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BOUNDS ON DOPPLER FREQUENCY ESTIMATION IN CORRELATED

NONSTATIONARY GAUSSIAN NOISE

INTRODUCTION

There exist many radar problems that require the detection of a signal in additive Gaussian
noise. The optimal detector for this case is the classical matched filter, which is obtained by applying
the Neyman-Pearson criteria to a binary hypothesis test 11]. For the pulsed radar problem of detect-
ing a single Doppler-shifted target echo in a given range cell, there are three unknowns in the
matched filter: the covariance matrix, the complex signal amplitude, and the target Doppler shift
present in the steering vector. One practical detector is usually implemented as follows: the covari-
ance matrix is estimated from data in nearby range cells 121; a bank of Doppler filters or steering vec-
tors is implemented so that the signal falls in one of them; finally, the magnitudes of all the Doppler
filters are found and compared to a threshold. This final step eliminates the need to know the signal
phase, and the signal magnitude is not required because the resulting test is uniformly most powerful.
Reference 3 describes a variation of this procedure.

After detection, the Doppler shift of the target and its complex magnitude is estimated. Refer-
ence 4 gives the maximum likelihood estimate (MLE) of the complex magnitude, and the present
report develops the estimation of the Doppler. The performance of the MLE of Doppler is studied
for representative cases of interest that contain Gaussian noise composed of thermal noise plus clutter
plus uncorrelated interference and a Doppler-shifted single point target. The performance of the
MLE is then compared with that of the Cramer-Rao bound.

MAXIMUM LIKELIHOOD ESTIMATE

The received signal vector X, composed of n complex samples, is given by

X =N +bW,

where N is a complex zero-mean Gaussian process with covariance R, b is the unknown complex
signal strength, and W is the steering vector. The steering vector is written in terms of A, the phase
shift from pulse to pulse, owing to Doppler as

W T = [I eiA ... ei (n - a ,

where T denotes the transpose, and j is the square root of - 1. The joint probability density of X is
then

p(X 1O) e I exp (-(X - bW)T R-I(X - bW) (1)

where 0 represents the tinknown parameters A, b, and b, and () denotes the complex conjugate.
The MLEs of A, b, and b are obtained by differentiating the likelihood density with respect to each
of these variables, setting these resulting equations equal to zero. and solving for the three variables.

Manuscript approved May 23, 1988.



LIN AND CANTRELL

The MLEs of b and b are well known 14] and are given by

b = R-'X (2)fVrR -'lW

and

X T R -W (3)j R-'W

The partial derivative of Eq. (1) with respect to A yields

(X - bW)T R- [ + R-'(X -bW)= 0. (4)

Substituting Eqs. (2) and (3) into Eq. (4) yields

(FVTR-IW) (W TR-X) [WTR-1 -±-

S R-'XJ 1 R-W)

- TR-' (W WTTR -IX) (kTR -IW)

- W' R RW (WTR-IX) (XTR-IW) = 0.

which can be reduced by using the definition of W to

t (q - k + i - 1) Ri•. RtMlRPqlei 0. (5)
i,k ,1 ,m .p .q = I

The root of this polynomial that maximizes p (X 0) in Eq. (1) is the MLE of A.

CRAMEER-RAO BOUND

The MLE is now compared to the Cramer-Rao bound [5,61. The bound on the variance of a is
obtained from the Fisher's information matrix J whose elements are

J E talnp(X,0) ralnp(X 10) (6)
2 aoj

21
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where 01 = A, 02 = b, and 03 = b; E is the expected value operator; and i and j are the indices.
By using the deneity function (Eq. (1)) and the definition (Eq. (6)), then

-a T ,a a T R
J1 1 =bb 'W R- 1W + bb -"w _] aW-8- a- R a--

J22 = WTRR-W = C,

J33 = W R -'W = C,

J b W R- W = bA,

J13 3W R -'W = ,

L7WT -a FT -W

J2= WR- 1  W = b -T R
8A

J31= bWTR-1 W -=b aWTR W bA
aA aA

and

J23 = J 32 = 0.

The matrix J can then be inverted in a closed form

F ]T

C C -bAC

I [ -bAC C1 -- bbAA b2A 2  (7)
-bC b- 2  C 111 -bbAA

where IJ I, the determinant of the matrix J, is expressed by

I J = CCJI - bbAA-C - bbAAC.

The bound on the variance of the estimate of A required by the Cramer-Rao bound is

02 C CIi (8)

which is the upper left-hand corner of the matrix given in Eq. (7).

3
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A RADAR ESTIMATION PROBLEM

The covariance matrix R, composed of the sum of three covariance matrices, is written as

R = Rc + RN + R1,

where Rc, RN, and R, are the covariance matrices of clutter, thermal noise, and interference, respec-
tively. For the examples to be studied these are given by

1 p p2  P -1I

p 2Rpc =P l p

pn -1 P n-2 P

1O0.0 0

2 O0 O1 . 0
RN a 2 . . .

0 00. 1

and

Oa 0 0 0

0 022 0 0

0 0 0 O'n

where ac, oN, and ais are the standard deviations of the clutter, thermal noise, and the ith interfer-
ence component, respectively, and p is the Markov correlation coefficient. The signal-to-noise ratio
(SNR) is defined as

SNR = bb2"
aN

The performance of the MLE is evaluated by using simulation. Random numbers are generated

according to the equation

X = NN + Nc + N, + Ib Iexp (j0) WIAa,

where W is evaluated at A = Ao, the true Doppler shift; NN, N,, and Nc are Gaussian-distributed
complex vectors; and 0 is a random phase distributed uniformly between 0 and 27r. The correlated
clutter samples are generated from the uncorrelated Gaussian random numbers given by Z using

NC = LZ,

4
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where Rc = TLT and L is a lower triangular matrix. For the 3 x 3 cases,

1 0 0
L = ac p I_ -p2 0--

p 2 plI -pZ 2

These random numbers are used in Eq. (5) to obtain the MLE of A per trial. The variance of these
n a11

estimates is then calculated by using a number of trials. The variances are normalized by -y and

are plotted vs SNR in various clutter and interference environments.

The Cramer-Rao bounds of the normalized variances can also be obtained as a function of SNR
for various cases. Equation (8) shows that the logarithm of the normalized Cramer-Rao bound is a
linear function of SNR in dB.

EXAMPLE RESULTS

The results of the MLEs for the case of n 3, p 0.999, and OC N2 = 20 dB without
interference are shown in Figs. I and 2 (in dashed lines) for A = 0.17r and A = 0.57r, respectively.
These results are very close to the Cramer-Rao bounds (the solid lines in the figures) when the SNR
is comparable to or above the clutter strength. Figures 3 through 7 show the results for the case
where n = 3, p = 0.999, ac/iN = 20 dB, and A = 0.5ir in the presence of interference. Again,
the MLE errors are tightly bounded by the Cramer-Rao bounds for SNR equal to or greater than the
stronger of the clutter and the interference when only one pulse is subject to interference (Figs. 3 and
4). As the interference is applied to more than one pulse, the required SNR for the MLE errors to be
close to the Cramer-Rao bounds is, generally, higher (Figs. 5 to 7).

Figure 8 shows the results for the case of n = 5, p = 0.999, and A = 0.5ir without interfer-
ence in the presence of clutter. The MLE errors are nearly identical to the Cramer-Rao bounds. Fig-
ure 9 shows the results for a clutter situation that has a clutter-to-noise ratio of 20 dB when interfer-
ence is applied to both the first and the second pulses. Again the two methods yield very similar
results.

SUMMARY

After detecting a radar target by use of a matched filter in the presence of clutter, thermal noise.
and uncorrelated interference, the target Doppler shift is estimated. The MLE of Doppler and the
associated Cramer-Rao bound were found for the Gaussian noise case. The estimation performance
(variance of the estimate) was found for several cases of interest. The estimates were typically near
the Cramer-Rao bound. In fact, they could be quite close even in the presence of high clutter and
interference.

5
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CRAMMER-RAO BOUND
MAXIMUM LIKELIHOOD ESTIMATE----
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Fig. I - The bounds and the maximum likelihood estimates of normalized
Doppler shift errors vs SNR for n =3. p =0.999. and A 0O.lwi
without interference in clutter



NRL REPORT 9140
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Fig. 2 - The bounds and the maximum likelihood estimates of normalized
Doppler shift errors vs SNR for n =3. p =0.999. and A =0.5vr
without interference in clutter
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Fig. 3 - The bounds and the maximum likelihood estimates of normalized
Dopplet shift errors vs SNR for n = 3, p = 0.999, a = 0.5 ,. and
ao/./o = 20 dB Nkth interference on the first pulse
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