.

Inductive Step: Observe that for every application of the recursive rule, we increase the number

of the literals by (n — 1). Suppose that e, is obtained by k applications of the recursive rule:

€h =S(Zl.h va Ty Zl.m)' EERR} S(Z(p-l?.h Z(p-l).!- ey Z(p—l).m)v S(Z’.l' Zp.!o ceey Zy.m)-

S(z(rH).l N Z(rH).!' caey Z(,.“),m). . S(Z,H.g(,‘-”.l, Zn+l(n~l).3- vy Z,H,.(,,_”‘,.)

Now, if we expand on pth occurtence of S, we have

9

pR— | — _—§ -

R e S i ;.

eh41 =s(zl.h z!,h ceey zl,m)v reen S(Z(p—l).l: Z(p-l),)O vy z(,—l),m)v

SWi1.Wia Wim), S(Wa 1, Waa,....Wam), ... S(Wat,Waa, ... Wam),

S(Z(H-l).h z(p+l).2v (AR z(p-H).m)s [RRT] S(Zn+b(n-l).!v zn+l(u-l),2v reny zn+l(n—l).m)

Obviously, it suffices to show that the connection graphs from S(Z(,_1),1,2(p-1),31-- -1 Z(p-1),m)
to S(Wy,1,Wh,..., Wy) and from S(Wa 1, Wy 3, ..., W m) 0 S(Z(p41)11 Z(p41).21 - -+ Z(pt1)m)

are the same as P’s connection graph. Let a be an edge from node i to node j in the connection
graph of P, then by definition of the connected graph and our inductive
hypothesis Z(,_,); = Z,;. Now, when we replaced the literal S(Z,:,2Z,3,...,2,m) by
S(Wi1,Wia, ..., Wy), S(Way,Was,..., Wam), ..., S(Wy1,Was ..., Wam)in the (k+1)th ap-
plication of the recursive rule, the variables Z, 1, Z, 3, ..., Z, are distinguished. Since indegree(j)#
0, by part (2) of lemma 3.1, W; ; must be distinguished, i.c., Z,,, = W, ;. This implies that
Z(p-1,5) = W14, and therefore there is an edge from node i to node j in the connection graph from
S{Z(p-1),11 Z(p-1),3)- - -1 Z(p-1),m) t0 S(Wy 1, W) 3,..., Wy). Furthermore, the stationary nodes
will remain stationary. Finally, as we rename the nondistinguished variables in any application of

the recursive rule, we will not create any edge which already does not exist in the connection graph

of P.

In order to show that the connection graph from S(W,;, Waa,...,Wapm) to
S$(Z(p+1),11 Z(p41),21- - -+ Z(p41),;m) is the same as P’s connection graph, again let a be an edge
from node i to node j. We will show that W, ; = 2Z(,,1);. Since the assertion holds for e, by
inductive hypothesis, the definition of connection graph implies that Z,; = Z,,,);. Also, as in
the above case, since Z,,,7,,,...,2Z, 8re distinguished variables for the (k + 1)th application
and outdegree(i)_?é 0, by part (2) of lemma 3.1, W; , is distinguished, i.e., W, ; = Z, ;. This implies
that Z,; = Wa; = Z(,41);- Hence, there is an edge from node i to node j in the connection graph

from S(Waa, W,"g, ceey W.._,,.) to S(Z(rn)'l ' Z('+l),21 ceey Z('+‘)_m). a
Theorem 3.1 Let P € P, then P is equivalent to a program of the form (**).

Proof: Let P’ be the corresponding program of the form (**), we will show that P is equivalent

to P'. Let E and E' be the expansions of P and P', respectively. Let ¢ € E and suppose e is

obtained by k applications of the recursive rule in P, then e has the form:

e=5(Z211,21,3,- -1 Z1,m)s- s S(Zmsb(n=1)11 Zath(n-1)21 - - 1 Zn thin-1);m)

Let ¢’ be the expression obtained from k applications of the recursive rule in P’ (observe that we

can only expand on the rightmost literal), then ¢’ has the form:

e = S(wl.h wl,lt ooy Wl.m); ey S(Wn+l(u-l).lv wn+l(n-l),2v [RRY} Wn+l(n—l).m)

Let p : e — ¢ defined by p(2, ;) = Wy ;for j=1,2,..., mandi=1,2,..., n+ k(n-1).

We will show that p is a containment map.

By lemma 3.2, both ¢ and ¢’ have the same connection graph. We fiest prove that p is
well-defined. Suppose Z;; = Z 4/, then we need to show that W, ; = Wi s, In case Z;; is
distinguished, then by part (3) of definition 3.2, j = j'. Now, by part (1) of definition 3.2, node
J must be stationary. Hence, Zi; = Zivj» = W;; = Wy i = X, for some distinguished variable
X. If Z;; is nondistinguished, then by part (2) of definition 3.2, Z; ; and Z;: 4+ must either occur
in two adjacent literals or the same literal. In case they occur in adjacent literals, by definition of
the connection graph, there must be an edge from node j to node j'. Since both e and ¢’ have the
same connection graph, then Wi ; = Wi ;. Finally, if they both occur in the same literal, again

by the fact that e and ¢’ have the same connection graph it follows that W; ; = W ;..

In order to show that p is a containment map, we observe that S(p(Z,,1), P(Z,2), ..., P(Zpm)) =
S(Wp1,Wya,....Wy). All that remains to be shown is that p maps distinguished variables
to distinguished variables. Let Z;; = X be a distinguished variable. If node ; is stationary,
then X occurs at position j of all literals in both ¢ and e¢'. Hence, p(Z;;) = Wiy = X. K
indegree(j)# 0, then by lemma 3.2, 2, ; = X = Wy ; = p(Z,,;). I outdegree(j)# 0, then by lemma
3.2, Zasan-1)j = X = Waia(n-1)j = A Znsa(n-1),j). This shows that every expression in E can

be mapped to an expression in E’. The convetse is ttivial.]

1. Guessarian [4] has shown that binary chained purely exponential queries can be written as
linear queries by using a very elaborate fixed point technique. This result follows immediately from

theorem 3.1.

|8

Corollary 3.1 Binary chained purely exponential queries can be written as linear queries.

4. Progressively Weaker Chain of Template Dependencies

A full template dependency(TD) is a formal statement r of the form:

vY1VY12... VY m - VYniVVa2.. VY VX 1VX, .. NXem(
RYV1.1.Y1,3,.. .. Yim) AR(Y2,1,Y23,....Ya,m) A+ AR(Yn1,Yn2,..., Ya,m)
— R(Xy, X3,..., Xm)),

whetefori=1,....m, X;=Y;,forsomel <j<nandl <k<m

In [3], an infinitely weaker and stronger sequence 7o, 1, 73, ... of template dependencies is
constructed via the TD graph. These sequences have been used to establish various results regarding
TDs. We will show here that the expansion of program (I) for transitive closure of a relation R
will provide a natural example of an infinitely weaker chain. We will use the notation, r |= @, to

state that TD ¢ is a logical consequence of r.

Theorem 4.1 There exists an infinite sequence of full TDs ro, 7, 72, 73, ... such that

% E Ty foreachi, i = 1,2,3,... and no two r;s ate equivalent.

Proof: For simplicity, we will drop the quantifiers from the TDs' notation. Let

To, 71, T3, T3, ... be the following expressions in the expansion of the transitive closute of R.

12

R(X,U) A R(U,Y) — R(X,Y).

R(X,U3) A R(U,,Us) A R(U3, Y) — R(X,Y).

R(X. U‘) A R(U;, Ug) A R(Uz. Ug) A k(U;, U4) A R(Ug, Y) — R(X, Y)

¢ @ 2 9

R(X. Ul) A R(Ul, U,) A R(U,, U]) A R(U', U.) A R(Ug, U;) A R(U;, U.)

A R(Us,Us) A R(Uy,Us) A R(Us,Y) — R(X,Y).

n: RX,U)ARWUL,Us)A...AR(Us_y,Us) A R(Usi, Y) — R(X,Y).

fiv1 ! RXUD)ARULU)A...AR(Upiss_y,Uyir) A R(Ugisr, ¥) — R(X,Y).

We first show that 7; |= 73 (the general case is the obvious generalisation of this). Let r satis{y
7, and suppose that (a,a,), (a1, a3), (a3, 03), (a3, a4), (a4, b) are tuples of r mapped to the hypothesis
rows of 73, tespectively. We want to show that (a,b) is also a member of ». Since r; holds in r,
if we map (a,a,),(ay,a3),(a2,a3) to (X,U,)(Uy,U3)(U;,Y) respectively, then we must have tuple
(a,as) in r. Now, map (e, ay), (83, 04), (a4, 8) to the hypothesis of 1y, again since r; holds in r, we

must have (a,b) in ».
To show that 7 }£ 7., let
r = {(X,Ul), (Ul,U)), ey (U,Mx_l, U;un), (U;u»l,Y), (X,Y)}

i.e., o relation consisting of all 71's rows. If we map (X,U,), (U1, V1), ..., (Up:, Uziyy) to the
hypothesis rows of 7;, then for » to satisfy r;, tuple (X, Ui, ;) must be in r, which is not according

to our construction of ». N

5. Conclusion

13

We have identified a sufficient condition to rewrite purely exponential queries as linear queties.
Consequently, as a corollary, we have obtained & new proof for the result of Guessarian [4]. In
addition, a natural infinite chain of progressively weaker TDs is constructed via expansion of the
logic program for transitive closure of a relation R. We hope the techniques developed in this paper
motivate further research in this area.

14

Reference

{1} Aho,A.V., and Uliman,J.D., Ullman, Universality of Data Retrieval Languages, ACM Symp.
on Principles of Prog. Lang., 1979, 110-120.

(2) Banchilon,F., and Ramakrishnan, R., An Amateur’s Introduction to Recursive Query Processing
Strategies, Proc. ACM SIGMOD Conf., 1986, 16-52.

(3] Fagin,R., Maier,D., Ullman,).D., and Yannakakis,M., Tools for Template Dependencies, SIAM
J. on Computing 12:1, 1983, 36-59.

(4] Guessarian,l., Fixpoint Techniques in Data Base Recursive Logic Programs, Bull. EATCS, 29,
1986, 32-35.

[5) Jagadish,H.V., Agrawal,R., and Ness,L., A Study of Transitive Closure As a Recursion Mecha-
nism, Proc. ACM SIGMOD Conf., 1987, 331-344.

(6] NaughtonJ., Data Independent Recursion in Deductive Databases, ACM SIGMOD-SIGACT
Symp. on Principles of Database Systems, 1986, 267-279.

(7] Sagiv,Y., Optimising Datalog Program, ACM SIGMOD-SIGACT Symp. on Principles of
Database Systems, 1987, 349-362.

[8] Taghva,K., Some Characterisations of Finitely Specifiable Implicational Dependency Families,
Information Processing Letters 23, 1986, 153-158.

[9] Zhang,W., and Yu,C.T., A Necessary Condition for a Doubly Recursive Rule to Be Equivalent

to A Linear Recursive Rule, Proc. ACM SIGMOD Conf., 1987, 345-356.

