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Chapter 1

Historical Note

In 1978 (1], a construction was published of Improved Iterated Codes
(IIC) which were inspired by Elias [2] and constructed from primitive BCH
codes [3]. IIC provided one of the few examples at the time of codes which
provide both:

lir Pr(error) = 0 (1)
n -r,

and
lim R > 0 (2)

where R is the code rate in information bits per transmitted symbol. Codes
with both properties have been euphemistically labeled "good- codes.

Basically, the IIC consists of a row code and a set of column codes. one
column for each information position in the row code. Each column code is
an iteration of additional BCH codes with an Elias code. The IIC is best
described by its decoding algorithm:

1. Decode the row code. Compute the resulting bit error probability.
Set i = 1.

2. Decode the ith column code. The error probability has now been
reduced to an arbitrarily small value, and the first information position in
the row code is assumed correct. Subtract that information position from the
row code, thus "shortening" the row code (see Peterson [3]),i.e., reducing
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by one the number of degrees of freedom or bits of information that the
remaining part of the codeword represents.

3. Decode the shortened row code. The resulting bit error probability
is no greater than it was following Step 1, and it may be lower because
the minimum distance of the code is unchanged while the block length is
smaller.

4. Increment i and go to Step 2.

On the binary symmetric channel, the ratio of channel capacity to rate
for p = 0.1 was found to be approximately 2.4 [1]. However, these iterated
codes are extremely long and, therefore, mostly of theoretical interest. If,
however, the decoding of the row code can be made to produce a lower error
probability, then the columns can be constructed from fewer constituent
codes. The resulting iterated code will be shorter and may have a larger
rate.

1

To this end, at a NATO Advanced Study Institute devoted to commu-
nications issues, Farrell [4] suggested that the rates of these codes could
be improved by incorporating soft decision techniques into the decoder. In
particular, soft decision decoding of the row code promises to give better
estimates of the decoding error probability at the first step and, perhaps, to
permit a shorter column code of higher rate to be iterated with it to achieve
the same, arbitrarily low error probability as yielded by the original IIC but
at a larger value of code rate.

In what follows, soft decision decoding is explained, and techniques from
the literature are studied with an eye to selecting those which may provide
lower error probabilities *hen decoding the rows of an IIC.

'The rate of an interated code is the product of the rates of its constituents. Each of
the consituent rates is a positive number less than unity.
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Chapter 2

Background

Traditionally; coding and decoding for error control are designed for
discrete channels which communicate symbols from finite sets only. Usually,
such a finite set is a finite field (5] or an algebraic extension of a finite
field. Channel noise is represented by the probabilistic transition of one
transmitted symbol to another received symbol.

This discrete approach is attractive because it permits strong focus on
the design and implementation of good codes and efficient decoders using
powerful tools from such disciplines as algebra, combinatorics, and digital
design. Also this approach is useful because many continuous channels can
be modeled as discrete channels by incorporating the modulator, demod-
u]ator, and threshold device into the channel and by modeling the effects
of noise as the probability of an output symbol conditioned on the sym-
bol transmitted. The most common example of such a channel model is the
discrete memoryless channel [6] which has, in addition to the foregoing char-
acteristics, the property that successive symbol transitions are statistically
independent.

However, the use of this abstraction is not without its penalties. While
the channel input symbols are discrete and mutually distinct, the channel
noise is a continuous waveform which is combined (usually added) with the
input signal so that the channel output is always a continuous function of
time. A discrete channel output representation is realized by quantizing the
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continuous output into two or more levels. In the binary case, whenever
the channel output exceeds a preset threshold, the output is said to be "1."
Whenever it does not, the output value is taken to be "0." Thus, the output
signal is 1 regardless of whether it just barely exceeds the threshold or ex-
ceeds the threshold by a large value. For many noise waveforms, the value
of the output symbol is more uncertain as the channel output approaches
the threshold that separates 1 from 0. If the error control decoder has in-
formation about the relative likelihoods (probabilities) of received symbol
errors, it can in many cases correct more errors in that word than if all sym-
bols were assumed equally likely to be correct. That is, all output symbols
having the same value do not necessarily inspire equal "confidence" in their
values. It has been shown [7] that without this useful likelihood information
(actually, it is channel state information) approximately 2.0 dB more trans-
mitter power is needed to achieve same the decoded error probability that
can be achieved with that information.

Decoding techniques which use estimates of the actual values of the
channel output waveform are called soft decision decoding. Those which use
estimates of only the discrete transmitted symbols are called hard decision
decoding.

What follows is an introduction and survey of the development of soft
decision techniques. First, we examine decoders which erase (with mean-
ing to be made more precise) symbols having low measures of likelihood.
substituting various combinations of permitted symbol values until prede-
termined decoding criteria are met. From these we move to decoders which
make more direct use of the channel output values and finally to techniques
built upon the examination of each received symbol.

To provide focus and continuity, we deal with block codes only. This
does not imply judgement on the merits of convolutional codes and Viterbi
decoding [8] but tries to examine thoroughly one aspect of soft decision
decoding. An examination of the References reveals at least a theoretical
interest in soft decision decoding techniques from the earliest days of error
control coding theory. Like so many things, soft decision is experiencing a
resurgence of interest that may be due, in part, to the escalating capabilities
afforded by semiconductor technology, making possible today techniques
that once were only theoretical ideas.
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A standard set of notation has been attempted in this report. The follow-
ing symbols retain their respective meanings throughout. Where additional
entities are needed, they are defined locally.

[aJ = the largest integer < a
C = a code taking symbols from {J1)
c = a member of C

C' = code C with symbols from {0, 1}
c' = a member of C,

d = the minimum Hamming distance of C [3]

dE = Euclidean distance
n = length (number of symbols) of a codeword

r = a vector or word (N-tuple received from the channel

= [42J, the guaranteed error correction capability of a block code
x = the received n-tuple after hard decision processing
o = a vector of confidence values
o = the vector of bit log likelihood ratios.
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Chapter 3

Simple Erasure Schemes

When a codeword is transmitted through a noisy channel, the set of
symbols or waveform values produced at the receiver output is called the
received word or received vector.

An erasure is a symbol of unknown value at a known location within
the received word. By contrast, an error is a symbol of unknown value at
an unknown location. Thus, the decoder knows the number of erasures and
their locations but knows nothing of the number or locations of errors.

3.1 Forcing Erasures

Almost from its beginning, algebraic coding theory provided methods for
computing the values of symbols that were erased by a noisy binary channel
provided the number of such erasures is bounded [3]. A principal advantage
of introducing erasures is that many algebraic decoding algorithms can be
modified to handle erasures efficiently [9). These techniques simply erase one
or more of the received symbols and apply erasure correction techniques [10].
Since a block code with minimum distance d can correct up to t = [(d- 1)/2J
errors or d - 1 erasures [3], one would like to deal with erased symbols
in known locations rather than with errors in unknown locations. If an
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appropriate measure of confidence or reliability is chosen (e.g., a monotone
function of the signal to noise ratio at the receiver output), then the received
symbols with lowest reliability are most likely' to occupy the error locations
and can be considered erased.

In this section we consider soft decision decoders that use both the output
of a hard decision demodulator and a set of reliability estimates produced
by the receiver. Typically, one or more of the lowest reliability positions
in a received word are erased. The decoder then tries various patterns of
channel input symbols in the erased locations to determine if a hard decision
decoder can produce one or more codewords from this "trial vector." Rules
are given to choose among the multiple codewords which may arise.

3.2 Wagner Decoding

Wagner Decoding2 is applied to codes constructed by appending a single
parity check to a block of m information digits. Based upon the received
vector r having real components, the receiver computes p(lr) and p(01r) and
makes a hard decision on each symbol based on which of these probabilities
is larger. (The decoder is assumed to know the channel noise probability
distribution.) If parity checks, the hard decision block is accepted as it
is. If parity fails, the position with the lowest value of Ap = p(ljr) -
p(01r) is inverted to force parity to check. This is perhaps the simplest
example of an "erase and substitute" technique. Analysis [101 shows that, for
moderately noisy channels having values of bit error probability around 0.01.
Wagner decoding produces lower values of word error probability than does
the Hamming code. For example, for p = 0.01, the Wagner decoder produces
a word error rate of 0.001 while a Hamming code yields approximately 0.003
[10]

Subsequently, Balser and Silverman (11] introduced multiple error cor-
rection to this scheme vy adding additional check digits to the transmitted

'At the channel output, the symbol error probability is a monotone decreasing function
of the signal to noise ratio. See, for example, (7].

2 Wagner decoding was named by Balser and Silverman [10] for C.A. Wagner of MIT
who, in 1954, "suggested the basic idea."



block and, if a double error is detected, inverting the two least reliable digits
in the received word. In fact, they used the Hamming code [12] to provide
the additional parity check structure since it has minimum distance of four
and can, therefore correct one error per block or detect the presence of two
(or any even number).

The original Wagner algorithm is found in the final Step of Chase's rank
decoding algorithm [13] which is discussed later.

3.3 Forced-Erasure Decoding

One difficulty with applying erasure reconstruction techniques is the de-
coder's lack of knowing exactly how many positions should be erased-that
is, the likely existence of undetected errors in the unerased positions [14].
With erasure reconstruction only (no error correction), there are no guaran-
tees that all symbols containing errors will be erased, even when the total
number of errors is d-1 j or fewer. In forced erasure decoding (FED), the
received symbols within a word are ordered according by increasing value of
"confidence." Confidence is proportional to the a posteriori probability of a
transmitted symbol value conditioned upon the received symbol. If the n
symbols in a block have confidence values {al,a2,..., a,), reordering gives
a _ a 2 _ ... _ aj. Reconstruction of erased symbols is performed by
trying a set of allowed symbol values in the erased position and testing the
resulting vector for code membership. The algorithm is:

1. Set i = 1.

2. Erase the first i symbols ordered by increasing confidence. Attempt
reconstruction.

3. If a resulting vector belongs to the code, accept it as the decoded
word and stop.3 If i > 2t, there may be more than one reconstruction which
produces a codeword. Depending upon the type of channel noise assumed,
a rational basis for choosing among these is needed. Choosing the s-lution

3 Reason: If the received vector is within d of a codeword, it will be within d of exactly
one codeword. Therefore, when the first codeword is fouad, it is unnecessary to look
further.



which represents a minimum weight error pattern is intuitively useful for
the Gaussian channel. No choice can be shown to be foolproof, however.

4. If no reconstructed codeword is found, increment i by 1. If i < n - k
go to 2. If i > n - k, stop, and declare a decoding failure.

3.4 Channel Measurement Decoding

The foregoing methods of forcing erasures and substituting known pat-
terns of channel input symbols assume that finding the codeword at mini-
mum Hamming distance4 from the initial hard-decision vector produces the
codeword most likely transmitted. However, this need not follow. Suppose
codeword ct is transmitted and, after hard decision, vector x is received. A
binary decoder can produce codeword c. from x, by the criterion of mini-
mum Hamming distance decoding. On the other hand, minimum Euclidean
distance decoding prior to hard decision might produce codeword cb # Ca.

Why is this? Some of the positions that were changed by the minimum
d decoder may have been more reliable than some which were not. For
example, if the first three positions of vector r = (rl, r 2 , r 3 , r 4 , rs) have high
values of some reliability measure while the last two have low values, then
the most likely transmitted codeword might be one that would agree with r
in the first three positions. The decoder, then, selects values for the last two
positions that produce a waveform closest to that received. To minimize
this "analog distance" between waveforms, a set of real reliability numbers,
as described below, is used to define an analog or real measure of distance
in the decoding procedure. A consequence is that a different set of positions
may be "corrected" than when Hamming distance is minimized.

channel HDD min d
Ct -- '-- r - x - Ca

I min dE
Cb

So, if there is a codeword ca differing from the binary received vector x in
4The Hamming distance between two vectors is simply the count of the number of

places in which they differ.
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21 or fewer positions, a binary decoder will identify it. We often say that the
binary decoder determines the error pattern e having minimum Hamming
weight such that e = x c, where ED represents addition modulo 2. Channel
Measurement Decoding (CMD) [15] expands upon this by trying to find a
small set of likely error patterns and choosing from this set the one having
the smallest "analog weight." CMD uses a set of real numbers {a., i =
1,2,.. .,n} to represent the channel state. They have the property that
cri > oj =* z; is more correct than zi and are called channel measurement
information. To use this,

e From the received binary vector x, obtain another vector x' by invert-
ing some of the digits.

* Consider x' as a received vector and use a binary decoder which im-
plements bounded distance decoding to try and find its error pattern
e.

* For all the new vectors fx') obtained by inverting selected sets of dig-
it - , find the corresponding error patterns e' and select the one having
minimum analog weight w1,(e ) given below.

n

( ~e) = oje, (3)
j=1

As the channel signal to noise ratio increases, the performance of CMD
can approach that of maximum likelihood decoding.

It is desirable to select the digits to be inverted in CMD so that the
number of error patterns e is small and so that the vectors x' lie "near" the
received word. Chase [15] offered several algorithms for selecting the sets of
digits to be inverted in CMD to meet these criteria.

5A bounded distance decoder can correct no more than t< [(d - 1)/2J errors, irre-
speclive of the actual capability of the code.
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Chapter 4

Soft Decision Decoding -

The Paradigm

A hard decision decoder measures the distance between the received word
and various candidate code words by using Hamming distance (See Chapter
3.). This chapter discusses decoding techniques which use estimates of the
real value of each received symbol in order to establish relative confidence in
the decoded symbols. This permits one to measure distances between words
in terms of real values rather than counts of differences.

4.1 Errors and Erasures Decoding

Let cm be a codeword with symbols from {±1). If x is the received
vector after hard decision processing (but not decoding) and also has values
from {±1), then "conditional" Hamming distance decoding (decode only
when there is a codeword within minimum distance of the received, hard
decision word) is permitted by this theorem: I

'Proofs of the theorems in this section and the next can be found in [16] and will not
be repeated here.
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Theorem 1 There ezists at most one codeword cm such that

x'c > n- d (4)

where the left side is computed as the scalar product of two real vectors.

This theorem, and others in this chapter having a similar form can be
thought of as generalizations of this well-known result for hard decision
decoding and binary codes:

There is at most one codeword c at Hamming distance d from
the received binary vector x [3].

In these generalizations, the minimum distance of the code is "shared" in
a discrete or "continuous" fashion (depending upon the nature of the re-
ceived vector under consideration) over the values of the received symbols
as necessary to achieve minimum dE decoding.

As indicated earlier, a natural generalization of Wagner decoding is to
erase several unreliable received symbols having reliability values less than
a preset value [171.

In fact. one can define a null zone of amplitudes of the received waveform
which represent the most unreliable values because they are closest to the
decision threshold between 1 and 0. Let r = (r1,r 2,. .,r,,) be a received
vector having real, continuous components taking values on the closed in-
terval [-1.1). Define

+1 ifr.>T
0 if-T < ri < T (5)
-1 if r, < -T.

Values falling within the null zone defined by -T < r, < T are erased, thus
presenting to the decoder a word constructed from an alphabet of three
symbols, {-1, 0, 1) and possibly containing erasures in known positions and
errors in unknown positions. This suggests errors and erasures decoding
(EED), which is based on the following theorem [161:

12



Theorem 2 There is at most one code word cn from a code of length n
and minimum distance d such that

r-cm = n-2t, -s > n-d (6)

where tm and s are the numbers of errors and erasures, respectively, that the
code is guaranteed to correct.

This exploits the fact [3] that a block code with minimum distance d can
correct any pattern of t errors and s erasures so long as t and s satisfy

2t + s < d. (7)

A three step procedure can be used for EED of a binary code when
decoding for s erasures and an unknown number of errors in the received
word. Let t be the number of errors per word guaranteed correctable by the
minimum distance of the code:

d = 2t + 1. (8)

Tben:

" Set all s erased bits to 0 and allow the decoder to correct up to t errors.

" Set all s erased bits to 1 and decode up to t errors.

" If each of these produces a codeword, the decoder accepts the one
which would have experienced the smaller number of errors in trans-
mission. In this case, it has been shown [17] that the decoding which
requires the fewer number of changes produces the actual transmitted
word.

4.2 Generalized Minimum Distance Decoding

Generalized Minimum Distance (GMD) decoding was developed to pro-
vide a systematic way of minimizing the Euclidean distance between the

13



received vector and the code rather than by making hard decisions and
minimizing the Hamming distance.

The receiver is assumed to produce a vector r = (rl,. ., r,,) such that
-< <r : 1, j = 1,2...,n. The Euclidean distance between the received
vector and the mth codeword is

dE2 (r, cm) = r - cm 12 (9)

= r 12 + Icm 12 -2.r.c,.

Formally, the problem is to minimize dE over the message number m.
This is achieved by maximizing r. cm in the foregoing.

We have this important theorem for generalized minimum distance de-
coding [16]:

Theorem 3 There exists at most one cm such that

r. -c > n - d. (10)

Any decoding which meets this criterion is called generalized minimum

distance (GMD) decoding.2

To use GMD decoding, order the indices on the received symbols so that:

'r', I< 1 I_ .. <ir . (11)

Then define:
+1 if rj > 0

s(r j )= -1 ifr.<0 (12)

and
Okr, , 1l<j :_k, 0:5k <n (3

I s(ri,), k + I < j 5 n. (13)

2We emphasize that, in this Theorem, the components of r take continuous values
whereas, in Theorem 1, the received vector takes values from {1).
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That is, qk = (qk(rl), qk(r2), ... ,qk(rn)) is zero in the k weakest components
of r and has values from f+1} in the remaining n - k positions.

To adapt EED to GMD decoding, we need the next theorem.

Theorem 4 If r. c, > n - d, then for some k:

qk" rm > n - d. (14)

The point of Theorem 4 is to permit the use of any errors and erasures
decoder on q, according to the following algorithm.

e Order the indices of the components of the received vector as in (11).

* Set i = 0.

* From the received word, r, determine qi as above.

* If an errors and erasures decoder can find a codeword Cm correspond-
ing to qi, then decode r as cm and exit.

* Else i = i + 1. If i < d, repeat previous step. If i > d quit.

The foregoing illustrates but one use of GMD decoding. Beyond this, many
investigators have extended it to other applications. Examples include de-
coding on Q-ary output channels [181, burst error decoding on Q-ary output
channels [19], [20], and majority logic decoding [21]. A few of these, impor-
tant to the application cited in the first chapter, will now be discussed.

4.3 Decoding the Channel with Quantized Out-
put

As earlier seen, errors and erasures decoding provides an elementary
quantization of the continuous channel. Going beyond the definition of a
simple null zone centered on the 1/0 threshold, investigators [22,23] sought to
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determine how far from the threshold the received signal amplitude lay. This
would provide a measure of confidence in the initial hard decision estimate.

In this paradigm, the continuous channel output is quantized into Q
levels (Lo, L1," . , LQ-n) where Q is typically, but not necessarily, a power
of two. With each level is associated a w-weight wi which represents the
distance from the threshold to Li or to LQ-.-i. By assigning wo = 0, wQ_, =
1, and defining the w-distance between two levels as

dw(La.Lj) =I w, - wj (15)

we can define the w-distance between any two Q-ary n-tuples as

n

d.(xi,x,) = E d(z p, xp). (16)
P=1

w-distance has been shown to be a true metric [23].

Minimum w-distance decoding of code C becomes simply: given received
Q-ary vector r, find the codeword ci that produces:

mind (r, ci), c, E C (17)

Then, the w-weight e8 of the error in the sih digit is the w-distance between
the sth transmitted and received symbols, and

Theorem 5 An (n,k) code with minimum Hamming distance d can correct
any error pattern with w-weight satisfying

' d
e, = d (18)

S=1

This is proved in [23]. In the absence of a systematic decoding algo-
rithm, one could simply compute the w-distance from the received vector to
each code word until one with value less than d/2 is found or until all are
computed and the smallest selected.

Fortunately, it is not necessary to search exhaustively. Algorithms exist
which use the wv-distance metric to augment the performance of any binary
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....... - - - - - -

decoder, thus making soft decision decoding improvements available for use
with a wide variety of block codes. Such techniques are called weighted
erasure decoding (WED) [23) although, in the strictest sense, nothing is
really erased. An example of a WED algorithm follows.

Expand each w-weight on a set of r < Q-1 positive real numbers using
binary coefficients.

w, = A ,r., Ai 0 E O, 1) (19)
.= 1

Express each received symbol in this representation, and write each re-
ceived word as the resulting array of r binary n-tuples. (It will soon become
obvious that the complexity of this decoder is sensitive to the value of r
which, therefore, should be kept as small as possible.) Using your favorite
binary decoder, decode each n-tuple in this array. The following quantities
are of interest:

F, = the number of positions changed in the s th row by the
binary decoder

E, = the actual number of errors that occured in the s' h row
E = e, = F'= v1Ef = total w-weight of the error pattern
R, = max(O,2d- 2F,)

In any column define So and S1 to be the index sets of positions where
the value is 0 and 1 respectively. Then, decide that an information digit has
value 0 if

Rf vf > Rf (20)
so S1

and 1 otherwise..,

NOTE: This algorithm does not attempt to output a codeword from the
decoder but rather to produce a set of "best" estimates of the information
digits. It is, therefore, best suited to applications that are bit oriented rather
than block or word oriented.

For channels having continuous outputs, Reddy [24] extended WED to
two cases which cover many important applications.

Reddy's Type I channel is a binary input, channel with continuous out-
put on [0, 1]. The Generalized Hamming Weight (GHW) of a channel output
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is defined as GHW(ei) ej I- The GHW of a received vector is, as before,
the sum of the GHW's of its components. Reddy [24] proved:

Theorem 6 On a Type I channel, all error patterns having GHW < d are
correctable.

It is instructive to outline Reddy's algorithm and to compare it with
Yu's restriction of GMD to Q-ary channels. (See the next section.)

Reddy allows, the number of w-weights to be infinite, and represents
every value xj E [0, 1) by an expansion of the w-weights, xi = Ti = bij147
where the bi, are binary coefficients. Define:

j = (b11 ,b12 -,'",b1n) (21)

L2D = [log2(d+ 1)j (22)
wi = 2- . (23)

The algorithm is:

* From the received word, derive i1 ,V 2 ," 1L2D.

* Using the binary decoder, decode V1', f"2,..., VL2D.

* Select f', such that GHD(,'",Y) < d.

If d is odd, this will correct all error patterns having GHD < d

Reddy's Type II channel takes input from arbitrary alphabet A and
presents as output pairs (y, a) where y E A and a E [0, 1]. Defining GHD
between (yl,aI) and (Y2,a2) as 11 a I - Q2 1, he showed that all error pat-

terns having GHD < d are correctable. Note that the obvious application
of this case is to the soft decision demodulator output which presents both
a tentative hard decision estimate and a confidence value for each demodu-
lated symbol.
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4.4 Improved GMD Algorithms for Q-ary Chan-
nels

Yu and Costello (181 extended GMD (which was developed for the ar-
bitrary channel) to the Q-ary output channel. Relaxing the constraint on
Theorem 4 by dividing each of the components of r by the absolute value of
the largest and making arguments on the Q-ary channel, produces a received
vector 0 = (/31,.- -, 3 ),-1 < 3i 5 1, that satisfies the theorem:

Theorem 7 For any received 3, there is at most one codeword c such that

/3.c > n - d. (24)

That this is stronger than Theorem 4 can be seen by noting that, taken
together, the two theorems imply that

r.- c >1 rM I (n - d) (2-5)-

where r.1 1< 1 is the magnitude of the largest component of r. This result
will be used in the next algorithm.

Now, the continuous value of each channel output symbol is quantized
to the nearest level in the set {2(h - 1)/(Q - 1) - 1,h = 1,2,- .,Q). The
channel output vector is thus replaced by its quantized version Y which obeys
the following familiar looking theorem.

Theorem 8 For any quantized received word -1, There exists at most one
codeword c such that

y"c > n - d. (26)

When Q can be written as q1, the algorithm for finding such a codeword is
quite similar to that of Reddy 1241. The quantized received vector t gener-
ates I q-ary words, each of which is decoded by a q-ary decoder. Together,
these produce a codeword, ei. If cj satisfies Theorem 8, output it as the
decoded word and stop. Otherwise, try another of the q-ary outputs until all
are exhausted. If no codeword satisfies the theorem for the -y at hand, the
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one with the largest value of the dot product is output as the best estimate
because it is the "closest" to the received vector in the sense of Theorem 8.
However, it has been shown that, if Theorem 8 is satisfied, then at least one
of the q-ary outputs satisfies a similar condition.

4.5 Rank decoding

Finally, we present a decoding technique that is in rather a different vein
from those preceeding, all of which are related in some way to GMD. It
is included because, for its simplicity, it provides a useful amount of error
correction on noisy channels.

Chase [13] developed rank decoding to be used with the product of two
(3,2) parity check codes. In principle, it can be applied [25) to any binary
code that is one-step orthogonalizable 3 (26]. The received symbols within a
word are ordered according the reliability measure accompanying the hard
decision estimate. Those estimates which satisfy all checks or which satisfy
one check and are sufficiently reliable are accepted. Others are flagged.
When a row or column in the product array contains only one undecoded
position, that position is decoded with a value that will force the parity
of the row or column to check, as in Wagner decoding. Rank decoding
gives coding gains of 2 to 4 dB for the codes originally used by Chase.
Coding gain decreases as longer single parity check equations are used; this
is expected since the rate increases and the ratio of minimum distance to
length decreases with block length [25].

3A code is orthogonalizable if, for every information position, a set of d - 1 check
equations involving that position can be written so that no other position appears in more
than one.
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Chapter 5

Optimal Methods

Perhaps less practical than techniques of the preceeding section, so-called
optimal methods demonstrate the limits of what is possible and give a mea-
sure of the difficulty in achieving these limits.

Several criteria of optimality can be defined for decoders. These include:

minimum error probability,

maximum-likelihood, and
minimum cost.

We shall not consider minimum cost because, in a communications con-
text. all types of errors are generally of equal cost.

The minimum error probability criterion is to decode the received vector
r into the codeword cm which is most likely to have been transmitted, given
that r was received. That is, choose c,, so that

Pr(cm, I r) >_ Pr(c, I r), m 6 m'. (27)

The mazimum likelihood criterion is to decode r into the codeword c,,, for
which r is most likely to have been received, given that cm, was transmitted.
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Or, choose c' so that

Pr(r c,) > Pr(r I c.), m m i'. (28)

Bayes' rule makes (27) equivalent to

Pr(cm,)Pr(r I c,,) > Pr(cm)Pr(r I cm). (29)

Hence, when codewords are equally likely to be transmitted, Pr(Cm,) =

Pr(cm) and we have [27]:

Lemma 1 If all codewords are equally likely to be transmitted, then any
maximum-likelihood decoder performs minimum error probability decoding.

The decoding error can be minimized over a word or over each symbol
within a word.

5.1 Optimal Word Decoding

Optimal word decoding will mean maximum likelihood or minimum proba-
bilitv of error decoding since our concern is with equiprobable code words.
Hwang [28] has presented an algorithm which, like correlation decoding. is
guaranteed to be optimal and which presents avenues for reducing its com-
plexity by exploiting the algebraic structure of the linear block code.

Unlike most of the soft decision decoders heretofore presented, this one
has no associated binary decoder. In the spirit of reducing complexity, it
does not require multiplication of real numbers.

The received vector is r = c + e where c is the {1) representation of
binary code vector and C is the set of code vectors over {±1}n. The error
vector e is an n-tuple of real numbers. The bit log likelihood ratios are

= In[ Pr(r 1-1)] i= 1,2,...,n (30)

and are the components of the so-called channel measurement information
vector of r: 4:.= ( , 2 ."",$,l).
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The following definition is needed.

For n-tuples a and b,

a x b = (a, bl, a2b2,...,a,b,) (31)

and is a vector.

If C* is the binary code, define a subset Cj of code vectors thusly.

k n

CA ={a- c C < E Ca} (32)
i=i j=k+l

That is. Cj is the set of codewords in C' which have more l's in the last
n - k positions than in the first k positions.

Hwang's algorithm, which follows, exemplifies the types of computation
needed to do maximum likelihood information and provides a vehicle for
discussing the complexity of such decoders. An algorithm for finding cm,
the maximum likelihood codeword, is:

e Calculate 0. Find cl such that 0i cl > 0, i = 1,2...-. k. Set
x = 0 X C1 .

* Check values of c, • x for all c' E C-

* If c._ • x < 0 and c, minimizes c x then set c, = c, x c,,.. Else
set Cm = C1 .

Note how the cornplexity of the algorithm depends directly on the size of
C;.

5.2 Optimal Symbol Decoding

To minimize the probability of a symbolerror, select the symbol cm = ai
to maximize

P,(c,,, = ailr) = j P7 (clr) (33)
CE$S (a,)
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where ai E the source alphabet and Sm(ai) is the set of all codewords where
the m-th symbol has value ai. That is, select that value of the m-th codeword
symbol that minimizes the probability of symbol error conditioned on the
received vector.

An implementation of the minimum probability of symbol error for the
binary symmetric channel and for any linear code [29] results in the decoding
rule:

Set , = 0 if

2 '-' n1

E (-0)' > 0 (34)
j=l 1=0 1 0

and a,, = 1 otherwise. Zj, is the I - th component of the j - th member of
the dual code C', bm1 is the Kronecker delta, ED represents addition modulo
2, and 01 is the bit likelihood ratio given by

Pr(r, I1) (35)- , r i0)"

In general, a decoders for such symbol decoding rules will produce an output
vector which may not be a codeword. To extract the actual information
symbols (which is, after all, the point of the algorithm) when the code is
not systematic, a set of k linear equations must be solved after decoding. 1

To select the most likely transmitted m-th symbol, select cm = ai which
maximizes

E Pr(rjc). (36)
C E S_ (a,)

Bit by bit algorithms are quite complex and will not be considered further
in this work.

'in a systematic code, the k encoded information positions appear unaltered, usually
in the first or last k positions of the codeword. In a non-systematic code, every one of
the n encoded symbols is a linear combination of the k information symbols. That is,
cj "F g,ja,, i=0,,...,n2- 1.
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Chapter 6

Conclusions and Directions

The purpose of this overview is to consider candidate soft decision tech-
niques for decoding IIC's. In the original TIC decoding algorithm, the first
decoding of the row code from the channel reduces the error probability from
p to pi. Decoding the first column reduces p, to c, an arbitrarily small value,
thus giving estimates for the first position in each row with very high confi-
dence. After the decoded first position is subtracted from the row code, the
entire process is repeated, now possibly requiring a shorter and higher rate
code for the second column. These steps are iterated until each information
position in the row code, and hence in the entire code, is decoded.

Soft decision techniques promise improvements to this process, viz:

1. smaller values of pi,p2,' thus requiring shorter and higher rate
column codes,

2. the creation of erasures in the leftmost column to be reconstructed by
errors and erasures decoding of the column code with a possible improvement
in code rate, and

3. a redesign of Improved Iterated Codes using codes more easily decoded
than BCH codes, counting on the stronger soft decision decoding to provide
comparable or even improved performance.
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Soft decision decoders which should be examined for use in a decoder
for IIC include.

* channel measurement decoders

* errors and erasures decoding with GMD

a GMD on a binary-input discrete memoryless channel.

Finally, certain techniques have been tailored specifically for iterated
codes and. for that reason, should be tried. These include

* a form of WED [23]

e an extension of GMD to iterated codes [20]

e a recent scheme bult on Elias's codes [30].
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