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SUMMARY

Load spectra for the Australian fleet of Caribow transport aircraft are presented and compared with
the ESDU 69028 (discrete gust) model and the US MILSPEC 8861A (power spectral} model.

The gust load spectra are best predicted by the US MILSPEC model. The most frequent maroexvre
{oads are well predicted by the ESDU model, although the rarer, high amplitude, monoeyvre loads occur
more [requently than that model predicts.
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\\ INTRODUCTION

In the early 1960’s the Royal Australian Air Force ordered 25 Caribou I aircraft
from the Canadian de Havilland Company. These aircraft came into service in 1964,
and at the present time 21 of these aircraft are still on the register.

The aircraft were all fitted with M1946 fatigue meters (Mk11), and these
meters are, in general, read at the end of each flight.

Since the beginning of March 1975 these fatigue meter data have been entered
into a computer, and the present report is based on an analysis of the computerised
data base extending from 3 March 1975 to 25 August 1984. This period includes data
from just over 100 000 hours of flying - a very large data base - so the results have
sufficient significance to distinguish between different gust load prediction methods.ﬁ

2. FATIGUE METER COUNTS J

In Appendix 1 an outline is given of the format of the fatigue meter data
records, and of the checks which were applied to them. The main results are shown
numerically in Tables Al to A5, and graphically in the corresponding Figures 1 to 5.
These tables and figures show the load spectra measured by the fatigue meters when
the records are classified according to:

1. Calendar year

2. Calendar month

3.  Geographic area

4.  Type of flying mission

5. Individual aircraft
INOTE: Tables A3 and A4 also show the meanings of’ the area and mission codes.}
3. SPECIAL FACTORS

> Of the various types of flying missions, type 4 (Display) is clearly more severe
than all other types. At the two highest "g" levels, the loading frequencies are,
respectively, 20 and 30 times the corresponding average frequencies for all types of
flying. a disproportionate amount of "display” flying occurs near the home base of
Richmond;~ this might distort any geographic variation in the occurrence of
turbulence wlhch we might seek to infer from the data. However, Table A6 shows
that no more than 0.8% of the time in any area (including Richmond) is spent on
display flying. Even though display flying is, at the extreme, 20 or 30 times as
severe as the rest, it will still only contribute 16% or 24% of the total fatigue
spectrum at Richmond. Moreover, the area to area variation in the contribution of
display flying is about half this, because in almost all areas display flying occupies at
least 0.4% of the time. . il

N due i, ,:(}(‘)

A more significant factor is the amount of "General Flying" (Mission Code 1)
done in the various areas. Table A6 shows that "General Flying” accounts for nearly
50% of the flying from Richmond but only about 10% of the flying in other areas.
Apparently, general flying includes training, a large part of which will involve touch
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and go practice which implies low level flying and a corresponding high exposure to
turbulence. Accordingly, it is not surprising that the Richmond area (Code 1) has one
of the most severe load spectra on both the "above 1g" (manoeuvre dominated) side,
and the "below 1g" (turbulence dominated) side.

4. DISCUSSION

At least part of the scatter between the various curves on each graph is due to
the random nature of flight loading. The higher the quantity of data on which a
curve is based, the smaller will be the scatter. The usual measure of variability is
the standard deviation, which, for most common probability distributions, is inversely
proportional to the square root of the amount of data involved. Thus, less scatter is
expected for curves based on more flying hours. Also, less scatter is expected for
the inner (near "1g") sections of the load spectra than for the outer sections where
the number of exceedances per hour is much smaller.

An idea of the intrinsic random scatter can be obtained from Figure 1 and
Table Al which show, year by year, the average spectrum for the whole fleet. On
the right hand (manoeuvre dominated) side, the spectra for 1975 and 1976 are clearly
lower than for all subsequent years. It is likely that there is a determinable reason
for this, as the left hand (or turbulence dominated) side shows no such difference.
For all later years there is no regular pattern. This is remarkable because military
aircraft usually show a pattern of increasing severity with time, as new flying
techniques are introduced. (It is possible that the apparent increase after 1976
represents such an introduction of a new flying technique.)

The scatter in the post 1976 flying covers a range of about 1 to 1.5 from least
to greatest, at the 0.05 g and 1.95 g levels.

A corresponding amount of random scatter is seen in Figure 5 and Table A5
which show variations from aircraft to aircraft. The scatter is greater than in
Figure 1, covering a range of about 1 to 2 from least to greatest at the 1.95 g level.
However, since there is about half the number of flying hours to each aircraft in
Figure 5 that there is for each calendar year in Figure 1, this increased scatter is
about the expected magnitude. (i.e. Scatter in Fig 5 = v2 x scatter in Fig 1.)

The month to month scatter in Figure 2 is considerably greater than the scatter
in Figures 1 or 5, so there is clearly a seasonal variation in spectral severity. (The
evidence for this is reinforced by the high correlation between adjacent months.)
This scatter is almost certainly due to the seasonal variation in turbulence
occurrence because the scatter at the 1.55 g and 1.95 g levels (where manoeuvres
will make a significant contribution) is rather less than the scatter at 0.45 g and 0.05
g which are expected to be dominated by turbulence. Turbulence is strongest in
spring and early summer (September - January) with a maximum in October, and
least severe in autumn and early winter (April ~ July) with a minimum in June and
July. On the left hand side of the spectra, the turbulence encountered in the most
severe mont? is generally 3 or 4 times as severe as that in the least severe month.
Higgs (1961)" found similar variations for two DC-6 aircraft in scheduled passenger
service flying, and so did Bruce and Hooke (1961)2 for ten Viscount aircraft.

The geographic variations in Figure 3 also seem to be significant because the
scatter is greater than the year to year scatter in Figure 1, despite the fact that the
amount of time spent flying in most regions is rather higher than the time flown by
the entire fleet in one calendar year.




The most severe regions for turbulence are:
1. Richmond
7. S.A. and South W.A.
while the least severe regions are:
2. Papua and New Guinea
4. South Queensland and North NSW

The fact that Richmond is amongst the most severe, whilst its surrounding region,
South Queensland and North NSW is one of the least severe, emphasises the point
made earlier that the actual types of flying carried out in the different regions are a
significant factor in the turbulence experienced. Rather more flying around
Richmond is at low level than in regions involving long sorties.

The load spectra for the different types of flying indicate that display flying
(type 4) involves a large number of manoeuvres giving high loads at all levels, but
most noticeably at the loads of 1.55 g and above. For the other types of flying, only
types 1, 3 and 6 have enough data to indicate significaant differences. For loads
below 1 g, where turbulence is expected to dominate, Army support (type 6) is most
severe - presumably because of its high percentage of low level flying. General
flying (type 1) is of intermediate severity, and cruising flight (type 3) is of least
severity.

For loads above 1 g, where manoeuvres are significant, general flying is most
severe, army support is intermediate, and cruising flight is least severe.

5. COMPARISON WITH EXPECTED TURBULENCE SPECTRA

The RAAF (Borysewicz, 1986)3 has estimated the fraction of time spent at
various altitude/airspeed combinations for each of the different types of flying
mission into which the fatigue meter data is classified. From these estimates and
the relative times spent on each mission (Table A4), the flight profile shown in
Table A7 has been constructed.

From this profile, using a computer program EXCG, developed by the writer,
the flight load spectra expected according to the discrete gust procedure defined by
ESDU 69023 (1979)%, and the power spectral method defined by MILSPEC A8861A
(1971)° have been calculated. The results for these two different methods are shown
in Tables A8 and A9, and in Figures 6 and 7 respectively.

The discrete gust procedure defined by ESDU 69023 is intended to predict the
total load spectra, due to gusts and manoeuvres, experienced by a transport aircraft
in regular usage. On the other hand, the power spectral procedure, defined in
MILSPEC A8861A, is an estimate of turbulence loading only: the manoeuvre loading
has to be estimated separately and added.

The left hand sides of the measured load spectra (which are assumed to be
primarily due to turbulence) match fairly closely with the curves, shown in Figure 7,
which were computed by the power spectral method, but are considerably lower than
the curves, shown in Figure 6, which were computed by the discrete gust method of
ESDU 69023. (The differences between the 2 methods are discussed in Appendix 2.)




For the Caribou data, the MILSPEC model is the best predictor of the gust loading.
The curve of "expected exceedances” shown in each of the figures is the MILSPEC
prediction of the gust loading for the total flight profile shown in Table A7,

The right hand sides of the measured load spectra (which are assumed to be
significantly affected by manoeuvres) are fairly well estimated by the ESDU 63023
model, although the highest loads occur much more frequently than that model
predicts. This is to be expected because the Caribou, being used in a military role,
undergoes more severe manoeuvres than a normal civil transport.

6. CONCLUSIONS

The measured gust load spectra for the Australian Caribou fleet are shown in
Tables Al to A5 and, graphically, in Figures 1 to 5. In this report we have studied
how well those spectra are predicted by the ESDU 69023 data sheet, which is based
on the discrete gust theory, and by the U.S. MILSPEC 8861A, which is based on
power spectral theory.

1)  The two methods predict that very similar numbers of gusts will be encountered
in low altitude flying.

2) The two methods predict gust-to-load transfer characteristics which differ by
only about 20% in the case of the Caribou.

3) This relatively small difference in transfer characteristics results in a very
large difference in the numbers of predicted gust loads. Results of the two
methods may differ by factors in excess of 5.

4) For the Caribou, the numbers of gust loads actually experienced agree well
with the U.S. (power spectral) code: they are greatly over-estimated by the
ESDU (discrete gust) data sheet.

5) This agreement, in the case of the Caribou, does not imply that the power
spectral code is always to be preferred. In the case of the F111 the two
methods produce almost identical transfer characteristics. It is desirable to
perform further analyses for other aircraft types for which extensive gust load
data and reliable flight profiles are known.

6) At greater heights the data available when the two codes were formulated did
not include very large numbers of exceedances of the larger gust velocities.
The two codes predict exceedances which differ, in some of the more extreme
cases, by factors well over 10. Data from large volurae data banks, such as are
envisaged for the ACARS project (Sherman, 1985)° are needed to reliably
establish these gust velocity occurrence frequencies in the Australian
environment.

7)  There are strong seasonal variations in the numbers of gust loads experienced in
Australia. The maximum load frequencies, experienced in spring and early
summer may be up to 4 times the minimum load frequencies experienced in late
autumn and early winter.



APPENDIX 1
CARIBOU FATIGUE METER DATA

1. FORMAT OF COMPUTERISED FATIGUE METER RECORDS

Fatigue meter data are recorded in an 80 column format (see also RAAF,
19767) as follows:

Columns Field
1-4 Unit Identification
59 Aircraft Serial Number
[All Caribou aircraft serial numbers commence with 04 in columns
5 & 6.1
10-12 Sheet Serial Number
13 Flight Number
14-19 Date of flight in form DDMMYY [e.g. 21 May 1974 is 210574]
20-21 Fuel weight at start up in hundreds of pounds
22-24 All up weight at take-off in hundreds of pounds
26 Operation area code [See Table A3)
26 Mission code [See Table A4]
27-28 Number of landings
29 Control Code [See below]
30-44 Reserved
45-76 Acceleration counter readings. There are eight 4-digit numbers
corresponding to the eight different counters. (See below.]
77-80 Dt{ration of flight in hours. Column 79 always contains a decimal
point.
Control Codes
0 - Normal data
1 - QOut of sequence sheet, serial numbers, and flight numbers. First
set of counter readings after a calibration or change of fatigue
meter.
- Nil meter readings. {Due to faulty meter.]
- One or more fatigue meter counters has passed the maximum count
of 9999.
4 or more - Unknown anomaly has been inferred in the readings.
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Acceleration Counters
The cocking and firing levels for the eight acceleration counters are symmetric
about 1 g, as follows:
Counter Cocking (g) Firing (g)
1 -0.35 +0.45
2 +0.05 +0.55
3 +0.45 +0.75
4 +0.75 +1.05
5 +1.25 +0.95
6 +1.55 +1.25
7 +1.95 +1.45
8 +2.35 +1.55
2. CHECKING THE DATA
The RAAF data entry program involved various compatibility checks. All
checks mentioned here are additional to the RAAF’s own checking procedure. Since
the counters are cumulative, the numbers of acceleration counts during each flight
are obtained by subtracting the counter readings at the end of the flight from those
at the end of the previous flight. The data from any flight were rejected if:
(a) the control code for that flight was not equal to 0 or 3, or
®) the number of acceleration counts at any level was negative, or ~

(<) the number of acceleration counts at any level exceeded a maximum
allowable value for that level. For the eight acceleration levels the
maximum allowable values were, respectively, 100, 500, 1000, 5000,
5000, 1000, 500, 100.




APPENDIX 2

GUST LOAD MODELS

1. DIFFERENCES BETWEEN GUST LOAD PREDICTION MODELS

Table A10 shows the numbers of gust loads predicted for the Caribou aircraft
at various heights by using both the "discrete gust” and the "power spectral” methods
of computation. In general, there are considerable differences between the results
of the two methods. The MILSPEC A8861A (power spectral) method has been shown,
in the body of this report, to be a much better predictor of the-gust loading
experienced by the Caribou fleet than the ESDU 69023 (discrete gust) method.
However, the fact that there is such a big difference between the two prediction
methods when applied to the Caribou_is surprising in view of the fact that
calculations for the F111 (Sherman, 19878) showed the two methods to produce very
similar results (at least for an altitude of 500 ft and a Mach Number of 0.75).

In comparing the two models, we may distinguish three parts to the problem:
(a) The estimation of frequency of gusts of various severity, and
(b) the estimation of the response of the aircraft, and

(c) resulting from (a) and (b), the estimation of frequency of loads of various
severity.

In this study, the "load” we have considered is the vertical acceleration at the centre
of gravity.

2. ESTIMATION OF FREQUENCY OF GUSTS AT 500 ft ALTITUDE

At an altitude of 500 ft both methods give fairly similar estimates for the
frequency of vertical gusts. Figure 8 shows the ratio, R, of the number of gust
velocity exceedances estimated by the power spectral method, to the number of gust
velocity exceedances estimated by the discrete gust method. Because the ESDU
discrete gust method includes manoeuvres also, and because these manoeuvres induce
primarily positive loads (upgusts), the ratio R is defined so as to exclude manoeuvres:

R = *% x Power Spectral exceedances of magnitude U

Discrete gust exceedances of down gusts U

In all cases U is defined as the sea-level equivalent vertical gust magnitude.
The variation between similar curves in Figure 8 is due to the variation™ of M, with

* The N, value used for this purpose is the value appropriate for vertical
acceleration at the centre of gravity, so as to produce comparable statistics to the
derived equivalent gust of the discrete gust method. The calculations were
performed for an aircraft geometrically the same as the Caribou, but with varying
mass. Some mass parameter values are outside the range of what is possible with a
real Caribou aircraft.




the mass parameter, p . [N, is the frequency of upcrossing of the mean level (1g in
the case of load and 0 in tge case of vertical gust velocity). The mass parameter
u is given by

2 (W/S)

pCEga
where W is aircraft weight, S is the reference (wing) area, p is air density, ¢ is the
aerodynamic mean chord, g the acceleration due to gravity and a the slope of the lift
coefficient vs angle of attack graph.] However, all the curves are fairly flat and
have ordinates reasonably close to 1.6. The discrete gust method estimates greater
numbers of exceedances of the large gusts if no weather radar is fitted, but the
power spectral method makes no such allowance. Thus, as Figure 8 shows, R is a
little smaller for large gusts if there is no weather radar.

Ho=

3. ESTIMATION OF FREQUENCY OF GUSTS AT OTHER ALTITUDES

Figures 9 and 10 show values of the ratio R, for a range of altitudes, when the
discrete gust calculations are done for aircraft without weather radar (Fig 9a,b), and
for aircraft fitted with weather radar (Fig 10a,b). The big differences between
figures 9 and 10 emphasise that there appears to be a deficiency in the power
spectral model in not recognising the significance of weather radar installation. One
of the realities is, of course, that aircraft which fly above 10,000 ft are much more
likely to have weather radar than those limited to lower altitudes. In particular, the
low values of R shown in Figure 9b for altitudes of 40,000 ft and 50,000 ft are most
unlikely to be realised because aircraft flying this high are almost certain to be
fitted with weather radar. However, in general, it seems that for altitudes above
2,000 ft the power spectral code predicts vastly higher frequencies of gust loading
than does the ESDU discrete gust procedure. The higher the gust velocity the higher
the factor by which the power spectral method exceeds the discrete gust method. It
is, of course, these high gust velocities at high altitudes which occur least often, and
so are least reliably estimated from the existing datg bases. In fact, it is only the
recent work reported, for example, by Coupry (1985)” and de Jonge et al (1986)1 y
which has a sufficient data base to indicate reliable statistics for these rare gust
occurrences.

4. ESTIMATION OF AIRCRAFT RESPONSE
In the ESDU discrete gust method the vertical acceleration increment of the

aircraft, An, is proportional to the derived equivalent gust velocity Uge- The ratio
Uge/an is a function of aircraft configuration, air speed and the mass parameter

In the power spectral method, the relation between vertical acceleration
increment, An, and "true” gust velocity, Un is indicated by the parameter

A = /=1




The sea level equivalent gust velocity Ue is equal to Up multiplied by the square root
of the density ratio, so
*
o = (plp ) o
Ue o UT

Thus Ude is comparable to (but not precisely the same as)

An
%
(p/po)
A
Again, this quantity is a function of aircraft configuration, air speed, and the mass
parameter p. "
(p/po)

These two transfer characteristics, U, /An and A have
been computed for hypothetical aircraft withdt?)e same configuration and size as the
Caribou and the F111, but with varying mass. The variation with mass parameter,

u , is shown in Figure 11. The large arrow A marks the typical value of u for the
Caribou, and the arrow B marks the typical value of u for the F111. It happens that
the transfer characteristics for the F111 with a typical mass parameter are almost
identical for the discrete gust or the power spectral method. On the other hand, for
the Caribou with a typical mass parameter, the two computation methods produce
significantly different transfer characteristics.

The typical spectra shown in Figures 1 to 7 fall very steeply with increasing
load. A 20% variation in U, /An causes & 20% variation in the gust velocity
which is calculated to corresp%nd to a given load. This can lead to a variation by a
factor of 10 in the estimated frequency of occurrence of the load.

5. ESTIMATION OF FREQUENCY OF LOADS

Figure 12 shows that, for the Caribou, at a realistic mass parameter of 12.5,
the number of loads estimated by the power spectral method can be as low as 1/10
the number estimated by the discrete gust method.

On the other hand, Figure 13 shows that, for the F111 at a realistic mass
parameter of 37.5, the number of loads estimated by the two methods is the same
within a factor of about 1.5.

6. REASONS FOR DIFFERENCES

The reasons for these critical differences in transfer characteristics have been
examined by Noback (198211, He concluded that the main cause of discrepancy
between the two methods is the difference in the relation between gust velocity and
gust length in the two gust models. Implicit in this is also the ratio of aircraft chord
to gust length, as the British discrete gust method considers gusts with a fixed length
of 100 ft; the American discrete gust method considers gusts with a length of 12%
chords, and the power spectral method considers continuous turbulence in which the
ratio between long wave length component amplitudes and short wave length
component amplitudes is determined by the shape and integral scale of the
turbulence spectrum.
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7. APPLICATION TO AUSTRALIAN DATA

Sherman (1981)12 reviewed the available Australian data and concluded that it
was not incompatible with ESDU data item 69023. [That review pooled positive and
negative gusts in order to determine a value of £, ,, the distance between 10 ft/sec
gusts. The ESDU data item has been shown to be a good predictor of the inner part
of the right hand side of the Caribou spectrum which is caused by manoeuvres as well
as turbulence, and even if the left hand side of a load spectrum is in error by a factor
of 4 or 5, it will make only a small change in the value f5 £, , when it is pooled with
the larger right hand side. However, Sherman (1981)"“ also examined the ratio of
upgusts to downgusts for the Australian data. There was a large scatter in the ratio
data, but the ESDU curve fitted most of the data as well as any other curve.]

It happens then, that in the case of the Caribou aircraft, characteristics
computed by the power spectral method provide a better predictor of turbulence
loading than those computed by the discrete gust method. However, this conclusion
may not extend to all aircraft types. Cases of different aircraft types need to be
examined also.
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TABLE A6

Percentage of flying hours in each area spent on various types of flying.

Mission Area Code All
Code Areas
0 1 2 3 4 5 6 7 8 9
0 7.0 0.1 0.1 0.1 Cc.1 0 0.1 0.0 0.6 0.3 0.1
1 6.1 48.7 134 15.2 6.9 94 159 8.7 8.7 104 212
2 5.5 3.2 2.7 0.7 0.6 1.6 1.7 0.3 0.3 0.4 1.6
3 533 318 716 453 555 721 64.4 608 657 69.4 532
4 0.3 0.8 0.5 0.8 0.8 0.3 0.7 0.4 0.4 0 0.6
5 4.8 1.5 5.3 0.6 1.0 1.2 2.1 0.1 0.0 0.3 1.2
6 230 139 6.4 373 351 154 151 29.7 24.3 192 221
100 100 100 100 100 100 100 100 100 100 100




TABLE A7

Estimated time flown at different Altitude/Airspeed combinations for different
types of flying.

AR athg

Type of Altitude C.AS. Time Total
Flying ft) (Knots) Time
1 125 108 21
375 110 21
750 125 105
2000 125 10
7000 125 53 210
2 500 108 2
2000 125 3
7000 125 15 20
3 250 108 53
750 125 106
2000 125 50
7000 125 321 530
4 250 108 2
750 110 2
2000 125 1
5000 125 5 10
5 500 108 7
7000 125 3 10
6 250 110 22
750 125 66
2000 125 20
7000 125 112 220
Total Time - all types of flying 1000
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FIG. 1: YEARLY VARIATION OF LOAD SPECTRA EXPERIENCED BY

RAAF

CARIBOU AIRCRAFT.
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FIG. 2: CALENDAR MONTH (SEASONAL) VARIATION OF LOAD SPECTRA
EXPERIENCE BY RAAF CARIBOU AIRCRAFT.
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FIG. 3: GEOGRAPHIC VARIATION OF LOAD SPECTRA EXPERIENCED BY
RAAF CARIBOU AIRCRAFT.
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