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1. INTRODUCTION

The fundamental problem of penetration mechanics may be stated roughly

as follows.

Given a projectile, a target, and details of the initial geometry,

kinematics, and materials;

Determine whether or not the target will be perforated upon impact.

If perforated, determine what the residual characteristics of

projectile and target will be, and if not, determine how deep a
hole will be made.

This is an extremely difficult problem, which has defied complete solu-
tion for many, many years. It may be approached on at least three differ-
ent levels: namely, simple data correlation, engineering models of inter-

mediate complexity, or full scale numerical simulation. Data correlations

rely on extensive testing, and if good correlations can be found, they may
be extremely useful for interpolation to predict other cases that differ

flIy in minor ways from the given data set. However-, they cannot be

expected to give more than rudimentary insight into the basic physics of
the problem since no direct use is made of the balance laws. The construc-
tion of engineering models relies on approaches similar to those used suc-
cessfully in strength of materials and hydraulics. Here simplifying
assumptions about kinematics and internal forces are made, and the balance
laws for mass, momentum, and energy are satisfied in integral form. At the

highest level of complexity, numerical simulation may, in principle,
include all the relevant physics, but now other difficulties arise, such as
the construction of efficient algorithms for highly distorted materials,
and the accurate representation of material behavior.

In this paper, the first and third approach will be briefly commented
upon, including some remarks on the strengths and weaknesses of each
approach, but the principal emphasis will be placed on the second.

2. DATA CORRELATION

Dimensional analysis, which relies on finding functional relationships

among groups of nondimensional parameters, is the principal means for mak-
ing correlations within large data sets. In the special cases where two

dominant groups can be identified (call them x and y), then systematic
experimentation can establish a functional relationship between the two in
a straight forward way, say y = f(x), where the relationship is valid over
as wide a range as one likes. Furthermore, experimentation will usually be
made easier by extensive use of subscale models. In ballistic cases, how-

ever, it has not been possible to reduce the important nondimensional
groups to two or even three. Since the amount of experimentation required

to determine a general, unknown, multidimensional function, say
p = f(x,y,z), would be prohibitively expensive, a modified approach is

usually taken. If it is assumed that the function f(x,y,z) can be fit

locally as a power law, that is f = Axaybzc, where the coefficient A and

the exponents a, b, and c are all constants, then after taking logarithms,
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the relationship becomes the linear one log p = log A + a log x + b log
y + c log z. In this form, the data can be fit and the constants deter-
mined in the standard way with a multilinear regression analysis.

Many examples, which essentially exemplify this approach, may be found

in the review article by Backman and Goldsmith. 1 In most cases reported
there, the focus is on thin targets and relatively undeformed projectiles,
although the same approach is also applicable to thick targets and highly
deformed or eroding penetrators. For the most part nondimensional groups
have not been used, which tends to limit the applicability of each empiri-
cal formula to the specific test data from which it was derived. Neither
is it common to use material properties in the correlations.

In a previous review paper2 the following formula was given as an
example to which the fitting process, outlined above, might be applied.

(PpVL2 L)/(Et T sece) = f(T. sece/D, Ep/Et, Pp/Pts L/D. ..... ) (1)

In this formula the primary unknown is VL, the limit velocity at which

a penetrator of length L and diameter D will just penetrate a target of
thickness T when the angle between the line of flight and target normal is
0. Subscripts p and t stand for penetrator and target, p is density and E
is a characteristic stress or energy per unit volume. Since T sece is the
path length through the target, the left hand side represents the ratio of
available kinetic energy per unit cross sectional area of penetrator to the
energy that can be absorbed per unit area of target. Inclusion of the
densities and characteristic energies is an attempt to account for material
properties in at least a crude way, but there may be other material quanti-
ties, such as fracture toughness, that are more significant. The grouping
of terms in (1) is plausible, but there may well be other nondimensional
arrangements that are more effective. If the right hand side of equation

(1) is replaced by a power law, as suggested previously, Bruchey3 has shown
that it is possible to match a limited data set, obtained by various work-
ers at BRL, within about 10%, where the values of the various nondimen-
sional groups vary over ranges of roughly two to five. By choosing other
functional forms, as suggested either by a simple engineering theory or by
experimental variation of one nondimensional parameter at a time, it is
possible to improve the fit to the data considerably. Ongoing efforts in
this vein that seem effective for eroding long rod penetrators are being
pursued at BRL. This discussion should suffice to indicate at least the
nature of uncertainties that are unavoidable in trying to find empirical
data correlations.

As a last comment in this section, it has often been noted that if the
stress-strain relation for a material is independent of specimen size and
rate of deformation, then linear scaling by the same factor for time and
all dimensions will leave the equations for balance of momentum invariant.
Thus, it should follow that the results of a full scale test can be pre-
dicted from those of a subscale experiment, provided that materials are
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identical at both scales and that boundary and initial conditions are prop-

erly scaled by the same linear factor. In particular, under these condi-

tions the limit velocity in a subscale experiment should be the same as in

the full scale test. However, fracture and failure processes are rate

dependent in general, as is plastic deformation for many materials. Fur-

thermore, the properties of stock materials tend to vary as thicknesses

vary, and the technical details of projectile launch usually preclude exact

replicas at full and subscales. Thus, the above idea concerning subscale

testing must be used only with great caution. In fact, it has often been

observed in our laboratory that limit velocities obtained from small scale

tests may be significantly larger than those obtained from full scale

tests. There are many vagaries, of course, but this is the trend that

would be expected from rate dependent properties, since the natural scaling

parameter for rates is given by the striking velocity divided by a char-

acteristic dimension. Thus, smaller scale means higher rate and tougher
resistance.

3. NUMERICAL SIMULATIONS

There are several recent review articles that describe the present

state of affairs with regard to numerical simulation of impact and penetra-

tion 4 '5 so that a comprehensive review will not be attempted here.

Instead, it seems worthwhile to make a few comments on general capabilities
and limitations and to suggest a few areas where it seems likely that

research could pay off in substantially improved capabilities for numerical

simulation.

Large scale computations for penetration and impact have been made for

well over twenty years. As the size and speed of computers have increased

during that time, so has the complexity of codes used for these purposes,
but certain characteristic difficulties seem to persist. Lagrangian codes,

where the grid points are made to move with the material in which they are
embedded, typically fail when cell distortions become too large. The usual

regions to give difficulty are in the penetrator ejecta (material that has

reversed its direction of motion after impact) and in material near the
stagnation point of either penetrator or target where the flow divides and
diverges into multiple streams. Consequently, codes of this type have been

most useful for examining the response at early times before severe distor-
tions occur. Computational run times can be extended, sometimes dramati-
cally, by various devices. Rezoning (constructing a new computational

grid), either by manual intervention or by a continuous and automatic

algorithm, have been tried, but the manual method is incredibly time con-
suming, and automatic means have proven to have limited effectiveness. The

ejecta are usually unimportant and are often simply ignored by removing
them from the calculation. Material near a stagnation point, however, is
usually subject to the highest pressures and rates of distortion in the
calculation, and so, it would seem, should hardly be disregarded out of

hand. Some sort of local analysis for elastic/plastic materials near a

stagnation point might be well worthwhile. Because the grid is fixed in

the material, these codes do a particularly good job of keeping track of
boundaries between different materials.

Eulerian codes, which use a grid fixed in space, have no difficulty
with excessive distortions and so can be made to run for arbitrary lengths
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of time, but they do so at the cost of losing distinct material boundaries.

This occurs because the fixed grid points do not generally coincide with
material boundaries or other free boundaries as the motion progresses, and
a kind of averaging process causes a sort of material diffusion across
boundaries unless exceptional steps are taken. Since the contact surfaces
are often the regions of greatest interest, Eulerian codes are not often
used for detailed examination of local events in penetration mechanics. On
the other hand, they are used extensively to determine an overall pattern
of deformation at longer run times.

Perhaps because of these characteristic problems, until recently, more
effort has gone into developing solution algorithms, which sometimes seem
to contain rather ad hoe procedures designed more to extend run times than
to preserve the integrity of the underlying physics, than has gone into
developing appropriate computational models of constitutive behavior.

It is commonly stated by practitioners of computational penetration
mechanics that the greatest need is for better material properties. While
this is no doubt true as far as it goes, it would be far better to focus
attention on the need for better material models since the determination of
material properties, as well as their implementation into a particular
numerical algorithm, occurs only within the context of some material model.
It will be of little use to determine material parameters if the material
model used to interpret characterization tests and to implement test
results for calculations is inadequate to the task. In fact, as an argu-
ment for limiting attention to only the simplest material models, it has
sometimes been stated that since the material model will be wrong, it is
best to be wrong as cheaply as possible. Some years ago, this attitude
resulted in a search for dynamic flow stresses, since most calculations
relied only on perfect plasticity. A calculation of the depth of penetra-
tion, for example, could then te made to agree with experiment by simply
adjusting one material parameter. Although the flow stress calculation
today may be more sophisticated, it is common to use an empirical or even
arbitrary value for maximum effective shear strain at failure, for example,
so again it is possible to fit one experimental measure, deemed to be
important, by adjusting a single material parameter. One must then hope
that the same value of the parameter will give good results for other
calculations and experiments. Economics cannot be ignored, of course, but
there is great danger that too narrow a view of material modeling can only
be self defeating. As the size and speed of computers increases, it should
become feasible to devote substantial computational resources (say, 25 to
30% of computational time) to advanced constitutive models.

The status of material models with relevance for impact calculations

was reviewed in a recent report 6 and the principle conclusions reached then
are still valid today. In that report, three elements of material models
were discussed; namely, equation-of-state or pressure-volume-temperature
response, plastic deformation, and material damage and failure. It was
observed that the first area is the most mature and, therefore, requires
the least further development, that development of the last is still in its
infancy, and that the second is in a state of development intermediate to
the other two. It should be noted that material failure models, which
treat damage as an internal variable, rely on knowledge of the present
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evolution of further damage. In turn, the present state of damage affects

the stress calculation. Thus, there is an interaction among all three

elements of a material model, and refinement of one element, in particular

refinement of the damage model, can be expected to require refinement of

the other elements. Because of this, the use of artificial viscosity,

which smooths out shock waves in a calculation, should perhaps be

reexamined for its effect on the evolution of internal variables.

Within the last five years or so, there has been considerable progress

made in several areas of constitutive theory that should have a major

influence on impact and penetration calculations. The theory of finite

plastic deformation7 ,8,9,1 0 has recently reached a level of development

such that it could be incorporated into penetration codes. For materials

that harden isotropically the newer theories are indistinguishable from the
classical incremental theory, but a finite deformation theory is essential
when plastic anisotropy is involved. For many materials of interest
mechanical forming processes, such as rolling, swaging, or extrusion, will
produce a texture that is initially anisotropic, and for many others the
Bauschinger effect or kinematic hardening will produce it during the

deformation.

Detailed models suitable for material damage under dynamic conditions

are less advanced than is finite plasticity. Two major classes of damage
need to be considered for ductile materials, namely, nucleation and growth
of voids under net tension, which leads to spall formation, and formation

of adiabatic shear bands under rapid deviatoric motion, which leads to
erosion and plugging. In addition, microcracking is another form of damage
that is important for brittle materials. Currently there is great activity
in developing micromechanical models of all kinds, including these three,
and articles on one or the other can be found in almost any current mechan-
ics journal. Emphasis is currently being placed on a detailed treatment at
the level of individual features. For use in impact calculations, it will
be necessary to abstract a set of internal variables that represent the
essential kinetic and kinematic features of the damage and that derive from

the micromechanics, and then to apply the results in developing macroscopic
constitutive equations, including evolutionary equations for the damage
variables.

The most advanced constitutive models for damage during impact have
11

been described by Curran, et al. These models all have an extensive
empirical basis in that the fundamental kinetic features of the damage var-
iables are assumed, rather than being developed from microscopic considera-
tions. This necessitates that the models be calibrated in rather elaborate
dynamic tests where the resulting damage at various stages of evolution is
determined by metallurgical examination of the recovered samples. As a
consequence it is expensive to calibrate even a single material, and it is
difficult to relate the fracture parameters to ordinary physical and
mechanical properties. Even so, these models are the best currently avail-

able, and they will be used until more refined treatments become available.

Impact codes for treating the high speed collision of solid bodies

still have a long way to go before they achieve the level of effectiveness
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that is currently available in aerodynamics, for example, where the calcu-

lation of high speed flows over bodies of rather complex shape is approach-

ing a level of high art. The same cannot be said for calculations in solid

mechanics. In fact, the limit velocity for even the simplest penetrator

and target combinations cannot be reliably computed even today, presumably

because in the final stages where the penetrator stops just as the target

is perforated, all strength, flow, damage, and failure mechanisms come into

play in more or less equal measure.

4. ENGINEERING MODELS

The aim of an engineering model is to reduce everything to a simple
mathematical form while still retaining the essential physics of the phe-

nomena in question. In penetration mechanics, this results in the repre-
sentation of a complex and inherently three-dimensional process by a
limited number of degrees of freedom so that the result is either a low-
dimensional system of ordinary differential equations or at most a few one-
dimensional partial differential equations.

There are many potential benefits from such an approach. Basic non-

dimensional groups of parameters for scaling may be revealed, which in turn
can help tremendously in experimental design, in planning a test series,
and in organizing data. With a simple set of equations, solutions can be
generated rapidly and perhaps even in closed form for special cases, or
else high quality asymptotic solutions may be available. Any of these in
turn may suggest an appropriate functional form for improved data correla-

tion and nonlinear regression analysis. Ease of solution also permits
systems studies for extensive parametric changes and preliminary full scale
design.

On the other hand, reduction to a simple system of equations invariably

requires that compromises be made, and that only a limited number of

deformation mechanisms be included in the model. For example, at rela-
tively low speeds a blunt projectile may cause structural deformation such

as dishing of a thin target element followed by punching of a plug. At
higher speeds and with thicker targets there may be extensive deformation
or even erosion of the penetrator, and the target may yield without signif-

icant structural deformation by first flowing plastically to the side and
then by punching only a small plug at the end of the process. The litera-

ture is full of examples of this kind. For example, see Goldsmith 12 for an

exposition of this point of view, Backman and Goldsmith for a review to
13

that time, and more recently, the work of Ravid and Bodner, Levy and

Goldsmith, 14 Forrestal et al., 15 Yuan Wenxue, et al., 16 or Sun Gengshen, et

al. 17  There are many other examples in the literature.

4.1 The Eroding Rod Model: An Example. Conservation Laws.

Consider the impact at high speed of a long slender rod on a thick or
semi-infinite target. This is the eroding rod model introduced independ-

18 19,20
ently by Alekseevski and Tate rediscovered by others since the
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1960's, and reviewed by Wright.2 The model is here reexamined with special

attention being paid to the ever troublesome "modified Bernoulli equation."

By beginning with the full three-dimensional balance laws for mass,

momentum, and energy in integral form, an approximate set of one-

dimensional penetration equations may be developed. The process is similar
in many ways to that used for derivation of the equations of beam theory in
solid mechanics or of the equations of hydraulics in fluid mechanics.

A discussion of conservation laws may be found in any standard text on

continuum mechanics,2 1,22 and a definitive discussion may be found in the

book by Truesdell and Toupin.2 3 For present purposes the pertinent facts
are recorded below. Any conservation law for a closed, arbitrarily moving
region in space simply states that the time rate of accumulation of a con-
served quantity, f, within the region in question, is equal to the flux of
the quantity transported across the boundary, plus the source of supply, g,
at the boundary, plus the source of supply, h, deposited directly in the
interior of the region.

d-4 f dv f(G - u.n)ds + g ds + fh dv (2)

In (2), f, g, and h may have any tensorial character, G is the speed
of the surface in the direction of the outward normal, u is the velocity of
the medium, and n is the outward normal of the surface. The symbol f
denotes a surface integral. Note that the term G - u.n measures the out-
ward speed of the surface relative to the normal speed of the material.
Consequently, if no material crosses the surface, the term gives no contri-
bution.

It is essential to include the first term on the right, which gives the
contribution due to material convection, in cases such as the eroding pene-
trator, where the boundary moves relative to the material. Clearly, it is
only when the surface is a material boundary that the quantity G - .r- = 0
identically, and then the convection term vanishes. When the surface is
fixed in space, as in a control volume, G 0 0, and then it gives rise to
the Reynold's transport term (see Reference 21). When the fields in ques-
tion are smooth, since (2) holds for every smooth region in space, it gives
rise to the differential balance laws, and when there Is a discontinuity,
since (2) is assumed to hold in that case as well, it gives rise to the
jump laws for shock waves. Equation (2) is written in the spatial form,
but of course, it can be transformed into the material form, as well. In
the material form the equation looks formally the same, except that in
the transport term the quantity (G - u.n)ds must be replaced by (P )GrdS

0 r
where p is the original (reference) density, Gr is the outward normal

speed of the surface relative to the material in the original configura-
tion, and dS is the surface element in the original configuration. Thus f,
g, and h may be referred either to present volumes and areas or to the
fixed reference volumes and areas. In applying the integral balance laws
below, only the spatial form has been used.



The terms f, g and h are identified for the three balance laws as

follows.

Masb ; -- fPdv p (G - u.n)ds, (3)

p = density, g = h 0.

Momentum: dyfPu dv Pu(G -u.n)ds +. ~ ds p P dv, (4)

0 u = momentum, t Cauchy stress, b body force/unit mass.
dC f 1[1

Energy: d p (e + u.u)dv 7 p (e + u.u)(G - u.n)ds + (5)

+ (u.t - q).n ds + r + pu.b)dv,

e = internal energy/unit mass, q heat flux, r energy
sources and sinks/unit volume.

4.2 Conservation Laws Applied to an Eroding Long Rod Penetrator

Following Christman and Gehring, 2 penetration into a relatively thick
target may be idealized as occurring in several stages. Upon first impact
a strong shock wave is introduced into both penetrator and target, but due
to the presence of nearby free surfaces, the shocks weaken rapidly and soon
a quasi-steady flow field is set up near the penetrator/target interface.
An attempt to analyse this initial phase approximately has recently been25
made, but the net result in the case of long rods is always that about
one to one and a half diameters of rod is eroded. If good estimates of the
initial penetration and mass loss in the rod during this first stage of
penetration could be made, then the quasi-steady analysis, developed in the
sequel, would apply to the remainder of the rod, and to find the total
penetration would require that the initial part be added on. Since the
approximate analysis is uncertain, a simpler, and not necessarily less
accurate, approach is to use the quasi-steady analysis, discussed below,
right from the start. In the final stage, either the target material fails
and perforation occurs, which requires special treatment, or penetration
ceases in a rapid transition from the quasi-steady stage to full rest for
all material. Strictly speaking this final stopping stage also should
require special treatment.

To consider the second or quasi-steady stage of penetration, refer to
Figure I. In the simplest application of equations (3)-(5) for this stage
it is assumed that the material in both penetrator and target behaves as an
ideal rigid/perfectly plastic solid. This is the implicit assumption of

both Alekseevskii 18 and Tate, 19 '2 0 but in the present treatment, the role
of the energy equation, which has been conspicuous by its absence in past
treatments, will be examined, and the modified Bernoulli equation will be
cast into a new light. In Figure 1 the rod material is divided into two
parts, R and S. In region R the rod is assumed to be rigid and undeformed,

8



pR, AR # L pT, AT
V

PD A D

Figure 1. Schematic Diagram of Quasi-Steady Penetration

so that all of the material has speed u in the positive horizontal direc-
tion, density P,, cross-sectional area AR, and instantaneous length L. In

region S, which is assumed to be constant in size and shape and to be in a
state of steady flow, the material begins to flow plastically at the R-S
boundary and then to undergo very large deformations before the debris
exits with cross-sectional area AD, density PD' and velocity v in the

rearward or negative horizontal direction. Both the R-S and S-T boundaries
simply translate horizontally with speed j, where p is the depth of pene-
tration. The target material lies in region T and the cross-sectional area
of the hole in the target is AT.

Application if the first two balance laws to region R gives

dtd- P L A(p - U) ,or L =p - up (6)

L [P A Lu) P A u (  - u) - YA, or L - Y (7)
dt R H aRAmuPn R PRLI

9



where Y is the compressive yield stress in the rod, and there is no contri-

bution from the lateral sides of the rod. Because the material has been

assumed to be rigid in region R, the only energy is kinetic energy. Thus,

the energy law is entirely equivalent to the momentum law and adds nothing

new.

The balance laws (3)-(5) applied in succession to the steady region S
now give

o g PRAR(- + u) + PDAD( -  - v) 
(8)

0 P RARU(- p + u) - DDv(- p - v) + FR + FD F T  (9)

1 220 PORAR(eR + 1u )(- + u) + P DA D(e D + v2 )(- p - v) +

D DD 1 p(10)

+ f u.t.n ds

where the left hand sides are all set to zero because of the steady assump-
tion, FR is the total axial compressive force on the R-S boundary, FD is

the total axial compressive force on the rearward flow of debris, and FT is

the total axial compressive force on the S-T boundary. In (9) eR and eD

are the densities of internal energy in the rod material at entrance and at
exit to region S.

With the notation m for the mass flux, and noting that the velocity may
be written u = Pez + ur , where e z is a unit axial vector and ur is the

velocity relative to the stagnation point, equations (8), (9), and (10) may
be rewritten as

m = PRAR(U - p) = PDAD(V + (11)

m(u - ,) + m(v + ) FT - FR - FD 
= F (12)

l(u - )2 -(v + )2 Y + e D  e+ WB (13)
2 2 = R + D D R m

In (13) W I u .t.n ds, where integration is taken only over the S-T

boundary. Sinc ur Is tangent to the boundary in a steady flow, is a

contribution due to shearing tractions on the penetrator-target interface.
In arriving at (13), which also could have been obtained directly by using
a coordinate system fixed at the front of region S, use has been made of
(12) to eliminate the cross-product terms, up and vp, as well as the pFT

term. Then (13) results after division through by m. Also FR/AR and FD/AD

have been written as the average stresses Y and 7D' With (u - b) and

(v + ) renamed U jnd V and with the right hand sides of (12) and (13)

renamed F and D, the equations may be rewritten once again as

10



p A U = DA DV (14)

P RA RU2 + P DAD V 2 = F (15)

U2 _ V2 = 2D (16)

These have the exact solution

2

2 1 RAR 2 RR _ U PDAD F
SF D F D PRARF 2RARD (17)

P RAR P RAR

4.3 Target Response To Cavity Formation

So far the discussion has focused entirely on the flow of the upsetting

rod. To procede further, attention must now be switched to the flow of the

target material around the cavity, and here the discussion becomes much
less certain. There seem to be two principal unknowns, namely, the cross-
sectional area AT of the cavity, and the force FT delivered to the target.

These are related, of course, and must be compatible with the flow field in
the target material. In analyzing the rod, advantage could be taken of the

interior cylindrical geometry of both the incoming and exiting rod mater-
ial, where it is reasonable to assume nearly uniform stress and velocity
through a cross-section. But in the target, since the flow is exterior to
the cavity, nothing is uniform except at large distances from the front of
the cavity. This has been a central problem for penetration mechanics, and
it has been treated in many different ways, none entirely satisfactory, in

an attempt to derive approximate results.

One idea that seems to have been useful is that it takes the same
amount of energy to produce a cavity of given volume in a plastic material
no matter how the cavity is formed. This led Hill to consider radial cay-

26
ity expansion (see Hill, in which he summarizes his work done during the

1940's). Hopkins 27 described dynamic expansion of a spherical cavity, and

Goodier 28 used these results in a theory of penetration. Later, Hanagud

and Ross 2 9 tried to improve on Goodier's result by including compressibil-
ity. The idea here is to solve the simpler (but still rather complicated)
problem of dynamical expansion of a spherical cavity in an infinite
elastic-plastic material, and then to assume that the pressure on the wall
of the spherical cavity, weighted by a cosine function, also applies to the
case of deep penetration. A further extension of these ideas has been

given by Forrestal3 0 for penetration into dry porous rock. Recently

31,32
Tate has take a different tack by considering the flow field produced
by a Rankine body. These approaches have all been essentially analytical.
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A purely computational approach was begun by Batra and Wright, in which

they used the finite element method to investigate the steady flow of an
incompressible, rigid/perfectly plastic material past a semi-infinite

cavity with hemispherical nose. This is being pursued by Batra, 34 ,3 5 who
has since considered the effects of nose shape, work hardening, thermal
softening, and rate effects, but not compressibility. For present pur-
poses, the result of all this work is simply to give a variety of esti-
mates, all of unknown reliability, for the coefficients in the formula

FT = A T(a + bp2 + c) . (18)

With c = 0, this formula seems to have been first applied by

Poncelet.36  Sometimes an extra term, proportional to p is added in order
to account for rate effects in the target material or perhaps for friction
at the interface between rod and target. The p term has been much favored
in the Russian literature, e.g. References 37 and 38.

The first coefficient, a, is a hardness number with the dimensions of
stress, so it can be expected to be proportional to the compressive stress
at first yield. Typical expressions for it are

a = (2ET/3)[1 + In (2E/3ET)] + (212/27)ET (Goodier 8) (19.1)
22

a (2E T/3)[ 1 - ET /E + ln(2E/3ET)J + (2 2/27)E T  (19.2)

31(Hanagud and Ross 2 )

a = ET[2/3 + ln( 2 E/3ET)J (Tate 3 1) (19.3)

where ET is the simple compressive yield stress, ET is the plastic tangent

modulus (bilinear approximation), and F is the elastic Young's modulus.
Typical values for steels from these formulas are about 4FT to 4 .6ET . If

these expressions are taken literally for the rigid/plastic approximation,
a tends to infinity as E tends to infinity, but Batra and Wright, who
only considered the rigid/plastic case, found a = 3.9ET numerically. Since

the rigid/plastic case is somewhat pathological, requiring volume changes
and elastic distortions to vanish, but not pressure or shear stresses, it
seems likely that a different limiting process may be required, rather than
the straight forward one from (19), in order to achieve a finite limit for
a. Batra later found that the numerical value depends strongly on the
shape of the cavity, decreasing for a more pointed shape, but experimen-
tally the cavities usually seem close to hemispherical.

The second term is essentially a dynamic pressure term, with b having
the dimensions of density, and playing the role of a form or shape drag
coefficient. Goodier 2 8 estimated the term to be about p T' but in the

calculation of Batra and Wright3  it came out to be 0.07730T* In Batra's

12



later calculations, where he accounted for strain hardening, strain rate

hardening, and thermal softening, as well as nose shape, the coefficient

varied by a factor of at least three. Incidentally, in none of those
calculations, even those that included a rate effect, was there a strong p

term.

The third term, which is identically zero if the flow is truly steady,

is analogous to the apparent mass in the flow of perfect fluids around
solid bodies. The coefficient, c, has the dimensions of length times den-

28
sity, and was estimated by Goodier to be about (PTd)/3 where d is the

cavity diameter. Thus, the force required to advance the cavity may be
written

FT = AT(aET + bPT + cpTA ))

where now the three coefficients a, b, and c are nondimensional numbers
that depend on material properties. Considerable research is still needed
to pin down these numbers authoritatively. In the unsteady problem it
might also be necessary to refine the derivation of equations (8), (9), and
(10) since the left hand sides will no longer be identically equal to zero.
It seems likely, however, that this may be an unnecessary complication for
long rod penetration since the unsteady regimes occur most strongly only at
first impact and near termination of penetration.

A major remaining unknown is the cross-sectional area of the cavity.
Of course, in the actual flow, the cavity area and shape must adjust them-
selves so as to balance tractions between penetrator and target everywhere

on the interface. Tate31 estimated the cavity diameter on the basis of an

energy argument, but in the present work, energy balance for region S has
already been used, but it did not yield the extra information. It seems
clear that careful study of the target flow will be required to clear up
this question definitively. It can be argued that during penetrator
erosion AT/AR must be approximately 2 or greater. (D may be positive or

negative, but if it is small, as seems likely in many cases, then equation
(17) indicates that AD/AR is approximately 1 since O D can be no greater

than p." Then, since AT is no less than AR + AD9 the result follows.) In

any case, the experimental evidence indicates that AT is nearly constant

for a given impact, and that fact is enough to permit further analysis.

4.4 Derivation of the "Modified Bernoulli Equation"

Returning now to equation (17), use of (20) with AT assumed to be con-

stant, and with FR, FD, and D all assumed to be constant as well, (17.1)

may be regarded as a first order differential equation for p, or if c in
(20) is taken to be zero, as an algebraic equation to be solved for j in
terms of u. In either case, when taken together with (6) and (7), the
result is a system either of three first order ODE's for L, u, and p, or of

13



two first order ODE's for L and u. Once the primary integration has been

accomplished, p may be found by quadrature, of course. If reliable

estimates can be made for the various groupings of constants, integration

of such a simple system can easily be done on a microcomputer, although

there may be some difficulty when L becomes small since then equation (7)

will be stiff.

It is useful to consider special cases, the first being the well known

example of perfect fluids. Then there are neither yield stresses nor dis-

sipation terms, and FR = FD = D = 0. Also U V, and the total force
2

delivered to the target is simply given by FT 2PR ARU. It happens that

in this special case, and in this special case only, there is one more

piece of information available, namely, the Bernoulli equation, p + pv2

constant, which holds pointwise along any streamline in a steady flow.
(Here p, p, and v are simply generic terms.) By noting that pressure

vanishes far from the stagnation point, and by equating pressures at the
common stagnation points in the colliding fluid flows, it turns out that

PRU2 = pT 2 , which may be solved for p to give the well known result

p U/0 + T/P R ), and by substitution FT = 2ARP p 2 = 2ARPT2/(I +

pT /PR )2 .Here the problem is solved completely except for the cavity

diameter, which remains unknown, and if needed, must be found by further
investigation of the complete flow problem. In the colliding flow of plas-

tic solids, the simple Bernoulli equation does not hold, because in the
integration along a steady streamline, there may be gradients of transverse

shear stresses that do not vanish. This point has been discussed by

Wright,2 by Batra and Wright,
33 and by Pidsley. 39

In the case of perfect fluids D 0 0, and in the case of plastic solids
it may still be small. With the rigid plastic assumption eR must be zero.

As the rod material turns and reverses direction, it undergoes intense

plastic flow, which converts into heat, and the material usually (but not
always) fragments into many small pieces. The term e D then must account

for heating and fracture energy. In steel with density of about 8000 kg/m

and specific heat of about 500 joules/kg/K a temperature rise of only

250K0 corresponds to a flow stress of 1 GPa. In addition, by fragmenting
into small pieces, there is virtually unlimited surface energy that could

be released. Thus, it seems reasonable to assume that eD and Y/PR are com-

parable in size. If the material is highly fragmented, it is also reason-

able to set ZD = 0. Finally, due either to local melting or to adiabatic

shear on the interface, it seems likely that WB will be small, and in any

case, the mass flux m is large. Thus, as an approximation D = - Y/PR + eDo

and as a working hypothesis it seems reasonable to assume that D is small

compared to F/pRAR. If this is so, then a good approximation to (17.1) is

14



2U2 = F + D or (21)

PRAR

3/2
p W T- b-. .2 R

(22)
1 AT1+ -- F + -1(Y + e A
4 A R 2 ?R D)

18
With c 0 in (22) the modified Bernoulli equation of Alekseevskii and

Tate 19'2 0 has been recovered,

1 -2R (u_ ) + ¥ = 2PTe p + R (23)

where PTe 1 PTb is the effective target density. With Goodier's value

for b and with A T/A R2 the true and effective target densities are nearly

equal. The last term on the right hand side of (22), although identified
with Tate's target resistance, R, here has an interpretation that differs
greatly from Tate's. Note that R is not simply a measure of target hard-
ness, but that it involves characteristics of the rod and of the specific
collision under consideration, as well.

Nevertheless, if R is regarded as constant for a particular case, then
(23) together with (6) and (7) is the same system of equations as that

whose properties were displayed by Tate. 19 ,20 In particular, it is known
that solutions for total depth of penetration may be expressed in the non-
dimensional parametric form

7 1V -T  = S(uo/c PTelPR RI¥) (24)P T0

where u0 is the iritial speed of impact, Lo is the initial length of rod,

and c = 1¥/R' a characteristic speed determined by material properties. S

is a function that is zero for uo < uc = /2(R - )pR (assuming that

R/Y > 1) and that saturates asymptotically to 1 for large values of uo -

Equation (24) shows the principle scaling relations in long rod impact, and
the dominant nondimensional groupings of physical parameters.

4.5 An Approximate Solution

Although (6), (7), and (23) may be easily integrated on a microcom-
puter, it is useful to have analytic expressions for either exact or

15



approximate solutions so that the effect of the various parameters may be

more readily exhibited. Recently, Frank and Zook observed that a good
approximation for p, as determined from (23) may be written

u 
2

-u, where P Te /PR and a = = 2(R-Y) (25):I-- -e UwerR 2 - 2

U PR u

For values of P between 0.5 and 2, which is the usual range of interest,
equation (25) is correct to within about 5% over the whole range of u, and

is exact at the extremes of interest, u c and -. Frank and Zook40 went on

to express the solution of (6), (7), and (25) as

L/L = n nexp[a0 (n - 1)]

2 (26)
2 2 R/Y -1lad a u 0

where n = u /u0  ,n 1 an a 2 2
2(1 + )c

u 2

p uL(u)(1 - du

1+)Yfu u2

0 - (27)

or P ne -1(1-n) n(1 + 1) n- e 0 dni
L feo -(.i

0 nl

after changing variables and integrating by parts. In (27) n has the range
2,

= 2(R - Y)/p Ru _ n S 1 since penetration stops when u = u . For given

materials v and n specify the relative material properties and a0 is a

measure of the striking velocity. Thus, with n = qc equation (27) gives

th depth of penetration as a function of striking velocity u0 . Since the

last integral may be evaluated explicity for n = 0, 1, 2, 3..., expressions
may be found that at least outline the expected performance as a function
of the dominant material parameters. Furthermore, it provides a functional
form, with V and n as fitting parameters, which should be far more effec-
tive in fitting an extended data set than the simple power law form, as

discussed in Section 2. This has been amply verified by Frank and Zook.
40

5. DISCUSSION AND CONCLUSIONS

Three approaches to penetration mechanics have been discussed in this

paper. The oldest method, data correlation, is still in wide use today,
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and when coupled with the new functional forms, as suggested by simplified

engineering models, will continue to be a powerful means for organizing

large quantities of data.

In the long run, large scale computing is the only method that can be

expected to deal effectively with complex geometric shapes and new con-

figurations outside our usual experience, because it is only in these codes

that all relevant physical processes can be included, in principle. The

size and speed of modern computers are essential for these calculations,
but they are not sufficient. At the present time, our knowledge of large

scale flow and fracture processes is still rudimentary and inadequate to
the task of a priori prediction in penetration mechanics.

As an example of an effective engineering model, the eroding rod model

has been reexamined in some detail. Emphasis has been placed on careful
and complete use of the integral form of the balance laws, including energy

balance. This ensures that accurate equations of motion will be derived,

and it draws attention to the meaning of various terms in the final equa-
tions and to the various approx.imations that have to be made along the way.

The assumption of a region of quasi-steady flow of penetrator material has

resulted in new understanding of the modified Bernoulli equation. Use of
the balance laws focused on the upsetting of the penetrator, and pointed

out the need for a better understanding of flow processes in the target
material. As with all engineering models, however, the eroding rod model
relies on the identification of dominant phenomenology by careful experi-

mentation with the subsequent model being suitably restricted in applica-
tion.

Only the rigid/perfectly plastic material has been considered, which

simplifies the underlying kinematics considerably, but the integral balance

laws could equally as well be applied to other material models to obtain

penetration equations appropriate for those cases.
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