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ABSTRACT

In this thesis, an adaptive lattice algorithm is derived for an ARMA digital lattice
filter, whose parameters are estimated using a generalized Mullis-Roberts criterion for
parameter estimation. Design of the ARMA lattice filter based on this generalized cri-
terion is studied as is the accuracy of the parameter estimation algorithm used in its de-
sign. Application of the derived lattice algorithm to system identification modeling is
demonstrated through computer simulation of various system identification problems.
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1. INTRODUCTION

Digital signal processing is a field which is rapidly expanding due to advances in
modern technology. Essential to this field are digital filters. Modeling these filters con-
stitutes much of the effort involved in digital signal processing. The filters provide a
transfer function which describes the relationship between filter input and output.
Autoregressive (AR), moving average (MA) and combination autoregressive moving
average (ARMA) models are widely used to represent the transfer function of a digital
filter. A filter transfer function is commonly described in direct form. This form is a ratio
of two polynomials, usually of the form,

B(z) bo+by 27 bz

H(z)= = 1.1
@) A(z) l+a 7+ +a:" (-0

The above equation describes an ARMA model of order (s,t) where s is the order of the
denominator and t the order of the numerator. The a, parameters form the
autoregressive portion of the ARMA model. The b, parameters form the moving average
portion of the ARMA model. If all the autoregressive parameters are zero, then the filter
transfer function H(z) is strictly a moving average process of order t. [If all the moving
average parameters are zero except for b, equal to one, then the filter transfer function

is strictlv an autoregressive process of order s.

A. OBJECTIVES OF THE THESIS

Fundamental to the design of digital filters is estimation of AR, MA or ARMA
parameters. Accurate and efficient parameter estimation has been the subject in much
of the related digital signal processing literature [Refs. 1,2,3). The first objective of this
thesis is to confirm the proposed ARMA parameter estimation algorithm of [Ref. 4: pp.
619-621], which leads to the design of a new ARMA digital lattice filter. The proposed
algorithm is a generalization of the Mullis-Roberts criterion for parameter estimation
Kknown as the modified least squares problem [Ref. 5: pp. 227-228). The algorithm uses
two recursive formula to estimate the parameters. One is an AR recursive formula which
estimates ARMA parametes as the AR order is increased by one. The other is an MA
recursive formula which estimates ARMA parameters as the MA order is increased by

one. This algorithm is unique in that it allows for the design of an ARMA model with
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arbitrary AR and MA orders with no dependency of an AR model on an MA model or
vice versa. The ARMA digital filter designed from the proposed ARMA parameter es-
timation algorithm is in the form of a lattice structure. Lattice realizations of filters are
widely used and provide excellent analysis of prediction errors [Refs. 6 : pp. 163-168,7].
Gray and Markel developed an algorithm which produces lattice realizations of filters
from the direct form [Ref. 8].

The second objective of the thesis is to make the proposed ARMA digital lattice
filter of [Ref. 4: p. 662] adaptive. An adaptive lattice filter is one in which the lattice
coeflicients are automatically adjusted by an adaptive algorithm to vield the optimum
filter design. The adaptive lattice algorithm derived in this thesis is based on the widely
used least mean square (LMS) algorithm. Adaptive filters have many applications [Ref.
9: pp. 7-31] including.

1. System identification.

2. Digital representation of speech.

3. Adaptive auotoregressive spectrum analysis.

4. Adaptive detection of a signal in noise of unknown statistics.
Echo cancellation.

Adaptive line enhancment.

N e

Adaptive beamforming.

The need for an adaptive filter is made apparent by considering a filter of fixed design
which is optimized for given input conditions. In practice, the complete range of input
conditions may not be known or could change from time to time. A filter of fixed design
would not produce optimum results under these conditions. An adaptive filter, which
vields optimum results given changing input conditions, will give superior performance
to one of fixed design.

The last objective is to analyze convergence properties of the derived adaptive lattice
algorithm. This is accomplished by computer implementation of the adaptive algorithm.
The output of a known transfer function is compared to the output of the adaptive
lattice filter given a common input. Plots of the error between the two outputs and

lattice coeflicient convergence are obtained.

B. ORGANIZATION OF THE THESIS
Chapter 11 is designed to present the ARMA parameter estimation algorithm and
ARMA digital lattice filter proposed in [Ref. 4: pp. 617-628]. Computer simulation of the

[ %]
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algonthm was performed and results are shown. A briel review of the Mullis-Roberts
criterion is provided to establish a reference for expanding this criterion to the proposed
ARMA parameter estimation algorithm. An adaptive lattice algorithm is derived in
Chapter 11T which makes the proposed ARMA digital lattice filter adaptive. The adap-
tive lattice algorithm is efficient and accurate. Chapter IV contains experimental results
which show convergence aspects of the adaptive lattice algorithm when applied to
ARMA lattice filters. Conclusions about the proposed ARMA parameter estimation
algorithm as well as the derived adaptive algorithm are discussed.




II. ARMA DIGITAL LATTICE FILTER

In this chapter, we will review the Mullis-Roberts criterion for solving linear ap-
proximation problems and introduce analysis equations of the ARMA digital lattice fil-
ter. The criterion used in the formulation of the ARMA digital lattice filter is a
generalized form of the Mullis-Roberts criterion [Ref. 5: pp. 227-228], which has been

given as a modified least mean square problem for ARMA parameter estimation.

A. MULLIS-ROBERTS CRITERION

The Mullis-Roberts criterion evolved from considering second order statistics in
conjuction with first order information about a process to obtain filter approximations.
Consider the bounded impulse response sequence h = {h, #,, ... } containing first order

information about the filter 4 having a frequency response function,

o
jeoy —jwk
H(E™) = ) hye 2.1)
k=0
Let { v, } be a zero-mean, unit-variance, white-noise sequence and { y, } be the output
process corresponding to the input { «, } , then we have the following convolutional re-

lationship given by,
5
n= ) hu 2.2
Y= Pty (2.2)
k=0

Second order information about the filter h is obtained from the autocorrclation sc-

quence { r, } given as

oD
o= Bt = ) it (2.3)

i=0
From equations (2.1) and (2.2), the second order interpolation problem is to find a
lowest order recursive filter which matches the data { h,, ..., h,. 7, ..., 7, } , Where A, re-

presents the first order information and r, the second order statistics.

N




Let us now consider the case where only first order information about a process is
known. That is, given an impulse response sequence { k, A4,, ... } , we want to find a re-

cursive filter of the form,

o0

-1 -m

: Ao +qz7 + o+ q2
| H(:) = Zh,,z ke DA Il (2.9)

i l+a;z ++a,:

k=0
which approximates H(z) and therefore the impulse response sequence { A, A,, ... } . We
. also desire the frequency response H(e»’“) to approximate the desired response H(e«).
% Suppose that I'{(e:‘“) is chosen such that it minimizes the integral squared error,

217: f _|H(<J'“’)—H(e"”)12dw = |k~ h) (2.5)

Using the Parseval relation, we can obtain an alternative definition of the approximation

Crror,

o

L f T IHE) — ) o = = AP =Z(hk—ﬁk)2 (2.6)

L

k=0

If the filters f{(z) and H(:) are driven by the same white noise source. equation (2.6}

describes the output error between the filters which we write as,

h=hi = Eg, =) = Ee) (2.

tJ
~)
—

where y, and j, are the outputs of the respective filters when driven by the same white
noise source as in (2.2). Minimizing (2.7) 1s a nonlinear programming problem requiring
the entire impulse response sequence. As a result, computational efforts for obtaining a
solution are incfficient. A modificaticn to the problem was introduced [Ref. 5: pp.
227-228] which considered a cost function that is quadratic 1n the coefficients of the re-

cursive filter given by (2.4). The modification is described as follows. Let

Q) =gy + g7+ 4 g™ (2.8)




P

Y

and

-

A@Z) = ;_\'(l + al:-l + a0 (2.9)

be the numerator and denominator polvnomials, respectively. in (2.4), where .V = max

(m.n). The task now is to find coeflicients which minimize the quadratic form,

_ ' E(e,) = ?'_- I i () A®) — Q)P dw (2.10)

This is a standard quadratic minimization problem whose integral can be expressed in

terms of the cocflicients of polvnomials A(z) and Q(z) and the data

F {hos ey Py Fou ..., 1}, Telating to the filter H(z). This problem is shown in Figure 1 and
equation (2.10) is known as the Mullis-Roberts criterion.

T " H@ ™ A@

» Q@2

Figure 1. Modified least squares problem

B. GENERALIZED MULLIS-ROBERTS CRITERION
In order to define the new criterion used for ARMA paramecter estimation we con-
sider the following transfer function with input sequence { x(k), k= 1.2, ... } and output

sequence { y(k), k= 1,2, ... } written as,

H,(z) .
H(z =7{:(—:5' _ (2.11)

IJ




x(k) u(k) y (k)
—-.l 1/Hx(z) > Hy(z) L——»

Figure 2. Equivalent input/output model

where /1(z) and H,(z) are reference polynomials which we desire to model. An equivalent
mode! is shown in Figure 2 where »(k) is an intermediate signal, and the realization is
similar to that of the direct form realization 11 [Ref. 10: p. 151]. Let the intermediate
sequence { w(k). k =1.2,... } be a zero-mean white gaussian process. The model of Fig-
ure 2 can then be transformed into the model of Figure 3 with u(k) as the common input
to both transfer functions H,(z) and H,(z).

u (k) y(Kk)
» H (@)

x (k)
— Hx (Z) P

Figure 3. Transformed model

Note that we earlier defined transfer functions I1,(z) and H,(z) as polvnomials of the

reference model. For each transfer function an estimation polynomial is defined such




that

AR =14 a:"" 4+~ +az"" estimates H({z) (2.12)

Bizy=by+ bz 4+ b7 estimates H(2) (2.13)

where ¢ and b, (i=12,..,5)and (j=1,2....,1), are the AR and MA parameters, re-

- spectively, of the combined ARMA model formed by A(z) and B(z). This refined least
% squares problem is shown in Figure 4 and is a generalized form of the Mullis-Roberts
criterion. If the reference model polynomial /() in Figure 4 is equal to unity. we obtain
the Mullis-Roberts criterion shown in Figure 1. Therefore, by including reference

polynomial H,(:), the new criterion for ARM.A parameter estimation becomes,

2 ' 'Q
E, = —;7 § |H(2)AG) = H:)B() (2.19)
u(k) y(k)
— Hy(z) —  A(2) ‘
+ e(k)
+

Lo H@ 29T 5 :

Figure 4. Refined least squares problem

Minimizing E,, is accomplished by calculating the coefficients of A(z) and B(z) which
minimize e(k)* of Figure 4. Another form of eq (2.14) is obtained by applving Parseval’s
theorem and is expressed as,

E,, = ET(A(z)y(k) = B()x(K))] (2.15)

which is obvious from Figure 4. The coefficients a, (i=1,....5), and b, G=1,..,1,
which munimize E,, can then be calculated using the normal equations for ARMA




parameter estimation. In order to obtain the normal equations for the problem in (2.15),
let us define the following:

a;,=[a..a] and b, =[b ..b] (2.16)
are the vectors of AR and MA parameters, respectively,
h (k)=L[ (k). ylk—s) —x(k)..—x(k—1)] (2.17)
is the data vector consisting of both input and output data elements and
Ry = E[hs (k)" g (k)] (2.18)
is the data autocorrelation matrix. The criterion is to minimize the mean squared error

E,=E[ W ]=E[[[1a, b b, 0] T]

(2.19)
= E[ [y(/() + [ a,, & b, Jh], ]2]

Now following the standard calculus of variation optimization procedure for minimizing

E. . [Ref. 11: pp. 100-110}, vields the normal equations in the matrix form,

[1 a;, b bs.r]R:.x= [ mnE,0 00] (2.20)

It is interesting to note that if E,, in equation (2.14) is zero, then we have the following

equality,
H:)=—r~=—7 (2.21)

so the estimate for the total reference model H(z) is the ratio of B(z), the MA part and
A(z), the AR part of an estimated ARMA model.

C. ARMA PARAMETER ESTIMATION

Now that the criterion for ARMA parameter estimation has been established, the
solution method to estimate the ARMA model parameters to minimize equation (2.14)
is considered. Let x(k) and y{k) be the input and output signals, respectively, of the es-

timated ARMA model. Using a difference equation representation, this process is de-
scribed by

"\

I\ J




5

== g stk ~+ D b x(k =) (2.22)

J=1 i=0

For these input and output signals we define four estimation, or prediction, models as
follows. The forward estimation signal for x(k) is defined as,

9
(29
[72)
~

4 5
Sky== b x(k=0)+ ) af yk—)) Q.
i=1 J=1
where bf and a* are the corresponding estimation parameters. The forward esitmation
signal for y(k) is similarly defined as,
5 !
JKy==a sk=)+ ) 8 xtk—0) (2.24)
i=1

=1

The backward estimation errors for x(k — 1) and y(k — s) are then given by,

-1 5—1

Stk =)= - Z bf x(k—i)+ Z @ yk~j) (2.25)
i=0 i=0
$=1 =1

Sk =9 == af stk=p+ )b xtk~0 (2.26)
/=0 i=0

where the superscripts g and 4 indicate the backward estimation paramcters for x and
¥, respectively.

From these estimation models, we can now obtain the four prediction errors at any
given time k. These errors are expressed as differences between the predicted value and

actual value of an input or output signal, namely,

v (k) = —x(K) + x{k) (2.27)

vy (k) = y(k) ~ JAK) (2.28)

8 k) = x(k — 1) — Xyl — 1) (2.29)
10




d, (k) = y(k — 5) = Jp(k = 3) (2.30)

We now use the vector notation to simplify the expressions for prediction errors. In the
following, the forward error elements corresponding to both x and y form a vector
v, (k), given by

volk) =T —(k) k)] =hy (k) C], (2.31)

and the backward error vectors are given by
8:.4k) == h (k) G, (2:32)
d, (k) =h, (k) D], (2.33)

where C,, and G,, and D, arc the forward estimation parameter matrix and backward
estimation parameter vectors, respectively, defined as

C 0 a .. a 1 b .. b 2.34)
L B S S N -

Gy, =[af .. &, 0 b .. b, 1] (2.35)
D, =[a .. &, 1 b .. b, 0] (2.36)

5—1

It can be shown that the prediction errors satisfv some orthogonal conditions. These
conditions are similar to those found in AR modeling problems [Ref. 6 : pp. 116-121].
We now list the orthogonality conditions for the ARMA formulation in discussion

without proof as the following:
E[ vlqk) stk=j) J=0  E[ vidk) sth=)) ]=0
E ik xtk=0 ]=0 E[ (k) xtk—d ]=0
E[g, (k—1) y(k—-]=0 (3.37)
Efg (k1) x(k—)1=0

EQd (k=1) y(k—=j)1=0

R

|, J




ECd, (k—1) x(k=i)]=0

where i=12,...,randj=1.2,..,s.

In Section B we have obtained a set of normal equations in terms of R,, and the
ARMA estimation parameters. In this section, we have defined four sets of forward and
backward estimation parameters and established some orthogonal relationships. In what
follows, we derive a set of equations which relates the coefficients of the estimated
ARMA model with those of the forward estimation parameter matrix C,,. Consider the
expected value of the forward prediction error, v, (k) and the data h, (k). Since the pre-
diction error is orthogonal to all past samples of data y(k — j), x(k — /) but not to y(k)
or x(k) as listed in (2.37), the result is a matrix which is defined as

r _faozo0 .
E[V:,I(k) h:,l(k)]—{£3 0 ¢, 0] (2.39)
where
L=-E[vhsm ] = —E[ ) ]= EF (2.39)

is the crosscorrelation between the forward prediction errors of x and y at lag zero.
&L= E[ iz ] = E[ (307 ]=E (2.40)
is the forward prediction error power of x(k)
&= E[mun )= E[ w? ]=E, (2.41)
is the forward prediction error power of j{4) and
Eo=—E[ k) x(k) ] = —E[ (k) vi(k) ] = EX (2.42)

is the crosscorrelation between the forward prediction errors of y and x at lag zero. In

another interpretation, the left hand side of equation (2.38) can be written as,

E[ v (0 b (k) ] = E[ € hy () by (k) ] = C, R, (2.43)

and we have

12




C R — E-;\:Iy 0 E:.l 0 By 44
LA S A Ey 0 Exy 0 (*- )
5.0 St

from equation (2.38).
A similar approach for both backward prediction errors vields the following

Gs, 0 Ef 0 E, .
TIR = ' ' 2.45
[D] [0 £, 0 E (249

In order to express the coeflicients of the ARMA estimation model in terms of the co-
efficients of the parameter estimation matrix C,, and parameter vectors G,, and D,, ,
consider the combination of the normal equation (2.20) and the parameter estimation
matrix and vectors. From equation (2.44) the normal equation for ARMA paramcter
estimation may be written as

0 af, 1 b}, 0 EX 0 E 0 -
12, 0, | ™ | E, 0 EY 0 (2-46)
5.0 st AN 4 5.0

Combining equation (2.46) with (2.20) we obtain

I ag, by by, Emn 0 0 0
0 ai, 1 b, R, = L;X,) 0 E;, 0 (2.47)
1 a, 0 b, E ; ;0 E; Jo

E
In equation (2.47) multiply row 2 by T— then subtract row 2 from row 3 and equate

the resuit to row 1. We then obtain the following relations

v« B ,

a,=a,—ag,; = (2.48)

S
EXY

bp= — 2.49

°T E, (2-49)
EXY

b.\',l = h:1 - b;(r —é:— (2 50)
5,0

and,

A




X ¥r2
E:,nﬁn=Ef,—£’i—) (2.51)
. . E,

Calculation of the ARMA estimation model coefficients requires knowledge of the esti-
mation parameters a:, a,, b;,, b?,, b, and the values E:, Er, E:7 . Recursive formulas
calculate the estimation parameters as the AR or MA order of the estimation model in-
creases by one. Given the parameters of the ARMA estimation model of order (s, /)
these formulas calculate the (s+ 1, 1) or (s, t+ 1) ARMA parameters. For a compre-
hensive derivation of these recursive formulae see [Ref. 4: pp. 619-621]. The AR-type
recursive formula for the forward parameter estimation matrix and backward estimation

parameter vectors is

T
CS-H.( = C:.t I, +u DS,I 9%

G = [ G;, +u, Dy, ] I (2.52)
Doy,=D, 1+ [ u; €, + 4y Gy + us Dy ] I,
where
-1
u==~(E)" [0l
d
u —Efvg.t
2= d
E;, .
y=—[7 7] Es_.:l (2.33)
(B v~ B 73)
114 = o d 2 .
[ g8y - £, 2,
US = u_; Uz
and the (s+ 1,t) prediction error powers are recursively calulated as follows
T
Eqp,=E,+u [ 1p]
e d
=Tt U1,
T (2.54)

T
Ef‘i’],l = ESd,l + [ Ty Ty ]u3 + Uty + Usty

¢  _ I8 gd
Es-!-l.t = Es,r +u, E;,

The matrices I, and I, are of dimension (s + ¢+ 2 x s+ ¢+ 3). They are introduced to
provide symmetry to the matrix algebra and preserve initial condition calculations., We

design the matrices to perform the following operations

14
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Loy @y Oggp o Oz I =L 0y 00,410 05 050y ] (2.55)
Loy 0y Qg 02 I =[ 00 0y Qw0044 ] (2.56)

The values 7, through t, can be obtained through the correlation data and forward and
backward estimation parameters. We express them mathematically as

[ry ] =E[d k-1)v, k) ]
=—Elptk—s—1)g k] (2.57)
1 =E[yk—s—1)d (k)]

The MA-type recursive formula for the forward estimation parameter matrix and back-
ward estimation parameter vectors is obtained in a similar manner. The recursive for-
mula 1s given by

Cm=C L1+ nITGs,: I
D,y =[ Dy +mG, J1 (2.58)
GS.I+1 =G, I+ [ n; C:,r +ny D+ 15 Gy, ] I

where

n=-— (Eil)_l [ 7, ]

ed
. _ES.I
’2 = s
£§,1
’ ’ —] s XY
n=-[7 v, JE; (2.39)

3 d 2
(Ex.t T’d - Es.r 7’3)

Ny = -
gd\2 -8 g
[ (Es,l ) = Es.l Ls,{
ns = Ny Ny

and the (s,t+ I) prediction error powers are calculated using the following recursive for-
mulas

T [ +
Es.l+I=E:.r+nx [Tx 72]
d , ,
EL=t3+mT,
g 2 ‘o T , , (2.60)
EL,+1=E,_,+[11 Tz]ng +nt'3+n51',

ed
E;i.z-H = Ef.r +m b;r




where I, and I, are (s + 1+ 2 X s+ ¢+ 3) dimensional matrices which we have designed
to perform the following operations

[ Wy Wopq Wepg e Woyrid ] 13 = [ Wy e Wy Wepn oon Weygryn 0 ] (2'6”
Loy 0y Oy Opprgy I =[ 00y o 05 0gpy oo @0 ] (2.62)

The values of 7', through ', are calculated using correlation data in conjunction with
current forward and backward parameter estimation values. We express these quantities

mathematically as

[ ) ) ] = -E[gs,r(k - l)vs,r(k) ]
ty==E[ x(tk—1t—1)d (k) ] (2.63)
vym ELxth—t— 1) g,4K) ]

It is interesting to note that the MA-type recursive formula is the complimentary form
of the AR-type formula and that the two are identical if the variables associated with the
input signal x(k) and the variables associated with the ouput signal y(k) are interchanged.
That is, we replace 3(«), G,, and g, (k) with —x(4), D,, and 4, (A) and vice versa.
1. Experimental Results

The ARMA parameter estimation algorithm of [Ref. 4: pp. 619-621] based on
the recursive formulas of equations (2.52) and (2.58) was implemented using the IFortran
program found in Appendix A. This program calls subroutines which compute the
ARMA model parameters as the AR order is increased by one and as the MA order is
increased by one. These subroutines are shown in Appendix B and Appendix C. respec-
tivelv. In the main program, an input data sequence of white Gaussian noise 1s passed
through a known reference model producing an ouput data sequence. We obtain
autocorrelation and crosscorrelation data from these input and output sequences. The
correlation data is used to calculate initial values of the error powers for x and y as well
as 7, through 7, and ', through 7', . Next we obtain estimates of the refcrence model by
emploving the recursive formulas (2.48) through (2.50), (2.52) and (2.58). Several refer-
ence models were estimated beginning with a strictly AR process of order s =4 having

as its transfer function

1

H(z)=
1-0227' 4062272 =0.152:"3 +0.3016 2~
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The actual values of the reference model parameters and the ARMA model parameters
which estimate this reference model are listed below

ACTUAL ESTIMATED
AR: 0.2000 0.2005831
-0.6200 -0.6207655
0.1520 0.1527565
-0.3016 -0.3020376
MA: 1.0000 1.0001306

We next consider a second reference model with MA order r=2 and AR order s =3
having transfer function

0.5-030:-"" +0.89272

H() = ~
1-0202"1—0.25:"2 400522

(2.63)

The true reference model parameters and ARMA model parameter estimates are shown

to be
ACTUAL ESTIMATED
AR: 0.2000 0.1993060
0.2500 0.24963567
-0.0300 -0.0491901
MA: 0.5000 0.5002602
-0.4000 -0.3997071
0.8900 0.8894749

A third example with MA order 1 =2 and AR order s = 4 having transfer function

1+02:71—099:72
H(z) = i -2 <y =3 R -3
1-02:2""4+0.62:-:""=-0.152z"" 4+ 0.3016:

(2.66)
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was considered for which we obtained the following actual and estimated reference

mode] parameter values

ACTLAL ESTIMATED

AR: 0.2000 0.2011803
-0.6200 -0.6223803
0.1520 0.1534197
-0.3016 -0.3036823

MA: 1.0000 0.9997638 .
0.2000 0.1998342
-0.9900 -0.9886852

We consider as a final example the reference model of AR order and MA order s = 3 and
=3, respectively, with specific transfer function

_05-095:"1 4133272097973

1+1.69:7' =0962:7°+0.2:7°

H(z) (2.67)

The actual and estimated ARMA parameters are

ACTUAL ESTIMATED
AR: -1.6900 -1.6981325
0.9620 0.9690998
-0.2000 -0.2018440
MA: 0.5000 0.4995653
-0.9500 -0.9553509
1.3300 1.3346767
-0.9790 -0.9864898

The above examples demonstrate the validity of the parameter estimation algo-
rithm of [Ref. 4: pp. 619-621]. Many reference models were estimated using this algo-
rithm, including pure MA processes, for which accurate estimates were obtained.
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D. LATTICE STRUCTURE

In section C we developed expressions for the forward and backward prediction er-

rors, namely. those of equations (2.31), (2.32) and (2.33). From these prediction error
equations we can design elementary AR, MA and ARMA lattice structures or sections.
Each elementary section satisfies the orthogonal conditions as listed in equation (2.37).
From the prediction error recursive formulae, equaticns (2.31). (2.32) and (2.33), we
construct the AR-type elementary lattice section as follows. Consider the following data

set of order (s + 1,7) consisting of input and output data elements,

hyy, (K) 1] = [y(k) o (k= 5) —x(k) ... —x(k =1+ 1) —x(k=1) ] (2.68)

by (1] = [tk = 1) ytk=s—1) —x(k—1)..—x(k—1) 0] (2.69)

where 17 and I7 are the transposes of the matrices I, and I, defined in equations (2.55)
and (2.56). We obtain a recursive relationship between the forward prediction errors
v(k) of order (s + l.r) and order (s,/) by substituting equations (2.32). (2.68) and (2.69)
in equation (2.31) such that

T
Voo dR) =hgy, (k) Coyy
=h,,, (k[ 17 ¢ +15,D] v ] (2.70)
= ‘?5,1(/") + ds.z(j" -y

The backward prediction error recursions are obtained in a similar manner and the
AR-type error recursions are

s+11”‘) :r(k)"ui‘ ds (k— 1)

SR k)= xj,(/\) + 1 d, (k~1)

& fh) = e:r — uy dg (k)

diy (R} = ( -1+ [ uy U ] vs,l(k)r‘ Us &4 1K)

where uy=[ 1y 1] and u;="TL &} ¢ J. The AR-type elementary lattice inverse section
based on these error recursions is shown in Figure 5.




e

Figure 5. AR-type elementary lattice inverse section

We design the MA-type elementary lattice inverse section in a similar manner using the

following representation of the data set of order (5.2 + 1)

o O =tk =1) 3k —s) ~x(h) .. —x(k—1+1) —xth=1)]
hy oy W1 =[athk=1) . pk=5) 0 —x(k—1) .. —x(k—1—-1)]

(2.72

- )

and by substituting equations (2.58) and (2.72) into cquation (2.31). we obtain the for-
ward prediction error recursion as the MA order is increased by one, numely,
P 4 X X ’
VoK) = v 1K) + gAk=1)
[ 4 v 14
‘—S.H-l(k) =V (k) = m gs.x(./" -1

]

(<.73)

The backward prediction error relationships are obtained in a similar manner and are

given by

ds./-#l‘-k) = ds,r(k) - g:,l(k)

. x v T (2.79)
g:,1+l(k) =gs,1(k ~1)- [ ny ] "s.t(k) -y d:,/+1(k)

The MA-type elementary lattice inverse section based on these error recursions is shown

in Figure 6.
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Figure 6. DMNlA-tvpe elementary inverse lattice section

We now construct the ARMA elementary lattice section from the AR and MA
prediction error recursions. Assuming that the prediction errors are known for a given
model order (s.t). the (s~ 1.t} prediction errors can be calculuted. These prediction errors
of order (s+ 1.ty are then updated as the MA order increases by one resulting in a pre-
diction error of order (s— L.t+ ). We consider the forward prediction error for x as the

AR order is increased by one, specifically

(k)= v Ak) =l d,  (k=1) (2.79)

x
Vigl a1

Now, 7, (k) becomes the current value of the forward prediction error for x and when

we calculate the (s+ 1.t + 1) forward prediction error we have from equation (2.73)
X . X . X . -
Vet R) =y (W) + g (k=1T1) (2.70)

Equation (2.76) can be expressed in terms of the (s.t) forward prediction errors of x by
making appropriate substitutions for 7, (k) and g,.,,(k—=1). That is, we substitute

ve,.(k) and g,.,, (kK = 1) of equation (2.71) in equation (2.76) to obtuin the (s+ 1.t+1)

forward prediction errors for x, namely,

Vi (K =1 (K = d (k=D +n [ g k=D —wpd (k=1)] (277




Grouping the terms we obtain

Venrt (K) =05 (K) = (uf + n{ ) d (k= 1)+ ni g, (k= 1) (2.78)

The forward prediction error recursion {or v of order (s+ 1,t+ 1} is obtained in a similar
manner. We begin with the (s+ I,t) order update of the prediction error and after it is
computed, update the MA order. Specifically, we have

e, (K) =0, (k) + o) dy (k= 1) (2.79)
and from equation (2.73)
Vsy+l,t+l (k) = V:—H,[ (k) ~ "{gsﬂ,z (k=1) (2.80)

Substituting (2.71) for ¥, (k) and g,,,(k — 1} in equation (2.80) then grouping terms
we obtain the (s+ 1,t + 1) forward prediction error recursion for y,

Verm (K=, (k) + (e + m w)d;, (k—1)—m g, (k=1) (2.81)

The (s+ 1.t+1) backward prediction errors for x and y are derived in a similar manner

and are given by,

Epr e K) =g, (A=1)+ ("3‘ + 1 u;) V;r (k) = (’T3v +n, V;) rsv,r (k)
Aoy a1 (k)y=d;, (k—1)— “;{ V;: (k) + “g ".:,x (k)

§

(2.82)

The ARMA elementary lattice inverse section is shown in Figure 7 where the coeflicients
are related to the prediction error recursions by the following

1 3 ; - 1 ~ X
wy = (1 + 1y uy), wzl = ny, w3l =14 +n ), wy=m (2.83)

1 x X 1 v 3 R x A ¥
Ws = (’13 + ng u_;), Wg = (”3 + hy LQ), W; = Uy, Wg=1Ih (2.84)

to
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s,t s+1,t+1
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E ds.t(k) >ds+(1k.i+1

Figure 7. ARMA elementary lattice section

We see from Figure 7 that each elementarv ARMA lattice inverse section contains eight
coefficients.

From the AR, MA and ARMA elementary lattice inverse sections, we can obtain
synthesis lattice structures. These structures provide a means of working with lattice re-
alizations as linear filters. The resulting AR, MA and ARMA clemeniary synthesis

lattice filters are shown in Figures 8§ and 9 respectively.
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Figure 8.. Top: AR elementary lattice filter. Bottom: MA elementary lattice section.
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v (k)
s+1,t+1

d (k)
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Figure 9. ARMA elementary lattice filter

Summarizing. in this chapter we have reviewed the Mullis-Roberts criterion. intro-
duced the ARMA parameter estimation as a generalized Mullis-Roberts criterion and
obtained analysis and synthesis forms of lattice structures. We notice that each ARMA
elcmentary lattice section consists of eight reflection parameters and the calculation of
these parameters requires the autocorrelation and crosscorrelation information as ob-
tained from the input output data of the reference model. Also, we obtained a sct of
equations relating the final model estimation parameters and the prediction error model

parameters which inturn are obtained from the eight lattice parameters.
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III. ADAPTIVE LATTICE ALGORITHM

A. LEAST MEAN SQUARE ALGORITHM

The study and design of adaptive filters is known to be a very important part of
statistical signal processing. Many adaptive algorithms have been developed to support
the application of adaptive filtering in communications and control [Ref. 12]. An adap-
tive filter is characterized by the ability of its filter coeflicients to adjust (self-optimize)
automatically and vield an optimum filter design. Two processes occur within an adap-
tive filter, namely, the adaptation and the filtering processes. During the filtering process
a desired signal is applied to an adaptive algorithm as a reference for adjusting the filter
coeflicients. Figure 10 shows a block diagram of the adaptive modeling process. Refer-
ring to Figure 10, let (k) be the output of the filter at time k. By comparing the output
with the desired signal d(k) , an error signal e{(k) is generated. The adaptive algorithm
of the filter uses this error signal to generate corrections which are applied to the filter
coefficients such that an optimum solution is obtained. An optimization technique called
the method of steepest descent provides an approach to solving this problem. The pro-
cedure is as follows:

1. Assign initial values to all filter coeflicients.

2. Using these initial values, compute the gradient vector, whose individual elements
equal the first derivatives of the mean-squared error with respect to the filter coef-
ficients.

3. Compute values for the filter coeflicients by changing the initial values in the di-
rection opposite that of the gradient.

4. Return to step 2 and repeat the procedure.

There is, however, a limitation to this pracedure. The steepest descent algorithm requires
exact measurements of the gradient vector at each iteration which, in practice, is not
possible. Therefore, the gradient vector must be estimated and consequently, errors are
introduced. An algorithm is required which computes the gradient from the available
data. The least mean square (LMS) algorithm, developed by Widrow and Hofl, is widely
used and is very convenient to implement in real time hardware [Ref. 13: pp. 96-104).
Let y(k) be the output of the filter and 4(k) the desired signal at time & as shown in
Figure 10. We compute the error by taking the difference between these two signals,

namely,
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x(k) y(k) . e(k)
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ADAPTIVE
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Figure 10. Adaptive modeling block diagram

e(k) = d(k) = v(k) (3.1)

The value of the mean-squared error is the expected value of the error squared,
E[ (k) ] and the gradient vector, ¥ (k) , is the first derivative of the mean-squared er-
ror. The gradient vector 1s given by

é

V=5 E[ &) ) =2k a\’@ e(k) (3.2)

where w(k) is the time dependent filter coefficient vector. The recursion for the filter

coeflicient which changes the old value in the direction opposite to that of the gradient
is then given by,

wk)=wk-=1) +% ul —y (k) ]
= w(k — 1) — ue(k) ‘EG((T) e(k)

(3.3)

where w(k) is the filter coefficient vector estimate at the k* iteration, w(k — 1) is the past

filter coefficient vector estimate, u is the convergence (gain) constant, e(k) is the error
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) cw(k)
tation of this algorithm proceeds as follows:

signal at the k* iteration and e(k) 1s the instantaneous gradient. The implemen-

1. Assign initial values to the filter coeflicients.
2. Compute the value for the error signal e(k).

3. Calculate the updated estimate of the filter coeflicients using the instantaneous
gradient.

4. Increment the time index by one and return to step 1.

Convergence properties of the LMS algorithm are well documented within the literature.
The choice of a gain constant u is arbitrary however, theoretical bounds have been de-
rived for u , given by [Rel. 14: pp. 101-106],

2 1
Zmax N Tr[ Rxx]

0 <u< (3.9
where /., is the maximum eigenvalue of the input autocorrelation matrix, R,,, and
where Tr [ R,, ] is the trace of the matrix R,..

B. DERIVATION OF THE ADAPTIVE LATTICE ALGORITHM

The adaptive lattice algorithm developed in this thesis uses concepts of the LMS
algorithm discussed in section A and applies them to the ARMA digital lattice filter
proposed in Chapter II. Consider the ARMA digital lattice filter of Figure 11, which
consists of two cascaded elementary lattice sections. The filter coeflicients (weights) are
defined such that w7 represents the i lattice coefficient at stage m of the lattice structure.
In this figure we have a two stage lattice and there are eight coeflicients per elementary
lattice section. The output, y(£), of the lattice filter can be determined from

Fk) = (k) +wi enfk — 1) —wy ey (k= 1) (3.5)

Forward errors at a given stage m of the lattice filter are defined as,

gk =e (K+wye (k—=1)-wle (k=1) (3.6)
g (k)= (K)+wi* ey (k=D =wi"' g (k-1
and the backward errors for any given stage m are,
e, ()= (k=1)+ws' e (k)=wg el (k) (3.7)
e, (Ky=e, (k=1)~wle (K)+ug e (k)
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Figure 11.

Two stage ARMA lattice digital filter.
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where, in Figure 11, m=1,2 and e; = x(k) and e}b=j'(k). The terminal condition is
el (k) = b, e}'m(k): m=2 . To begin with, let b, equal unity. The initial conditions are
et (k—1)=0and ¢, (k — 1) = 0. As with the LMS algorithm. we form an error between

a desired signal (k) and the output signal 5(4) such that,
e(k) = d(k) — y (k) (3.8)
The instantaneous gradient according to eq (3.2) is then,

é
ew(k)

V(k) =2 e(k) [ dk) -5k ] 3.9)

Since the desired signal, d(4), is not a function of the filter coeflicients, equation (3.9)

redures to,

Y — X é _dy 3
Vi) =2 ek) 17 [ -5 ] (3.10)
where the quantity _E_\\L(AT [ —5(A) ] is referred to as the gradient estimator. This gra-

dient estimator must be computed for each filter coeflicient within the lattice structure.
The filter coeflicients are then updated using the respective gradient estimators. That is,

we need to compute,

-~

C Pk) fori=12,...8 and j=12.....M
é w

V) =

(3.11)

where M is the number of stages in the ARMA lattice filter. From equation (3.5), the

gradient estimates are given by

A -y -~ X
éy(k Cep (K) éw) de, (k—1) Awd
vk R o F(k—1)+w) —m— e} (k—1)
é W{ ¢ w{ é w{ 0 0 W{ ¢ w{
v (3.12)
) cq‘,n(k~l)
-Ww: T 5
C‘bi

Let ¥(k) represent the partial derivatives of the output j(k) with respect to the filter co-
efficients and ¢(k) represent the partial derivatives of the errors with respect to the filter

coefficients. Using this representation we can re-write equation (3.12) as follows,
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iy () = &) 1 (k) + 830 e (k= 1)+ wy ¢ 1 (k= 1) = 8} e} (k= 1)

) (3.13)
—w3 bp,i(k=1)

where &)/, 6!, are kronecker deltas whose value is onc if and onlv if
i=4 and j=1 or i=3 and j=1 respectively. We compute y,, (k) , by obtaining re-
cursive relations which calculate the partial derivative of the forward and backward er-
rors with respect to the filter coefficients. These relations are obtained from equations
(3.6) and (3.7) by taking the partial derivatives with respect to the filter coefficients,

namely,
¢r () =¢f K +87] e (k=D +wldy  k—1)=8e (k-1)
—wy' ¢b,,_,1j("\'— 1)

&R =) K+ e (k=1 +wi™ of k=1 =67 o (k=1)
—W§"+] (f’bmij(k‘ 1)

Sy () =y k=0 + 8] (W +w ] 0 —65] (k)
—wg' ¢jm_, 17 (k)

&b K =p k=1 =0T (k)—wlef (K +557 e (k)

These recursive relations possess a lattice structure similar to that of Figure 11, with
delta components injected at the summation nodes. They may also be simplified by ex-
amining individual terms. Consider the general equation for the forward error in x. re-

peated here for continuity.

ef': (k)= ef’:_l (k) + wy' e@"m_l (k=1) = w/ eb"m_l (k=1) (3.15)

The partial derivative with respect to each filter coefficient is expressed as,

6€;; (k’ 56';:_‘ (/x) aw_;" R ” C“é’l',:_) (/\ -1
- j = - J j eb 1 (k - l) + W2 -
éwl cwi éwl " éw! 316
ewl cel  (k=1) (-16;
) 4 m by
- — e (k—1)—w -
éw; éwd
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Since the partial derivative is taken with respect to the current filter coefTi~*ent w; at time
k, the paruial derivatives involving delay terms i.e., (K — 1), are set to z¢ .. This result
follows from the realistic assumption that ¢; (k1) is a function of »; (kK — 1) but not
of w; (k) . Also note that w; (k) 1s a function of w; (k — 1) but not vice versa. With these
simplifications we reduce the equations of (3.14) to,

¢f (K =8F k) +67] e (k—1)=67 e (k=1)
¢F 1 (k) = ¢f LR+ e (k- 1) - 6""*”’8 (k—1) -
n ) 3.17)
d)b 1y (k)= efm](k)+w5 d)j l1/(/\)—061 £r/ (k) — we' ¢fm iy (k)
5 1) (k)=—é$", e, (k) —wy & (k) +65] ¢ (k) +wi ¢y (k)
and the gradient estimator is,
Vi (k)= (k) + 847 ef (k~ 1) = 83 el (k= 1) (3.18)

Although these are valid recursive relations, they are difficult to implement in a lattice
algorithm. The ultimate goal is the requirement to easily compute y,, (k) from the
available data. From eq (3.18) it is evident that ¢, (k) depends on ¢4 ,, (k) which in turn
requires knowledge of ¢4 ,; (k) and ¢; ,, (k) but not of ¢}, (k) or ¢; ., (k). Therefore the
three equations necessary to compute the gradient estimator are,

ng) =¢;ﬁ, R+ 8 el (k—=1)=di]el (k- 1)
&F iy (k)= &F_ 1 (k) + 03] € (k—l)—éi"féi (k—=1) (3.19)
0,1, (K) = ¢,m ,,,(A)+o‘"’““ G, k= _a g L k=1)

These equations are dependent on the filter coeflicients w;. i=1234 and

J=12,.., M, thereby reducing by one-half the number of computations required for
@; ., (k) and ¢; , (k). A recursive relation is desired for ¥, (k) which does not involve
delta functions. Consider the four stage lattice filter with terminal condition 4, equal to
unity such that @3, (k) = ¢;,,,, (k) . The procedure for computing ¥, (k) using the
equations of (3.19) is as follows:

1. Calculate ¢; ,, (k) with m equal to one and letting i/ and j range from one to four.
Repeat for m=2,3,4d.

2. Using the terminal condition and expression for ¢; ,; (k). calculate ¢7 ,, (k).

This requires solving 88 equations, however, the result is a very simple recursive formula
for y,, (k) . namely,




Vijky=—¢ (k=1) i=1,3

, x . (3.20)
‘f"ij(/"):eb/_,(k‘l) i=12,4

The lattice coefficients are calculated by substituting the recursive formula of eq (3.20)

for the gradient estimator in equation (3.3). The adaptive coeflicient update equation is,
W) (k)= (k = 1) — pe(k) ¥y (k) (3.21)

Since the gradient estimator, and therefore the gradient, is the same for w , i=1,3 and
w, i=24 it follows that w; = wg and w; = wi. The number of filter coeflicients re-
quired to update the lattice filter is reduced to two, i.e., wj and wj. Furthermore, from
the symmetry of the lattice structure, the following equalities between filter coefficients

are assumed,

o
.

,
=
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=
fl
-
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prd

L O e
|

..
=
w
I
=
0.

Incorporating these equalities with those derived by the gradient estimator produces the

elementary ARMA lattice section of Figure 12 where,

A R R
. . . : (3.23)
W, = wg = w = wé = &

To prove that these coefficient reductions are valid, a computer generated solution using
the Fortran program of Appendix D was compared to hand analysis ol a second order
transfer function and lattice filter. The output of the ARMA digital lattice filter was first
put into difference equation form and then compared to the known transfer function.
From this comparison, lattice coeflicients were computed. Details of this analysis are as
follows. Consider a two stage ARMA digital lattice filter comprised of the reduced ele-

mentary section shown in Figure 13 and a transfer function of the form.
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Figure 12. Simplified elementary ARMA lattice section.

The output of the lattice filter can be written 1n difference equation form by carriing out
the following steps: (i) start with the output of the lattice filter equation (3.5), (ii) sub-
stitute expressions for the forward and backward errors, equations (3.6) and (3.7). re-
spectively. into equatibn (3.5) and (iii) carrv out the algebra. A detailed derivation of this
difference equation is given in Appendix E. The difference equation in its final form is

given by,

k) = x(k) + 2(w) + wi w? + wy w))x(k— 1)+ 2wl x(k ~2)

1 1.2 . 1.2 A P (3.2%)
=2(w) + wywy + wpwy plk—1)=2wipk=2)

which can be written in the transfer function form as,




T+20w) + wiwl + wiwd)z 42w
H(:)=

, - (3.26)
1+ 2( w,l + Wy w22 + wl1 wy )z "y2w
Comparing the lattice filter transfer function, H{z) with the known filter transfer func-

tion H(z), produces the following relationships between filter coeflicients,

1 1.2 1.2
b] = 2( Wy + Wi W, + Wy Wy )

1 1.2 1.2
a =2(w, + wyw) + w wy)
b2 = 2 sz

gy = 2

Solving for w? and w? in terms of the known transfer function coefficients b, and a, and
then substituting these results into the expressions for b, and q,, respectively, vields the

following.

by=ayw, + (2+by)w,

a=(2+ay)w, + byw,

b 2+ b !
[ ‘]=[q“2 2] " ' (3.29)
al 1_"+'a2 b2 u"z

and solving for the lattice coefTicients, we have

(3.28)

or in matrix form,

t2

W'll ] bz -_ (2 + bz) bl
1 = By Y (3-30)
Wy ay by = (24 b) (2 +ay) —(2+ay) a, a
and
Wl e by
2
, @ (3.31)
M=

Now that a method of converting between lattice and transfer function coeflicients for

a second order syvstem has been established, we consider the specific transfer function
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B

1 — 08:"" + 1.78:72
1 — 0.89z7" + 025,72

H{z) =

where

by=10 b =-080 b,=178
a,=-0.89 a,=025

From equations (3.30) and (3.31) the lattice coeflicients are calculated as,
wl = 0.125, w? =089, w = —0240719, wi = —0.195719

Values for the steady-state lattice coefficients were computed using the Fortran program
in Appendix D and are shown below. Convergence aspects of both the lattice coefTi-
cients and output error are shown in Figure 13.

w? =0.124982, w? =0.890003, w! =-0.240710, w] =—0.195711

these results confirm the validity of the derived adaptive lattice algorithm and the design
of a new elementary lattice section shown in Figure 12.

The current adaptive lattice algorithm assumes that the terminal condition is unity.
This is generally not the case in practice. We now extend this adaptive algorithm to the
more general case where the terminal condition is an arbitrary constant. The recursive
relation which updates &, is similar to those which update the other lattice filter coefTi-
cients. The update equation for b, is given by

bo(k) = bolk — 1 ) &) 3.33
olh) = by ) — me(k) abolk) (3.33)
. : ce(k) . . :
The gradient estimator bk 1s calculated using equations (3.5), (3.8) and the fact that
0

the desired signal d7k, is not dependent on b,. The gradient estimator for b, is written
as,

Sepk~1)  wl
éby by
ey (k — 1)

Cby

ark) k) gwl
T TSR T

en(k — 1)+ wy en(k—1)

(3.34)
—w]

Since the partial derivative is taken with respect to b, at time k, this reduces to,
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ark)  Cek)

by cby (3.33)
Similarly,
g k)= () +wi ey (k=1 -wi" & (k~1) (3.36)
and the partial derivative with respect to b, is
a({v" ®) = 68}":‘ ® (3.37)
chy Cby
The terminal condition is,
e, (k)= by e, (k) (3.38)

Taking the partial derivative of equation (3.38) with respect to b, vields ¢;, (), and the
recursive equation to update b, (k) becomes,

bo(k) = bolk = 1) = e e(k) ¢, (K) (3.39)

The gradient estimators for the lattice filter coefficients are scaled by the arbitrary con-
stant b,, since at the termunal condition &4, (K)=by&; (k) and b, is propagated
through the calculations. The gradient estimators become,

d/[j(k)=—boeg:_l(k—l) l=l,3 34

- 3.40)
by =byey (k=1) i=24 (
To test this more general adaptive lattice algorithm the output of a known transfer
function with b, equal to 0.5 was compared to the output of the ARMA digital lattice
filter. The second order transfer function used was,

5-04z7"4+0.89:72
—-089z2714+0.25 772

Hfz) = 01 (3.41)

The computer generated steady state lattice coefficients are given below and convergence
aspects shown in Figure 14.

by = 0499946, w, = —0.120428, wj =0.593237, w| = —0.447423, wu; =0.166320
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In order to maintain the same adaptive time constant and misadjustment at each
stage in the lattice, the convergence constant is normalized by the power level at each
stage [Ref. 15]. Therefore, we can write equations (3.21) and (3.39) as,

wl (k) = wl (k — 1) = —— e(k) ¥, (k)

o %) (3.42)
bo(k) = ok — 1) = —— e(k) e, (K)

v (k)

where u is the convergence constant and ¢? (k) and y? (k) are estimates of the power at
the j# stage for w and b, respectively and computed as follow's:

o} (k) =p o] (k= 1)+ (1= p) ¥ (k)

343
AR =p  k=D+U-p)[ ¢, *) ] G4

Writing equation (3.42) using the notation adopted for the reduced elementary ARMA
lattice section we obtain

Rk =rk—1)——— e(k) e5_ (k= 1)
9j
u
ki (k) =k (k—1) — etkyef_ (k= 1) 3.44)
J J a} (k) (3.44)

u x
by ()= by (k= 1) = == k) f, (K

In the above equations p is a weighting parameter, 0 < p < 1, which distributes the
amount of weight given the past power level or current sample. Normalized convergence
constants are used in all examples of this thesis. The adaptive lattice algorithm is sum-
marized in Table 1.

In summary, we have derived an adaptive algorithm based on the LMS theory of
adaptive coefficient computation. This new adaptive algorithm easily updates the lattice
coeflicients by using available data. The original requirement to update eight coeflicients
of an elementary ARMA lattice section was reduced to updating only two coeflicients
and still being able to describe the lattice. The algorithm is general in that it apphes to
svstems whose terminal condition is an arbitrary constant. The validity of this algorithm
was demonstrated through comparisons between hand analysis and computer simu-

lation. In the next chapter, we further demonstrate the convergence of this algorithm.
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Table 1.

SUMMARY OF ADAPTIVE LATTICE ALGORITHM

With given initial conditions, e, = x(k), €}, = y(k), e}

lattice coefficients zero,

Step I

Step 2:

Step 3:

Step &4

for k=1,m compute

e;;(k)=e; (K +wye (k=1)—we (k—1)
g (K =¢  (K)+wi ey (k=1)—wi"" e (k-1

with output e (k)

for k=1,m compute

e, (K)=e€5 (k=1)+ws'ef (k)—wg ¢ (k)
e (k= (k—D—=we (k)+uge (k)

Update coefficients

u x
r(k)=r (k=1 __,T(U e(k) €5, (k~1)
- oeRe k=)

"/

bo(k) = bo(k = 1) = —— w e(k) e, (k)

7

ki (k) = k; (k= 1) =

Repeat for next iteration i.e. return to step 1.

4]

,(k=1) = e (k—1)=0and all




1V. EXPERIMENTAL RESULTS

The adaptive lattice algorithm derived in Chapter I1I is now computer simulated to
study its convergence performance. The system identification mode of adaptive filtering
is considered for this purpose. Figure 15 shows a general system identification config-
uration. The systems considered are time-invariant and linear. Notice that we apply the
same input, white noise in general, to both the reference system and the adaptive lattice
filter which is modeling the system. The criterion in this configuration is to minimize the
mean-squared error between the system and filter outputs. Thus, in this context, the
adaptive algorithm continuously updates the lattice filter parameters in order to mini-
mize the mean-squared error.

The adaptive algorithm is realized as summarized in Table 1. As we mentioned in
Chapter III, the two important parameters of the algorithm are the adaptation constant
u and the weighting constant p . In what follows, we shall consider convergence studies
of both second and third order reference systems (fixed filter transfer functions). Con-

sider the following reference system with transfer function,

1+02:"'—0.35:72
1—1.4z"140.85:72

H{z) =
This syvstem has complex poles and simple zeros located at z = (0.7 +0.6) and
z = 0.5,-0.7, respectively. Using a convergence constant x = 0.0l and power level
weighting factor p = 0.45, the adaptive ARMA digital lattice filter which modc¢ls the

above system has the following steady-state lattice parameters,

terminal condition by = 0.999202

lattice coefficients r, = 0.352580
ri= —0.174355
k} = —0.448228
ki = 0.425060

Convergence properties of the lattice coefficients and error are shown in Figure 16. The
mean-squared error was minimized after approximately 1700 iterations at which time the

lattice coeflicients reached their steadv-state values. When the value of the convergence
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Figure I5. Block diagram of system indentification modeling

constant u was modestly increased, convergence degraded rapidly. Also, when the
weighting factor p was increased, convergence deteriorated quickly. From this, we con-
clude that the convergence constant is the more sensitive input parameter.

Let us consider another second order dynamic svstem with transfer function,

_05-02:7"+0.445:72
1=—:z"" 409472

Hj(2)

This system has complex poles at z = (0.5 0.8) and complex zeros located at
z = (0.2+,0.7). Using a convergence constant u = 0.005 and power level weighting
factor p =0.97, the adaptive ARMA digital lattice filter which models this svstem has

steady-state lattice parameters as follows,

terminal condition by = 0.500027

lattice coefficients r, = 0.104654
ri= 0.296658
k| = —0.429232
k= 0627718

43




1.0

0.5
1

MAGNITUDE
0.0

-0.5
]

-1.0

! 1 i 1 H
500 1000 1500 2000 2500 3000
ITERATIONS _

(o]

10.0

5.0

ERROR
0.0

-5.0

-10.0

0 500 1000 1500 2000 2500 3000
ITERATIONS

Figure 16. Second order ARMA lattice filter, terminal condition unity.




Convergence properties of this adaptive filter are shown in Figure 17. In this example,
convergence was obtained after approximately 2300 iterations. Again, by changing the
values of u and p slightly, covergence deteriorated with the convergence constant g being
the more sensitive parameter.

Next we consider a third order reference system with known transfer function,

5-095:"141.33:72-0.979;73
1-1.69:"'+0962272-0.22°

Hfz) =

The adaptive ARMA digital lattice filter which describes this system has the following
steady-state Jattice parameters,

terminal condition b, = 0.499970

lattice coefficients r] = —0.328447
2= 0.399472
ri= —0.652706
ki = —0.821738
= ~0.091111

~0.133333

i

>~
il

These parameters were obtained using a convergence constant u = 0.015 and power level
weighting factor p =0.9. Convergence properties of this adaptive filter are shown in
Figure 18. Steady-state values for the lattice coefTicients were obtained after approxi-
mately 7100 iterations. It is reasonable to assume that a third order system will converge
more slowly than a second order svstem. The number of iterations required for this third
order system to converge is consistant with convergence rates of other adaptive algo-
rithms which model third order systems [Ref. 16). The input parameter y was again
found to be the more sensitive parameter.

In all the previous examples, the values of u and p may or may not be optimum
values. That is, an exhaustive search of all combinations of u and p was not performed
to demonstrate convergence of the algorithm. Nevertheless, a number of different wayvs
of realizing the value of the convergence constant z have been reported in the literature.
In one method, Mikhael et. al. [Ref. 17] have obtained a variable u by using a self opti-
mizing technique. In this method, u is calculated from the input data as an iteration
process and is individually determined for each filter parameter. In another method u is

chosen by using a variable step LMS technique [Ref. 18]. where the range of u is
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specified by u,.,, and u,,. which are within the bounds described by equation (3.4) of
Chapter I11. These techniques of choosing u during the adaptation process have been
shown to improve filter convergence. They, however, require additional computations
to achieve this faster convergence. When a combination of the parameters u and p was
obtained which vielded convergence, these values were chosen for examples. Besides the
examples reported, simulation studies have been carried out for several other cases. In
all cases, however, definite convergence of the algorithm has been observed.

In summary, we have demonstrated through computer simulation that the derived
adaptive lattice algorithm is suited for system identification modeling. Furthermore, we
have shown that there is flexibility in choosing the values of the convergence constant
u and weighting factor p . Some techniques for selecting (computing) the value of the
convergence constant have been introduced. These methods improve convergence at the

cost of additional computations.

A. CONCLUSIONS

In this thesis we have demonstrated that the ARMA parameter estimation algo-
rithm proposed in [Ref. 4: pp. 619-621] is a valid method for obtaining approximations
to reference models. Furthermore, the criterion used to derive the algorithm is a gener-
alized form of the Mullis-Roberts criterion for least squares modeling. The AR and MA
parameters of the ARMA model can be updated independently as their respective orders
increase by one. From the recursive prediction error formulas, an ARMA digital lattice
filter was designed with arbitray AR and MA orders.

For the ARMA digital lattice filter, we derived an adaptive lattice algorithm. This
algorithm was bascd on the least mean square method of optimizing coeflicients. The
derived adaptive lattice algorithm can easily compute the values of the lattice coeflicients
from available data. The algorithm simplified the number of coeflicents required to be
updated from eight coeflicients per elementary lattice section to only two such that the
filter can be completely described. This savings in computational effort makes the al-
gorithm attractive for identification of unknown systems since many systems require an
ARMA model for parsimonious modeling.

Convergence of the adaptive lattice algorithm was demonstrated with several exam-
ples in Chapter I11. The number of iterations required before convergence varied greatly
between second and third order models as well as within second order models. Optimum
convergence rates were not sought after as much as proving the convergence of the al-

gorithm. Rapid convergence rates were demonstrated in Chapter 11 for a second order
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system upon completion of an extensive search for the optimun values of the conver-
gence constant and power level weighting factor.

Although a method of converting between direct form and lattice realizations for
second order ARMA filters was developed, a general algorithm to perform this trans-
formation given the ARMA lattice filter design was not obtained. When solving for a
transformation between filter realizations of third order the solution is hindered by
nonlinearities.

The objectives of the thesis were sucsessfully accomplished. Some suggestions for
future work include the following: (i) extensive theoretical analvsis for determining op-
timum values for u , (ii) derivation of a generalized algorithm which converts any given
ARMA transfer function into a set of lattice parameters, (iii) development of theoretical
convergence models for the ARMA adaptive lattice algorithm and analyvsis of these
models and (iv) application of the adaptive lattice filter, both analysis and svnthesis
forms, in modeling such practical signals as speech. ARMA lattice filter modeling has
considerable application potential because of its very accurate modeling of nearly any

signal or system of interest.
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APPENDIX A. MAIN PROGRAM TO ESTIMATE ARMA PARAMETERS

s NoNesNoNsNoNoNoNeoNoNoNoNoNoNoNoNsNoNoNsNeoNsNoNoNoNoRoNoNoNsNoNesNsRoNoNoNoNoRoNesNoNo N Re N o)

THIS PROGRAM COMPUTES THE ARMA PARAMETERS AS THE AR OR MA ORDER
OF AN ARMA MODEL INCREASES BY ONE. IT USES THE ARMA PARAMETER
ESTIMATION ALGORITHM PROPOSED BY MIYANAGA, NAGAI AND MIKI.

RY
RXY
RYX
NDATA
KDATA
X1

Y1

TYA

TXB

TYB

GA

GB

ZTA

ZTB

NK

NS

KS

VY

VARIABLE DEFINITIONS

INPUT VECTOR CONTAINING DATA GENERATED AS WHITE GAUSSIAN
NOISE

OUPUT VECTOR OF DIFFERENCE EQUATION WITH VN AS INPUT
AUTOCORRELATION DATA OF INPUT VN

AUTOCORRELATION DATA OF OUTPUT Y

CROSSCORRELATION DATA OF INPUT AND OUTPUT
CROSSCORRELATION DATA OF OUTPUT AND INPUT

NUMBER OF INPUT DATA POINTS

NUMBER OF INITIAL DATA POINTS TO DISREGARD

INPUT DATA VECTOR AFTER DISCARDING KDATA POINTS

OUTPUT DATA VECTOR AFTER DISCARDING KDATA POINTS

VECTOR CONTAINING CALCULATED AR PARAMETERS

VECTOR COINTAINING CALCULATED MA PARAMETERS

VECTOR CONTAINING COEFFICIENTS FOR FORWARD PREDICTION OF
INPUT

VECTOR CONTAINING COEFFICIENTS FOR FORWARD PREDICTION OF
OUPUT

VECTOR CONTAINING COEFFICIENTS FOR FORWARD PREDICTION OF
INPUT

VECTOR CONTAINING COEFFICIENTS FOR FORWARD PREDICTION OF
OUTPUT

VECTOR CONTAINING COEFFICIENTS FOR BACKWARD PREDICTION OF
INPUT

VECTOR CONTAINING COEFFICIENTS FOR BACKWARD PREDICTION OF
INPLUT

VECTOR CONTAINING AR COEFFICIENTS FOR BACKWARD PREDICTION
OF OUTPUT VALUES

VECTOR CONTAINING MA COEFFICIENTS FOR BACKWARD PREDICTION
OF OUTPUT VALUES.

LENGTH OF DATA VECTOR X1

LENGTH OF DATA VECTOR X1 MINUS ONE USED TO START
CORRELATION COMPUTATIONS.

DESIRED AR ORDER OF ARMA MODEL.

DESIRED MA ORDER OF ARMA MODEL

CURRENT AR ORDER OF UPDATE

CURRENT MA ORDER OF UPDATE

EXPECTED VALUE OF PREDICTION ERROR FOR INPUT SQUARED.
EXPECTED VALUE OF PREDICTION ERROR FOR OUTPUT SQUARED.
EXPECTED VALUE OF PRODUCT OF PREDICTION ERROR FOR INPUT
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10

15

20

AND OUTPUT.

VG - EXPECTED VALUE OF BACKWARD PREDICTION ERROR OF INPUT
SQUARED.

VZ - EXPECTED VALUE OF BACKWARD PREDICTION ERROR OF OUTPUT
SQUARED.

VGZ - EXPECTED VALUE OF PRODUCT BETWEEN BACKWARD PREDICTION
ERRORS OF INPUT AND OUTPUT.

DIMENSION VN(-5:2006),Y(-5:2006),RX(0: 2000),RY(0: 2000) ,RXY(0: 2000)
DIMENSION RYX(0:2000),X1(2000),Y1(2000),X(12),A(0:21),B(0:21)
DIMENSION TXA(O:21),TYA(O:21),TXB(0:21),TYB(0: 21),GA(0: 21)
DIMENSION GB(O0:21),2TA(0:21),ZTB(0: 21)

INPUT DATA INFORMATION

WRITE (6,1)

FORMAT (/' ENTER THE NUMBER OF DATA POINTS:')

READ (6,*) NDATA

WRITE (6,2)

FORMAT (/' ENTER NUMBER OF INITIAL DATA POINTS TO DISREGARD: ')
READ (6,*) KDATA

FededededererefeTedevert e e dedr et e dede deaseat b de e deddeaedb eaedledledede sl e s de e de de ek

INITIALIZE ARRAYS

DO 10 L=-5,NDATA
VN(L)=0

Y(L) =0
CONTINUE

DO 15 1=0,20
A(L)=0
B(L)=0
TXA(L)=0
TXB(L)=0
TYA(L)=0
TYB(L)=0
GA(L) =0
GB(L) =0
ZTA(L)=0
ZTB(L)=0
CONTINUE

DO 20 1=0,1999
RX(L)=0
RY(L)=0
RXY(L)=0
RYX(L)=0
CONTINUE

DO 25 L=1,12
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X(L)=0
5 CONTINUE

Fedkrerdereve R e dedede e o dr et e e e v deve draediedb de s e e o Yl ab e e sk e a e deab e sk e sk e ek

GENERATE WHITE GAUSSIAN NOISE INPUT

aaoaaoaann

ISIZE=NDATA
IX=152255

hll ’ ISORT=0
MUL=2
DO 30 K=1,ISIZE
CALL SRND(IX,X,12,MUL,ISORT)

: XT=-6. 0
- DO 35 I=1,12
h 35 XT=XT+X(1)
YN(K)=XT
g 30  CONTINUE
c
} C Yedededeverk vevedede R vededededeveddedodr e Yo e v deabde v v ved Yok dedeatde v ak e deak e e v e e ae e vl vie v s e dede e v vedleve e
c
c COMPUTE OUTPUT OF REFERENCE MODEL FILTER AND DISREGARD SPECIFIED
c NUMBER OF DATA POINTS
c
DO 40 L=1,NDATA
c Y(L)=VN(L)+1. 6%Y(L-1)-0. 95%Y(L-2)
c Y(L)=VN(L)+0. 2%Y(L~1)-0. 62*Y(L-2)+0. 152%Y(L-3)-0. 3016*Y(L-4)
c Y(L)=VN(L)~0. 2*VN( L-1)+0. 62*VN(L=2)-0. 152%VN( L-3)+0. 3016*VN(L-4)
c Y(L)=VN(L)+0. 2%VN(L-1)-0. 99*VN( L-2)+0. 2*%Y(L-1)-0. 62*Y(L-2)+0. 152*Y
C  &(L-3)-0.3016%Y(L-4)
c Y(L)SVN(L)-1. 6*VN(L-1)+1. 45*VN(L=2)+1. 2%Y(L-1)-0. 72*Y(L-2)
c Y(L)=VN(L)+0. 2*VN(L-1)=0. 35*VN(L-2)+1. 4*Y(L-1)-0. 85*Y(L-2)
Y(L)=0. 5%VN(L) =0. 25*VN( L-1)+0. 445%YN(L~2)+Y(L-1)-0. 94*Y(L-2)
c Y(L)=VN(L)~2. 7%VN(L-1)+3. 21%*VN(L-2)-1. 595%VN(L-3)+1. 95%Y(L-1)-1. 62
C  &%Y(L-2)+0. 54%Y(L-3)
c Y(L)=VN(L)-1. 0*VN( L-1)+0. 89%VN(L-2)+0. 40%Y(L-1)-0. 2121*Y(L-2)-0. 20
C  &B894%Y(L-3)-1.810373*Y(L-4)
c Y(L)=0. 5%VN(L)-0. 95%VN(L-1)+1. 33%VN(L~2)-0. 979%VN(L-3)+1. 69*Y(L-1)
C  &-0.962%Y(L-2)+0. 20%Y(L-3)
c Y(L)=0. 5%VN(L) =0. 4*VN(L-1)+0. 89%*VN(L-2)+1. 69%Y(L-1)-0. 962%Y(L-2)+0
C & 2%Y(L-3)
c Y(L)=0. 5%*VN(L) 0. 4*VN(L-1)+0. 89*VN(L-2)+0. 2%Y(L-1)+0. 25*Y(L-2)=0. 0
C  &5*Y(L-3)
c Y(L)=0. 5%VN(L) =0. 4*VN(L-1)+0. 89*VN(L-2)+0. 89*Y(L-1)-0. 25%Y(L~2)
c Y(L)=. 0154*YN(L)+. 0642%VN(L-1)+0. 0642%VN(L-2)+0. 0154*VN(L-3)+1. 99%
C  &Y(L-1)-1.57%Y(L-2)+0. 4583*Y(L-3)
c Y(L)=0. 5*VN(L)+0. 256*VN( L~1)+0. 1234*VN(L-2)+0. 098 7*VN(L-3)
40  CONTINUE
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LJ=KDATA+1
DO 45 I=LJ,NDATA
LK=L-KDATA
X1(LK)=VN(L)
Y1(LK)=Y(L)
CONTINUE
WRITE (*,77) (Y1(K), K=200,1800)
FORMAT (5(1X,F10.6))

Fedededeverededtirariedrieeiedeedratdrdedrdevedermiede e derrdedb e e dedbar b v dede s d e de dedr e st dedeae e vt

COMPUTE AUTO-CORRELATION AND CROSS-CORRELATION TERMS

NI=NDATA-KDATA

NK=NI-1

CALL CORREL (NI,S50,X1,Y1,RX,RY,RXY,RYX,NK)
DO 50 1=0,10

WRITE (*,200) RX(L),RY(L),RXY(L),RYX(L)
WRITE (9,200) RX(L),RY(L),RXY(L),RYX(L)
WRITE (9,201)

CONTINUE

WRITE (9,201)

FORMAT (2X,4(2X,F14.9))

FORMAT (' ")

Federesederedededevedabdrde sk dedenevedrdedederbve ek e alde e e e dede v dededbededede dediedb de e e ek de e s e e ek ke

INPUT THE DESIRED AR AND MA ORDERS THEN DEFINE INITIAL CONDITIONS

WRITE (6,3)

FORMAT (/' ENTER THE DESIRED AR ORDER: ')
READ (6,%) NS

WRITE (6,4)

FORMAT (/' ENTER THE DESIRED MA ORDER: ')
READ (6,%) NT

KS=0

KT=0
A(0)=1.0
VX=RX(0)
VY=RY(0)
VXY=-RYX(0)
VG=RX(0)
VZ=RY(0)
VGZ=-RYX(0)
TXB(0)=1.0
TYA(0)=1.0
GB(0) =1.0
ZTA(0)=1.0
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ESTIMATE THE ARMA PARAMETERS

IF (NT.EQ.O.AND.KS.LT.NS) THEN
KS=KS5+1
CALL NEWAR(KS,KT,VX,VY,VXY,VG,VZ,VGZ,TXA,TXB,TYA,TYB,GA,GB,2TA,ZTB
&,RX,RY,RXY,RYX,A,B)
GOTO 300
ELSE
IF (NS.EQ.O. AND.KT. LT.NT) THEN
KT=KT+1
CALL NEWMA(KS,KT,VX,VY,VXY,VG,VZ,VGZ,TXA,TXB,TYA,TYB,GA,GB,ZTA,ZTB
&,RX,RY,RXY,RYX,A,B)
GOTO 301
ENDIF
ENDIF

IF (NS.NE.O0.OR.NT.NE.O) THEN
IF (NS. GE.NT. AND. NT. NE. 0. AND. KT. LT. NT) THEN
KS=KS+1
CALL NEWAR(KS,KT,VX,VY,VXY,VG,VZ,VGZ,TXA,TXB,TYA,TYB,GA,GB,ZTA,ZTB
&,RX,RY,RXY,RYX,A,B)
KT=KT+1
CALL NEWMA(KS,KT,VX,VY,VXY,VG,VZ,VGZ,TXA,TXB,TYA,TYB,GA,GB,Z2TA,ZTB
&,RX,RY,RXY,RYX,A,B)
GOTO 302
ELSE
IF (KS.LT.NS) THEN
KS=KS§+1
CALL NEWAR(KS,KT,VX,VY,VXY,VG,VZ,VGZ,TXA,TXB,TYA,TYB,GA,GB,ZTA,ZTB
&,RX,RY,RXY,RYX,A,B)
GOTO 303
ENDIF
ENDIF
ENDIF

TedeTedakdedevevede e v derb ek e ve e ve e de v ek de e e e ek sk e de dede v e ved kb dede e de s de e s e veskeaiedentedle

PRINT ESTIMATED ARMA PARAMETERS

WRITE (*,211)

WRITE (9,211)

WRITE (*,210) (A(K), K=1,KS)
WRITE (9,210) (A(K), K=1,KS)
WRITE (*,211)

WRITE (9,211)

FORMAT(' ')

WRITE (*,210) (B(K), K=0,KT)

54




WRITE (9,210) (B(K), K=0,KT)
210 FORMAT (' ',1X,4(2X,F13.10))

B STOP
hl END

c
c dededededesedededededesedevededtdeieiededededesededcdededededededrdedodete e deedesediriedede oo e deea ittt
c
c SUBROUTINE TO COMPUTE CORRELATION TERMS
. c
hl ) SUBROUTINE CORREL(N,LAG,X,Y,RX,RY,RXY,RYX,NK1)
REAL X(0:NK1),Y(0:NK1},RX(0:2000),RY(0: 2000),RXY(0: 2000)

REAL RYX(0:2000),SUM1,5UM2,SUM3,SUM4
DO 70 K=0,LAG
NJ=N-1-K
SUM1=0
SUM2=0
SUM3=0
SUM&4=
ANK=NJ
DO 60 J=0,NJ
SUM1=SUM1+X(J+K)*X(J)
SUM2=SUM2+Y( J+K)*Y(J)
SUM3=SUM3+X(J+K)*Y(J)
SUM4=SUM4+X(J)*Y(J+K)
60 CONTINUE
RX(K)=SUM1/ANK
RY(K)=8UM2/ANK
RYX(K)=SUM3/ANK
RXY(K)=8UM4/ANK
70 CONTINUE
RETURN
END




APPENDIX B. SUBROUTINE FOR MAIN PROGRAM

SUBROUTINE NEWAR(KS,KT,VX,VY,VXY,VG,VZ,VGZ,TXA,TXB,TYA,TYB,GA,GB,Z
&TA,ZTB,RX,RY ,RXY,RYX,A,B)

THIS SUBROUTINE COMPUTES AR PARAMETER VALUES FOR AN ARMA MODEL AS
THE AR ORDER INCREASES BY ONE.

VARIABLE DEFINITIONS

KS - CURRENT AR ORDER

KT - CURRENT MA ORDER

RX - AUTOCORRELATION DATA OF INPUT VN

RY - AUTOCORRELATION DATA OF OUTPUT Y

RXY - CROSSCORRELATION DATA OF INPUT AND OUTPUT

RXY - CROSSCORRELATION DATA OF OUTPUT AND INPUT

TXA - VECTOR CONTAINING AR CCEFFICIENTS FOR FORWARD PREDICTION
OF INPUT.

TXB =~ VECTCR CONTAINING MA COEFFICIENTS FOR FORWARD PREDICTION
OF INPUT

TYA - VECTOR CONTAINING AR COEFFICIENTS FOR FORWARD PREDICTION
OF OUTPUT

TYB - VECTOR CONTAINING MA COEFFICIENTS FOR FORWARD PREDICTION
OF OUTPUT

GA - VECTOR CONTAINING AR COEFFICIENTS FOR BACKWARD PREDICTION
OF INPUT

GB - VECTOR CONTAINING MA COEFFICIENTS FOR BACKWARD PREDICTION
OF INPUT

ZTA - VECTOR CONTAINING AR COEFFICIENTS FOR BACKWARD PREDICTION
OF OUTPUT

ZTB - VECTOR CONTAINING MA COEFFICIENTS FOR BACKWARD PREDICTION

OF OUTPUT

- ARRAY WHICH STORES CURRENT VALUES OF TXA

- ARRAY WHICH STORES CURRENT VALUES OF TYA

- ARRAY WHICH STORES CURRENT VALUES OF GA

- ARRAY WHICH STORES CURRENT VALUES OF ZTA

- ARRAY WHICH STORES CURRENT VALUES OF TXB

ARRAY WHICH STORES CURRENT VALUES OF TYB

- ARRAY WHICH STORES CURRENT VALUES OF GB

- ARRAY WHICH STORES CURRENT VALUES OF ZTB

- VECTOR UPDATED AR COEFFICIENTS OF ARMA MODEL

- VECTOR CONTAINING UPDATED MA COEFFICIENTS OF ARMA MODEL.

CONSTANT COMPUTED FROM CORRELATION DATA AND PREDICTION

ERROR COEFFICIENTS.

TAU2 - CONSTANT COMPUTED FROM CORRELATION DATA AND PREDICTION
ERROR COEFFICIENTS.

TAU3 - CONSTANT COMPUTED FROM CORRELATION DATA AND PREDICTION

W noOoOYTMmoAa
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ERROR COEFFICIENTS.

TAU4 - CONSTANT COMPUTED FROM CORRELATION DATA AND PREDICTION
ERROR COEFFICIENTS.

XMU1 - COEFFICIENT OF AR-TYPE RECURSIVE FORMULA

YMU1 - COEFFICIENT OF AR-TYPE RECURSIVE FORMULA

MU2 -~ COEFFICIENT OF AR-~TYPE RECURSIVE FORMULA

XMU3 - COEFFICIENT OF AR-TYPE RECURSIVE FORMULA

YMU3 - COEFFICIENT OF AR-TYPE RECURSIVE FORMULA

MU4 - COEFFICIENT OF AR-TYPE RECURSIVE FORMULA

MUS =~ COEFFICIENT OF AR-TYPE RECURSIVE FORMULA

DET - DETERMINANT OF PREDICTION ERROR MATRIX COMPOSED OF
VX, VY, VXY.

ERR - ERROR BETWEEN REFERENCE MODEL OUTPUT AND LATTICE
REALIZATION OUTPUT.

aoaoooaoaoaooao0oaooaaan

'l DIMENSION RX(0:2000),RY(0: 2000) ,RXY(0: 2000) ,RYX(0: 2000),A(0: 21)
DIMENSION B(0:21),TXA(0:21),TYA(O:21),TXB(0:21),TYB(0: 21),GA(0: 21)

DIMENSION GB(O0:21),ZTA(0:21),2TB(0:21),C(0:21),D(0:21),E(0: 21)

! DIMENSION P(0:21),Q(0:21),R(0:21),S(0:21),F(0:21)

‘ REAL MU5,MUZ,MU4

%é‘ c COMPUTE VALUES FOR TAUl1 THROUGH TAU4

T18=0

T2S=0

T38=0

T45=0

KI=Ks-1

DO 10 I=0,KI
T1S=T1S-RYX(I+1)*ZTA(KI-I)
T2S=T2S+RY(I+1)*ZTA(KI-I)
T3S=T3S+RY{I+1)*GA(I)
T4S=T4S+RY(I+1)*ZTA(I)

10 CONTINUE

T1T=0

T2T=0

T3T=0

T4T=0

DO 20 J=0,KT
T1T=T1T+RX(J+1)*ZTB(KT-J)
T2T=T2T-RXY(J+1)*ZTB(KT-J)
T3T=T3T-RYX(KI-KT+1+J)*GB(J)
T4T=T4T-RYX(KI-KT+1+J)*ZTB(J)

20 CONTINUE

TAU1=T1S+T1T

TAU2=T25+T2T

TAU3=T3S+T3T

TAU4=T4S+T4T
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45

31

76
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175

650

COMPUTE VALUES FOR THE REFLECTION COEFFICIENTS

XMU1=-TAU1/VZ

YMU1=-TAU2/VZ

MU2 =-VGZ/VZ

DET =VX*VY-VXY*VXY

XMU3=-( VY*TAU1-VXY*TAU2)/DET

YMU3=-( -VXY*TAU1+VX*TAU2)/DET

MU4 =(VGZ*TAUL4-VZ*TAU3)/(VGZ*VGZ-VG*VZ)
MU5 =MU4*MU2

COMPUTE ARMA COEFFICIENTS

DO 16 K=0,KS

C(K)=TXA(K)

D(K)=TYA(K)

E(K)=GA(K)

F(K)=2TA(K)

CONTINUE

DO 45 J=1,KS
TXA(J)=C(J)+XMUI*F(KS-J)
TYA(J)=D(J)+YMU1*F(KS-J)
GA(J)=E(J-1)+MU2*F(J-1)
ZTA(J)=F(J)+XMU3*C(KS-J)+YMU3*D(KS-J)+MUL*E(J~1)+MUS*F(J-1)
CONTINUE

DO 31 K=0,KT

P(K)=TXB(K)

Q(K)=TYB(K)

S(K)=ZTB(K)

R(K)=GB(K)

CONTINUE

DO 55 J=1,KT
TXB(J)=P(J)+XMU1*S(KT+1-J)
TYB(J)=Q(J)+YMU1*S(KT+1-J)
GB(J) =R(J)+MU2*S(J)
ZTB(J)=S(J+1)+XMU3*P(KT-J)+YMU3*Q(KT-J)+MU4*R(J)+MUS*S(J)
CONTINUE

WRITE (*,176) KS

WRITE (9,176) KS

FORMAT(12)

WRITE (*,175) (ZTB(K), K=0,KT)

WRITE (9,175) (ZTB(K), K=0,KT)
FORMAT (4(1X,F10.5))

UPDATE ERRORS
FORMAT (/' S UPDATE ERROR IS: ',F15.10)
VX =VX+XMU1*TAU1

VY =VY+YMU1*TAU2
VKY=VXY+XMU1*TAU2
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VG =VG+MU2*VGZ
VZ=VZ+(XMU3*TAU1+YMU3*TAU2) +MUL*TAU3S+MUS*TAUL
VGZ=TAU3+MU2*TAU4
ERR=VY-(VXY**2)/VX
WRITE (*,650) ERR
WRITE (9,650) ERR
WRITE (*,888) VX,VY,VG,V2
888  FORMAT (4(1X,F10.6))

c COMPUTE MODEL COEFFICIENTS

DO 65 J=1,KS
A(J)=TYA(J)-TXA(J)*VXY/VX
65 CONTINUE

DO 70 J=1,KT
h B(J)=TYB(J)~-TXB(J)*VXY/VX
70 CONTINUE
B(0)=-VXY/VX
RETURN
END




sNeNsEsEsEsEsEsEsEsEs R e R Ry EsEsEvEsEsRoNoNoNsNoNsNoNoRoNsNoNoNoNoNoNoNsNoNoRoNoNoRe!

APPENDIX C. SUBROUTINE FOR MAIN PROGRAM

SUBROUTINE NEWMA(KS,KT,VX,VY,VXY,VG,VZ,VGZ,TXA,TXB,TYA,TYB,GA,GB, 2

&TA,Z2TB,RX,RY,RXY,RYX,A,B)

THIS SUBROUTINE COMPUTES MA PARAMETER VALUES FOR AN ARMA MODEL AS
THE MA ORDER INCREASES BY ONE.

Ks
KT

RY

RXY
RXY
TXA
TXB

TYA

GA

GB

ZTA

ZTB

BrrnOOUMmEOoO

TAU1P

TAU2P

TAU3P

VARTABLE DEFINITIONS

CURRENT AR ORDER
CURRENT MA ORDER

AUTOCORRELATION DATA OF INPUT VN
AUTOCORRELATION DATA OF OUTPUT Y
CROSSCORRELATION DATA OF INPUT AND OUTPUT
CROSSCORRELATION DATA OF OUTPUT AND INPUT

VECTOR CONTAINING

OF INPUT.

VECTOR CONTAINING

OF INPUT

VECTOR CONTAINING

OF OUTPUT

VECTOR CONTAINING

OF OUTPUT

VECTOR CONTAINING

OF INPUT

VECTOR CONTAINING

OF INPUT

VECTOR CONTAINING

OF OUTPUT

VECTOR CONTAINING

OF OUTPUT

ARRAY WHICH STORES
ARRAY WHICH STORES
ARRAY WHICH STORES
ARRAY WHICH STORES
ARRAY WHICH STORES
ARRAY WHICH STORES
ARRAY WHICH STORES
ARRAY WHICH STORES

ERROR COEFFICIENTS

AR

MA

AR

MA

AR

MA

AR

MA

COEFFICIENTS FOR

COEFFICIENTS FOR

FORWARD PREDICTION

FORWARD PREDICTION

COEFFICIENTS FOR FORWARD PREDICTION

COEFFICIENTS FOR FORWARD PREDICTION

COEFFICIENTS FOR BACKWARD PREDICTION

COEFFICIENTS FOR

COEFFICIENTS FOR

COEFFICIENTS FOR

CURRENT VALUES OF
CURRENT VALUES OF
CURRENT VALUES OF
CURRENT VALUES OF
CURRENT VALUES OF
CURRENT VALUES OF
CURRENT VALUES OF
CURRENT VALUES OF
VECTOR UPDATED AR COEFFICIENTS OF ARMA MODEL

VECTOR CONTAINING UPDATED MA COEFFICIENTS OF ARMA MODEL.
CONSTANT COMPUTED FROM CORRELATION DATA AND PREDICTION

BACKWARD PREDICTION

BACKWARD PREDICTION

BACKWARD PREDICTION

TXA
TYA
GA

ZTA
TXB
TYB
GB

ZTB

CONSTANT COMPUTED FROM CORRELATION DATA AND PREDICTION

ERROR COEFFICIENTS

CONSTANT COMPUTED FROM CORRELATION DATA AND PREDICTION
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ERROR COEFFICIENTS.

TAU4P - CONSTANT COMPUTED FROM CORRELATION DATA AND PREDICTION
ERROR COEFFICIENTS.

XETA1 - COEFFICIENT OF MA-TYPE RECURSIVE FORMULA

YETA1 - COEFFICIENT OF MA-TYPE RECURSIVE FORMULA

ETA2 - COEFFICIENT OF MA-TYPE RECURSIVE FORMULA

XETA3 - COEFFICIENT OF MA-TYPE RECURSIVE FORMULA

YETA3 - COEFFICIENT OF MA-TYPE RECURSIVE FORMULA

ETA4 - COEFFICIENT OF MA-TYPE RECURSIVE FORMULA

ETAS - COEFFICIENT OF MA-TYPE RECURSIVE FORMULA

DET - DETERMINANT OF PREDICTION ERROR MATRIX COMPOSED OF
VX, VY, VXY.
ERR - ERROR BETWEEN REFERENCE MODEL OUTPUT AND LATTICE

DIMENSION RX(0:2000),RY(0: 2000),RXY(0: 2000) ,RYX(0: 2000),A(0: 21)
DIMENSION B(0:21),TXA(0:21),TXB(0:21),TYA(0:21),TYB(0:21),GA(0:21)
DIMENSION GB(0:21),ZTA(0:21),2TB(0:21),C(0:21),D(0:21)

DIMENSION E(0:21),F(0:21),P(0:21),Q(0:21),R(0:21),S(0:21)

COMPUTE VALUES FOR TAUl PRIME THROUGH TAU4 PRIME

T1TP=0

T2TP=0

T3TP=0

T4TP=0

KJ=KT-1

DO 10 I=0,KJ

T1TP=T1TP+RX( I+1)*GB(KJ-I)
T2TP=T2TP-RXY( I+1)*GB(KJ-I)
T3TP=T3TP+RX(I+1)*ZTB(I)
T4TP=T4TP+RX( I+1)*GB(I)
CONTINUE

T1SP=0

T2S5P=0

T3SP=0

T4SP=0

DO 20 J=0,KS
T1SP=T1SP-RYX(J+1)*GA(KS-J)
T2SP=T2SP+RY(J+1)*GA(KS-J)
T3SP=T3SP-RXY(KJ-KS+1+J)*ZTA(J)
T4SP=T4SP-RXY(KJ-KS+1+J)*GA(J)
CONTINUE

TAU1P=T1TP+T1SP
TAU2P=T2TP+T2SP

TAU3P=T3TP+T3SP
TAU4LP=T4TP+T4SP

COMPUTE VALUES FOR REFLECTION COEFFICIENTS

XETA1=-TAU1P/VG

|
4
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YETA1=-TAU2P/VG

ETA2 =-VGZ/VG

DET =VX*VY-VXY*VXY
XETA3=-(VY*TAU1P-VXY*TAU2P)/DET

YETA3=-( -VXY*TAU1P+VX*TAU2P) /DET

ETA4 =(VGZ*TAU4P-VG*TAU3P)/(VGZ*VGZ-VG*VZ)
ETAS =ETA4*ETA2

COMPUTE ARMA PARAMETERS

DO 16 K=0,KT

P(K)=TXB(K)

Q(K)=TYB(K)

R(K)=GB(K)

S(K)=ZTB(K)

CONTINUE

FORMAT (4(1X,F10.5))

DO 45 J=1,KT
TXB(J)=P(J)+XETA1*R(KT-J)
TYB(J)=Q(J)+YETA1*R(KT-J)
GB(J)=R(J)+XETA3*P(KT-J)+YETA3*Q(KT-J)+ETA4L*S(J-1)+ETAS*R(J-1)
ZTB(J)=S(J-1)+ETA2*R(J-1)

CONTINUE

DO 41 K=0,KS

C(K)=TXA(X)

D(K)=TYA(K)

E(K)=GA(K)

F(K)=ZTA(K)

CONTINUE

FORMAT (5(1X,F10.5))

DO 55 J=1,KS
TXA(J)=C(J)+XETAI*E(KS+1-J)
TYA(J)=D(J)+YETA1*E(KS+1-J)
GA(J)=E(J+1)+XETA3*C(KS-J)+YETA3*D(KS-J)+ETAL*F(J)+ETAS*E(J)
ZTA(J)=F(J)+ETA2*E(J)

CONTINUE

UPDATE ERRORS

VX=VX+XETA1*TAU1P
=VY+YETA1*TAU2P
VXY=VXY+XETA1*TAU2P
VG=VG+( TAU1P*XETA3+TAU2P*YETA3)+ETA4*TAU3P+ETAS*TAU4LP
VZ=VZ+ETA2*VGZ
VGZ=TAU3P+ETA2*TAULP
ERR=VY-(VXY**2)/VX
WRITE (*,66) ERR
WRITE (9,66) ERR
FORMAT (/' T UPDATE ERROR IS: ',F15.10)

.-
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WRITE (*,889) VX,VY,VG,VZ
FORMAT (4(1X,F10.6))

COMPUTE MODEL COEFFICIENTS

DO 65 J=1,KT
B(J)=TYB(J)-TXB(J)*VXY/VX

CONTINUE

DO 70 J=1,KS
A(J)=TYA(J)-TXA(J)*VXY/VX
CONTINUE

B(0)=-VXY/VX

RETURN

END

63




eNeoNoRoNoNoNsNoRoNoNoNoNsoNoNeRoNoRsNoNoNsNoNoNoNoNoNOo NI NoRPNO NS NP

APPENDIX D. ADAPTIVE LATTICE ALGORITHM PROGRAM
THIS PROGRAM CALCULATES VALUES OF THE LATTICE COEFFICENTSAND
OUTPUT OF AN ARMA DIGITAL LATTICE FILTER USING AN ADAPTIVE
LATTICE ALGORITHM.

VARIABLE DEFINITIONS

X - ARRAY OF INPUT DATA, COMPUTER GENERATED WHITE GAUSSIAN
NOISE WITH UNIT VARIANCE.

AK - ARRAY OF LATTICE COEFFICIENTS.

R - ARRAY OF LATTICE COEFFICIENTS.

BO - TERMINAL CONDITION OF LATTICE REALIZATION.

M - NUMBER OF LATTICE STAGES (EQUIVALENT TO ORDER OF ARMA
MODEL).

EXF - ARRAY OF FORWARD PREDICTION ERRORS FOR INPUT X.

EXB ARRAY OF BACKWARD PREDICTION ERRORS FOR INPUT X.

EXBD - ARRAY OF DELAYED BACKWARD PREDICTION ERRORS FOR INPUT X.

EYF ARRAY OF FORWARD PREDICTION ERRORS FOR OUTPUT Y.

EYB ARRAY OF BACKWARD PREDICTION ERRORS FOR OUTPUT Y.

EYBD - ARRAY OF DELAYED BACKWARD PREDICTION ERRORS FOR OUTPUT Y.

ERROR - DIFFERENCE BETWEEN REFERENCE MODEL OUTPUT AND LATTICE
REALIZATION OUTPUT.

YE - ARRAYS CONTAINING LATTICE COEFFICIENT VALUES AT EACH
ITERATION.

MU - CONVERGENCE CONSTANT.

RHO - WEIGHT GIVEN TO CUURENT POWER LEVEL AT EACH STAGE OF THE

LATTICE STRUCTURE.

SIGK - POWER LEVEL USED TO NORMALIZE CONVERGENCE CONSTANT WHEN
UPDATING AK LATTICE COEFFICIENTS.

SIGR - POWER LEVEL USED TO NORMALIZE CONVERGENCE CONSTANT WHEN
UPDATING R LATTICE COEFFICIENTS.

SIGB - POWER LEVEL USED TO NORMALIZE CONVERGENCE CONSTANT WHEN
UPDATING TERMINAL CONDITION BO.

DIMENSION EXF(10),EXB(10),EXBD(10),EYF(10),EYB(10),EYBD(10),R(10)
DIMENSION AK(10), X(9900), ERROR(9900), V(12), YE(6,9900)

REAL MU

SIGK=1.

SIGR=1.

SIGB=1.

INITIALIZE ARRAYS
DO 5 I=1,10

EXF(I)=0
EXB(I)=0

L
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EXBD(I)=0
EYF(I)=0
EYB(I)=0
EYBD(I}=0
R(I)=0
AK(I)=0
CONTINUE
DO 6 1=1,9000
X(1)=0
ERROR(1)=0
CONTINUE

ENTER VALUE OF THE CONVERGENCE CONSTANT MU AND VALUE OF RHO.

M=2

N=300

WRITE (6,*) 'ENTER MU'
READ(6,*) MU

WRITE (6,*) 'ENTER RHO'
READ (6,%) RHO

GENERATE WHITE GAUSSIAN NOISE

ISIZE = N
IX = 152255
ISORT = 0
MUL = 2
DO 7 K= 1,ISIZE
CALL SRND(IX,V,12,MUL,ISORT)
XT=-6.0
DO 8 I=1,12
XT=XT+V(1)
X(K)=XT
CONTINUE

COMPUTE OUTPUT OF REFERENCE MODEL FILTER AND LATTICE STRUCTURE
THEN COMPUTE THE ERROR.

REFERENCE MODEL

¥3=0

Y2=0

Y1=0

X3=0

X2=0

X1=0

BO=1.

DO 100 I=1,N
YF=X(1)-0. 8%¥X1+1. 78%X2+0. 89%Y1-0. 25%Y2




YF=0. 5*X(1)~0. 4*X1+, 89%X2+0. 89%Y1-0. 25%Y2

YF=X(1)-2. 7%X1+3. 21%X2-1. 595*%X3+1. 95%Y1-1, 62*Y2+0. 54%Y3
YF=0. 5%X(I)~0.95%X1+1. 33%X2-0. 979%X3+1. 69%Y1-0. 962*Y2+40. 2*Y3
YF=X(I)+0. 2%X1-0. 35%X2+1. 4*Y1-0. 85%Y2

YF=0. 5%*X(I)~0. 2%¥X14+0. 445%X2+1. 0*Y1-0. 94*Y2

[oNeNoNe]

Q

| Y3=Y2
. Y2=Y1
: » Y1=YF
h c X3=X2
X2=X1
X1=X(1)

LATTICE FILTER

EXF(1)=X(I)
: EXB(1)=X(1)
- DO 10 K=1,M
10  EXF(K+1)=EXF(K)+R(K)*EXBD(K)-AK(K)*EYBD(K)
EYF(M+1)=BO*EXF(M+1)
DO 20 K=1,M
20 EYF(M+1-K)=EYF(M+2-K)+R(M+1-K)*EXBD(M+1-K) -AK(M+1-K)*EYBD(M+1-K)
EYB(1)=EYF(1)
DO 30 K=1,M-1
EXB(K+1)=EXBD(K)+R(K)*EXF(K)-R(K)*EYF(K)
30  EYB(K+1)=EYBD(K)+AK(K)*EYF(K)-AK(K)*EXF(K)
YL=EYF(1)
ERROR(I)=YF-YL
ERR=YF-YL
CALL UPDATE (R,AK,EYBD,EXBD,ERR,MU,M,SIGK,SIGR,B0,RHO)
CSB=EXF(M+1)*EXF(M+1)
SIGB=RHO*SIGB+( 1-RHO)*CSB
BO=BO+(MU/SIGB)*ERR*EXF(M+1)
DO 40 K=1,M
EXBD(K)=EXB(K)
40  EYBD(K)=EYB(K)
DO 50 J=1,M
YE(J,I)=AK(J)
S0 YE(J+M,I)=R(J)
202  FORMAT (2(1X,F10.6))
100  CONTINUE

aoaoa

c PRINT THE ERROR AND VALUES OF THE LATTICE COEFFICIENTS.

WRITE (*,200) (ERROR(K), K=1,N,10)
WRITE (9,200) (ERROR(K), K=1,N,10)
200 FORMAT (5(1X,F10.6))
WRITE (9,209)
209 FORMAT(' ")
WRITE (*,201) (R(K), K=1,M)
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WRITE (*,201) (AK(K), K=1,M)
WRITE (9,201) (R(K), K=1,M)

WRITE (9,201) (AK(K), K=1,M)
WRITE (*,205) BO

WRITE (9,205) BO

FORMAT (F10.6)

FORMAT (5(1X,F10.6))

CALL PLOTTING ROUTINES TO PLOT ERROR AND LATTICE COEFFICIENTS.

CALL PLOT (ERROR,N)
CALL PLOT1 (YE,N)
STOP

END

SUBROUTINE WHICH UPDATES LATTICE COEFFICIENTS.

SUBROUTINE UPDATE(R,AK,EYBD,EXBD,ERR,MU,M,SIGK,SIGR,BO0,RHO)
DIMENSION R(10),AK(10),EYBD(10),EXBD(10)
REAL MU

CSK=0.

CSR=0.

DO 20 J=1,M

CSK=CSK+EYBD( J)*EYBD(J)*BO¥*2
CSR=CSR+EXBD( J)*EXBD(J)*B0%%2
SIGK=RHO*SIGK+( 1~RHO)*CSK
SIGR=RHO*SIGR+( 1~RHO)*CSR

DO 10 J=1,M
R(J)=R(J)+(MU/SIGR)*ERR*EXBD(J)*B0
AK(J)=AK(J)-(MU/SIGK)*ERR*EYBD(J)*BO
CONTINUE

RETURN

END

PLOTTING ROUTINE TO PLOT ERROR

SUBROUTINE PLOT(Y,N)
DIMENSION Y(N),X(9900)
DO 10 J5=1,N

X(J)=J

CALL TEK618

CALL PRTPLT(72,6)

CALL SHERPA('ADAPTIVE','A',3)
CALL RESET('ALL')

CALL PAGE(8.50,6.0)
CALL HWROT('AUTO')
CALL XINTAX

CALL AREA2D(5.0,3.0)
CALL HEIGHT(O. 14)

CALL COMPLX
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CALL SHDCHR(90.0,1,0.002,1)

CALL HEADIN('LEARNING CURVES$',100,2.0,1)
CALL XNAME('ITERATIONSS',100)

CALL YNAME('ERRORS$',100)

CALL MESSAG(' ADAPTIVE FILTER §$',100,3.0,-0.8)
CALL THKFRM(O0.03)

CALL FRAME

CALL GRAF(0,'SCALE',N,-3.00, 'SCALE',3.00)
CALL THKCRV(0.02)

CALL CURVE(X,Y,N,0)

CALL ENDPL(0)

CALL DONEPL

RETURN

END

SUBRQUTINE TO PLOT LATTICE COEFFICIENTS

SUBROUTINE PLOT1 (YE,N)

DIMENSION YE(6,9900),X(9900),Y(9900),YD(9900),A(10)
TRUE VALUES OF THE PARAMETERS
A(1)=-0.240719

A(2)=0.125

A(3)=-0.195719

A(4)=0. 8900

A(5)=0. 89

DO 10 J=1,N

X(N=J

CALL TEK618

CALL PRTPLT(72,6)

CALL SHERPA( 'MENNECKE','A',3)

PRINT SHERPA FILE: SHERPA XXYYZZXX SHGRAPH A
CALL RESET('ALL')

CALL PAGE(8.50,6.0)

CALL HWROT('AUTO')

CALL XINTAX

CALL AREA2D(5.0,3.0)

CALL HEIGHT(O. 14)

CALL COMPLX

CALL SHDCHR(90.0,1,0.002,1)

CALL HEADIN('PARAMETERSS',100,2.0,1)
CALL XNAME('ITERATIONSS',100)

CALL YNAME('MAGNITUDES',100)

CALL MESSAG('ADAPTIVE ARMA LATTICE$',100,3.0,-0.8)
CALL THKFRM(O. 03)

CALL FRAME

CALL GRAF(O0,'SCALE',N,-1.00,"'SCALE',1.0)
CALL THKCRV(0.02)

TO PLOT ESTIMATES

DO 20 K=1,4
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DO 30 J=1,N
Y(J)=YE(K,J)

CALL CURVE(X,Y,N,0)
CONTINUE

TO PLOT TRUE PARAMETERS
DO 40 K=1,4

DO 50 J=1,N
Y(J)=A(K)

CALL DASH

CALL CURVE(X,Y,N,0)
CONTINUE

CALL ENDPL(0)

CALL DONEPL

RETURN

END
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APPENDIX E. DERIVATION OF DIFFERENCE EQUATION FOR TWO
STAGE ARMA LATTICE FILTER

The lattice filter is described by the expressions for the forward and backward pre-

diction errors, equations (3.6) and (3.7) respectively,

& (k) = x(K) + wy x(k = 1) = wy y(k = 1)

(k)= () +wje) (k—1)— wi e (k—1)

&, (k) =x(k — 1)+ wy x(k) — wy y(k) (E-1)
&, (k) = ¥k = 1) = sy (k) + w3 y(K)

e};( =¢f_,(k)+”4 C’b,(/\— )—”'3 ‘-’b,(k"l)

and the expression for the filter output,
slh) = & (k) + wy x(k = 1) = wy y(k — 1) (E-2)
Substituting for e (k) in equation (E-2) vields,
W) =l k) +wief k=) —wieh (k=D +wixtk—1)—wypk—1) (E-3)
Substituting for ¢;, (kK ~ 1) and ¢}, (kK — 1) in equation (E-3)

yk)= ef); (k) + wf [ xtk—2)+ wzl x(k—1)— wl yk=1) ]
—wi{ p(k=2) = wi x(k— 1)+ wy y(k— 1) ] (E—4)
4w x(k— 1) = wy 3k = 1)

Substituting for e}, (k) in (E-4) we obtain

w(k) = ¢f (k) +wh e (k— 1) — wi &} (k= 1)+ wj x(k = 2) + wi wy x(k — 1)
—wl i p(k = 1) = wl yk — 2) + wlw) x(k = 1) — wi wy j(k = 1) (E—=5)
ws x(k—1)—w; 3k = 1)

From (E-1), substitute for ¢; (k — 1) and ¢}, (k — 1) in (E-5) to obtain
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Ry =ef (kY +wi [ xlk=2)+ wy x(k = 1) = wi y(k— 1) ]
- wl2 [y(k -2)- wll x(k—1)+ w; yk=1) ]
+ wf x(k —2)+ wf wzl x(k—=1)— wf wy ik — 1) (E-0)
~wl p(k = 2) 4+ wiwl x(k = 1) — wi wi p(k = 1)
+wy x(k = 1) — wy y(k = 1)

Now, from (E-1), substituting for e; (k) in (E-6) vields

(k) = x(k) + wy x(k — 1) = wj y(k = 1) + wi x(k — 2) + wi wj x(k — 1)
— w3 wy yk = 1) =w] y(k — 2) + wi wi x(k — 1) = wi w3 y(k — 1)

+ wf x(k—2)+ w} wzl x(k—1) —w} wiy(k -1)- w32y(k -2) (E=7)
+wg wi x(k — 1) = wj wy p(k — 1) + wy x(k — 1) = w3 y(k — 1)
Grouping terms we get,
y(k) = x(k) + (w; + wzl w22 + w: wf + wzl wl + w]1 w32 + w‘}) x(tk—1)
+ (W] + w5) x(k = 2) g

— (W] + wy w22 + w; “"12 + uw, w} + w; w32 +wy) k= 1)
— (] + w]) p(k ~ 2)

From the gradient estimator and coefficient update equations we know that the follow-

ing relationships among lattice coefficients are true
el
wll = w; w) = w32 wzl = w‘i w22 = wf (E-9)

Using these equalities in equation (E-8), we obtain the final expression for the difference
equation,

yk)y=x(k) + .'Z(w21 + w; le + wzl wg) x(h—1)+2 w22 x(k —2)

E-10)
—2(w11+w21w22+wl‘wlz)y(k—l)—Zwlzy(k—2) ( ’
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