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AN ANALYSIS OF REDUCED HESSIAN METHODS FOR
CONSTRAINED OPTIMIZATION

by
Richard H. Byrd and Jorge Nocedal

ABSTRACT
= Ths decameit 57Ans

gramming for equality constrained optimization. The method uses a backtracking
line search, and updates an approximation to the reduced Hessian of the Lagrangian
by means of the BFGS formula. Two merit functioné)are considered for the line
seach: the ¢; function and the Fletcher exact penalty function. We give conditions
under which local and superlinear convergence is obtained, and also prove a global
convergence result. The analysis allows the initial reduced Hessian approximation
to be any positive definite matrix, and does not assume that the iterates converge,
or that the matrices are bounded. The effects of @ second order correction step,
a watchdog procedure and of }he choice of null space basis ate considered. This
work can been seen as an extension of the well known results of Powell (1976) for
unconstrained optimization to reduced Hessian methods. \/k 2 )

Key words. constrained optimization, reduced Hessian methods, quasi-Newton meth-
ods, successive quadratic programming, nonlinear programming

AMS(MOS) subject classification. 65, 49

1. Introduction.

In this paper we analyze reduced Hessian successive quadratic programming methods for
solving the equality constrained optimization problem

g /@

(1.1)
subject to ¢(z) = 0,




where f: R® — R, and ¢ : R® — Rt are smooth nonlinear functions. These methods.
which we also refer to as reduced Hessian methods, generate at z4 a search direction by
solving the quadratic program

1
H T T T
dréur}l glze) d + 2—d ZiBiZpd

(1.2)
subject to ¢(zi) + A(zx)Td = 0,

where g is the gradient of f, A(z) = [Ve1(z), ..., Vey(z)] is the n x t matrix of constraint
gradients, Zi is a matrix whose columns form an orthonormal basis for the null space of
A(zx)T, and By is a matrix that approximates the reduced Hessian of the Lagrangian
function. The new iterate is given by

Ti41 = Tk + aidy,

where the steplength oy is chosen to force progress towards the solution of (1.1). Our
goal in this paper is to develop some practical convergence results for reduced Hessian
methods in which Bj is updated by the BFGS formula and the initial matrix Bg is an
arbitrary positive definite matrix.

Reduced Hessian methods are a special case of successive quadratic programming
(SQP) methods, which are based on the subproblem

1
H T T
drenm g(.’tk) d+ 2d Mkd

(1.3)
subject to c(zx) + A(zx)Td = 0.

Specifically, problem (1.2) is equivalent to a problem of the form (1.3) with M, =
ZyBiZT. The general equality constrained quadratic program (1.3) is equivalent to
a problem of the form (1.2) if and only if ZT M A(z4) = 0.

Solving problem (1.1) by iterative solution of (1.3) is an old idea since, if M; =
V2. L(z, A¢) and A; is the multiplier vector of the quadratic program at iteration k — 1.
this is equivalent to Newton’s method on the Kuhn-Tucker conditions for (1.1). An
alternative is to try to make M, a secant approximation to the Hessian of the Lagrangian,
using a positive definite secant update such as BFGS or DFP. That is, M, would be
updated so that My, 3x = §i, where §; = zi41 — 2k, and §i is some vector approximately
equal to V2_L(zk,Ak)3k, such as V L(zk41, k) — VL(zk, Ak). This idea cannot be
carried out in a straightforward fashion since the Hessian of the Lagrangian at a solution
of (1.1) is not necessarily positive definite. Several approaches have been proposed for
coping with this difficulty, and reduced Hessian SQP is one of these. Before discussing
reduced Hessian methods, we briefly mention some other approaches which instead solve
a problem of the form (1.3) with My an n X n positive definite matrix.




An early proposal is to update M so as to approximate the Hessian of the augmented
Lagrangian, V2 _L(zk, Ac) + pAcAL, which is positive definite near the solution if the
scalar p is chosen sufficiently large. This was analyzed by Han (1976), Tapia (1977). and
Glad (1979), who showed that if a sufficiently large value of the augmentation parameter is
used, and if 2o and My are good enough approximations to the solution and to the Hessian
of the augmented Lagrangian, respectively, then the iterates converge Q-superlinearly to
the solution. A different approach, due to Powell, is to update the matrix only part way
so that Mis18k = 09k + (1 — 0) M3k, where 8 € [0, 1] is chosen to preserve a degree of
positive definiteness. Powell (1978) proves that if {zx} converges to the solution, and
if the sequences {||My}|} and {|{(ZTMiZi)~!||} are bounded, then the convergence rate
is R-superlinear. The same result is proved by Fenyes (1987) for his updating scheme.
which preserves positive definiteness only of ZT M, Z,. Boggs and Tolle (1985) suggest
that M, simply be left unchanged in cases when updating would cause a loss of positive
definiteness. They prove that if {zi} converges to the solution Q-linearly, and if the
directions produced by the algorithm converge sufficiently fast to the null space of the
constraint derivatives, then {zx} converges Q-superlinearly.

The reduced Hessian approach is motivated by the fact that near the solution
ZTV2 L(zk, Ak)Zk is usually positive definite, and thus it is reasonable to approximate
this matrix using a positive definite update formula. In this case the matrix B, of (1.2)
would be updated so that Bx4i8x = yi, where s, = Z,;T(zk“ — z¢) and y; is a secant
approximation to Z7 V2_L(zk, Ax)Zksk. The approach also has the advantage that, when
n —t is small relative to n, the Hessian approximation that needs to be stored is smaller.
Reduced Hessian updating methods have been proposed by Murray and Wright (1978).
Gabay (1982), Gilbert (1987), Coleman and Conn (1984), and Nocedal and Overton
(1985). For the last two approaches, their proposers prove that if zg and By are good
enough approximations to the solution and to the reduced Hessian of the Lagrangian,
respectively, then the iterates converge 2-step Q-superlinearly to the solution. These two
approaches differ primarily in the choice of yx; that of Coleman and Conn is more costly
in function evaluations, but is probably more robust than that of Nocedal and Overton
(which is closer to the first two approaches mentioned). Actually, Coleman and Conn
consider two versions of their algorithm; here we are referring to the version that uses
only one constraint evaluation in the step computation. We also note that Fontecilla
(1988) proposes a full Hessian method analogous to the algorithm of Coleman and Conn
and proves a similar convergence result.

Most of these methods work reasonably well in most cases, but none of them is
regarded as completely satisfactory in theory or in practice (see Powell (1987)). Note
that all the above mentioned analyses either assume a good initial approximation to the
solution and to the Hessian of the Lagrangian at the solution, or they assume that the op
iterates converge and that the Hessian approximations are bounded in some way. We
regard these assumptions as undesirable since it is not known when they will be satisfied
in practice. The objective of this work is to develop a convergence theory for reduced
Hessian successive quadratic programming that only assumes of the matrices that the
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initial one is positive definite, and does not assume that the iterates converge. Since
we are making no assumptions on By or on the convergence of the iterates, there is no
guarantee that z; + di is closer to the solution z, than zj is. In practice a line search
is usually relied on to force progress towards the solution. This is done by using a merit
function (z), and by computing the steplength a; so that ((zx + akdy) is significantly
less than @(z).

We will analyze a procedure of this type and show that, under certain conditions.
if z; is within a neighborhood of z. this decrease in the merit function will force {z.}
to converge to z, R-linearly, whereupon known results will imply that the convergence
is superlinear. Thus our work will be somewhat analogous to the well known paper of
Powell (1976) on the convergence of the BFGS method with inexact line search for a
convex objective function. We have chosen to consider reduced Hessian approaches here
primarily because the issues we are interested in are simpler to deal with than for full
Hessian approaches. Also for simplicity we have chosen to analyze an updating strategy
like that of Coleman and Conn, but many of our results can probably be extended to the
more complex Nocedal and Overton strategy.

The algorithm to be studied is defined in Section 2, and the methods for updating
By and for performing the line search are laid out precisely. We consider two merit
functions, the ¢; function proposed as a merit function in Han (1977), and the Fletcher
(1970), (1973) exact penalty function.

In Section 3 general results of Byrd and Nocedal (1987) on the BFGS update are
used to show that, if an adequate line search is done, then the merit function is decreased
significantly for at least a fraction of iterates. This fact is then used to prove a somewhat
weak global convergence result. The effect of choice of the weight in the merit function
is taken into consideration.

In Section 4 we consider the local behavior of the algorithm near a point satisfying
the standard strong sufficiency conditions. We prove that, once the algorithm gets close
enough to such a point it will converge R-linearly. The convergence results here and in
Section 3 are somewhat more satisfactory for the ¢; merit function than for the Fletcher
function.

In Section 5 we study superlinear convergence. We consider the effect of the choice
of null space basis Z; on convergence rate, and look for conditions under which the
algorithm takes unit steplenghts near the solution. This is not a problem for the Fletcher
function, but for the ¢; function the algorithm needs to be modified. We consider two
modifications, the correction step and the watchdog technique, and show that they allow
for unit steplenghts near the solution, which ensures a two-step Q-superlinear rate of
convergence.

Notation. The Lagrangian function will be defined by

L(z,)\) = f(2) + ATe(2), (1.4)
and we denote the reduced Hessian of the Lagrangian by G, i.e.
Gi = Z V3, L(zk M) Zk. (1.3)
4




Throughout the paper ||-|| denotes the I vector norm or the corresponding induced matrix
norm. When using the l; or [ norms we will indicate it explicitly by writing |i-||; or |||| x-
We recall that the [; and [, norms are duals of each other, so that ATc < |[Al[ofic]ly. A
solution of the problem (1.1) is denoted by z.. and we let ¢4 = 74 — z..

2. Reduced Hessian Methods with Line Search

Now we describe a general reduced Hessian SQP algorithm of the type discussed in
§1. We denote the merit function by ¢, and its directional derivative at z in the direction
d, by Dp(z;d). The precise form of ¢ will be discussed later.

Algorithm 2.1
The constants 7 € (0, %) and 7,7’ with 0 < 7 < 7/ < 1 are given.

(1) Set k = 1 and choose a starting point z; and a symmetric and positive definite
starting matrix B;.

(2) Compute Z; and obtain di by solving the quadratic program
1
; T -dT T4
dxenrllr}lgkd-k 3 ZyBi Z;,
subject to ¢x + Afd = 0. (2.1)

(3) Set ag = 1.
(4) Test the line search condition

e(zk + akdr) < @(zk) + nax Dp(zk; di). (2.2)

(5) If (2.2) is not satisfied, choose a new ai in [ra, 7'a] and go to (4); otherwise set

Tipr = Tk + apdy. (2.3)
(6) Compute
sk = ZF (zk41 — 20,5 (2.4)
v = ZL (Vo L(zk + arhi, Ae) — Vo L(zk, M), (2.5)
where Ax is chosen so that (2.12) is satisfied. If s, # 0 update B, using the BFGS

formula
By sks? B + ykyyL

Biyr = B ~ .
sf Bysk yT sk

(2.6)

(7) Set k:=k + 1, and go to (2).
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The solution to subproblem (2.1), which gives the step direction, may be expressed

as
de = hi + vy, (2.7)
where
hi = ~Z B ZE g, (2.8)
and
vk = —Ax[AT Ae] ek, (2.9)

give an orthogonal decomposition of di, and where gi stands for g(z), etc. The vector
vx is in the range space of A, and may be regarded as a minimum norm Newton step on
the equation ¢(z) = 0. The vector Ay lies in the null space of Af, tends to move toward
a stationary point of the Lagrangian and, to first order, leaves the value of ¢ unchanged.
Note that the approximation matrix B only affects the null space component h.

The procedure for choosing a new value of a in step (5) is not specified precisely so that
our analysis can cover a variety of line search strategies. There are several procedures,
such as a safeguarded interpolatory line search algorithm or simple multiplication by a
constant, that would give a new oy in the specified interval. Note that the line search
always reduces the steplength and thus ax < 1 for all k. This is common in successive
quadratic programming algorithms, and is due to the condition ¢(zx) + A(zx)Tdx = 0.

In the algorithm, Zj refers to an nx (n—t) matrix satisfying AT Zx = Oand ZT Z, = I.
These conditions do not specify Z, uniquely, and the iteration does depend on our choice
of Zi. It turns out, however, that the results in Sections 3 and 4 are true for any choice
of Z,, and that only to prove superlinear convergence do we need to place additional
restrictions on Zx.

Let us now discuss the choice of the vectors s, and yx needed in step (6). Since By is
meant to be an approximation to the reduced Hessian of the Lagrangian ZIV2_L(zk, M) Zx
based on information at z; and zx41, it is reasonable to define s; by (2.4), or equivalently
by

Sk = akZ{hk, (2.10)

but we could have replaced Zx by Z,4, in these expressions. The choice of y; is less
obvious. The formula we use in Algorithm 2.1 is that proposed and analyzed by Coleman

and Conn {1984). To motivate this formula for y. note from (2.10), and from the fact
that Ze ZT hi = hy, that

ZIVi Lz M) Zese = ZE[VEL(zk, Me)arhi]
~ ZT[VoL(zk + akhi, M) = Vo L(zk, Ap))-

Since we want to impose the secant condition Bry18¢ = yi it is natural to define yi by

(2.5). There are several slight variations of the formula for yx that could be used. For
example we could define

Uk = ZE (Ve L(Tht1, M) = Ve L(Thp1 = arhi, A1),

W\ 4




thereby using the most recent information available. We will only consider the definition
(2.5), but the results of this paper also hold for several of these variations.
A significantly different formula for yj is

Uk = ZE(VL(Ther, Mes1) = Ve L(zk, Aegr)]- (2.11)

Formulas of this type have been suggested by Murray and Wright (1978), Gabay (1982).
and Nocedal and Overton (1985). An advantage of using (2.11) is that it requires only
one evaluation of the derivatives of f and ¢ per iteration as opposed to two evaluations
for (2.5). However, Nocedal and Overton note that (2.11) can be subject to instability in
some cases, and in their analysis they stipulate that under certain conditions the update
be skipped. In this paper we will analyze only the choice (2.5), and leave the formulas
like (2.11), whose analysis is more complicated, for subsequent study.

There are several effective ways to estimate the Lagrange multiplier in the Hessian of
the Lagrangian. We require only that A be chosen so that

IAe = Al < nallzi = 2.l (2.12)

is satisfied for some constant v». This condition is satisfied by several formulas including

-1
Ap = — [A[Ak} Ang (2.13)
and -
A = - [AkTAk] (AT gi ~ e (2.14)

Powell (1976) has shown that the BFGS method for unconstrained minimization has
strong convergence properties if yFsi > 0 for all k, and if the sequence {yfyi/ylsc} is
uniformly bounded above. In this paper we will show that these two conditions are also
crucial in the analysis of Algorithm 2.1. The following lemma shows that the definition
(2.5) of yx ensures that these two conditions hold near the solution.

Lemma 2.1 Given an iterate zi, a step arhy and a Lagrange multiplier estimate Ag.
assume that there ezist positive constants m, M such that

milwl? < wT [Z7V2, L(z, M) Zi] w < Mjwl?, (2.15)

for all w € R, and for all z in the line segment joining z, and zi + arhx. Then

T
Yi Sk
[fsx|? zm (2.16)
and .
”yT"” < M. (2.17)
Yi Sk

| @




Proof: If we define

1
Ce = z{/o ©2_[(z4 + Taghi. Ae)drZk.

then we have from (2.5)
Uk = GiSk. (2.18)

Thus (2.16) and (2.17) can be shown to follow from (2.15).

We now consider some merit functions to be used in step (4) of the algorithm. The
first merit function used in a successive quadratic programming algorithm was the ¢,
merit function (cf. Han (1976))

dul(z) = f(z) + plle(z)l- (2.19)

Han used the #; norm of ¢(z), but other choice of norms are possible. An alternative is
the differentiable function proposed by Fletcher (1973). It is given by

2,(2) = £(2) + A@)Te() + ol (2.20)

where . _1
Mz) = - [A@)TAE)] " AYTg(@) (221)

is the least squares Lagrange multiplier estimate at z. To compute the derivative of this
merit function requires second order information, due to the term ;\(:c). However Powell
and Yuan (1986) describe a procedure that uses finite differences to approximate these
second order terms with no extra evaiuation of :\(z). In this paper we will assume, for
simplicity, that the derivative of A(z) is computed exactly.

Boggs and Tolle (1984) propose a merit function similar to (2.20), and most of our
results for the Fletcher function can be extended to their merit function, if some additional
assumptions are made. Other merit functions have been proposed by di Pillo and Grippo.
and by Schittkowski (see Powell (1987) for a review), but they will not be studied in this
paper.

It is essential that the step generated by Algorithm 2.1 define a descent direction
for the merit function ¢ used, i.e. that Dy(zs;di) < 0. Indeed, in order to establish a
linear convergence rate, that quantity must be significantly negative. Therefore, we now
calculate these directional derivatives, starting with the £; merit function. Although this
merit function is not differentiable everywhere, it does always have a one-sided directional
derivative, and for the direction di generated by Algorithm 2.1, this takes a particularly
simple form, as we now show.

From Taylor's theorem we have

Ou, (T + adi) = &y, (24)

f(ze + adi) = fi + pellc(ze + adr)lly — ueljcklh
agldk + pellck + aAl dklly + bra?||dil)?
—pxllckllrs

IA




for some positive constant b;. (Note that b, actually depends on the weight yx.) From
(2.1) we have that .4de;, == —¢k, and therefore. assuming a < 1, we have

Sun(zk + adi) = 0, (2k) < & [gfdi = mllenlls] + 026y ldill?. (2.22)
Similarly, we obtain the lower bound

Bun(Zk + adi) = ¢, (2k) 2 @ [gldk - ﬂk”ﬂr”l] - a®by||di % (2.23)

Taking limits it is therefore clear that

Do, (zkidi) = gFdi — pillek(lr- (2.24)

In order to separate out the effects on the merit function of the null space and range
space components of the step we recall the decomposition d; = hi + vk, given by (2.7)-
(2.9). By (2.9), we have

gt ve = A ex, (2.23)

where Ax = A(zx) is given by (2.21) so that
Dy, (zai di) = of hie — millerlls + A cx. (2.26)

By (2.8) g7 he = —gF Zi B;' ZT gk, and since the matrices { Bx} will be forced to be pos-
itive definite, this term is always less than or equal to zero. Therefore to ensure that d;
is a descent direction for ¢,, it is sufficient to require that ur > ||Axl|oo. Such a condi-
tion is very common when using merit functions with sequential quadratic programming
methods, and appears for example in the global analysis of Han (1977). If the sequence
{A} is bounded, then a sufficiently large u exists satisfving u > [[Ak|loo for all k. Since.
however, this value is not known in advance, at each step the weight ug > ||Ax||cc should
be chosen in such a way that it eventually becomes fixed. One way to do this is to choose
(i at each iterate as follows:

e = { - if ket 2 [ Aelloo + o (2.27)

IAklloo +2p otherwise,

where p is some positive constant. =
From now on we will assume that when the ¢, merit function ¢,, is used in Algorithm
2.1, the weight ui is chosen by (2.27). Therefore, for any zx, D¢, (z«;di) < 0. unless .
ZT gk = 0 and cx = 0, which can occur only at a stationary point of problem (1.1).
As mentioned above, one could use other norms than the ¢, norm in this merit
function. In fact, all of the results and proofs in this paper involving the merit function [ )
(2.19) remain valid if the ¢, norm is replaced with the £, norm for p € 1, x). provided
that the ¢, norm in (2.27) and elsewhere is replaced with the dual norm ;, where
;; + 5 = 1. However, we will continue to write ¢, norm for simplicity.

'®




{_REants L

"

We now consider Fletcher’s merit function (2.20). Since this function is differentiable
we have . )
o, (zk) = gk + Akde + (M) ex + vediex, (2.28)

where ;\L is the t x n matrix whose rows are the gradients of the Lagrange multiplier
estimates. Thus, using (2.1) and (2.25) we have

D&, (zxidi) = gldi — Alek + f Mdie — viellexlf?
97 he + T ALdk — villexll. (2.29)

Again, as with the ¢, merit function, the first term is non-positive. It is also clear that. for
any k, vk can be chosen large enough so that (2.29) is less than or equal to zero. However
the algorithm for choosing p is more complex than (2.27), and we defer discussion of this
issue to the next section, where we analyze the convergence of the algorithm.

3. Global Behavior of the Algorithm

We now consider the convergence properties of the reduced Hessian SQP algorithm
defined in Section 2. We will show that, for a fraction of the steps, significant decrease in
the merit function can be obtained, and that under appropriate assumptions this implies
global convergence.

Equations (2.26) and (2.29) indicate that the direction generated by the algorithm
is a descent direction for the two merit functions if u; and v; are sufficiently large and
if gThe = gf ZkZThi < 0. Therefore the null space component h; must make an acute
angle with the projection of —gi onto the null space, ~ZxZgx. In order to quantify
the decrease in the merit function obtained in a step of the algorithm, we will consider
closely this angle, which is defined by

T
- (ZkaTyk) he
NZe 2T gellllBell
- kThk
1ZT gilll| he]

since || Zc ZT gi]l = ||ZF gil|. Therefore, from (2.26) and (2.29) we have

cos 0

Doy, (zkidi) = —|| ZT gllllhel| cos B — pxllerlly + M ex, (3.2)

and
D®,, (zk;di) = —||Zng|l||hk|| cos b + c,f,‘\;cdk - v lekl]?. (3.3)

From these relations it can be seen that for hy to provide significant descent we must
require that cos §, not be too close to zero and that ki not be too small in norm. Both
these quantities depens! very strongly on the reduced Hessian approximation Bg. By

10




equation (2.8), hi is computed so that BkaThk = —Z[gk, and so by (2.10) we have that

Bisk = —arZT gi. Therefore cosf; can also be written as
T
si Bisi
cos by = kS (3.4)
sl 1| Biesll
and we have that A

NZZgkll — 1Brsill’

The following theorem, which is proved by Byrd and Nocedal (1987), establishes
bounds on these quantities that hold for a fraction of the iterates.

Theorem 3.1 Let {Bi} be generated by the BFGS formula (2.6) where, for all k > 1,
sk # 0 and

yF sk
Tor

Nyell?
¥ sk

v

m>0

IA

M.

Then, for any p € (0,1), there ezxist constants 3y, B3, 83 > 0 such that, for any k > 1, the
relations

cosd; > B (3.6)

I B;s; | .

< 120N o ¥
B2 < Tl S Ba (3.7)

hold for at least [pk] values of j € [1,k].

This theorem, which is basic for the analysis of this paper, implies that a fraction p
of the iterates with s; # 0 are such that the null space component %, gives a significant
reduction in the merit function. Later we will see that the iterates with s = 0 also
contribute significantly to the decrease in the merit fucntion. Since it will be useful to
refer easily to these two classes of iterates, we will assign a value to p and make the
following definition.

Definition 3.1 Let p of Theorem 3.1 have the value value p = %. We define J to be the
set of iterates for which (3.6) and (3.7) hold, or for whick sy = 0. We will call J the set
of “good” iterates.

This definition and Theorem 3.1 imply that, J N [1, k] contains at least [2k] iterates.

We are now ready to analyze the global behavior of the algorithm. We use the term
global because we do not explicitly assume that the iterates are near the solution, but
only make the following assumptions.




Assumptions 3.1 The sequence {z;} generated by the algorithm is contained iu a
convex set D with the following properties.

(1) The functions f : R® — R. and ¢ : R® — R! and their first and second derivatives
are uniformly bounded in norm over D.

(2) The matrix A(z) has full column rank for all z € D, and there is a constant g
such that
| A(2)[A(z)TA(z)]"Y)| < 0 (3.8)

forallz € D.

(3) Forall £ > 1 for which sk # 0 we have

T
Y%’k 5 m>o0 (3.9)
skSk
2
"1‘7”’% < M. (3.10)
k

The following lemma on the relation between ||h|| and ||ZTg||, for the good iterates,
will be useful in deriving bounds on the directional derivative of the merit functions in
the SQP direction. This lemma does not depend on the merit function used.

Lemma 3.2 Suppose that the iterates {zi} generated by Algorithm 2.1 satisfy Assump-
tions 8.1. Then for any j € J

FlzTall < ki< Z12Tal, (311
47 < ZI2Tal + 2dlle. (3.12)
Proof: Let j € J, and first assume that s; # 0. From (3.53) and (3.7), we have that for
JjeJ
51—3 < n}:}’g’!—” < [}2, (3.13)
which gives (3.11). Using (3.11), (2.9) and (3.8) we have
;112 = {1117 + llosli?
< FI2Tall + e
If s; = 0 then ZTg; = h; = 0 and the result clearly holds.
O
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3.1 The /; Merit Function

We now establish some useful results about the behavior of Algorithm 2.1 with the
¢, merit function, and use these results to establish a global convergence theorem. The
following lemma shows that all the steps d generated by Algorithm 2.1 define descent
directions for the £, merit function, and that a significant reduction in this merit function
is obtained for the good steps.

Lemma 3.3 Let the iterates {zx} be generated by Algorithm 2.1 using the ¢, merit func-
tion (2.19) with the weights chosen so that

pie 2 I Mzi)lloo + 24 (3.14)

Jor all k > 0, where p > 0. Suppose that Assumptions 3.1 are satisfied. Then for all
k>1
D, (2x; dx) < ~[|ZF gelll|Bsll cos i — plicll:, (3.15)

and there is a positive constant b, such that for all j € J
D,,(z:d;) < =bz (|27 6,11 + liesll ] (3.16)

Moreover for any value p there is a positive constant v/, such that if j € J and u; = u
then

$u(z5) = ulzi+1) 2 2 [12F G511 + lleslla ] - (3.17)

Proof: From (3.2) and (3.14) it follows immediately that (3.15) holds for all £ > 1. Now
suppose j € J. We can apply (3.11) and (3.6) to (3.15) and obtain inequality (3.16) with
b2 = min(1/Bs, ).
To consider the decrease in ¢, in one iteration, for j € J, note that the line search
enforces the condition (2.2),
bu,(2;) = by (zj+1) 2 —ne; D, (25 d;). (3.18)

It is then clear from (3.16) that (3.17) holds, provided the a; can be bounded from below.
Suppose that a; < 1, which means that (2.2) failed for a steplength a:

®u,(z; + ad;) - ¢, (z;) > naDe, (z;;d;), (3.19)
where
ra < a; (3.20)
(see step 5 of Algorithm 2.1). From (2.22) and (2.24) we have
bu, (25 + ad;) = ¢,,(2;) < aD@,,(25:d;) + &*buld; |12, (3.21)
where b; is a function of 4. Combining (3.19) and (3.21) we have
(n = 1)@Déy,(zj:d;) < &*bi|d,|° (3.22)
13




From (3.12) and the fact that ||c;]| is uniformly bounded above we have
ld? < ballZ] g1 + lleslhal, (3.23)
for b3 = max(1/8%,vdsup.¢p |le(z)]]). Combining (3.22), (3.16) and (3.23)

5 (L=mb2

b1bs (3.24)

Thus from (3.20) we conclude that the steplengths a; are bounded away from zero for
all j € J, and (3.17) holds with v;, = nb; min{1, (1 — 1)b2/(b163)}.
a
Now that we know from (3.15) that the line search can guarantee decrease in ¢ at
every iteration, and from (3.17) that ¢ decreases significantly at the good iterates, we can
prove a global convergence result for the ¢; merit function. (Actually (3.17) is stronger
than we need for global convergence but we will make full use of it in Section 4 to prove
local R-linear convergence).

Theorem 3.4 Let the sequence {z,} be generated by Algorithm 2.1 using the ¢, merit
function with weights {ux} chosen by (2.27). Suppose that Assumptions 3.1 are satisfied.
Then the weights {u,} are constant for all sufficiently large k and liminfi—oo(||Z] gi|| +
llexll) = 0.

Proof: First note that by Assumptions 3.1 and (2.21) {||A:]l} is bounded. Therefore,
since the procedure (2.27) increases i by at least p whenever it changes the weight, it
follows that there is an index ko and a value u such that for all k > ko, ux = p > || Al +p.
Now by Assumption 3.1-3 there is a set J of good iterates, and by Lemma 3.3 and the
fact that ¢,(z,) decreases at each iterate, we have that for k > kg,

it

k
bu(Zko) — Su(Zk41) Z (Su(z;) — dulzjt1))

J=ko

2> Z (¢u(3j)‘¢u(zj+l))
Jj€Jn[ko.k]

> v Y NZTgl? + ;i)
J€J0[ko,k}

By Assumption 3.1-1 ¢,(z) is bounded below for all z € D, so the sum is finite. and thus
the term inside the square brackets converges to zero. Therefore

. T,. 1) =
jedim (127 95l + llejlly) = 0. (3.25)

and since, by Theorem 3.1, J is infinite the theorem follows.
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Actually this result could have been proved with the boundedness of | f| and ||c|| in
Assumption 3.1 replaced with the assumption that ¢,, is bounded below over D for some
k, but the analysis would have been somewhat more complicated.

3.2 Fletcher’s Merit Function

Now we consider Algorithm 2.1 using Fletcher’s merit function (2.20). Even though
the analysis is similar to that with the £, merit function, we will be forced to make some
additional optimistic assumptions in order to establish convergence.

Recall the directional derivative (3.3),

D®,, (zx;di) = —|| ZT gill)|hkll cos Ok + cF Aidi — villexl®. (3.26)

In this case the weight v, appears to be playing the same role as the difference (u— (A elloo)
does in (3.2). However, since the term involving the derivative of A appears to be of
unpredictable sign, v, may have to be increased to ensure that the descent condition
holds. Considering (3.26) we see that dj is a descent direction if and only if

T Aidi — (| ZT gullll el cos b,
[lexl?

(If [lck]| = O we obtain a strong direction of descent for any choice of vk, and the analysis
that follows becomes very simple. We therefore assume that [fck]| # 0.) Condition
(3.27) certainly appears more complex than the corresponding condition (3.14) for the
¢, function. Setting that issue aside for the moment, we now show that if we choose v
to satisfy a slightly stronger condition than (3.27) we can prove a result analogous to
Lemma 3.3.

(3.27)

Lemma 3.5 Let the iterates {zx} be generated by Algorithm 3.1 using Fletcher’s merit
function (2.20) where, for all k > 1, the weights are chosen so that

llexll?

for some positive constant p. Suppose that Assumptions 3.1 are satisfied. Then for all
k > 1 we have that

T“ld LaTh
Ve > [ck 8% + 29k k]+p'='l7k+p, (3.28)

D&,,(zx;dx) < -3 ZT gelllibel] cos bk — plexl?, (3.29)
and there erists a positive constant by such that, for all j € J,
D®,,(z;:d;) < ~ba [127 g1 + lle;)?] - (3.30)
Moreover for any value v there is a constant | such that, if j € J and v; = v,
8,,(z;) ~ &, (zj41) 2 7, (127 ;1% + lles11?] - (331)
15




Proof: From (2.29) and the definition of 7

D&, (zx;di) = ygf hi + (Tk ~ vi)[exlf?, (3.32)

and using (3.28) and (3.1), equation (3.29) follows. Next, note that, for j € J, equation
(3.30) follows from (3.29) using (3.11), and (3.6).

The rest of the proof is analogous to the proof of Lemma 3.3. Since the line search
enforces the condition (2.2), it is clear from (3.30) that (3.31) holds, provided the a; can
be bounded from below. As in the proof of Lemma 3.3 we see that if a; < 1, we have
(3.19) and (3.20) for the Fletcher function. Using Taylor's theorem we see that (3.21)
also holds in this case, except that b, now stands for a constant different form the one
defined before (2.22). We therefore obtain (3.22). From (3.12) we have

;112 < bs {127 g511% + lies11?] (3.33)
for some positive constant bs. We see, from (3.22), (3.30), and (3.33), that

. (1= 77)54.

a> bibs (3.34)

Thus from (3.20) we conclude that the steplengths a; are bounded away from zero for
allje J.

0

Note that (3.28) gives a computable value, and v; could be increased if necessary. at

each iteration, to satisfy (3.28). In order to use Lemma 3.5 to prove any convergence result

we must know that eventually v, becomes fixed while still satisfying (3.28). Therefore,

by analogy with (2.27), we suggest choosing v, at each iteration by

Vi-1 if vk—1 2 Uk +
Vi = { Uk + 2p otherwise, g (3.35)

where p is some positive constant.

Note that the sequence {v;} will diverge if {Tx} is unbounded, and in that case
Lemma 3.5 cannot be used to prove convergence. Thus it is essential that the sequence
Uk be bounded. However, in contrast to ||A¢||, the quantity 7 depends on dj, and thus
By, as well as on z;, making its boundedness a difficult question. The most we are able
to say about the boundedness of 7 is contained in the following result.

Lemma 3.8 Suppose that the iterates {z} are generated by Algorithm 2.1 using Fletcher's

merit function (2.20) and that Assumptions 3.1 are satisfied. Then, there is a constant

be such that for any k,
T
Te < be| k4 1), (3.36)
- sT Bisk

and the sequence {U;} is thus uniformly bounded above for all j € J.
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Proof: By the geometric/arithmetic mean inequality,

1
T'lh 212
TSk, = pg| (e AkhE)
1, 7, 1(cFALhe)?
< ZlgTh ST
< 2|9k k +2 Ik .|

since gThx < 0. Therefore by (3.28), (2.8)-(2.10), and (3.8)

= (cfAphe)? ] 1
vy < ———+ TAL vk
[ 20gThel | Tl
Cllexll I k1)) < 1
< Y/ —_—
- [ 23’1"3 Sk + ”Ck” “ k” ”vk” “Ck“2
IAGl2 sFse

I
S B The + ol

Referring to (2.21) we note that by Assumptions 3.1-1 and 3.1-2, ||A}}| is uniformly
bounded for all z;. By (3.6) and (3.7) it follows that {7,} is bounded forall je J. O

This result is not as strong as one might hope for, since we are not able to bound
the Rayleigh quotient s{Bksk/aZsk away form zero for all k. Therefore we cannot rule
out the possibility that a subsequence of these Rayleigh quotients goes to zero in such a
way that {14} must diverge to yield a descent direction at each iteration. It is not clear
whether this is likely to be a problem in practice or not. It is interesting to note that
Powell and Yuan (1986) avoid these difficulties, when analyzing the Fletcher function. by
assuming a@ priori that || By|| and ||B; || are bounded. Under these conditions they show
that, if vx is chosen by a procedure analogous to (3.28), it will be bounded.

Therefore, to prove a global convergence theorem analogous to Theorem 3.4 we will
simply make the optimistic assumption that the sequence {7} } is bounded.

Theorem 3.7 Let the sequence {zi} be generated by Algorithm 2.1 using the Fletcher
merit function with the weights vy chosen by (3.35). Suppose that Assumptions 3.1 are
satisfied and that the sequence {7} defined by (3.28) is bounded above for all k. Then
Vi is eventually constant and iminfr_oo ()| ZF gill + Jlckl) = 0

Proof: Since the sequence {7} is bounded, the procedure (3.35) guarantees that v will
eventually be constant. By Assumptions 3.1, &, is bounded below for all z € D. Then,
using Lemma 3.5, the result follows by the same argument as in the proof of Theorem
3.4.




4. Local Convergence

Now we consider a local minimizer z. that satisfies the second order sufficiency conditions,
and show that the algorithm is locally and R-linearly convergent to it. We will make
the following assumptions in a neighborhood of z., and for the rest of the paper, these
replace Assumptions 3.1.

Assumptions 4.1 The point z. is a local minimizer for problem (1.1) at which that the
following conditions hold.

(1) The functions f : R® — R, and ¢: R® — R are three times continuously differen-
tiable in a neighborhood of z..

(2) The matrix A(z.) has full column rank. This implies that z, is 2 Karush-Kuhn-
Tucker point of (1.1), i.e. there exists a vector A. € Rt such that

VeL(za,Ad) = g(z2) + A(z)Ae = 0.

(3) Forall w € R*™*, w # 0, we have wTG.w > 0.

Note that (1) and (2) imply that there are constants ¥o, vL such that, for all z near z..
llA(z)(A(z)T A@2)]7M]| < 70, (4.1)
and for all ¢ and z near z.,
IA(z) = A2 < 7eliz - 2], (4.2)

where A(z) is given by (2.21). Also, (1) and (3) imply that for all (z, A) sufficiently near
(z.,A.), and for all w € R™Y,

m||w||? < wTG(z, \)w < M||w|?, (4.3)

for some positive constants m, M. The condition f,c € C? is only needed for Fletcher's
function; for the ¢; merit function it suffices to assume that f,c € C? and that their
Hessians are Lipschitz continuous near z..

We need to establish some results about such a local minimizer and its relationship
to the merit functions. First we note that, near z., the quantities ¢(z) and Z(z)Tg(z)
may be regarded as a measure of the error at z. This result is not new (see e.g. Powell
(1978)), but we give a proof for the sake of completeness. We recall that Z(z) stands for
any orthogonal matrix with the property A(z)TZ(z) = 0.

Lemma 4.1 If Assumptions {.1 hold, then for all z sufficiently near z.
yllz = 2.l < fle(2)l + 12(2) T g(2)l| € mallz = =, (4.4)

for some positive constants 1y, 7.
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Proof: Define the function H : R**t — R"*! by

H(.’L‘,/\) = [ sz((:')’/\) ] .

Then H(z.,A.} =0, and

2
H'(z., M) = [V,ZL(S;,T,\.) A((:)c_) ]

We note that H'(z., A.) is nonsingular, for if H'(z., A)(uT,vT)T = 0 for some u € R"
and some v € R!, then

Vi L(za,A)u + A(z.)v =0 (4.3)
A(z)Tu = 0. (4.6)

Thus uTV2,_L(z.,A.)u = 0, and by (4.6) and Assumption 4.1-3 this implies that u = 0.
Then, since A(z.) has full rank, (4.5) implies v = 0. Therefore H'(z., A.) is nonsingular.

Let || - |l denote the norm defined by ||(uT,vT)T||. = |lul| + |lv]|, for vectors in R"*¢,
and by the corresponding induced matrix norm, for (n + t) X (n + t) matrices. The
differentiability of H at (z.,A.) implies that for any € > 0,

H(z,A)~ H'(z.,A.) [ T-I. ]

Ol | IECCRE Y PEPH

e

for all (z, ) sufficiently close to (z.,A.). Since H'(z.,A.) is nonsingular, if € is taken
sufficiently small it follows that

n(lz =zl + 1A = AD) < 1H(Z, M)lle € %211z = z.]l + 1A = AdlD, (4.7)

where 74 = ||H'(ze,Ad)|le + € and 711 = 1/||H' (e, A) 7Y le — €. If we set A = A(z),
the least squares multiplier, in (4.7) then since V. L(z, A(z)) = Z(z)Z(z)Tg(z), the left
inequality in (4.4) follows immediately, and the right inequality follows from (4.2) if we
let v2 = v3(1 4+ 7).
a
Now we show that, for a fixed weight, either merit function may also be regarded as
a measure of the error.

Lemma 4.2 Suppose that Assumptions 4.1 hold at z.. Then for any u > ||A.|cc there
erist constants v3 and v4, such that for all ||z — z.|| sufficiently small

Tallz = 2al? < 6u(2) = Bu(za) S W [1Z@T g + ()] (48)

Furthermore, for any v sufficiently large there are constants vs and v¢ such that for all
|z ~ z.|| sufficiently small

wllz = 2.2 < Bu(2) - Bu(2.) < 76 [12(2)Tg(2)? + lie(2)I1] - (49)
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Proof: First we consider the Fletcher merit function. which by Assumptions 4.1 is at
least twice continuously differentiable near z.. We have

V,(z) = g(z) + Az)[Mz) + ve(2)] + M(z)Te(z)
V2P, (z.) = V2, L(zu, M) + ALN(2) + M(z)TAT + vA,AT,

By Lemma 4.1, and since V&,(z.) = 0, we have that for any € > 0 there is a constant
~g such that

8.(2) - 8(z.) < 3 (V282 +€)llz = 2.
< 16 (12 g@)I? + lle(2)?]

for all z sufficiently near z..
To establish the left inequality we define

G = V2 L(z.,A) + AN(z) + A(z.)T AT,

so that G + vA.AT = V2®,(z.). Note that ZITGZ. is positive definite. We now show
that G + vA.AT is positive definite for v sufficiently large.

Let K be an n x t matrix with full column rank such that ZTGK = 0. The span of
K could be considered as a subspace that is G conjugate to the span of Z.. Note that
the t x t matrix ATK is nonsingular, since if AT K'v = 0 for some v € R! then Kv = Z.w
for some w € R™*. But then ZTGZ.w = Z.GKv = 0, which implies that w = 0, and
sov =0.

Now consider the n X n matrix

R . TGz, 0
[ IZ('T ] [6+va.AT] (2. K] = [ z g;z KTGK 4+ okTaATK |- (410
The matrix on the right hand side is positive definite if v is greater than the smallest
cigenvalue of (KTA.)"'KTGK(ATK)~1. In this case, since the product of the three
matrices on the left side is nonsingular, the matrix [Z. K| must be nonsingular, and thus
G + vA.AT = V29, (z.) is positive definite for such v.

Since V28, (z) is continuous, there is a constant vs > 0 such that for all z in some
neighborhood of z., all eigenvalues of V2®,(z) are greater than 2vs. Therefore, since
Vo, (z.) =0,

®,(z) - ®.(2.) 2 sllz — .}

We now treat the ¢; merit function with some fixed value of 4 > ||A.||o. Consider a
neighborhood N of z, over which (4.9) holds for some v, and such that u ~ [[A(z)][e >
s = Adlloo]s and |le(z)l} € L (i = {|Aulloo) for all z € N. Then we have that for z € ¥

Bu(z) = 8,(2) = A@)Te(z) - 3ulle(@) + ulle(@)]l
2,()+ [~ 1A(@)en - el lt)l

2,(2) + 5 [~ [Adlleo] () s

v

v
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Since ¢,(z.) = ®,(z.) the left inequality of (4.8) follows from (4.9) with v5 = v35. Now

0u(2) L(z, M) + (u+ [ AdlooMlc(@)]h

L(za, A) + 11VEL(xe, Al = 2ol + (s + 1Al () -

IA A

Since L{r..A.) = ¢u(z.), the right inequality follows from (4.4), and from the bounded-
ness of ||¢(z)|| near z..
o
A consequence of this lemma is that, for a sufficiently large value of the weight. either
merit function will have a strong local minimizer at z,. We would like to use the descent
property of Algorithm 2.1 to show that z. is a point of attraction of the algorithm. To
do this we make the following assumption on the line search.

Assumption 4.2 The line search has the property that, for z; sufficiently close to z..
#((1 = 0)zi + 0z441) < (k) for all 8 € [0, 1].

This assumption is rather similar to, but weaker than, the Curry-Altman condition, and
similarly, there is no practical line search algorithm which can guarantee it absolutely.
However, it seems unlikely that it is violated close to z.. We should note that an as-
sumption of this type is needed also in the context of unconstrained optimization; see for
example §7 of Byrd, Nocedal and Yuan (1987).

Now we consider Algorithm 2.1 using the ¢; merit function and show that if an iterate
Ti gets close enough to z., with k large enough, the sequence will stay close to r. and
converge to z. R-linearly.

Theorem 4.3 Let {z} be generated by Algorithm 2.1 using the ¢, merit function (2.19).
with pp chosen by (2.27). Suppose that z. satisfies Assumptions 4.1, that Assumption
4.2 holds, and that {||A(zk)||} is bounded. Then the weight has a fized value u for all
sufficiently large k, and there is a neighborhood of z. such that if any iterate zy, falls in
that neighborhood, with ux, = u, then {zx} — z.. Furthermore

Bu(Zk+1) = Su(z.) < rk—k°[¢u(3ko) - du(z.)]; k> ko (4.11)
for some constant r < 1, and

(e
Z [z — z.|} < 00. (4.12)
k=1

Proof: By Assumptions 4.1 there exists §; > 0 such that, for all z in the neighborhood
N1 = {z:|lz - 2.]| < 6;}, Assumptions 3.1-1 and 3.1-2 are satisfied, and

1Az )l + 2 > [[Aulloo- (4.13)

Also, by choosing 6, small enough we can guarantee (as in Lemma 2.1) that, if r; and
T4y arein Ny and Mg satisfies (2.12), then Assumption 3.1-3 is satisfied.
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Now, since {||;\(zk)||°o} is bounded, the procedure (2.27) implies that for all k greater
than some value k, p; is fixed at some value u. By (4.13) and (2.27), if an iterate z4,
with k > k, occurs in N; then it must be that u > ||A.||c- For such u it follows from
Lemma 4.2 that the function ¢, has a strict local minimizer at z.. Therefore. there
exists 62 € (0, 6;) such that if |jz — z.}] < 82, the connected component of the level set
{z:¢.(2) < d.(z)} containing z. is a subset of .V; over which equation (4.8) holds.

Now Assumption 4.2 implies that if for some ko > &, ||z, — Z.]| < 62, then x4 € V)
for all k > ko, since ¢, is decreased at each step.

Thus we have that Assumptions 3.1 hold on N; for & > ko, 2nd we may identify .V,
with the set D of those assumptions, so that all of the results in Subsection 3.1 for the f;
merit function hold for k > ko. Therefore, if By, is positive definite B, remains positive
definite for all subsequent iterates, and by Theorem 3.1 there is a set of good iterates J.
From Lemma 3.3 and Lemma 4.2 we have, for all j € J, j > ko,

[

3u(25) = Bu(zjnr) 2 3,: [bu(z;) - du(z.)], (4.14)

and so

Su(2541) ~ Bu(2.) < 1 {B(2)) - dulz.)],

where r$ = 1 - <L From Lemma 3.3 we see that ¢,(Zx+1) < é.(zk) for all k, and
since J N ko, k] has at least [5(k — ko)/6] elements, we have for all k > ko

¢u(xk+l) - ¢u(3-) S rk-ko [d’u(x’to) - ¢“(2.)] .

From this relation and (4.8) we obtain

) ko o
Solze—zdl € Y Nze -zl + (167N [Bulzen) = ul(z)?
k=1 k=1

k=ko

& 1/2

< Y lme-zdi+ ¢u(1-))] 3 (e
kﬁl k:ko

< oo.

0

It is possible to strengthen this result and show that there is a neighborhood of z. such
that if any iterate lands in the neighborhood, the sequence converges to r. R-linearly.
However the analysis of this result is much more complex.

Note that the local result of Theorem 4.3 fits together well with the global analysis
of Section 3.1. If Assumptions 3.1 hold for a set D which is in addition compact then by
Theorem 3.4 the sequence {z,} will have a cluster point that is a stationary point. If this
stationary point satisfies Assumptions 4.1 then Theorem 4.3 implies that the sequence
will converge to it R-linearly.

For Fletcher's merit function one cannot show such a strong result since. as was
discussed in Section 3.2, there appear to be no assumptions on the problem that will
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guarantee {v;} is bounded. However, if we make the optimistic assumption that the
sequence {Ux} defined by (3.28) is uniformly bounded, we may prove an R-linear conver-
gence result.

Theorem 4.4 Let {zi} be generated by Algorithm 2.1 using the Fletcher merit function
(2.20), with vy chosen by (3.35). Suppose that z. satisfies Assumptions 4.1. that As-
sumption 4.2 holds, that the sequence {V\} defined by (3.28) is bounded. and that v, is
eventually large enough to satisfy the conditions of Lemma 4.2. Then the weight has a
fized value v for all sufficiently large k, and there is a neighborhood of z. such that if any
iterate rx, falls in that neighborhood, with vy, = v, then {zy} — x.. Furthermore

D, (Thy1) — Bu(za) S rFRO[D (24, — BL(2)], k> ko (4.15)
for some constant r < 1, and

3 llek — 2.l < 0. (4.16)
k=1

Proof: By the assumed boundedness of {Tx}, the procedure (3.35) guarantees that the
weight vy is equal to some fixed value v for all & sufficiently large. Since we also assume
that eventually vy becomes large enough that (4.9) holds for some constants v5 and g,
then Assumption 4.2 implies the sequence eventually stays in a neighborhood in which
Assumptions 3.1 hold. At this point Lemma 3.5 and Lemma 4.2 imply that

8, (z) — &, (2k41) > };—[@u(zk) ~ &,(z.)). (4.17)

This expression has the same form as equation (4.14) in the proof of Theorem 4.3. and
the result follows by the same argument, using equation (4.9) in place of (4.8).
]

It is interesting to note that, once R-linear convergence has been established, it follows
that || Bx]| and || B;!|| are uniformly bounded (we prove this later in Theorem 5.1). Then.
by Lemma 3.6 we have that 7) is bounded. However, we know of no way to establish
the boundedness of Uy a priori, and thus give a proof of R-linear convergence of the
algorithm using the Fletcher function without making such optimistic assumptions.

5. Superlinear Convergence

We have shown in §4 that Algorithm 2.1 is R-linearly convergent. We now investi-
gate whether superlinear convergence occurs, under the assumptions of §4. In §5.1 we
discuss the relevant properties of the null space basis and give an attainable condition
which. as we show in §5.2, implies a consistency property of By yielding two-step super-
linear convergence, if steplengths of one are eventually taken at every iteration. For the
Fletcher function this implies superlinear convergence of Algorithm 2.1, as we show in
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§5.3. However with the ¢; function steplengths of one may be impossible even very close
to the solution. In §5.4-5 we consider two modified versions of Algorithm 2.1 and show
that they both overcome this difficulty and yield two-step superlinear convergence.

5.1 Choice of null space basis.

The results of §4 only require of the matrix Zj that its columns form an orthonormal
basis for the null space of A7, i.e. that ATZ, = 0, and ZTZ, = I. However. this does
not completely specify Zj, and if the choice of null space basis changes too much from
one iterate to the next, superlinear convergence can be impeded. Byrd and Schnabel
(1986) point out that any algorithm that chooses Z; as a function of A(zx) alone will
have discontinuities at some points. Coleman and Sorensen (1984) and Gill, Murray.
Saunders, Stewart and Wright (1985) consider this issue and suggest several procedures
for computing Zx, based in part on information at previous iterates, which guarantee
that Z varies smoothly.

The approach of Coleman and Sorensen is to obtain Z; by computing a QR factoriza-
tion of A, in which the inherent arbitrary sign choices in the factorization algorithm are
made, if Ay is sufficiently close to Ax_y, the same way as they were done in computing
Zik_y from Agx_q1. If {zx} — z., then for k sufficiently large all the matrices A, will be
close enough together that the same sign choices will be made at each step. Therefore, for
the rest of the sequence we have Z, = z(Ax) where z is a smooth function of n x (n - t)
matrices in a neighborhood of A(z.). This implies that there a constant a. such that
12¢ ~ 2(2)]l € aullz - z.].

Gill, Murray, Saunders, Stewart and Wright (1985) propose applying the orthogonal
factor of the QR factorization of Ag—; to Ak, and then computing the QR factorization
of QF_, Ak to get Qi and thus Zx. They show that with this method

N Zk+1 = Zill < @llzier — zklls

for some constant a. If we consider the null space bases at two iterates z; and r;, with
j < k, we have

k=1
Z 1Zis1 — Zif|
i=j

k-1
< a z flzier = zill-

=3

(Ze = Z;|

IN

If the sequence {z} converges R-linearly, then the sum ¥ {2, ||zi41 — z.{| is finite. There-
fore, we must have that ||Z, — Z,|| — 0 as j and k go to infinity. This means that {Z;}
is a Cauchy sequence, and ‘aust thus converge to some matrix Z., which by continuity
satisfies 4(z.)TZ. = 0. Therefore for the Gill, Murray, Saunders, Stewart and Wright
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procedure, as well as for the Coleman and Sorensen procedure, there is a constant a.
such that for all &

2k - Z.|| £ a.|jzx — 2|, (5.1)
where Z. is a particular null space basis for A(z.). As weshall show the condition (5.1) is

all that is required of the null space basis to give superlinear convergence of the reduced
Hessian algorithm.

5.2 Consistency of the Matrix Approximation

Since Algorithm 2.1 approximates only the reduced Hessian G, one cannot expect
it to be 1-step Q-superlinearly convergent. (See the examples of Byrd (1985) and Yuan
(1985)). However, results of Powell (1978) show that if {zx} — =z., if ax = 1 at each
step, and if the matrices By satisfy

_ B - Gosll _, i
= -z Y (5:2)

then Algorithm 2.1 is 2-step superlinearly convergent, i.e.

|zk42 — 2.}

—0. (5.3)
lzk — .|l

In fact, Coleman and Conn (1984) prove that Algorithm 2.1, using the DFP update,
satisfies (5.2). Their arguments are based on the theory of Dennis and Moré (1977) and,
with some changes, apply to the BFGS method also. However, it is also possible to obtain
(5.2) using the techniques of Byrd and Nocedal (1987), as we now show.

Theorem 5.1 Suppose that Assumptions §.1 hold at z., and that the iterates {z;} gen-
erated by Algorithm 2.1, using any merit function, are contained in a neighborhood of z.
in which (4.1) - (4.3) hold. Furthermore assume that {zx} converges to z. R-linearly,
and that the matrices Zx satisfy (5.1). Then

lim we =0,
—+ 00

and {|| Bk||} and {||B;}||} are bounded.

Proof: If s; = 0 then wi = 0. If s # 0, then we have from (4.3) and (2.18) that y7 s > 0.
Since hg < ||zk41 — &), and since a; < 1, we have for any 7 € [0, 1] that

I(zk + Takhe) — z.|l < llekll + llzesr — zill < 2llexll + llexsalls
where ex = zx ~ z.. Using this, (2.18), (4.2) and (5.1) we have

lyw = Gasell  _ Gk ~ G.)si|
sl Vsl
amax (|lexs1]],]lexl}),

IN
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for some constant @ Due to the R-linear convergence, Y%=, |lexl| < oc. We can therefore
apply Theorem 3.2 of Byrd and Nocedal (1987) to obtain (5.2), since {[zg+1 — Zk|| 2 [[s&]]
and to conclude that {||Bi||} and {||B;!||} are bounded.
a
This theorem implies that, if ax = 1 at each step, then the sequence {z.} converges
2-step superlinearly to z.. However, it turns out that with the ¢; merit function (2.19)
even very close to r., a steplength of 1 may not satisfy the steplength condition (2.2) in
Algorithm 2.1. As pointed out in Chamberlain et. al. (1982) this “Maratos effect™ can
slow the convergence rate. To ensure that eventually ax = 1 is used at each step some
slight modifications of Algorithm 2.1 must be made, when using the ¢; merit function
. We discuss two of them, the correction step, and the watchdog technique in §5.4 and
§5.5. Before doing so we will show that these difficulties do not arise with Fletcher’s
merit function.

5.3 Fletcher’s Merit Function

Since this merit function is differentiable with a strong local minimizer at z., one can
show that for all sufficiently large &k the algorithm accepts steplengths of 1, provided the
weight v is large enough. To show this and to establish the results of the next sections it
is useful to first prove the following technical lemma about the decrease in the Lagrangian
function produced by a single step of the algorithm.

Lemma 5.2 Suppose that Assumptions 4.1 hold at z, and that the matrices Z; satisfy
(5.1). If i is sufficiently close to z., and if wi defined by (5.2) is sufficiently small, then

m
2 lhkll = Nlvell < N1ZEgrll < 2MjAkll + llvwll, (5.4)
and therefore
lldill = OCllexll)- (5.5)
Moreover, for any 1) < % there ezist constants § and 7 such that for e; and wi sufficiently
small,
L(zk + di, A¢) < Lz, Ae) + ngFhi = N ZT el + Allex] . (5.6)

Proof: Since s = a;‘ZEhk and Bisp = —akZng, we have from the definition of «;

#’G"—_fi-'ﬁ — el + ol < 127 gell < IG-IAell + wxClihell + o).

If wx is small enough, and using (4.3), we obtain (5.4). The left inequality in (5.4)
together with (2.9) and (4.1) give (5.5).
By Taylor’s theorem

N R - 1 .
Lizx + iy Ae) = L(aks M) + Ve L(za, M) Tde + 5d0VEL(z, Ak)d,
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where z = 4 +7d; forsome r € (0.1). From(2.9) and (2.21) we have that V L(z, M) T, =
0. Therefore, since the second derivatives of f and ¢ are bounded near z., we have by
(2.7) and (2.8)

L(zik +di, Ai)

IA

. 1 .
L(zk, M) + 9 he + EhZVEzL(z,,\;,)h;, + ay|lvll (2] hill + |l

L(zx, Ax) + ngfFh
—(1 = ) hFZi(Bi - G.)ZT ki + hE 2:G.ZT i)

1 3 '
+§th§zL(Z- A he + aq[[vrl|(20|Akil + [vkll),

IA

for some constant a;. From the definition of wy
ol Ze(Bi = G)ZEhill < Nhell(Whell + Nloell s,
and therefore

L(zx +die, Ae) < L(ziy M) + 198 hie + (1 = el (1Al + IlolDewr
+(1 = AT ZL[ 2TV, L(2, M) 2k - G.)ZT Ry,

~(5 = DAEVEL(z M+ arlloul2lkal) + Joel). (5.7)
Using (4.3), (5.5) and (5.1) we have

L(zk +di, M) < L(zk, M) + ngd he + (1= mllhill (Al + llvil s
1
+azllhal?lell - (5 - mlhell*m
+ay|lvell (2l el + N2ell),

for some constant a;. Thus if ||ex}| and wi are sufficiently small

. - 1.1
L(zk +di, Ax) < L(zk, Ae) + 19l hic — 5(5 = llRel*m + ay||orll (3| Al + llvel]). (5.8)

By the geometric/arithmetic mean inequality,

_ [G=-mm 6a, d
lhlliloell = 2Em=—=IIhell® - 77)mI|v1c||2]
(G-mm 3a,
< —lm;—llhklﬂ + m””k”?-

Substituting this into (5.8) we obtain

. . 1 9a?
L(zk + di, Ak) < L(ziy Ae) + gl hie - (5~ 77)"‘11”’21:”2 + (al + ‘1—21—_> lleell®.
(3 —n)m

. 1
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From (5.4) we have that [[A&l|? > g (127 gxll - lvall)? 2 gz (3I1ZF gill* ~llel|?). Using
this (2.9) and (4.3) we have

L(zk + di, A) € L(zk, Ak) + ngFhi — | ZT gell® + 4 llex]?

for some constants ¥ and 4.
O

It is interesting to note from this result that the Lagrangian is decreased. uniess the
term 9||ck||? is large. This term occurs because the point z. is not in general a local
minimizer of L(z,A.) but may be a saddle point; thus the vi component of the step
which decreases ||c(z)|| may actually increase the Lagrangian. This fact prevents the
Lagrangian from serving as a good merit function. It appears that a good merit function
must have a term which gives sufficient weight to decreases in the value of ¢(z), and it
can be seen that both merit functions considered here are equal to the Lagrangian plus
a term dependent on ||¢]|.

Looking at the Fletcher merit function in this way and using Lemma 5.2 we can prove
superlinear convergence.

Theorem 5.3 Suppose that Assumptions 4.1 hold at z., and that Algorithm 2.1, using
Fletcher’s merit function, generates a sequence {z,} which converges R-linearly to z..
Assume also that the matrices Z satisfy (5.1). Then, if for all sufficiently large k the
weight has a fized value v, which is large enough, the rate of convergence is two-step
Q-superlinear.

Proof: We only need to show that for all sufficiently large k¥ the point z44; = 74 + di
satisfies the line search condition (2.2), for Theorem 5.1 and the results of Powell (1978)
then imply (5.3).

By (5.5) we have that

llexsrll < llex + AT dil| + O(lldil1?) < asllexl?, (5.9)

for some constant a3. Using this, (2.20), (5.6), (5.5) and (2.29) we obtain

u(zret) = Llzren ) + [Lzren Ment) = Lzenn, )] + Bollenn®

L(zk, Ak) + 19 ki = 311 ZF gill? + Allekl|? +
HAksr = Axllllexsrll + Fuflcesali®

-~ T ~ T
&,(zx) - Wollexll® + 7 [gzhk +dTig e, - uucku?] — ndI3Ten +

IA

IN

mllel® = MNZTaell® + Fllcell® + agllexll®.
®,(zi) + nDPu(zi;di) - {[(% - v - Allexll® + ‘7||ZkTgkl|2} +
asnllexllilexll + aallexll®, (5.10)

IA
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for some constants a4, as. Using Lemma 4.1 and the geometric/arithmetic mean inequal-
ity (as in the proof of Lemr~a 5.2), we see that there is a constant ag such that

asnllexlllicell < asliexll® + 331128 gell,

from which one can show that, if v is sufficiently large, asn||ek|}||ck|| is less than half the
term inside the curly brackets. Also, if ||e,|| is sufficiently small, we have from Lemma 4.1
that the last term in (5.10) is less than half the term inside the curly brackets. Therefore

@, (zk41) < B(zi) + nD® (24 dk),

and the unit steplength is accepted by the algorithm.

5.4 The Second Order Correction Technique

Since the difficulty with the £, merit function is caused by the nondifferentiability of
the term [le(z)|1, a very simple measure is to add to the step a correction of the form

Wi = —Ak(AZ‘Ak)_lc(zk + dy).

This is very similar to strategies proposed by Coleman and Conn (1982), Fletcher (1982),
Gabay(1982) and Mayne and Polak (1982) to deal with this problem. The effect of this
correction step, which is normal to the constraints, is to decrease the quantity ||c(z)|| so
that it is of the order of |lex]|3. This means that the merit function will then be decreased
at the point z; + di + wi, as we will show.

We therefore consider the following variation of Algorithm 2.1.

Algorithm 5.1
The constants 7 € (0, ;-) and 7,7’ with 0 < 7 < 7/ < 1 are given.

(1) Set k = 1 and choose a starting point z; and a symmetric and positive definite
starting matrix B,.

(2) Compute di as the solution of the quadratic program (2.1)
(3) Set ag = 1.

(4) If
Ou(zk + ordy) < ¢u(zk) + nar Doy(zi; di ), (5.11)

set Zy41 = Tk + airdi and go to (8).

(3) If (5.11) does not hold and if ax < 1 go to 7.
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{6) Compute
W = —.4k(AZ'Ak)"IC(1‘k + di). (3.12)
If
Sulzi + di + wie) < Bu(zk) + nDS(zk; di) (5.13)

holds, set zx41 = zx + di + wi and go to (8); otherwise go to (7).
(7) Choose a new ay in [ray, rai] and go to (4).
(8) Update Bi using the BFGS formula (2.6).
(9) Set k:=k + 1, and go to (2).

We will show that after a finite number of iterations backtracking is never needed.
i.e. the step taken by this algorithm is either z441 = zx + di O Txy1 = 2k + di + wi,
which will imply superlinear convergence.

First we need to verify that Algorithm 5.1 is locally R-linearly convergent. This is
easy to do, because Algorithm 5.1 differs from Algorithm 2.1 only if the step is accepted
by (5.13), and this test enforces a sufficient reduction in the merit function. To show
that Theorem 4.3 applies we only need to consider an iteration such that j € J and
Tip1 = T; +d;j+ w;. From (5.13) and (3.16) we see that (3.17) holds, and the proof of
Theorem 4.3 applies without change. Therefore Algorithm 5.1 is R-linearly convergent.

Now we argue that Theorem 5.1 also holds for Algorithm 5.1. We consider an iteration
for which the second order correction is used: zx41 = zx + di + wi. Then

Hwell < flexsall + flexdl, (5.14)

due to the orthogonality of wi and di. Proceeding as in the proof of Theorem 5.1 (except
that ax = 1) we have g + Ay = Tg41 — Uk — wk, and therefore using (5.14) and (4.1)

ok + ke = .|| < Hlewsall + Follexll + Nexsall + llexl|.
The rest of the proof is identical to that of theorem 5.1. Therefore we know that for

Algorithm 5.1 condition (5.2) holds and that the matrices Bx and their inverses are
bounded.

We now show that after a finite number of iterations backtracking is never needed.

Theorem 5.4 Let Assumptions 4.1 hold at z.. If z; is sufficiently close to z. and w,
defined by (5.2), is sufficiently small

Su(zk + di + wi) < Su(zk) + DBk di)
Proof: From (5.12), (4.1) and (5.9) we have

llwell = O(llexll®)- (5.16)
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Since Vi L(zk, Ax)Twx = 0, and using (5.5), we have

L(zk + di + wi, M) = L(zk + diy Ar) V. L(zi + di + Twi, Ae) Tk
= V.L(ze, ) Twi +
O(||dx + rwi|ljwell).

= O(|lex]®), (5.17)

for some 7 € (0,1). Similarly

1
clzp +de + we) =clzp +di) + AZwk +/0 [Alzi + di + Twi) = Ag) wedr.

Since the first two terms on the right hand side cancel, we have from (5.16) and (5.3)
lle(zk + di + will = O([lexll?). (5.18)
Now
Su(Th +dk + wk) = [k +di+ wi) + Ale(zh + di + wi) + plle(ze + di + wi )|l
~Me(zi + di + wi)

L(zk + dx + wi, M) + (1 + | Melloo)lle(zk) + die + wie)|ln
L(zi + di + wi, M) + O(Jlex|®) (5.19)

Using (5.17), (5.6) and (2.26)

A A

bu(Ti + di + wi) L(zk + dk, A) + O([lexl®)

L(zk, Ae) + 19T b — T ZT gell® + Fllewll® + O(llexl[®)

S+ wlielly + AT e — pllerlls + ngfhe — 1| ZT gi)?

+illexl? + O(lex))®)

Su(z) + 1 [9F i + Mex — ullealls] + (1 - mife

=(1 = p)ullerlls = INZT gl + Sl + O(llexll®)

= éu(zk) + 7Dbu(zk; di) — (1 = n)pllerll — V2T gell® +
Fllekll? + O(llexl|®).

Assuming that |jcil| € (1 - 17)p/(2%), we have

A IA

Su(zk + di + wi) < Su(2k) + 1Du(ziid) = {3(1 — mplleills + HZT gell*} + Olllecll®)-

By (4.4), if {le|[ is sufficiently small, the last term is smaller in magnitude than the term
inside the curly brackets.
a
Now we need to show that Powell’s condition (5.2) implies 2-step Q-superlinear con-
vergence also for Algorithm 5.1. if for all large £ backtracking is not used.
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Theorem 5.5 Suppose that Assumptions 4.1 hold at x., and that Algorithm 5.1. gen-
erates a sequence {zi} which converges R-linearly to z.. Assume also that the matrices
Zi satisfy (5.1). Then the rate of convergence is two-step Q-superlinear.

Proof: Since we have shown that the matrices B, and their inverses are bounded, Theo-
rem 4.1 of Nocedal and Overton (1985) gives
lzk=-1 + di-1 = z.|| < Cillex-1l| (5.20)

for some constant Cy. Note also that by (5.9)

lle(zk-1 + di-1)ll < aallex—1][*. (5.21)

Now, if the second order correction is used at step k& — 1, by (5.16) it satisfies ||wi_ || =
O(|lex-1]|?). Therefore regardless of whether the correction step was used we have from
(5.20) and (5.21) that

llexll < O(llex-1l) (5.22)
and

llexll < O(llex—1l1*)- (5.23)
Now Lemma 6 of Powell (1978) implies that for any step on a quadratic program of the
form (2.1) at zx, under Assumptions 4.1, we have

llze + de — 2.l < O(llexll + O(lldell®) +

O Ze[G - Bi)Z{dy)
O(llexll) + OCllexll*) + O(wrlldxll)
O(llex-111*) + O(wkllex-1ll),

by (3.5), (5.22) and (5.23). If the second order correction is used at z; then by (5.16)
llwell = O(lexli?) = O(llex-1]?), so that whether a correction step is taken or nnt,

llex+1ll € O(llex-1l1?) + O(wkllex-1ll). (5.24)

Since we have shown that wy — 0, we conclude from (5.24) that

liex+ll/llex~1ll — O.

IA IA

O
It is interesting to note that, if the correction step is tried at every iteration, the result
of Byrd (1984) applies, giving a better convergence rate for the sequence {z, + di}.

Theorem 5.8 Consider a modification to Algorithm 5.1 such that, at every iteration,
wi 18 computed and if (5.13) holds then 24y = zp + di + wi. For this iteration, un-
der the conditions of Theorem 5.5, the sequence {zx + di} converges to z. one-step
Q-superlinearly, that is
Ze41 + der — 2|
[ze + di — z.||

0. {5.25)
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Proof: By Theorem 5.4, for k sufficiently large a full corrected step is taken so that
Tk+1 = Ik + di + wi. The iteration is then equivalent to Algorithm 3 discussed by
Byrd (1984) with the full Hessian approximation of that algorithm given by Z, B, Z[.
By Theorem 3.5 of that paper, since R-linear convergence implies boundedness of the
Hessian approximations, (5.25) holds .

5.5 The Watchdog Technique

To avoid the inefficiencies caused by the Maratos effect, Chamberlain et al (1982)
propose to sometimes accept the unit steplength even if this results in an increase in the
¢; merit function. They call this a “relaxed step”. However if after { steps a sufficient
reduction has not been obtained, they go back to the iterate where the relaxed step was
performed. We now describe a special case of this watchdog algorithm in which { = 1. For
simplicity we will assume that the matrix is updated at each iterate along the direction
moved to reach that iterate, even though in practice it may be preferable not to do so
at certain iterates that will be rejected. We note that an update at rj, is always done
using information from the immediately preceeding step x4 — zx. The algorithm uses
the £, merit function with the weight yx adjusted by (2.27); however in the description
that follows we omit the subscripts of u, for simplicity.

Watchdog Algorithm
The constant n € (0,}) is given.

(0) Choose a starting point z; and a symmetric and positive definite starting matrix -
By. Set k:=1and let S = {1}.

(1) Compute zx41 = Ti + di, where di is the solution of (2.1). Update B, by means
of (2.6) to obtain Byy,.

(2) Test the condition
Su(zi1) € Du(zk) + 1D Sy (k; di). (5.26)
If (5.26) holds, set k:=k+ 1, S = SU {k}, and go to (1).

(3) Compute 2442 = Tiy1 + Ak41dik41, Where diyq solves (2.1) and ag4) is such that
Su(Zrr2) < Du(Th+1) + 1Aks41 DOu(Thy1: dicsr). (5.27)
Update Byy) to get Biys.

(4) If
Hzk41) < Hzk) (5.28)
or
bu(zk+2) < Sul(zk) + nDdu(zi; dic). (5.29)
setk:=k+2,S=SuU{k},andgotol.
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(3) If 0u{Liy2) > @ (xi) compute 443 = Tk + ardk, where ai is such that
Ou(The3) £ Gulzi) + no Doy xg; die). (5.30)

If 0, (zk42) € Ou(zk), compute diy2 by solving (2.1), let Txy3 = Thg2 + appadiss.
where @y, is such that

Ou(Th43) £ Ou(Th+2) + Nak12DGu(Ths2: diy2). (5.31)
Update Biy2 to get Beys.set k:=k+3, S =SuU {k}, and go to 1.

The set S is not required by the algorithm and is introduced only to facilitate the
analysis. It identifies the iterates for which a sufficient merit function reduction was
obtained. Note that »¢ least one third of the iterates have their indices in S.

For this algorithm it is possible to establish the R-linear convergence of the iterates
in 5, that is the set of iterates that satisfy a sufficient decrease condition. However the
Watchdog Algorithm updates By at every iteration, and in order to conclude that wy — 0
we must have that

xR

Z |Ze+1 — Zal| < <.

k=0
where the sum is taken over all the iterates. It appears to be possible that when By is
updated in step (1) at a point z¢4+; that fails the test (5.26), 24| may be much farther
from the solution than zi, so that updating along d; will move B,,, away from the true
Hessian. To avoid this difficulty and ensure R-linear convergence of all the iterates we

now change the algorithm so that a point zx4, that fails to satisfy (5.26) is accepted only
if it satisfies

NZE i gkerll + llersall < 201 2T gill + llek])), (5.32)

where the factor 2 is an arbitrary parameter. Otherwise, we do a line search and revoke

the update of step (2). In the Watchdog Algorithm this amounts to adding the following
after step (2).

(2a) If (5.26) does not hold, and (5.32) is not satisfied then compute o such that
Su(zk + ady) < 0,(2k) + 1D, (zk; dy), (5.33)
update By to get Biyy, set x4y = 2k + adi, k:= k+ 1,5 = Su {k}, and go to 1.

For this modified algorithm we are able to prove R-linear convergence of the entire
sequence.

Lemma 5.7 Let {z,} be gencrated by the Watchdog Algorithm using the additional step

(2a). Suppose that z. satisfies Assumptions {.1, and that for all k greater than some
inder ko, the weight p, has constant value u and the iterates z, are contained in a
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neighborhood of . for which Lemma 4.2, and (4.1)-(4.3) hold. Then {z\} — z.. and
there erists r < 1 and ag such that for any k > kg

Ou(zk) = Bu(z.) < agrh=Fo (5.34)
Therefore
0
Y- ekt — 7]l < o0, (5.35)
k=0
and wr — 0.

Proof: Let § = {l,12,...}. From (5.26), (5.29), (5.30) and (5.31) we see that for any
{; > 0 there is an integer j; such that 1 < 7; < {; = l;_1 < 3, and such that

¢#(Il|) S ¢I‘(zlu'jl) + TIOD¢“(II._J'. ; d‘l_jl )’ (5'36)
where a is a steplength computed by the algorithm. We also see that the inequality
Bu(z1,-j,) < Bu(zy,_,) (5.37)

holds for j;.

Now suppose I;~ j; € J so that (3.16) holds. Either & = 1 or a backtracking linesearch
was done along dy,_;, to determine a, and in either case the arguments in the proof of
Lemma 3.3 together with (5.36) imply that

bu(21,) < dulzi-5) = YU 2T 9= 5117 + ller,-j . (5.38)
for some constant ¥/. Now (5.38) together with (4.8) and then (5.37) imply

¢u(zf.) - d’u(z-) < r§[¢,.(zl,_,',) - 45“(2.)]
< rdBu(zi_y) ~ Gulea)] (5.39)

where r3 = 1 — 3’% < 1. Theorem 3.1 implies that J N [1,k] contains at least 2k iterates.

that is (1, k] contains at most £ elements not in J. Therefore |SNJN[1, k]| > |SN[1.k]|— £
The structure of the watchdog procedure implies that & < |§ N [1,k]| so that

SAJTN[LE]|> %[Sn (1, K]].

Therefore (5.39) holds for at least half of the elements in §, and since {d,(z;,)} is a
decreasing sequence, we have that

bul(zk) = Bu(z2) < 1571 Bu(21) - Du(2.)] (5.40)

holds for all k € S.
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show this we divide the iterates into three groups: (i) S: (ii) §; = {k¢ S: k-1€ S}
{iii) S7. the set of indices of the remaining iterates; (note thatif kK € S; then k-1 € S;).
Now if k € S. we have from (5.40) that (5.34) holds. If k£ € S; is large enough. we have
from (4.8). (5.32). (4.4), again (4.8) and (5.40)

F Now we will show that step (2a) ensures that (5.34) holds for all the iterates. To

ou(zk) = 6u(z.) < 1l ZE gill® + llerll]
< 2%1ZE 1 gk-1|] + llex=1]l1)
< 27472||ek-1l]
2947 L
< J“v_z(éy(zk 1) = du(2))3
< 2\‘;‘%2 T(¢u(11 wu(z-))% (3.41)

so that (5.34) is satisfied for r > /7o and ag > L ro You(zy) - ou(z.))%. Ifhes,

then o,(zk) < &u(zk-1) and k-, € Sy, which gives (5 34) for some r less than 1.
We obtain 3224 l|zk+1 — Z.]| < oo as in the proof of Theorem 4.3. The condition
w% — 0 is proved as in Theorem 5.1.

a

Theorem 5.8 Let Assumptions 4.1 hold at z. and assume that the sequence {zs} gen-
erated the Watchdog Algorithm converges R-linearly to z.. Then for all sufficiently large
k the steplength is a) = 1, and the rate of convergence is 2-step Q-superlinear.

Proof: Consider an iterate z; at step (1) of the Watchdog Algorithm. The algorithm
then sets r41 = z + di, and if zx4 satisfies the sufficient decrease condition in step
(2). then it is accepted and the algorithm goes back to step (1). Thus in this case the
algorithm loops using a; = 1.

Let us now assume that the sufficient decrease condition is not satisfied at zx,;. We
will show that, if e; and wx are sufficiently small, then z,,; will satisfy the test (5.32).
We then show that the line search, which will be made in step (3), will set a = 1. and
then in step (4) either (5.28) or (5.29) will be satisfied. Thus 2441 and z47 will both be
accepted with steplengths of 1.

To do this we first note that, since {A\¢} is bounded. there is a constant 7 such that
4+ [[Aklloo < 7. Also, since di is generated by (2.1). we apply Lemma 5.2 to obtain

Ou(zks1) = L1, M) + pllckstlls = Al ekt
< L(zi Ae) + 9 he = TN ZT gill® + #llexll® + Fllcksalln
= fe+ Mex+n[ofhe + Mex ~ pllexlls] - 3N 2T axll® + 3llexli®
+npllexlls = nATex + Allexs1lh
< du(zk) + nDou(zki di) = A ZT gill + Allek]?
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+(1-1n) [;\ch - ,U”Ck”]] + Fllersrlls

< Gulzi) + nDou(ziidi) — INZT gl + Fllexl] = o(1 = m)]llekllx
+4 ekl

Thus for k large enough we have
Ou(The1) € Gu(zk) + 1DSu(zri di) = TN ZE gell? = Lo(1 = millenlls + Fllensall.  (5.42)
Since we assume that the sufficient decrease condition failed from z, to rz41.
Ou(Ths1) > Su(zk) + NDSu(z1: dic),
which together with (5.42) implies
= HNZE gell® ~ $o(1 = mlells + Fllerslls > 0. (5.43)
Using (5.9) this implies there exists a constant vs such that
llekll < ¥sllexlf? (5.44)

whenever rr4+; does not satisfy (5.26). Now Lemma 6 of Powell (1978) implies that for
any step on a quadratic program of the form (2.1), under Assumptions 4.1, we have

iz + di = 2.1l < O([lexll) + O([ldil|®) + O(wilidkl}), (5.45)

which together with (5.5) and (5.44) implies that

lleksll < O(llexl]®) + O(willexll). (5.46)

when (5.26) is not satisfied. Since, by Lemma 4.1 ||e|| and ||ZT gx|| + [[ck|| are of the
same order, this relation implies that (5.32) will be satisfied for sufficiently large &. since
«ie — 0.

Now we must show that the step length in the direction dgy; will be one. which
happens if

Su(Zra1 + dis1) € Ou(Thyr) + 1D Ths1; digr). (5.47)
To do this apply (5.42) to the step from zi4q tO Tiy1 + disr:

Gu(Tirr +dig1) < u(zxt1) + 1DG(Thsri dicr1) — T 2L, gxm |1
=001 = Mllekslly + He(zer1 + div1)h- (5.48)

Now note that by (5.9) and (5.46)

fe(zerr + dis)ll € O(llens1l®) < Ollel*(llexll + wi)?). (5.49)
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Note also that by (5.43) and Lemma 4.1

L .=
lekerll > = [312F el + 31 = mlel] 2 asilecl®. (5.50)

for some constant ag. Together, (5.49) and (5.50) imply that the sum of the last three
terms in (5.48) is negative, and (5.47) follows.
Now we consider step (4) of the algorithm. If ¢(z,41) < @(zk) then z44, is accepted
and we are finished. Otherwise, we need to show that
Ou(Trs1 + diy1) € 0ulze) + nDG( Tk di). (5.51)

Using Lemma 5.2

f(zher + disr) + Al e(zhr + ditr) + plle(zirr + disn)lln
=M e(zhs1 + dis1)

< L(zksr + kst M) + Flle(@isr + dis)lh

= L(zk, M) + [L(zkar, M) = L(zi, Ap)]

+ [L(zher + drar, M) = L(zesn, )]

+ille(zht1 + dics1)lh

L(zk, k) + nglhe — A ZT gkl? + Allell?

+ [L(xk+l +di1, Aeg1) — L(1k+l»:\k+l)}

+ [L(l'kﬂ + dis1, M) = Lo + dier, ;\k+1)J

it

Ou(Ths1 + diyr)

A

- [L(-Tkﬂ» Ae) = L(zks, ;\k+1)] + Hle(zh4r + digr )l
Applying Lemma 5.2 once more
Su(Tisr +diar) < Bu(@n) + Alex — wliexlls + 1 [oFhx + Aex — ullenlls]

~ANZT gill? + #llewll® = n(AFex ~ plickllr)
+ {UQZ+1hk+1 - ‘7||ZI¢T+19k+1|I2} + Aller+1ll?

+“;\k+1 - :\k”oo(”‘-'(l‘kﬂ + dis 1)t + leks: ) + Alle(zepr + desr)s

IA

Su(zk) + DBy (zki di) = (1 = n)(plleklly — A ex)
- Z gkli® + Allexli® + ekl

+ A = Aelloo(lle(z ks + dis1)|l + llexsrih) + Flle(zesr + disr)iin-

since both terms inside the curly brackets are non-positive. By (5.9) |lck+1]| = O(|lex]|)2.
and by (5.49) (lle(za+1 + de+1)1) = o(/lexl|?). Therefore

OulTesr + des1) € du(zi) + 1D (zkidi) = p(1 = Mlerlly = TN ZT gill® + 3 leel)?
+o(llex?) {5.52)
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For & sufficiently large, —p(1 — n)lickliy + Fllexll? < —=1p(1 = 5)||ck|l1. Therefore the sum
of the last three terms in (5.52) is negative, since by Lemma 4.1, —||Z gi||> + - }p(1 -
mleklls is of magnitude ||ek]|?. This establishes (5.51).

O

_ 6. Summary and Conclusions.

- We have studied the convergence properties of reduced Hessian successive quadratic
programming, using the updating procedure of Coleman and Conn, and a backtracking
line search. We have considered the effect of two merit functions: the ¢; and the Fletcher
functions. Our work differs from previous studies of these methods in that we have made
no assumptions about the quasi-Newton matrices other than that the initial matrix is
positive definite.

We now summarize, in general terms, the main results of this paper, considering the
¢, merit function first. In section 3 it is shown that if the iterates are contained in a
convex set in which the problem satisfies some smoothness and regularity conditions, and
in which s¢ and yj satisfy (2.16) and (2.17) then liminfx—oo((|Z7 gkl + |Ick]l) = O.

The local results proved in section 4 are somewhat stronger. If a local minimizer
is a regular point satisfying the second order sufficiency conditions and if {”;\(.‘tk)“} is
bounded, then there is a neighborhood of the minimizer such that if an iterate z; lands
in that neighborhood with k sufficiently large, the sequence converges to that minimizer
R-linearly. The assumption that {||A(z4)||} is bounded is stronger than we would like.
but follows from a regularity assumption on the constraints and thus meshes well with
the global theory.

To obtain a superlinear rate of convergence we first impose some conditions on the
choice of the null space basis Zx, which are fairly easy to enforce in practice. Then.
due to the difficulties associated with the Maratos effect, we are forced to make some
modifications to the algorithm in section 5. Use of either modification ensures that
steplengths of one are taken near the solution, but requires some extra cost in terms of
function evaluations. One is to add a second order correction step to the iteration and
the other is a variant of the watchdog technique. We show that both modifications retain
the original local and global convergence properties and guarantee two-step Q-superlinear
convergence. In addition we show that if the second order correction is in effect at every
step, the sequence z, + di converges one-step Q-superlinearly.

For reduced Hessian methods using the Fletcher merit function similar global and local
properties are proved in Sections 3 and 4, but only by making additional assumptions on
the boundedness of B;'. These a priori assumptions on the behavior of the algorithm
are needed to guarantee the boundedness of the merit function weights, and the need
for them makes the convergence theory in sections 3 and 4 significantly weaker for this
merit function than for the ¢, function. However, in section 5 we show that when the
Fletcher function is used, no modifications are necessary to ensure steplengths of one. It
is then easy to show, under the same conditions on the null space basis, that the rate of
convergence is two-step superlinear.

39




We believe that this paper, at least in the local and superlinear sections. provides a
realistic and informative analysis of the behavior of reduced Hessian successive quadratic
programming in a practical implementation. We think that similar analysis should be
possible when the update studied by Nocedal and Overton is used. and we hope that it
will prove possible to analyze full Hessian SQP in a similar fashion.
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