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THE TURBULENT BOUNDARY LAYER ON A CYLINDER IN AXIAL FLOW

1. INTRODUCTION

The effect of transverse curvature on the turbulent boundary layer that develops as a fluid flows

p- rallel to a cylindrical surface has applications in several different fields. Early interest in the effect of

ti ansverse curvature resulted from efforts to develop .frictional resistance similarity laws to allow scaling from

mode a to full-scale for ship hulls. 1 Other early interest was in the boundary layer that develops on cylindrical

me ikas2 or during the towing of submerged cables or cylindrical bodies.3 Finally, interest in the drag of

glas- cr polymer fibers moving through air during fabrication motivated early research.4

Like the planar boundary layer, the cylindrical boundary layer is two-dimensional in the streamwise

a, o_ý-rjormal directions, while it is periodic in the spanwisf, direction. However, most boundary layer

reset mi k.as been concentrated on the planar boundary layer. In spite of the apparent simplicity of an

a--isy- ,ewnc boundary layer, the volume of research and, hence, the level of understanding regarding the

p iysics. : !rs boundary lay6; have lagged behind that of planar boundary layers.

Jpo, further investigation, an axisymmetric boundary layer is not as simple as its two-dimensional

c;,a. -der imnplies )ecause of the existence of an additional length scale, the radius of transverse curvature,

a. i nis acditiona length scale suggests several nondimensional parameters, i.e., a+= a U,,v, 8/a, Ra= a

14', , a v / Uoa2 ). The first scaling parameter, a+, is a wall scaling based on the friction velocity, UJ;,

a-rt, the - inematic vw .cosity, v. * The second scaling parameier is a transverse curvature ratio relating the

zx unda y layer tht -Kness, 8, with the radius of transverse curvature of the surface. The third scaling

pa" -=•_1.eter miys tn outer free stream velocity, U_, with the transverse curvature resulting i,- a Reynolds

nurber based on transverse curvature, Ra. The last scaling parameter incorporating The streamwise

cjordinate, x, was pro-osed in conjunctiont with the laminar axisymmetric boundary layer.5 Note that all of

these scaling pararr ar r except Ra are "local" with respect to the flow. In other words, they depend upon

UT. •, or x whic[., in tIL- depend upon the streamwise position in the boundary layer. Only Fa is

independent of If , s..-'earm~ise location in the boundary layer.

* All va iables subscripted with + have been nondirnensionalized using v and U,= -1,(Cw/p),
where tw is the w; . she 4r stress and p is the tifd de.•sity.

t Seban ar .1 Bond 5 indicate that the parameter F was originally proposed by Young, 6 although I
this reference was rnrt 3vailable to the author for confirmation.

1I
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Consider the e;•treme cases of transverse curvature. First, as the radius of transverse curvature,

a, approaches infinity (a+ and Ra very large; 6/a and 4 very small), the boundary layer should be similar to a

planar boundary layer. A similar result occurs when the boundary layer thickness is very small compared with

the radius of transverse curvature resulting in small 8/a. On the other hand, if the radius of transverse

curvature, a, is very small ( a+ and Ra small; &a ar.J 4 large) the boundary layer can be much thicker than the

diameter of the cylinder. For instance, Richmond 7 measured the cylindrical boundary layer to be nearly an

inch (2.5 cm) thick on a wire wiith a radius of 0.012 inches (0.03 cm). Denli and Landweber8 note that as 6/a

increases, the outer flow :r" a cylindrical boundary layer becomes increasingly independent of the wall

suggesting a flow that would be similar to a cylindrical wake with a modified inner boundary condition.

The range of experimental data that is available for the mean velocity profile is shown in figure 1 in

of terms various scaling parameters. In addition, the Reynolds number based on momentum thickness, Re,

is included, since this parameter is also defined for planar boundary layers. The range of measurements for

a+ and Ra span three orders of magnitude, but the same measuiemonts only represent a range of one or two

orders of magnitude for 6/a and ý. Luxton et al.9 show a logarithmic correspondence between a+ and Ra

for available experimental data. * Their figure also shows that as a+ and Ra increase, 6/a decreases for the

available experimental data. The direct relation between a+ and Ra is primarily a result changing the radius
of iransverse curvature or the free strearn veiociciy to obtain a variauioH iri scauing paraineiers. Uisiij ihiti

approach, a+, &a, and Ra are not independent;y varied. Very little data are available based on parameter

variation accomplished by measuring the boundary layer characteristics at different axial locations given the

same transverse curvature in order to vary a+ and &a while keeping Ra constant. Because data obtained in

this way are scarce, proper scaling parameters have been difficult to identity.

At this point it is necessary to discuss a nuance in the terminology that is often overlooked. The

terms "axisymmetric boundary layer" and "cylindrical boundary layer" have been used interchangeably to

describe a boundary layer that develops as a fluid flows parallel to the axis of a cylinder. As will become

evident shortly, obtaining axial symmetry experimentally is very difficult. The problem becomes increasingly

acute as the boundary layer becomes thick with respect to the radius of the cylinder. Because the boundary

layer that develops on a cylinder in axial flow is not necessari!y axisyrnrnetric, the term "cylindrical" instead of

"axisymmetric' will be used to describe this boundary layer.

*The labels on the axes of figurel of Luxton et al.9 are inadvertently reversed and should be

interchanged.

I~l 2
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Fig. 1 Range of Values of Nondimensional Parameters for Which Mean Velocity Data

for a Cylindrical Boundary Layer Are Availaole

(LBR = Luxton et al., 9 LLS = Lueptow et al., 1 0 RK = Rao and Keshavan,1

R=Richimond,7 WWSB = Willmarth et al.12)
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2. MEAN VELOCITY PROFILE

The differences between the mean velocity profiles for a cylindrical boundary layer and a

planar boundary layer are substantial, especially as the radius of transverse curvature becomes small.

This is evident in the velocity defect data of Willmarth et al. 1 2 reproduced in figure 2. For the larger

cylinders (corresponding to a small 8/a) the velocity defect profile is nearly identical to the profile for a flat

plate. As the cylinder diameter becomes smaller (corresponding to larger &a), the velocity defect

profiles become fuller. Richmond 7 and Willmarth and Yang 14 suggest that this characteristic is similar to

that for a laminar axisymmetric boundary layer. Glauert and LighthilU1 5 note that in a laminar cylindrical

boundary layer the shear force per unit length on a cylinder equals the circumference times the shear

stress, and that this force is the same on all cylindrical fluid surfaces near the wall (see equation 2-1).

Consequently, the shear stress must vary with 1/r, where r is the radial coordinate. Since the shear

stress is proportional to alU/Dr (where U is the mean velocity in the strearnwise direction), then aUJ/Dr

must also vary with 11r. As the cylinder radius becomes smaller, 1/r can become larger so the velocity

gradient increases. Thus, a fuller velocity profile results as the radius of the cylinder decreases.

The differences between a planac boundary layer and a cylindrfcal boundary layer ai. also
•VIUt1I IL vv... I i~ iI1u ii vl ,,, iy .S k = ,as a function.. of tI. distance, rom the wal! in t-heh .-1u ll.

coordinates, U+ and y+ as shown in figure 3. As &a increases, the cylindrical mean velocity profiles

drop below the planar profile. For small &/a, the log ragion of the mean velocity profile nearly mat& - -

the log region for a pianar boundary layer.

2.1 MEASUREMENTS OF THE WALL SHEAR STRESS

Although it may seem premature to de!'cribe measurements of the wall shear stress at this

point, it is necessary to do so because the friction v' ',,city appears in the scaling of the mean velocity

profiles when presenting the mean velocity profile in wall coordinates. However, a major weakness in

the presentation, analysis, and use of nearly all of t; ie ý,elocity data tfo cylindrical bounda;y layers is the

difficult; in measuring the wall shear stress, Tw. Atthough techniques have been cdveloped for use in

measuring the wall shear stress in a planar boundary layer, these methods are not directly applicable to a

cylindrical boundary layer because of the effect of transverse curvature.

Richmond 7 made an attempt to measure the skin friction directly on a 0.25 inch (0.64 cm)

diameter cylinder using a floating element with an inductance coil position transducer. The measured

coefficient of friction for hypersonic flow is higher than that for a planar boundary layer at the same

5
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momentum thickness Reynolds number. The skin friction was not measured for incompressible flow.

In several studies the coefficient of drag of a cylinder in axial flow was measured directly. These

experimental studies fall into thre6 categories. The first category is that of towing experiments where a

cylinduical body of finite length is towed through a fluid. Unfortunately, in several of these tests it is

unclear whether the flow was laminar or turbulent. Kempf1 7 and Hughes 1 8 towed neutraliy buoyant

cylinders up to 84 ft (26 m) long in a water tow tank and measured the total drag. These results showed

that the coefficient of friction decreases as a function of boti the length-to-diameter ratio and the length

Reynolds number, RLU.,L/v, where L is the length of the cylin'ider. Zajac 1 9 carried out similar test3 on

smooth- and rough-surfaced cables that were not neutrally buoyant, although the length-to-diameter

ratio was not varied (see reference 3 for these results in terms of the diameter Reynolds number).

Towing tests of optical fibers and monofilaments were carried out by Kennedy et al. 2 0 By using fibers as

small as 0.2 mm diameter and 60 to 70 m long, the drag coefficient for very large length-to-diameter

ratios and a wide range of diameter Reynolds numbert• were measured. Their results indicate that tha

average coefficient of friction decreases as the diameter Reynolds number or the length-to-diameter

ratio increases. However, because of the very small diameter of the fibers that were used, the wake of

the tow body and support strut may have influenced the drag over the portion of the fiber immediately

behind themý

In the second category of direct drag measurement, cylinder,•, were suspended in a wind tunnel

and the coefficient of drag was measured directly. Again the degree to which the flow field was

turbulent in these tests is difficult to ascertain. Andrews and Cansfield 2 l measured the drag force per

unit length in this way although experimental details are sketchy. Gould and Smith 2 2 measured the

coefficient of drag on monofilaments ranging from 8.5 g±m to 150 ýJim in diameter and 91 cm long. At

higher diameter Reynolds numbers the length-to-diameter ratio had little effect on the drag coefficient.

However, at iower diameter Reynoids numbers, the drag coefficient appears to have some dependence

upon the length-to-diameter ratio. Ni and Hansen 2 3 estimated the drag on a flexible cylinder in a water

tunnel by measuring the elongation o, the cylinder and correlating that elongation to an equivalent axial

load.

The third category of direct drag measurement has been in connection with the tension of

polymer or glass fibers during production. Typically, the tension of a continuously extruding fiber is

measured using a tensiometer. The aerodynamic drag on a fiber is found by subtracting the effects of

gravity, rheological drag, surface tension, and inertia from the total tension force. 2 4 Because the fibers

are very small, the transverse curvature is certain to play a large role. In somne cases, 8/a can be

6
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estimated to be as large as of the order of '200.25 The results of several experiments of this type show

that the drag coefficient decreases with increasing radius Reynolds numher, Rea. 26-29 Unfortunately,

these drag coefficient measurements are subject to question for two reasons. First, it is often unclear

whether the flow is laminar, transitional, or turbulent. Second, the effect of the transverse vibration of

the filgment is unknown.

An indirect method of evaluating the wall shear stress in cylindrical boundary layers has been

through the use of a Preston tube, a circular impact pressure tube in contact with the wall. Willmarth et

al. 1 2 found that as long as the cylindrical boundary layer profile coincides with the planar profile the wall

shear stress can be measured using a Preston tube, although the Preston tube diameter must be less

than 0.3 times the cylinder diameter. Using this method, they found that the coefficient of friction

generally decreases with increasing Real Ree, and a+, but is consistently larger than the coefficient of

friction for a flat plate boundary layer. Similar results were reported by Willmarth and Yang 1 4 and Yu. 3 0

For very small cylinders Willmarth et al. were not confident of results obtained usiruq a Preston tube

because of differences between the planar velocity profile and the cylindrical velocity profile-

The inherent weakness in the use of a Preston tube is that the calibration data for a flat plate

must be assumed valid for a cylindrical boundary layer. Since a Preston tube extends well into the log

region of the boundary layer, and the log region of a cylindrical boundary layer is significantly different

from that of a planar boundary layer for large &a, the validity of the flat plate calibration is questionable for

small diameter cylinders. To avoid this problem, Lueptow and Haritonidis 31 used a modified impact

pressure pobe so small that the opening was within the sublayer. Because of the small difference in the

sublayer veiocity profiles for the planar case and 'he cylindrical case, they assumed that the planar

calibration could be used for the cylindrical boundary layer measurements. Using this method, they

found the waii shear stress to be greater than the pianar boundary iayer vaiues and to decrease with

increasing Rex.

Several indirect measures of the wall shear stress have been used. The most common met: iod

is the use of a Clauser plot13 to match the slope of the log region of the mean velocity profile to that for

the planar case (see for example reference 32). This method will certainly provide in3ppropriate results

when the radius transverse curvature is small, because the planar and cylindrical log region profiles are

known to be different.

Willmarth et al 12 and Lueptow et al. 1 0 used a method in which the measured mean velocity

profile data in the sublayer and buffer zone were fitted to the planar sublayer profile through the

7
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adjustment of the friction velocity, thus spxccifying the wall shear stress. The ussumption here was that

very close to the wall the differences between a planar profile and a cylindrical profile are negligible.

Willmf.rth et al. verified this assi mption for &a <10 by comparing the wall shear stress obtained using

this method with the wall shear stress measured using a Preston tube. However, Lueptow and

1-lantonidis 31 found that matching the mean velocity profile to the sublayer profile resulted in wall shear

-tres,-es that .vere higher than those measured with their sublayer impact pressure probe.

Lueptow et al., 10 noting the relationship between the Reynolds stress and the wall shear

stress in a cylindrical boundary laye3r (see equations 2-1 and 2-2), used the slope of the Reynolds stress

profile when plotled as a function of a/r to estimate the wall shear stress. Although this method shows

trends consistent with olher methods, the scatte, in the data is too large to make this a useful technique

for finding the wall shea stress.

Finally, ft ;hould be noted that the wall shear stress can be found from the streamwrwise gradient

of the mornsntum ;ntegral axpression for an axisymmetc boundary layer after substitution of

exparirnontal velocity prc, .;;es into the integral (see equation 2-7). Afzal and Singh 3 2 used this method

and obtained resurs similar to thnse obtained using Clauser plots for small 8a. In practice, this

,0•-eLt ire ic ,nneum, iinlc nqrfatet n.yisvmmetrv i., .mr,_irn.infAd a nointed nut hy Lueptow et al. 10

ErTors related to the differcntiation of experimentally derived quantities is also a problem with this

me'thod.

2.2 COMMENTS ON EXPERIMENTAL METHODS FOR VELOCITY

MEASLIREMENTS IN CYLINDRICAL BOUNDARY LAYERS

Most expedmntai setups used to make velocity measurements of cylindrical boundary layers

•rtvolve the suspension of a cy'iridrical model along the centerline of a wind tunnel and the measurement

of the velocites in the boundary layer using hot 4ire anemornetry. This approach brings about a host of

exDerirnental problems. Most cruciai perhaps, is the problem o. maintaining axisymmetry of the

boundary layer. In Fpite of holding Ihe cylinder in tension9 or supporting it with guy wires, 3 0 asymmetry

of the boundary !3yer often results from the sag of the cylinder in a horizontal wind tunnel. The sag

problem has been sucessfully overcome by the use of a vertical wind tunnel by Willmarth et al. 1 2 Even

so, they experienced difficulty in find'.ng cylindei's that ware straight. Apart from the sag problem is the

di'ticulty i, kespin,, the cylinder parallel to the air flow in the wind tunnel. Willmarth, Shama and lnglis3 3

aret Lueptow el al. 10 found that an angle as small as 0.05' between the axis of the cylinder and the flov

8
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direction can alter the bouncdary layer thickness substanially. Rao and Keshavan1 1 investigated the

growth of the momentum thickness with strearnwise location for a yaw angle of 10.

The leading edge condition is also troublesome for the experimentalist. Often a cylinder is

mounted in a wind tunnel so that the cylinder extends upstream into the contraction section, 9 the

settling chamber, 1 2 or outside of the wind tunnel1 0 to create an intentionally ambiguous leading edge

conditicn. Of course this leads to problems in detining any streamwise parameters (for example see

reference 31). Sometimes it is necessary to trip the boundary layer in order to obtain turbulent flow

within the test section. Lueptow et al.1 0 simply used an O-ring around the cyiinder at the upstream

end of the test section for this purpose. A significant number of experiments have been performed with

a cylinder moving through a quiescent fluid (for example reference 25). Again this experimental setup

results in ambiguity in the definition of streamwise parameters and the leading edge conditions. In cases

where the leading edge of the cylinder is within the test section, hemispherical 3 0 and ogive-shaped 11

leading edge geometries have been used.

Velocity measurements in boundary layers on very small cylinders are difficult because the

lencith scale of the hot-wire probe or pitot tube is often of the same order as the radius of curvature. For

instance, in widely referenced experiments, Richmond 7 used a 0.015 inch (0.38 mm) long hot-wire to

make mean velocity measurements on a cylinder with a radius of only 0.012 inch (0.30 mm). Near the

wall, the measured velocity was prob3bly in error since the hot-wire averages the velocity over the

length of the wire, and the ends of the hot-wire were exposed to higher mean velocities than the center

of the wire. In addition, the midpoint of the hot-wire must be centered over the cylinder, so 'hat it will not

be exposed to different velocities at each end of the wire.

2.3 MEAN VELUCITY PROFILE N I HE VISCOUS ......- Al"Cr

In the sublayer region, the analysis of the mean velocity profile begins with the streamwise

Navier-Stokes equation in cylindrical coordinates. Assuming ithere is no pressure gradient and noting

that the strearmwise gradients and the wall-normal velocity are small in the sublayer, the equation

* reduces to

a'Tw = r.t (2-1)
The total shear stress, t, is given by

9



TR 8389

/p =v (auiar)- uv, (2-2)

where p is the fluid density, u and v are the fluctuating velocities in the streamwise and wall-normal

directions, respectively, and the overbar denotes time averaging. The second term on the right-hand

side of (2-2) is the Reynolds stress which arises from the turbulent velocity fluctuations. Equation (2-1),

sometimes called the constant shear moment, is analogous to the constant shear layer very near the

wall in a planar boundary layer.

Reid arid Wilson 3 and Rao3 4 reasoned that the fluctuating velocities are small in the viscous IN

sublayer so the Reynolds stress is negligible allowing the integration of (2-1) after substituting in (2-2).

This leads to

U+ - a+ In(r/a). (2-3)

Equation (2-3) is widely accepted as the appropriate description of the mean velocity profile in the

sublayer of a cylindrical boundary layer. Noting that In(rfa) = Inhl +(y/a)] - y/a for small y!a, (2-3) reduces

to the planar sublayer expression, U+ - y+, when the radius of curvature, a, is large.

Experimental verification of equation (2-3) is difficult since, like the planar sublayer expression,

this expression is valid only out to a distance from the wall of y+<O(1O ). Velocity measurement is very

difficult this close to a surface because of heat transfer to the wall, probe resolution, and accurate

calibration at very low velocities. Nevertheless, Willmarth et al. 1 2 showed that very near the wall (y÷.;5)

the data appear to fall on the curve defined by equation (2-3) as shown in figure 3. In that same figure, it
.. l . . . ic nt einfirnntly epffarnnt frnm thA nlqnqr qnihlivAr nrofile. even for the

smallest a+ that Willmarth et al. measured.

2.4 MEAN VELOC1ITY PROFILE iN THE INNER REGION

Away from the wall, outside the viscous sublayer, is the inncr region of flow where the

influence of the wall is important, yet viscous shear stresses do not dominate. The cquivalent region in

a planar boundary layer is often called the log region. Many attempts have been made at the

measurement of tho mean velocity profile in the inner region as indicated in table 1. Several of these

studies were flawed by insufficient probe resolution as noted in the table. Of course, the problem of

probe resolution is exaggerated for the very situation where the eftecis of transverse curvature are

10
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greatest - for small cylinders where the length scale of the probe can easily approach the scale of the

transverse curvature. As mentioned earlier, the determination ot the wall shear stress is also

experimentally difficult. The methods that were used are noted in the table.

Three methods of scaling the wall-normal coordinate have been commonly used for the mean

velocity profile data. The first method is tto use the planar wail-normal coo='dinate, y+. When this scaling

is use~d for small &/a the results are very similar to those •Tor a flat plate boundary layer,3~2 ,4 1 although

!.here i•, some indication that the coeflicients of 'h•. •.llanar log law must be adjusted to lit the data.3 0 ,3 7

As the curvature rajio, 8/a, increases, the Iogarithrmic relationship for the mean velocity profile remains

._; irtaci,but the slope of the logarithmic :egion deviates from the planar log law9 ,1 0 ,12 as shown in figure

3. To quantify this effect, Lueptow et al.1 0 compiled dart" from several sources and assumed a log law

" ~~~of the .3am•: ,;,rm as the plarar cse, i.e.,

U•. = (1/rn) In y++ n. (2-4)

They found that as /a.-=,l, rn ap•" roaches its planar value of K=0.4, the. Yon Karman coefficient.

Likewi;e, n approaches its planar \alue of 5.0 as •/a--•l. Both coefficients increase with increasing •/a.

In tact, IT.• is a linea; tuneroi ot1 el a. Thnis linear reialionshir :•p:pears to bre~ak down fon o&a>--•u, pudllAp• m

! ~~~because of experimental problems when measurir• pt,;,io;,s on extremely small cylinders or because of ;

re~aminarization.

This result is not surpri•,ng in light of the increased coefficient of friction measured (and

predicted, as seen in later sections) for cylindrical boundary layers. Recall that the coefficient of friction

can be expressed in terms of the friction velocity as Cf =2 (UL/U,,J 2 . If the coefficient of friction is larger in

a cylindrical boundary layer than in a planar boundary layer, then the nondirnensional free stream

velocity, U,,U; Inust be smaller. Unless the nondimensional cylindrical boundary layer thickness, 6.+, is

much Smaller than in the planar case, the slope of the log region of a cylindrical velocity profile must be
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"Table 1. Measuremen's of the Mean Velnc;zy Prolile in the Cylindrical Boundary Layer
(Values for 8/a and x/a were estimated based on information presented in each paper. The studies listed
are in order of decreasing curvature ratio, &a. The ratiio x/a, where x is the axial position of the
measurement, typically decreases as the curvature ratio increases because of experimental constraints.)

Measure- ZwLa• Sal.-Nonal

&~L Proflles Mulhg1 Mehn & & U 4 U

25 4 hot-wire (b) - 200 100000 dimensional continuous cylin.
outer region

7 7 hot-wire (b) match sublayer 1-72 192-4 Richmond subsonic &
profuie 16000 supersonic

10 6 (c) hot-wire match sublayer 4--47 150-ý* planar
profile 4300

9 3 pitot (b) Ref. 12 26-A42 400-+ planah- very small a+
Fig. 8 5644

12 6 (d) hot-wire Preston tube 2-*42 220-+ planar
match sublayer 22000

profile

11 42 pitot (b) momentum 0.3-413 6-4640 Rao
integral

35 8(e) pitot (b) - 1-.+5 10-J70 outer water tunnel
results

36 6 hot-wire (b) Clauser 0.5-43 16-- Rao effect of free-
plot 412 stream turb. S

37 3 pitot momentum 2 80 planar
integral

14 3 pitot Preston tube 2 192-* Richmond
288 .

32 6 pitot Clauser plot; 0.4-- 35-+ planar
momentum 2 150

integral

38 1 pilot 1 175 Richmond 4

30 14 pitot Preston tube 1 24--)84 planar

39 4 pitot 0.3 9-+19 Richmond rotating cylinder

12
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Table 1. (Cont'd) Measurements of the Mean Velocity Profile ir the Cylindrical Boundary' ayer

Meaure Wall Shear WaUl-N3o1

B L Poig Method M .thad &a N

40 12 ? Clauser plot 0.3 2-49 Rao adverse & favor.

pressure grad.

41 3 hot-wire ? 0.2 8-+11 planar rotating cylinder

33 3 pitot 2-9 216 isovelocity
contours for yaw

Notes:

a) Key for wall-normal coordinates: Dimensional y or r

Outer y/8

Planar y+

Rao a+ln(r/a)

Richmond y+[ 1 +(y/2a)]

b) Poor velocity probe resolution calls the validity of the results !nto question, especially near the wall.

c) Lueptow et al.1 0 include characterization of the mean velocity profile for over 40 profiles.

d) Willmarth et al. 1 2 report includes a total of 14 profiles.

e) Joseph et al.3 5 include characterization of the mean velocity profile for over 60 profiles.

13
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The mean velocity profile data described abovo. allows the evaluation of the scaling parameters

described earlier. Lueptow et al. 1 0 varned &a by making measurements at several locations along the

length of a cylinder at constant Ra. Since the slope of the log region of the boundary layer profiles

varied even with constant Ra, Ra seems to be an inappropilate scaling parameter for cy;indrcal

boundary laye:,.

Rao3 4 ,4 2 suggested that the wall-normal coordinate of the planar boundary layer log law be

replaced by the corresponding wall-normal coordinate of the sublayer law for an axisymmetric boundary

layer given in equation (2-3). Thus y+ in the planar law should be replaced by Y+=[a+ ln(r/a)] leaving all

coefficients of the planar log law intact (K=0.4, B=5). This results in the velocity profile in the log region

of a cylindrical boundary layer of

U+(1) ln[a+ ln(r/a)] + B. (2-5)

Considerable controversy followed the introdilction Cf Rao's Nall-normal coordinate. Y+.

Undoubtedly, the introduction of this s;cale reflects the geometry of the cylindrical boundary layer. Since

Y+ - a+ln[1 +(y/a)] - a+(y/a) - y+ for large a, the flat plate logarithmni velocity profile is recovered from

(2-5). Chase43'44 supported the Rao hypothesis, since it sugg.asts a physically meaningful mixing

length that increases linearly with distance from the wall only for y~a , while it increases logarithmically

further out in the boundary laye . On the other hand, Bradshaw and Pater4 5 point out that "there is no

reason why the fully turbulent flow should respond to ... [transverse] curvature in th6 same way as the

sublayer ..." For this reason they dismissed the succmss of Rao's log law (2-5, in matching experimental

data as fortuitous.

Rao and Keshavan11 measured mean velocity profiles corresponding to (2-5) for cylinder

diameters ranging from 1/16 inch (0.16 cm) to 5.5 inches (14 cm). Unfortunately, poo- probe re: olution

calls their results for small cylinders into auestion. This problem aside, they found that the coefficients of

(2-5) to be dependent upon a+ and Ra. Femholz and Podtschaske 4 6 also suggested that the

coefficients in (2-5) are not constant based on an analysis of the data obtained by Wil!marth et al.1 2

Instead they proposed that the cctflicients are functions of a curvature ratio, 0/a, where 0 is the

momenium thickness. At curvature ratios of &a--O(1), Adomaitis 3 6 and Furuya et al. 4 0 found that khe

coefficients of (2-5) are the planar values, K =0.4 and B=5.

14
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A third scaling for the wall-normal coordinate, {y. [1 +(y/2a)]}, was proposed by Richmond 7

b';sed on cylindrical geometry and a hypothesis tWit streamlines are lines ot constant mean velocity.

Substituting this scaling for y+ in the planar log law, Richmond, 7 Yasuhara,3 8 Willmarth and Yang, 14

and B3issonnette and Mellor3 9 found that data for the cylindrical mean velocity profile matched the

planar veLcity profile quite well for 6/a<2. However, Richmond's data for large 5/a fell well below the

planar profil6 in the log region. Rao34 cast doubt on the validity of the Richmond wall-normal scaling.

As a result Richmond's wall-normal scaling has been discarded in favor, of the traditional planar

wall-norma 6caling or Rao's wall-normal scaling.

Other measurements of the mean velocity in a cylindrical boundary layer should be mentioned

for completeness. Kwon and Prevorsek 2 5 measured the velocity profile surrounding a continuous fiber

moving through quiescent air. The small diameter of the fiber resulted in a boundary layer that was at

least two orders of magnitude thicker than the fiber diameter, but only measurement in the outermost

portion of the boundary layer could be made because of the size of the velocity probe. Joseph et al. 3 5

measured ttie mean velocity profile for cylinder. in both water and wind tunnels. In determining the

exponent o; a power law approximation to the mean velocity profile, they found that the exponent is

dependent upon the radius of the cylinder but, curiously, is independent of the fluid viscosity. Finally,

Willwiarth et l.1.3a measured isovelocity contouis around cylinders at small angles of yaw, The boundary'

layer on ths leeward side was nearly 10 times as thick as the boundary layer on the windward side for a

yaw angle of inly 10.

In summary, it appears that the planar, Rao, and Richrmond wall-normal coordinates all result in aI

logarithmic relationship for the mean velocity profile in the inner region of a cylindrical boundary layer,

although the planar and Rao coordinates are preferred. I-,:'wcver, no wall-normai scaling collapses data

on to a single curve for all transverse curvatures. UnTortuataly, much of the data suffers poor

measurement techniques or small curvature ratios so that it is difficult to make conclusions on the

character or scaling of the mean velocity profile for cylindrical bouirdary layers.

2.5 ANALYTIC MODELS OF THE VELOCITY PROFILE IN THE INNER REGION

;?nalytic approaches to the mean ve!ocity profile in the inner region of a cylindrical boundary

layer oft,3n depend upon the assumption of similarity with planar boundary layert,, so the validity of the

method depends upon the suitability of using planar boundary layer characteristicv to describe a

cylindrical boundary layr, Most approaches have been based upon eddy viscosity or mixing length

closure schemes to account for the Reynolds stress term in (2-2). The eddy viscosity, F., is defined so

15
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that ',he represe ration of the turbulent shear stress is similar t, the representation of the viscous shear

stress. The mixing length approach relates ihe turbulent shear stress through a turbulent length scale,

I-. Using these closure schemes the Reynolds stress is expressed as

2
-uv E au/ay ,im laU/ayl au/ay. (2-6)

Of course, the eddy viscosity and mixing length are related by C = Im2 IaU/!yl. ,Aost closure schemes

for cylindrical boundary layers have been presented in terms of a mixing length, so that is the format

used to compare the schemes in table 2.

The earliest attempts at using a mixing length for closure were based on the direct application

of the mixing length concepts used for planar boundary layers. Sparrow et al.4 7 used an expression of

mixing length based on Von Karman's similarity hypothesis using a local characteristic length scale

based on consecutive wall-normal derivatives of the mean velocity profile.

Other early attempts used a simple planar mixing length, I. = ImU/t~v . icy+, where Kc is the

Von Karmnan constant. In this representation the mixing length and, hence, the turbulent length scales

P1 ~~~are propurituntid lo ithediswiace Fromithe wail.Givsiaddinepdc(-)aalun
series, and then applied this mixing length to achieve a complex expression for the mean velocity profile

in terms of the boundary layer thickness and 5/a. Their expression was general enough to account for

either co••ave or convex transverse curvature. Rei. and Wilson 3 also used this simple planar mixing

length to derive an expression for the bout, dary layer velocity profile that was a function of the sublayer

thickness because of a matching condition at the overlap of the sublayer and the log region. They

extended their analysis to include the effect of surface roighlness on the velocity profile. Bradshaw and

Pate14 5 carried out an analysis of the log region using a planar mixing length along with equation (,'-1).

Their resultant logarithn'tic velocity profile required an additive coefficient dependent upon a+.

Matsui@7 also used the planar mixing length to model the turbulent shear, although th.? constant ic was

determined empirically.

The simple planar mixing length has been modified to include a factor accounting for the

velocity profile in the sublayer. This allows the use of the logarithmic velocity profile in the sublayer as

well as in the log region of a boundary layer velocity profile. Cebeci• 9 used the Van Driest sublayer

16
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correction 5 6 'or the mixing length, while Patel5 0 used a factor suggested by Landweber and Poreh5 7

to modify the logarithmic velocity profile in the sublayer.

Table 2. Proposals for the Mixing Length for a Cylindrical Boundavy Layer

Mixing Lenoth Expression ,eference

Planar Mixing Length:

I+ - K (dU4Idy+) I (d2 U+/dy+ 2 ) K - 0.4 (planar value) Sparrow, Eckert & Minkowycz 4 7

1+ - icy+ K - 0.4 (planar value) Ginevdkii & Solodkin 4 8

Reid & Wilson 3

Bradshaw & Pate14 5

I+ - Ky,+ K - 0.22 (empirical) Matsui2 7

I+ - Ky+[1- e" (YA4+)] , =, 0.4 (planar value) Cebeci 49

X,+ - 26 (planar vakle)

I., - K-y+[tanh(y+ 2 / X+2 )10-5 K - 0.4 (planar value) Patel 50

•,+-63/'43

Mixing Length Based on Rao Coordinste:

I C [a+;n(r/a)] (r/a)0.5 Ic 0.4 (plana. value) White, Lessman & Christoph 5 1
Rao4 2

1+ =,K [i+ln(rfa)j [1- 3- { [a+ln(r/a)] /X,+4 K- 0.4 (planar value) Cebeci5 2

•, =26 (planar value) p

I+ = 3 [a+ln(r/a)1 [tarih(y 2 /.2 )10-5 K= 0.4 (planar value) Denli & Landweber 8

X+. = 63/43 ~

Othei Cylirndrlcal Mix!ng Lengths:

14". Ky4 . [1- e (Y-,J+)] (a/r)0"5 K - 0.4 (planar value) Granville 5 3

;+ 4-

I., = (Kyj.) [r+/(r+ + Kccy+)] K , 0.4 (planar value) Eickhoff 5 4

c = 1.5 (empirical)

+ [c 8+ i(d J+/d¥+)]0 .5 c = 0.0274 (empirical) Lueptow, Leehey & Stellinger 1 0

Lueptow & Leehey5 5

l+ = {Ky+ [1 + (Y+/2a+)]} (a.r)l.5 K = 0.4 (planar value) Granville 5 3 based on

Richmond
7

17
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Of course, the application of planar mixing lerigths to a cylindrical ooundary layer are

immediately subject to question. The planar mixing lenqth assumption requires that momentum transfer

occur over a length scale that is proportional to the distance from the wall. However, as suggested by

Luxton el al.9 and confirmed using flow visualizaLion by Lueptow and Hantonid's, 3 1 the scale of flow

structures in a cylindrical boundary layer can be much greater than the diameter of the cylinder for small

cylinders. In other words, the wall is less likely to control the length scales in a cylindrical boundary layer

than in a planar boundary layer. As a result, using a mixing length that is proportional to the distance from

the wall is probably inappropriate unless &a is small.

Rao 4 2 used the similarity law (2-5) to derive a mixing length shown in table 2. White,

Lessman, and Chdis'oph 5 1 nr..•e that this form of the mixing length, which is smaller than its planar

equivalent, is logical since "a cylinder has less ability to create turbulent shear than a plane surface."

However, as discussed earlier with regard to equation (2-5), this approach is based on a weak

assumption that the wall-normal scaling in the viscous sublayer should carry over to the log region.

A different approarh (esults from the direct substitution of the Rao coordinate, Y+ =[a+-

ln(r/a)], for the planar wall-normal coordinate, y+, in the mixing length scaling. Cebeci5 2 repeated his

analysis incorporating this substitution in a mixing length with a Van Driest sublayer modification as

suggested by White (discussion following reference 49). Denli and Landweber8 used a mixing length

similar to that used by Patel5 0 except that the Rao coordinate was used instead of y+. However, using

the Rao coordinate in place of y+ in the mixing length expression is subject to question for two reasons.

First, as noted earlier, the Rao wall-normal coordinate derives from the scaling in the viscous sublayer. Its

application to the log region does not necessarily follow. Second, like the planar case, the Rao

has less control over the length scales than in a planar boundary layer.

Two other cylindrical mixing length expressions, noted in table 2, have been proposed.

Starting with equation (2.1) and assuming a logarithmic velocity profile, Granville 5 3 developed an

expression for a mixing length that accounts for the transverse cuivature of the cylinder. This

expression was coupled with the Van Driest sublayer modification noting that the sublayer modification

correction coefficient, X, should be a function of a+ instead of constant. However the validity of this

mixing length may be in doubt, since its derivation depends on the assumption of the existence of a

logarithmic relationship between U+ and y+,. Eickhoff 5 4 proposed with little justification or rigor that a

,:.0o of radii including an empirical constant should be multiplied times the usual planar mixing length to

18
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include the effe. of transverse curvature. This mixing length is based on the weak assumption that as

an eddy moves away from the cylinders wall, a lower velocity fluctuation results iii a cylindrical boundary

layer than in a planar boundary layer.

Mixing length expressions dedved from the similarity laws proposed by Lueptow et al. 1 0

and Richmond 7 are included to complete table 2.

l1MILARITY LAWS

Similarity laws for the mean velocity profile in the inner region are presented in table 3. As

noted earlier, the four similarity laws based on a planar mixing length probably do not appropriately

a,count for the effect oi transverse curvature. However, comparison of these similarity laws to

experimental data suggests that they show the expected trends for transverse curvature. 1 1 .5 0

Three similarity laws included in table 3 are based on Rao's ci.ordinate, Y+=[a+ In(r/a)]. Denli

and Landweber8 used this coordinate in a mixing length to derive a simlarity law- Rao's similarity law34 is

based on the substitution of the sublayer coordinate into the planar log law (equation 2-5). Chase43

offered a slight modification of this similarity law by adopting a planar term to allow for smooth transition

between Rao's sublayer law (equation 2-3) and the similarity law. For reasons outlined earlier, the laws

based on a mixing length incorporating Rao's wall-normal coordinate are subject to scrutiny.

The last four similarity laws included in table 3 are not based on mixing length derivations or

Rao's wall-normal coordinate. Lueptow et al. 1 0 proposed a similarity law based on an assumption of

.c; .,an! eddy viscosity in the boundary layer. This results in a log law that is identical to the planar log

i•w, equation (2-4). As mentionied earlief, r arid r afe deperdent upon the ratio &a and are erpiicaily

determined. The validity of the constant eddy viscosity approach as a first-order approximation was

confirmed by direct measurement of the eddy viscosity.55 Using the method of matched asymptotic

expansions, Afzal and Narasimha 5 8 ,5 9 derived an expression for the mean velocity profile that is similar

to the planar log law. As a+ becomes small and 8a become. large, the coefficients of the log law are

dependent upon these parameters. Thus, the similarity law is very similar to that proposed by Lueptovw

et al. 1 0 although the laws were derived using two different approaches.
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Table 3. Proposals for Similarity Laws in the Inner Region ior a Cylindrical Turbulent Boundary Layer

Log Law Coefficients Reference

Planar Mixing Length:

U+.= (1/K) n(y+)+B K 0.4; B =5 Planar law

U+= (1/K-) ln[Q(y/a)/ Q(ys/a)]+ a+ln[(a+ys)ia] K = 0.4 Reid & Wilson 3

U+.-ý (i/K) in(4y+4J[+(r/a) 0 .5 ]2}+B K = 0.4; B function of a+ Bradshaw & Pate14 5

U+= (1/K) ln[4a+Q(y/a)]+ B K = 0.4; B function of a+ PateI5 0

Mixing Length Based on Rao Coordinate:

U+, (1/K) ln[a+(r/a)0. 5 1n(r/a)]+B K - 0.4; B function of a+ Denli & Landweber 8

Based on Rao Coordinate:

U+= A ln[a+ln(r/a)]+B A,B functions of Ra, a+ Rao, 4 Rao & Keshavan1 1

U+= (1/K) In[a+ln(r/a)-J]+B K = 0.4; J = B = 5 Chase4 3

Other:

U+- A ln(y+)+B A,B functions of 8/a Lueptow, Leehey, & Stellinger1 0

p
U+= A ln(y+)+B A,B functionsof a+ Afzal & Narasimha5 8 ,5 9

U+= A In(yl +(y/2a)])+B not specified Richmond 7

U+= (1/K) ln(y+)+B Ki = 0.4; B function of Ra Y.J3 0

Note: Q(s)=[y(1-;-s)-l]/A(+s)+1]; Y3 is the thickness of the sublayer.

li4
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The similarity laws due to Richmond and Yu are included to complete table 3. AS discussed

earlier, Richmond's law7 is unlikely to be useful. The proposal by Yu 3 0 is based on dimensicnal

arguments and a narrow range of data. Over a broader range of transverse curvature ratios it fails.

2.7 MEAN VELOCITY PROFILE,,!N THE OUTER REGION

Like a p~anar boundary layer, the mean velocity profile of a cylindrical boundary layer deviates

from a logarithmic profile in its outer region. The mean velocity in the outer region is usually displayed in

velocity-defect coordinates, (Uoo-U)/U1 versus y/5. Willmarth et al.1 2 presented velocity-defect profiles

over a wide range of transverse curvatures as shown in figure 2. Thieir data clearly indicate that the

velocity profiles do not collapse onto a single curve as they do in the planar case. As the cylinder

becomes smaller the velocity-defect profile becomes fuller. As 8/a approaches one, the velocity-defect

profiles approach the planar velocity defect profiles. From dimensional arguments Willmai.h et al. .0

propose that the velocity defect should be a function of both y/8 and 8 /a.

Several outer laws have, been proposed for a cylindncal boundary layer as ennumerated in tabie

4. Afzal and Narasimha 5 8 ,5 9 used the method of matched asymptotic expansions to obtain a defect

law that is quite similar to the planar outer law except that the nivultiplicative coefficient is dependent

upon a+ and the additive coefficient is a function of both 8/a and a.. Of course, the coefficients

approach the planar vaiues as the effect of transverse curvature diminishes [5/a =0(1) and a+ very.

large]. Yu 30 developed an outer law based on a length scale dependent upon the friction velocity and

the kinematic viscosity. Although experimental data were shown to ,ollppse onto c. zingle curve, the

range of transverse curvature ratios is very small, so no conclusions can be drawn. Based on simi•arity to

Sn axisymmetric wake, Rao and Keshevan t1 proposed plotting the velocity defect versus r+=(a+y)UZ/v.

Denli and Landweber 8 used a mean-flow equation simplifed by using the free stream velocity in the

convective term (Oseen's approximation) and an eddy viscosity model that is a function of the

longitudinal coordinate for the shear stress in the outer layer to derive a complex outer law requiring six

empirical constants. The resulting velocity profiles match the data of Willrnarth et ai. 1 2 for 8a ranging

from 2 to 16. Adomaitis 3 6 developed an outer law based on the planar outer law and using Rao's

coordinates and replacing 5 with the displacement thickness, 5,,. This formulation appears adequate for
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a narrow range cf 5/a. Adoinaitis also documented the effect of free stream tu"bL lence on tMe

bound iry layer profile.

Like a planar boundary !ayer, the deviat;on of the velocity profile in the outer layer is thought of

in terms of , modification of Cie logarithmic velocitj profile known as a wake law. Rao and KeshavanrI 1

identified Iwo versions of a wake component in a cylindrical boundary layer. The wake is termed

"negative" 4f the boundary layer profile drops below the log law as the distance from the wall increases

and "positive* if the boundary layer profile nsuis above the log law. The positive wake's appearance is

similar to a planar wake. Although Rao and Keshavan considered a log law of the form of (2-5), these

wakes are, observed regardless whether the data are pltted as a function of the planar Nall-normal

coordinae or Rao's wall-normal coordinate.

For minimal transverse curvature (&a<2), the wake is positive and the appearance of the mean

velocity profile is nearly identical to the planar prufile.3 2 ,3 7 ,3 9 "41 Chin et al.3 7 proposed a wake law

that is very similar to the planar wake lew (see table 4). For slightly larger curvature ratios [8a=O(2)- he

positive wake is not evident14,36 Rao and Keshavan 1 1 found that as the boundary layer developed, awl

the wake went from negative to positive at a given Ra. They vient on to propose that the radial

coordinate at which the velocity profile deviates from the logarithmic profile is dependent upon Ra.

Their explanat"on of this phenomenon involves the relationship between the outer portion of an

axisyrnmetric boundary layer ano properties of an axisymmetric wake.

On the other hand Alzal arid Narasimha5 8 call existence 01 these wakes into question by

nroposing that the flows where they exist may not be fully 0aveloped. The data of Willmarth et al.1 2

spans a wicle range of transverse curvatures arn shova a pos*f4ve wake for large transverse curvature

(6/a<5) and a slight tendency toward a negative wake as the transverse curvature decreases (6/a>9%.

However they point out that the negative wake in a cylindrical boundary layer is not as obvious as the

positive wake in the planar ;ase, in spite of the expectation that a cylindrical boundary layer should be

more vake-like than a plarnar boundary layer. As a result, the existence of a wake region in a cylindrical

boundary remains unclear.
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Table 4. Proposals for Outer Laws for a Cylindrical Boundary Layer

Ou.er Law._ Coeficients .____e_

( U0.- U)/Uc = (-1/lq ln(y/f)+C x=0.4; C =2.F f.-Irar law

( U,,- U)/UCt -A ln(y/f)+C A function of a t.; Afzal & Narasirnha 5 8 ,39

C function of 8/a,a+

( U,,- U)/Ut = (-1/K) ln[y+exp(-UJidKUJ.)]+C K=0.4; C function of Ra yuj30

(U*- U-)/U = -A lr(r+)+C A,C functions of Ra Rao & Keshavan1 1

( U.o- U)/ U,, - tRaix/aRa, r/(&+a)] Dernl & Landweber8

S U)tjc 0 (- i f i {[ ut ,, %J•- , , . ' ^- ,.

(U=.- U)/UE - - A In~y/B)+ C (1- cos(lcy/b)] A -1.95; 3 - 0.9 Chin, Hulsebos, &

Hunnicutt
3 7

2.8 RESUILTS ( OF ANA.L'(TIC MODELS OF A CYLINDRICAL BOUNDARY ILAYER

Several models of a cylindri,;al boundary layer have been used to evaluate the effect of

transverse curvature on characierislics of a boundary layer such as the coe6ficient of friction, the

momentum thictness arid the displacement thickness. The procedure begins with the development of

a mean velocity p ofila based on one of the mixing length closure schemes described earlier or based

on the assimption of a particular form for the mean velocity profile. From the velocity profile the

coetficient of frir on, Cf, can be evaluated from the momentum integral, i.e., 1 5

-~ (~)2 ~ {: 5[ (~ if d]r. (2-7)
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The model mean velocity profile can also be used to evaluate the integral thicknesses. The

definitions for the integral thicknesses differ from those for a planar boundary layer because of the effect of

transverse curvature. 6 0 The displacement thickness, 8., and the momentum thickness, 0, are given by

equations (2-8) and (2-9), respectively.

5* [1 + (6,1J2a)] f [ (4Z - H -L) () dr, (2-8)

el[ + (0/2a)] a+8 (r -2--9)

Table 5 indicates the functional dependence of the coefficient of friction and the integral

thicknesses predicted using various models of the cylindrical boundary layer. The analysns are grouped

according the model used for the mean velocity profile. The table also indicates if representative mean

velocity profiles were presented and if they were compared to experimental results.

The earliest attempts to model a cylindrical boundary layer used a power law formulation for the

mean velocity profile. Millikan, 6 1 . Landweber, 6 2 Eckert, 2 and Sakiadis 4 used a 1/7-power law

formulation assuming similarity to a planar boundary layer, Karha 70 and Liu and Dai63 varied the

exponent of the power law in attempts to refine the mean velocity pro•le to account for transverse

curvature. The power law description of the boundary iayer profile predicts that transverse curvature will

increase the skin friction compared to the planar case. However, b, ause of the crudeness of the

velocity profile models, the predictions are not quantitatively correct.

because of the premise of similarity of the mixing length in the cylindrical case to the mixing ic.ngth in the

planar case. In spite of this weakness, the analyses of Sparrow et al. 4 7 and Cebeci4 9 stand out for their

* Millikan's model was the first of several that have been based on momentum integral methods.

While these methods have generated considerable interest, 6 9 a necessary assurrption for their

application is that &a. Since this reporl is generally concerned with situations where >a, discussion of

these methods is omitted.
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estimates of the skin friction over a wide range of cylinder diameters, Ra, and axial positions, Rx. These

results indicate that the coefficient of friction decreases with increasing Ra and Rx. Sparrow et al.

explained this in the followng way: "... the differenc9 in the flow field about a cylinder and that about a flat

plate is due to the expansion in flow area encountered with increasing distance from the cylindrical surface.

When the boundary layer is very thin relative to the cylinder radius, then there is a correspondingly small

area change across the boundary layer, and the cylinder behaves like a flat plate. On the other hand, when

the boundary layer is thick compared with the cylinder radius, there is a substardial area change and a larger

difference between flat plate and cylinder... Therefore, the larger the length Reynolds number Rex [Rx],

the thicker the boundary layer and the greater the effect of cylindrical geometry. The cylinder Reynolds

number Rer [Ral is a direct measure of the radius of the cylinder and so, the smaller the Rer0 [R aj, the

greater the curvature effect."

In spite o, use of a planar mixing length model in these analyses, the results show characteristics

that correspond to experimental results. Representative velocity profiles presented by Sparrow ot al.

sho\,w the shallow slope of the log region of the mean velocity profile as the cylinder radius becomes small.

The log regions of their velocity profiles also show a slight downward curvature that is also vaguely evident

in the experimental data of Willmarth et ai. 12 or very smaii cyiir...... A tiiifia 'tnd IS bsn - 4t"e

representative velocity profiles presented by Patel. 5 0

Using planar mixing length closure models, Reid and Wilson 3 and Matsul 2 7 found the unlikely

result that the average skin friction is a function of R. alone with no dependence upon the length of the

cylinder. Ginevskii and Solodkin48 show qualitatively similar results over a narrower range of parameters.

Reid and Wilson also considered the effect of wall roughness on tho skin friction.

The use of cylindrical mixing length models noted in table 5 would be expected to provide a more

appropriate model compared to the planar mixing length models. Although several of the authors who

used this type of analysis compare their mean velocity profile to experimental data, only Denli and

Landweber 8 go so far as to calculate the skin friction and the integral thicknesses. Their calculations agree

with the experimental results of Willmarth et al.,1 2 although this may be a result of the use of this

experimental data to determine the empirical coefficients used in the analysis.
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Table 5: Functional Dependence of the Coefficient of Friction and the
ln',egral Thicknesses for a Cylindrical Boundary Layer

Power Law:
Millikan6 l Rv RV, x Rv based on volu~me

Ecket2 &a8/acomnpressible

Uu & DaiG3 x x
Sakiadis4  -

Planar Mixing Length Closure:
Cebeci49  comparison Rap Rx h eat transfeor
Ginevskii & Solodkin48  sample prof. x/a, Ra5/

Matsui 27  Ra -extruding

PateI50  cmaio
Reid & WilsoJI3  coprsnsample prof. Ra -roughness

Sparrow et aL'47 sample prof. Ra, Rx heat' transfer

Cylindrical Mixing Length Closure:

Cebeci 52  comparison -I

Eickhoffl54  cmaio
I Granville53  coprsn -- kinetic energy

Rao34 comparison -

Assumed Velocity Profile:
Ackroyd64  Rat Rx -extruding

White65 comparison Ra, Rx xla,R FI -

White et al.51  Ra,Rx -compressible

Other Methods:
Abdelhalim et al.bb -

Shanebrook & Sumnerr67  comparison -x

yU30  comparison Rat 8&a Ra, &a

Notes:
a) 'Comparison' means that the mean velocity profile was compared to experimental data. "Sample prof."U mneans that sample mean velocity profiles were provided but riot compared to experiments.

b) Parameters shown indicate the functional dependence of the coefficier,. of friction or the integral
thicknesses (displacement, momrentum, or boundary layer) that is predicted by the analysis.
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Other aLproa,.Iies based on assuming a velocity profile instead of using a mixing length have

bpon . .'or analysit. If cylindrical boundary layer. White65 substituted Rao's wall-normal coordinate

in place. y., in Spalding's expression7 1 for the velocity profile in a planar boundary layer. Ackroyd64

,r•rref,•c. ercors in White's analysis and followed a similar approach for the problem of an extruding

cylinder. The resulk for a cylinder in a uniform stream and for an extruding cylinder are very similar. Both

While and Ackroyd present results over a wide range of parameters showing that the coefficient of

fri.,Ik.n decreases with increasing Ra and Rx (see figure 4). Unfortunately, the analysis is dependent

up.ln the presumed similarity of Spalding's mean velocity profile using the Rao coordinate with the

velocity profile in a cylindrical boundary layer. Although Ackroyd clearly shows that the assumed profile

is quita c6ifferent from experimental data for large 8/a, his results are shown in figure 4 since they show

the trends also found by sevreral other researchers. 4 7 ' 4 9 White et al.5 1 carried the analysis further to

include compressibii.~y.

Finally, three other methods of modeling a cylindrical boundary layer were used. An

entrainment theory ba,*ed on the momentum equation and an entrainment equation derived from
• a~ae -e~n•-t h•,v ,'ihncnhrnr-k nntl sitinnor67 for annlication to axinvmmetric boundarv layers.

Granville68exten,,JeL this work substantially by incorporating more sophisticated shape parameter

functions and v,)lor•vY profiles. Yu3 0 developed a log law and an outer law similar to those for a flat plate

and used these 0 ,.io prf'Jdt the boundary layer thickness development and the skin friction for

cylinders wi:h large Ra. ddbxlclhalim et al.6 6 developed a metlhod for analyzing the flow past semi-infinite

axisymael•rc i itd p'?nar bodies with a blunt leading edge condition using conformal coordinates and the

k-C turoulnnce modvl vz h'jo-,'qLtion closure scheme). Although results were presernted for the planar

I
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Figure 2. Representative Velocity -Defect Profiles Showing the: Influence of Transverse Curvature

[Willmarth et al. 1 2  -_ Flat plate. 13 (U. is the friction velocity.)

Reprinted with the permission of Cambridge University Press, copyright 1976.]
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Influence of Transverse Curvature
[Willmarthetal.12 - Flat plate;16 ------ Sublayer mean velocity profile (equation 2-3 with

a+=33.4). (Ur is the ticion velociitP.) Reprinted with the permission of

Cambridge University Press, copynght 1976.]
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3. TURBULENCE IN A CYLINDRICAL BOUNDARY LAYER

Although the emphasis in research on cylindrical boundary layers has centered on the

measurement and analysis of the mean velocity profile, some experimental word has been done on the

turbulent character of a cylindrical boundary layer. Most of the research has centered on the

measurement of turbulence in a cylindrical botw!k.ary layer and the comparison of these measurements

with a planar boundary layer.

3.1 REYNOLDS STRESS

Surprisingly few measuremenrts of the Reynolds stress, uv, have been made in a cylindrical

boundary layer. Measurements of the velocity fluctuations are difficult for two reasons. First, the

measurement of the wall-normal fluctuations requires the use of X- or V-shaped hot wire probes that are

difficult to calibmate and use. Second, since the wall-normal gradients are large, the measured

wall-normal velocity is strongly affected by the averaging of the velocity over the wall-normal dimension

of tihe hot-wire.

The Reynolds stress profile in a cylindrical boundary layer is very similar to that in a planar

boundary layer when the effects of curvature are small, &la<2.3 2 ,4 1 ,72 As &a gets large, though, the

Reynolds stress profile becomes quite different from that of a flat plate as shown in figure 5.10 The

Reynolds stress drops off much more quickly with distance from the wall in a cylindrical boundary layer

than in a planar bouncdary layer. Lueptow et al. attribute this to the cylindrical geometry. 1 0 From

equation (2-1) and (2-2) they suggest that the Re:ynolds stress should be a function of 1/r. Plots of the

Reynolds stress nondimensionalized with the free-stream velocity versus a/r appear to result in weak

collapse of the data onto a single curve that may be considered to be a straight line as a first

approximation. Assuming inertial effects are small throughout the boundary layer, equation (2-1)

suggests that the slope of this line is equal to the coefficient of friction. Using this method

underestirmates the wall shear stress, but the degree of agreement of the estimates of the coefficient of

friction1 with that of other methods is quite surprising considering the necessary assumptions. 3 1

Th6 Reynolds stress nondirnensionalized with urms and vrms, where Urms •/(uu), is nearly

constarit across the entire boundary layer, except near the wall and near the outer edge of the boundary
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layer where it necessarily drops off. 1 0,32 Like a planar boundary layer the value of uv/(UrmsVrms) =0.5

throughout most of the boundary layer.

3.2 TURBULENT KINETIC ENERGY

The kinetic energy of the turbulent velocity fluctuations is given by

E 1/=(1/)puli = (1/2)p(uu+ vv + ww ), (3-1)

where u, v, and w are the velocity fluctuations in the streamwise, wall-normal, and spanwise directions,

respectively. I ke the measurement of the wall-normal velocity flucluations, the measurement of the

spanwise tluc' :;ations is difficut. .

The velocity fluctuations in a cylindrical boý;r,-Ary layer are nearly identical to the

measurements ct these quantities in a planar boundary layer for &acl.41,72 For larger values of &8a the

streamwise veloc .ij f -ctu ;. which are the largest contributor to the turbulent kinetic energy, appear

to drop off more quickiý,M d.ih &Aance from the wall than the planar case.32 On the other hand, the

general character of the strearnwise and wall-normal velocity fluctuations near the wall is similar.to that of a

flat plate as shown in figure 6.31 The data indicates Reynolds number similarity near the wall when the

streamwise velocity fluctuations nondimensionalized by the friction velocity are plotted as a function ot

y.,. The streamwise velocity fluctuations rise quickly from zero at the wall reaching a maximum valu,. of

Urms/Uc =3.2 at y+ -13 and dropping off gradually with distance from the wall from that point to the outer

edge of the boundary layer. Luxton et al. 9 and Lueptow et al. 1 0 measured a slightly smaller maximum

value of U.ms/Uc, although the discrepancy may be related to probe resolution and measurement

techniques. The wall-normal fluctuations reach a maximum value of vrms/U'T -1. The maximum velocity

fluctuations and the distance from the wall where they occur are similar to channel flow and planar

boundary layer flow. The similarity between the distribution of the streamwise and wall-normal velocity

fluctuations in a cylindrical boundary layer and other wall-bounded flows suggests that the mechanism

for the generation of the turbulence at the wall may be the same.

32



TR 8389

Adomaitis 3 6 found that the magnitude of streamwise velocity fluctuations increase even very

close to the wall when the free stream turbulence intensity increases. No measurements of the

spanwise velocity fluctuations have been made for W/a>1.

3.3 HIGHER ORDER VELOCITY STATISTICS

The streamwise skewness, u-3 rmsu is a measure of the direction of excursions from the mean

(positive excursions imply positive skewness, negative excursions imply negative skewness, and a

Gaussian distribution has zero skewness). The skewness in a cylindrical boundary layer is similar to that of

other wall-bournded flows with a value between 0 and -1 through most of the boundary layer.9 ' 7 4 Near the

wall the strearnwise skewness becomes positive suggesting the presence of sweep structures

subsequent to a burst (see section 4). In the outer part of the boundary layer the skewness becomes

more negative because of the intermittency of the turbulence. The wall-normal skewness is slightly

positive throughout the boundary layer7 4 indicating that the largest excursions from the mean are

positive. This may be related to the littup of a burst near the wall and the mild positive wall-normal flow in

the intermittent region near the edge of the boundary layer.

The strearrrwise flatness, U/Urs 4 , is a measure of the magnitude of excursions from the mean -

(a Gaussian distribution has a flatness of 3; flatness greater than 3 indicates a probability distribution with

long tails; flatness less than 3 indicates a probability distribution with short tails ). The streamwise and

wall-normal flatness are nearly Gaussian throughout most of the boundary layer. Near the wall the flatness

is greater than 3, probably because of the burst-sweep cycle. In the outer portion of the boundary layer

the flatness is greater than 3 as a result of intermittency. 9 ,7 4

3.4 VELOCITY SPECTRA AND AUTOCORRELATIONS

The spectrum of the streamwise velocity fluctuations is indicative of the energy content of the

velocity fluctuations at a paricular frequency, f. For small 8/a the spectra appear to be similar in character to

the planar streamwise velocity spectra, 3 2 ,4 1 although it is difficult to make direct comparisons because of

different scaling techniques. Some data suggest that tile energy in a cylindrical boundary layer is shifted

to higher frequencies compared to a planar bc.undary layer. 3 2

Lueptow anci -aritonidis 31 pTesented the energy density function, E, of the velocity fluctuations

such that the area under the spectrum for a given frequency range is equivalent to the turbulent energy in

that frequency range. The ordinate is normalized so that the total area under the curve is 1, i.e.,
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00

J0 (fE/Urms 2) d(In f) 1. (3-2)

This format allows the easy identification of the frequency range that has the largest contribution to the

turbulent energy. Using this format, Lueptow and Haritonidis found that the maximum energy content of

the velocity fluctuations occurs in the same frequency band regardless of distance from the wall for 8/a=7
as indicated in figure 7. This suggests that turbulent eddies are about the same size regardless of the

distance from the wall supporting a constant eddy viscosity model for the turbulent shear stresses.

Lueptow and Haritonidis 31 found that an outer scaling for the frequency, to= fS/U0 ,, results in a

better collapse of streamwise velocity spectra for different Reynolds numbers than an inner scaling, f+=

fv/U*T2 , especially at low frequencies as shown in figure 8. Very near the wall, y+<10, they found that an

inner scaling worked best. On the other hand, Luxton et al.9 found no Reynolds number similarity when

the spectra are scaled using the outer scales of the momentum thickness and U,,. As shown in figure 8,

the energy content of the wall-normal velocity fluctuations is substantially less than the strearnwise

velocity fluctuations and the maximum energy density occurs at a higher frequency.3 1 The two spectra

merge at high frequencies.

The streamwise velocity autocorrelation indicates that the turbulent integral length scales in the

outer portion of a cylindrical boundary layer are less than half the size of the length scales in a planar
boundary layer.3 2 The data of Luxton et al.9 suggest that length scales derived from the autocorrelation
appear to be slightly dependent upon the location in the boundary layer. They are about twice as large at

y+-540 than they are at y+=l0 for 8/a=27. Comparing these two studies it appears that the length scales,

L, are much larger for large 8/a. At y/5=0.5, the autocorrelation falls to l/e at L=0.085 for 6a=1.6, but

W-- .... 7 :. -I., .- :-- ! -- , #. va=uu 0 r'V; •S ,uIGI u g*G ; ,,u ..u -h..u c 'n of i'., ,'ll o-•n ;r •.-,,-i * rlth •qu 10,• V/ -9.. 11

scales is minor for large &/a.

3.5 WALL PRESSURE

"The wall pressure spectrum, autocorrelation and convection velocity for boundary laysers with

slight transverse curvature (8/a<0.1) are in agreement with data obtained for planar boundary layers and

pipe flow. 7 5 ,7 6 For larger &a, Willmarth and Yang14 and Willmarth et al. 12 investigated the wall pressure

fluctuations using an array of 0.06-inch (0.15 cm) flush-mounted piezoelectric pressure transducers on a

3-inch (7.6 cm) diameter cylinder (8/a=2) and on a I-inch (2.5 cm) diameter cylin)der ( 8/a=4). The

convection velocity of wall pressure fluctuations derived from the space-time wall pressure correlation was
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found to be nearly the sanre as that for a planar boundary layer increasing with streamwise separation from

0.6U,1to .8U,. However, since the mean velocity profile convecting the eddies is fuller because of the

transverse curvature, the turbulent eddies must be smaller to result in the same convection velocity as in a

planar boundary layer. Consistent with this idea, the power spectra of the wall press. 're fluctuations for a

cylindrical boundary layer (ontain a greater energy density at higher frequencies than a planar boundary

layer as shown in figure 9.

Constant wall pressure correlation contours in a cylindrical boundary layer are nearly circular in the

streamwise-spawvise plane. 1 4 This is in contrast to the elongation of the contours in the spanwise

direction measured in a flat plate boundary layer as shc wn in figure 10. Willmarth and Yang suggest the

following explanation. Consider a large eddy adjacent to the curved wall of a cylh'ider. The mean velocity at

the spanwise sides of the eddy is necessarily larger in a cylindrical boundary layer than in a planar boundary

layer, since the distance from the wall to the side of the eddy is greater. This results in a shearing motion

on the sides of the iddy and reduces its transverse scale. However, the data of Willmarth et al. 12

confuses the issue somewhat. They measured wall pressure contours for &a-4 that were more

ekongated in the spanwise directiun than measured by Willmarth and Yang for 8/a-2 but less than in the

planar case (&a-0).

The difference in the wall pressure correlation contours between a cylindrical boundary layer and

a planar boundary layer suggest differences in the wavenumber spectra of the wall pressure for the two

cases. As noted by Blake 8 0 with regard to the expression for the wavenumber spectrum of the

mean-shear-turbulence interaction term, the spectrum of pressure fluctuations in the strearmwise direction

is enhanced relative to the spanwise direction in the planar case. This results in spatial pressure

conrelations that reflect smaller scales in the streamwise direction than in the spanwise direction. The larger

Although, an extensýon of this approach to a cylindrical boundary layer is beyond the scope of this work, it

seems likely that the differences in the wall pressure correlation contours displayed in figure 10 are related

to differences in the wavenumber spectra for the wall pressure.

Two analyses related to the low-wavenumber spectrum of the wall pressure have been

undertaken. Chase and Noiseux8 1 related tile turbulent wall pressure fluctuations in a cylindrical

boundary layer to nonlinear fluctuating velocity products, or Reynolds stress sources. Using a

perturbation approach they derived integral relations expressing the wall pressure amplitude at , given

wavenumber and frequency as an integral over the nonlinear sou,ces. The expressions were developed -

for the low-wavenumbur domain as expansions in a parameter U.k/(O,, 1, where k is the streamwise
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wavenumber and c) is th e angular frequency. Although this work provides a analytic framework, its

extension requires the modeling of the source spectra. Dhanak8 2 investigated the low-wavenumber

domain of pressure fluctuations in a cylindrical boundary layer for S/a.1. Beginning with the Lighthill

formulation in cylindrical coordinates, the lor.-wavenumber approximation to spectral density was found in

terms of a product uf source terms and a response function related to the cy!indrical geometry. Unknown

functions of frequency appearing in the analysis will need to be determined experimentally to advance this

work,

Willmartlt, et al.3 3 investigated thi wall pressure on cylinder subject to slight cross-flow. For a yaw

an' le of 2.4° they found tl at the root-mean-square wall pressure is 15% higher on the windward side and

35% lower on the leeward sioe than on a cylinder witlh zero yaw. The windward side wall pressure

contained more energy in the high frequency components than the leeward side. Interestingly, periodic

oscilations of the wall pressure were not detected indicating an absence of vortex shedding for small yaw

anglas.

3.6 FLUCTUATING WALL SHEAR STRESS

The fluctuating wall shear stress has not been measured for a cylindrical boundary layer. This is

largely due to the difficulty in the applicaVon of the usual methods for the measurement of wali shear stress

to small cylinders.

3.7 INTERMrlTENCY

The inten~nit;ency at the outer edge of a cylincrica tloundary layer was rnea,:ured by Lueptow and

Harionidis 3 i for &a=7. Using a deteci;,• scheme based on the square of the firmt derivative of the

velocity, they found that the instantaneou-0 Iocaiiow ul the interface between turbulent and non-turbulent Ilk

flow is Gaussian in character just like a planar boundary layer and that the data collapse unto a single curve

fur several Reynolds numbers. Howev•:, the mean location of the interface was at ./6-1 .0 compared with

y/8=0.8 for a flat platc boundary layer. They ar: bute this difference to mnore energetic streamwise velocity

fluctuations further out in a cylindrical boundary layer tha,, in a planar boundary layer and to the "filling out"

of the boundary layer with turbulent eddie3 since the cyinder does nrt constrain the motion of the eddies

C;e a Ilai plate does.
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3.8 RELViNARIZATiON

Substantial discussion regarding the relaminarization of a turbulent cylindrical boundary layer has

resulted from consideration of extremely small cylinders where &a--.o and Ra---)O. Cebeci4 0 tried to

relate thp minimum Reynolds number based on momentum thickness that is a necessary, though not

sufficient, condition for turbulence to this problem. For Ra=10, he predicted that the displacement

thickness would need to be at least 32 times greater than the cylinder radius for the flow to remain

turhulent. Based on extrapolation of their experimental results, Rao and Keshavan1 1 poposed that

relarninauization may occur when Ra -15,000 becau-,e the cocfficient of friction for laminar flow will match

that for turbulent flow very far downstream. This critical Reynolds number is close to the value of

Ra=l 1,000 below which small disturbance will be damped based on hydrodynamic stability of a cyiinddcal

boundary layer. 8 3 White65 argued that similar coefficients of friction for laminar and turbulent flow

suggest relaminarization at Ra- 3 . Turbulent cylindrical boundary layers have been measured for R. as

small as 96 and 140.7,9

Patel5 0 pointed to "the rather remarkable similarity between the influence of a favourable

pressure gradient and that of transverse wall curvature." Using a shear stress gradient parameter related

to relaminarization in a planar houndary layer with a favorable pressure gradient, he predicted that a

cylindrk~al boundary layer would relaminarize for a+<28. Afzal and Narasimha58 supported this proposal

based upon the "inadequate energy supply from the surface [wall]." However, Willmarl'h et al. 1 2 pointed

out that the apparent similarity hi the mean velocity profiles for a cylindrical boundary layer ,t id a planar

boundary layer with a favorable pressure gradient result from quite different physical phenomena.

Transverse curvature causes a full velocity profile in a cylindrical boundary layer whereas free stream

acceleration causes the same effect in a planar boundary layer with a favorable pressure gradiont. In any
.--- - - - - . . ...q J -_I ,L& .. A I 4,3

uaba Lux[UIi1.a dl,- u Iw al.9 meniorvie aucymiv"d•r ffa + Q5small as
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Figure 5, Profile of the Reynolds Stress in a Cy',ndrical Boundary Layer

[L.ueptow et a'10 --- Flat plate.7 3 Raprinted with the permission of the

American Institute of Physics, copyright 1985.]
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Figure 6. Profile of the Streamwise (open symbols) and Wall-Normal Turbulence

Intensity (filled symbols) in a Cylindrical Boundary Layer

[Lueptow and Haritonidis. 3 1 A R0 =2000; 1a R0 =3300; OR0 =5600. - - - - Flat plat 71

Reprinted with the permission of the American Institute of Physics, copyright 1987.]
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Figure 7. Streamwise and Wall-Normal Velocity Spectra Near the Wall in a Cylindrical

Boundary Layer: - R0 02O00, y+-=3 7 ; - - - - R9=3300,

y+-32; - " . R0=5600, y+=47. Wall-Normal Velocity Spectra: - •. R.-2000, y+,-=37

Lueptow and Hadtonidis. 3 1 Reprinted with the permission of the

American Institute of Physics, copyright 1987.]
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Figure B. Strearriwise Velocity Spectra at Ditferei~l Distances fromn the Wall in a Cylindrical

Boundairy Layer: Rea-20OO: y.=2 - - -- y,ýý13;

- -yý37; - y.ý=78-3 - Y+58; 4-+-+- +-_---

ILueptow and Hlar~tonidis.3 1 Reprinted with 'he permission of the American Institute

of Physics, .;opyrigiVl 1987.11
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Figure 9. Wall Pressure Spectrum in a Cylindrical Boundary Layer

[-Willmartf and Yang.! 4 Data points are measured for a cylindricai boundary iayer ,,'a=21.

Solid and dashed lines are two different measurements for a planar boundary layer.77,78 4i(W) is the

power spectrum, wo is the angular frequency, and p is the turbulent wall pressure. Reprinted with the

permission of the Cambridge Univerity Press, copyright 1970.1
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Figure 10. Effect of Transverse Curvature on Contours of Constant Wall Pressure Correlation

[Willmarth and Yang. 14 Solid and dashed lines are two different measurements for a planar boundary

layer.77,79 Rpp(x1 ,x3 ,0) is the normalized spatial wall pressure correlation at zero separation time:

xI is the streamwise coordinate; x3 is the spanwise coordinate. Reprinted with the permission of

the Cambridge University Press, copyright 1970.]
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4. S FRUCTURE OF TURBULENCE IN A CYLINDRICAL BOUNDARY LAYER

Like a planar boundary layer, an understanding of the underlying structure of the turbulence in

a cylindrical boundar) layer is fundamental, yet difficult. Very little information is available on the

structure of turbulence in a cylindrical boundary layer, although some aspects are becoming more clear.

4.1 EVENT DETECTION

Lueptow and Haritonidis 3 1 used VITA,84 or variable interval time averaging, an event sampling

technique based on the detection o! layers of high shear, to detect burst cycles which are believed to

be responsible for generating most of the turbulent velocity fluctuations in a planar boundary layer. 8 5

The ensemble averaged events detected using VITA for 8/a=8 resemble those constructed for a planar

boundary layer and channel flow. This similarity suggests that the mechanism for the generation of

turbulence at the wall is similar in all wall-bounded flows. The scaling for the frequency of bursts

detected using VITA can be used Wo indicate whether the mechanism for the generation of turbulence

scales with inner or outer variables. Although their data are inconclusive, Lueptow and Haritonidis found

that outer scaling provides somewhat butter collapse than inner scaling, suggesting that the outer flow

affects events at the wall. By comparison, the burst frequency in a planar boundary layer scales with

inner variables.

Lueptow and Haritonidls 31 alsv carried out uv-quadrant event detection based on sorting pairs

of u and v into appropriate quadrants of the u-v plane to represent contributions to the Reynolds

stress.8 6 Quadrants 2 and 4 are associated with components of the burst cycle. Like VITA detected

events, ensemble averages of uv-quadrant detected events are similar to those of other wall-bounded

flows. in addition, the iraciobra i ,,nii o, V, each q--ad1 ant in the u-v ... t.... .o th- ..l..IGa ' I .. S

near the wall (y+=39) is qualitatively simils, to that for a planar boundary layer. Specifically, quadrant 2

events (negative u and positive v) represent the largest contribution to the Reynolds stress and

correspond to the lift-up of low speed fluid durirng the burst cycle. Again the similarity of the results of

event detection in a cylindrical boundary layer using the iv-quadrant technique with those of a planar

boundary layer suggest that the mechanism tot, the generation of turbulence near the wall is similar.

4.2 SPACE-TIME VELOCITY CORRELATIONS

Measurements of the correlation of velocity at different azimuthal locations in a cylindrical

boundary layer were made by Lueptow and Haritonidis. 3 1 In these experiments the streamwise velocity
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was measured using three hot-wire probes located near the wall at three azimuthal locations that w'3re

900 apa,-t and at several streamwise spacings for flow conditions resulting in 8/a=8. The results of the

experiments indicate that the correlation between any two probes is negative. This result is curious

since the spanwise corre~atiorn in a planar boundary layer is positive. The authors suggest that the

negative correlation may be a result of the splitting of a sweep of fluid around the cylinder pushing

low-speed fluid ahead of it and resulting low-speed and high-speed flow 900 apart from each other. As

would be expected, velocities at probes separated by 900 are better correlated than velocities at probes

on opposite sides of the cylinder (separated by 1800). The velocities appear correlated over distances

of at least 13 diameters suggesting that high- and low-speed lumps of fluid travel in adjacent parallel

paths. The advection velocity determined from the cross-correlations was nearly the same as the local

mean velocity.

Finally, VITA event detection on the velocity at the probes positioned near the wall (y...8) and

probes positioned further frormi the wall (y+-77) was used to determine the relationship between in ier

and outer events. Regardless of whether an upstream event occurs near the wall or a short distance

from the wall, it seems to be a precursor to downstream evernts suggesting an interaction between the

outer flow and the flow near the wall.

4.3 FLOW VISUALIZATION

Flow visualization of a cylindrical boundary layer has been accomplished by moving a flexible

cylinder axially through a quiescent fluid. Lueptow and Haritonidis 3 1 used a system in which a very long S

O-ring moved around four pulleys located at the ormers of a rectangular frame. One of the pulleys was

driven by a dc motor. The frame was lowered into a tank of water so that the bottom two pulleys and the

portion ei the 0-ringj eiwee~i Theh were submer•ed. A "hydrogeni bubble" wire was pos;itionaed

perpendicular to and just above the O-ring as it moved through the tank of water (&a=24). In spite of

the buoyancy of the bubbles, groups of bubbles were occasiona!ly carried by the turbulence below the

O-ring as shown in figure 11. The frequency of these events is of the same order of magnitude as the

frequency of VITA events in which the fluid is decelerating in the streamvwise direction. The authors

point out that this type of turbulent transport is quite different from that of a planar boundary layer where

the motion of large-scale structures is constrained by the wall. As 5/a becomes large, these zoherent

structures can travel from one side of the cylinder to the other with relative ease.

Other researchers have used birefringent liquids to observe the flow field surrounding moiuing P

filaments. Gebart and Hornfeldt 8 7 studied annular flow in a pipe with a nylon filament at the centerline of
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the pipe acting as a moving inner boundary condition. The relationship of their results to a cylindrical

boundary layer are difficult to ascertain because of the outer pipe wall boundary condition. Sakiadis 8 6

provides one photo of the flow field surrounding a moving thread, but it appears that the flow pictured is

laminar.

47



TR 8389

NObl G-Ring-
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Fig, irz I i. •llktfhac ntf tho hJlntinn nf I mrma .4Ztn ir-h irar- in n e'"Mlndrii-nl Rnt inr~irv I _Ivor

[Upper: Side view of a aylinder (a long O-ring) moving to the right through quiescent water. A wire jLust[

above the cylinder and perpendicular to the plane of the paper generates bubbles. Lower: End view of

a cylinder (O-ring) moving out of the plane of the paper. A wire just above the cylinder and in the plane

of the paper generates bubbles. In both cases the sketches indicate a sequence of four positions of a

small group of bubbles as the turbulent fluctuations carry them below the cylinder (positions 1 and 4 are -i

labeled). Note that gravity is downward in the sketches, so the turbulent transport carries the bubbles in -

a direction opposite to their buoyancy, The dashed lines indicates the approximate edge of the _

boundary layer. Sketches are based on flow visualization by Lueptow74 for a+=30, R,2:600, 8/a=20,_.-

time between positions=0,5 seconds.]
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5- SUMMARY

A description of the boundary layer on a cylinder in axial flow has evolved over the past 30 years

of research on the subject, but t' ', oresent understanding of the flow lags behind that of other

wall-bounded flows. This is a consequence of the difficulty brought about by the introduction of an

additional length scale, the transverse curvature.

In the viscous sublayer, the transverse curvature results in an equation for the mean velocity

that is different from the planar law, although it approaches the planar law as the radius of the cylinder

increases (equation 2-3). Away from the wall the effect of transverse curvature becomes pronounced as

the mean velocity profile becomes fuller. When plotted in planar wall coordinates this appears as a log

law relationship with the slope of the logarithmic region decreasing as the transverse curvature

decreases. Yet the parameter of interest, the transverse curvature, is precisely the most troublesome

parameter of the flow. The appropriate scaling for the wall-normal coordinate has not been clearly

defined.

Like scaling laws, appropriate nondimer-sional parameters remain elusive. Although several

nondimensional parameters were suggested early in this paper, the evidence supporting one over the

others is weak. The radius Reynolds number , Ra, has already been shown to be the least appropriate

nondimensional pararnater, since it omits any effect due to varying wall shear stresses or integral

thicknesses at different axial positions. For this reason a+ appears to be an attractive parameter, but

Lueptow et al. 1 0 point out that a wide range of mean velocity profile data collapse better with 8/a than _

with a+. Both &8a and a+ suffer from the difficulty that measurements of the boundary must be made to

determine these parameters. This is similar to the problem of using the momentum thickness instead of

the streamwise position for the length scale in the Reynolds number for a planar boundary layer -- the

momentum thickness length scale requires making a measurement. The laminar cylindrical boundary

layer parameter, ý, overcomes this deficiency. Except for Denli and Landweber, 8 employment of this

parameter has been minimal so its usefulness is uncertain,

More certain is the wake-like character of a boundary layer on a very small cylinder. Denli and S

candweber8 describe it best. "it the boundary-layer thickness relative to the transverse radius of

curvature is large, the cylinder may be considered as a small vorticity, and turbulence-producing

disturbance. Consequently, the flow might be considered similar to a wake flow with the modified inner

boundary condition. The important difference is that the drag generating the wake is a function of the

longitudinal coordinate..." Luxton et al.9 describe a cylindrical boundary layer further as a "continuously

49

_-



TR 8389

regenerated wake." The wake-like character of a cylindrical boundary layer is clear, but the existence of

an cuter wake law is subject to debate as discussed earlier.

Although the outer flow is wake-like, the wall acts to continuously convert mean flow energy

into turbulent energy at the wall of the cylinder. In fact, a cylindrical boundary layer is very effective at

this conversion of energy as evidenced by a higher coefficient of friction for a cylindrical boundary layer

than for a planar boundary layer at the same Reynolds number. Detection of the burst cycle (VITA and

uv-quadrant detection schemes) as well as measurements of the turbulence intensity indicate that the

mechanism for the generation of turbulence is similar in cylindrical and planar boundary layers.3 1 This

mechanism is the burst cycle 8 5 where low-speed fluid intermittently lifts up from the wall resulting in an

unstable shear layer that violently breaks up generating turbulent velocity fluctuations followed by a

sweep of fluid toward the wall.

Willmarth et al.1 2 recall a proposal for a mechanism for the cyclic occurence of bursts in a

planar boundary layer that suggests that the pressure fields resulting from large eddies passing over

the sublayer produce a massaging action in a localized region that intermittently results in a burst. Since

the convection velocity in a cyiindricai boundary iayer is the samue s ior 6 piatir bO•utidary iii Spiiti ol iihe

1ullness' of the cylindrical profile, the time scale of the massaging action is similar in a cylindrical

boundary layer. Lueptow and Haritonidis 3 1 support the existence of this massaging action as

evidenced by flow visualization of large scale coherent structures and velocity correlations between

probes near the wall and further out in the boundary layer. They suggest that the outer fluid "may wash

over the cylinder precipitating events on the sides of the cylinder." Luxton et al. 9 note that these

washes of outer fluid may sweep away the inner layer maintaining vorticity in the layer very efficiently.

Since the mixing in a cylindrical boundary layer is controlled by the inertia of the large eddies rather than

by viscous effects associated with the wall, the profile of the mean velocity, Reynolds stress, and

intermittency are altered from those of a planar boundary layer.
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6. FUFTHEH RESEARCH

As evident throughout this report, the character of cylindrical bouncdary layers is poorly

understood in comparison to p;anar boundary layers. Several potentially productive areas of research

ar3 outlined below.

MEASUREMENT OF MEAl I VELOCITY PROFILES

- Mean velocity data are needed over a wider range of conditions.

In spite of the large number of measurements of the mean velocity profile, a definitive scaling

law is elusive. This is a result of inference of scaling laws from poor experimental data and a lack o!

adequate theoretical models. For the most part, though, more experimental data over a wide range of

experrnental conditions is necessary. For instance, the dalita of Willrnarth et al. 12 appears to cover a

very wide range of nondimensional prrameters. But th- variailon in parameters was achieved by the

variation of the cylinder diameter and, to some extent, the free stream velocity. The strearnwise location

of the measurement for a given cylinder wae not an independent variable. Ideally, mean velocity profile

measurements should be made while varying the cylinder diameter (a), the free stream velocity (UJ, and

the strearnwise measurement location (x). As Wi!lmarth et al. 1 2 point out, "...experiments should be

designed to provide sufficient data conceming the effects of transverse cuvatur3 to allow a complete

empirical formulation of the mean flow field. This was possible in the two-dimensional [planar] only after

sufficient data and understanding had a&cumulated." Further analysis of the prosent!y available data

may also be helpful.

- WALL SHEAR STRES-S
Diotma~uei rrm arof the ýoertcient of1 fri~inn

"The skin fnl~tion in a cylindrical boundary layer continues to be an unresolved issue. Sincae

Richmond's work7 no attempts at the direct measurement of the coefficient of friction have been made.

It seems likely that tecnnological advances since then may permit such measurements.

-- Compilatior uf drag measurernen.r

Many, measurements have been made on the drag of cylinders and fibers. These results could

be compiled in a useful format to provide insignt for an -,-pirical relation for the skin friction on a ,ylinder.

51 _,.



TR 8389

- Fluctuating wall shear stress

No measurements of the fluctuating wall shear stress on a cylinder have bec•i made.

Measurements using hot film shear stress probes should be made on cylinders of different diameters

under varying flow conditions to fill this void.

- Drag reduction

Techniques for drag reduction, such as large eddy break-up devices, streamwise riblets, or

microbubble injection, could be tested in a cylindrical boundary layer. The cylindrical geometry has the

added advantage of eliminating edge effects that are present in a planar boundary layer experiment.

MEASUREMENT OF TURBULENT QUANTITIES

-- Measurements of the Reynolds stress, turbulence intensity, and velocity spectra

Measurements of the turbulent quantities. in the boundary layer 3re more scarce than

measurements of the mean velocity profile. Aside from measurement difficulties, the stveamrwise and

wall-normal turbulence intensities as weii as the Reynoids stress have been measured over oniy a very

limited range of parameters. Extending thgse measurements over a wider rarnge of parameters should

provide needed insight into the character of a cylindrical boundary layer

-- Wall p'essure fluctuations for &a>4

Wall pressure fluctuations have only been measured for relatively large cylinders. Using

miniature hearing aid microphones the wall pressure could be measured for much smaller cylinders.

Arrays ot microphones could be used to map contours of constant wall pressure correlations and to

measure the low wavenumbor portion of the wall pressure spectrum.

* FLOW NOISE REDUCTION

-- Techniques for reduction of low frequency velocity fluctuations 31

Lohman 41 noted a redcl'Ction in the kinetic energy of the velocity fluctuations at low wave-

numbers when the bOLndary lay,ýr was eyposed to a local transverse motion (8/a=0.2). This suggests

that further inlvestigation of a method for the reduction of wall pressure fluctuations based on local

transverse motion of the wall may be worthwhile.
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STRUCTURE OF TURBULENCE

- Flow visualization to character outer structures

Flow visualization of cylinders of different diameters moving through a tank of quiescent water

may provide the details of the burst cycle and the effect of outer eddies on the generation of turbulence

at the wall for cases where the boundary layer thickness is much Greater than the cylinder radius.

- Space-time correlations of velocity to characterize coherent structures

Measurements of the space-time correlations of velocity and wall pressure for cylinders of

different diameters may provide an understanding of coherent structures in the flow field. Further event

detection measurements including thl, measurement of the correlation between wall pressure events

and velocity events may be helpful in providing insight into the wall pressure spectrum and its

relationship to the burst cycle.

MODELING OF CYLINDRICtL BOUNDARY LAYERS

-- Enhanced models of the integral thicknesses arid skin friction

Past predictive models of the coefficient of friction have been barid on very crude models of

the boundary layer profile. These modelr, .,iuld be improved and enhanced based on recent

experimental data. Extension of these techniques to rough surfaces may be useful.

- Dird_ cormn.der simi.latiorn of a cylindrical boundary layer

Advances in computational fluid dynamics may permit the direct computational simulation of a

turbulent boundary layer on a cylinder. The turbulent boundary layer on a flat plate has been

successfully modeled at a Reynolds number based on momentum thickness of up to 1410.89 Similar

techniques could be used for a cylindrical boundary layer. Commercially available computational fluid

dynamics codes run on a supercomputer may provide useful first-order approximations to the flow.

• NON-AXlSYMMETRIC BODIES

-- Effect of oval cross-section on a turbulent boundary layer

I5
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While most of the work described above has emphasized the boundary layer that develops on

a cylinder, transverse curvature that is not axisymmetric has not been studied. For instance, the radius

of transverse curvature at the ends of the major axis of a long, oval cross-section body will be much less

than that at the ends of the minor axis. This may allow the isolation of the effects of the outer flow on the

generation of turbulence from the effects of transverse curvature, since large-scale stnictures cannot

pass as easily from one side of the oval cross-section body to the other side.

I

I
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