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THE TURBULENT BOUNDARY LAYER ON A CYLINDER IN AXIAL FLOW
1. INTRODUCTION

The effect of transverse curvature on the turbulent boundary layer that develops as a fluid flows
prallel to a cylindrical surface has applications in several different tields. Early interest in the effect of
transverse curvature resulted from efforts to develop frictional resistance similarity laws to allow scaling from
mode 3 to full-scale for ship hutls.! Other early interest was in the boundary layer that develops on cylindrical
mie ik:s2 or during the towing of submerged cables or cylindrical bodies.3 Finally, interest in the drag of
glas~ ¢r polymer fibers moving through air during fabrication motivawed early research.4

Like the nlanar boundary layer, the cylindrical boundary layer is two-dimensional in the streamwise
ai  weerormal directions, while it is periodic in the spanwise direction. However, most boundary layer
rewez o has been concentrated on the planar boundary iayer. In spite of the apparent simplicity of an
a-isya aeinic boundary layer, the volume of research and, hence, the level of understancing regarding the
Fi ysics o ‘nes boundary laye: have lagged behind that of planar boundary layers.

Jper, further investigation, an axisymmetric boundary layer is not as simple as its two-dimensional
crar ader implies »ecause of the existence of an additional length scale, the radius of transverse curvature,
a. Tnis acditiona length scale suggests several nondimensional parameters. ie., a,=aUJv, ba, Ry=a
U .a &=V(v / Umaa). The first scaling parameter, a,, is a wall scaiing based on the friction velocity, Ur
e the - inematic v scosity, v.* The second scaling parameier is a transverse curvature ratio relating the
¢ unda' y layer th._xness, 8, with the radius of transverse curvature of the surface. The third scaling
£ ara nator mixes tne. outer free stream velocity, U, with the transverse curvature resulting i~ a Reynolds
number based on transverse curvature, R,. The last scaling parameter incorporating the streamwise
coordinate, x, was proaosed in oonjunctionT with the laminar axisymmetric boundary |a1yer.5 Note that all of
these scaling parcme # . except R, are "local” with respect to the flow. in other words, they depend upon
Up. 9, or x whict, intu— depend upon the streamwise position in the boundary layer. Only Ryis
independent of tt - streainwise location in the boundary layer.

* All va-iables subscripted with + have been nondimensionalized using v and Ugs ‘/(‘cw/p),
where Ty, is the wi . she irstress and p s the tisid density.

1 Seban ar 4 Bond® indicate that the parameter & was originally proposed by Young,6 although

this reference was not available to the author for confirmation.
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Consider the e;treme cases of transverse curvature. Firot, as the radius of transverse curvature,
a, approaches infinity (a, and R, very large; d/a and & very small), the boundary layer should be similar to &
planar boundary layer. A similar result occurs when the boundary layer thickness is very small compared with
the radius of transverse curvature resulting in small &/a. On the other hand, if the radius of transveise
curvature, a, is very smali ( a, and Ry small; &/a ard & large) the boundary layer can be much thicker than the
diameter of the cylinder. For instance, Richmond7 measured the cylindrical boundary layer to be neatrly an
inch (2.5 cm) thick on a wire with a radius of 0.012 inches (0.03 cm). Denli and Landweber® rote that as &/a
increases, the outer flow . a cylindrical boundary layer becomes increasingly independent of the wall
suggesting a flow that would be similar to a cylindrical wake with a modified inner boundary condition.

The range of experimental data that is available for the mean velocity profile is shown in tigure 1 in
of terms various scaling parameters. In addition, the Reynolds nutnber based on momentum thickness, Ry,
is included, since this parameter is also defined for planar boundary layers. The range of measurements for
a, and R, span three orders of magnitude, but the same measuements only represent a range of one or two
orders of magnitude for &/a and &. Luxton et al® show a logarithmic correspondence between a_ and R,
for available experimental data. * Their figure also shows that as a, and R, increase, &/a decreases for the
available expenmental data. The direct relation between a_ and Ry is primarily a result changing the radius
Of transverse Cuwéiure orine iree siream veiocily {o obizin a varation in scaiing parameiers.  Using this
approach, a_, o/a, and R, are not independentiy varied. Very little data are availebie based on parameter
variation accomplished by measuririg the boundary layer characteristics at different axial locations given the
same transverse curvature in order to vary a_ and &/a while keeping R, constant. Becau<e data obtained in
this way are scarce, proper scaling parameters have been difficult to identify.

At this point it is necessary to discuss a nuance in the terminclogy that is often overlooked. The
terms "axisymmetric boundary layer" and "cylindrical boundary layer™ have been used interchangeably to
describe a boundary layer that develops as a fluid tlows parallel to the axis of a cylinder. As will become
evident shortly, obtaining axial symmetry experimentally is very difficult. The problem becomes increasingly
acute as the boundary layer becomes thick with respect to the radius of the cylinder. Because the boundary
layer that develops on a cylinder in axial flow is not necessarily axisyrrinetric, the term “Cylindrical” instead of
~axisymmetric* will be used to describe this boundary layer.

“The labels on the axes of figure1 of Luxton et a9 are inadventently reversed and should be

interchanged.
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2. MEAN VEI.OCITY PROFILE

The differences between the mean velocity profiles for a cylindrical boundary tayer and a
planar boundary layer are substantial, especially as the radius of transverse curvature becomes small,
This is evident in tha velc;city defect data of Willmarth et a1 12 reproduced in figure 2. For the larger
cylinders (cormesponding to a smail 8/a ) the velocity defect profile is nearly identical to the profile for a flat
plate. As the cylinder diameter becomes smaller (corresponding to larger &/a ), the velocity defect
profiles become fuller. Richmond’ and Willmarth and Yang14 suggest that this characteristic is similar to
that for a laminar axisymmetric boundary layer. Glauent and Lighthill15 note that in a laminar cylindrical
boundary layer the shear force per unit length on a cylinder equals the circumference times the shear
stress, and that this force is the same on all cylindrical fluid surfaces near the wall (see equation 2-1).
Consequently, the shear stress imust vary with 1/r, where r is the radial coordinate. Since the shear
stress is proportional to dU/ar (where U is the mean velocity in the streamwise direction), then gUor
must also vary with 1/r. As the cylinder radius becomes smaller, 1/r can become larger so the velogity
gradient increases. Thus, a fuller velocity orofile results as the radius of the cylinder decreases.

The differences batween a pianac boundary layer and a cylindrical boundary tayer ai2 also
evident when the mean velocity is plotied as a function of the distance from the wall in the ugual wall
coordinates, U _andy, as shown infigure 3. As d/aincreases, the cylindrical mean velocity profiles
drop below the planar profile. For small &/a, the log ragion of the mean velocity profile nearly matc* - -

the log region for a pianar boundary layer.
2.1 MEASUREMENTS OF THE WALL SHEAR STRESS

Although it may seem premature to describe measurements of the wall shear stress at this
point, it is necessary to do so because the friction v/ '~city appears in the scaling of the mean velogity
profiles when presenting the mean velocity profile in wall coordinates. However, a major weakness in
the presentation, analysis, and use of nearly all of tiie velocity data fot cylindrical boundary layers is the
ditficulty in measuring the wall shear stress, T,,, . Although techniques have been c2veloped for use in
measuring the wall shear stress in a planar boundary layer, tﬁese methods are not directly applicable to a
cylindrical boundary layer because of the effect of transverse curvature.

Richmond7 made an attempt to measure the skin friction directly on a 0.25 inch (0.64 ¢cm)
diameter cylinder using a floating element with an inductance coil position transducer. The measured

coefticient of friction for hypersonic flow is higher than that for a planar boundary layer at the same
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momentum thickness Reynolds number. The skin friction was not measured for incompressible flow.

In several studies the coetticient of drag of & cylinder in axial flow was measured directly. These
experimental studies fall into three categories. The first category is that of towing experiments where a
cylindiical body of finite length is towed through a fluid. Unfortunately, in several of these tests it is
unclear whether the flow was laminar or turbulent. Kempl” and Hughes18 towed neutraliy buoyarit
cylinders up to 84 ft (26 m) leng in a water tow tank and measured the total drag. These results showed
that the coefticient of friction decreasss as a function of botii the length-to-diameter ratio and the length
Reynolds number, Ry =U_L/v, where L is the length of the cylider. Zajac19 carvied out similar tests on
smooth- and rough-surfaced cables that were not neutraily buoyant, atthough the length-to-diameter
ratio was not varied (see reference 3 for these results in terms of the diameter Reynoids number).
Towing tests of optical fibers and monofilaments were camried out by Kennedy et a0 By using fibers as
small as 0.2 mm diameter and 60 to 70 m Icng, the drag coetlicient for very large length-to-diameter
ratios and a wide range of diamster Reynolds numbers were measured. Their results indicate that the
average coefficiert of friction decreases as the diameter Reynolds number or the length-to-diameter
rauo increases. Howevar, because of the very small diameter of the fibers that were used, the wake of
the tow body and support strut may have influenced the drag over the portion of the fiber immediately
behind them:

In the second category of direct drag measurement, cylinders, were suspended in 2 wind tunnel
and the coefticient of drag was measured directly. Again the degree to which the flow field was
turbulent in these tests is cifficult to ascertain. Andrews and Cansfield®" measured the drag torce per
unit length in this way although experimental details are sketchy. Gould and Smith22 measured the
coefficient of drag on monefilaments ranging from 8.5 um to 150 pim in diameter and 91 cm long. At
kigher diameter Reynolds numbers the length-to-diameter ratio had littie effect on the drag coefficient.
However, at iower diameier Reynoids numbers, the drag coeificient appears tc have some dependence

upon the length-to-diameter ratio. Ni and Hansen?3

estimated the drag on a flexible cyilinder in a water
tunnel by measuring the elongation oi the cylinder and correlating that elongation to an equivalenr axial

load.

The third category of direct drag measurzment has been in connection with the tension of
polymer or glass fibers during preduction. Typically, the tension of a continuously extruding fiber is
measured using a tensiometer. The aerodynamic drag on a fiber is found by subtracting the effects of
gravity, rheclogical drag, surface tension, and inertia from the total iension force.24 Because the fibers
are very small, the transverse curvature is certain 1o play a large role. In scme cases, d/a canbe

6
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estimated to be as large as of the order of 200.2° The resutts of several experiments of this type show
that the drag coetticient decreases wilh increasing radius Reynolds number, Rea.26'29 Unfortunately,
these drag coefficient measurements are subject to question for two reasons, First, it is often unclear
whether the flow is laminar, trensitional, or turbulent. Second, the effect of the transverse vibration of
the filament is unknown.

Anindirect method of evaluating the wall shear stress in cylindrical boundary layers has been
through the use of a Preston tube, a circular impact pressure tube ir contact with the wall.  ‘Willmarth et
al.12 found that as long as the cylindrical boundary layer profile coincides with the planar profile the wall
shear stress can be measured using a Preston iube, although the Preston tube diameter must be less
than 0.3 times the Cylinder diameter. Using this methiod, they found that the coefficient of friction
generally decreases with increasing Re,, Reg, and a_, but is consistently [arger than the coefficient of
friction for a flat plale boundary layer. Similar results were reported by Willmarth and Yang14 and Yu 30
For very small cylinders Willmarth ¢t al. were not confident of results obtained using a Preston tube
because of difterences between the planar velocity profile and the cylindrical velocity profile.

The inherent weakness in the use of a Preston tube is that the calibration data for a flat plate
must be assumed valid for a cylindrical boundary iayer. Since a Preston ube extends well into the log
region of the boundary layer, and the log region of a cylindrical boundary layer is significantly different
from that of a planar boundary layer for large &/a, the validity of the flat plate calibration is questionable for
small diameter cylinders. To avoid this problem, Lueptow and Haritonidis31 used a modified impact
pressure p:obe so small that the opening was within the sublayer. Because of the small ditference in the
sublayer veiocity profiles for the planar case and ihe cylindrical case, they assumed that the planar
calibration could be used for the Cylindrical boundary tayer measurements. Using this method, they
found the wali shear stress to be greater than the pianar boundary iayer vaiues and io Gecrease wiin
increasing Re,,.

Several indirect measures of the wall shear stress have been used. The most common metiod
is the use of a Clauser plot13 to match the slope of the log region of the mean velocity profile to that for
the planar case (see ior example reterence 32). This method will centainly provide inappropriate results
when the radius transverse curvature is small, because the planar and cylindrical log region profiles are
known to be different.

Willmarth et al 12 and Lueptow et al.'? used a method in which the measured mean velocity

profile data in the sublayer and buffer zone were filted to the planar sublayer profile through the

7
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adjustment of the friction velocity, thus spucifying the wall shear stress. The assumption here was that
very close to the wall the differences between a planar profile and a cylindrical profile are negligible.
wilim: ith et al. verified this assiimption for 3/a <10 by comparing the wall shear stress obtained using
this miethod with the wali shear stress measured using a Preston tube. However, Lueptow and
4aritonidisS! found that matching the mean velacity profils to the sublayer profile resulted in wall shear
atrasces that "vere higner than those measured with their sublayer impart pressure probe.

Lueptow et al.,10 noting the relationship between the Reynoids stress and the wall shear
stress in a cylindrical boundary lay2r (see equations 2-1 and 2-2), used the slupe of the Reynolds stress
profile when plotied as a function of a/r to estimate the wall shear stress. Although this method shows
trends consistent with oiher methods, the scatter in the data is tco large to make this a useful technigque
for iinding the wall shear stress.

Finally, it ;hould be noted that the wall shear stress can be found from the streamwise gradient
of the momanturm imegral expression for an axisymmetric boundary layer aiter substitution of
experirnantal velocity proiies into the integral (see equation 2-7).  Afzal and SinghS2 used this method
and obtained resul*s simiiar to thase obtained using Clauser plots for smail &a. In practice, this
nrocedure i ermneous unless parfact axisyrmynetry is maintdined as bointed out by Lueptow et a|.1°
Errors related to the differcntiation of experimentally derived ¢uantities is also a problem with this
meihod.

2.2 COMMENTS ON EXPERIMENTAL METHODS FOR VELOCITY
MEASUREMENTS IN CYLINDRICAL. BOUNDARY LAYERS

Most gxperimentai setups used to make velocity measurements of cylindrical boundary layers
involve the suspension of a cy'indrical modet along the centerline of a wind tunnel and the measurement
of tha velocities in the boundary layer using hot wire anemometry. This approach brings about a host of
experirnental problems. Most cruciai. perhaps, is the problem i maintaining axisymmetry of the
boundary layer. In spite of holding the cylinder in tension? or supporting it with guy wires,30 asymmetr/
of the boundary !aver often results from Lhe sag of the cylinder in a horizontal wind tunnel. The sag
pmblem has been sucnesstully overcome by the use of a vertical wind tunnel by Willmarth et al.’2 Even
$0, they experenced difficutty in tinding cylindess that ware straight. Apart from the saqg problem is the
di'ficuity i~ kezping the cylinder paralle! to the air fiow in the wind tunnel. Willmarth, Shama and Inglis33
arct Lueptow et al.10 found that an angle as small as 0.05° between the axis of the cylinder and the flov

8
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1

direction can alter the boundary layer thickness substantially. Rao and Keshavan? investigated the

growth of the momenturn thickness with streamwise location for a yaw angle of 1°.

The leading edge condition is also troublesome for the experimentalist. Often a cylirderis
mounied in a wind tunnel so that the cylinder extends upstream into the contraction section,g the
seftling cham!r:nsr,12 or outside of the wind tunnel'© to create an intentionally ambiguous leading edge
conditicri. Of course this leads to problems in detining any streamwise parameters (for example see
reterence 31). Sometimes it is necessary to trip the boundary layer in order t¢ obtain turbulent flow
within the test section. Lueptow et a0 simply used an O-ring around the cyiinder at the upstream
end of the test section for this purpose. A signiticant number of experiments have been performed with
a c¢\linder moving through a quiescent fluid (for example reference 25). Again this experimental setup
results in ambiguity in the definition of streamwise parameters and the leading edge conditions. !n cases
where the leading edge of the cylinder is within the tast section, hemispherical30 and ogive~shaped‘i1
leading edge geometries have besn used.

Velocity measurements in boundary layers on very small ¢ylinders are difficult because the
length scale of the hot-wire probe or pitot tube is often of thez same order as the radius of curvature. For
instance, in widely referenced experirnents, Fiichmoncl7 used a 0.015 inch {0.38 mm) long hot-wire to
make mean velocity measurements on a cylinder with a radius of only 0.012 inch (0.30 mm). Near the
wall, the measured velocity was probably in error since the hot-wire averages the velocity over the
length of the wire, and the ends of the hot-wire were exposed to higher mean velocities than the center
of the wire. n adcition, the midpoint of the hot-wire must be centered over the cylinder, so *hat it will not
be exposed to different velocities at each end of the wire.

In the sublayer region, the analysis of the mean velocily profile begins with the streamwise
Navier-Stokes equation in cylindrical coordinates. Assuming ihere is no pressure gradient and noting
that the streamwise gradients and the wall-normal velocity are small in the sublayer, the equation
reduces to

aTy =t (2-1)
The tetal shear siress, T, is given by
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Up =V (QUdN) - uv, (2-2)

where p is the fitid density, u and v are the fluctuating velocities in the streamwise and wall-normal
directions, respectively, and the overbar denotes tirne averaging. The second term on the right-hand
side of (2-2) is the Reynoids stress which arisas from the turbulent velocity fluctuations. Equation (2-1),
sometimes called the constant shear moment, is analogous tn the constant shear layer very near the
wall in a planar boundary layer.

Reid and Wilson3 and Rao®? reasoned that the fluctuating velocities are small in the viscous
sublayer so the Reynolds siress is negligible allowing the integration of (2-1) after substituting in (2-2).
This leads to

U, =a, In(ra). (2-3)

Equation (2-3) is widely accepted as the appropriate description of the mean velocity profile in the
sublayer of a cylindrical boundary layer. Noting that In(r/a) = In[1+(y/a)] = y/a for smali y/a, {2-3) reduces
to the plana’s sublayer expression, U + =Y, when the radius of curvalure, a, is large.

Experimental verification of equation (2-3) is difficult since, like the planar sublayer expression,
this expression is valid only out to a distance from the wall of y_<O(10). Velocity measurement is very
difficult this close to a surface because of heat transter 1o the wall, proba resolution, and accurate

calibration at very low velocities. Navertheless, Willmarh et al12 showed that very near the wall {y_<5)

+
the Jdata appear to fall on the curve defined by equation (2-3) as shown in figure 3. In that sarne figure, it
is ovidont that equation (2-3) ie not cignificantly diffarant from tha planar sublayer profite, aven for the

smallest a - that Willmarth et al. measured.
2.4 MEAN VELOCITY PROFILE iN THE INNER REGION

Away trom the wall, outside the viscous sublayer, is the inner region of flow where the
influence of the wall is important, yet viscous shear stresses do not dorninate. The eqguivalent region in
a planar boundary layer is often cailed the log region. Many attempts have been made at the
measurement of the mean velocity profile in the inner region as indicated in table 1. Several of these
studies were flawed by insutticient probe resolurion as noted in the table. Of course, the probtermn of

probe resolution is exaggerated for the vary siluation where the effects of transverse curvature are
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greatest ~ for smali cylinders wher2 the length scale of the probe can éasily approach the scale of the
transversg curvature. As mentioned earlier, the detennination of the wall shear stress is also
experimentally difficult. The methods that were used are fioted in the table.

Three methods of scaling the wall-nomrnal coordinate have been commonly used for the mean
velocity profile data. The first method is i use the planar wall-normal coordinate, y - When this scaling
is used for small &/a the results are very similar to those fer a flat plate boundary layer.32'41 atihough
here is somie indication that the coefticients of the. planar lng law must be adjusted to tit the data.30.37
As the curvature ratio, d/a, increases, the Ingarithmic relationship for the mean velocity profile remains
intacy,but the slope of the logarithmic -egion deviates from the planar log law®10:12 as shown in figure

1,10

3. To quanitify this effect, Lueptow et a compiled dat~ from several sources and assumed a log law

ot the same *;rn as the plarar case, i.e.,
U, = (1/m)in V. +n (2-4)

Thev found that as &/a—>1, m apy roaches its planar value of k=0.4, the Von Karman coefficient.
Likewize, n approaches its pianar walue of 5.0 as 6/a—1. Both coefficients increase with increasing 0/a.
Intact, imnis a linea: lunchon of a. Tnis iinear reiationshir appears io break down for Hia>43, pelilaips
because of experimental problems when measuring puines on extremely small gylinders or because of
relaminarization.

This result is not surpricing in light of the increased coefficient of friction measured (and
predicted, as seen in later sections) for cylindrical boundary layers. Recall that the coefficiant of friction
can be expressed in terms of the friction velocity as Cy=2 (Ut/Uw)e. lf the coetticient of friction is larger in
a cylindrical boundary layer than in a planar toundary layer, then the nondimensional free stream
velocity, U_/Uq, 1ust be smaller. Uniess the nondimensional cylindrical baundary layer thickness, o) 4+ 15
much smaller than in the planar case, the slope of the log region of a cylindrical velocity profile must be
less than that of a flat plate profile.

11
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Table 1. Measursments of the Mean Veloc.ly rofile in the Cylindrical Boundary Layer
(values for 8/a and x/a were estimated based on infarmaticn presented in each paper. The studies listed
E are in order of decreasing curvature ratio, &a. The ratic x/a, where x is the axia! pesition of the
measurement, typically decreases as the curvaturg ratio increases because of experimental constraints.)

Numberot menf Stre Coordinates
Bef. Profies  Bbiethed Method dia xa Used(a) hotes

25 4 hot-wire (b) - 200 100000 dimensional  continuous ¢ylin.
outer region

hot-wire (b)  match sublayer 1572 192-» Richmand subsonic &

[ 7 7
L profiie 16000 supersonic
Y 10 6(c) hot-wira match subluyer 4547 150-  planar ;
' profile 4300
; 9 3 pitot (b) Ref. 12 2642  400-  planar very small a+ _
! Fig. 8 5644 i
3 .
12 6(d) hot-wire Preston tubs; 2-42 220- planar - L
maich sublaver 22000
profile
' 11 42 pitot (b) momentum  0.3313 6640 Rao - .
ﬁ - integral N A
35 8 (9) pitot (b) - 15 10770 outer water tunnel
resulis
36 6 hot-wire (b) Clauser 0.5-3 16— Rao effact of free- -
] plot 412 stream turb. ®
37 3 pitot rnomentuin 2 80 planar - 1
i integral
14 3 pitct Prestontubs 2 192 Richmond -
288 ]
32 6 pitot Clauser plot; 0.4- 35- planar -
momentum 2 150
integral
3a 1 pitot ? 1 175 Richmond - L]
30 14 pitot Prestontube 1 24,84  pianar -
39 4 pitot ? 0.3 919 Richmond rotating cylinder
€
12
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Table 1. (Cont'd) Measurements of the Mean Velocity Profile in the Cylindrical Boundary ' ayer

BEESREZE =

Measure:  Yall Shear Yall-Normal

Bet.  Profiles Method Methed o xa Used Noteg
40 12 ? Clauserplot 0.3 2-9 Rao adverse & favor.
pressure grad.
41 3 hot-wire ? 0.2 811 planar rotating cylinder
33 3 pitot - 2-9 216 - isovelocity
contours for yaw
Notes:
a) Key for wail-normal coordinates:  Dimensional yorr
Outer y/o
Planar Y.
Rao a In{r/a)
Richmond y [1+(y/23)]

b) Poor velocity probe resolution calls the validity of the res.lts ‘nto question, especially near the wall.
¢) Lueptow et al.1% include characterizztion of the mean velocity protile for over 40 profiles.

d) Willmarth et al. 12 report includes a total of 14 profiies.

@) Joseph et al.35 inciude characterization of the mcan velocity profile for aver 60 profiles.
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The mear: velocity profile data described abova allows the evaluation of the scaling parameters
descrioed earlier. Lueptow et al.19 varied &a by making measurements at several locations along the
length of a cylinder at constant Ry. Since the slope of the log region of the boundary layer prefiles
varied even with constant R, R, seems to be an inabpropriate scaling parameter for cyiindrical
boundary laye:s.

Rao3442 suggested that the wali-normal coordinate of the ptanar boundary layer log law be
replaced by the corresponding wall-normal coordinate of the sublayer law for an axisymrmetric boundary
layer giver in equation (2-3). Thusy, in the planar law should be replaced by Y, ={a, In(r/a)] leaving all
coetficients of the pianar iog law intact {K=0.4, B=5). This results in the velocity profile in the log region
of a cylindrical boundary layer of

U, = (V) fa, In{r/a)] + B. (2-5)

Considerable controversy followed the intraduiction ¢f Rac's wvali-normal coordinate. Y.
Undoubtedly, the introduction of this ucale reflects the geometry of the cylindrical boundary layer. Since
Y, =a ln[t+(y/a)] = a,(y/a) =y, for laige , the fiat plate logarittinis velocity profile is recovered from
(2-5). Chase3.44 supported the Rao hypothesis, since it sugg2sts a physically meaningful mixing
iength that increases linearly with distance from the wall only for y<a , while it increases legarithmically
further out in the boundary laye . On the other hand, Bradshaw and Pate4S noint out that "there is no
reason why the fully turbulent fiow should respond 10 ... [transverse] curvature in the same way as the
sublayer ..." For this reason they dismissed the succass of Rao's log law (2-5) in matching experimental
data as fortuitous.

Rao and Keshavan'! measured mean velogity profiles corresponding te (2-5) for cylinder
diameters ranging from 1/16 inch (0.16 ¢m) to 5.5 inches (14 cm). Unfortunatgly, poo~ probe re: olution
caiis their results for small cylinders inte question. This problem aside, they found that the caefficients of
(2-5) to be dependent upon a_ and R,. Femholz and Podtschaske?® also suggested that the
coefficients in (2-5) are not constant based on an analysis of the data obtaired by Wilimarih et al12
instead they proposed that the ccefiicients are functions of a curvature ratio, 6/a, where 0 is the
momeniumn thickness. At curvature ratios of &/a=0(1), Adomaitis>® and Furuya et al.4¥ found thatthe
coefficients of (2-6) are the planar values, K =0.4 and B=5.

14
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A third scaling for the wall-normal coordinate, {y, [1+(y/2a)]}, was proposed by Richmond”
based on cylindrical geometry and a hypothesis th-it streamlines are lines of constant mean velocity.
Substituting this scaling fory, in the planar log law, F(ichmond,7 Yasuhara,3® Willmarth and Yang,14
and Bissonnette and Mellor® found that data for the cylindrical mean velogity profile matched the
planar veioaity profile quite well for &/a<2. Howaver, Richmond's data for large /a fell weli below the
planar profile in the log ragion. Rao3* cast doubt on the validity of the Richmond wall-normal scaling.
As a result Pichmond's wall-normal scaling has been discarded in favor of the traditional planar
wall-normai scaling or Rao's wall-normal scaling.

Other measurements of the mean velocity in a cylindrical boundary layer should be mentioned
for completenass. Kwon and Prevorsek<® measured the velocity profile surrounding, a continuous fiber
moving through quiescent air. Tha small diameter of the fiber resutted in a boundary layer that was at
least two orders of magnitude thicker than the fiber diameter, but cnly measuremant in the outermost
portion of the boundary layer could be made because of the size of the velocity probe. Joseph et al.33
measured ttie mean valocity profile for cylinders in both water and wind tunneis. In determining the
exponent of a power law approximation tc the mean velocity profile, they found that the exponent is
dependent upon the radius of the cylinder but, curiously, is independent of the fluid viscosity. Finally,
Willn:arth et 21,39 measured isovelocity contoui s around cylinders at small angles of yaw, The houngary:
layer on tha leeward side was nearly 10 times as thick as the boundary iayer on the wincdward side for a
yaw angle of anly 1°.

In summary, it appears that the planar, Rao, and Rictirmond wall-normal coordinates ali result in a
logarithmic relationship for the mean velocity profile i the inner region of a cylindrical boundary layer,
although the planar and Rao coordinates are preforred. However, no wall-normai scaling coliapses data
onto a single curve for all transverse curvatures. Untorturaialy, much of the data suffers poor
measureiment techniques or small curvature ratios so that it is difficult to make conclusions on the
character or scaling of the mean velocity profile for cylindrical bou~dary layers.

2.5 ANALYTIC MODELS OF THE VELOC!TY PROFILE IN THE INIZR REGION

Analytic approaches to the mean velocity profile in the irner region of a cylindrical boundary
laver oft2n depend upon the assumption of similarity with planar boundary layers, so the validity of the
method depends upon the suitability of using planar boundary layer characteristics to describe a
cylindrical bounaary lay~r. Most approaches have been based upon eddy viscosity or mixing length
closure schemes to account for the Reynolds stress term in (2-2). The eddy viscosity, £, is defined so

15
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that {\1e represe- ation of the turbulent shear stress is sirilar t¢ the representation of the viscous shear
strecs. The mixing length approach relates the lurbulent shear stress through a turbulent length scale,
I, Using these closure schemes the Reynolds stress is expressed as

—_ 2
w =€9U/dy =, |dU/dy| dU/dy. (2-6)

Of course, the eddy viscosity and mixing length are related by € = lm2 [oU/dyl. Most closure schemes
for ¢ylindrical boundary layers have been presented in terms ¢f a mixing length, so that is the forrnat
used to compare the schemes in table 2.

The earliest attempts at using a mixing length for closure were based on the direct application
of the mixing length concepts used for planar boundary layers. Sparrovs et al.47 ysed an expression of
mixing length based on Von Karman's similarity hypothesis using a local characteristic length scale
based on consecutive wall-normal daiivatives of the mean velocity profile,

Other early attempis used a simple planar mixing length, |, = I,U/V = Xy, , where KXis the
Von Karraan constant. In this representation the mixing iength and, hence, the turbulent length scales
are proporiionai io ine disiance iroim the wall. Ginsvskii ad Sulodkin8 expanded {2-1) in'a Maclaurin '
series ang then applied this mixing length to achieve a complex expression for the mean velocity profile
in terms of the boundary layer thickness and 6/a. Their expression was general enough to account for
either concave or convex transverse curvature. Reic and Wilson® also used this sirnple planar mixing
length to derive an exnrassion for the bou.dary layer velocity profile that was a function of the sublayer
thickness because of 2 matching condition at the overlap of the sublayer and the log region. They
oxtenden! their analysis to include the etfect of surface roughness on the velocity profile. Bradshaw and
Pate!*> carriad out an analysis of the log region using a planar mixing length along with equation {2-1).
Their resultant logarithinic veiocity profile required an additive coetficient dependent upona.

27

Matsui=® also used tha planar mixing length to model the turbulent shear, although th.» constant Kk was

determined empirically.
The simple planar mixing iength has been modified to include a factor accounting for the

velocity profile in the sublayer. This allows the usea of the logarithinic velocity profile in the sublayer as
well as in the log region of a boundary layer velocity profile. Cebeci*? used the Van Driest sublayer

16
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correction55 for the mixing length, while Patel?0 used a factor suqgested by Landweber and Poreh®’

to modiify the logarithmic velocity profile in the sublayer.

Table 2. Proposals for the Mixing Length for a Cylindrical Boundary Layer

Mixing Length Exgression

Planar Mixing Length:

I, = K (dU,/dy,) / (d2U /dy,2)

'+ = Ky+
Iy = xy,1- & /A

I, = Ky, [tanh(y, %/ A, 2)]0-°

K = 0.4 (planar value)

K = 0.4 (planar value)

K = 0.22 (empirical)

K = 0.4 (planar value)
A = 26 (planar valie)
K = .4 (planar value)
A, =~ 83/N3

Mixing Length Based o Rao Coordinate:

1, =k [a,in(7)] (72)95

=% [2,0n(7)] [1- 87 { RNl Al

I, = % {a,n(7)] ftarin(y,/ 4,205

Other Cyliteirical Mix!ng Lengths:

Lo KYy [1- g (Y4/A)] (3/)0-5

ly = (Ky-\-) [r+/(r+ + KC'/+)]
h=1[c 8+/'(diJ+/dV+)]0-5

b= {ky, [1+(Ye/2a)]) (@)1

¥ « 0.4 (planar value)

K = (1.4 (planar value)
A, = 26 (planar value)
K = 0.4 (planar value)

A, = 63/V3

K = 0.4 (planar value)
A, =4, (@,)

¥ = 0.4 (planar vaiue)
¢ = 1.5 {empirical)

¢ = 0.0274 (empirical)

K = 0.4 (planar value)
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Ot course, the appiication of planar mixing lengths to a cylindrical poundary iayer are
immediately subject to question. The planiar mixing length assumption requires that momentum transfer
occur over a length scale that is proportional to the distance from the wall. However, as suggested by
Luxton ef al.9 and confirmed using flow visualizaiion by Lueptow and Haritcmic!:s,31 the scale of flow
structures in a cylindrical boundary layer can be much greater than the diameter of the cylinder for small
cylinders. In other words, the wall is less likely to control the length scales in a cylindrical boundary layer
than in a planar boundary layer. As a result, using a mixing length that is proportional to the distance from
the wall is probably inappropriate unless &/a is small.

Rao#® used the similarity law (2-5) to derive a mixing length shown in table 2. White,
Lessman, and Chris:oph51 neie that this forn of the mixing length, which is smaller than its planar‘
equivalent, is logical since "a cyiinder has less ability to create turbulent shear than a plane surface.”
However, as discussed earlier with regard to equation (2-5), this approach is based on a weak
assumption that the wall-normal scaling in the viscous sutlayer should carry over to the log region.

A difierent approarh cesults from the direct substitution of the Rao coordinate, Y =[a,
In{r/a)], for the planar wall-normai coo'rdinate, Y., in the miixing length scaling. Cebet.:i52 repeated his
analysis incorporating this substitution in a mixing length with a Van Driest sublayer modification as
suggested by White (discussion following reference 49). Denli and Landweber® used a mixing length
similar to that used by Patet®0 except that the Rao coordinate was used instead of y, . However, using
the Rao coordinate in place of y__in the mixing length expression is subject to question for two reasons.
First, as noted earlisr, the Rao wall-normal coordinate derives from the scaling in the viscous sublayer. its
application to the log region does not necessarily foliow. Second, like the planar case, the Rao
Gooidiiiate-based mixing lengthi

has less control over the length scales than in a planar boundary layer.

Two other cylindrical mixing length expressions, noted in table 2, have been proposed.
Starting with equation (2-1) and assuming a logarithmic velocity profile, Granville®3 developed an
expression for a mixing length that accounts for the transverse cuivature of the cylinder. This
oxpression was coupled with the Van Driest sublayer modification noting that the sublayer modification
correction coefficient, A, should be a function of a, instead of constant. However the validity of this
mixing length may be in doubt, since its derivation depends on the assumption of the existence of a
logarithmic relationship between U_ andy,. Eickhot>4 proposed with little justification or rigor that a
1.1:0 of radif including an empirical constant should be multiplied times the usual planar mixing length to

18
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include the eftec . of fransverse curvature. This mixing length is based on the weak assumption that as
an eddy moves away from the cylinder's wall, a lower velocity fluctuation results ifi a cylindrical boundary
layer than in a planar bouridary layer.

Mixing length expressions derived from the similarity laws proposed by Lueptow et al10
and Richmond’  are included to complete table 2.

» SIMILARITY LAWS

Similarity laws for the mean vslocity profile in the inner region are presented in table 3. As
noted eariier. the four similarity laws based on a planar mixing length prebably do not appropriately
account for the effect of transverse curvature. However, comparison of these similarity laws to
experimental data suggests that they show ihe expected trands for transverse curvature.11.50

Three similarity laws included in table 3 are based on Reo's cuordinate, Y =[a,_ In(r/a)]. Denli
and LandweberB used this coordinate in a mixing length to derive a simlarity law. Rao's similarity law34 is
based on the substitution of the sublayer coordinate into the planar log law (equation 2-5). Chase?3
oftered a slight modification of this similarity law by adopting a plarar term to allow for smooth transition
between Rao's sublayer law (equation 2-3) and the similarity law. For reasons cutlined earlier, the laws
based on a mixing length incorporating Rao's wall-normal coordinate are subject to scrutiny.

The last four similarity laws included in table 3 are not based on mixing length derivations or
Racr's wail-normal coordinate. Lueptow et al10 propesed a similarity law based on an assumption of
o »tant eddy viscosity in the boundary layer. This results in 2 log law that is identical to the planar log
law, €quation (2-4). As meniioried eariier, M and n are dependent upon the ratio &a and are empinically

determined. The validity of the constant eddy viscosily approach as a tirst-order approximation was

confirmed by direct measurement of the eddy viscosity.55 Using the method of matched asymptotic )
expansions, Afzal and Narasimha®859 derived an expression for the mean velocity profile that is similar

to the planar log law. As a_ becomes small and &/a become: large, the coefficients of the log law are -
dependent upon these parameters. Thus, the similarity law is very similar to that proposed by Lueptovs

110 atthough the laws were derived using two different approaches. )

eta
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Table 3. Proposals for Similarity Laws in the Inner Reggion 1or a Cylindrical Turbulent Boundary Layer

Log Law Coefficients Reference

Planar Mixing Length:

U,=(1/K) n(y,)+B K=04,B=5 Planar law

U,= (1/x) In[Q(y/a)/ Qys/a)]+ a,In{(a+yg)/a] K =0.4 Reid & Wilson?

Uy (1/K) Infay /11 +(/a2)0-512}4B K =0.4;Bfunctionofa, Bradshaw & Patei45
U,= (1/x) In[4a,Q(y/a)}+ B K =04;Bfunctionofa, Patei>0

Mixing Length Based on Rao Coordinate:

U,= (1/K) Infa,(r/a)0-SIn(r/a)]+B
Based on Rao Coordinate:

U,= Aln[a li(ra)]+B

U,= (1/x) In[a_In(r/a)-J]+B
Other:

U+= A |n(y+)+B

U,= A In(y,)+B

U= A Infy [1+(y/2a)]}+B

U,= (17K) In(y,)+B

K= 0.4;Bfunctionofa,

A,B functions of Ry, a,

K=04J=B=5

A B functions of &/a
A,B functionsot a,

not specified

K = 0.4; B function of Ry

Denli & Landweber8

Rao:34 Rao & Keshavan11

Chage43

Lueptow, Leehey, & Stellinger0
Afzal & Narasimha58.59
Richmond?

430

Note: Q(s)=[V(1+5)-1/[V(1+8)+1]; ys is the thickness of the sublayer.
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The similarity laws due to Richmond and Yu are included to complete table 3. As discussed
earlier, Richmond's law” is unlikely to be useful. The proposai by Yu30 is based on dimengicnal
arguments and a narmow range of data. Over a broader range of transverse curvature ratios it fails.

2.7 MEAN VELOCITY PROFILE !N THE OUTER REGION

Like a p'ainar boundary layer, the mean veiocity protile of a cylindrical boundary layer deviates
from a logarithmic profile in its outer region. The mean velocity in the cuter region is usually displayed in
velocity-defect coordinates, (U,,-U)/Ug versus y/d. Willmarth et all2 presented velocity-defect profiles
over a wide range of transverse curvatures as shown in figure 2. Their data clearly indicate that the
velocity profiles do not collapse onto a single curve as they do in the planar case. As the cylinder

becomes smalier the velocity-defect profile bacomes fulier. As 8/a approaches one, the velocity-defect

profiles approach the planar velocity defect profiles. From dimensional arguments Willmaih et al.

propose that the velocity defect should be a function of both y/8 and 6/a.

Several outer laws have been proposed for a cylindricai boundary layer as ennumeratad in tabie
4. Afzal and Narasimha%8,59 ysed the method of matched asymptotic expansions to obtain a defect
law that is quite similar to the planar outer law except that the multiplicative coefficient is dependent

upon a, and the additive coefficient is a function of both &/a and a,.. Of course, the coefficients

approach the planar vaiues as the effect of transverse curvature diminishes [&/a =O(1) and a, very
large). Yu30 developed an outer law based on a length scale dependant upon the friction velccity and
the kinematic viscosity. Although experimental data were shown to collapse onto @ single curve, the
range of transverse curvature ratios is very small, so no conclusions can be drawn. Based on simi'arity to

¢ n axisymmetric wake, Rao and Keshevan!! proposed plotting the velocity defect versus ry=(a+y)Ug/V.

Denli and LandweberB used a mean-tiow equation simplif.ad by using the free stream velocity in the
convective terrn {Oseen's approximation) and an eddy viscosity mudel that is a function of the
longitudinal coordinate for the shear stress in the outer layer 1o derive a complex outer law requiring Six

empirical constants. The resulting velocity profiles match the data of Willinarth et ai.’2 for &/a ranging

from 2 to 16. Adomaitis3€ developed ari outer law based on the planar outer law and using Rao's

coordinates and replacing & with the displacement thickness, 8, . This formulation appears adequate for

, .
C
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a narrow range ¢f 8/a. Adoinaitis also documented the efiect of freg stream tushi lence on t.aa

bound ary layer prefile.

Like a planar boundary 'ayer, the deviation of the velocity profile in the outer Icyer is thought of
in terms of ~ modification of the logarithmic velocity profile known as a wake law. Rao and Keshavan?
identified *wo versions of a wake comporent in a cylindrical boundary layer. The wake is termed
“negative” it the boundary layer profile drops belaw the log law as the distance from the wall increases
and “positive’ il the boundary layer profile nsus above the log law. The positive wake's appearance is
simifar to a planar wake. Although Rao and Keshavan considered a log law of the form of (2-5), these
wakes are observed regardless whether the data are plutted as a function of the pfanar wall-normal
coordinate or Rao's wall-normal coordinate.

For mirimal transverse curvature (&Va<2), the wake is positive and the appearance of the mean

velocity prefile is nearly identical to the planar prutile.32:37,39-41 Chin et al.37 proposed a wake law

that is very similar to the planar wake law (sea table 4). For slightly larger curvature ratios [&/a=0(2) he
posiiive wake is nct evident. 1438  Rao and Kesnavan!! found that as the boundary layer developed,
the wake went from negative 1o positive at a given R;. They v/ent on to propose that the radia’

coordinate at which the velocity profile ceviates from the logarithmic profile is dependent upon Ry.

Their explanation of this phenomenon involvas the relationship between the outer portien of an
axisyrametric bioundary layer ana propartiec of an axisymmetric wake.

On the other hand Afzal ard NarasimhaS8 call existence of these wakes into question by
proposing that the flows where thay exist may not be fully developed. The data of Willmarth et al. 12
spans a wicte range of transverse curvaturas and shows a positive wake for large transverse curvature

(d/a<5) and a slight tendency toward a negative wake as the transverse curvature decreases ( 5/a>9).
However they point nut that the negative waks i a cylindrical boundary layer is not as obvious as the
positive wake in thie planar zase, in spite of the expectadnn that a cylindrical boundary layer should be
more wake-like than a plarar boundary layer. As a result, the existence of a waka reqgion in a cylindrical

boundary remains unclear.
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Table 4. Proposals for Outer Laws for a Cylindrical Boundary Layer

Quter Law Coefficients Bafarence B
.
(Uoer UUg = (-1/%) In(y/B}+C ¥=0.4; C =2.5 Flzrar law 4
(U~ U)Ug =-A In(y/3)+C A funclion of a ; Afzal & Narasimha98.59
C function of &/a,a,, P
(Uoo UYUg = {-1/K) Infy ,xp{-Uo/ KUp}+C k=0.4; Clunctionof Ry Yu30
(Upr UYUg = -A INr)+C A,C functions of Ry Rao & Keshavar!1 «
(Uoe UY U, = [R5 X/aR, /(S+a)] Dent: & Landweberd
( Ueer Ui = (-1/%) infla Ug in{iajJ{Ueetr,1+C  K=0.4; Clunctionof Sa  Adomaitic36
' .
(Uoor Ul = - A In{y/d)+ C (1- cos(my/d)) A=195 =09 Chin, Hulsebos, &
Hunnicutt37
] L
2.8 RESULTS OF ANALYTIC MODELS OF A CYLINDRICAL BOUNDARY LAYER
1

Several models of a cylindrizal boundary layer have been used to evaluate the effect of
transverse curvaturs on characieristics of a boundary layer such as the costicient of friction, the
momertum thickness and the displacement thickness. The procedure begins with the development of
a mean veglocity p.ofile based on ¢ne of the mixing length closure schemes described eartier or based

on the assumption of a particular form for the mean velocity profile. From the velocity profile the

coefficient of frnic on, Cy, can be evaluated from the momentum integral, i.e.,15

G- ) & [0[8(8) (5 ]
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The model mean velocity profile can also be used to evaluate the integral thicknesses. The
definitions tor the integral thicknesses differ from those for a planar boundary layer because of the effect of
transverse curvature.80 The displacement thickness, 8,, and the momentum thickness, 6, are given by
equations (2-8) and (2-9), respectively.

5. [1+(Ba/2a)] _ J' a*5[ (‘8;, ) (15)] dr, (2-8)

a

01 +(6/a) - J':*'a [H; ( i H;) (—'5)} ar. (2-9)
Table 5 indicates the functional dependence of the coefficient of friction and the integral
thicknesses predicted using various models of the cylindrical boundary layar. The analysns are grouped
according the model used for the mean velocity profile. The table also indicates if representative mean
velocity profiles were presented and if they were compared tu experimental results.

The earliest attempts to model a cylindrical boundary layer used a power law formulation for the
mean velocity profile. Millikan.m' Lanc.!weber,62 Ecken,2 and Sakiadis? used a 1/7-power law
formulation assuming similarity to a planar boundary layer, Karha 70 and Liu and Dai® varied the
exponent of the powsr law in attempts to refine the mean velocity pro‘’le to account for transverse
curvature. The power law description of the boundary iayer profile predicts that transverse curvature will
increase the skin friction compared to tha planar case. However, t. .ause of the crudeness of the
velocity profile models, the predictions are not quantitatively comrect.

because of the premise of similarity of the mixing length in the cylindrical case to the mixing \angth in the
planar case. In spite of ihis weakness, the analyses of Sparrow et al %" and Cebeci?? stand out for their

* Millikan's mode! was the first of several that have been based on momentum integral methods.
While these metnods have generated considerable interest,69 a necessary assumyption tor their
application is that d«a. Since this report is generally concerned with situations where O=a, discussion of
these methods is omitted.
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estimates of the skin friction over a wide range of cylinder diameters, R,, and axial positions, R,. These
results indicate that the coefficient of friction decreases with increasing Ry and Ry,. Spamow et al.
explained this in the following way: "... the difference in the tiow field about a cylinder and that about a fiat
plate is due to the expansion in flow area encountered with increasing distance from the cylindrical surface.
When tha boundary layer is very thin relative to the cylinder radius, then there is a corespondingly small
area change across the boundary layer, and the cylinder behaves like a flat plate. On the other hand, when
the boundary fayer is thick compared with the cylinder radius, theve is a substartial area change and a larger
difference between flat plate and cylinder... Therefore, the farger the length Reynolds number Re, [R,],
the thicker the boundary laye_r and the greater the effect of cylindrical geometry. The cylinder Reynolds
number Rep, [R,] is a direct measure of the radiuc of the cylinder and so, the smaller the Re ) [R,], the
greater the curvature effect.”

In spite ¢f use of a planar mixing length mode! inthese analyses, the restlts show characteristics
that correspond to experimental results. Representative velocity profiles presented by Sparrow ot al.
show the shallow slope of the log region of the rnean velocity protile as the cylinder radius becomes small.
The log regions of their velocity protiles alse show a slight downward curvature that is also vaguely evident
in the experimental data of willmarnh et ai.*2jor very smaii cyiinders. A Siitiiar rend is &6 in ihe
representative velocity protiles presented by Patel.5°

Usiing plarar mixing length closure models, Reid and Wilson3 and Matsui?? found the unlikely
result that the average skin triction is a function of B, alone with no dependence upon the length of the
cylinder. Ginevskii and Solodkin®® show quaiitatively similar resulls over a narrower range of parameters.
Reid and Wilsors also considerad the effect of wall roughness on the skin friction.

The use of cylindrical mixing length models noted in table 5 would be expected to provide a mora
appropriate mode! compared to the planar mixing length rnodels. Although several of the authors whe
used this type of analysis compare their mean velocity profile to experirnental data, only Denli and
Landweber3 go so far as to calculate the skin friction and the integral thicknesses. Their calculations agree
with the experimental results ot Wilimarth et 12 although this rnay be a result of the use of this

experimental data to determine the empirical coefficients used in the ana!yéis.
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Table 5: [Functionzl Dependence of the Coefficient of Friction and the
Iniegral Thicknesses tor a Cylindrical Boundary Layer

Beference Profiled Eriction Thickness® Notes
Power Law:
Millikan®81 - Ry Ry, X Ry based on volume
Eckert2 - da &/a compressible
Liu & Dai%3 - x X ;
Sakiadis? - - E -
Planar Mixing Length Closure: :
Cebeci4? comparison Ra Ry - heat transfer :
Ginevskii & Solodkin48 sample prof. wa, Ry dia - .
Matsui2” - Ra - extruding
Patel50 comparison - - -
Reid & Wilson sample prof. Ry - roughness
Sparrow et al.47 sample prof. Ra Ry - heai transfer o
b
Cylindrica! Mixing Length Closure: h
Cebeci®2 comparison - - .
Manli # 1 ancheahars cnrnaricon - E -
(WA TR Y :uuv.a"vvuu W T e iy = |
Eickhoff?4 . comparison - - -
Granville®3 - - - kinetic energy »
Rao34 comparison - - -
Assumed Velocity Profile:
Ackroyd®4 - Ra, Ry - extruding !
White65 comparison R, Ay x/a, Ry ) .:
White et al.51 . Ra. Ry - compressible
Other Methods:
Abdslhalim et al.bb - - - -
Shanebrook & Sumner7 comparison - X -
Yu30 comparison Ry &a Ry &a - p
Notes:
a) “Comparison™ means that the mean velocity profile was compared (o experimental data. "Sample prof.”
means that sample mean velocity profiles were provided but not compared to experiments. b
b) Parameters shown indicale the functional dependence of the coelfficiert of friction or the integral
thicknesses (displacement, momenturn, or boundary layer) that is predicted by the analysis.
L
26
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Other anproaches based on assuming a velocity profile instead of using a mixing length have
baon v for analysic of cylindrical boundary layer. White®S substituted Rao's wall-normal cuordinate
inplace <y, in Spalding's expression’1 for the velocity profile in a planar boundary tayer. Ackroyd®4
cntrested erors in White's analysis and followed a similar approach for the problem of an extruding
cylinder. The resuks for a cylinder in a uniform stream and for an extruding cyiinder are very similar. Both
Whiite and Ackroyd prasent results over a wide range of parameters showing that thae coetficient of
trictic.n decreases with increasing R and Ry (see figure 4) . Unfortunately, the analysis is dependent
upon the presurned similarity of Spalding's mean veiocity profiie using the Rao coardinate with the
velocity profile in a cylindrical boundary layer. Although Ackrayd cleary shows that the assumed profile

is quita Gifferent from experimental data for farge 6/a, his results are shown in tigure 4 since they show

the trends also found hy several other researchers.47:49  White et al.51 carried the analysis further to
include conipressibhity.

Finally, thrae other methods of modeling a cylindrical boundary fayer were used. An
entrainment theory based on the momentum eqguation and an entrainment equation derived from
continuity wae zdanted hy Shaneohrook and Sumnaerd7 far anniication to axisymmetric boundary lavers.
Granville®8extenei tis work substantially by incorporating more sophisticated shape parameter
functions ard valociy profiles. Yu3C developed a log law and an outer law similar to those for a flat plate
and used these \3ws ‘o pradict the boundary fayer thickness developrnent and the skin friction for
cylinders with largn Ry, «wdelhalim et al.8 developed a rethod for analyzing the flow past semi-infinite

axisymmetrc and p'anar odiss with a blunt leading edge condition using conformal coordinates and the

k-g turpulence modul (2 wm-aquttion closure scheme). Although results were preserded for the planar

. focowa. = A s
3

P Y P TV S Pr N . i
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Figure 2. Representative Velocity -Detect Profiles Showing the: Influence of Transverse Curvature
(Wilmarth et at.12 —____ Flai plate.13 (U, is the friction velocity.)

Reprinted with the permission of Cambridge University Press, copyright 1976.]
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Influgnce of Transverse Curvature :
[Willmarth et all2 Flat plate;16 ------ Sublayer mean velocity profile (equation 2-3 with 1
a,=33.4). (Ux is the friction velociiy.) Reprinted with the permission of o
Cambridge University Press, copynght 1976.)
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Figure 4, Coefficient of Friction on a Cylinder in a Uniform Axial Flow
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3. TURBULENCE IN A CYLINDRICAL BOUNDARY LLAYER

Although the emphasis in research on cylindrical boundary layers has centered on the
measurement and analysis of the mean velocity profile, some experimental worlc has been dons on the
turbulent character of a cylindrical boundary layer. Most of the research lias centered on the
measurement of turbulence in a cylindrical boundary layer and the comparison of these measurements
with & planar boundary layer.

3.1 REYNOLDS STRESS

Surprisingly few measuremerits of the Reynolds stress, uv, have been made in a cylindrical
boundary layer. Measuremants of the velocity fluctuations are difticult for two reasens. First, the
measurement of the wall-normal fluctuations requites the use of X- or V-shaped hot wire probes that are
difficult to calibsate and use. Second, since the wall-normal gradients are large, the measured
wall-normal velecity is strongly affecied by the averaging of the velocity over the wali-normal dimension
of tive hot-wire.

The Reynoids stress profile in a cylindrical boundary layer is very similar to that in a planar
boundary layer when the effects of curvature are small, 8a<2.32,41.72 As &a gets large, though, the
Reynolds stress profile becomes quite different from that of a flas plate as shown in figure 5.19 The
Reyrolds stress drops off much more quickiy with distance from the wall in a cylindrical boundary layer
than in a plarar boundary layer. Lueptow et al. attribute this to the cvlindrical geometry. 1 0 From
equation (2-1) and (2-2) they suggest that the Reynolds stress should be a function of 1/r. Plots of the
Reynulds stress nondimensionalized with the free-stream velocity versus a/r appear 10 result in weak
coliapse of the data onto a single curve that may be considered 1o be a straight line as & first
approximation. Assuming inartial effects are small throughout the boundary layer, equation (2-1)
sugagests that the slope of this iine is equal to the coetticient of friction. Using this method
underestimates the wall shear stress, but the degree of agreement of the estimates of the coefficient of

friction with that of other methods is quite surprising considering the necessary assumptions.31

The Reynolds stress nondimensgionalized with Uy and vyg, where uymg = Viuu), is nearly

constart across the entire boundary layer, except near the wall and near the outer edge of the boundary
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layer where it necessarily drops off.10:32 Like a planar boundary layer the valug of uv/(urmgeVrms) =05

throughout most of the boundary layer.
3.2 TURBULENT KINETIC ENERGY

The kinetic energy of the turbulent velocity fluctuations is given by

Er=(12) puy; = (12)pl{uu+ w + ww ), (3-1)

where u, v, and w are the velocity fluctuations in the streamwise, wall-normal, and spanwise directions,
respectively. L'xe the measurement of the wall-normal velocity fluctuations, the measurement of the
spanwise tluc:ations is difficuit.

The velocity fluctuations in a cylindrical bowur.ary layer are neariy identical to the
measurements ¢t these quantities in a planar boundary layer for ¥a<1.41.72 For larger values of ¥a the
streamwise veloc:i ¢ fictuatioi, which are the largest contributor to the turbulent kinetic energy, appear
to drop oft more quicks, wih distance from the wall than the planar case.32  On the other hand, the
general character of the strearnwise and wall-normal velocity fluctuationis near the wall is similar.to that of a
flat plate as shown in figure 6.31 The data indicates Reynolds number similarity near the wall when the
streamwise velocity fluctuations nondimensionalized by the friction velocity are plotted as a function ot
Y, The streamwise velocity fluctuations rise quickly from zero at the wall reaching a maximum valu., of

Urms/Ur =3.2 at y+~13 and dropping off gradually with distance from the wall from that point to the outer

edge of the boundary layer. Luxton et al9 and Lueptow et al.’0 measured a slightly smaller maximum

value of u-me/Usq, although the discrepancy may be related 1o probe resolution and measurement s
technigues. The wall-normal fluctuations reach a maximum value of vg/Uy ~1. The maximum velocity
fluctuations and the distance from the wall where they occur are similar to charine! flow and planar
boundary layer flow. The similarity between the distribution of the streamwise and wall-normal velocity ®
fluctuations in a cylindrical boundary layer and other wall-bounded flows suggests that the rmechanism
for the generation of the turbulence at the wall may be the same.

e
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Adomaitis36 found that the magnitude of streamwise velocity fluctuations increase even very
close to the wall when the free stream turbulence intensity increases. No measurements of the

spanwise velocity fluctuations have been made for &/2:1.

3.3 HIGHER ORDER VELOCITY STATISTICS

The streamwise skewness,-u3/urm53, is a measure of the direction of excursions from the mean
(positive excursions imply positive skewnass, negative excursions irnply negative skewness, and a
Gaussian distribution has zero skewness). The skewness in a cylindrical boundary layer is similar to that of
other wall-bourided flows with a value between 0 and -1 through most of the boundary layer.:74 Near the
wall the streamwise skewness becomes positive suggesting the presence of sweep structures
subsequent to a burst (see section 4). In the outer part of the boundary layer the skewness bacormnes
more negative because of the intermittency of the turbulence. The wall-normal skewness is slightly
positive throughout the boundary Iayer74 indicating that the largest excursions from the mean are
positive. This rnay be relaied to the liftup of a burst near the wall and the mild positive wall-normal flow in
the intermittent region near the edge of the boundary layer.

The streamwise f_iatness,—ua/urm“, is a measure of the magnitude of excursions from the mean
(a Gaussian distribution has a flatness of 3; flatness greater than 3 indicates a probabiiity distribution with
long tails; flatness less than 3 indicates a probability distribution with short tails ). The streamwise and
wall-normal flatness are nearly Gaussian throughout mest of the boundary layer. Near the wall the flatness
is greater than 3, probably because of the burst-sweep cycle. In the outer portion of the boundary layer
the flatness is greater than 3 as a resuft of intermittency.3.74

3.4 VELOCITY SPECTRA AND AUTOCORRELATIONS

The spactrum of the streamwise velocity fluctuations is indicative of the energy content of the
velocity fluctuations at a particular frequency, f. For small &/a the spectra appear to be similar in character to
the planar streamwise velocity spectra, 3241 although it is ditficult to make direct comparisons because of
different scaling techniques. Some data suggest that the energy in a cylindrical boundary layer is shifted
to higher frequencies compared to a planar bcundary Iayer.32

Lueptow anu Haritonidis31

presented the energy density function, E, of the velocity fluctuations
such that the area under the spectrum for a given frequency range is equivalent to the turbulent energy in

that frequency range. The ordinate is normalized so that the total area under the curve is 1, i.e.,

33
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fo (E/UeD) diinf) =1. (3-2)

This format allows the easy identification of the frequency range that has the largest contribution to the
turbulent energy. Using this format, Lueptow and Haritonidis found that the maximum energy content of
the velocity fluctuations occurs in the same frequency band regardiess of distance from the wall for d/a=7
as indicated in figure 7. This suggests that turbulent eddies are about the same size regardless of the
distance from the wall supporting a constant eddy viscosity model for the turbulent shear stresses.

Lueplow and Haritonidis3' found that an outer scaling for the frequency, 1,= t8/U_, results ina
better collapse of streamwise velocity spectra for different Reyrolds numbers than an inner scaling, f =
tv/Uta, especially at low frequencies as shown in figure 8. Very near the wall, y+<10, they found that an
inner scaling worked best. On the other hand, Luxton et al.2 found no Reynolds number similarity when
the specira are scaled using the outer scales of the momentum thickness and U_,. As shown in figure 8,
the energy content of the wall-normal velocity fiuctuaiions is substantialiy less than the streamwise
velocity fluctuations and the maximum energy density occurs at & higher frequency.31 The two spectra
merge at high frequencies.

The streamwise velocity autocorrelation indicates that the turbulent integral length scales in the
outer portion of a cylindrical boundary layer are less than half the size of the length scales in a planar
boundary Iayer.32 The data of Luxton et al.® suggest that length scales derived from the autocorrelation
appear to be slightly dependent upon the location in the boundary layer. They are about twice as large at
y,=540 than they are aty =10 for d/a=27. Comparing these two studies it appears that the length scales,
L, are much larger for large &/a. At y/5=0.5, the autocorrelation falls to 1/e at L=0.088 for &/a=1.6, but
ihe equivalent valus is L=0.88 for $/a=27. This suggests

scales is minor for large &/a.
3.5 WALL PRESSURE

‘The wall pressure spectrum, autocorrelation and convection velocity for boundary layers with
slight transverse curvature (&/a<0.1) are in agreement with data obtained for planar houndary ayers and
pipe flow.75'76 For larger &a , Willmarth and Yang14 and Willmarth et al.12 investigated the wall pressure
fluctuations using an array of 0.08-inch (0.15 cm) flush-mounted piezoelectric pressure transducers on a
3-inch (7.6 cm) diameter cylinder (8/a=2) and on a 1-inch (2.5 cm) diameter cylinder ( 8/a=4). The

convection velocity of wall pressure fluctuations derived from the space-time wall pressure correlaton was

34
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found to bie nearly the samie &s that for a planar boundary layer increasing with streamwise separation from
0.6U_ to 0.8U_. However, since the mean veiocity profile convecting the eddies is fuller because of the
transverse curvature, the turbuient eddies must be smaller to result in the same convection velocity as ina
planar boundary layer. Consistent with this idea, the power spectra of the wall press. re fluctuations for a
cylindricat beundary layer ¢ontain a greater energy density at higher frequencies than a planar boundary
layer as shown ir figure 9.

Constant wall pressure correlation contours n a cylindrical boundary layer are nearly circular in the

streamwise-spanwise plane. 14

This is in contrast to the elengation of the contours in the spanwise
direction measured in a flat plate boundary layer as showvn in figure 10. Willmarth and Yang suggest the
following explanation. Consider a large eddy adjacent to the curved wall of a cylinder. The mean velocity at
the spanwise sides of the eddy is necessarily larger in a cylindrical boundary layer than in a planar boundary
layer, since the distance from the wall to the side of the eddy is greater. This rasults in a shearing motion
on the sides of the eddy and reduces its ransverse scale. However, the data of Wiimarth et at. 12
confuses the issue somewhat. They measured wall pressure contours for &/a=~4 that were more

elcngated in the spanwise directiun than measured by Willmasth and Yang for 6/a=2 but less than in the
planar case ( &a=0).

The difference in the wall pressure correlation contours between a cylindrical boundary layer and
a planar boundary layer suggest differences in the wavenumber spectra of the wall pressure for the two
cases. As noted by Blakeao with regard to the expression for the wavenumber spectrurn of the
mean-shear-turbulence interaction term, the spectrum of pressure fluctuations in tha streamwise direction
is enhanced relative to the spanwise direciion in the planar case. This results in spatial pressuse
comelations that refiect smaller scales in the streamwise direction than in the spanwise direction. The iarger

Although, an extension of this approach to a cylindrical boundary layer is beyond the scope of this work, it
seems likely that the differences in the wall pressure correlation contours displayed in figure 10 are related
{0 ditferences in the wavenumber speztra for the wall pressure,

Two analyses related 10 the low-wavenumber spectrum cf the wall pressure have been
undertaken. Chase and NoiseuxS" related the turbulent wall pressure fluctuations in a cylindrical
boundary layer to nonlinear fluctuating velocity products, or Reynolds stress sources. Using a
perturbation approach they derived integral relations exprassing the wall pressure amplitude at - given
wavenumber and frequency as an integral over the nonlinear sources. The expressions were devcloped

for the low-wavenumber domain as expansions in a parameter U_k/W«1, where k is the streamwize
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wavenumber and @ is tlig angular frequency. Although this work provides a analytic framework, its
extension raquires the modeling of the sutrce spectra. Dhanak82 investigated the low-wavenumber
domain of pressure fluctuations in a cylindrical boundary layer for 8/a«1. Beginning with the Lighthill
formutation in ¢ylindrical coordinates, the lovs-wavenumber approximation to speciral density was found in
terms of a product of source terms and a response function related to the cylindrical geometry. Unknown
functions of frequency appearing in tha analysis will need to be determined experimentally to advance this
work,

Willmartt. et al.33 investigated the wall pressure on ¢ylinder subject to slight cross-flow. For a yaw
an-le of 2.4° they found tiat the root-mearn-square wall pressure is 15% hugher on the windward side and
35% lower on the leeward sioe than on a cylinder with zero yaw. The windward side wall pressure
contained more enargy in the high frequency components than the leeward side. Interestingly, pericdic
oscilations of the wali pressure were not detecied indicating an absence of vortex shedding for small yaw
angias. '

3.6 FLUCTUATING WALL SHEAR STRESS

‘The fluctuating wall shear strass has not been measured for a gylindrical boundary layer. This is
largely due to the difficulty in the application of the usual methods for the measurement of wali shear stress
to small cylinders.

3.7 INTERMITTENCY

The internitiancy at the cuter adge of a cylindricai Loundary layer was measured by Lueptow and
HaritonictisS ¥ for d/a=7. Using a detecucr, scheme besed on the square of the first derivative of the
velacity, they found that the instantaneovs locativn of the interface between turbulent and non-turbulant
flow is Gaussion in characier just like a planar boundary layer and that the data collapse unto a single curve
fur several Reynolds numbers. Howeve:, the mean lacation of the interface was at y/&-".0 compared with
y/6=0.8 for a tiat plate boundary iayer. They at': bute this ditfercnce to more energetic streamwise velocity
fluctuations further out in a cylindrical boundary layer thai in a pianar boundary layer and to the "filling out”

of the boundary layer with turbulent eddies since the cy.inder does nnt zonstrain the motion of the eddies

I/-e a fla plate do=s.
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3.8 RELAMINARIZATION

Substantial discussion regarding the relaminarization of a turbulent cylindrical boundary layer has
resulted from consideration of extremely small cylinders where Va—>e and R,—0. Cebeci?® tried to
reiate the minimum Reynoids number based on momentum thickness that is a necessary, though not
sufficient, condition for turbulence to this problemn. For R;=10, he predicted that the displacement
thickness wouid need to be at ieast 32 times greater than the cylinder radius for the flow to remain
turhulent. Based on extrapolation of their experimental results, Rac and Keshavan'? pioposed that
relarninarization may occur when R =15,000 because the cocfficient of friction for laminar flow will match
that tor turbulent flow very far downstream. This ¢ritical Reynolds number is close to the value of
R,=11,000 below which small disturbance will be damped based on hydrodynamic stability of a cyiindiical
boundary layer.83 White®3 argued that similar coefficients of friction for laminar and turbulent flow
suggest relaminarization at R;=3. Turhulent cylindrical boundary layers have been measured for R, as
small as 96 and 140.7:2

Pateid pointed to “"the rather remarkable similarity between the influence of a favourable
pressure gradient and that of transverse wall curvature.” Using a shear stress gradient parameter reiated
1o refaminarization in a planar houndary Iayér with a tavorable pressure gradient, he predicted that a
cylindrical beundary layer would relaminarize for a, <28. Afzal and Narasimha°® supported this Droposal
based upon the "inadequate energy supply from the surface [wall].” However, Willmarh et al.1? pointed
out that the apparent simiiarity in the mean velocity profiles for a cylindrical boundary iayer Atd a pianar
boundary layer with a favorable pressure gradient resuit from quite different physical phenomena.
Transverse curvature causes a full velocity profile in a cylindrical beundary layer whereas free stream
acceleratior: causes the same effect in a planar boundary layer with a favorable pressure gradient. In any

VRS * N DR P S TR nn
Case Luxion ei al.” measured luibulent iow on a cylinder for a, as small as 12.
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Figure 5. Profile of the Reynolds Stress in a Cy'ndrical Boundary Layer
[L.ueptow et alll At plate.73 Raprinted with the permission of the

Americar Institute of Physics, copyright 1985.]
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Figure 6. Profile of the Streamwise (open symbols) and Wall-Normal Turbulence
Intensity (filled symbols) in a Cylindrical Boundary Layer
[Luepiow and Haritonidis 31 A Rg=2000; (] Rg~3300; ORQ=5600. - --- Fial plat n
Reprinted with the permission of the American Institute of Physics, copyright 1987.]




TH 8389

fE |-

Ui

it

0 bueeeT™

102

Figure 7. Streamwise and Wall-Normal Velocity Specira Near the Wall in a Cylindrical .
Rg=2009, y,=37; - - - - Rg=3300, -

y,=32;- - -+ Rg=5600,y, ~47. Wall-Normal Velocity Spectra: - - - - -~ Rg=2000, y =37
31

Boundary Layer:

[ Lueptow and Haritonidis. Reprinted with the penmission of the

American Institute of Physics, copyright 1987.]

40




TR 8389

—
g |

b e

=
EM
73

.

Figure 8. Streammwise Velocity Spectra at Dittererd Distances frorn the Wall in a Cylindrical
Boundary Layer: Rp~2000: - =~ » vy =2; ---- y, =13,
SRR VARt Y, 578 ——— y =158, — 4 ~+ -+ y =390
[Lueptow and Hartonidis.3! Reprinted with e permission of the American (nstitute
of Physics, copyrigitt 1987.]
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Figure 9. Wall Pressure Spectrum in a Cylindrical Boundary Layer
[Willmarth and Yang.'* Data poinis are measured for a cyiindricai boundary fayer fa=2.

Solid and dashed lines are two different measurements tor a planar boundary layer.77'78 G(w)

is the

power spectrum, @ is the angular frequency, and p is the turbulent wall pressure. Reprinted with the
permission of the Cambridge Univer:ity Press, copyright 1970.]
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9.
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Figure 10. Effect of Transverse Curvature on Contours of Constant Wall Pressure Correiation
. [Willmarth and Yang.14 Sohd and dashed lines are two different measurements for a planar boundary
|ayer.77'7"‘3 pr(x1 3,0} is the normaiized spatial wall pressure correlation at zero separation time:
x4 is the streamwise coordinate; x is the spanwise coordinate. Reprinted with the permission of
the Carnbridge University Press, copyright 1970.]
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4. STRUCTURE OF TURBULENCE IN A CYLINDRICAL BOUNDARY LAYER

Lika a planar boundary layer, an understanding of the underlying structure of the turbulence in
a cylindrical bourdary layer is fundamental, yet difficult. Very little information is available on the
structure of turbulence in a cylindrical boundary layer, atthough some aspects are becoming more clear.

4.1 EVENY DETECTION

Lueptow and Haritonidis3 1 used VITA 84 or variabls interval time averaging, an event sampling
technique based on the detection of layers of high shiear, 10 detect burst cycles which are believed to
be responsible for generating most of the turbulent velocity fluctuations in a planar boundary Ia\yetr.85
The ensemble averaged events detected using VITA for d/a~8 resemble those constructed for a planar
boundary layer and channgl tiow. Thic similarity suggests that the mechanism for the generation of
turbulence at the wall is similar in ali wall-bounded flows. The scaling for the frequency oi bursts
detacted using VITA can be used i¢ indicate whether the mechanism for the generation of turbulence
scales with inner or outer variabigs. Alithough their data are inconclusive, Lueptow and Haritonidis fourid
that outer scaling provides somewhat hstter collapse than inner scaling, suggesting that the outer flow
affects events at the wall. By comparisen, the burst frequency in a planar boundary layer scaies with
inner variables. .

Lueptow and Haritonidis3* also carried out uv-quadrant event detection based on scrting pairs
of u and v into appropriate quadrants of the u-v plane to represent contributions to the Reynolds
stress.86  Quadrants 2 and 4 are associated with cornponents of the burst cycle. Like VITA detected
events, ensemble averages of uv-quadrant detected events are similar to those of other wall-bounded
flows. in addition, the fraciionai contrivuition o sach Guadrant iin ihis ui-v plans 1O the Reynolds stress
near the wall (y,~39) is qualttatively simila” fo that for a planar boundary layer. Specifically, quadrant 2
evenis (negative u and positive v} reprasent the largest contribution to the Reynolds stress and
cofraspond to the lift-up of low speed fiuid duriry) the burst cycle. Again the similarity of the results of
event detection in a ¢ylindrical boundary layar using the uv-quadrant technique with those of a planar
boundary layer suggest that the mechanism for tha generation of turbulence near the wall is similar.

4.2 SPACE-TIME VELOCITY CORRELATIONS

Measurements of the correlation of velocity at different azimuthai iocations in a cylindrical
boundary iayer were made by Lueptow and Haritonidis. 31 Inthese experiments the streamwise velocity
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was measured using three hot-wire probes located near the wall at three azimuihal iocations that ware
90° apart and at several streamwise spacings for flow conditions resulting in &/a=8. The results of the
experiments indicale thal the comelation between any two probes is negative. This result is curicus
since the spanwise correlation in a planar boundary layer is positive. The authors suggest that the
negative correlation may be a result of the splitting of a sweep of fiuid around the cylinder pushing
low-speed fluid ahead of it and resutting Jow-speed and high-speed flow 90° apart from each other. As
would be expected, velocities at probes separated by 90° are better correlated than velocities at probes
on opposite sides of the ¢ylinder (separated by 180°). The velocities appear correlated over distances
of at least 13 diameters suggesting that high- and low;speed lumps of fluid travel in adjacent parallel
pathis. The advection velocity determined from the cross-cormrelations was nearly the same as the local
mean velocity.

Finally, VITA event detection on the velocity at the probes positioned near the wall (y _=8) and
probes positioned further trom the wall (y,=77) was used 10 determine the relationiship between iniier
and outer avents. Regardless of whether an upstream event occurs near the wall or & short distance
from the wall, it seems to be a precursor to downstream events suggesting an interaction between the
outer flow and the tiow near the wall.

4.3 FLOW VISUALIZATION

Flow visualization of a cylindrical boundary layer has been accomplished by moving a flexible
cyiinder axially through a quiescent fivid. Lueptow and Haritonidis3? used a system in which a very long
Q-ring moved around four pulleys located at the corners of a rectangular frame. One of the pulleys was
driven by a dc motor. The frame was lowered into a tank of water so that the bottom twe pulleys and the
poriion of ihe O-ring beiween inem were subimerged. A “hydrogen bubbig” wire was pasitioned
perpendicular to and just above the O-ring as it moved through the tank of water ( d/a~24). In spite of
the buoyancy of the bubbles, groups of bubbles were occasionally carried by the turbulence below the
O-ring as shown in figura 11. The frequency of these events is of the same order of magnitude as the
frequency of VITA events in which the fluid is decalerating in the streamwise direction. The authors
point out that this type of turbulent transport is quite different {rom that of a planar boundary layer where
the motion of large-scale siructures is constrained by the wall. As 0/a hecomes large, these coherent
structures can travel from one side of the cylinder to the other with relative ease.

Other researchars have used birefringent liquids to observe the flow field surrounding moving
tilaments. Gebart and Hornfeldt®’ studied annular flow in a pipe with a nylon filament at the centerline of
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tnhe pipe acting as a moving inner boundary condition. The relationship of their results to a cylindrical
P boundary lzyer are difficult to ascertain because of the outer pipe walt boundary condition. Sakiadis®®
provides cne photo of the flow field surrounding a moving thread, but it appears that the flow pictured is

laminar.
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Figura 11, Sketcheg of tha Mation of Large Structures in a Cylindrical Boundary t aver
[Upper: Side view of a cylinder (a long O-ring) moving to the right through quiescent water. A wire just
above the cylinder and perpendicular to the plane of the paper generates bubbies. Lower: End view of
a cylinder (O-ring) moving out of the piane of the paper. A wire just abeve the cylinder and in the plane
of the paper gensrates bubbles. In both cases the skeiches indicate a sequence of four positions of a
small group of bubbles as the turbulent fluctuations carry them below the cylinder (positions 1 and 4 are
labeled). Note that gravity is downward in the sketches, so the turbulerit transport carries the bubbles in
a direction opposite to their buoyancy. The dashed lings indicates the approximate edge of the
boundary layer. Sketches are based on flow visualization by Lueptow74 tor a =30, R;~600, d/a=20,

time between positions=0.5 seconds.]
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5. SUMMARY

A description of the boundary iayer on a cylinder in axial flow has evolved over the pasi 30 years
of research on the subject, but t: ~ oresent understanding of the flow lags behind that of other
wall-bounded flows. This is a consequence of the difficulty brought about by the introduction of an
additional length scale, the transverse curvature.

In the viscous sublayer, the transverse curvature results in an equation for the mean veiocity
that is different from the planar iaw, although it approaches the planar law as the radius of the cylinder
incraases (equation 2-3). Away from the wall the effect of transverse curvature becomes pronounced as
the mean velogcity profile becomes fuller. When plotted in planar wall coordinates this appears as a log
law relationship with the slope of the legarithmic region decreasing as the transverse curvature
decreases. Yet the parameter of interest, the fransverse curvature, is precisely the most troublesome
parameter of the flow. The appropriate scaling for the wall-normal coordinate has not been clearly
detfined.

Like scaling laws, appropriale nondimerisional parameters remain elusive. Although several
nondimensional parameters were suggested early in this paper, the evidence supporting one over the
others is weak. The radius Reynolds number , R,, has aireacy been shown to be the least appropriate
nondimensional pararnater, since it omits any effect due to varying wall shear stresses or integral
thicknesses at different axial positions. For tiis reason a_ appears to be an attractive parameter, but
Lueptow et al10 point out that a wide range of mean velocity profile data collapse better with &/a than
witha_. Both &aand a + suffer from the difficulty that measurements of the boundary must be made o
determine these parameters. This is similar to the problem of using the momentum thickness instead of
the streamwise position for the length scale in the Reynolds number for a planar boundary layer -- the ;
momentum thickness length scale requires making a measurement. The laminar cylindrical boundary
layer parameter, £, overcomes this deficiency. Except for Denli and Landweber,8 employiment of this
parameter has been minimal so its usefulness is uncertain,

More certain is the wake-like character of a boundary layer on a very small cylinder. Denli and oR
r.andweber® describe it best. "If the boundary-layer thickness relative {o the transverse radius of |
curvature is large, the cylinder may be considered as a smail vorticity: and turbulence-producing
disturbance. Consequently, the flow might be considered similar to a wake flow with the modified inner
boundary condition. The impcrtant difference is that the drag generating the wake is a function of the
iongitudinal coordinate,..” Luxten et éxl.9 describe & cylindrical boundary layer further ag a "continuously
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regenerated wake.” The wake-like character of a cylindrical boundary layer is ciear, but the existence of
an cuter wake law is subject to debate as discussed earlier.

Although the outer flow is wake-like, the wall acts to continuously convert mean tiow energy
into turbulent energy at the wall of the cylinder. In fact, a cylindrical boundary layer is very effective at
this conversion of energy as evidenced by a higher coetficient of friction for a cylindrical boundary layer
than for a planar boundary layer at the same Reynolds number. Detection of the burst cycle (VITA and
uv-quadrant detection schemes) as well as measurements of the turbuience intensity indicate that the
mechanism for the generation of turbulence is similar in cylindrical and planar boundary |ayers.31 This
mechanism is the burst cyc1935 where low-speed fiuid intermittently lifts up from the wall resulting in an
unstable shear layer that violently breaks up generating turbulent velocity fluctuations followed by a
sweep of fluid toward the wall.

Willmarth et al.'? recall a proposal for a mechanism for the cyclic occurence of bursts in a
planar boundary layer that suggests that the pressure fields resuiting from large eddies passing over
the sublayer prodyce a massaging action in a localized region that intermittently results in a burst. Since

the conveciion veiociiy in a Gyiindricai boundary iayer is ine same as for a pianar bouidary in spite of ihe

~uliness™ of the cylindrical profile, the time scale of the massaging action is similar in a cylindrical

boundary layer. Lueptow and HaritonidisS? support the existence of this massaging action as
evidenced by flow visualization of large scale coherent structures and velocity correlations between
probes near the wall and further out in the boundary layer. Thay suggest that the outer fluid "may wash
aver the cylinder precipitating events on the sides of the cylinder.” l_uxton st al.9 note that these
washes of outer fluid may sweep away the inner layer maintaining vorticity in the layer very efficiently.
Since the mixing in a cylindricai boundary layer is controlled by the inertia of the large eddies rather than
by viscous effects associated with the wall, the protile of the mean velocity, Reynolds stress, and
intermittency are altered from those of a planar boundary layer.
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6. rUF.THEH RESEARCH

As evident throughout this report, the character of cylindrical bounrary layers is poorly
understood in comgparison to pianar boundary layers. Several petentially productive areas of researcn
ar3 outlined below.

* MEASUREMENT OF MEA! I VELOCITY PROFILES
— Mear veiocity data are neaded ovar a wider range of conditions.

In spite of the large number of measurements of the mean velocily profile, a definitive scaling
law is elusive. This is a result of inference of scaling laws from poor experimental dz'a and a lack of
adequate theoretical models. For the most part, though, more experimental data over a wide range of
exparirnental conditions is necessary. For instance, the data of Willmarth et ai.1? appears to cover a
very wide range ol nondimensional parameters. But ths variaiion in parameters was achieved by the
variation of the cylinder diameter and, 10 some extent, the frge stream velocity. The streamwise location
of the measurement for a given cylinder was not an independent variable. Ideally, mean velocity protile
measurements siould be made while varying the cylinder diameter (a), the free stream velocity (U__). and
the streamwise measuremert location (x). As Willmarth et al.12 point out, *...experiments shou'd be
designed to provide sufficient data conceming the effects of ransverse cu:vatura to allow a complete
erripinical formulation of the mean tlow field. This was possible in the two-dimensiona! [planar] only after
suflicient data and understanding had avcumulated.” Further anaiysis of the presently available data
may also he helpful.

« WALL SHEAR STRESS

Qirart mao
v

n - -
Oircotm ont of the coarticiont of friction

LRI v ity

The skin friction in a cylindrical boundary layer continues to bg an unresolved issue. Sinca
Richmond's work’ o attempts at the direct measurement of the coefficient of friction have been made.
It seems likely that tecnnological advances since then may permit such measurements.

-- Compilation of drag measuremen.;

Many measurements kave been mado on the drag of cylinders and fibers. These results could

be compi'ed in a us2ful format to provide insignt for an ~pirical relation for the skin friction on a cylinder.
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- Fluctuating wall shiear stress

No measuremerits of the fluctuating wall shear stress on a cylinder have beca made.
Measurements using hot film shear stress probes should he made on cylinders of different diameters
under varying flow conditions to fill this void.

- Drag reduction

Techniques for drag reduction, such as large eddy break-up devices, streamwise riblets, or
microbubble injection, could be tested in a cylindrical boundary layer. The cylindrical geometry has the
added advantage of eliminating edge effects that are present in a pianar boundary layer experiment.

* MEASUREMENT OF TURBULENT QUANTITIES
-- Measurements of the Reynolds stress, turbulence intensity, and velociy specira

Measurements of the turbulent quantities. in the boundary layer are more scarce than
measurements of the maan velocity prafile. Aside from measurement difficulties, the streamwiise and
wail-normal turbulence intensities as weili as the Heynoids siress have been measured over oniy a very
limited range of parameters. Extending thase measurements over a wider range of parameters should
provide needed insight into the character of a cylindrical boundary layer

-- Wall pressure fluctuations for &a>4

Wall pressure fluctuations have only been measured for relatively large cylinders. Using
miniature hearing aid ricrophones the wall pressure ¢nuld be measured for much smaller cyiinders.
Arrays of rnicrophones could be used to map contours of constant wall pressure correlations and to

measure the low wavenumbor portion of the wall pressure spectrum,

= FLOW NOISE REDUCTION
-- Technigues for reduction of low {requency velocity fluctuations

Lohman4

1 noted a reduction in the kinetic energy of the velocity fluctuations at low wave-
numbers when the boundary laysr was erposed 1o a local transverse motion (8/a=0.2). This suggests

that turther investigation of a method for the reduction of wall pressure fluctuations based on iocal

transverse motion of the wall may be worthwhile.

. _N
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« STRUCTURE OF TURBULENCE
—~ Flow visualization to character outer struciures

Flow visualization of cylinders of different diameters moving through a tank of quiescent water
may provide the details of the burst cycle and the effect of outer eddies on the generation of turbulence
at the wall for cases where the boundary layer thickness is much greater than the cylinder radius.

- Space-time correlations of velocity to characterize coherent structures

Measurements of the space-time correlations of velocity and wall pressure for cylinders of
different diameters may provide an understanding of <oherent structures in the flow field. Further event
detection measurements including the measurement of the correlation between wall pressure events
and velocity events ray be helpful in providing insight into the wall pressure spectrum and its
relationship to the burst cycle.

= MODELING OF CYLINDRIC/ L. BOUNDARY LAYERS
-- Enhanced models of the integral thicknesses and skin friction

Past predictive models of ti\e coeflicient of friction have been bas2d on very crude models of
the boundary layer profile. These models cnuld be improved aind enhanced based on recent
axperimental data. Extension of these techniques to rough surfaces may be Liseful.

— Direct computer simulation of a cylindrical boundary laver

Advances in computational fluid dynamics may permit the direct computational simulation of a
turbulent boundary layer on a cylinder. The turbulent boundary layer ori a flat plate has been
successfully modeled at a Reynolds number based on momentum thickness oi up to 1410.89  Similar
techniques could be used for a cylindrical boundary layer. Cominercially available computational fluid
dynamics codes run on a supercomputer may provide useful first-order approximations to the flow.

« NON-AXISYMMETRIC BODIES
-- Effect of oval cross-section on a turbulent boundary layer
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While most of the work described above has emphasized the boundary layer that develops on
a cylinder, trangverse curvalure that is not axisymmetric has not been studied. For instance, the radius
of transverse curva'tu,'e at the ends of the major axis of a long, oval cross-section body will be much less
than that at the ends of the minor axis. This may allow the isclation of the effects of the outer fiow on the
generation of turbulence from the etfects of transverse curvature, since large-scale structures cannot
pass as easily from one side of the oval cross-section body to the cther side.
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