
lnll' tl r' OP v

NAVAL POSTGRADUATE SCHOOL
00 s• --M terey , Califoria

N

,I

DTIC
ELECTE
DEC 1 2 B88THESIS S E 211

AN ALGORITHM FOR GENERATING SHIP SCHEDULES
FOR A CRISIS DEPLOYMENT PROBLEM

by

Svein Buvik

September 1988

Thesis Advisor: Siriphong Lawphongpanich

Approved for public release; distribution is unlimited

8 8 12 ' 9 03

SECURITY CLASS F:CATION OF TH,S PAGE

REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFiCATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b DECLASSIFICATIONDOWNGRADI, G SCHEDULE distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School 9,fa~cab/e) Naval Postgraduate School

6c. ADDRESS (City. State. and ZIP Code) 7b ADDRESS (Cty. State. and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

8. NAME OF FUNDINGSPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

8c ADDRESS(City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK ,VORK UNIT
ELEMENT NO NO NO ',CCESSION NO

I I X E Rrhlud S cr IVClassifhcation)ALGOITM FOR GENERATING SHIP SCHEDULES FOR A CRISIS DEPLOYMENT

PROBLEM

12 PERSONAL AUTHOR(S) Buvik, Svein
13& TYPE OF PFPORT I'm - ME COVERED 114 DATE OF REPORT (Year, Month, Day) us PAGE C,)'JNT

Master s Thesis , TO 1988 September 47

16 SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the
author and do not reflect the official policy or position of the
Department of Defense n thp T]_q -nzPrnnn.

17 COSATI (ODES 18 SABECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGRO.P ,f Crisis Deployment, Deployment Plan, Schedule
Generator, Dantzig-Wolfe Decomposition, Ship
Schedule %-,%A (p -Tr.i~'~

1ABS' RACT ,S n S L~-f~lhltllr l~~by I'c kn
19 AB ~~% ~8T ardPg, forces from their home bases
to their strategic locations. The movement of these forces usually
involves the transportation of military personnel as well as equipment
and supplies. In a crisis situation, it is essential that the
deployment is carried out in a expeditious manner.

This study considers the problem of constructing a deployment plan
for sealift assets which transport military personnel, equipment, and
supplies to their designated location in the least amount of time. In
the construction of such a plan, feasible transportation schedules for
each asset must be specified. When the number of movement requirements
is large, the problem of arranging schedules for the assets is
nontrivial. This thesis, therefore, describes an algorithm to generate
these schedules. --Based on several examples, this algorithm is shown to

20 DISTRIBUTION, AVAILAB'LITY OF ABS'RACT 21 ABSTRACT SECURITY CLASSIFiCATION

M UNCLASSIFIED/UNLIMITED El SAMIE AS RPT C] DTIC USERS

22a NAME O RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) i2c OFFICE SYMBOL

Siriphong Lawphongpanich 408-646-2106 55Lp

DD FORM 1473.84 MAR 83 APR ed,tion may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete . U S P I RIIA Office I111111-6-1-

i

19URITY , CLAUIFICATION OP ToIS PASI

19. Abstract (continued)

be effective and can be used in conjunction with algorithms for solving

the overall deployment problem as well.

Accession For

NTIS CRA&I

D ''L fC T A5

l---
1 A , l .,-' l .7 Cod,3s

Dist ApaCa:

ii O
SECURIT" CLASSIFICATION OF THIS PAGE

Approved for public release; distribution is unlimited.

An Algorithm For Generating Ship Schedules
For A Crisis Deployment Problem

by

Svein Buvik
Lieutenant Commander, Royal Norwegian Navy

B.S., Norwegian Naval Academy, 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 1988

Author:
-vein Buvik

Approved by: 4 ~
SSirphg La ho anich, Thesis Advisor

aRi ; 5 thai, Second
Reader

Peerurdue, Chairman, Department
of Operations Research

Kneale T.
Dean of Information and 90y Sciences

ABSTRACT

A deployment is the movement of armed forces from their

home bases to their strategic locations. The movement of

these forces usually involves the transportation of

military personnel as well as equipment and supplies. In a

crisis situation, it is essential that the deployment is

carried out in a expeditious manner.

This study considers the problem of constructing a

deployment plan for sealift assets which transport military

personnel, equipment, and supplies to their designated

locations in the least amount of time. In the construction

of such a plan, feasible transportation schedules for each

asset must be specified. When the number of movement

requirements is large, the problem of arranging schedules

for the assets is nontrivial. This thesis, therefore,

describes an algorithm to generate these schedules. Based

on several examples, this algorithm is shown to be

effective and can be used in conjunction with algorithms

for solving the overall deployment problem as well.

iv

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PROBLEM STATEMENT 1

B. BACKGROUND 1

C. OBJECTIVE 2

II. PROBLEM FORMULATION 4

III. A SCHEDULE GENERATOR 9

A. THE SUBPROBLEM 9

B. AN ALGORITHM WITH THE DEPTH-FIRST
STRATEGY 11

IV. IMPLEMENTATION AND COMPUTATIONAL RESULTS 19

A. A HEURISTIC FOR SELECTING MOVEMENT
REQUIREMENTS 22

B. THE NUMBER OF SCHEDULES TO GENERATE
FOR THE MASTER PROBLEM 25

V. CONCLUSIONS AND FUTURE RESEARCH 32

APPENDIX FORTRAN CODE FOR SUBPROBLEM 33

LIST OF REFERENCES 38

INITIAL DISTRIBUTION LIST 40

v

I. INTRODUCTION

A. PROBLEM STATEMENT

A deployment plan is a collection of schedules, one for

each of the lift assets (trucks, trains, planes, and ships)

assigned to the deployment. Each schedule normally

comprises a list of cargoes arranged in the sequence which

they are to be picked up from the ports of embarkation

(POE's) and delivered to ports of debarkation (POD's) by

the designated asset.

The generation of schedules becomes a great concern in

the construction of optimal deployment plans because of the

enormous number of possible schedules. Even for a

deployment which consists of only 10 lift assets and 20

shiploads of cargoes, the number of possible schedules

exceeds 10 million. Thus, regardless of the type of

algorithm employed for the overall problem, the ability to

produce an optimal deployment plan in a timely manner

greatly depends on the ability to produce a good set of

feasible schedules efficiently.

B. BACKGROUND

In mathematical programming, the idea of generating

columns for the constraint matrix was first introduced by

Dantzig and Wolfe [Ref. 1]. Among the first to employ the

1

column (schedule) generation (or the Dantzig-Wolfe

decomposition) technique in the area of deployment are Rao

and Zionts [Ref. 2] and Appelgren [Ref. 3]. Rao and Zionts

employ the technique to solve the problem of allocating

ships to existing schedules, and Applegren applies it to

solve a ship scheduling problem.

More recently, Brown, Graves, and Ronen [Ref. 4] and

Brown, Goodman, and Wood [Ref. 5] use a slightly different

approach in solving the problem of scheduling oil tankers

and naval surface combatants. Instead of generating the

schedules as needed in the manner of the Dantzig-Wolfe

decomposition, they have to generate all feasible schedules

apriori because the schedules must satisfy many rules,

restrictions, and relationships among the ports, ships, and

cargoes. However, these rules, restrictions, and

relationships also reduce the number of acceptable

schedules to a manageable amount, thereby making the

generation of schedules feasible.

C. OBJECTIVE

Most authors (see, Ronen [Ref. 6), Ronen [Ref. 7],

Brown, Graves, and Ronen [Ref. 4], Brown, Goodman, and Wood

(Ref. 5], Collier (Ref. 8], and Lally [Ref. 9)) consider a

deployment with the minimum cost to be optimal. Instead of

cost, one can also minimize other cost related quantities

such as total distance traveled or the number of lift

assets required. These quantities, if necessary, can always

2

be converted into a monetary amount. However, this study

adopts a different optimality criterion which arises in the

military deployment planning during the period of conflict

(crisis). In this situation, the speed at which the armed

forces, equipment, and supplies are deployed to the area of

conflict is one of the most important factors governing how

the conflict is resolved in the end. Therefore, it is

essential that the plan can deliver all cargoes to their

destinations in the shortest amount of time.

The objective of this study is to develop an efficient

algorithm to generate schedules that can be used in

conjunction with any column generation scheme for solving

the crisis deployment problem. One such scheme is presented

in a related Naval Postgraduate School Masters Thesis by

Lt. N. R. Lima [Ref. 10].

The remainder of this thesis is divided into 4

chapters. Chapter 2 gives a summary of the mathematical

formulation of the deployment planning problem. Chapter 3

describes the schedule generator. Chapter 4 discusses the

computer implementation and the results from the

experimentation with a group medium size problems. Finally,

Chapter 5 summarizes the study and indicates areas for

future research.

3

II. PROBLEM FORMULATION

In the deployment problem addressed below, all cargoes

are assumed to be in full shiploads. This implies that the

asset assigned to pick up a given cargo must deliver it

before any other cargo can be picked up. Because of this

assumption, the cargoes are also referred to as "movement

requirements". Moreover, it is also assumed that other

data essential to the problem, such as the distances

between ports, ships' speeds, ships' initial positions, and

tables indicating the ship/port and ship/cargo

compatibility, are also given. Then, the problem of

constructing a deployment plan with the minimum duration of

time can be stated as follows:

Indices

i - movement requirements (cargoes), where i = 1 ,M

and M is the number of movement requirements.

j - ships, where j = I ,N and N is the number of

available lift assets.

k - feasible ship schedules. As mentioned in Section C of

Chapter 1, the generation of these schedules is the

topic of this thesis.

4

Data

Si3 k = 1 if and only if the kth feasible schedule for the

jth ship includes the ith movement requirement.

Thus, Sjk is an M-dimensional vector representing

the kth feasible schedule for ship j. A schedule

for ship j is considered feasible if ship j is

compatible with the cargoes it must pick up and

with the ports it must visit.

tjk = the completion time of schedule Sjk.

Decision variable :

Xjk = 1 if and only if the kth schedule for ship j is

selected for the deployment.

Problem P1 :
Min (max (Z tjk Xjk : = I,...,N)

j k

Subject to

N
Z E Sijk Xjk 1, for i = 1,...,M (1)

j=l k

E Xjk 5 1, for i = i,...,N (2)
k

Xjk = 0 or 1. (3)

In the above formulation constraint (1) forces each

movement requirement to be picked up by at least one ship,

while constraint (2) allows each ship to sail at most one

5

schedule. A set of x's satisfying constraints (1), (2), and

(3), if it exists, would specify a deployment plan to

support all the requirements of the deployment using the

given assets.

In a related thesis, Lima [Ref. 10] obtains a solution

to Problem P1 by parametrically solving a simpler problem

several times. This simpler problem, Problem P2(") below,

is called the feasibility-seeking problem and is a variant

of Problem P1. In the feasibility-seeking problem, one

assumes that a maximum time for deployment, 7, is given.

Then, the task is to find a set of schedules with

completion time less than or equal to T that satisfies the

constraints on Problem P1. To state the problem

mathematically, let

Auxiliary Variables

wi = 1 if and only if movement requirement i is not

delivered, and

Auxiliary Data :

Kj(r) = the index set of feasible schedules for ship j

with the completion time less than or equal to

7, i.e.,

Kj(') = (k : Sjk is a schedule and tjk :5 T

Then, the feasibility-seeking problem can be stated as

follows:

6

Problem P2(T)

Min E wi
i

subject to

N
E Z Sijk Xjk + w i 1 1, for i = 1,...,M (4)j=1 MeKj(r)

Z Xjk : 1, for j = 1,...,N (5)
k

Xjk = 0 or 1. (6)

Associated with each constraint in (4) there is a dual

variable ui (50) which is referred to as the "cargo duals"

in the subsequent chapters. Similarly, associated with each

constraint in (5) there is a dual variable vj (0) which

will be referred to as the "ship dual".

Observe that for a given value 7, if the optimal

objective function value of P2(r) is zero, then the upper

bound for Problem P1 is 7. On the other hand, if the

optimal objective function value of P2(r) is positive, then

there is at least one undelivered shipload of cargo.

Therefore, r must be increased in order to obtain a

feasible plan with the same number of assets. By varying r

and resolving Problem P2(r) in a systematic manner, one can

obtain a solution to PI.

Although Kj(T) is a subset of the feasible schedules,

it is still too large to enumerate. However, one can avoid

this enumeration of schedules in the set Kj(r) by applying

the Dantzig-Wolfe decomposition technique to Problem P2(r)

7

which produces a master and a subproblem. The master

problem has the same form as Problem P2(T) and the

subproblem generates schedules (or columns) which belong to

the set Kj(T) and have negative reduced costs.

The following chapter describes an efficient algorithm

for the subproblem. The details of solution techniques and

strategies for the master problem are presented in the

related thesis by Lima [Ref. 10].

8

III. A SCHEDULE GENERATOR

A. THE SUBPROBLEM

The subproblem resulting from the application of the

Dantzig-Wolfe decomposition to Problem P2(T) can be stated

as follows:

Problem SI(j)

k(j) = arg min { vj + Z Sijk u i : tjk :5 T
k i

As previously defined in Chapter 2, u i and vj are the cargo

and ship duals of Problem P2(T). For a given deployment

plan, a negative cargo dual, ui, indicates that the ith

shipload is undelivered, and its magnitude can be regarded

as the profit obtained from delivering the cargo to its

destination. The ship dual, Vj, can be interpreted as the

cost of using ship j. Therefore, the problem Sl(j) would

find a new schedule which utilizes ship j in the most

profitable manner.

Moreover, Problem S1 is indexed by j to indicate that

the generated schedule is for ship j. In theory one can

solve one subproblem for a particular ship j, or solve N

subproblems, one for each ship. To insure convergence only

one schedule (column) with a negative reduced cost needs to

be added to the master problem during each cycle of the

decomposition process.

9

If the set of schedules Sjk is available apriori,

solving Problem S!(j) is merely a matter of selecting one

schedule from the set Kj(r). Otherwise, Problem SI(j)

resembles the vehicle routing problem [Ref. 11] with the

exception that,

(1) the ship schedules do not have to start and
terminate at the same port,

(2) the shiploads of cargoes must be delivered before
any other shiploads can be picked up, and

(3) the schedule must be completed before time T.

These three additional conditions greatly increase the

complexity of Problem SI(j).

As stated, Problem Sl(j) would always produce a

schedule with the most negative reduced cost for each ship

j. Moreover, considering the complexity of the problem, it

may not be advantageous to solve Problem Sl(j) to

optimality. Moreover, the convergence of Dantzig-Wolfe

decomposition only requires that the reduced cost of the

new schedule (column) be negative. Thus, one only needs to

search for a schedule, Sjk , which satisfies the following

two conditions:

vj + Z Sij k u i < 0 (7)
i

tjk : T (8)

where condition (7) ensures that the schedule has a

10

negative reduced cost and (8) guarantees that the schedule

can be completed within the allowable time, T.

In practice, entering columns which merely satisfy

conditions (7) and (8) does not generally lead to an

efficient algorithm. In the early iterations of the

Dantzig-Wolfe algorithm, the ship duals, vj, tend to be

zero and the cargo duals are mostly negative. Thus, a

schedule which picks up only one cargo with a negative dual

would easily satisfy both conditions (7) and (8). However,

such a schedule would be considered a bad schedule if the

ratio of cargoes (movement requirements) to the number of

ships is much larger than 1. For example, if the ratio is

four then on the average one would expect each ship to

complete four movement requirements. So, a schedule that

picks up only one cargo is unlikely to be included in the

optimal plan. The algorithm described below will search for

one or more schedules which pick up a minimum number of

cargoes as well as satisfying conditions (7) and (8). This

minimum number of cargoes is calculated based on the ratio

of cargoes to ships.

B. AN ALGORITHM WITH THE DEPTH-FIRST SEARCH STRATEGY

A schedule which satisfies conditions (7) and (8) and,

at the same time, picks up the minimum number of cargoes is

considered to be a "good" schedule. The algorithm below

searches for one or more good schedules in the same manner

as the branch and bound algorithm, with the depth-first

11

strategy, searches for an optimal solution for an integer

program.

Basically, the algorithm tries to generate a sequence

of numbers which is called a path. With the exception of

the number zero, which represents the ship's initial

position, the numbers in the path represent the cargo

number and the order of the numbers represents the sequence

in which the cargoes are to be picked up and delivered.

Thus, a schedule or column for the master problem can

easily be constructed from this path.

To illustrate the principle underlying the algorithm,

consider a deployment problem with 3 movement requirements

numbered 1 to 3. Figure 3-1 depicts a tree which represents

all possible schedules for a ship. The node number in the

tree corresponds to the movement requirement number except

for the root node, which is numbered zero and corresponds

to the ship's initial position. By traversing this tree

starting at the root node, one would trace out a path from

which a schedule can be constructed. For example, consider

path 1 in Figure 3-1. This path corresponds to the

following sequence of numbers: 0-1-3-2 which in turn

corresponds to a schedule for the ship to complete

movement requirements 1,3, and 2 in sequence. Similarly,

path 2 corresponds to a schedule for the ship to complete

movement requirements 2 and 3 in sequence.

12

-4 wN C

.41

c

41
4

(Ni C

AC)

13'

Initially, the algorithm discards all movement

requirements which are either incompatible with the ship in

consideration or have a positive dual variable. This

incompatibility is due to either ship/port or ship/cargo

incompatibility. Assume that the remaining movement

requirements are numbered as 4, 6, 7, and 9. Then, starting

at node zero witi the current path containing only the

number 0, the algorithm creates nodes 4, 6, 7, and 9 and

attaches them to node zero (see Figure 3-2). From node

zero, the algorithm considers adding a new movement

requirement to the current path, say node 4; this is called

branching. At node 4, the algorithm checks to see if the

schedule which contains movement requirement 4 can be

completed in r days. If the answer is yes, the algorithm

then includes node 4 into the current path, creates nodes

corresponding to movement requirements which are not

members of the current path, and attaches them to node 4.

These nodes are node 6, 7, and 9. At this point, the

algorithm would branch to, say, node 6 and at node 6 it

checks to see if the schedule which contains movement

requirements 4 and 6 can be completed in r days. If no, the

node is not added to the current path. The algorithm would

then check if the current path, 0-4, corresponds to a

schedule with negative reduced cost and picks up the

minimum number of shiploads of cargo. If no, node 6 is

14

-4 N

~41

0

I01

-A

Ix u
m II

I 0

LU

0.

I I 03
.41

ta C

41,

0I

15J

"fathomed" and the algorithm would branch to other

unfathomed nodes in the depth-first manner, which in this

case would be node 7 or node 9 in the second level. If yes,

then a good schedule is found, and the algorithm would stop

if only one good schedule is desired. If more schedules are

required, the algorithm would store this good schedule,

fathom the node, and branch to other unfathomed nodes to

obtain the desired number of schedules or until all nodes

in the tree are fathomed.

Below, we formally state the algorithm discussed above.

It employs the abstract data type called STACKS [Ref. 12]

to dynamically generate the search tree and conserve memory

requirements.

Algorithm

Input

j = the index of the ship being considered.

= the maximum allowable completion time for any
schedule.

M = the total number of shiploads of cargo
(movement requirements).

NCOL = the required number of "good" schedules for
ship j.

NPICK = the minimum number of cargoes to be picked up
by each good schedule.

vj = the dual price for ship j.

uj = the dual price for movement requirement i.

16

cij = 1 if movement requirement i is compatible

with ship j

- 0 otherwise.

Step 1 For each i = 1,...,M, set

ui = ui*cij + 99*(l - cij).

Remove all movement requirements i with

ui>O from further consideration, and let M be

the remaining movement requirements,

i. e., those with uisO.

Step 2 : Sort uj in an ascending order.

Step 3 : Set KOUNT = 0, P = (0), and initialize the

STACK.

Step 4 : Put the movement requirements into the

STACK in the same order as the sorted dual

variables ui-

Step 5 : While the STACK is not empty, do the

following:

5.1) Remove the movement requirement, say, k, from

the top of the STACK.

5.2) Calculate the completion time for path

P U (k).

5.3) If this completion time s g, then do the

following:

a) Set P = P U [k).

17

b) Put the movement requirements not in the path

on top of the STACK in the order of decreasing

Uj.

c) Go to Step 5.1

5.4) Otherwise, calculate the reduced cost for the

schedule corresponding to path P.

a) If the reduced cost is negative and the

number of movement requirements in P r NPICK,

then a good schedule is found. Set KOUNT =

KOUNT + 1.

If KOUNT s NCOL, remove node k from the STACK

and go to Step 5.1.

Otherwise, return to the master problem.

b) If either the reduced cost is nonnegative or

the number of movement requirements in P is

less than NPICK, then remove node k from the

STACK and go to Step 5.1.

Note that Step 5.3.b dynamically generates the new

level of nodes in the search tree. Moreover, the order in

which the nodes are put on top of the STACK allows the

search to progress in the depth-first manner with the

movement requirement with the most negative cargo dual

being searched first. In Step 5.4, the removal of node k

from the STACK is equivalent to fathoming the node in the

search tree.

18

IV. COMPUTATIONAL RESULTS

The algorithm for generating schedules presented in

Chapter 3 was implemented in VS FORTRAN on the IBM 3033AP

computer at the W. R. Church Computing Center of the Naval

Postgraduate School. The master problem is also implemented

in the same manner and is fully described in the Master's

thesis by Lima [Ref. 10].

For the computational experiments, we consider three

problems which contain approximately the same number of

lift assets and movement requirements as one would expect

in a deployment of a small armed force such as that of

Norway. Problem 1 has 48 movement requirements and 25 lift

assets, Problem 2 has 48 movement requirements and 30 lift

assets, and Problem 3 has 60 movement requirements and 30

lift assets. The ports of embarkation (New York, Norfolk,

Charleston, Jacksonville, Pensacola) and debarkation

(Hamburg, Wilhelmshaven, Rotterdam, Antwerpen, Cherebourg)

for the movement requirements are given in Table 4-1. Table

4-2 and 4-3 give the distances between the various ports

and the initial position of each asset. The speed for the

assets are between 13 and 22 knots, and the probability

that the ship is compatible with a given movement

requirement is .75.

19

TABLE 4-1 NUMBER OF MOVEMENT REQUIREMENTS
BETWEEN POE'S AND POD'S.

HAM. WILH. ROT. ANTW. CHB.

N.Y. 2 2 2 2 2
P 1
R NORF. 3 2 2 2 2
O a
B n CHAR. 2 2 2 2 2
L d
E JAX. 2 3 3 2 3
M 2

PENS. 0 0 2 2 0

HAM. WILH. ROT. ANTW. CHB.

N.Y. 4 4 3 2 2
P
R NORF. 2 2 2 3 2
0
B 3 CHAR. 3 3 2 2 2
L
E JAX. 3 2 2 2 3
M

PENS. 0 1 3 4 2

TABLE 4-2 DISTANCE BETWEEN POE'S AND POD'S
IN NAUTICAL MILES.

HAM. WILH. ROT. ANTW. CHB.

N.Y. 4030 3950 3790 3775 3520

NORF. 4340 4260 4090 4075 3800

CHAR. 4650 4560 4390 4370 4090

JAX. 4850 4770 4590 4570 4280

PENS. 5390 5300 5125 5110 4820

20

TABLE 4-3. INITIAL DISTANCE BETWEEN SHIPS AND PORTS

SHIP # N.Y. NORF. CHAR. JAX. PENS.

1 0 245 550 720 1190

2 0 245 550 720 1190

3 300 545 850 1020 1490

4 300 300 500 700 1100

5 800 800 900 1000 1400

6 100 350 650 820 1290

7 245 0 300 475 975

8 245 0 300 475 975

9 200 200 400 600 1100

10 600 600 700 900 1400

11 150 100 400 575 1075

12 350 100 200 375 875

13 550 300 0 165 700

14 550 300 0 165 700

15 800 750 700 750 1100

16 450 200 100 265 900

17 350 250 300 350 750

18 1200 1100 1000 1100 1500

19 720 475 165 0 600

20 720 475 165 0 600

21 1100 1000 900 900 1200

22 920 675 365 200 400

23 450 350 300 400 800

24 1350 1250 1200 1200 1600

25 1190 975 700 600 0

26 1190 975 700 600 0

27 890 675 400 300 300

28 1290 1075 800 700 300

29 900 700 500 400 600

30 1090 875 600 500 100

21

A. A HEURISTIC FOR SELECTING MOVEMENT REQUIREMENTS

In Step 1, the algorithm discards those movement

requirements which have a positive dual value because of

incompatibility with the ship under consideration. The

remaining movement requirements are then selected for

branching based solely on the magnitude of the associated

cargo duals. Intuitively, this seems inefficient. Assume

that the algorithm is constructing a new schedule for ship

j. Then those movement requirements which are in the

schedule for ship j and those which are still unassigned at

the end of the preceding master problem should be selected

for branching first. Otherwise, movement requirements which

have been assigned to other ships may be assigned to the

new schedule for ship j also. This would create a "double

coverage" for the same movement requirement. To create the

least amount of double coverage a negative number is added

to the cargo duals for the movement requirements which are

already assigned to ship j and to those which have yet to

be assigned to any ship. This negative number should be

large enough to insure that when the movement requirements

are ordered in Step 2 and put into the STACK in Step 3 and

Step 5.3.b, the desired movement requirements are always

above the others in the STACK.

To implement the above heuristic, Step 1 of the

algorithm in Chapter 3 is modified as follows:

22

Step 1

a) For each i = 1,..., M set

99 if cij = 0.

ui if cij = 0 and cargo i has been
assigned to another ship 1,
where 1 = j, by the previous

Ui= master problem iteration.

-6 if cij = 0 and cargo i is
unassigned or has been assigned
to ship j by the previous
master problem iteration.

where 6 is a sufficiently large positive number.

b) Remove all movement requirements i with

ui>O from further consideration, and let M'

be the remaining movement requirements, i.e.,

those with uiSO.

The algorithm in Chapter 3 has been implemented both

with and without the above heuristic for selecting movement

requirements. Figure 4-4 shows that, based on the average

CPU time to solve the three sample problems with various

values for T, the algorithm with the heuristic clearly

outperforms the one without. In fact, the algorithm with

the heuristic is on the average 47% faster. Henceforth, the

subproblem algorithm is implemented with the heuristic for

selecting movement requirements.

23

0
0
0

0

C)

Li WITHOUT HEURISTIC

° x

DD
Q0
0

1--

0

0

Lo

WITH HEURISTIC

80 100 120

PERCENTAGE OF OPTIMAL DEPLOYMENT DURATION

Figure 4-4

Comparison of total CPU time with and without
heuristic implemented.

24

B. THE NUMBER OF SCHEDULES TO GENERATE FOR THE MASTER

PROBLEM

In general, it is unclear what is the optimal number of

columns to generate during each cycle of the decomposition

process. More columns mean more information for the master

problem during each cycle. At the same time, more columns

in the master problem also mean more CPU time for pricing

out and other housekeeping operations. However, Figure 4-5

demonstrates that it is advantageous to generate between 10

and 20 schedules (columns) for Problem 2 when r = 29 days

(the optimal duration).

Table 4-6 provides an explanation for the above

finding. The table lists the average number of nodes in

the search tree for the two strategies: one column and ten

columns. Although the average number of nodes in the search

tree for the ten column strategy is more than the one

column strategy in the early iterations, the information

provided by the additional nine columns actually helps the

master problem to find a solution quicker. Moreover, as the

number of iterations grow, the one column strategy

occasionally generates unacceptably large search trees in

order to find one negative reduced cost column which could

have been generated earlier if the ten columns strategy was

employed.

25

-J
ED 48 MOVEMENT REQUIREMENTS

0
cr_ 30 SHIPS

Mu 0 - OPTIMAL DEPLOYMENT DURATION

z

Li

C-)

n

0L0203

NUBRO SHDLS EEAE

Figre4-

CP iefrsbpolmvru
nubro(ceulsgnrtd

0 I I I 26

TABLE 4-6: AVERAGE NUMBER OF NODES GENERATED BY THE

ALGORITHM FOR PROBLEM 2.

One column per cycle Ten columns per cycle

Iter Average # Iter Average #
nodes nodes

1-10 143 1-10 459

11-20 104 11-20 402

21-30 104 21-30 414

31-40 178 31-40 1482

41-50 149 41-45 315

51-60 139

61-70 1323

71-80 331

81-90 297

91-100 4999

101-110 152

111-120 13889

121-130 290

131-140 475

141-150 19233

151-160 8751

161-169 483

27

Figure 4-7 and 4-8 depict the trade-off between time

spent in the master and subproblem for Problem 2. Figure 4-

7 shows that by generating more columns per iteration one

uses less CPU time for the subproblem. However, more

columns per iteration also means more columns for the

master problem which in turn leads to more CPU time for

pricing out and other-housekeeping operations. In terms of

total CPU time for the overall problem, Figure 4-8 shows

that the 10 column strategy is better than the one column

strategy when r is less than or equal to the optimal

duration (29 days). However, when r is bigger than 29 days,

the one column strategy is superior. This is due partly to

the fact that when r is larger than the optimal duration,

the problem is more relaxed, i.e., it has a larger feasible

region, and accurate dual information is not as critical as

in the case when T is smaller than the optimal duration.

Table 4-9 summarizes the computational results for all

three problems. It is clear from this table that the ten

column strategy dominates the one column strategy for all

three problems. However, it would be premature to make any

conclusive recommendations based on the results presented

here.

28

0
0C

48 MOVEMENT REQUIREMENTS
1 COLUMN

STRATEGY 30 SHIPS

OPTIMAL DEPLOYMENT

DURATION =29 DAYS
-J
-'J

0 0

CD

0

-- --- ------

24 28 32 36

DEPLOYMENT DURATION IN DAYS

Figure 4-7

* CPU time for subproblem versus r

29

0
0 _

* 48 MOVEMENT REQUIREMENTS

30 SHIPS

OPTIMAL DELOYMTM4

0 DURATION 29 DAYS
0-

LI)

0

0 - X

F-

* 10 COLUMNS
STRATEGY

0

1 COLUMN

STRATEGY'

24 28 32 36

DEPLOYMENT DURATION IN DAYS

Figure 4-8

Total CPU time versus r

30

TABLE 4-9 : COMPUTATIONAL RESULTS FOR THE THREE PROBLEMS.

PROBLEM 1 PROBLEM 2 PROBLEM 3

1 col 10 col 1 col 10 col 1 col 10 col

CPU CPU CPU CPU CPU CPU
7 time time time time time time

.8*OPT 307 94 69 42 413 406

.9*OPT 356 206 234 143 550 477

OPT 470 177 112 9 2048 447

1.1*OPT 18 5 5 4 4 5

1.2*OPT 4 2 3 4 10 5

Average 231 97 85 40 605 268

31

V. CONCLUSIONS AND FUTURE RESEARCH

An algorithm for generating schedules for the crisis

deployment problem is described. This algorithm is similar

to the branch and bound algorithm for integer programs or

the depth-first search technique for traversing directed

graphs. The computational results in Chapter 4 demonstrate

that on medium size problems the algorithm, when integrated

with the master problem algorithm by Lima [Ref. 10), is

effective in solving the subproblem of the crisis

deployment problem. However, a more extensive computational

study is required before any conclusive recommendations can

be made.

In addition to further computational studies, other

possible areas for future research are listed below.

(1) Allow movement requirements to arrive at POE's within
a time window.

(2) Allow movement requirements in partial shiploads.
This would imply that a ship can pick up cargoes at
two or more locations before delivering them to their
discharging ports.

(3) Investigate other branching strategies for the
algorithm. For example, one can branch to the closest
movement requirement instead of the movement
requirement with the most negative dual value.

(4) Investigate other combinatorial algorithms for the
subproblem.

(5) Consider possible delays due to random events such as
attacks on ships or ports.

32

APPENDIX

FORTRAN CODE FOR SUBPROBLEM

SUBROUTINE SUBPR(U XCOL, MDAY M, N, NLOA, NPOE NPOD NSHMR, TR, ITA
&COMPAT, IB, XB, SHIP. kTIMEo K, spb. SEQ. LSEQ. CTSHIP, C

T
NODE, NPICK, NCOL)

* THIS SUBROUTINE APPENDS NEW (GOOD) COLUMNS TO THE A MATRIX IN THE *
MASTERPROBLEM.

* KEY VARIABLES COMING FROM THE MASTER PROBLEMs

S- U. DUAL VARIABLES.
-- MDAYi MAXIMUM DURATION OF ANY SCHEDULE.

* - Ao A MATRIX.
* - COMPATs SHIP COMPATIBILITY WITH SHIPLOADS OF CARGO.
* - IBs INDEX SET FOR THE BASIS.
* - XBs COLUMNS IN THE BASIS.
* - NPICKs MINIMUM NUMBER OF SHIPLOADS OF CARGO TO BE PICKED BY
* ANY SHIP.
* - NCOLt NUMBER OF SCHEDULES TO GENERATE FOR EVERY CALL TO THE *
* SUBPROBLEM.

* KEY VARIBLES USED IN THE SUBPROBLEMs

* - VINDs INDEX SET OF THE SORTED DUAL VARIABLES.
* - LOADs SHIPLOAD NUMBER.
* - PATHs SEQUENCE OF SHIPLOAD NUMBERS FOR THE CURRENT SCHEDULE *
* - STACKs SHIPLOAD NUMBERS IN THE STACK.
* - CURLDi CURRENT SHIPLOAD NUMBER.
* - PREDi PREDECESSOR OF SHIPLOAD NUMBER.
* - TIMEs COMPLETION TIME FOR GENERATED SCHEDULES.
* - LENGTHs LENGT OF CURRENT PATH.

IMPLICIT DOUBLE PRECISION (A-H,O-Z). INTEGER (I-N)
PARAMETER(MM -100, NN * 2000 KK = 2, JJ - 2000)
DIMENSION XCOL(MM),U(MM),UU(MM) V(MM),XB(MM).SA(MM),SPD(MM). IB(MM)
REAL A(MM, NN)
INTEGER VIND(MM),PRED(OsJJ),LOAD(OsJJ),TIME(OsiJ) STACK(O JJ) TOP,

I. MR(1OOKK),TR(15, 15) IT(30 5) FROLD TOLD,PATH(OiM) CURLD, COUNT,
& LENGTH,LASTND,SHIPTTMLNGTH kTIMEdNN),CTSHIP.CTBAC(OlMM).
& CTSON(OMM).SEQ(NN, MM),LSEQ(NN),CTNODE
LOGICAL COMPAT(MM, MM)
DOUBLE PRECISION MIN,MINRC
COMMON /UNITS/ NIH. NOUT

C INITIALIZE

CTNODE - 0
LIMIT - N
CTSHIP - 0

311 DO 360 I - 1,MM
SA(1) - O.ODO
UU(I) - O.0O
V(I) - O.DO
VIND(I) - 0

360 CONTINUE

NNEG - NLOA
MINRC * O.ODO

-- *--T--HE--A------A---S---------------------------------------0* SORT THE DUAL VARIABLES
--

DO 8 I - I,NLOA
8 UU(I) - U(I)

C HEURISTICi
C ASSIGN LARGE NEGATIVE DUAL VALUE TO SHIPLOADS NOT ALREADY PICKED
C BY OTHER SHIPS

IF(N .GE. (2*NLOA + NSH * 1)) THEN
DO 201 I a 1,M

DO 202 J - IM
IF((IB(J) .GT. (29NLOA * NSH)) .AND.

& (XB(J) .GT. 0.5DO)) THEN
SA(I) - SA(I) + A(I,IB(J))

END IF
202 CONTINUE

IF(SA(I) .LT. 1.ODO) UU(I) - -2.ODO
201 CONTINUE

END IF

33

C REMOVE SHIPLOADS NOT COMPATIBLE WITH SHIP FROM FURTHER CONSIDERATION.

DO 9 I - INLOA
9 IF(.NOT. COMPAT(I,SHIP)) UU(I) " 99.000

DO 20 I - 1,NLOA
MIN - O.ID-6
COUNT - 0
IND - 0

DO 30 J * I NLOA
IF UU(J) .LT. MIN) THEN

MIN - UU(J)
IND - J
COUNT - I

END IF
30 CONTINUE

IF(COUNT .EQ. 0) THEN
NNED - I - I
GO TO 40

END IF
V(I) - MIN
VIND(I) - IND

UU(IND) - 99.00
20 CONTINUE

40 CONTINUE

0 DEPTH FIRST SEARCH

C INITIALIZE

DO 350 I O,JJ - I
TIME(I) a 0
STACK(I) a 0
LOAD(I) - 0
PRED(I) - 0

350 CONTINUE

DO 380 I - I. MM
XCOL(I) - O.DO
PATH(I-I) - 0
CTBACK(I-1) " 0
CTSON(I-1) - 0

380 CONTINUE

LENGTH a 0
LASTND a I
TOP - 0
CURLD - 0
FROLD a 0
TOLD a 0

C CREATE ALL NODES OUT OF THE SOURCE AND PUT THEM IN STACK

DO 50 I - NNEGI,-I
LOAD(NNEG - I * 2) - VIND(I)
PRED(NNEG - I * 2) a I
STACK(NNEG - I * 1) (NNEG - I * 2)
TOP - TOP * 1
LASTND a LASTND 1 I

50 CONTINUE

C MAIN LOOP TO SEARCH FOR FEASIBLE SCHEDULES

100 CURLD o STACK(TOP)

C SPECIAL CASE WHEN ONE SHIP CAN PICK ALL SHIPLOADS OF CARGO

IF(LENGTH ,EO. NNEG) THEN
RCOST a O.ODO
DO 91 1 w I,LENGTH

91 XCOL(LOAD(PATH(I))) a 1.ODO
XCOL(NLOA * SHIP) a 1.0DO
DO Ill I - 1,11

111 IF(XCOL(I) .EQ. 1.ODO) RCOST * RCOST * U(I)
IF(RCOST .GT. -I.OD-4) RCOST a O.ODO

34

IF((RCOST .LT. O.ODO)) THEN
N - N-1
DO 389 I I M

389 A(I.N) - xcOL(I)
DO 122 J.t,LENGTH

122 SEQ(N J) * LOAD(PATH(J))
LSEQ(N) a LENGTH
RETURN

END IF

END IF

C IF STACK EMPTY RETURN TO MASTERPROBLEM IF GOOD SCHEDULE FOUND.

IF(CURLD .EQ. 0) THEN
IF(nINRC .LT. O.ODO) RETURN

C IF NO GOOD SCHEDULES FOUND RUN SUBPROBLEM AGAIN FOR ANOTHER SHIP.

CTSHIP - CTSHIP I I
SHIP - SHIP * I
IF(SHIP .EQ. NSH * I) SHIP I 1
IF(CTSHIP .NE. NSH) GO TO 311
RETURN

END IF

TOP - TOP - 1

IF(PRED(CURLD) .EQ. 1) THEN
LASTND " LASTND - LENGTH
LENGTH - 0

END IF

IF(CTSON(LENGTH) .EQ. CTBACK(LENGTH)) THEN
DO 51 I - 1, LENGTH

IF(PRED(CURLD) .EQ. PATH(I)) THEN
LASTND - LASTND - LENGTH + I
LENGTH a I
GO TO 539

END IF
51 CONTINUE

END IF

539 PATH(LENGTH * 1) a CURLD

FROLD - LOAD(PREDCCURLD))
TOLD - LOAD(CURLD)
TT - 0

C CALCULATE COMPLETION TIME FOR CURRENT SCHEDULE.

CALL TIMEFC(NPOE, NPOD MR, TR IT. FROLD, TOLD. SHIP, NSH, NLOA.TTSPD)
TIME(CURLD) - TIME(PRED(CURLD)) * TT

C IF FEASIBLE INCLUDE SHIPLOAD NUMBER IN PATH.

IF(TIME(CURLD) .LE. MDAY) THEN

CTBACK(LENOTH) w CTBACK(LENGTH) * i
LENGTH a LENGTH * I
CTSON(LENGTH) a 0

C PUT INTO THE STACK ALL SHIPLOAD NUMBERS NOT ALREADY IN THE PATH.

DO 60 I - NNEG,I,-l

DO 70 J I LENGTH
70 IF(VIND(I) .EQ. LOAD(PATH(J))) GO TO 60

LASTND - LASTND * I
LOAD(LASTND) w VIND(I)
PRED(LASTND) a CURLD
TOP - TOP * I
CTSON(LENGTH) * CTSON(LENGTH) * I

60 CONTINUE

DO 80 I a LASTND,(LASTND - CTSON(LENGTH) * 1).-I
STACK(TOP) - I
TOP - TOP - I

so CONTINUE

35

TOP - TOP + CTSONCLENGTH)

ELSE
LASTND a LASTND - 1
RCOST - 0.000

C CHECK IF 00O0 SCHEDULE FOUND.

DO 90 I --1.LENGTH
90 XCOL(LOAD(PATN(l))) a 1.ODO

XCOL(NLOA *SHIP) a 1.ODO

DO 110 1 I'm,1
110 IF(XCOLCI) .EQ. I.ODO) RCOST *RCOST *U(I)

IF(RCOST .GT. -1.00-4) RCOST - 0.000

IF(RCOST .LT. 0.000 .AND. LENGTH .GT. NPXCK 1THEN

IF (CTBACK(LENGTH) .EQ. 0) THEN

DO 388 I * I II388 ACI.N) w CO(1)

XTIME(N - TIfE(PRED(CURLD))

DO 522 J-1, LENGTH
522 SEgCN,J) - LOADCPATH(J))

LSEQ(N) - LENGTH

IF(RCOST .LT. 1lINRC)THEN
MIHIRC = RCOST

END IF

END IF

DO 400 I a I LENGTH
XCOL(LOAb(PATH(l))) a0.000
XCOL(NLOA + SHIP) - 0.000

400 CONTINUE

EL EDO 130 .I u I LENGTH
130 XCOL(LOAD(PA H(IM) -0O.000

XCOL(NLOA * SHIP) a 0.000
END IF

C IF NO GOOD SCHEDULE FOUND BACKTRACK.

CTBACK(LENGTN) a CTBACK(LENGTH) I
00 TO 100

END IF

IF(H .GE. LI!IIT*NCOL) RETURN
CTDACK(LENGTH) w 0
0O TO 100

END

36

SUBROUTINE TIIEFC(NPOE, NPOD, hR, TR. IT, FROLD, TOLD, SHIP, NSH, NLOA, TT,&SPD)
e---- -- - -- - -- -- - ----------... ..----..--------- .----------------

* THIS SUBROUTINE CALCULATES THE TIME REQUIRED TO PICK UP AND DELIVER *

* A SHIPLOAD OF CARGO IN WHOLE DAYS.

-- ---

IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER (I-N
PARAMETER(KK - 2, MM 100, NHN 2000
DIMENSION SPD(MM)
INTEGER MR(100,KK),TR(15 15),IT(30,5),TTTOLD,SHIP,FROLD

TT a 0

C CALCULATING THE TRAVEL TIME

IF(FROLD ,EQ. 0) THEN
TT a IDNINT((IT(SHIP MR(TOLDl)) * TR(HR(TOLD.1),MR(TOLDo2)))/

& (24. o SPD(SHIP)))
ELSE

TT - IDNINTU(TR(MR(TOLD,1) IIR(FROLD°2)) * TR(MR(TOLD,1),
& MR(TOLD,2)))/(24. * SPD(SHIP)))

END IF

RETURN
END

37

LIST OF REFERENCES

1. Dantzig, G. B., and Wolfe, A., "The Decomposition
Algorithm for Linear Programming," Econometrica, No.
29, pp. 767-778, 1961.

2. Rao, M. R., and Zionts. S., "Allocation of
Transportation Units to Alternative Trips--A Column
Generation Scheme with Out-of-Kilter Subproblems,"
Operation Research, Vol. 16, pp. 52-63, January 1968.

3. Appelgren, L. H., "A Column Generation Algorithm for a
Ship Scheduling Problem," Transportation Science, No.
3, pp. 53-68, February 1969.

4. Brown, G. G., Graves, G. W., and Ronen, D., "Scheduling
Ocean Transportation of Crude Oil," Management Science,
Vol. 33, No. 3, pp. 335-346, March 1987.

5. Brown, G. G., Goodman, C. E., and Wood, R. K., Annual
Scheduling of Atlantic Fleet Naval Combatants,
Technical Report, Naval Postgraduate School, Monterey,
CA, March 1985.

6. Ronen, D., "Cargo Ships Routing and Scheduling: Survey
of Models and Problems," European Journal of Operations
Research, Vol. 12, pp. 119-126, 1983.

7. Ronen, D., "Short-Term Scheduling of Vessels for
Shipping Bulk or Semi-Bulk Commodities Originating in a
Single Area," Operations Research, Vol. 34, No. 1, pp.
164-173, February 1986.

8. Collier, K. S., Deployment Planning: A Linear
Programming Model With Variable Reduction, Masters
Thesis, Naval Postgraduate School, Monterey, CA,
September 1987.

9. Lally, M., Strategic Allocation of Sealift: A GAMS-
Based Integer Programming Approach, Masters Thesis,
Naval Postgraduate School, Monterey, CA, September
1987.

10. Lima, N. R., A Column Generation Technique for The
Crisis Deployment Planning Problem, Masters Thesis,
Naval Postgraduate School, Monterey, CA, September
1988.

38

11. Bodin, L., Golden, B., Assad, A., and Ball, M.,
"Routing and Scheduling of Vehicles and Crews: The
State of the Art," Computer Operations Research, No.
10, pp. 63-211, 1983.

12. Aho, A. V., Hopcroft, J. E., and Ullman, J. D., Data
Structures and Algorithms, pp. 53-56, Addison-Wesley
Publishing Co., Reading, PA, 1983.

39

INITIAL DISTRIBUTION LIST

No. Copies

1. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

2. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

3. Lt. Cdr. Svein Buvik 2
FO/SST/ORG 3
Oslo mil/Huseby
0016 Oslo 1
Norway

4. Professor Siriphong Lawphongpanich, Code 55 11
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943

5. Professor Richard E. Rosenthal, Code 55R1
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943

6. Lt. Newton Rodrigues Lima 2
Brazilian Naval Commission
4706 Wisconsin Ave. N. W.
Washington, D.C. 20016

40

