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L Introduction

Atomic transactions are a widely accepted mechanism for coping with failures and concurrency in database systems,
both distributed and centralized. Many algorithms have been proposed for concurrency coatrol and recovery [1].
Early work in this area considered only untyped objects: operations were either left uninterpreted, or were treated
simply as reads or writes. More recent wark has focused on typed objects, such as queues, directories, or counters,
that provide a richer set of operations. Several algorithms have beea proposed to enhance concurrency and recovery
by exploiting data objects’ type-specific properties {2, 13, 18, 22]. Most of these algorithms are locking schemes in
which conflicts are govemed by some notion of commutativity: lock modes for commuting operations do not
conflict.

This paper presents a new locking algorithm for concurrency control and recovery of typed data objects. As
discussed below, our algorithm permits more concurrency than many type-specific locking schemes in the literature
2,5.13,18,22]: our algorithm places fewer constraints on lock conflicts, thus permitting a larger set of
interleavings. Moreover, our algorithm is *‘upwardly compatible’* with these other schemes in the sense that they
can be used together in the same system without jeapordizing serializability or recovery.

In most of the type-specific algorithms in the literature, lock conflicts are governed by some notion of
commutativity: if two operations commute, their locks need not conflict. Informally, this condition arises in
conveational two-phase locking schemes as follows. If two transactions attempt to acquire conflicting locks, one
must wait for the other t0 complete. The induced delay ensures that the latter is serialized before the former.
Two-phase locking thus determines transaction serialization up to a partial order: transactions unrelated by the
transitive closure of this lock conflict relation may be serialized in an arbitrary order. Moreover, such unrelated
transactions may be sesialized in different orders at different data objects, or at different sites in a distributed system.
If the operations of concurrent transactions commute, thea all such focal orderings are equivalent and compatible
with a global total serialization ordering.

The basic idea behind our algorithm is quite simple. Transactions are serializable in the order they commit. As part
of each transaction’s commitment protocol, it generates a timestamp from a logical clock, and distributes that
timestamp to the objects it updated.3 Our algorithm augments the implicit partial order induced by lock conflicts
with the explicit total order induced by transactions’ commit timestamps. By making the serialization order explicit,
we can replace the commutativity requirement with a weaker notion, which we call dependency. For example, our
algorithms permits concurrent transactions to enqueue on a FIFO queue, even though the enqueue operations do not
commute.

Our algorithm is quite general: it works for arbitrary data types, including types with partial and non-deterministic
operations. Our treatment is systematic: necessary and sufficient conditions for locks to conflict are derived by
analyzing the object’s data type specification. We give a formal characterization of our notion of conflict, and we
prove our algorithm is correct. Because concurrency control and recovery interact in subtle ways, our descriptions
and proofs encompass both concurrency and recovery.

Section 2 defines our model of computation, and Section 3 gives a formal definition of atomicity. Section 4
describes our criteria for lock conflict, and Section § describes our algorithm and proves it correct. Section 6
discusses some pragmatic issues. Finally, section 7 closes with a discussion and summary.

’l\u-mwmmmummumwhwma-wﬂmhm
transactions are serialized in a statically predefined order.




2. Model of Computation

Our model of computation (22, 23] has two kinds of entities: transactions and objects. Each objoct provides
operations that can be called by transactions to examine and modify the object’s state. These operations constitute
the sole means by which transactions can access the state of the object. We typically use the symbols P, Q, and R
for transactions, and X, Y, and Z for objects.

Our model of computation is event-based, focusing on the cvents at the interiace between transactions and objects.
There are four kinds of events of interest:
o Invocation events, denoted <inv, X, P>, occur when a transaction P invokes an operation of object
X. The “inv"* field includes both the name of the operation and its arguments.
e Response events, denoted <res, X, P>, occur when an object retums & response res to an earlier
invocation by transaction P of an operation of object X.
o Commit events, denoted <commit(t), X, P>, occur when object X leams that transaction P has
committed with timestamp t. Timestamps are taken from a countable, totally ordered set.
e Abort events, denoted <abort, X, P>, occur when object X leamns that transaction P has aborted.
We refer to commit and abort events collectively as completion events. We say that event <e, X, P> involves X and
P.

We introduce some notation here. The symbol *‘e’* denotes concatenation of sequences, and the symbol ‘A’
denotes the empty sequence. If H is a sequence of events and X is a set of objects, we define HUY (“*H restricted 10
") 1 be the subsequence of H consisting of the events involving objects in 2. If 2 is a set of transactions, we
define H1P similarly. If X is an object and P is a transaction, we write HiX for HI{X}, and HIP for H{P}. We
define committed(H) to be the set of transactions for which commit events occur in H, and aborted(H) to be the set
of ransactions for which abort events occur. We also define completed(H) w0 be committed(H) L aborted(H), the
sct of ransactions that commit or abort in H.

Not all sequences of events make sense as computations. For example, a transaction should not commit at some
objects and abort at others, or commit with different timestamps at different objects. To capture these constraints,
we introduce a set of well-formedness constraints. A well-formed sequence of events is called a Aistory. We divide
our well-formedness constraints into two parts: constraints on the execution of individual transactions, and
constrsints on the timestamps that can appear in commit events, Individual transactions are constrained as follows:

o Each transaction P must wait for the response o its lagt invocation before invoking the next operation,
and an object can generate a response for P only if P has a pending invocation. More peecisely, let
op-events(H/P) be the subsequence of HIP comsisting of all invocation and respomse events; op-
events(HIP) must consist of an alternating sequence of iavocation and response events, beginaing with
an invocation event. In addition, an invocation event and the immediately succeeding responge event
must invalve the same object.

o Each transaction P can commit or abort in H, but not both; i.¢., committed(HIP) N aborted(HIP) = &,

e A transaction P cannot commit if it is waiting for the response 0 an invocation, and cannot invoke any
operations after it commits. More precisely, if Pe commitsed(HWP), thea HIP consists of op-cvents(HIP)
followed by some number of commit ovents, aad op-eveats(HIP) ends in & responss event.

These restrictions on transactions are intended to model the typical use of transactions in cxisting systems. A
transaction executes by invoking operations on objects, receiving results when the operations finish. Simce we
disafiow concwrency within a transaction, a transaction is permitted at most one pending invocation at aay time.
After receiving a response from all invocations, a transaction can commit at one or more objects. A transection is
not allowed to commit at some objects and abort at athers; this requirement, called atomic commimment, can be
impliemented using well-known commitment protocols (7, 15, 19,
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There are two additional constraints, which simply state that the timestamps chosen for transactions are unique, and
that a transaction chooses only one timestamp.

e Any two commit events in H for the same transaction have the same timestamp.

¢ Any two commit eveats in H for different transactions have different timestamps.
We place few restrictions on aborted transactions; for example, a transaction can continue to invoke operations after
it has aborted. We have two reasons for avoiding additional restrictions. First, we have no need for them in our
analysis. Second, and more important, additional restrictions might be too strong to model systems with
orphans [6, 16], and we would like our results to be as generally applicable as possible.

3. Atomicity

In this section we define atomicity and several related properties. The definitions are abstracted from {22, 23).
Unlike many earlier models that classify operations only as reads or writes, our model emphasizes abstraction, in
particular data abstraction. Atomicity is defined in terms of objects® specifications, so that transactions are atomic if
their execution appears to be serializable and recoverable to transactions, given only the specifications of the
objects. For example, a system may be atomic at one level of abstraction and non-atomic at lower levels.

3.1. Specifications
Each object has a serial specification, which defines its behavior in the absence of concurrency and failures. An
object’s scrial specification is a set of operation sequences. An operation is a pair consisting of an invocation and a
matching response. In addition, an operation identifies the object on which it is executed. We often speak
informally of an *‘operation’’ on an object, as in *‘the enq operation on a queue object.”” An operation in our formal
model is intended to represent a single execution of an “‘operation”’ as used in the informal sense. For example, the
following might be an operation (in the formal sense) on a queue object X:

X:[Enq(3),0k]
‘This operation represents an execution of the Enq operation of X with argument **3** and result *“Ok.”* For brevity,
we ofien say that an operation sequence is legal if it belongs to the serial specification currently of interest,

Each object also has a behavioral specification, which characterizes its behavior in the presence of concurrency and
failures. An object's behavioral specification is just a set of histories that contain events involving that object only.

3.2. Global Atomicity

Informally, a history of a system is atomic if the committed transactions in the history can be executed in some serial
order and have the same effect. In order to exploit type-specific properties, we need to define serializability and
atomicity in terms of the serial specifications of objects.

Since serial specifications are sets of operation sequences, not sets of histories, we need to establish a
correspondence between histories and operation sequences. We say that a history is serial if events for different
transactions are not interieaved. If H is a serial history, and P,, ..., P, are the transactions in H in the order in which
they appear, then we can write H as HIP,e..sHIP,. We say that a history H is failure-free if aborted(H) = @. Now,
if H is a serial failure-free history, we define OpSeq(H) (the operation sequence corresponding to H) as follows. For
a transaction P;, OpSeq(HIP,) is the operation sequence obtained from HIP, by pairing each invocation event with its
corresponding termination event, and discarding commit events and pending invocation events. For the full history
H, OpSeq(H) is defined 1o be OpSq(HIP, )e...«OpSeq(HIP,).

For example, if H is the serial failure-free history




<Enq(3).X.Q>
m»@'
<Commit(t1),X,Q>
<Deg( X P>
<3XP>
<commit(t2), X P>
then OpSeq(H) is the operation sequence

X:[Enq(3).0k]
X:[Deq( 3]

We say that a serial failure-free history H is acceptable at X if OpSeq(HIX) is an element of the serial specification
ofx:inodlawuds.ifﬂwneqweofopenﬁmsmHinvolvingxispammdbyﬂxgseﬁajspeciﬁgaﬁoigpfx, A
sexial failure-free history is accepiable if it is acceptable at every object X,

Two histories H and K ‘are equivalens if every transaction perfarms the same sequence of steps in each, ie., if HIP =
KIP for every traneaction P. I H is a history and T is a total order on transactions, we define Seria!/(H.T) to be the
serial hisory equivalent to H in -which transactions sppesr in the ordes T. Thus, if Py, ..., P, are the transactions in H
inthe order T, then Serial(H,T) = HIPo...oHP .

Let T be a total ordering of transactions. A failure-free history H is serializable in the order T if Serial(H,T) is
acceptable. In other words, H is serializable in the order T if, according to the serial specifications of the objects, it
is permissible for the transactions in H, when run in the order T, t0 execute the same steps as in H. We say that a
failure-free. hissory H is serializable if there exists a total order T on transactions such that H is serializable in the
order T.

Now, define permanent(H) to be Hicommitted(H). We then say that H is atomic if permanent(H) is serializable.
Thus, we: formalize recoverability. by throwing away eveats for non-committed transactions, and requiring that the
committed transactions be serializable. '

For example, the following histocy involving a first-in-first-out (FIPO) queu X is atomic:
<Eng(1), X, P>
X. P>

<Ok, ,
%). X, Q®
X, Q>
<Eng(3), X, P>
<0k, X, P>
<commit(2), X, P>
<commiy(1), X, Q>

Ty
R>

<LX,R>
<commit(s), X, R>

The kistry containg enly committed yanseceions, and is serializable in the order Q followed by P followed by R.

3.3, Local Atamicity

The delinition of atomicigy given shove is globgl: it applies to a histary of an entire sysiem. To bujld systems ina
mwoiddler, cxtenalile fadhion, it is importagt 10 defios local propecties of ghjects that gugraniee § desired globel
Jopanty sach as stesnioity. AWMWtyu-mt«mﬁaﬁme‘@mw@Mﬁw
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behavior is atomic. To design & local atomicity property, onc must ensure that the objects agree on at least one
serialization order for the commiited transactions. This problem can be difficult because each object has only local
information; no object has complete information about the global computation of the system. As illustrated in
[22,23], if different objects use *‘comect’ but incompatible concurrency control methods, non-serializable
executions can result. A local atomicity property describes how objects agree on a serialization order for committed
transactions.

In this section we define a particular local atomicity propesty, which we call kybrid atomiciry. This local atomicity
property uses the timestamps chosen when transactions commit to coastrain each object’s local serialization order.
The only difficulty is that an object does not kmow what timestamp will be chosen by a transaction until the
transaction commits. This difficulty is alleviated by placing certain simple constraints on the timestamp generation
method. If H is a history, define precedes(H) to be the following relation on transactions: (P,Q) € precedes(H) if
and only if there exists an operation invoked by ( that returns & result afier P commits in H. The relation
precedes(H) captures potential “‘information flow" between transactions: if (P,Q) € precedes(H), then some
operation executed by Q occurred in H after P committed, hence Q may have acquired a lock released by P, which
would imply that Q must be serializable after P.

Now, let TS(H) be the pertial order on transactions defined by (P.Q) € TS(H) if P and Q commit in H and the
timestamp for P is less than the timestamp for Q. We require the timestamp generation method to satisfy the
following constraint: the timestamp order on committed transactions must be consistent with the precedes order at
cach object. In other words, precedes(HIX) ¢ TS(H) for all objects X. Informally, this constraint requires that if Q
runs at X and sees that P has already committed, then Q must choose 8 timestamp greater than P’s. This constraint
is satisfied by timestamp generation algorithms based on logical clocks [14], and by algorithms that piggyback
timestamp information on the messages of a commit protocol.

A history H is hybrid atomic if permaneat(H) is serializable in the order TS(H). (Notice that TS(H) defines a total
order on committed(H).) An object is hybrid atomic if every history permitted by its behavioral specification is
hybrid atomic. Hybrid atomicity is a local atomicity property [22, 23]
Theorem 1: If every object in a system is hybrid atomic, thea every history in the system’s behavior is
atomic.
As an aside, wremukthathyhdamncuyuanoptimallomlawmncnypmpmy' no strictly weaker local
property suffices to ensure global atomicity [22, 23].

3.4. Online Hybrid Atomicity
Our algorithm is pessimistic: it permits an active transaction to commit whenever it is not executing an operation.
The notion of oaline kybrid atomicity captures this property.

If H is a history and C is a set of transactions, we say that C is a commit set for H if committed(H) ¢ C and C N
sborted(H) = @. In other words, C is a set of transactions that have already committed or might commit. Now, if H
is a history, define Known(H) = Precedes(H) U TS(H). Known(HIX) captures what X ‘‘knows’’ about the
timestamp order on all transactions, both committed and active. Each objact must then be prepared for active
transactions o choose timestamps in any order congistent with the object’s local knowledge. Thus, we say that a
history H is online kybrid atomic at X if, for every commit set C for H, and for every total order T consistent with
Known(H), HIC is serializable in the order T. H is online kybrid atomic if, for all objects X, H is online hybrid
atomic at X.

The following lemma is immediate:




Lemma 2: If H is online hybrid atomic, H is also hybrid atomic.
The algorithm proposed in this paper guarantees online hybrid atomicity,

The queue history shown eartier is hybrid atomic; in fact, cach of its prefixes is online hybrid atomic. In a prefix in
whichl either P or Q does not commit, Known(H) is empty, but the history is serializable in either order (P followed
by Q or Q followed by P). Once P and Q commit, Known(H) contains the pair (QP). Once R executes an
operation, Known(H) also contains the pairs (P.R) and (Q.R), and thus defines a total order Q-P-R on thie three
transactions; for a prefix containing one of R's operations to be oaline hybrid atomic, it noeds to be serializable in
the order Q-P-R, which, as argued carlier, it is.

4. Conflicts and Concurrency

This section describes our criteria for lock conflict. We begin with an informal overview of the locking protocol
itself, and then we present a formal definition of our notion of dependency. We conclude with a series of examples
iflustrating how dependency applies to a variety of common data types.

4.1. Overview

Our protocol uses an approach similar to typical locking protocols: an operation determines whether it can proceed
based on whether other active transactions have executed conflicting operations. However, our notion of
*sconflicts’* is less restrictive than in previous work; in addition, unlike most previous work we describe precisely
how commits and sbosts of transactions are handled.

The protocol maintains three components for each object.

« Each transaction has an intentions list consisting of the sequence of operations to be applied to the
object if the transaction commits. (As defined earlier, each operation consists of an invocation,
argument values, termination condition, and result values.)

o The objoct’s committed state reflects the effects of commitied transactions. For now, it is convenient to
treat the committed state as if it were simply the intentions lists for the committed transactions, arranged
in timestamp order. In section 6, we describe a more compact and efficient representation.

o A set of locks associstes each operation with the set of active transactions that have executed that
operation. Locks are related by a symmetric conflict relation whose properties are discussed in the next
section. Weﬁow%bdeoﬂiarﬂaﬁonmubwuﬂmﬂuhwmwms
not forced 0 do so.

When a transaction invokes an operation, it first constructs a view by appending its own intentions list to the
commited stase. It then chooses a result comsistent with the view. Before appending the new operation to its
intentions list, however, the transaction requests a lock for the operation. If another active transaction holds a
conflicting lock, the lock request is refused, the result ig discarded, and the invocation is later retried. (The
invocation may return a different result when it is retried.) If the lock is granted, the operation is appended to the
tmmsaction’s inteations list and the response is retumed. (If the lock conflict relation being used does not take
results into account, the lock can be requested before choosing the response.) When a transaction commits, its
intentions list is merged into the committed state in timestamp order. When # transaction commits or aborts, its
locks ass released and its inteations list is discarded.

As sn example, consider the history involving a2 FIFO queue shown carlier. As shown below in Section 4.3,
enqueus operations on a FIFO queve need not conflict. Thus, our protocol aliows concurrent enqueues, and in
pasticaler aliows the history shown eartier. The order in which concurrently engueued items should be dequeued is
devermined by the commit timestamps chosen by the concurrent transactions. Notice that enqueues do not commute,




50 commutativity-based protocols would not allow the same history,

4.2. Conflicts and Concurrency
The basic constraint govemning lock conflicts is the notion of dependency. operations p and ¢ cannot execute
concurrently if one depends on the other. Let # be a binary relation between operations, and let & be an operation
sequence.
Deflnition 3: A binary relation # on operations is & dependency relation for Serial if for all operation
sequences & and , and all operations p, such that
1. Ao kand h ¢ p are legal, and

2. forallgink, (g, p) € R
hepekislcgal

1n other words, if & is legal afier A, p is legal after A, and no operation in k *‘depends on’’ p, then it should be legal to
do k aftes p.

A dependency relation # is minimal if there is no A c £ that is also a dependency relation. We will see that an
object may have several distinct minimal dependency relations. We prove in Section § that our protocol is correct if
and only if the lock conflict relation is 8 symmetric dependency relation.

The following lemmas describe some important properties of dependency relations.
Lemma 4: Let D be a dependency relation, h an operation sequence, and &, and &, operation sequences
such that A ¢ k; and A ¢ k, are both legal. If no operation in &, depends on an operation in £, (i.c., for all
q ink;and g, in k), (¢;.9)6 D). then h o ky o k, is legal.
Proof: By induction on the length of k,. The result is immediate if k, is empty. For the induction step,
assume that k, = X,’ © p, and that the theorem holds for all sequeaces shorter than £,. The sequence h o &)’
islegal asaprefix of h e k), h e k)’ @ p is legal by hypothesis, and & ® £," ¢ £, is legal by the induction
hypothesis. Since no operation in &, dependsonp, Ao &)’ e pe k) = h o k, o k, is legal by Definition 3. O
Definition §: A subsequence g of A is £-closed if whenever g contains an operation ¢ of k it also contains
every earlier operation p such that ¢ #p.
Definition 6: A subsequence g of A is a A-view of h for ¢ if g is A-closed, and if it includes every pin A
such that ¢ #p.

The next lemma is the key o proving the correctness of our algorithm. It says that to determine whether an
operation is legal after a sequence of operations, it suffices to test whether it is legal after a subsequence that
constitutes a A-view for the operation.
Lemma 7: Let £ be a dependency relation for Serial, and g and A sequences in Serial such that g is a
R-view of A for an operation q. If g ¢ ¢ is in Serial,s0ish e q.
Proof: We show by induction on the number of operations in A but not in g that s @ g is legal. If & = g, the
result is immediate. Assume g is missing at least one operation of A, and assume the result for views
missing fewer operations. Let A= h, @ p o j,, where p is the first operation in hbutnoting. Letg=h, o
8padg’ =h epeg,

The sequence h, ¢ p is legal as a prefix of &, and &, ® g, ® ¢ = g @ g is legal by hypothesis. Since g is a
A-view of A for ¢, no operation in g, ¢ ¢ depends on p, thus h, e p e g, @ g = g° » g is legal by Definition 3.

Since g’ is a A-view of A for ¢, g’ ® q is legal, and g’ is missing fewer operations of A than g, it follows
from the induction hypothesis that & ¢ ¢ is legal. o
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43. Examples

The definition of a dependency relation given in the previous section is not constructive: it merely gives a test for
whether a given relation is a dependency relation. In this section we describe one way of deriving dependency
relations more systematically from the serial specifications for objects, and give some examples of dependency
relations for particular types of objects.

One way of defining a dependency relation for an object is to say that an operation depends on any earlier operations
that might invalidase it. More precisely,
Definition 8: Operation p invalidates operation q if there exist operation sequences 4, and k, such that &,
epehyandh e hyeqarclegal,buthyepehyeqisnot
Definition 9: Define the relation invalidated-by to contain all pairs (g p) such that p invalidates q.

The following theorem shows that this definition yields a dependency relation:
Theorem 10: Invalidated-by is a dependency relation.
Proof: If not, then there exist sequences A and £ and an operation p such that &  p and A e k are legal, no
operation in £ is invalidated by p, but h e p e k is illegal. Let ke p o k* @ g be the shortest illegal prefix of
heopeok. Thescquencehek’' o gislegal asaprefixof hek, hepe k' islegal by construction, buth e p e
k' ¢ g is illegal, hence q is invalidated by p, a contradiction. a

While invalidated-by is a dependency relation, it need not be a minimal dependency relation.

The remainder of this section describes dependency relations for certain simple objects, illustrating how the notion
eacompasses partial operations, non-deterministic operations, and operations’ responses. We caution the reader not
1o confuse dependency relations and conflict relations, Dependency relations need not be symmetric; the conflict
relations used in our algorithm, however, must be symmetric. A conflict relation will typically be constructed by
taking the symmetric closure of a dependency relation.

A File provides Read and Write operations:

Read = Operation() Returns (Value)

Write = Operation(Valua)
where Read returns the most recently written value. The unique minimal dependency relation for File objects is
shown in Figure 4-1, where an entry indicates that the row operation depends oa the column operation, whea the
indicated condition holdg. This relation is the invalidated-by relation for a File object. In this example, a read
operation depends on a write operation when their argument values are distinct. Note that write operations do not
depead on one another, Thus, our protocol can allow concurrent writes; when this happens, later transactions will
read the value writien by the transaction with the later commit timestamp. Our profocol thus encompasses and
generalizes the Thomas Write Rule [21).

Read(),v | Write(v),0k
ReadQ,v' vay
Write(v"),0k

Figure 4-1: Minimal Dependency Relation for File

A FIFO Quoue object has two operatiors, Eag and Deg, where Enq places an item at the end of a queue, and Deq
removes and roturns the item from the front of the queue. (If the queuc is empty, Deq blacks; thus, its specification
is parial) FIFO Queues have two distinct minimal depeadency relations, shown in Figuges 4-2 apd 4-3. The
comresponding conflict relations (obtained by taking the symmetric closures of the depeadency relstions) impose
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incomparable constraints on concurrency. In Figure 4-2, which is the invalidated-by relation for FIFO Queues, a
Deq operation involving a given item depends on both Enq operations involving differeat items and Deq operations
involving the same item, implying that Deq cannot execute concurreatly with other Enq or Deg operations, but Enq
operations can execute concurrently. In Figure 4-3, Enq operations involving different items depend on one another,
and Deq operations involving the same items depend on one another, but Deq operations do not depend on Eng
operations, and vice-versa. (It may seem counter-intuitive that Deq operations do not need to depead on Eng
operations; however, it should become clear when we present our protocol why this is 80.) With the dependency
relation in Figure 4-3, an enqueuing transaction can execute concurrently with a dequeuing transaction as long as the
latter can dequeue items enqueued by committed transactions,

Enq(v),0k | DeqQ,v

Eng(v"),0k
DeqQ.v’ vav' v=v'
Figure 4-2: First Minimal Dependency Relation for Queue

Enq(v),Ok | Deq(,v
Eng(v),0k| v=#v’
DeqQ.v’ v=v’
Figure 4-3;: Second Minimal Dependency Relation for Queue

Constraints on concurrency can often be relaxed by introducing non-determinism into sequential specifications. A
Semiqueue provides Ins and Rem operations:

Ins = Operation (Item)

Rem = Operstion() Retums(Item)
Ins inserts an item in the Semiqueue, and Rem non-deterministically removes and returns an item from the
Semiqueue. Like Deq, Rem returns only when there is an item (0 remove. (There may be an additional probabilistic
guarantee, not captured by our functional specifications, that the item removed is likely to be the oldest one.) A
Semiqueue object has the unique minimal dependency relation shown in Figure 4-4. This dependency relation
prevents Rem operations that retum the same items from executing concurrently, but allows Ins operations to
execute concurrently with Rem operations, and with one another.

Ins(v), Ok | Rem(), v

Ins(v"), Ok

Rem(), v’ v=yV

Figure 4-4: Minimal Dependency Relation for SemiQueue

’

An Account provides Credit, Post, and Debit operations:

Credit = Operation (Dollar)

Post = Operstion (Percent)

Debit = Opexation(Dollar) Signals (Overdraft)
Credit increments the account balance by a specified amount. Post posts interest; for example, [Past(5),0k]
multiplies the account balance by 1.05. Debit attempts to decrement the balance. If the amount to be debited
exceeds the balance, the operation returns with an exception, leaving the balance unchanged. Account has a unique
minimal dependency relation shown in Figure 4-5. As in several of the previous examples, this relation is the
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invalidated-by relation for Account objects. An interesting aspect of this relation is that it enhances concurrency by
taking operations’ responses into account. For example, Credit locks need not conflict with locks for successful
debits, aithough they must conflict with locks for attempted overdrafts, because increasing the account balance
cannot invalidate a successful debit, but it can invalidate an Overdraft exception. If both kinds of debit operations
were treated alike, debits and credits would have to be mutually exclusive, a significant cost if attempted overdrafts
were infrequent. An example implementation of Account appears in the appendix.

Credit(n),Ok | Post(n),Ok | Debit(n),Ok | Debit(n),Overdraft
Credit(m),0k
Post(m),0k
Debit(m),0k true
Debit(m).Overdraft true true

Figure 4-5; Minimal Dependency Relation for Account

5. A Hybrid Locking Protocol

This section presents a formal description of our locking protocol, together with its proof of correctness. The
description here is designed to emphasize the general strategy followed by the protocol, and to highlight the
differences with other locking protocols. In section 6, we discuss some issues that arise when designing an efficient
implementation of this protocol for a particular data type. In the appendix, we preseat an example implementation
of an Account object, illustrating how propertics of the data type can be used to design efficient implementations.

Given the serial specification Serial of an object X, the protocol described below ensures that all histories generated
by the implementation of X are hybrid atomic. For ease of exposition, we will not refer specifically to X unless
necessary; thus, when we refer to an ‘“operation’’ we mean an operation of X, and similarly for events.

5.1. The Protocol

A smte machine is an automaton given by a set of states, a set of transitions, an initial state, and a partial transition
function that maps (state,transition) pairs to states. If the transition function is defined on a given pair (s.t), we say
that t is defined in 5. The transition function can be extended in the obvious way to finite sequences of transitions.
We say that a sequence of transitions is accepted by a machine M if it is defined in the initial state of M. We define
the language of a machine M (denoted L(M)) to be the set of finite sequences of transitions that are accepted by M.

The protocol is described by a state machine LOCK whose language consists of a set of event sequences. The
machine uses a particular conflict relation, Conylict, 1 test whether one operation conflicts with another. We
assume that Conflict is symmetric. To describe the protocol, however, we do not need to make any other
assumptions about the conflict relation used by the protocol. In the next section we will show that conflict relations
derived from dependency relations are both necessary and sufficient 80 ensure correctness of the implementation, in
the sense that every complete history in L(LOCK) is hybrid atomic.

A state 8 of LOCK congists of four components: s.pending, s.intentions, s.committed, and s.sborted. Spending is a
partial function from transactions to invocation events. S.intentions is a total function from transactions to
sequences of operations. S.committed is a partial function from transactions to timestamps. S.aborted is a set of
transactions.

S.pending recards pending invocations for transactions. Since each transaction ig initially quicscont, s.pending is




undefined for all transactions in the initial state of LOCK. S.intentions records the sequence of operations executed
by each transaction. In the initial state of LOCK, s.intentions maps each transaction to the empty sequence. There
are no "locks” recorded explicitly in this formal model of the algorithm; instead, the set of locks held by a
transaction is implicit in the transaction’s intentions list. S.committed allows us to tell which transactions have
committed, and for each committed transaction records its timestamp. S.committed is initially undefined for all
transactions. S.aborted records the set of transactions that have aborted, and is initially empty.

If 3 is a state of LOCK, define s.completed to be s.aborted U (P | s.committed(P) # L}; s.completed thus consists of
all transactions that have either committed or aborted. If Q ¢ s.completed, define View(Q,S) to be the operation
sequence obtained by concatenating the intentions lists for all committed transactions in timestamp order, and then
appending the intentions list for Q.4

The transitions of LOCK are the events involving X; their preconditions and postconditions are described below.
For brevity, we assume that all input histories are well-formed. (Well-formedness could be checked explicitly by
adding more state components and preconditions.) In the descriptions, the expression m[a — b}, where m is a
(possibly partial) function from domains A to B, ac A, and be B, denotes the function identical 10 m except at a,
which it mapsto b.

In describing transitions, we write preconditions and postconditions for events, using the convention that s* denotes
the state before the indicated event, and s denotes the state after the event. In addition, a state component that is not
mentioned in the postcondition for an event is assumed to be unchanged by the occurrence of that event.

Invocation, commit, and abort events are inputs controlled by the transactions; thus, their preconditions are True.
The transition for each event is quite simple: the event is simply recorded in the state of LOCK.
<i,X,.Q>
Postcondition:
s.pending = s°.pending[Q —» i)
<commit(t),X.Q>
Postcondition:
s.committed = s’.committed[Q — t]
<abort X.Q>
Postcondition:
s.aborted = ’.aborted U {Q)

Response events are somewhat more complicated:

%MVMQJ)hmnmmhuﬁwmmuhiﬁﬁu In every reachable state, however, cnly
finitely many transactions have committed, 80 View(Q.s) is well-defined.
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< X.Q>
P fition:
8'.pending(Q) # L
Q & s’ completed
Let g = <s' pending(Q).r>
V'ww(Q.s)-qe Serial
for all transactions P ¢ s’.completed L {Q},

and for all operations.p in 8’ .intentions(P),
<pa> € Conflict
P fit

s.pending = s’ .pending{Q — 1]

s.intentions = s’ .intentions[Q —» 3'.intentions(Q) ¢ q]
To return a response 0 a transaction, there are scveral requirements. First, the transaction must have a pending
invocation. Second, the transaction must not have already completed. Third, the operation. (congisting of. the
<invocation, resuit> pair) must be legal in the transaction’s ‘‘view.’’ Finally, the operation must not copflict with
any other operation already executed by another active transaction. If all these roquirements aor. mey, the. response
event can occur, causing the pending invocation to be removed from the state and the inseations list for the
transaction to be updated to record the new operation.

Notice that s.intentions is retained for all transactions, including committed transactions. Thus, the ‘‘committed
state’’ is simply the intentions lists for the committed transactions, arranged in timestamp order. Thig approach is
clearly not practical. Nevertheless, it permits us to describe the protocol in a simple and general manner. All other
recovery methods seem to be special cases of this use of intentions lists, in the sense that they record no more
information about the past in the state. In addition, some other recovery methods seem 1o require restricting
concurrency more than is nceded for intentions lists. In later soctions, we will show that there age simple
optimizations that can be used in real implementations that make it possible to discard inteations lists for committed
transactions.

5.2, Correctness Proof
We wish to prove the following theorem:

Theorem 11: If Conflict is a dependency relation, then every history in L(LOCK) is hybrid atomic.

WewmmmifCWHctisadependmymhﬁon.MevayhiminwDCK)hmﬂmhyhiqamicat
X. Given Lemma 2, this suffices to prove Theorem 11.

We start with & simple lemma relating the state of LOCK after a history to the events in the history; the proof
involves a simple induction on the leagth of histories in L{LOCK), and is omitted.
Lemma 12: Let H be a history in L(LOCK), let s be the state of LOCK after H, and let Q be a transaction.
© OpSeq(HKQ) = s.intentions(Q).
* OpSeq(HIQ) ends in the invocation eveat <i,X,Q> ¢» s.pending(Q) = i.
& <commit(t),X,Q> appears in H «» s.committed(Q) = ¢.
* abored(H) = s.aborted.

The next lemma shows that active transactions do not conflict.

Lemma 13 Let H be a hisiory in L(LOCK), and lot s be the stgie of LOCK ger L ¥ P % Q, P ¢
cmmuocmm«m Mnmh&m&n@)mmzm@ph
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Proof; An easy induction on the length of H. D

The next lemma shows s basic property of two-phase locking. It says that if two transactions are concurrent (neither
commits before the other exccutes an operation), then there are no lock conflicts between them.,

Lemma 14: Let H be a history in LILOCK). If P and Q are transactions such that P « Q, P ¢ Aborted(H),
Q ¢ Aborted(H), (P.Q) & Precedes(H), and (Q.P) € Precedes(H), then no opemation in OpSeq(HIP)
conflicts with an operation in OpSeq(HIQ).

Proof: We make use of the previous lemma. Let G be the largest prefix of H that does not contain a
commit event for P or Q, and let s be the state of LOCK after G. Neither P nor Q is in Completed(G).
Therefore, by Lemma 13, no operation in s.intentions(P) conflicts with an operation in s.intentions(Q). By
Lemma 12, OpSeq(GPP) = s.intentions(P) and OpSeq(GIQ) = s.intentions(Q), and consequently no
operation in OpSeq(GIP) conflicts with an operation in OpSeq(GIQ).

We now claim that OpSeq(GIP) = OpSeq(HIP) and OpSeq(GIQ) = OpSeq(HIQ). Since no operation in
OpSeq(GIP) conflicts with an operation in OpSeq(GIQ), this suffices to prove the lemma. We show the
claim by contradiction. We consider P; the proof for Q is symmetric. Suppose OpSeq(GIP) =
OpSeq(HIP). Then OpSeq(HIP) is longer than OpSeq(GIP); let <i,r> be the first operation that occurs in

that does not occur in OpSeq(GP). It follows that the event <t X,P> occurs in H and not in
G. Furthermore, <¢,X,P> must occur in H after a commit event for either P or Q, since G is the largest
prefix of H that does not contain a commit event for either P or Q. The event <r, X, P> cannot occur after a
commit event for P, since H is well-formed; therefore, it occurs after a commit event for Q. This implies,
however, that (Q,P) € Precedes(H), which contradicts one of the hypotheses of the lemma, D

The next lemma is needed to show that View(Q,s) contains enough information to compute the result of an
operation.
Lemma 15: Let H be a history in LLOCK), and let s;; be the state of LOCK afier H. Let C be a commit
set for H, and let P be an active transaction in C, i.e., P € C - Committed(H). Finally, let T be a total
ademmmcammtmmxnown(ﬂ)mmat(Q.P)e T for every Q € Committed(H). Then
View(P.sy,) is a Conflict-closed subsequence of OpSeq(Serial(HIC,T)).
Proof: We first argue that View(P.s;)) is a subsequence of OpSeq(Serial(HIC,T)); we then show that it is
Conflict-closed.

Vw@;u)nmmwm%mnms(m for each Q in Committed(H), indexed in the
ocder given by s,;.commitied(Q), and then appending sy;.intentions(P). By Lemma 12, sy;.intentions(R) =
OpSeq(HIR) for every transaction R, nddxeadungenbysﬂ.canmmed(Q)umemeasTS(H) Thaus,
View(P.sy;) = OpSeq(HIQ;) © ... » OpSeq(HIQ,) ® OpScq(HIP), where Q,,....Q, are the transactions in
Committed(H) in the order specified by TS(H). Since T is consistent with TS(H) and (Q.,P) € T for every
Qe Cmnwdai).meopuamnschw(PsH)appeamﬂwmeadumOPSeq(Sanl(mCﬂ)
Thus, View(Ps,,) is a subsequence of OpSeq(Serial(HIC,T)).

Now we show that View(P s,,) is a Conflict-closed subsequence of OpSeq(Serial(HIC,T)). We proceed by
induction on the length of H. The basis case, when H = A, is immediate.

For the induction step, suppose H # A, and assume that the theorem holds for all histories in L{LOCK)
that are shorter than H. Then H = K ¢ ¢ for some history K in L(LOCK) and some event e. Let s¢ be the
state of LOCK after K. By induction, the lemma holds for K and .

First, note that Precedes(K) ¢ Precedes(H), TS(K) ¢ TS(H), Commitied(K) ¢ Committed(H), and
Aborted(K) ¢ Aborted(H). Thus, C and T satisfy the conditions of the lemma for K. By induction,
View(Psy) is a Conflict-closed subsequence of OpSeq(Serial(KIC,T)). There are three cases to consider,
depending on the type of e.
1. Suppose e is an invocation or abort cvent for some transaction R. Then sy .ingentions =
s‘.imdon.mdsﬂmmimd-axmmimd. Thus, View(P,8;)) = View(P,sy). If ¢ is an
abort event, Re C. Otherwise, note that OpSeq throws away pending invocation events. In either
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case, OpSeq(Serial(HIC,T)) = OpSeq(Serial(KIC,T)). The result follows from the induction
hypothesis.

2. Suppose ¢ is a commit event for some transaction R. Since OpSeq throws away commit and abort
cvents, OpSeq(Serial(HIC,T)) = OpSeq(Serial(KIC,T)). In addition, View(P 8,,) is obtained from
View(P sy) by inserting OpSeq(HIR) in the position determined by the timestamp for R. To show
that View(P 3,) is a Conflict-closed subsequence of OpSeq(Serial(HIC,T)), we must show that for
every operation in View(P sy;), every earlier conflicting operation from OpSeq(Serial(HIC,T)) is
also in View(R,s;;). By the induction hypothesis, this is trae for operations that sre in both
View(P 3,,) and View(P.sy). The operations that are in View(P.s;;) but not in View(P sy) are the
operations in sy.intentions(R). Suppose an operation r in OpSeq(Serial(HIC.T)) precedes some
operation q in sy.intentions(R) and conflicts with it, and let S be the transaction that executed r.
Then by Lemma 14 and the constraints on T, <S,R> € Precedes(H). By the definition of
Precedes(H), S € Committed(H), and thus 7 appears in View(P,sy,).

3. Finally, suppose that ¢ is a response event <r,X,R>. If P=R the result follows from the induction
hypothesis and the precondition for e, since the operation added (0 s,.intentions(P) by e cannot
conflict with operations executed by active transactions, and all other operations in
OpSeq(Serial(HIC,T)) are in View(Psy).

If P and R are distinct, then View(P,s;) = View(P.sy). If R ¢ C, then OpSeq(Serial(HIC,T)) =
OpSeq(Serial(KIC,T)), and the result follows by induction. Otheswise, OpSeq(Serial(HIC,T))
differs from OpSeq(Serial(KIC,T)) in that it contains an extra operation for R. Since H is well-
formed, R ¢ Committed(H). By Lemma 14, an operation executed by R conmflicts with an
operation executed by another transaction S only if <S,R> € Precedes(H). Therefore, every
operation in OpSeq(Serial(HIC,T)) that conflicts with an operation ¢ executed by R appears
before g. The result follows by induction.

a

Now we are ready o prove the main result.

Theorem 16: Suppose H is a history in L(LOCK), and suppose Conflict is a dependency relation. Then H
is online bybrid atomic at X.

Proef: The proof praceeds by induction on the leagth of H. The basis case, when H = A, is immediate.

For the induction step, suppose H = A, and assume the result for all histories in LILOCK) shorter than
H. Then H = K o ¢ for some history K in L{LOCK) and some event ¢. Since K is shorter than H, the
theorem holds for K.

Note that all eveats in H (and K) involve only X; thus, H = HIX.
Let sy be the state of LOCK after K.

Now, let C be a commit set for H, and let T be a total order on transactions consistent with Known(H). To
show that H is online hybrid atomic at X, it suffices to show that HIC is serializable in the order T, ie.,
that OpSeq(Serial(HIC,T)) is legal.

First, note that Precedes(K) C Precedes(H), TS(K) c TS(H), Committed(K) ¢ Committed(H), and
Aborted(K) ¢ Aborted(H). Thus, C and T satisfy the conditions of the definition of on-liné hybrid
stomicity for K. There are now two cases, depending on the type of e.
1. Supposs e is a commit, abort, or invocation event. Note that OpSeq throws away pending
invocation events, commit cvents, and abort events. Thus, OpSeq(Serial(HIC.T)) =
OpSoq(Serial(KIC,T)). Since the theorem holds for K, it also holds for H.

2. Suppcse thet e is a response cvent <r, X, P>. This is the difficult cass. Note that if P ¢ C then HIC
= KIC, and the result follows from the induction hypothesis. So assumne that Pe C.

Lat Active = C — Committed(H). The sequence OpSeq(Seriad(HIC,T)) cann be written as &, o
OpSeq(HIP) o A, where k; = OpSeq(serial(HIC,)) and &, = OpSeq(seriak(HIC,)), and C, and C,
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are chosen such that Committed(H) < C;, C, < Active, and P £ C, U C,. The sequences 4; and
h,wspemvdycmmﬂwopaaﬁmsofmmuduedhefmndaﬂu?byT C,conmns
Committed(H) because T is consistent with Precedes(H), and since e = <1, XP>, it follows from
the definition of Precedes(H) that (Q,P) € Precedes(H) for all Q € Committed(H). Note that &; =
OpSeq(Serial(KIC, ), since P & C;.

Since P is executing a response event, and H is well-formed, no commit event for P appears in
H. Also, C, is chosen such that C; < Active; thus, if Q € C,, no commit event can appear in H
for Q. It is an immediate consequence of the definitions that P and Q are unrelated by
Precedes(H). Thus, by Lemma 14, no operation in OpSeq(HIP) conflicts with an operatioa in
OpSeq(HIQ) for any Q € C,. By the definition of Ay, no operation in OpSeq(HIP) conflicts with
an operation in &,.

Weshowthnhph,mdhpOpSeq(HlP)mbothlcgﬂ. Since no operation in OpSeq(HIP)
conflicts with an operation in A,, it then follows from Lemma 4 that &, ® OpSeq(HIP) ¢ &, is also
legal, giving the desired result.

To show that h; ® h, is legal, we note that it is simply OpSeq(Serial(HIC — (P}.T)), which is the
same as OpSeq(Serial(KIC — {P},T)). By the induction hypothesis, this sequence is legal.

To show that A, e OpSeq(HP) is legal, note that OpSeq(HIP) = OpSeq(KIP) ¢ <ir> for some
invocation i. By induction, &;  OpSeq(KIP) is legal, since it equals OpSeq(serial(KIC,U{P),T)).
By the precondition for e, <i,r> does not conflict with any operation in OpSeq(HIQ) for any Q €
Active; thus, View(P,sy) contains all operations of &; ® OpSeq(KIP) with which <i,r> conflicts.
Since ¢ is a response event for P, (Q,P) € Precedes(H) for all Q € Committed(H). Since T is
consistent with Known(H), K, C, and T satisfy the hypotheses of Lemma 15, which then implies
that View(P,s,) is a Conflict-closed subsequence of A, ® OpSeq(KIP). By the precondition for e,
View(P,sy) and View(P,s) ¢ <i,r> are both legal, hence by Lemma 7, so is 4, ® OpSeq(KIP) «
<i,r> = k) ¢ OpSeq(HIF).
D

The theorem above shows that a sufficient condition for LOCK to be correct is that the conflict relation be a
dependency relation. We now show that this is also a necessary condition.
Theorem 17: If the conflict relation used in LOCK is not a dependency relation for Serial, then L(LOCK)
contains a history that is not online hybrid atomic.
Proof: If the conflict relation is not a dependency relation, choose sequences & and & and an operation p
such that k ¢ p and & » k are legal, no operation in & conflicts with p, and & ¢ p ¢ k is not legal. Consider
the following scenario. Transaction P executes the operations in & and commits, Q executes p, and R
executes the operations in k. By hypothesis, p does not conflict with any operations executed by R. If Q
commits with a lower timestamp than R, the accepted history is not serializable in timestamp order. ]

6. Compaction

Although the use of intentions lists facilitates our proofs, it has the disadvantage that object representations are
neither compact nor efficient. For example, the size of a Queue representation has no relation to the number of
items present in the quene, and the item at the head of the quene must be found by a linear search. These problems
can be alleviated by replacing intentions lists with more compact and efficieat representations. For example, we can
replace a sequence of operations with the state (or version) that results from applying those operations to the initial
state. For a Quene or Semiquene, & version might be represented by an array or a linked list, while for an Account
an integer cell might be used.

In this section, we describe a general technique for discarding intentions lists for committed transactions, replacing

them with the version that represents their net effect. Each object keeps track of an operation sequence that forms a
prefix for every view that will henceforth be assembled by sny transaction. Each view is assembled by appending

L P I s -
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maeqwof'ummionslinsbmecomonpmﬁx When a committed transaction is sufficiently old, it can be
“‘forgotien’* by appending its inteations list to the common prefix, discarding both its intentions list and its commit
timostamp. This common prefix is represented compactly as a version.

1t is important o realize that a transaction cannot necessasily be forgotten as soon as it commits, because intentions
lists must be appended o the common prefix in commit timestamp order, but commit events for concurrent
transactions need not occur in timestamp order. Instead, care must be taken to ensure that a transaction is forgotten
only when no active transaction can commit with an earlier timestamp. To recognize whea it is safe to forget a
transaction, we introduce some auxiliary components 10 our state machine. S.clock keeps track of the latest
observed commit timestamp; it has an initial value of —ee. S.bound is a partial function from transactions to commit
timestamps, initially undefined for all transactions. If Q is an active transactioa, s.bound(Q) is a lower bound on the
possible commit timestamps that Q could choose when it commits.

We add the following postconditions to the transitions for LOCK:
<iXQ
3.bound = s’ .bound[Q — s.clock]

<.X,Q> o
s.bound = s’ bound[Q — s.clock]

<commit(),X.Q>
Postcondition:
s.clock = max(s’ clock,t)
s.bound = s*.bound[Q — 1]
<abort X,Q> ’
s.bound = 8’.bound(Q — 1)
These additional components have no effect on LILOCK); they serve only for bookkeeping. The ides is that we
maintain a local clock that equals the maximum of the commit timestamps for transactions that have committed at
the object. Since the commit timestamp order is required to be consistent with the precedes order at each object, the
lower bound on the commit timestamp for an active transaction is increased to the current clock time whenever the
transaction invokes an operation or has an operation retum. If Q is active and <iX.Q> occurs, then by the
constraints on commit timestamps the timestamp eventually chosen by Q must be greater than the commit
timestamp for any transaction committed at X at the time that <i,X,Q> occurs, and similarly for <, X,Q>. Thus, the
current clock time whea <i,X,Q> or <, X,Q> occurs does constitute a lower bound on the commit timestamp
eventually chosen by Q.

Before describing details of how intentions lists are compacted, we present some properties of s.bound and s.clock.
We start with a simple lemma relating these auxiliary components of LOCK 10 the other components. The proof
involves a simpie induction on the length of histories in L{LOCK), and is omitied.
Lemma 18: Let Q be a transaction, H a history in L(LOCK), and s the state of LOCK after accepting H.
1. If s.b0und(Q) is defined, there exists a transaction P such that s.couamitted(P) = 5.bound(Q).
2. If s.committed(Q) is defined, s.commited(Q) < s.clock.

3. if s.committed(Q) is undefined and s.intentions(Q) « A, then s.bound(Q) is defined.
The following lemma doscribes how s.bound and s.committed give information sbout Known(H); in particular, it

(sogether with the first part of Lemma 18) shows that s.bound(Q) is & lower bound on Q's eventual commit
timostamp.
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Lemma 19: Let P and R be transactions, H a history in L(LOCK), and s the stase of LOCK afier accepting
H. If s.bound(R) and s.committed(P) are defined and s.committed(P) < sbound(R), then (PR) €

Proof: By induction on the length of H. The result is immediate when H is empty. For the induction step,
let H= G ¢ ¢, where ¢ is a single event, and let 8’ be the state after G, and s the state after H. Fix a pair of
transactions P and R. If e is associated with any transaction other than P or R, the values of s.bound(R) and
s.committed(P) are unaffected. The result holds vacuously if e is an abort, invocation, or response for P,
because s.committed(P) is undefined. The result is also vacuous if e is an abort or commit for R, becanse
sbound(R) is undefined. If e is an invocation or response for R, then sbound(R) = sclock 2
s.committed(P), by Lemma 18. Moareover, (PR) € Known(H), since R executed an invocation or
response after P committed. Suppoee e is <commit(t),X.P>. If ¢ > s.bound(R), the result holds vacuously.
Otherwise, by Lemma 18, there exists a transaction Q such that s.committed(Q) = s.bound(R). By the
induction hypothesis, (Q,R) € Known(G), and since Known(G) ¢ Known(H), (Q.R) € Known(H).
Suppose s.committed(P) = s.committied(Q); then P = Q (by well-formedness), and by induction (P.R) €
Known(H). Otherwise, s.committed(P) < s.committed(Q), so (P.Q) € TS(H), and thus by transitivity we
have that (P,R) € Known(H). o

Now we describe how intentions lists are compacted. Let s be a state of LOCK. Informally, the horizon time for s
is a lower bound on the commit timestamp that can be chosen by an active transaction. The result of concatenating
the intentions lists of all transactions whose commit timestamps precede the horizon time is certain to be a prefix of
every transaction’s view, and thus can be compacted into a version. More formally:

Definition 20: s.horizon = max( —eo, min( min(s.bound(P) | s.bound(P) # 1},

max (s.committed(P) | s.committed(P) # 1} ))

In other words, the horizon time is either —o (if there are no active or committed transactions), or it is the smaller of
the smallest bound for an active transaction and the largest commit timestamp for a committed transaction. If there
are no active transactions, then the horizon timestamp is the largest commit timestamp. If there is an active
transaction, however, all we know about its eventual commit timestamp is that it will be bigger than the recorded
lower bound for the transaction, so we should not compact intentions lists for committed transactions whose
timestamps are bigger than that lower bound.

Let Q,.....Q, be the sequence of transactions for which s.commit is defined, indexed in timestamp order, and let
Qq~-Qy be the subsequence of transactions such that s.commit(Q) < shorizon. We define the fellowing
“‘suxiliary’® components.

Deflnition 21: s.permanent = s.intentions(Q,) © ... ¢ intentions(Q,)

Definition 22: s.common = s.intentions(Q,) ¢ ... ¢ intentions(Q,)
Clearly, s.common is a prefix of s.permanent. To compute the response to an invocation for Q, we need 0 compute
View(s,Q). If Q is an active transaction, then View(s,Q) = s.permanent o s.intentions(Q), of which s.common is a
prefix. Thus, s.common can be compacted into a single version. To show that this is true, we show that s.common
grows monotonically.

Lemma 23: Let H= G o ¢ be a history in L(LOCK), and let 55 and 8y; be states of LOCK after G and

H. Thea sg.common is a prefix of 3;;.common.

Proof: If e is an invocation, response, or abort event for Q, then sy;.committed = 8;.committed, and

s bound(Q) either equals 5;.bound(Q), becomes larger than s;.bound(Q), or becomes L. Regardless,

8y horizon 2 sg.horizon. Since sy.committed = s;.committed, sg.common is a prefix of s;;.common.

If ¢ is & commit event for Q, there are two cases. If ¢ is the first commit event for Q, 80 sg.common is 8

prefix of sy.common. Otherwise, 55.common = s,;.common. o

The following thearem follows easily from the sbove lemma.
Theorem 24: Let G and H be histories in L(LOCK) such that G is a prefix of H, and les s and 3;; be

= o ro————-




mates of LOCK after G and H. Then sg.common is a prefix of s;;.consmen.

Since s.common grows monotonically, we can represent it by kecping @ varsion s.version and periodically
computing & new version by applying (in commit timestamp order) the intomtions lists for transactions P with
s.bomnd{P) < s.herizon 10 s.version.

It is not always necessary 0 keep explicit track of transactions’ lewer bounds. For example, if ane operation
cenflicts with every other opesation, as Doq does in Figure 4-2 (ignoring: the espussontand vosilt valats), then all
committed transactions can be forgotten whenever a dequeuing tansaction commits or aborts. Transsction Q may
acquire a Deq Jock only if no ether active transaction has exccuted any eperssions, implying thet shewnd(P) = L for
all P distinct from Q, and heace s.horizon = sbound(Q). The commitied state of a queue can be represonted s a
single comawitted version together with a set of intentions consisting entirely of Eng operations. “Thus, the size of
the represcotation would be proportional 10 the number of clements in the qucve.

The Queue conflict relation shown in Figure 4-3 can also be specially optimized. Here, all opesations that do set
conflict commaute, thus a transaction can be forgotton a3 s00n as it commits ot an object. Thevesdlting stheme is
equivalent to a commututivity-based locking scheme of Weihl {22, 25].

7. Discussion

7.1. Comparison With Commutativity-Based Schemes

As mentioned above, the precedes order captures potential *‘information flow'® between transactions. Most
mechanisms based on two-phase locking ensure that transactions are serialinable in every tal order consistent with
precedes, a propesty known as dymamic atomicity [22,23). Conflict-based comcumency conirol mechanizms for
dynamic atomicity include those proposed by Eswaran et al. (5], Korth [13), Bernstein et al. [2), and Weihl [22, 25).
These mechanisms are all based on a notion of commutativity. Informally, two operstions commmute if executing
them in cither order always yields the same results and the same final object state. If two eperations do not
commute, their locks must conflict.

We now show that *“failure to commute®* is & dependency relation, ahhough ot mecossatity « winimal dependency
relstion. It follows that our protocol is less restrictive than the commumtivity-based protocel ched above; our
protocol can achieve at least as much concumrency. Our exmmples show et Jotk conflict reletions imduced by
dependency may be weaker then or incomparable w0 those induced by the commutati vity<based protocols.

We use the following notion of commutativity taken from [22], s notion that encompasses both partial and non-
) . .
Definition 25: Two operation sequences & and A’ are equivalent if they canmot be distinguished by any
future computation: A e g is legal if and only if A’ ¢ g is legal for all operation sequences g.
Definition 26: Two operations p and g commute if for all operation ssgquences &, whenover hepunih o g
aroboth legal, then ko pe gand & ¢ ¢ ¢ p are legal and equivalent.

Lowmesn I7: if Ao pamd A © Laxe operation sequences andd p commutes with every opisation in k,

thmhtp-t-nkobpmh'lhuslquim d
" Preof: By induction on the number of operations in &. The result is trivial when & is-empty. For the
imduction step, suppose k = &' ¢ ¢, where g is a single operation, and asswne the resiit hodds for . Then
by induction, he p o &’ is legal and equivalent 0 A e £' ¢ p, Bylyrllmwt"q (= h-ok) in loghl.
‘Since pand g commute, Ao k' o p o ¢ is logal and equivalent 10 A ¢ £'o @e p. ‘The latier Is just A-o:k-4 p.
Zhefameheqﬁvnlwtohopok'-q.inoeluk’ophequinht»h'pok’. ‘Butthisisjusthepe
D
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Theorem 28: *‘Failure 10 commute’’ is a depeadency relation.

Proof: Let AC denote failure to commute. Let A and k be operation sequences and let p be an operation
such that kek and kep are legal, and such that for all ¢ in £, (¢p) € AC. It suffices to show that Aepek is
Jegal. This is immediate from Lemma 27. o

Lock coaflict relations induced by dependency may be weaker than or incomparsble to those induced by
commutativity. For example, consider an Account object. Commutativity-based protocols impose a lock conflict
relation that includes (at least) the conflicts shown in Figure 7-1. This conflict relation permits strictly less
concurrency than the dependency relation shown in Figure 4-5. The additional restrictions arise because the
commutativity-based protocols require Post operations to conflict with Credit and Debit operations, while the
dependency-based protocols do not. In the Queue example, by contrast, the commutativity-based protocols induce
lock conflicts identical to those induced by the minimal dependeacy relation shown in Figure 4-3. Here, however,
the commutativity-based protocols do not permit the incomparable coaflict relation induced by the minimal
dependency relation in Figure 4-2.

Credit(n),Ok | Post(n),Ok | Debit(n),Ok | Debit(n),Overdraft
Credit(m),0k true true
Post(m),0k true true true
Debit(m),0k troe true
Debit(m),Overdraft true true

Figure 7-1: *‘Failure to Commute'’ Relation for Account

In addition to requiring fewer conflicts than commutativity-based protocols, our work also generalizes most other
work on type-specific two-phase locking by allowing the results returned by an operation to be used in choosing the
appropriate lock, and by permitting operations to be partial and non-deterministic. Some other protocols (¢.g.,
see {18]) achieve the effect of using information about results by acquiring a restrictive lock when as operation
starts running, and then *‘down-grading’’ the lock depending on how the operation actually executes. The resulting
protocol violates two-phase locking, and as a result ad hoc correctness arguments are usually given. Our protocol
shows how the results of an operation, as well as names and arguments, can be used systematically to determine the
lock needed. (The commutativity-based protocols in [22, 25] also permit result information to be used in choosing
locks.)

In addition, other protocols (except for those in [22, 25]) require operations to be total and deterministic. Partial
operations are important for modeling producer-consumer relationships, in which one transaction is consuming data
produced by another. Such situations, while perhaps uncommon in traditional database applications, are more
common in general distributed or object-oriented systems. Similarly, non-deterministic operations are an important
source of concurrency; compare, for example, the dependency relations for Quene and SemiQueue shown earlier.
(Noa-determinismn can also increase availability; see [8] for an example.)

Another way in which our work differs from most other work on type-specific concurrency control is in the
treatment of recovery. With the exception of [22, 25}, the other work ignores recovery.

A more general form of hybrid atomicity is defined in (22, 23], permitting read-only transactions to be treated
specially, as in the multi-version protocols in [3, 4, 24]. Timestamps for read-only transactions are chosen when
they start, while timestamps for other transactions are chosen when they commit. This algorithm is the origin of the
term “‘hybeid asomicity,” since the protocols combine aspects of dynamic atomic protocols (such as common
two-phase protocols) and static atomic protocols (such as Reed’s multiversion protocol). In fact, hybrid atomicity is
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vpward compatible with dynamic atomic protocols: dynamic atomic protocols guarantee serializability of
committed transactions in all total orders consistent with Precedes(H); since TS(H) is one such order, global
atomicity is still obtsined when dynamic and hybrid atomic objects are combined in a single system.

Our results suggest that dependency is a more fundamental property than commutativity for understanding
concurrency control for typed objects. In addition, the notion of a dependency relation arises in a variety of other
related contexts.5 The constraints on the availability realizable by quorum consensus replication [8] can be
expressed in terms of dependency relations. Dependency relations also form the basis for validation in type-specific
optimistic coacurrency control mechanisms [9], as well as type-specific locking schemes based on multi-version
timestamping [10), and schemes that provide high levels of availability in the presence of partitions {11].

To summarize, we have defined a new locking protocol that permits more concurrency than existing commutativity-
based protocols. It permits operations 10 be both partial and non-deterministic, and it permits results of operations to
be used in choosing Jocks. The protocol exploits type-specific properties of objects; we have shown how to define a
necessary and sufficient set of constraints on lock conflicts directly from the data type specification. The protocol is
optimal in the sense that no hybrid atomic locking scheme can permit more concurrency.

L An Example Implementation

To illustrate how our locking protocol might be used in practice, this appendix describes an implementation of the
Account data type using Avalon/C++ (12], a programming language that supports hybrid atomicity. We assume
some familiarity with C++ [20]. Although Avalon/C++ supports nested transactions, this example assumes only a
single-level transaction model.

We start by describing the subsidiary data types used by the Account implementation. Avalon programmers do not
manipulate transaction timestamps directly. Instead, Avalon provides a tzans_id data type to permit the
programmer to test serialization orders at run-time.
class trans_id: publio reaoverable {
pxivate:
.
tzans_id(); // coastructoxr
bool operatorwm(trans_ids who); // equal?
bool operator<(trans 1dt who); // serialized before?
. // othexr operations
}:

A transaction generates an identifier by a call to new:

trans_id* who = new trans_id;
Transaction identifiers are partially ordered by the overioaded operators **>** and *‘<."” If transactions P and Q
respectively create identifiers t1 and (2, then the expression

tl < t2

evaluates to rue if and only if (P,Q) € Known(H), where H is the current history.

// representation

An account object maintains lock information in a lock table,
enum lock_type {CREDIT_LOCK, POST_LOCK, DEBIT LOCK, OVERDRAFT LOCK);

ﬁhﬁﬂ-dnwwﬁmhﬁmhMMﬁuhhoﬁcmwnﬂmhhusﬂyiovnlobe

$Avalon/C++ defines OO 10 be mn cnumenation typs with TRUE set o0 | and FALSE set to 0,
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class lock_tab {
private:

e
lock_tab(); // comstzuctor
void define(lock _type model, // xegister a lock conflict
lock_type model);
bool conflict (lock_type mode, // ok to grant look?
trans id* who);
void grant (lock_type mode, // give lock to caller
tzans_id* who):;
void release(trans_id* who); // relesse caller’s locks.
}:
The account operations are represeated by the enumerstion type lock_type. An empty lock table is created by
declaring a variable of type lock_tab, and the dafine operation marks two operations as conflicting. The
conflict operation takes & lock type and a transaction identifier, and retumns true if no other transaction holds a
conflicting lock. The grant operation grants a lock for a specified operation, and release discards all locks held
by a transaction.

The net effect of a transaction that executes multiple Credits, Debits, and Posts is t0 replace the balance b by the
affine ransformation m*b+a for some m and a. Each transaction’s intention is recorded in the following struct:

struct intent (flcat mul; float add;
intent (float m, float a) (ml = »; add = a;);
| H

The last component defines a constructor operation for initislizing the struct. The intention associated with each
transaction is kept in g table:

class inteat _tadb {( // map trana -> inteaticm.
private:

// representation
publia:

intent_tah(): // constructox

intent lockup (tzans_id* who); // retumm inteation
void insext (trans_id* who, // bind trans to iateotiocn
intent what);
void discard (trans id* who); // discard intention
| H
Lookup returns & transaction’s current ingention. If none exists, it retums an inteation with multiplicative and
additive components 1.0 and 0.0 respectively,
Intentions for committed transactions are discarded using the horizon time scheme described in Section 6. Each
active transaction keeps track of the latest committed transaction guaranteed to be serialized before itself. This
information is kept in a table:

class bound tadb { // map trans ~> lower bound
private:

cee // representation
publie:

bound _tab(): // oonstructoxr .

void insert(trans_ id* who, // xegister new lower bound

trans_ id* bad);
void discard(trans_id* who); // discard lower bound
, tzane_id* min(): // borizon transaction

Transactions that are committed but not yet forgotien are kept in a heap.
class 14 heap ( // sorted heap of transactions

R . o
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private

// representation
publie:

34 hesp(); // comstzuctor

tzans_id* top(); // rekurn oldast transactioa
trans_id* remove(): // zemove oldast transactica
void insext (trans_id* who); // insart tzansaction

bool empty(); // is hesp empty?

) H]
This data type provides operations for croating an empty heap, inserting a transaction identifier in the heap, and
observing or removing the oldest (i.c., minimal with respect to **<"") identifier in the hoap.

We are now ready 10 examine the Account implementation itself.
class account: public subatosdo (
private:

lock_tab locks; // locks foxr oparations
intent_tab intemtions; // intenticns list
float s // ccmmitted balanoce
44 heap committed; // committed but unforgotten transactiocns
trzans_id* alock; // wost Tecent transacticm to commit
bound tab bounds; // earliast possible commit times
void foxget(): // fox forgetting committed transacticas
status sufficient (trans_id* who, // balance ocovers debit?
float amt);
publio:
acoount () ;

|}

The “‘public subastomic’® declaration means that this data type (‘‘class’” in C++ terminology) inherits certain
operations necessary for short-term synchronization and for ensuring that the object is recorded properly on stable
storage. The object’s internal representation is given by the fields following the keyword private. The locks
component keeps track of the locks, intent_tab records transactions’ intentions, bal is the account balance left
by “‘forgotten’* committed transactions, and committed keeps track of transactions that have committed but have
not yet been forgotten. The internal function forget uses the clock and bounds fields 10 implesnent the
compaction scheme described in Section 6. The internal function sufficient detarmines whether the balance
covers an attempted debdit by a particular transaction.

When an account is created, the account constructor is invoked:

Ploning() { // making update
clock = new trans_ id; // oloak is oreator’'s id
bal = 0.0; // zero initial balance

)
To ensure proper crash recovery, all modifications 10 the object must occur inside a pinning statement. Most of
the object’s members are implicilly initislized. The clock is initialized with the croasor’s identifier, the balance is
initialized 0 zero, and the lock table is initialized with the conflict relation shown in Figure 4-5.




The Credit function is implemented as follows.

void aracr.::oxedit (float amt) {
tzany_id* who = new trans_id;
when T1locks. oennl.ot(ﬂlbt! LOCK, who))
planing() {

louks .grant (CREDIT_LOCK, who);
intent i = intentions.loockup (vho)’
1.04d = §.2d4 + ant;
intentions.insext (who, 1);
bounds.insert (vho, olock)’
}

}

// Get callex’s id.
// Chack foxr comflict.
// Making update.

// Aoquire leek ...
// and cuxrent intention.

// Bacoxd credit ...
// and register new intantion.
// Wote new bound.

Each atomic object has an associsted mutual exclusion lock, similar © a monitor lock. The when statement is
similer © a guarded command. It repestedly acquires the lock and evaluates the condition. If the condition is true,
the associated statement is executed and the lock is released. Otherwise, the lock is released and the condition is
retried after an arbitrary duration. The Credit operation generstes an identifier for the caller, and checks for lock
conflicts. If none is found, the caller’s intention is updated, and the curremt clock value is recorded as the

transaction’s acw bound. The Post operation is similar, and is omitted.

Debit is slightly more complex.
bool scocount::debit (float amt) (
tzans_id* who = new trams_id;
wvhenowitch (sufficient (who, amt)) {
case YES:
ploning() {
locks.grant (DERIY_IOCK, who):

// Get callex’as 44

// debit ok

// Making vpdate.
// loak ...

Mz-mmm), // £ind Antention ...

i.add = {.add - amt;
intentions.insect (wbo, 1);
bounds . insext (who, clock);
retum TRUR;
)
case NO:
pioaing() {
locks.grant (OVVERDRAFT_LOCK, who) ;
return FALSR:
}
)
}

// recoxd debit ...

// and register new intention.
// ¥ota new bound ...

// and zeturn sucocess code.

// Ok to refuse dabit.
// Making update.

Illo@l.:-hok

udntunm:dn!toodo

The whenswitch statement is a gonecalization of the when statement that replaces the boolean expression with an
expression of an enumeration type. Here, Debit calls upon the intemnal procedure syfficient, which returns YES if the
account balance covers the debit, NO if the debit should be refused, and MAYBE if lock conflicts leave the account
status ambiguous.

The code for agficient sppears below.
enum status (YES, WO, MAYER);

status acoount::sufficient (trans _id* who, float amt)(
float view = bal; // Comstzuct view
44 heap h; h = committed; // Copy heap of committed id's.
vhile (th.empty()) ( // Apply each committed intemtion.
i = intentions.lockup (h.xremove()):;
view = 1 .aul * view + i.add;
)
Ma-m-ummm). // apply csllar's isteatica.
view = i .mal * view + 1.0dd

// Sufficient funds?
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if (view >= amt &6 !loocks.coaflict (DERIT_IOCK, who)) setuzn YES;

// Insufficient funds?
if (view < amt && !locks.oonflict (OVERDRAFT XIOCK, who)) xeturn WD;

// Can’t tell.
return MAYEE;
}

Atomic objects in Avalon/C++ provide commit and abort operations, which are called by the system when
transactions commit or abort. The commit operation for Account is the following:
void account::coamit (truns_id* who)

vhen (TRUE) // Always ok to commit.
pinning() { // Updating object.
1f (®*clock < *who) cloack = who; // Advanoce olock.
looks.relesse (who) ; // Ralease locks.
bounds .discard (who) ; // Discard beund.
committed. insert (who); // Mark as committed.
foxget () ; // Try to forget.

}
}

The clock is advanced, the committing transaction’s locks are released, its lower bound is discarded, the transaction
is marked as committed. The internal function forget is called to forget committed transactions:
void account::forget () {
trans_id¢ horizon = bounds.min()’
wvhile (locommitted.ampty() &6 *(committed.top()) < *horiszom) {
trans_id+* ¢ = committed.remove(); // Remove the transactiom,
intent i = igtemtions.leckup(t); // f£ind its intention,
bal = 1.mul * bal + i.add; // spply it,
intentions.discaxd(t); // and disocaxd it.
}
}
This function recomputes the horizon time, and applies and discards the intentions for all committed transactions
serialized before the borizon.

Abort is similar to commit:
' void acoount::abort (trans_id* who) {
when (IRUE) // Always ok to abozt.
planing() { // Updating cbject.
loaks.release (who) ; // Release locks.
bounds.discaxd (who) ; // Discard bound.
intentions.discaxd (who) ; // Discard intenticms.
:‘MO: // %xy to foxget.
}
References
{11 P.A.Bemstein and N. Goodman.

Concurrency control in distributed database systems.
ACM Computing Surveys 13(2):185-222, June, 1981.

{Z) P.A.Bemstein, N. Goodman, and M.Y. Lai.
Two-part proof schema for databese concurrency control,

lnl';;;.lrmnmky Workshop on Distribused Data Managemen: and Computer ntsweovis. February,




3]

4

(5]

(6l

(8]

9]

(10

(11}

(12)

(13]

(14)

(15}

25

A. Chan, S. Fox, W.T, Lin, A. Nori, and D. Ries.
The implementation of an integrased concusrency control and recovery scheme.
In Proceedings of the 1982 SIGMOD Conference. ACM SIGMOD, 1982,

DJ. Dubourdieu.

ion of distributed transactions.

In Proceedings 1982 Berkeley Workshop on Distributed Data Management and Computer Networks, pages
81-94. 1982,

K.P. Eswaran, ] N. Gray, R.A. Lorie, and LL. Traiger.
‘The notion of consistency and predicate locks in a database system.
Communications ACM 19(11):624-633, November, 1976,

Goree, J. A,

Internal consistency of a distributed transaction system with orphan detection.
Master's thesis, MIT, January, 1983.

Avgilable as MIT/LCS/TR-286.

Gray, J.

Notes on Database Operating Systems.

Inl.ecqu’t;;in Computer Science. Volume 60: Operating Systems — An Advanced Course. Springes-
Verlag, 1978.

M.P. Hexlihy.
A quorum-consensus replication method for abstract data types.
ACM Transactions on Computer Systems 4(1), February, 1986.

M.P. Hexlihy.

Optimistic control for abstract data types.

In Fifth ACM 9.*)'slé;AC'l'-SIGOI’S Symposium on Principles of Distributed Computing, pages 206-217.
Angust, 1986.

MP. Hexlihy.

Extending Multiversion Timestamping Protocols to Exploit Type Information.
IEEE Transactions on Computers C-35(4), April, 1987.

Special issue on parallel and distributed computing.

M.P. Herlihy.
ACM Transactions on Database Systems 12(2), June, 1987.
Also available as TR CMU-CS-86-147.

M.P, Herlihy and J.M. Wing.

Avalon: Language Support for Relisbie Distributed Systems.

In 17th Symposium on Fault-Tolerans Computer Systems. July, 1987.
Also availsble as TR CMU-CS-86-167.

HF. Korth,
Locking primitives in a database system.
Journal of the ACM 3((1), January, 1983,

L. Lamport.

Time, clocks, and the ordering of events in a distributed

Communications of the ACM 21(7):558-565, July, 1978.

Lampeon, B.

Atomic transactions.

In Goos and Hartmanis (editors), Lecture Notes in Computer Science. Volume 105: Distributed Systems:
Architecture and Implementation, pages 246-265. Springer-Verlag, Berlin, 1981.

e e e e L e e . AR A o <= e




e P

Rt R i 4

L -

ne)

nn

(18]

(19]

(20

21

(22]

[23]

(24]

Nelson, B.J.

Remote procedure call.

PhD thesis, Camegio-Mellon University Department of Computer Scionce, May, 1981.
Availsble as CMU-CS-81-119.

DP. Reed.
Implementing atomic actions on decentralized data.
ACM Transactions on Computer Systems 1(1):3-23, February, 1983.

P. Schwarz and A. Spector.
Synchronizing shared abstract types.
ACM Transactions on Computer Systems 2(3):223-250, August, 1984,

Skeen, M. D,

Crash recovery in a distributed database system.

PhD thesis, University of California at Berkeley, May, 1982.
Availsble as UCB/ERL MB2AS.

B. Stroustrup.
The C++ Programming Language.
Addison Wesiecy, Reading, Mass., 1986.

R.H. Thomas.
A majority consensus approach to concurrency control for multipie copy databases.
ACM Transactions on Database Systems 4(2):180-209, June, 1979.

W.E. Weihl.

Specification and implementation of atomic data types.
PhD thesis, Massachusetts Institute of Technology, 1984.
Available as Technical Report MIT/LCS/TR-314.

W.E. Weihl,

Local atomicity properties: modular concurrency coatrol for abstract data types.
ACMT?mm:anmmunmaaMSym 1987.
Accepted for publication.

W.E. Weihl,

Distributed version management for read-only actions,

IEEE Transactions on Software Engineering SE-13(1):55-64, January, 1987.

W.E. Weihl,

Commutativity-based Concurrency Conwel for Abstract Dase Tiypes.
In Proceedings of the Twenty-first Annaual Hawaii Conference on Sysiem Sciences. January, 1988,
Revised version t0 appear in a special issue on parailel and distribused computing of IEEE Transactions on




OFFICIAL DISTRIBUTION LIST

Director

Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard

Arlington, VA 22209

Office of Naval Research

800 North Quincy Street
Arlington, VA 22217

Attn: Dr. R. Grafton, Code 433

Director, Code 2627
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

National Science Foundation
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550

Attn: Program Director

Dr. E.B. Royce, Code 38
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

T eIy, Syt -

12

copies

copies

copies

copies

copies

copy




