
41
LABORATORYFOR MASSACHUSETTS

LABOATOR FORINSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

SMIT/LCS/TM-368

HYBRID CONCURRENCY
CONTROL FOR ABSTRACT

DATA TYPES

Maurice P. Herlihy
William E. Weihl

August 1988

545 TECHNOLOGY SQUARE. CAMBRIDGE. MASSACHUSETTS 02139

88 12 6)9g0

WifUffI r CAITN OF THIS PAGE

REPORT DOCUMENTATION PAGE
1I. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2.. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution
is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TM-368 N00014-83-K-0125

68. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
MIT Laboratory for Computer (ofap bl) Office of Naval Research/Department of Navy
Science

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, NW ZIP Code)

545 Technology Square information Systems Program
Cambridge, MA 02139 Arlington, VA 22217

1a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Of applicable)
DARPA/DOD

IL ADDRESS (City, State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22217 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (nkclude Security Classification)

Hybrid Concurrency Control for Abstract Data Types

12. PERSONAL AUTHOR(S)

Herlihv. Maurice P. and Weihl. William E.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Technical FROM TO 1988 August 26
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP atomic transactions, concurrency control, locking, time-

stamps, local atomicity, hybrid atomicity, abstract data
t•'pes

19. ABSTRACT (Continue on reverse If necesfay and identity by block number)

We define a new locking protocol that permits more concurrency than existing commuta-
tivity-based protocols. In addition, the protocol permits operations to be both partial
and non-deterministic, and it permits the lock mode for an operation to be determined
by its results as well as its name and arguments. The protocol exploits type-specific
properties of objects; necessary and sufficient constraints on lock conflicts are defined
directly from a data type specification. We give a complete formal description of the
protocol, encompassing both concurrency control and recovery, and prove that the protocol
satisfies hybrid atomicity, a local atomicity property that combines aspects of static
and dynamic atomic protocols. We also show that the protocol is optimal in the sense that
no hybrid atomic locking scheme can permit more concurrency.

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
(3 UNCLASSIFIEDUNLUMiTED C3 SAME AS RPT. 3 DTIC USERS Unclassified

22&. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (iknle Ara Code) 22c. OFFICE SYMBOL

Judy Little. Publications Coordinator (517) 253-5894 1

DO FORM 1473,84 MAR 83 APR edition may be used until gxhus. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obSOlte

Unla f ft"" m w4

Unclassified

Hybrid Concurrency Control for Abstract Data Types

Maurice P. Herlihy t

William E. Wei

29 July 1988

Abstract

We define a new locking protocol that permits more concency than existing commutativity-based protocols. In
addition, the protocol permits operations to be both partial and non-deterministic, and it permits the loc• mode fof
an operation to be determined by its results as well as its name and arguments. The protocol exploits type-specific
properties of objects; necessary and sufficient constraints on lock conflicts are defined directly from a data type
specification. We give a complete formal description of the protocol, encompassing both concurrency control and
recovery, and prove that the protocol satisfies hybrid atomicity, a local atomicity property that combines aspects of
static and dynamic atomic protocols. We also show that the protocol is optimal in the aense that no hybrid atomic
locking scheme can permit mom concurrency.

M. Herlihy is supported by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976,
moni. d by the Air Force Avionics Laboratory Under Contract F33615-84-K-1520. W. Weihl is supported in part
by the National Science Foundation under Grants DCR-8510014 and CCR-8716884, and in part by the Defense
Advanced Research Projects Agency (DARPA) under Contract N00014-83-K-0125.

lDq1
jg dC(omSimms , Cmgmp Mem Umuimsy,Piusbxh, PA 15213. (HW MCMU.DU)

ýWT L far C e Sdam 545 TeAwag Squ. Camb•M MA 02139. (W"aWXXL.CS.MTMU)

L Introduction
Atomic transactions n a widely accepted mechanism for coping with failures and concurrency in database systems,
both distributed and centralized. Many algorithms have been proposed for coocurrmcy control and recovery [1].
Early work in this area considered only untyped objects: operadons wene either left uninterpreted, or were treated
amply as reads or writes. More recent work has focused on typed objects, such as queues, directories, or countmr,
dont prvide a ric• at of operaons. Several algorithms have been proposed to enhance concurrency and recovery
by exploiting dam objects type-specific properties [2.13,18,22]. Most of these algorithms ae locking schemes in
which conflicts ain overned by some notion of commuteivity: lock modes for commuting operations do not

conflict.

"This paper presents a new locking algorithm for concurrency control and recovery of typed data objects. As
discussed below, our algorithm permits more conciurency than many type-specific locking schemes in the literature
[2,5,13,18,22]: our algorithm places fewer constraints on lock conflicts, thus permitting a larger set of

inerleavings. Moreover, our algorithm is "upwardly compatible" with these other schemes in the sense that they
can be used together in the same system without jeapordizing serializability or recovery.

In most of the type-specific algorithms in the literature, lock conflicts ar governed by some notion of
commuMtivit if two operations commute, their locks need not conflict. Informally, this condition arises in
conventional two-phase locking schemes as follows. If two transactions atempt to acquire conflicting locks, one
must wait for die other to complete. The induced delay ensures that dte latter is serialized before the former.
Two-phase locking thus determines transaction serialization up to a partial order. transactions unrelated by the

ansitive losure of this lock conflict relation may be serialized in an arbitrary order. Moreover, such unrelated
trasactio may be serialiud in different orders at different data objects, or at different sites in a distributed system.
If the operations of concurrent trarsactions commute, then all such local orderngs ar equivalent and compatible
with a global total serialization ordering.

The basic idea behind our algorithm is quite simple. Transactions are serializable in the order they commit. As part
of each transaction's commitment protocol, it generates a timestamp from a logical clock, and distributes that
imeMTampt o the objects it updated.3 Our algorithm augments the implicit partial order induced by lock conflicts
with the explicit total order induced by transactions' commit timestamps. By making the serialization order explicit,
we can replace the commutativity requirement with a weaker notion, which we call dependency. For example, our
algorithm permits concurrent transactions to enqucue on a FIFO queue, even though the enqueue operations do not
commute.

Our algorithm is quite general: it works for rbitrary data typM, including types with partial and nonA-deterministic
opeaion. Our trealment is systematic: necessary and sufficient conditions for locks to conflict we derived by
analyzing the object's dat type specification. We give a formal characterization of our nodto of conflict, and we
prOVe our algorithm is correct. Because concurrency control and recovery interact in subtle ways, our descriptions
and prooft encompas both concurrency and recovery.

Section 2 defines our model of computaton, and Section 3 gives a formal definiion of asomicity. Section 4
dscnibes our criteria for lock conflict, and Section 5 describe our algorithm and proves it correct. Section 6
discusses some pragmatic issues. Finally, section 7 closes with a discussion and summary.

'ibm CaW - I d iud @a be cmwmh wi~h the do uuu md in mhivu-simi pmow md& au Red's [17, i whkh
bmsia•m m ialiad in a Nadafy pmd dmdd v odw,

2

2. Mode of Computation
Our model of computation 122, 231 has two kinds of entities: iranmctionu and objects. Each object provides
operations thot can be calld by transaction to examine and modify the object's state. These opeatmions constitute
Us sole sauam by winch trananctions can acesdorth sate of the object. We typically Mu doe symbolsP, Q. WAd R
for tnmMctioA,6 miX, Y, and Z for objects.

Our nmade of comtputatio is event-bused, focusing on the events at die interrace between transactions and objects.
There fufar kinds of events of interest

"* Invocaoioevns , denoted cmnv, X, P>, occur when a transaction P invokes an operation of object
X. The "inv" field includes both the name of the operation and its arguments.

"* Response events, denoted <res X. P>. occur when an object returns a response res to an earlie
invocation by transaction P of an operation of object X.

"* Commit events denoted ccommit(t), X. P>, occur when object X learns thie transaction P has
committed with timestamp L Titneatamps are taken fiom a countable, totally ordered set.

"* Abort events, denoted <abortX, P, occurx when object X learns dti trnsaction P has aborted.
We refer to commit and abort events collectively as corqpldon events. We my dom event <a, X, P> Irnqolw X and
P.

We intionduce some notation heme 7Ue symbol '*" denotes concatenation of sequences, and die symbol "A"
denoes tUs empty sequence.- If H is a sequence of events and Xis a set of objects, we define. HF("H restricted to
.r') to be Use subsequence of H consisting of the events involving objects in X. Uf P s a sot of trimsactions, we
define Hlsiminllay. Nf X is an object and P is a transaction, we write HIX for 11(X), and HIP for 11(P). We
define commiwiteHi) to be Us set of transactions for which commit events occur in H. and aboneied() to be Use set
of transactions fir which abort events occur. We also define compkieed(H) to be commitied(H u abomtd(H). the
set of tmosetions that commit or abort in IL

Not all sequences of events make sense as computations. For example, a transaction should not commit at some
objects and abort at others, or commnit with differmn timesatuni at different objects. To capture then constraints.
we introduce a am of Ymll-fonhdw=s constraints. A well-formed sequence of events is called a hitowry. We divide
our well-formedwesa constraints into two parts: constraints on Use execution of individual transactions, and
constraints on Use timestanaps that can appear in commit events. Indlividual transactions mn consramnd. as follows:

"* Each transaction P nin= wait for the response to its last invocation beoeivoking Use next opmsdon,
and an object can generate a response for P only if P has a pending invocation. More precisely, let
op-eventsHIP) be the subsequence of HIP consisting of all invocation and response events; op-
eveuts(HI muom consist of an alternatin sequence of invocation and response events, beginning with
an invocation evenst. In adition. an invocation event and Us immedinsly succeeding response event
must invalv te Usasme object.

"* Each' .raaci P can commit or abort in K. but not both; ize., commixed(HF) n~ sabted(HP) a0.

"* A transaction P cannot commit if it is waiting for die response to an invocation, and cannot invoke any
opetatiarns after it commits. More precisely, if P% conuaied(IW), ten HIP conists of %"~vens(IO)
ffollwed by siee numuber of commit oveaK ., apoeventeM5' ends in a reoponse event.

Thmn 1irctu "- taas tons - intended to amodel Us typical an of tranations in euisting Wytms. A
~tiamoi macusess by invoking operations on objects, receiving results wlun Uhs operations finish. Since we
disallow concurrency within a truasaction, a transaction is permitted at most one dI IIg iswnvoaon at my time.
After receiving a resP-fonsmu all invocations, a transaction can commit at on or amor objects. A trnsaction is
not allowd to misat at somes objects mad abort at others, dais, now~memt called stomic WaitMMk=t, Ow be

iqalsmsntdusn well-kovaw commitment proloeols [7.15,19).

3

There am two additional constraints, which amply state that the timestamps chosen for transactions ae unique, and
that a trmnstion chooses only one timestamp.

e Any two commit events in H for the oime transaction have die same timestamp.

* Any two commit events in H for different transactions have different timestamps.
We place few restrictions on aborted transactions; for example, a transactim can continue to invoke operations after
it has aborted. We have two reasons for avoiding additional restrictions. First, we have no need for them in our
analysis. Second, and more impormat, additional reMictioms might be too strong to model systems with
orphans [6, 16], and we would like our results to be as generally applicable as possible.

3. Atomicity
In this section we define atomicity and several related properties. The definitiom are abstracted from [22,23].
Unlike many earlier models that classify operations only as reads or writes, our model emphasizes abstraction, in
particular data abstraction. Atomicity is defined in terms of objects' specifications, o that transactions are atomic if
their execution appears to be serializable and recoverable to transactions, give. only the specifications of the
objects. For example, a system may be atomic at one level of abstraction and non-atomic at lower levels.

3.1. Speifications
Each object has a seoad specUlcation, which defines its behavior in the absence of coricumacy and failures. An
object's serial specification is a set of operation sequences. An operation is a pair consisting of an invocation and a
matching response. In addition, an operation identifies the object on which it is executed. We often speak
informally of an "operation" on an object, as in "the enq operation on a queue object." An operation in our formal
model is intended to represent a single execution of an "operation" as used in the informal sense. For example, the
following might be an operation (in the formal sense) on a queue object X:

X:(Enq(3),Okl
"This operation represents an execution of the Enq operation of X with argument "3' and result "Ok." For brevity,
we often say that an operation sequence is legal if it belongs to the serial specification currently of interest.

Each object also has a behavioral specbfication, which characterizes its behavior in the presence of concurrency and
failures. An object's behavioral specification is just a set of histories that contain events involving that object only.

3I2 Global Atomicity
Informally, a history of a system is atomic if the committed transactions in the history can be executed in some serial
order and have the same effect. In order to exploit type-specific properties, we need to define serializability and
atomicity in terms of the serial specifications of objects.

Since serial specifications are sets of operation sequences, not sets of histories, we need to establish a
orsn - between histories and operation sequences. We say that a history is serial if events for different

transctions are not interleaved. If H is a serial history, and P1 .. , P. are the transactions in H in the order in which
they appear, then we can write H as RIP,...,.HIP9. We my that a history H isfallure-free if aborted(H) - 0. Now,
if H is a aerial failure-free history, we define OpSeq(H) (the operation sequence corsponding to H) as follows. For
a transaction Pi. OpSeq(HIPi) is the operation sequence obtained from HIPi by pairing each invocation event with its
coGrespoading termination event, and discarding commit events and pending invocation events. For the full history
HI OpSeq(H) is defied to be OpSeq(H1P 1).....OpSeq(MH).

For example, if H is the serial failure-free history

4

X:Enq(3).OkJ>

X:DeQOX,3]

We ny that a mimi failuwe-e bistory H is acceptable at X if OpSaq(HIX is an element of, th serial specification
at X. in odwe words. if the sequence of opentions in H involving X is petmnifed by te seia apecifiqiatiosi of X, A
mimi falhme-fee histry is wacetable if it is acceptable at every object X.

Twoblatimries Kind K ar.4qaalWa~ if evegy transacton perFeMO the 2001e sequnc Of MPta inechb, iLe.. if HIP
KIPfor every usaw~mnti P.M H is a history and T is a Uoal order on amenictiona, we datine, Seffa(*LT) to be~the
md ini hry eqpivalet bo H in which usuasctiains apear -in the order T. 7hus, if Pg. .. , Pau the~d umsatians in H4
ianm~lerd T-d.. Satial(H.1) - WlP1... HlPw

Let T be a toWa orderin of transactions. A failure-fife history H is serializable in the order T if.Sedal(H,1) is
accqeptble. In other words, H is seWnizble in the order T if, according to the serial specification of tdo objects, it
ispermissiblefair do amctions in Itwhennrun in theorder T. to execute the samestep al in IL We' ýsay dthat
Wefaiue-b history H is wtaftasble if ther exists a total order T an transaction such that H is serializable in the
orderT.

Now. dmefa pernwuuMet to be Hlconainited(). We then say that H is atpmi if permanentH). is serializable.
Thus, we farmeluz recovwahity by tlkowia away events for non-comminited trnsactions, and requiring that the
committed tranwagtm be smimlizabls.

For =mq*is the Maowing hisiosy ivolviag A first-in-first-out OWF) queue, X is atoanio
'cEnq(1), X, P>

<9 2 X. Q>
<O.X. Q>

<Enq(3), X, P>
<Mk X. P>

.ccomzuit(2), X, P>

<CDe% XR>

<Dceq, X, R>

TMe hiuY~ Coily0 COiKWW waanswtiaw *t is ocenalizable in fth or*e Q f~l~owed. by P fbpowc4 by R.

Mas ddfilhiad * pms jfxw iO &Wb it Wiia to # lkgsaq of 40 epop sy~p~ To N#~ syTes in a
-odi MOMW 4MM. it is lupsa"Mapo 4s1ps low proj~ of p * gba

pplsban sMui*. A b@W Ost o p ,pero, a pWsMy p of **pmpt~a Ct~t 4 Vo thde

behavior is atomiuc. To design a local atomicity property. amone ensurome that fth objects tgre on at least one
serialization order for the committed tranaections. This problem can be. difficult because each object has only local
Inf umtion; no object has complete information about the gloal computation of the system. As illustrated in
[22,23], if different objects use "correct" but incompatible concurrency control med'ad~s, non-serializable

executions con result. A local atomicity property describes bow objects agre on a seriailizatilon order for committed
transactions

In this section we define a particular local aomicity Property, which we call hybrid atomicity. Thiis local atomicity
property use the timestanpa chosen when transactions commnit to conistrain each object's local serialization order.
Mwe only difficulty is dot an object does not know what timestunp will be chosen by a transaction until the
trmnsatio Commits. This difficulty IS alleviated by placing certain simple constraints on dhe timestamp generation
method. if H is a history, define precedes(to be the following relation on transactions: (PQ) e precede*(H if
and only if there exist an operaton invoked by Q that meumn a result after P commits in H. Mwe relation
precedes(H captores potential "information flow" between transactions: if (PQ) e precedes(H). then sonme
operation executed by Q occurred in H after P committed, hence Q may have acquired a lock released by P, which
would imply that Q must be serializable after P.

Now, let TS(EDbe thepartial order ontransactions defined by (PQ)e TS(HD if Pand Qcomimit in Hand the
timestunp for P is lesa than the timeatamp for Q. We require the ftmestinnp getiration method to satisfy the
following constraint the timestamp, order on committed transactions; must be consistent with the precedes order at
each object. in other words, precedes(HI) r. TS(H) for all objects X Informally, this constraint requires that if Q
runs at X and see that P has already committed, then Q mpust choose a timestamp greater than P's. This constraint
is satisfied by timestamp generation algorithmns based on logical clocks [14], and by algorithms that piggyback
timestunmp information on the messages of a commit protocol.

A history H is hybrid atomic if permanent(H is serialzal in the order TS(H). (Notice that TS(H) defines a tota
order on committe(H.) An object is hybrid atomic if every history permitted by its behavioral specification is
hybrid atomic. Hybrid atomicity is a local atomicity property [22,23]:

Theorm= 1: If every object in a system is hybrid atomic, then every history in the system's behavior is
asomic.

As an aside, we remark that hybrid atomicity is an optimal local atomicity property no strictly weake loca
propety Mrsufie to ensure global aoMicity (22,23].

3.4. Onine Hybrid Atonrielty
Our algorithm is pessimistic: it permits an active transaction to commit whenever it is not executing an Operation.
The notion of onfine hybrid atomlctay captures this property.

U H isa historyand Cis aoft oftrnaction, we mythat Cis acom mit M for Hif commhoW r-H)C andC r
artd(H)W - 0. In othe words, C is a set of transactions that have already committed or might commit. Now, if H
is a history, define Knwwr(H) - Pacedes(H) u TS(H). Known(HIX) captures what X "kos bout the
tianeatemp order on all transactions, both committed and active. Each obj'ic must then be prepard for active
transactions to choose timestanps in any order consistent with the object's local knowledge. Thus, we say that a
history H is online hybrid atomic at X if, for every commit set C for H, and for every total order T consistent with
Known(H). HIC is serializable in the order T. H is online hybrid atomic if. for all objects X, H is online hybrid
atomicatL

The following lemma is immediate

6

Laesna 2:, If H is online hybrid atomic, H is also hybrid atomnic.
The algorithm proposed in this paper guarantees online hybrid atomicity.

The qua.. hismoy shown eufier is hybrid atomic in fact. each of its pmefixes is online hybrid atomic. In & prefix in

which eithr P or Q does not commit, Known(H) is empty, but the history is serializable in eithe order (P followed

by Q or Q follwred by P). Once P and Q commit. Known(H) contains the pair (Q.P). Owce R executes an
operation, Known(H) also contains the pairs (PAR) and (QR). and thus define a total order Q-P-R on the three
transations for a prefix cortadinin one of R's operations to be online hybrid atomic, it needs to be serializable in
tdo order Q.P.R, which,u as arued earlier, it is.

4. Conflicts and Concurrency
Thus section describes our criteria for lock conflict. We begin with an informal overview of the locking protocol
itself and then we present a formal definition of our notion of dependency. We conclude with a series of examples
illustrating how dependency applies to a variety of common data types.

4.1. Overview
Our protocol uses an approach similar to typical locking protocols: an operation determines whether it cam proceed
based on whether other active trinsections have executed conflicting operations. However our notion of
"conflicts" is less restrictive than in previous work, in addition, unlike most previous work we describe precisely
how conmmits and aborts of transactions are handled.

The protocol maintains tiree components for each object.
"* Each transaction has an intendons list consisting of the sequence of operatons to be applied to the

object if the transaction commits. (As defined earlier, each operation consists of an invocation.
aS"nen Values, termination condition, and result values.)

"* The object's couumltdo tmu reflects die effects of conmnitted transactions. For now, it is convenient to
treat Mhe conmmited state as if it were sAmply the intenitions lists for the committd transactions. arranged
in thimestamp order. In section 6, we describe a more compact and efficient repreaentation.

"* A set of lock, ausociga. each operation with the ant of active tranisactions dhat have executed that
apu-lIi aI Locks =e related by a symmetric cor$*ct relatdon whose properti. esa discussed in the next
section. We allow the lock conflict relation to whoaqumuents and results into account, although it is
not forced ID lo so.

When a transaction invokes an operation, it first constructs a view by appendin ius own intentions list to dhe
committed stams It then chooses a result comustent with the view. Before appending the new opeaition to its
intitons list, however. the transaction request a lock for the operation. If anothe active transaction holds a
conflicting lock. the lock request is refused, dhe result is discarded and the invocation is late retried. COh
invocation may reown a different result when it is retried.) If the lock is g -uInt the operation is appended to the
usuciou's imnwtions Usi and the response is returned. (if the lock conflict relation being used does not take
results ist, nicest, the lock can be requ P te d bWoe P choosing the response.) When a transaction commits, its
intentions lis is mupi into the comimitted am in tinestamp order. When ranato commits or aborts, its
locks anrdessued and its intsmaons list is discarded.

As a enampis, coodder the history involvin a FW-0 queue shown earit . As shown below in Section 4.3,
empin op I -11a - a a FIR) queue need not conflict. Thus, our prolocol allows eer a -i eaqusum, and in
pudmedkvWstfthiMM7shown earIWle.Th rder inwhich cncrrntyequened itms hud bedequend is
dmwaimd bythe coamik tinnstumps chosen by therconcwrent transactions. Notice tie emseue doi not commute,

7

-o commutativlty-beaed protocols would not allw the smie history.

4.L. Confilcs and Concurrency
The basic constraint governing lock conflicts ia the notion of dependency. operations p and q cannot execute
concmrfeudy if one depends on the other. LAt Abe a binary rolation between operntious, and let A be an operation
sequece.

Derafta. 3: A binsy relation R on operations is a dependency relatiox for Serial if for all operation
sequences h and ký, and anf operations p. such that

I. h 0k andh Opare legal, and

Z .forallq ink, (q.p)~ *
A popkas legal.

In other words,if kislgal after h p is lea afterh.and nooperationin k"depenls on" p.thenit shouldbe legal to
dokAafter p.

A depedency relation Ris minnif thereis noffc Rthatis also adependencyrelation. We wilh eethat an
object may have several distinct minimal dependency relations. We prove in Section 5 that our protocol is crect if
and only if the lock conflict relation is a symmetric dependency relation.

The foflowing lemmas describe some important properties of dependency relations.
Law=a 4: Let 0 be a dependency relation, h an operation sequence, and k, and k2 operation sequences
suchdw hke kand h *I2 areboth IegaL If no operation in kdepends onan operation in k2 (Le., for all
q, in k, and q2 in k2. (q1,q2)9 A). then h e k2 e k, is legal.
Proof: By induction on the length of k2. The resulft is immediate if k is enpty. For the induction step,
assume that k2 - k2' e p. and diat th thoe hold fo al sequences shoirter i k2. The sequence h *k2
is legal as a prefix of A * k2. A * k2' * p is legal by hypothesis. mnd k e2 * k, is legal by the induction
hypothesis. Since no operation in hdepends onp, h *k' ep *k, = hke k, slegal byDefinition 3. (3
Deflaliffi 5: A subsequenc Sgof h is R-closed if whenever g contains an operstion q of h it also contains
every earlier operation p such that q A'p.

RD-flat a6: A subseque=cS of his aR-Wew of hfor qif gis R coned.and if itincludes every pin h
such that q Ap.

The next lemma is the key to proving the correctness of out algorithm. It says that so determine whethe an
operation is legal afte a sequence of operations, it suffices to test whether it is legal afte a subsequence dtat
constitutes a R-view for the operation.

Lenmm 7: Let R be a dependency relation for Serial, and S and h sequences in Seria such that g is a
R-view of hfor an operation q. If g *qis inSerial, sois h eq.
Proof: We show by induction on dienumber of operations in hbut not in gdaat h *qis legal. If h -g, the
result is immediate. Assume S is missing at least one operaton of h, and assuime the result for views
missing fewer operattions. LetA -h, * p *h2, where pis the first operation in hbut not in g. Let g -Ah,
$2, and S' - h, p *g2

The sequence h,*P is legal as aprefixof h,and h 1 , * g2eq Sqis legal byhypothesis. Since gis a
.view ofhAfor q.no operation in g2 .*qdepends on p,thus h .p S2 *q - ' * qis legal by Definition3.

SimceS' is a R-view of A for q, S' 9 q is legal, and S' is missing fewer operations of h than s. it follows
from doheinducio hypothesis that A * q is legal. 3

4.3. Exanplea
The deinition of a deperiency relation given in the previous secton is nt constructive: it mrely giveo a test for
whetr a given relation is a dependency relation. In this section we describe one way of deriving dependency

relations mom systematically from the serial specifications for objects, and give some examples of depencnecy

relations for panicular types of objects.

One way of defining a dependency relation for an object is to say that an operation depends on any earle operAtions

dtht might invalidae iX More precisely,
In R "es 8: Operation p iLvaidates operation q if there exist operation sequences hA and h2 such that h,

Sp. ,2 and hA * h2 * q are legal. but h, * p e A2 e q is not.
Deflaitlom 9: Define the relation invalidated-by to contain all pairs (qp) such thatp invalidates q.

The following theorem shows that this definition yields a dependency relation:

Theorem 10: Invalidated-by is a dependency relation.

Prooft f not,.then there exist sequences h and k and an operation p such that h * p and h . k are legal, no
operation in k is invalidated by p, but h o p o k is ilelal. Let h . p . k' . q be eshortest illegal prefix of
h o p o k. Ue sequence h .k' o q is legal a prefix of h o k. h o p k' is legal by construction. but h s p o
k' o q is illegal, hence q is invalidated by p, a conutrdiction.

While inwaldated-by is a dependency relation, it need not be a minimal dependency relation.

The remaminder of this section describes dependency relations for certain simple object, illustratig how the notion
encompoaes partial operations, non-determ•nisc operatin, and operations' responses. We caution the reader not
to confuse dependency relations and conflict relations. Dependency relations need not be symmetric; the conflict
relations used in our algorithm, however, must be symmetric. A conflict relatiom will typically be constructed by
taking the symmetric closure of a dependency relation.

A File provides Read and Write opemions
rsed - OgazMta. 0 Rotuzas (Value)

Wite - Opea'tiO (VaJue)

where Read returns the most recently written value. The unique minimal dependency relation for File objects is
shown in Rpim 4-1, when an entry indicatsi that the row op•amt depends on the column opera3n. when the
indicated condit holds. Thu relation is the inval•iated-by relation for a File object. In this example, a read
opmtion depends on a write operati when their argument values are distinct. Note that write operadts do not
depend on one another. Thus, our protocol can allow concurrent writes; when this happens, lat tranamctions will
reed the value written by the tiunsacuion with the lar commit timetamup. Our prwocol thus encompasses arid
generalizes the Thwmar Write Ride [21].

RedO.v Writv),Ok

Read0.v' v , v'

Writv'),Ok

Flsure 4-1: Minimal Dependency Pkelation for File

A FPO Qum objeic hs two operatio,, Enq and Deq, wheze Eaq placesan •• at th W a queue, and Deq
removes d =mir the ieam fm the front of th quei. (If th queue is emp, Dq bWs tahus& its specification
is PaneiL.) FM0 Queue have two distinct Mminia deendency relations, shown a Fgwp 4-2 apd 4-3. The
coereqiwiding cofc relations (obtained by taking the symmerc closures of the dependency relatios) impose

incmpwbleconstraings on concurrecy. In Figur 4-2. which is die inalidated-b'y relation for FERO Queues, a
Deq operation involving a given item depends on both ENq operations involving differen items and Deg operations
involving the samne ieon. implying tha Deq cannot execute concurrently with other Enq or Deq operations, but Enq
opmations can execute concurrently. In Figure 4-3, Enq operations involving different items depend on one another,
and Deq operations involving the same items depend on one another, but Deq operations do not depend on Enq
operations, and vice-versa. (it may seem counter-intuitive that Deq operations do not need to depend on Enq
operations; however, it should become clear when we present our protco why this is no.) With dhe dependency
relation in Figure 4-3, an enqueuing transaction can execute concurrently with a dequeuing transction as long as the
batter can dequeue items enqucued by committed transactionis.

_______Enq(v),Ok DeqO.vJ

Enq(v').Ok ____

Doqo,v' 1 v*V' "-"' V

Figure 4-2: First Mfinimnal Dependency Relation for Queue

[______Enq(v),Ok Deqo~v

_____ ~ V v=v'

Figure 4-3: Second Minimal Dependency Relation for Queue

Constraints on concurrecy can often be relaxed by introducing non-determinism into sequential specifications. A
Semi quezue provides Inis and Rem operaions:

US. - operation (Itoo)

Rea - operation () Rotumas (Ztem)

WInsiserts an item in die Semicpieue, and Rem non-deterministically removes and rettrns an item ftom the
Semniquene Like Deq, Rem returns only when there is an item to remove. (There may be an additional probabilistic
guarntee, not captued by our functional specifications, that the item removed is likely to be the oldest one.) A
Seiniqueue object has the unique minimal dependency relation shown in Figure 4-4. Tbis dependency relatio
prevent Rem operations that return the same items from executing concurrently, but allows Ins operations to
execute concurrently with Rem operattions, and with one another.

11X) Oik~) k~
Remo, V v=v'

Figure 4-4: Minimal Dependency Relation for SemiQueue

An Account provides Credit, Post, and Debit operatons:
Credit - Opozatic. (Dollar)

Post - Operation (percent)

Debit - Operation (Dollar) Bigmale (Overdcrat)

Credit increments the account balance by a specified amnount. Post posts interest; for example, fpost(5),Ok]
multiplies doe account balance by 1.05. Debit attempts to decrement the balance. If the amount to be. debited
exceeds the balance, fth operation returns with an exception, leaving the balance unchanige&i Account has a unique
minimal dependenicy relation shown in Figure 4-5. As in several of the previous examples, this relation is the

10

bwaildwed-by relation for Account objects. An interesting aspect of this relation is that it enhances concurrency by
taking operatioes' responses into account. For example, Credit locks need not conflict with locks for successful
debits, although they must conflict with locks for attempted overdrafts, because increasing tie account balance
cannot invalidate a macceueful debit, but it can invalidate an Overdrqt exception. If both kinds of debit operations
were treated alike, debits and credits would have to be mutually exclusive, a significant cost if attemptd overdrafts
were iafrequenL An example implementation of Account appears in the appendix.

Credit(n),Ok Post(n),Ok Debit(n),Ok Debit(n),Over&aftl

Credit(m),Ok

Post(m),Ok

Debit(m),Ok true
Debit(m),Overdraft aue true 1___

Figure 4-5: Minimal Dependency Relation for Account

5. A Hybrid Locking Protocol
This section presents a formal description of our locking protocol, together with its proof of correctness. The
description here is designed to emphasize the general strategy followed by the protocol, and to highlight the
differences with other locking protocols. In section 6, we discuss some issues that arise when designing an efficient
implementatio of this protocol for a particular data type. In the appendix, we present an example implementation
of an Account object, illustrating how properties of the data type can be used to design efficient implementations.

Given the serial specification Serial of an object X, the protocol described below ensures that all histories generated
by the implementation of X are hybrid atomic. For ease of exposition, we will not refer specifically to X unless
necessary; thus, when we refer to an "operation" we mean an operation of X, and similarly for events.

5.1. The Protocol
A sa machinie is an automaton given by a set of states, a set of transitions, an initial state, and a partial transition
function that maps (stae,transition) pai to states. If the transition function is defined on a given per (st), we say
that t is defused in L The transition function can be extended in the obvious way to finite sequences of transitions.
We say that a sequence of transitions is accepted by a machine M if it is defined in the initial state of M. We define
the language of a machine M (denoted L(M)) to be the set of finite sequences of transitions that e accepted by M.

The protocol is described by a state machine LOCK whose language consists of a set of event sequences. The
machine uses a particular conflict relation, Conflict, to test whether one operation conflicts with another. We
assume that Co,#t is symmetric. To describe the protocol, however, we do not need to make any other
s um s about the conflict relation used by the protocol. In the next section we will show that conflict relations

derived fronm dependency relations are both necessary and sufficient to ensue correctness of the implementation, in

the sense that every complete history in LL&OC is hybrid atomic.

A state s of LOCK consists of four componean spending, s.intentions, s.commined, and saborted. S4pendng is a
partial function fem transactions to invocation events. S.iracraons is a total function from trmsactions to
sequences of opermions. S.committed is a partial function from tranmactions lo timeamp•. Saborted is a set of

S.Pist MORo pending invocations for transactions. Since each truacdom is iailly qiewast, uleUdlng is

La

undefined for all transactions in the initial state of LOCK.. Santentions records the sequence of operations executed
by each transaction In fth initial state of LOCK, s~intentions maps each transaction to the empty sequence. Ther
are no "locks" recorded explicitly in this formal model of the algorithm; instead, the set of locks held by a
transaction is implicit in the transaction's intentions lisL S.commined allows us to tell which transactions have
committed, and for each committed transaction records its timestamp. S.committed is initially undefined for all
transactions. Sabormed records the set of transactions that hav Aborted, and is initially empty.

Nfs is a state of LOCK. defin s~completed to be uLaborted u (P I sxcommitted(P) * .14; sLcompleted thus consists of
all transactions that have either committed or aborted. Hf Q *sLcompleted define View(Q~s) to be the operation
sequence obtained by concateating the intentions lists for all committed transactions in timestamp order, and then
appending the intentions list for q.4

The transition of LOCK are the events involving X; their preconditions and poutconditiona are described below.
For brevity, we assme that all input histoies; ame well-formed. (Well-forinedness coul be checked explicitly by
adding moan state components and preconditions.) In the descriptions. the expression m[a -+ b], where mo is a
(possibly partial) function f~romn domains A to B, aE A. and brnB. denotes the function identical to m except at a,
which it maps to b.

In describing transitions, we write preconditions and postconditions for events, using the convention that a' denotes
the sate before the indicated event, and a denotes the sawe after the event. In awddton, a stat component that is not
mentioned in the postcondition for an event is assumed to be unchanged by the occurrence of that event.

Invocation, commit, and abort events are inputs controlled by the transactios; thus, their preconiditions are Thi.
The transition for each event is quite simple: the event is simply recorded in the state of LOCIL

.i,XQ>
PostconditiozL:

sLpending - s'.pending[Q -+ ii

<commit(t)XQ>
Postcondition:

s&commtitted = s'.committed[Q -+ Qi

<abort.XQ>
Postconditiou.:

sLaborted -s'.aborted u (Q)

Response events ame somewhat more complicated:

'I. P=4i Viaw(Q.A) jam M a aqu@Mm sin theso of conmined umsmaim camid be WMLw h. agy m, ia~ s Nowle however, 0*l
&aisay =my vma whoe cauifted so View(Q~s) is wefl-defisd.

12

s .peading(Q) * I
Q * s'comnpletd
Let q - <s'.pending(Q),r>
Visw(Q.&') - q e SerWa
foron wltaictionse P * 2compleawdu (Q).

and for all operationa~p in sA .anzenoas(P)
<w~q * Co4udjk

spesding - s'.pendiagQ -+ 1-]
sLntakM fs - s'.Inaauions[Q -* a' .nteA ioUKQ) * q0

To reuna response So a transaction there ano several requirunets. First the transction mma have, a penfiu
invocabonL Seconsd, the tuasaction must not have already comnpleted. T%4hirte opgatiogi (cw*M%.u of. the
cinvocaiM, rank>D pair) must be legal in dhe transaction's "view." Finally, the opecation mast am copflic wiq4
may other operation already exeuted by another active transaction. Nf all themerqirm maq Uroe
event CM ntOCCmcas the pendin invocation to be removed from the Mat and fte in8ldqos Wa for the

auoi so be updated to record the new operatioin

Notice that aLinu onios is retained for all uansactioas. including committed mtrasatons. Tis, doe "commnitted
stWle is simply the intentons lists for the committed transactions. arrad ngd timesusunp order. This aippoach is
Clearly not practical. Nevertheless it permits us to describe die protocol ina aimple and general manner. All other
recovery methods -em So be special cases of this use of inentmios iist, in the sense tdog they record no more
idxabrh~m About the peas mn the state In addition, some other recovery methds seem to reqLr restritig
COnIcIEIrecy mere than is needed for intentions lists. In later sections, we will show that thereapsml

optmirtios tm c bemusd i rel ipleenations that make it pousbe to discard intention lists fair committed

5±L Correctness Proof
We wish So prove the following theorm=:

Theorem ML If Cmpdct is a dependency relatio then every histoy in L(LOCIQ) is hybri atomic.

We will show that if Coq#Uct is a dependency relation. then every history in L(LOMK is onlin hybrI4 ajoic at
X GnmLammit2. this mfflces to proveTeorem 11i.

We star with a simple lemma relating fte sAte of LO)CK atWe a hislmy to the event in the hiory fte proof
involves a simple inidltucai on fth legth of histores in L(LOCK, and is omitted.

Lemmas l LetH be ahistory inL(LOCK),lIN abe the staleof LOCK Aer Kandlet Ql qaara ugctwý.
The following pwpern hold:

* OpSeq(HIQ - s~inteions(Q).

* Opleq(HQ ends in the invOCaIoa11 evea cX~Q> 0* s~pendi(Qj - L.

* <Wmmilt)*X.Q, qipear in H es scommieied(Q) utL

a abmmd(H =sLaborted.

Me OW lem=a shows dti active traisaction do wot cwgfi"t

L'aasa M L9 H be 8b mAy in 140CK) sd 10 9 be 0OWofLDCX OK IL If P q
COayMO d() sad Q a Compleawnd"Htu no operauwi in sLiWW M"g C04004,0 6* a p q .a

13

Pro6Ancamy idictononthe lagthof IL

The next leanma shows a bosi property of two-phas locking. It says doa if two transactions aem concuirrent (neither
commits befor die other executes an oipersion), dhen ther on no lock conflicts between them.

Lemman 14: Let Hbe ahistory in L(OCK). If P ad Qare transactions such that P *Q,P * Aborted(H)
Q * Aborest.d((P.Q) * Precedes(H) and (QP) * Precedea(H) then no operation in OpSeq(HIP)
conflicts with -n operation in OpSeq(HIQ.
PneA. Weniakeuuseof the previous lemnm. Let 0bedie largest prfixaof H dotdon not contain a
commi evenat forPor Q.and le s be dieutamof LOCK AWeG. Neither PnorQ isin Completed(G).
Therefore by Lemma 13,3so operation in sLintentOns(conflicts with an operation in sLintentions(OJ. By
Lemmst 12 OpWeq(IF) - sLiaenzoouP) aid OpWeqOOQ - sLWentons(Q), and consequently no
operation in OpScq(GIP) conflicts with inoperation in OpSeq(OIQ).

We now claim dhat OpSeq(GIP) - OpSeq(HF and OpSeq(GKQ) - OpSeq(HO. Since so operation in
OpSeq(0IP) conflicts with an operation in OpSeq(GIQJ this suffices to prve the lemma. We show the
claim by conadliction. We cosdrP, the proof for Q is symmetric. Supos OpSeq(GIP) *
OpSeq(HIF. Then OpSeq(HM is longer than OpSeq(GIP); let 4.r> be the first operation that occurs in
OpSeq(HM that does not occur in OpSeq(GlP). It followso thmde event craXP> occur in H and not in
0. Furthermore, arX.P> must ourin H after a commit event for either P or Q. since G is the largest
prefih of H that doe~s not contain a commit event for either P or Q. The event -aXP> cannot occur after a
commit event for P. since H is wdll-formed; therefore, it occurs after a commit event for Q. This implies,
however, that (Q~P) cc Precedes(H), which contradicts one of the hypotheses of the lemma. D

The nuxt lemma is needed to show that View(Q~s) contains enough information to compute die resut of an

IdmaneIS: Let Hbe ahistory inL(LOCK) and let sHbe the state of LOCK afterIL Let Cbe acommit
set forHILand let Pbe anactive transaction inC, ie., P e C-CommitoM(H. Finally. let Tbe atotal
order on Uauimctions consistent with Known(H) such that (Q.P) Er T for every Q e CommitteD(R. Then
ViewQ(P.90 is a Coqfflc§4coaed subsequence of OpSeq(Seral(HICTh).
Prooft We firs argue that View(P.W~ ii a subsequenc of OpSeq(Seial(HIC),T we then show that it is
Confic-cosed.

YiewQP,s.W is constructed by appending sH~intentions(Q), for each Q in Commitied(H) indexed in the
order given by s~~commitad(0J, and then appendinig s~intentions(P. By Lmna 12. a11.ntentoionR) -
OpSeq(HIR) for every transaction R. mid the order given by s~.committed(Q) is the sam as TS(H). Thus,
View(Pl,s) - OpSeq(IQ) * ..* OpSeq(HIQ1 o OpSeq(HIP. where Ql-Q an the transactions in
Commilted(l) in the order specified by TS(H). Since T is consistent with TS(H) mid (QPF) e T for every
Q e C~ommitse(H) the operations mn View(PjH) appear in the same order in OpSeq(Serial(HICT.
Thus. VkeW(Po is a suibsequence of OpSeq(Seral(HJC)).

Now we show that View(Pji) is a Cojlkic-closd subsquec of OpSeq(Serin(HIC.7)h. We proceed by
induction ondie length ofIL T*ebusk cue, when H aA.is immediate.

For the induction ste, suppose H * A. mnd assume that the theoremn holds for all histories in L(OCK)
thatuuam ortrthan X Men H -K 9 for some his y K in L(LOCK) and mom event e. LetsK be the
aWe of OCK afte IL By induction, dhe lemma holds for K and sK.

Firm, now that PrecedeaC r. Precedea(H). TS(K) r. TS(H). Commitled(K) Q Committed(H). and
Abortd(K c; Morted(H. Thuts, C aid T satisfy the conditions of the lemma for K.L By induction.
View(PAsK) is a Cbec-closed subsequence of OpSeq(Serinl(KIC,)). Then ar thme cases to consider,
depending on the type of e.

I. Suppose e is an invocation or Abort event for sacm transaction R. Then %jsfinentions
a.intentions, and sH.cmmined - as.commitsed. Thus, View(P.sW = Vlew(P~sK). If e is an

abort event, Rol C. Otherwise, now that Opeq throws away pending invocation evets In either

14

cse, OpSeq(Serial(H)) - OpSeq(Se•al(K•CT)). The result follows ftm the induction
hypothesis.

2. SupIos e is a commit event for some transaction R. Since OpSeq thow away commit amid abort
events& OpS*qSeral(HC,7Th - OpSeq(Seris(KICTh). In a~ddiin VieW(PJ') is obtained from
View(PA4) by i zns OpSeq(HM) in the position daImn lIed by fte -im m for I. To show
that View(P 4) is a Cor tc-closed subsequence of OpS(S=Ial(H ,)), we mut dshow dt for
evay operation in View(Ps), evay earlier conflicting opersion from OpSeq(Serbl I,T)) is
also in View(RsH). By the induction hypothesis, this is true for operations *at mW i bt
V'-w(P,•) mad View(PNs). Me operations that am in Vbw(P,,) but no in Vaew(.) me tde
operaions in sliltenion ý). Suppose an operaion r in OVSeq(SerialQI FTh PFIdI some
operaton q in sinfeioas(R) md conflicis with it. md Jet S be the - -mic do execumted r.
Thain by Lemma 14 mad the comraints on T. <SR> e PracedsH. By theden of
Pr dM(H), S e Commixted(H mad thus r appem in View(P4).

3. Finally, suppose that e is a response event <r,XR>. If P - R tie result follows from the induction
hypothss and the precondition for e, since the operation added to s$HJakdms(P) by e cannot
conflict with operations executed by active transections, and all other operatiom1 in
OpSeq(SarialIC,T)) re in View(PVs).

If P and R are distinct then View(PsH) = View(PsK). U R * C, then OpSeq(SrWaH,))
OpSeq(Seral(KiC,T)), and the result follows by induction. Otherwise, OpSeq(Seral(IC,T))
differs from OpSeq(Serial(KIC,T)) in that it contains am extra operatia for R. Since H is well-
farmed, R * CommittM(H). By Lemma 14, an operation executed by R conflicts with an
operation executed by anothr transaction S only if <S,R> e Pmcedes(H). Therefore, every
operation in OpSeq(Seria(HIC,T)) that conflicts with an operaton q executed by R appears
befor q. TIh result follows by induction.

Now we we ready tso prve te main result.
Theimm 16: Suppose H is a history in L(LOCK), and suppose Confct is a dependency relation. Then H
is online hybrid atomic at X.
Pe 7U Th prodtp reeds by induction on the legth of R. The bais cse, whie H a A, is immediate.

For the induction stp, suppose H * A, mid usume the result for all histories in L(LOCK) short than
H.en H = K e frsome hisory K in L(LOCK) andsome eveat e. Since K is dinrto I al H, the
dt P M P.bw for L

Nose that ali ev in H (and K) involve onlyX; thus, H = HIX.

Lot s•[be tstate of LOCK afka K.

Now, let C be a commit set for H, and let T be a total orde on transactions consistent with Known(. To
show that H is online hybrid atomic at X, it suffices to show dat HIC is ser•alizable in the order T, ie.,
thug OpSeq(Swi~lalHI,) is legal.

FMu note that P•ecede r Precedea(H), TS(K) r TS(H), Coumiued(K) r Commiued(H). and
AbMd(K) A M . Thuns, C mid T satisfy the conitins of the definition of on-line hybrid
Umaimc i for K. Thene a now two cae, dqweeding on de type of e.

1. Soppom e is a commit, abot, or invocatn evea. Nose tim OpSeq throws away pnding
invocation event, commit events, and abort even Thus, OpSeq(Seral(HIC,T))
OPSq(STa,)). Simce d• term holds for K, it also holds for H.

2. Suppei h thie is a reosevetr,XP. This is the diffculnCMe. NMtim if P* C den HIC
-=iCmd reslt foows from he induction hypoftsis So am e du P e C.

14t A V a C - CannaitM .l1. s P q•se Pec OpSsq(Sag(DCMj,)) CO be W an oas h•

OPS W Where hi - O•p• Iam)) mnd h2 - sedlHlCý)), md C1 and C-2

15

arechosen mch that ComminUsdH r. Ct. C-2 c Active, mad P * C1 u C2. The sequences h, and
k respectively contain the operations of transactions ordered before mad afte P by T. C, contains
Committed(H) because T is consistent with Precedes(H), mad since e - crX.P>, it follows from
tho definition of Predcds(H that (QP) e Precedeu(HI) for All Q IE COMMlttd(H. Note that hi
OpSeq(Serial(KJC1,Th, since P * Ci.

Since P as executing a response event, and H is wel-formed, no commit event for P appears in
ILAb C2 is chsnuhtdot C-r.A ctive;dths, ifQ e C2,no commit event can appear in H
for Q. It is man immediate consequence of the definitions tha P and Q are unrelated by
Ptecedes(H). Thus, by Lemma 14, no operation in OpSeq(IMP conflicts with an operation in
OpSeq(HIQ) for any Q e C2. By the definition of A2, no operation in OpSeqMHP conflicts with
an operation in h2.

We show that A1 * k2 and h, e OpSeq(HIP) are both legal. Since no operation in OpSeq(HO
conflicts with an operation in k2. it then follows from Lemma 4 that h, * OpSeq(HPM*A is also
legal, giving the &dsired result.

To show that h, * h2 is legal, we note that it is simply OpSeq(Seria(HIC - (P1.1)), which is the
same as OpSeq(Serial(KiC - (P1 ,T)). By the induction hypothesis. this sequence is legal.

To show that h, * OpSeq(HIP) is legal, noe that OpSeq(HIP) - OpSeq(KtP) * 4ir> for some
inoaini. By induction. h, o OpSeq(KIP) is legal, since it equals OpSeq(seriKlQCiCu(P) '1)).

By the precondition for e, <ip> does not conflict with any operation in OpSeq(HIQ for any Q e
Active; thus, View(PsK) contains all operations of h, 9 OpSeq(KIP) with which cis> conflicts.

Since e is a response event for P. (Q?) e Precedes(H for all Q e Committed(H). Since T is
consistent with Known(H), K, C. and T satisfy the hypotheses of Lemma 15, which then implies
that View(P~sK) is a ConjtJ~c-clostd subsequence of h, * OpSeq(KIP). By the precondition for e,
View(PNi) and View(P~s,) * cip> are both legal, hene by Lemma 7. so is A1 e OpSeq(KIP).

<=j A1 hi OpSeq(HM.

The theorem above shows that a sufficient condition for LOCK to be correct istat the conflict relation be a
dependency relation. We now show that this is also a necessary condition.

Themen 17: If the conflict relation used in LOCK is not a dependency relation for Serial, then Lj(LOCK)
contains a history that is not online hybrid atomic.
ProaI. N the conflict relation is vot a dependency rMotion, choose sequences h ad k mind ma operation p
suchdt he hp and k *karelegeL no operationin k conflicts withp.mandh*pep k is vatlegal. Consider
the following scenario. Transaction P execufes the operations in h and commits, Q executes p, and R
executes doe operations in L. By hypothesis, p does not conflict with mny operations executed by R. Uf Q
commits with a lower timestamp tan it, die accepted history is not serializable in timestamp order. a

6. compaction
Althoughi the use of intentions lists facilitates our proofs, it has the disadvantage that object representations are
neither compact nor efficient. For example, dhe size of a Queue representation has no relatio to the number of
items present in the queue and dhe item at dhe head of the queue must be found by a linear search. These problems
can be allvbatd by replacing: intentions Ists with more compact and effic"ea representation. For exmnple, we can
replace a sequece of operations with the suam (or version) that results from applying those operations to the initial
sftae For a Quemeor Semiquene, a velamight be apresented by ma arrmy or a inkdwd Us.while for an Account
an Integer cell might be used.

In this macalas we descib a geanea techaque for dicardin Intentons list for committed transactions, replacing
thmi with the version doet represents thei net effect. Each aobmc keeps track of an operation sequence that formas a
prefix for every view that will henceforth be assembled by any transaction. Each view is aseembled by appending

16

som sequence of intentions Hsts to the common prefix. When a committed trusaction is isifficiently old, i can be
"61,g-ssn "by appending its intemnoncs finst o the common prefix. discarding both its insenums linS aud its comnmit

tunemum& Thib commhon prefix is repreented compactly as a verion.

It a important to realize that a transaction cuinot necessarily be forgotten a soon as it commits, because uitntions
lists must be appended to the common prefix in commit timesomup order, but commit events for concinvent
transctons need not occur in tiinewta order. Instead, care must be taken to ensur that a trumion is forgoten
csnly whom no active trasaction can commit with us earlier tinietanip. 7b recognize when it is safe to forget a
transction,. we introduce some auxiliary components to our stat machine. Sciock keepus*ta of the latest

obere commit tiinesturnp; it has an initial value of - -. Slbosnd is a partial function from traneactions to commit
taiesaip. initially undefined for all transactions. Kf Q is an active transaction, slbounl(Q) is a lower bound on the

possible comimit timeatamps that Q could choose when it commits.

We add the following postconditions to the trmasitions for LOCL~

PsCondition
~.bound - s'.bound[Q -+ a&clock]

<rX.Q>
osconditioE

sLbound - s'.bound[Q -* sLclock]

<Oommit(t),XQ>
Poestond-hno:

Lclock - max(s'.ckxkkt)
sibound - s'.bound[Q -j11

<abcxMX.Q>
Postoondition

sLbound - s'.bound[Q -+ J-]
Thea. additional components have no effect on L(LOCiQ; they serve only for bookkeeping. The idea is dhat we
maintain a local clock that equals the maximum of the commit timestamps for transactions tha have commfitted at
the object. Since the commit timestanip order is required to be consistent with die precedes order at each object, the
lower bound on the commit timeuamup for an active transaction is increased to the current clock time whenever the

MIasaction invoks an operton Or lass = opeatzion retewn If Q is active, mid <,XQ>aoccur. dhen by the
constraints on commit timestamps the imestanip eventually chosen by Q must be greathr than the aommit

sins~pfor my ranssaction committed at X at the time that <iXQ> occus, mad simailarly for -aXQ>. Thus, the
duetcock timne when <0,XQ> or aXQ> occurs does conatirate a lower bound on the commit tmmestamp

Ovvui y chosen by Q.

Before describin details of how intentions lists are compacted, we present some properties Of sLbound and selock.
We Start with a simpl lemma relating these auxiliary components of LOCK to the other components. The proof
involves a shople Infduton on the length of histoies in L(LOCK), and is omitted.

Lemmai I& Let Q bea trausctian, H a history in L(LOCK), and s the sate of LOCK after acceptin H.
1. If aLboundaQ is defined, theme exists a truisaction P such that sLcomiztd(F - sbound(Q).
2. if aLcomMiMQ) is defined, sLcommitted(Q) -s. - ock
3. if smcom~lueQ) is MiefMed mInd sLimuentimsQ) 0 A, then sLboufi(Q Is defined.

90he UloWAg 101031 -N decibes hIow sd sAnd scommimled give inafomatism about Kowafw(H; in jalicula, it
-u With * ff lart of Lemar 16) dons tdo sLbod(Q) is a lowar bomed on Q's evenmal commit

17

Lemmaii 0: Let P and R be transactions, H a history in L4OK)M, and a theMe of LOCK after accepting
RL If s~bowid(R) and szcommitted(P) ame defined and aLoominined(P) :9 sbouind(Rt), then (PR) e
Knowgo
Proof: By induction on the length of IL The result is immediate when H is empty. For the induction ste.
let R 0* .ewhere isa sin le eet. ad eta e testate after0. and sthe saeafter L Fixa pokrof
transactions P and R. If.e is associated with any transaction other than P or R. die values of aLbound(R) and
sLcommitzed(P) are unaffected. The result holds vacuously if e is an abort, invocation, or response for P,
because, sLcmmined(P) is undefined. The result is also vacuon if. eisan abort or commit for It, because
sLbound(R) is undefined. If c is an invocation or response far R. then sLbound(R) - aLclock a
s2conziud(P) by Leama 1I. Moreover, (PR) e Known(H), since R excsed an invocaaion or
response a1er P committed. Suppose e is <coommit(t),XP>. N t~ > bound(R), die result holds vacuously.
Otherwise, by Le=m 18, there exido a transaction Q such that ..committed(Q) - s~bound(R). By the
induction hypothesis, (QR) e Known(O), and since Known(O) c KnowuN(H (QR) e Known(H.
Suppose sLoommitzd(P - sLcomanitaedQ); then P - Q (by well-fmmedoess), and by induction (P.~R) r.
Known"H. Otherwise, sLcommitted(P < sLcorrmitted(Q), so (PQ) e TS(H). and thus by transitivity we
have that MPR) e Known(H).

Now we describe how intentions lists ame compacted. Let s be aam of LOCK. Informally. the horizon time for s
is a lower bound on the commit timesatmp that can be chosen by an active transaction. The result of concatenating
the intentions lists of all transaction whose commit timestamps precede the horizon time is certain to be a pref ix of
every tninsaction's view, and thus can be compacted into a version. More formally.-

Definltdo. 20: sLhorizof - max(-. , min(min(s~bound(P) I s~bound(PF) * ii,
inax(sLcommuited(P) I s~commnitted(P) * -L))

In other wouls, the horion time is either -~ (if there are no active or committed transactions), or it is the smaller of
the smallest bound for an active transaction and the lagstA commit timestamp, for a committed transaction. If there
are no active transactons, then the harion. timestamp is the largest commit timestamp. If there is an active
transaction, however, all we know about its eventual commit tumestamp is tha it will be bigger than the recorded
lower bound for die transaction, so we should not compact intentions lists for committed transactions whose
tiinestamps are bigger than that lower bound.

Let Q1,....,Q be the sequence of transaction for which sLCOMMit is defined, indexedl in tiinestamp, order, and let
Qj,-,Q4, be the subsequence of transactions; such dthat xommit(Q~) !5 shorizon. We define die following

axiiy" comiponlens.
Defluldm 21: sLpernanent - slintentions(Q1) e *intantioos(Q.)

Dealtiona 22: scommon - sLinftenon(Ql) 9- intentions(Q.)

Clearly, scommon is a prefix of sLpermanent. To compute the response to an invocation for Q, we need to compute
View(s,Q). If Q is an active transaction, then View(sMQ = spermanent. s Litentione(Q). of which sxcommon is a
prefix. Thus, aLcommon can be compacted into a single version. To show that this is true, we show "ha sLcomm
grows mnonotonically.

L~maos 23: LetH -O *e bea history inL(MOCK), and let soand sHbe stwof LCK after 0and
RL Then s0.common is a prefix of s~.common.
Prool. If £ is an invocation, respoome or abort event for Q. then UH~committed - s0.committed, and

osud(*Q) either equals so bound(Q), becomes lnare than sa.bouad(Q), or becomes .L Regardleas.
slH~orizon 2! a0 horizon. Since aHxcommitted a sG~.comittd, s~common is a prefix of sH.cmmoM.

U eis acommnitevent for Q, theream two came. if eis the firstcommit event for Q.so s0 comion is a
prfix of s3.common. Otherwise, s1 .ommonm a sH~commaon.

Mei foMowing theorem follows euily hom die above lemma.
TheOrem 24.,Let 0anilH be hislries in L(LOCK) such dud 0is aprefixof 11,and In 9c;and sffbe

-son of LOCK after G wad IL The axommon is a prefix of 5.suxasin

Shin scousina grws mniomoticaily, we can rqveue it by beephaga i Mi Lveiaun and petiodically
cauiqa -w verson by applying (in commit timesatanp order) the *Milim lists for Veuactim P with

hIt a so always necessay so keep ezpaicit track of transactions! hewe bionds. For ~ismpk. if an operation
aiifim wit every other apsae atin Doq does ma ftg.. 4-2 (Igmtordie uaqPOOsvit Vilso), tao. d
Almliffidumseioesm cbel fgomm whenever adequcuitagu macdocomaldiw abrmai TisimsemQuay

au. a Deq hack only ifsan ethr acve menctoum baexcuaumay nips-el beligm ~(=I far
allPduaiocwt fomQ, and hen Larizon -L5boWtQ). Miecomsnteld alwsof a eue can be P; 'med
ingle comssed versinetr wit a emlf inteethu 00sisd~tag inthelye of tq opu Im.lintise *se of
fth rlpasine WOWl Ue PrepdOrtIon so fth MnIubP of delememaka tO e je0..

The Quaeue conflict relaulci shown in Figure 4-3can also be qspda~y apumia lkmer,@ ipil vi doat do ma
conflict conamume, tus a iausactian can be fbigoton u soon as iz comats at an objsct Mieaoitlg atheane is
equivalent so a canunutiuvily-bused locking scheme of Welli [22,25].

7. Diacusiom

7.1. Comauprlmoon Wfth CoQ auatlvlty-Bamed Schemes
As mentioned shove, the prcedes oider capture potential "infcinamion flow" between uranuctions. Mosn
ndmehnsms based an two-phase locking ensue that transactlons we seriialumle ia every emahuer condfment with
prcedes. a jinopamy known as dpiwnk awascity [2223]. Conflict-baed co= w eacy =m1 mecliuns for
dynmaic, miciy include those proposed by Eawarsi et aL [5], Korih [13], Dauslein at A. 12), wad Weihi [22,25].
Thiese, mechuaiuns anial based on a notion of commmu~dvfy. Influanaly, two apersbims r am -Pf preainig
them ut either cder Always yields the samn resus wad die somie Anad object am. Nf two uamendas do mvo
commutc mur lo cks ownt conflict.

We now show dots "failue to comnmut" is adependency relatiom, amlftt mt neeseafty.*al~b dqeaoency
relaion. It fMlows dot our protocol is hin ratrictive shu the r r Mdty~mi proonI Iltbo~ve; nor
protocol can achiev at least as much omacwteacy. Our exmasupes dew, dat 19 coaffit hecdby
dependency may be weaker dien or incompaprdale to thos Wndued by the sudJuiyandm Vansocl.

We me the hlhawb noutio of commuraivliy ukata from 122], a notion doat encompmsses both VaWti and non-

Defhinkm 2&: Two opetaio sequences h and h' we equivalent Kf they c otbe disdagadite by any
futureumapumasoe h 0 8islegaifand Only ifh' 0 8isiegalforanr 1 -q M seqvenoesg.
De~lm2is 6: Two Operations p ad commute iffr Alapeaatiuqmmshkwlameisvew A ep adA * q
arerbath legl, twhea hp.* q md A o q o p an lega uat equisleak
LaiiiiaZ: ff A. puhkxd g 1 1 kz -mp In, Fqe uis mp csuwith eviy caWdab in k
thena hp *p hnd A. * pawe legal wdepivaleat.
Pawult By kuhctlon on the nosher of aperation in t. The 11111t is trivial when k is 41111M. IPtr the
Jomeusm seep, mpga Pk - e' 9 q. wba q is a doffie opunslen. adsl ft da a heW-t A'. hIat
byluh'ctioh~pok'bislg'J-ipivalMssora~k'.p. byl~ityes* '"m~~ilgJ
-Sicepswd q coinjW h 9 k' o p * q bs bleg and equivalent o h*a -'.qv p. 71* lo kj~u **k-6j.
Thefaimeriequivaleg soh *Po ke q~dnc hok' #phsedVahoohspoa e~. Rat*bjsimA~po

19

Themmva 28: 'Tan=ieto commute" is a dependency relation.
Prooi. Let Mrdenow fMore to commute. Let h mid k be operatio sequences and let p be an operation
such thatmk kand hop amleaand such thatfor allqin k.(q,*) *NV It uffices iDshow thatkopek is
legal. This is immediate from Lmma 27. U

L~ock conflict relAtions induced by dependency may be weaker than or incompmuobleo thosde induced by
commutativity. Pcir example, consider an Account object. Commutativity based protocols impose a lock conflict
relaio that includes (at Iuan) fth conflct shown in Figure 7-1. Thiis conflict relaton permits strictly less
concurrenPicy than die dependency relation shown in Fligure 4-5. The additional restrictions arise because the
comnulatvilty-bwud protocols require Post operations to conflict with Credit and Debit operations, while fth
dependency-besed pauocools do not. In doe Queue example,. by contaist, the commutati'vity-based protocols induce

lokconflicts identical to dime induced by fth minimal dependency rleltion shown in Figure 4-3. Here, however,
the commutativity-based protocols do not pawmi the incomparable conflict relation induced by die mninimal

dpnecy reation in Figum 4-2.

____________Credit(n) Ok Post(n),Ok DebuKn).Ok Debit(n)Ovdrf

Credfit(m),Ok true owue
Post(in).Ok amu true MOue

Debit(m),Ok true true

Debit(m),Overdraft tUe ama I____I

Figure 7.1: 'Failur to Commute" Relation for Account

in addition to requiring fewer conflicts than commutativity-based protocols, our work also generalizes most other
work on type-specific two-phae lockng by aowinng fte results returned by an operation to be used in choosing fth
appropr'ame lock. and by permitting operations to be- partial and non0-deterministic. Some other protocols (e~g.,
see (18]) achieve the effect of using information about results by acquiring a restrictive lock when an operation
starts running, and then "down-grading" the lock depending on how the operation actually executes. The resulting
protocol violates two-phase locking, and as a result ad hoc correctness arguments we usually given. Our protocol
shows how the resuts of ma operation, as well as names and argments, can be used systematicafly to determine the
lock needed. (Mh commutativity-besed protocols in [22,25] also permi result information to be used in choosing
locks.)

In addition, other protocols (except for thos in [22,25]) require operations to be total and deterninistic. Parta
operadtions are important for modeling produce-consumer relationships, in which one transaction is consuming data
p roI ced by another. Such situations, while Perhaps uncommon in traditional dta~base applications, are more
common in general distributed or object-oriented systems. Simiary, non-deterministic operations am an importan't
source of concurvency. compare, for examnple, the dependency relatons for Queue and SemiQueue shown earllier.
(Non-delenniniun can also increase availabilitr; see [8] for an example.)

Another way in which our work differs from moat other work on type-specific concurrency Conroftl ia in the
treamewt of recowzry. Wiith the exception of [22,25], theother work ignores recovery.

A mome genera form of hybrid atomicity is defined in (22,23], permitting read-only trinactons to be treated
specially, as in the multi-version protocols in [3.4.24]. Timestamups for read-only transactions so Chosen when
they start, while timeatamps for other manactions are chosen when they commit. This algorithm is thme origin of the
term "hybrid aomicity," since the protocols combine aspects of dynamic atomic protools (mach as common
two-phase protocols) andl static atomac protocols (such as Reed's multiversion protocol. In facM hybrid atonticity is

20

upwad compatible with dynamic atomic protocols dynamic atomic protocols gumreane srializability of
cemmited transctionm in ali total orders consistent with Prcedes(H); since TS(IH is one such order, global
stomicity Is still obtained when dynamic and hybrid atomic objects me combined in a single sysem.

Our results suggest dot dependency is a more fundamental property than commutativity for understanding
concurrency conraI for typed objects. In additiko the notion of a dependency relation arims in a variety of other
related conates. The constraints on the availability realizable by quorum consensus replication [8] can be
ae smd in mrms of dependency relations. Dependency relations also foam die basis for validation in type-specific
optimistic concurrency control mechanisms [9], as well as type-specc locking schemes based on multi-version
fimeapmng [10], and schemes dat provide high levels of availability in the presence of partitions [111.

To suwamarte, we have defined a new locking protocol that permits more concurrency than existing commutativity-
based protocols. It permits opmraios to be both partial and non-deterministic, and it permits remsul of operations to
be used in choosing locks. The protocol exploits type-specific properties of objects; we have shown how to define a
nece• ary and sufficient set of consraimts on lock conflicts directly from the data type specificaton. The protocol is
optimal in the sense dut no hybrid aomic locking schema can permit mor concurrency.

L An Example Implementation
To illustrate how oua locking protocol might be used in practice, this appendix describes a implementation of the
Account data type using AvalomC+ [121, a programming languag that supports hybrid asomicity. We assume
some familiarity with C++ [201. Although Avalo/C+ support nested trua-sctions, this example assumes only a
single-level transaction model

We start by desaibin the subsidiary data types used by the Account implementation. Avalon programmers do not
manipulm transaction tinmetamps directly. Instead, Avalon provides a transLd data type to permit the

r aupummer to tam serialization orders at i
cla .. trans id: public reooerablo II
private:

II repre•entatioa

bool apetoxz- (txaain.±46 who): If qualp
boe el ait~er< (tranaaJdA wo): IIaerialiusi before?

/1other operationsI;

A transaction gnerates an identifier by a call to new.

transin da who - no trains-id;
Transaction idenifie are partially ordered by the overloaded operators '>" and <." If transactions P and Q
respectively crea identifirs tl and t2, thm the exprssion

ti < t2

evaluams to Orw if and only if (PQ) e Known(H), where H is the current history.

An account object maintains lock information in a lock table.
loo 0o1type f CM(Z ! , POU•T-ZO , NUT WLO , oVMSMa1YZL);

9lU d ediaM a m imq vobdcm i SW= thins p is MW diffwnt hm do hi rtwoteu by Hufty t is adly an to be

6AvdamX* &Am bool to bs = ==swamk typs mmb TIn mto i sad VhX.83 sa %

21

Glass look tab (
Priatea:

lookta O); II oosbuat.;o
void define (look type modwO. II re.ster a look on..lict

look type miode)
booL oosllct(lok type ods, II ok to grant look*

tlana W d);
void greant (Iclootype nods, I gve look to Geller

tzaaai d* %h.);
void zaelo•e (tzn iLi who); ll release saller's looks.);

Mw accounlt op0mdont ane repented by ft enuuimtio0 tVp look..1typ.. An empty iock tabe it cresd by
decaring a vaiabe of te lock tab, ad de doeine oapad~o mob two operst as cmafficzig. The
conflict operatin ukes a lock tyr mad a Uumction idendtier, and rerm tnw If no odame vasacton holds a
conli locrk. TMe grant operatin rmuS a lock fr a Vecfied opsoke. and release dads all lcks held
by a utsatn

Ire net cffet of a tansecion dot eMeNt mdlb CmrdiU, DOe ab d Pa is I torle m d balace b by the
affine trawufmn on m*b+a for so= n mad a. Each Umacdon's intenon is recarded in d following ru:.

Street intent (float =I; gloat add;
Intent(float a, float a) (ml - a; add - a;);

I;
Mwe Its component define a conirucur operston for iniuazing .ie zuL The bintin amsomited wih each
uasacdon is kept In a Maele

class Intent tab II l t runa -> intention.
Private:

c/mrmaution
public:

Inteak tab 0); onstructor
intent look (tzn-A Ike) II retur intention
Void Laseft (tzmans id' Ik, IIbind tune to Intenion

intent olbt);
void discard (taenia1 wd'oh); IIdiscard intention

);

Lookup rem a transacton's cu nt on. If none exiat, k rturns an inseaucn wih mukticaive and
additve components 1.0 and 0.0 reqevely.

Intenbout for cuommited ranswai ae discarded usng the on me acheae deacibed in Sectimon 6. Each
actve Uancin keeps track of te latest commined trnsaction guaranteed to be ialzed before itef This
infrnan1- is kM in a tafe

class booed tab soI ap trans -> lower bound
private:

•.•// repntationpablot~:
bound tabo; / oastructor
void Insert (tren.-4 wh'o., 1/register sam lower bound

trmas 1d* bid);
Void dISoerd (tnae 140 921); 1disoard lover bound
tumed' ELa M: II borimos traneaction

3:

lransectont tha we committed but na yet forgoten we kept in a hesp.

class d hLIep (lllsorted hap of transactions

22

pattstta:

Ocaftmooaut~oa

tusue-ide top 0) II stur o~last tmneaaoUce
tzame Id* MuvO O; // ge oldsat tzmenscton
void iae~gt(tzwmeid'*o%&); II inSot taasW*as.i
booL. awty:T ; // hearp GMj

Thi dosa type puvide operatic for cMORMS as emPtY 1eM, OMauin A VIumSc11n idenutie a the hbop. ond
observing or removing the oldest (Le., minmal with reqioct to ,.el) imdufte in the huq.

Woe awenw ready ID exatmin the Account iunplunemeaton itslf
clases aoount: p~blo eshatouao
psivate:

look tab locks; 1 looks for opuzatiusa
4st@; tab intatmioas: isteaftioau list
floaet b0l; IIocowitbd balanee
Id heap osmiotted: oo @mttd but untospatten tzaneaotioae
tX7As i40 olook; easmt zmount tzasaaot~ion to commit
boo" tab bomim; eIaslieat poseibL commit tises
vowd foougt ; fI or foxgttiag oasmitted tzaau~tiowsi
statues su~ffimt (ta~mac Id' wh, // balance oowee debit?

float afi);

vowd oxedit (float Me);
heel deIt (float saft):
void poet(flost aw);
void oawmt (trawrn. wi bo);
void ebozt (tx*mna ±* who);

The Opublic mabesommic" declaration mescs do dtis dmt type ("clu" in C4+ anminology) iniesitt certian
opawono neeoumy for ohmci-tarm synclnonizaton sod for enmmug thot the objec a pecrdam Ip I ly on stable

omap. Mw object's interna repreoemtmlo. is given by the &AeUd follwingd theeyword p1 was. The locke
component keeps truck of the locks, intent tab records tuahactioms' antietm. hal is the acontm balanc left
by "ftomn" comnmitted trumactions, sed oomintted keep tack of truasatioms tha bwu commiamd but have
amt ye been Iorgo-- The bondma fa~n~ao tozget voc d a" loak sad bounds eWOd to implement the
compoction scheme dci Bigd'in Secdos& I 6. The 'u fucio sufficienat desumirn uhoinu the boelsce
covers so attempted debit by a puticula tronctien.

When on account is aieoed, the accmun coutmuctur bs invoked-
account: : oomA~t () (

91-4ia() (// -ski4 update
oloak - saw tamneid: cIloak is ozeatozes Id
hal - 0. 0: sn m initial balanoe
// Set up look conflicts.

looks * deffine GDI!Z=. WANUOIYIAM);
looks. define pOXrn,' 20=. ov OM;.i

Tbo ew jopeir udi ecvery, allmodhfrnton toU.objet muMocc mmideapinnin utemen. Most of
do oject'. membem m implicitly inidalisud Thes clock Is inisidhsd with U. majos Mmntiftw . balance is
imddbud to zmra sad U. lock ebbl is fahinolbed with U. conflc relation shown in Fgmu 4-5.

23

volod ap--A: *ozedi~t Mfoat of) f
tzan.i id 'Owh - -m tramm. id; OuGt eaLler' a Id.
whas ;Ilooks. comfliab (DIYZ.-OMO Imb)) Check for oomflio.

pdintag ()4I Nakia update.
looks. grant (IT=XX-L*, who); // oqui~ze look ...
latest I m intentions. lookup (who); aI nd Current intention.
I. add - A. am + an: R/ ecord oredit..

taesioa Iset ~,I); IIand megister o Ina~.ntin.
hounds. nzert (who, olook): //note new hound.

Each Mammic object he an uwscimsed mutul uwkulaia lock. eleilwlo a mauitt lock. The when statment is
imilw o a Parded command. It zqumedly acquires doe lock and evalumes the coodiakum If die condition is true,
the amochied uswmm is executed aid do. kick is released. Odwwlasth ki.ck is releasd and die conditi ia
nutied afr an ubimry daadwn 1he Creoft opffa&2m Seamans an Wodetfa for die cadse, and checks for lock
camftia If amn ai found the calers unmation as updmd, and the curen clock value is recorded as dhe

uuantwasw bound. The Ntisopersdon is similar, andi audied.

Debi Is ilW* iam complex.
head aeseb: :debi~t (float 0*)

tzwm.ý Id' - -a tammeýid; 1/Sa allem' a 1d
whsamiitdb (seffioiat (vbo. S)) £

Onese U: debGoit oh
pilinn~g() Nu/ king update.

looks .graat(M (XVJ , whoa): II oumze look ...
intent 1. - inteations. lookup (Wwo); //find Intention ...
I. add - I. add - an; caurseed debit..
intentlens. inseftt(mho, I); //and register new intention.
bounds .insect (who, olook); /Note ama hound ...
return a=;/ and retam aucces softe.

Qu N: Ok to refus ebi.t.
pmIng() 0 MIaking update.

looks. greant (O.RArfYZO, who); ii oquire look ...
return PALM.m; and return overdzaft ooda.

The wkeuwkck iterment is a gnualmrnlof tthe whom aamume dk Pgr Phe the boolma expmremon with an
exprem of alan emanstom ype. Ekm, Debit coll upon the hi~enu iocedur indident, which retnurs YES if the

mccoin balance covern die debit NO if the debit should be refuned, and MAYBE if lock conflicts leave die account

Thecode for ,4lcerir Vw below.
sam status (133, NOD, U N);

status aeevat: : ufflieit (trans Id' wb, float am)
float VION = hal: 1 Ceestaunt WAIN
id Pemp I; h - commtted; Cop bg eap of oummtted JId'a.
wi&le (Ih.10ty() (iiAwy each Commtted Intention.

latest I lnetoslgu kae)
fiem - I.wml * ~wA i.edd,

lates I -W Gaetm.lcu wo;I p ly ele'6 i6N~tentle.
view - L.ml * wSmew+ L.add:

if (view)o= an as I looks. onf list (DUZt LOM, who)) retun 133;

// Insattioimut funkds?
if (view -c ant && I tookx.. oflist(O=A! (75MZ, who)) wntnn M;

"/ cant tell.

0Atimic objects in AvaloX4+ provde commit and abort operations, which an cama by Mhe syma when
transectiom commit or abot. Thm commit operation for Account is die following:

void account: : omit (irons id* who) (
uban (2=) IIAlways ok to covoit.

JPinftng(0 Updating objeft.
if (**loo < *%b) clook - who; // Advmanc siock.
looks. elsease (who): PtoRleaisLealook.
bounds .discamd (who);I Disoard bound.
oomitted. nsert (who): // Mar as committed.
forgeft; II fy to forgt.

Thm clock a advanced, fth committing trivisactiona locks ame released, its lower bound a dblmdst dou Umasction
is znixed as committed. The intrnal functiouforgcs is cafled to forget committd truiM Mi

void asocunt: :forgot () (
tvans-ido borison - bounds .min 0;
whil (1toomitted.soty() 61 *(ooMittod-topO) < 'horizon)

twons Li' t w comitted. zom"()~; Ro m.'. the transaction,
intent L - intentions. looku (t): I find its intention,
bal - i~xml * bal + i.aid; IIapply it,
intentionos .disoard Mt ; sand disearid it.

This fntionm recwyuau Mhe hcuivon time, and applies ad discards ft he nawd for all commiuted traznsctions
, .. frd before te horizon

Abort is uiml-a to commLC
void aoocunt: : abort (tzans ~ii' wbo)4

ghen (M) IIAlways oh to sbort.
Ofn-tg(0 II Udating abiest.

loock.zelease(who); /1Release looks.
bounds.disoard (who); IIDiscard bound.
intentions.disamrd(Wh): IDI DsGad intentions.
forget 0 //!y tofoxget .

Reference.
[1] PA. Bernstein and N. Goodman.

Concurrency control in distributod daaduue systsmnL
ACM Compudfg Sitniys 13(2.:195-22, lime, 198 1.

M2 PA. Dernaluvn, N. Cloodmot, and KLY. Lai.
Two-pat proof schema for databie, coucwoency contro.
In Proc. FOVIB*IQ Worksop enDiavbaod DtaMarma nt .mE Coouupetor F~kwy,

1981.

25

[3] A. Chona, S. Fox, W.T. Lizn, A. Nod.m, d D. Ries.
TIe hnpleuntsti of can integned concuerency control end recovery edieme.
In Proce edfs of the 1982 SIGMOD CoMexVeece. ACM SIOMOD, 1982.

In Proceedhas 1982 Berkeley Workshop on Distrbuted Data Maxoqeusea and Comuterv Networks, page
81-94. 1982.

[5] K..P. Haama, J.N. (hay, RA. Lm*e mad L.L 'lralger
Mwa notion of consisteny and predina locks in a daum.es systm.

ComuulcalossACM 19(1lW.624-633. November, 1976.

[6] Gore. J. A.
Iniannm consistency of a disutrmibutedrasacton syman wit orphan deton.
Mauler's theis, ItUT, January, 1983.
Availale as MIrjLCSI1-286.

(7 GnayJ.
Nowe on Datebas Opersting Systes.
In Lecture Notes in Computer Science. Volume 60. OperatinS Systems - An Adwunced Course. Springer-

Valag, 1978.
(8] M.P. Herhiy.

A qou-comensus re- plication, metod for Abstract, dame types.
ACMTrasactons on Computer Systems 4(l). Febnhly, 198&.

[9] MP. Herhby.
Optumisi concwrency control for abstract dama types.
In F~ft ACM SIGACTr-SJOPS Symposium on Principls of Distributed Compufti. pane 206-217.

Augsa 1986.

[10] MYP. Halihy.
Extending Muktiversion Thiestasping Protools to Exploit Type Infornnaaio..
IEEE ransctions on Computers C-35(4). April, 1987.
Special mwsu on pwarale and disriufted computing

[11] MY.PHefthy.
Dynamic quoruma adkistmnem for putidoned data
ACM Tran~wAcons on Databwe Systems 12(2), June. 1987.
Also available a 7 CMU-CS-86- 47.

[12] M.P. HEihy and JM. Wing
Avalon Langag Sq~por for Reliabl Disrbuted Systams.
In 17th Sympouhun on Fouls-Tolerant Computer Systems. July. 1987.
MAlo availab= aTR CMU-CS-86- 167.

[13] HY.FKorth.
Locking primitivs in a databme system.
Journal of the ACM 30(1), January, 1983.

[14] L.Lunpoit.
7w., clocks, and the ordering of events m a distribued sysem.
Commurdcations of the ACM 21(7):558-505, July, 1978.

[15] LemsaponB.
Atomic trnstons.
In 0006 and Harunanis (editor), Lecture Notes In Computer Science. Voahme 105: Distr~ute Systems:

ArcIVecture and Implementation, page 246-265. Springe-Vrlag, Berlin,1981.

24

1161 NebM nB. J.
Rmoseprvuawe Carl.
PhD thesis uiel-MI Uflvesfy Dqne (Caomp Sdmm May, I Ma.19.

[17] DP?.Rm&d
Implementing atMic acdoms an decemlfrhd dma.
ACM Truawdoas on Compuver Syumm l(l):3-23 Febsuuy, 1IM.

(181 P. Scbwuz and A. Specto.

ACM Mr~canscts ox Cau pmr Spiew 2(3)223250 Aupma 1964

(191 Skem hCDA
Crash recovry in a AwribmW database systems
PhD the~sis Univuity of Catmfixia at Desakely. May. 19a2
Available as LED/Il M A2S.

(20] B. Swam~rup.
The C++ Prograamftn L~auqar.

[21] RJL Tboiuka

A anajadly conauuus aomsch In cancurency conwo for multdl copy datobaes
ACM Transacton on Databa se oMmu 4M.):180209, June, 1979.

(22] W.E.Weibi
Spec~cagon and lnWplementadon ofatouk data ypes.
PhD daeis. Mamcbueu Insdatue of Technology, 1984.
Availble u Tchnical Repast M1TAA/MCf~-314.

W23 .W cLbL
LocSl atmicky propenfies zodnia concrwecy control for abstvac dao& Mmes
ACM Transctons on Prqr~mftbu Language and Sysems, 1967.
Accepted for p*blcstimu

(2A) WE. WsibL

IEE2 Thamcdons on Sqlware Engluwing SE-13(1).-55-64, JrnzWY, 1967.

[251 WE. Weihi.
comw -------- CORURNCY C~o~ufar AbOWD&ST~~
In Proceedins of Ae 7WeAUY~flrAnmal Hau'*i C&O*,wa ox System kkonca Januuy, 1968.
Revised vers iont qipw In a goodim bwm on puaflel &O% dGub mp supig of MEE T~ugaum an

- a.~se

OFFICIAL DISTRIBUTION LIST

Director 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

