Performance Evaluation of Frequency-Hopped Spread-Spectrum Multi-Hop Networks

J. W. GLUCK AND E. GERANIOTIS

Department of Electrical Engineering
University of Maryland
College Park, MD 20742

Communication Systems Engineering Branch
Information Technology Division

November 2, 1988
Primary and secondary multiple-access interference processes are characterized for multi-hop packet radio networks, in which users are assumed to be Poisson-distributed in the plane and to use frequency-hopped spread-spectrum signaling with a receiver-oriented assignment of frequency-hopping patterns. The throughput per node and the average forward progress are then evaluated for frequency-hopped multi-hop networks that employ (i) random forward routing with fixed transmission radius (RFR) and (ii) most forward progress routing with fixed transmission radius (MFR). The optimal average number of neighbors and transmission radius are derived for these cases when Reed-Solomon forward-error-control coding with minimum distance decoding or binary convolutional coding with Viterbi decoding is employed.
PERFORMANCE EVALUATION OF FREQUENCY-HOPPED SPREAD-SPECTRUM MULTI-HOP NETWORKS

I. INTRODUCTION

In recent years, a good deal of research has been done in the areas of multi-user communication networks and spread-spectrum communications. One of the logical extensions of this research is the use of spread-spectrum techniques in combination with networking techniques in order to provide greater multi-user capabilities and higher resistance to interference, whether hostile or benign. However, there have, thus far, been few attempts to pursue this.

The general feature of most of the spread-spectrum network models proposed to date has been a lack of precision in the characterization of the effects of spread-spectrum signaling on network performance. The general practice in papers like [1] and [2] has been not to pay sufficient attention to the accurate modeling of the effects of spread-spectrum modulation; therefore, the results obtained can be very optimistic or pessimistic, depending upon what assumptions are made. In [1], a model is presented for a frequency-hopped (FH) spread-spectrum multiple access (SSMA) digital cellular telephone network, and an expression is derived for throughput. The outstanding features of the model are the characterization of user mobility in terms of a two-dimensional Poisson process and the treatment of transmitter power attenuation with distance. Similar techniques are also used in [2], in which the authors concentrate on trying to model spread-spectrum multi-hop networks. Although their multi-hop network model has merit, their treatment of the spread-spectrum modulation could be improved (they employ a processing gain model, which does not account for the characteristics of the specific spread-spectrum modulation).

In contrast, the work of [3] for single-hop frequency-hopped spread-spectrum networks examines in depth the effect of forward-error-control coding and frequency-hopped spread-spectrum on the throughput and packet error probability of a network that employs a

slopped or an unslotted ALOHA protocol. Furthermore, the work of [4] investigates slotted
ALOHA protocols with stable throughput for frequency-hopped Reed-Solomon coded single-
hop networks. No similar attempts to analyze spread-spectrum multi-hop networks accu-
rately have been made so far. Many of the issues involved in doing so are, however, discussed

In this paper, we consider a model for a multi-hop network that allows us to incor-
porate realistically and to evaluate precisely the effects of frequency-hopping spread-spectrum
modulation, data modulation, and error-control coding on the throughput and expected for-
dward progress. Our multi-hop network model is an extended version of the models intro-
duced in [2], [5], and [6]. Although the Poisson methodology used in these models is not une-
quivocably acceptable, it remains, nevertheless, mathematically tractable and permits the
consideration of networks with large numbers of nodes. On the other hand, our model for
spread-spectrum and data modulation is the most realistic and most broadly accepted one
([3], [4], and [8]). A complete departure from the multi-hop network models of [2] and [5]
would make the incorporation of the aforementioned effects of spread-spectrum modulation
mathematically intractable.

The contents of this paper are as follows. In Section II, results are derived for the
throughput per node and the average forward progress for frequency-hopped multi-hop net-
works with forward-error-control coding (Reed-Solomon coding with minimum distance
decoding or convolutional coding with Viterbi decoding) and M-ary (or binary) orthogonal
FSK modulation with noncoherent demodulation, employing random forward routing with
fixed transmission radius (RFR), a modification to the scheme treated in [2]. Section III con-
tains results for similar multi-hop networks employing most forward routing with fixed
transmission radius (MFR), adapted from [5]. In Section IV, numerical results are presented.
followed by some concluding remarks in Section V.

II. FREQUENCY-HOPPED MULTI-HOP NETWORKS EMPLOYING RANDOM FORWARD ROUTING WITH FIXED TRANSMISSION RADIUS (RFR)

In this section, expressions are derived for throughput and expected forward progress (which can be used to determine optimum transmission ranges; see, for example, [2]) for frequency-hopped multi-hop networks.

The network model to be assumed here is similar to those found in [2], [5] and [6]. A geographically-dispersed network is assumed with a uniform traffic matrix. The number of users in a given area is a two-dimensional Poisson process with density \(\lambda \) users per unit area. Each node is assumed to be able to transmit to users located within some radius \(R \); thus, the average number of "neighbors" (users to whom a given transmitter can transmit) is given by \(N = \lambda \pi R^2 \). It is assumed that all nodes always have packets to send (heavy traffic assumption). A given node will be in transmit mode (i.e., it will actually send a packet in a given slot) with probability \(p \), provided that it can find a suitable receiver (as will be discussed below) and will not be in transmit mode with probability \(1-p \) (this represents a Bernoulli process, on a slot-by-slot basis, with parameter \(p \)). Note that \(p \) is a system parameter that may be chosen to optimize performance.

The channel access protocol is assumed to be slotted ALOHA, and the system is assumed to use frequency-hopping as the means of spreading the spectrum. It is assumed that there are \(q \) frequencies (or "bins") available for frequency hopping. Since we are not dealing with a delay analysis here (but rather, with a throughput analysis) and given the heavy traffic assumption, it will be assumed that retransmissions are absorbed as part of the rest of the traffic, and thus, they are not treated separately (including acknowledgements).
Receiver-oriented assignment of frequency-hopping patterns is assumed; i.e., a transmitter with a packet to send to some receiver uses the hopping pattern unique to that receiver. Users are assumed to know the locations of their message destinations and of their neighbors.

Synchronization at the packet level is assumed feasible for all users. Thus, the uncertainties in the timing between different users are required to be small relative to the packet duration; however, since they might not be small relative to the dwell time of the frequency-hopper, we consider asynchronous frequency-hopping systems. For systems employing Reed-Solomon coding, one codeword per packet is transmitted (use of forward-error-control coding to correct errors (caused by other-user interference or by noise) will be discussed below).

There are many possible routing strategies, of which two shall be analyzed here: random forward routing with fixed transmission radius (RFR) analyzed in this section and most forward routing with fixed transmission radius (MFR) analyzed in the next section. Hou and Li [5] model two other routing schemes: nearest neighbor in the forward direction (NFP) and most forward routing with variable transmission radius (MVR). While these schemes, unlike RFR and MFR, provide for variable transmission radii, they can be analyzed using a methodology similar to that described below. However, the increase in computational complexity required for the evaluation of the throughput and expected forward progress of these routing schemes would be considerable.

Random forward routing with fixed transmission radius (RFR) is based on the completely random routing scheme found in [2]. The difference, of course, is that, here, a transmitter always chooses a receiver in the forward direction, the direction in which the ultimate destination is located.

Figure 1 illustrates this strategy and the types of interference that are encountered therein. In the figure, X is transmitting a packet that is destined for node D. X randomly
chooses a node \(Y \) in the half-circle of radius \(R \) surrounding \(X \) that is in the direction of node \(D \). Forward progress is denoted by the length of segment \(\overline{XZ} = z = r_0 \cos \theta_0 \).

In the figure, \(X^1 \) and \(X^2 \) interfere with \(X \)'s transmission. \(X^1 \) is a primary interferer; \(X^1 \) has a packet destined for \(D^1 \), and he randomly chooses \(Y \) as his immediate destination node, the same node chosen by \(X \) (note that \(X \), likewise, is a primary interferer with \(X^1 \)'s transmission). Since receiver-oriented assignment of hopping patterns is used, all primary interferers use the same spread-spectrum code that \(X \) uses. \(X^2 \) is a secondary interferer; \(X^2 \) has a packet destined for node \(D^2 \) and chooses \(Y^2 \) as an intermediate destination. Although \(X^2 \) is not transmitting to \(Y \), some of the signal power used by \(X^2 \) is received by \(Y \), since the distance between \(X^2 \) and \(Y \) is less than \(R \), the fixed transmission radius. The spread-spectrum codes used by the secondary interferers are different from the code used by \(X \) for transmitting to \(Y \).

In analyzing this scheme, what is desired is the probability that \(X \) transmits correctly to some node \(Y \), denoted \(P(X \rightarrow Y) \). For convenience, this will be broken down into two components, \(P_{TX}(X \rightarrow Y) \) and \(P_{IPX}(X \rightarrow Y) \), which correspond to the parts of \(P(X \rightarrow Y) \) that do and do not involve interference, respectively. These two components give \(P(X \rightarrow Y) \) in the following manner:

\[
P(X \rightarrow Y) = P_{TX}(X \rightarrow Y)P_{IPX}(X \rightarrow Y). \tag{1}
\]

Given that a node is in transmit mode (with probability \(p \)), it actually transmits if it can find a receiver, i.e., if there exist(s) some node(s) in its forward direction. The probability that one or more such nodes exist is \(1 - e^{-\frac{N}{2}} \), as discussed in \(5 \), where \(N \) is the average number of neighboring nodes (within a circle of radius \(R \)). As described above. Thus, we have
\[P_{TX}(X\leftrightarrow Y) = Pr\{X \text{ in transmit mode}\} \cdot Pr\{X \text{ can find a receiver} \} \cdot Pr\{Y \text{ is not in transmit mode}\} \]
\[= p \left(1 - e^{-\frac{N}{2}} \right) (1-p). \] (2)

This accounts for the "non-interference" portion of \(P(X\leftrightarrow Y) \); we now concentrate on the interference-related components.

The first piece of information necessary to evaluate the interference components is the number of potential interferers (surrounding a receiver). The probability that there are \(k \) interfering users (transmitting packets) within a radius \(R \) around a given node is given by the Poisson distribution:
\[P(K=k) = \frac{e^{-N}N^k}{k!}. \]

Given that there are \(k \) potential interferers, we must now account for the fact that each of these can either not interfere (i.e., not transmit), be a primary interferer, or be a secondary interferer. Let us say that \(j \) of these \(k \) do interfere; then \(k-j \) do not, and this probability is given by \[1 - p \left(1 - e^{-\frac{N}{2}} \right)^{k-j}. \] Now, say that \(i \) out of the \(j \) are primary interferers and \(j-i \) are secondary interferers. The probability of this being true can be shown to be \[\left(\frac{p}{N} \right)^i \left(p \left(1 - e^{-\frac{N}{2}} \right) - \frac{p}{N} \right)^{j-i}. \]

Note that these expressions refer to given values of \(k, j, \) and \(i \); the desired probability requires summing over all possibilities, which is done below.

The next step involves the evaluation of the probability that \(X \) (out of the \(i+1 \) users transmitting to \(Y \)) is captured by the receiver \(Y \) and the probability that \(Y \) correctly receives the packet of \(X \) in the presence of the \(i \) primary and \(j-i \) secondary interferers. Regarding capture, we assume that perfect capture occurs; that is, only one of the contending users will be captured by the receiver, and this event has probability 1. Although this is
not a perfectly realistic assumption, it allows for the expressions to follow to be evaluated in closed form; the only other capture model that could be treated analytically without considerably increasing the computational complexity of the evaluation is the case in which the probability of capture decays exponentially with increasing number of primary interferers. Since \(i+1 \) users (including \(X \)) are contending and each one is equally likely to be captured by the receiver \(Y \), the probability that \(Y \) captures \(X \) is \(\frac{1}{i+1} \). The \(i \) remaining primary interferers are then considered as secondary interferers. This reflects the fact that even though these \(i \) packets are not captured, they are still present (and thus interfere with \(X \)'s packet).

The probability of correct reception in the presence of \(j-i \) secondary interferers plus the \(i \) remaining primary interferers, which will be denoted by \(P_c(j) \), is equal to the probability of correct reception in the presence of \(j \) secondary interferers. This quantity is given in Appendix A, for various coded systems.

Given all of the above, and summing over all possibilities, we obtain

\[
P_{\text{TRX}}(X \rightarrow Y) = \sum_{k=0}^{\infty} \frac{e^{-N/X_k}}{k!} \sum_{j=0}^{k} \left(\binom{k}{j} \left(1-p \left(1-e^{-\frac{N}{2}} \right) \right)^{k-j} \left(\frac{p}{N} \right)^j \frac{1}{i+1} \left(p(1-e^{-\frac{N}{2}})-\frac{p}{N} \right)^{j-i} \right)
\]

Unfortunately, the \(\frac{1}{i+1} \) in \(P_{\text{TRX}}(X \rightarrow Y) \) presents an obstacle in any attempt to write a closed-form expression for \(P(X \rightarrow Y) \). However, \(\frac{1}{i+1} \) can be closely approximated by a sum of exponentials, \(\sum_{\nu} c_{\nu} e^{\gamma_{\nu}} \), in which the \(c_{\nu} \)’s and \(\gamma_{\nu} \)’s can be determined using Prony’s method (see, for example, [7, pp. 378-382]). We have used a three term approximation in our analysis.

\footnote{As a consequence of the random nature of the FH patterns, a signal delayed by more than one hop will be uncorrelated with the signal that actually captures the receiver.}
below and in computing the numerical results shown in Section IV.

If we further assume that $P_e(j)$ can be put in the form $\sum \sum b_{m,i} a_{m,i}$ (this is true, for example, for coded systems, as discussed in Appendix A), then $P(X \rightarrow Y)$ can be expressed in a closed form as

$$P(X \rightarrow Y) = p\left(1 - e^{-\frac{N}{2}}\right)(1-p)$$

$$\sum_{j=1}^{3} c_{j} \sum_{m} \sum b_{m,i} \exp\left\{-pN\left[1 - e^{-\frac{N}{2}} - a_{m,i}\left(1 - e^{-\frac{N}{2}} - \frac{1}{N}(1-\delta)\right)\right]\right\}.$$

(4)

where $\delta_{j} = e^{\gamma j}.

In this case, the local normalized throughput (in packets per hop, per node, frequency slot and dimension) is just $\frac{r \log_2 M}{q M} P(X \rightarrow Y)$, where we multiplied by $\frac{1}{q M}$ and the forward-error-control (FEC) code rate r to account for the bandwidth spread. The expected forward progress Z, defined as the expected value of the effective distance traveled along a direct path from X to D that is realized by transmitting to Y (i.e., the expected length of the segment \overline{XZ} in Figure 1), can be shown to be given by

$$Z = \frac{R}{\pi} P(X \rightarrow Y).$$

(5)

In Appendix A expressions for $P(X \rightarrow Y)$ that permit the evaluation of the throughput per node and the average forward progress are derived for Reed-Solomon coding with error-correction decoding and erasure/error-correction minimum distance decoding as well as for binary convolutional codes, with or without side information and Viterbi decoding.
As an example of a case in which \(P_\epsilon(j) \) is of the form \(\sum_{m,l} b_{m,l} a_{m,l}^j \), which results in a closed form expression for \(P(X \rightarrow Y) \), we consider the case of RFR with \(RS(n,k) \) coding used along with error-correction decoding. From Appendix A eq. (A.2) (see also [3]), we notice that we can put \(P_\epsilon(j) \) in the desired form, where \(a_{m,l} = (1 - P_\epsilon)^{n+l-m} \) and

\[
b_{m,l} = \binom{n}{m} \binom{m}{l} (-1)^l (1 - P_0)^{m_l (n+l-m)}.
\]

Thus, (3) becomes

\[
P(X \rightarrow Y) = p \left[1 - e^{-\frac{N}{2}} \right] (1 - p)
\]

\[
\sum_{l=1}^{3} \sum_{m=0}^{l} \sum_{l=0}^{m} \binom{n}{m} \binom{m}{l} (-1)^l (1 - P_0)^{m_l (n+l-m)} \exp \left[-pN \left[1 - e^{-\frac{N}{2}} - (1 - P_\epsilon)^{n+l-m} \left(1 - e^{-\frac{N}{2}} - \frac{1}{N(1 - \delta)} \right) \right] \right]
\]

(6)

III. FREQUENCY-HOPPED MULTI-HOP NETWORKS EMPLOYING MOST FORWARD ROUTING WITH FIXED TRANSMISSION RADIUS (MFR)

This strategy differs from RFR in that the node \(Y \) that results in the most forward progress is always chosen by \(X \). This scheme is discussed in [5]. The fact that causes the analysis of MFR to differ from that of RFR is that, as shown in Figure 2, since \(Y \) is the "most forward" node, there can be no nodes beyond \(Y \) in the direction of the destination; thus, a region, denoted \(A(r_0, \theta_0) \), is excluded.

In [5] expressions are derived for \(f_{x,y}(\cdot) \) and \(f_z(\cdot) \), the distributions of the position of the immediate destination node (\(Y \), in the case of \(X \) or a primary interferer; some \(Y^2 \), in the case of a secondary interferer). Expressions for the area of \(A(r_0, \theta_0) \) are determined, as well. These are all needed in the evaluation of \(P(X \rightarrow Y) \).
As a preliminary to the analysis, define \(A'(r_0, \theta_0) = \pi R^2 - A(r_0, \theta_0) \) to be the area of the non-excluded region. Thus, \(N = \lambda \pi R^2 \) is the expected number of neighbors in an entire circle of radius \(R \), while \(N'(r_0, \theta_0) = \lambda A'(r_0, \theta_0) \) would be the expected number of neighbors in the non-excluded region.

The quantities to be determined in this analysis are basically identical to those in the analysis of RFR, but there are some significant differences. One such difference is that the Poisson distribution uses \(N'(r_0, \theta_0) \), rather than \(N \), in the distribution of the number of neighbors around \(Y \).

In evaluating the interference probabilities in this case, we will separate the probability of there being \(j \) interferers out of \(k \) potential interferers, given by \(p(1 - e^{-\frac{N}{2}}) \), from the probabilities of there being \(j - i \) secondary interferers and \(i \) primary interferers. These two quantities are now conditioned on there being \(j \) interferers.

If an interferer, say \(X^1 \), is a primary interferer, then \(Y \) must be \(X^1 \)'s "most forward" node. The overall probability of a node being a primary interferer, given that it is an interferer (i.e., that it transmits and is a neighbor), is given by

\[
P_i(R) = Pr \{ X^1 \text{ is primary} | X^1 \text{ interferes} \}
\]

\[
P_i(R) = Pr \{ X^1 \text{ is primary} | X^1 \text{ interferes} \}
\]

\[
Pr \{ X^1 \text{ is primary} | X^1 \text{ interferes} \} = \frac{\int_{0}^{r_1} \int_{0}^{2\pi} f(x, y) dx \, dy \, dr \, d\theta}{\int_{0}^{r_1} \int_{0}^{2\pi} f(x, y) dx \, dy \, dr \, d\theta} \, dr_1.
\]

Thus, we can write

\[
P_i(R) = \int_{0}^{R} \frac{2r_1}{R^2} \left[\int_{0}^{r_1} \int_{\frac{\pi}{2}}^{\pi} f(r', \theta') \, dr' \, d\theta' \right] \, dr_1.
\]

where the term in brackets and \(\frac{2r_1}{R^2} \), respectively, denote the first and second probability terms in the right-hand side of (7). Note that the latter is an approximation. The exact
density is difficult to derive, and its use would require us to integrate around the excluded region (see Figures 1 and 2), adding greatly to the already high computational demands of the expressions found below (indeed, two more levels of integration would be necessary, since \(P_d(R) \) would depend on the position of \(Y \), defined by \(r_0 \) and \(\theta_0 \)).

The probability that some node, say \(X^2 \), is a secondary interferer, given that it is an interferer, is given by the complement of (8); i.e.,

\[
Pr\{X^2 \text{ is secondary}\|X^2 \text{ interferes}\} = P_d(R) = 1 - P_4(R).
\]

This quantity represents the sum of the probabilities that \(Y \) is not in \(X^2 \)'s forward direction and that \(Y \) is in \(X^2 \)'s forward direction but is not "most forward".

As before, we now sum over all possibilities, and, unlike the RFR case, we must now also take the expectation over \(r_0 \) and \(\theta_0 \), the position of the "most forward" node. This gives the following result:

\[
P(X \rightarrow Y) = p (1 - \frac{e^{-\frac{N}{2}}}{2})(1-p) \int_0^R \sum_{r} \sum_{j=0}^{\infty} \frac{e^{-N(r_0,\theta_0)} [N(r_0,\theta_0)]^k}{k!} \cdot \sum_{j=0}^{k} \left(\frac{1}{i!} \right) \left(1 - p \left(1 - e^{-\frac{N}{2}} \right) \right) P_c(j) \]

\[
\cdot \sum_{i=0}^{j} \left(\frac{i}{i+1} \right) \left[(1-P_4(R))^{i+1} \right] (1-1)^{j-i} \cdot \int_{r_0} \int_{\theta_0} \int_{r_0} d\theta_0 dr_0.
\]

In deriving (10), we assumed that capture occurs with probability 1, that is, one of the \(i+1 \) contending packets is captured by the receiver. Furthermore, if we use the three term exponential approximation to \(\frac{1}{i+1} \) and assume that \(P_c(j) \) is of the form \(\sum b_{m,i} a_{m,i} \), as we
did in the RFR analysis, the integrand can be simplified to some extent, by evaluating the summations. At the end of this section, we give an example in which this evaluation can be carried out completely.

Again, the normalized local throughput is \(\frac{\log_2 M}{q} P(X \rightarrow Y) \), and the expected forward progress can be evaluated by multiplying the integrand in (10) by \(r_0 \cos \theta_0 \) and then integrating as in (10).

As an example, when Reed-Solomon coding with error-correction minimum distance decoding is employed, we can obtain for the MFR case (see Appendix B):

\[
P(X \rightarrow Y) = p \left(1 - e^{-\frac{N}{2}} \right) (1 - p)
\]

\[
\sum_{i=1}^{3} \sum_{m=0}^{\infty} \sum_{l=0}^{m} \left(\frac{n}{m} \right) \left(\frac{m}{l} \right) (-1)^i (1 - P_0)^{m(n+i-m)}
\]

\[
\int_{\frac{r_0}{2}}^{R} \int_{\frac{\pi}{2}}^{\pi} \exp \left[-pN(r_0, \theta_0) \left(1 - e^{-\frac{N}{2}} \right) \left[1 - (1 - P_a)^{n+i-m} (1 - P_1)(1 - \delta) \right] \right]
\]

\[
f_{r, \theta}(r_0, \theta_0) d\theta_0 dr_0.
\]

Expressions similar to (11) can be derived for the case of erasure/error-correction decoding of Reed-Solomon codes, as well as for the Viterbi decoding of binary convolutional codes. These expressions have been derived and cited in Appendix B for the MFR case.

IV. NUMERICAL RESULTS

In this section, results are presented for the normalized throughput per node and the expected forward progress for frequency-hopped multi-hop networks using the RFR and
The usual performance measures in multi-hop networks (e.g., see [5]-[6]) are: the normalized local throughput defined as \(S = \frac{r \log_2 M}{q \cdot M} \cdot P(X \rightarrow Y) \) (in packets per hop, per node, frequency slot and dimension), the expected forward progress \(Z \) (in distance units per hop where \(Z \) has the same units as the transmission radius \(R \)), and the normalized total throughput \(\gamma \) (in packets per node, frequency slot and dimension), which is defined as \(\gamma = Z \cdot 45\pi \cdot \sqrt{\frac{\lambda \pi}{N}} \cdot S \) (see [6]). Notice that the total throughput can be easily obtained from the local throughput and the expected forward progress; for this reason we do not present any results on the total throughput in this paper. Also notice that the expected forward progress and the total throughput depend on both \(\lambda \) and \(N \); in contrast, the local throughput depends on \(\lambda \) only through \(N = \lambda \pi R^2 \), the average number of neighbors.

A few comments are in order regarding \(Z \), the expected forward progress. Given the formulation of the problem, this is a local performance measure (i.e., it gives the expected forward progress over a single hop). A global performance measure would be desirable: unfortunately, we were unable to compute one, since the outcomes of the various hops are highly dependent upon one another. However, we believe that the trends and comparisons of performance of different coding and routing schemes indicated by the numerical results presented below for our model and the definition of expected forward progress in (5) and in the paragraph following (10) remain essentially valid for the network as a whole.

The results shown below are given for coded systems, as discussed above and in the appendices. Reed-Solomon codes, with either error-correction decoding (when no side information is available) or erasure/error-correction decoding (which assumes that side information is available), or binary convolutional codes are used. In the case of Reed-Solomon cod-
ing, the notation RS(n,k) is used, where n is the codeword length and k is the number of information symbols in a codeword; whereas, for binary convolutional coding, the notation CC(K,r) is used to denote a code of constraint length K and rate r. Other parameters include N_b, the number of bits per frequency hop, and SNR, the signal-to-noise ratio, which is defined to be decibel value of E_b/N_0.

We start the presentation of results with the RFR case. Figure 3 shows the dependence of Z on N as parameterized by λ. The expected forward progress first increases and then decreases as N increases for fixed λ. As λ increases and N is held fixed, the expected forward progress decreases because the radius of transmission $R = \sqrt{\frac{N}{\lambda \pi}}$ decreases.

Figures 4(a) and 4(b) show that both S and Z are affected by the value of p; the values increase, then decrease with p. The value of p = 0.1 appears to provide almost invariant S or Z, independent of the number of neighbors N. It should be noted that p and λ may or may not be controllable in a given network (i.e., they may reflect users’ behavior).

Figures 5(a) and 5(b) demonstrate the effects of changing the rate of the code and the decoding algorithm. As shown, throughput decreases significantly when the code rate decreases while it remains invariant for a larger range of N when erasure/error-correction decoding rather than error-correction decoding is employed. In contrast, the expected forward progress increases drastically when the code rate decreases and even more so when erasure/error decoding instead of error-only decoding is used. The decrease in throughput resulting from the decrease in the code rate is due mainly to the normalization of the throughput; that is, the increase in the probability of correct reception due to the lower rate does not balance the penalty of multiplying the throughput by the code rate. On the other hand, the expected forward progress does not involve any normalization, so it takes full advantage of the lower rate coding. In comparing two schemes with similar parameters but
different error-correction capabilities (e.g., different code rates or decoding schemes), maintaining a large value of throughput over a broader range is a manifestation of the fact that one scheme rejects the multiple-access interference better than the other.

Figure 6 shows the behavior of the throughput S as a function of N when parameterized by λ for frequency-hopped multi-hop networks employing the binary convolutional code (CC) of constraint length 7 and rate $1/2$ with no side information available to the decoder. Similar observations as for Figure 3 are in order here. Notice that the values of Z in Figure 6 are smaller than the corresponding values of Figure 3, and for fixed λ they remain invariant with respect to N in a smaller range.

Figures 7(a) and 7(b) show S and Z, respectively, as functions of N when parameterized by p for the same binary convolutional code as above. In particular, Figure 7(a) shows the same trends as Figure 4(a) does; the difference lies in that the convolutional code provides larger peak throughput (for fixed p), but it maintains it for a smaller range of N than does the Reed-Solomon code. In contrast, Figure 7(b) shows that the convolutional code both provides a smaller peak expected forward progress and maintains it for a smaller range of N than does the Reed-Solomon code.

Figures 8(a) and 8(b) show S and Z, respectively, as functions of N for binary convolutional codes of rates $1/2$ and $1/3$ and constraint lengths 7 and 9. We observe that decreasing the rate of the code lowers the throughput and increases drastically the expected forward progress. Increasing the constraint length improves the performance of the network in terms of both the throughput and the expected forward progress.

Figures 9(a) and 9(b) provide a comparison of S and Z, respectively, as functions of N for the rate $1/2$ binary convolutional codes of constraint lengths 7 and 9 and the Reed-Solomon (32,16) code; binary FSK modulation with noncoherent demodulation and hard
decisions is employed. Figure 9(a) shows that, although the peak throughput of the convolutional-coded network is slightly larger than that of the Reed-Solomon-coded network, the Reed-Solomon-coded network maintains a larger value of the throughput for a broader range of values of N. Then, as Figure 9(b) shows, the RS-coded network is far superior to the corresponding convolutional-coded networks in terms of both the peak value of the expected forward progress Z and the range of N for which the peak value is approximately maintained.

We now move on to discuss the results for the MFR case. Figures 10(a) and 10(b) are analogous to Figures 4(a) and 4(b); they show the throughput and expected forward progress, respectively, parameterized by p. The same trends that appear in the RFR case also appear here in the MFR case.

Figures 11(a) and 11(b) show the throughput and the expected forward progress for two Reed-Solomon-coded networks with code rates $1/2$ and $1/4$. The throughput of the RS(32,16)-coded network is higher than that of the RS(32,8)-coded system for most values of N; this is reversed for N larger than 80. On the other hand the expected forward progress of the lower code-rate scheme is higher than that of the higher code-rate scheme for all values of N.

Finally, Figures 12(a) and 12(b) compare RFR and MFR performance in terms of throughput and expected forward progress, respectively, for a given set of parameters. In Figure 12(a), it is shown that the RFR scheme with RS(32,16) and error-correction decoding outperforms, in terms of peak throughput value, the corresponding MFR schemes with the same RS coding and error-correction or erasure/error-correction decoding; however, the MFR schemes maintain large values of the throughput for broader ranges of values of N. Between the two MFR schemes the erasure/error-correction decoding scheme provides
superior throughput performance. In Figure 12(b), it is shown that the MFR scheme outperforms the corresponding RFR scheme and that, for MFR schemes, the value of Z can be improved considerably by using erasure/error-correction decoding.

V. CONCLUSIONS

We have presented here an analysis of a model for frequency-hopped multi-hop networks with randomly-distributed nodes. The aspect of this analysis that differs most from previous analyses of multi-hop spread-spectrum networks is the characterization of other-user interference and its mitigation by the use of spread-spectrum techniques (frequency-hopping here). We have also been able to incorporate the effects of modulation, coding, and noise into the analysis.

The numerical results presented show network performance (normalized local throughput and expected forward progress) as a function of the average number of neighbors around a node. Variations in performance are demonstrated for variations in probability of a user being in transmit mode, density of users in the plane, and coding employed. These results also compare the two types of routing, RFR and MFR, considered in the analysis and establish that the MFR scheme maintains a considerably larger expected forward progress for a wider range of N (average number of neighbors) than does the RFR scheme. It is also established that lowering the rate of the error-control code used causes a decrease in throughput but increases the value of the expected forward progress and extends the range of N over which larger values are maintained. Furthermore, Reed-Solomon codes outperform convolutional codes of the same code rate in terms of the values of the expected forward progress and of the range of N sustaining these values.
An obvious extension of this work would be to consider deterministic, rather than randomly-distributed, networks. This would not involve a major modification to the analysis; it would involve removing the Poisson-related elements in the analysis and is, thus, rather trivial. However, it would be somewhat more difficult were one to consider non-identical nodes, i.e., nodes with different transmitter powers (or, similarly, to account for signal attenuation with distance).

The importance of this work should not be underemphasized; however, there remains much to be done in the area of spread-spectrum multi-hop networks. The analysis here does not deal with issues like spreading code protocols and access protocol stability. With so many unsolved problems, this remains a fertile area of research.
REFERENCES

Appendix A: Derivation of Expressions for Coded RFR Systems

In Section II a result is stated for a Reed-Solomon coded RFR system. In this appendix, it will be shown exactly how this, as well as other results for coded RFR systems, can be determined.

In Section II a general result for RFR systems is derived. We have that

\[
P(X \rightarrow Y) = P_{TX}(X \rightarrow Y)P_{IRX}(X \rightarrow Y)
\]

\[
= p \left(1 - e^{-\frac{N}{2}} \right) \left(1 - p \right) \sum_{k=0}^{\infty} \frac{e^{-\frac{N}{2}k}}{k!} \sum_{j=0}^{k} \left[1 - p \left(1 - e^{-\frac{N}{2}} \right) \right] P_c(j)
\]

\[
\sum_{i=0}^{j} \binom{j}{i} \left(\frac{p}{N} \right)^i \frac{1}{i+1} \left[p \left(1 - e^{-\frac{N}{2}} \right) - \frac{p}{N} \right]^{j-i}.
\]

(A.1)

In that same section, it is stated that \(\frac{1}{i+1} \) can be closely approximated by a sum of exponentials of the form \(\sum_{\nu} e^{\delta_{\nu}} \), where \(\delta_{\nu} = e^{2\nu} \) in the notation used in that section. A three term approximation is used here.

In order to obtain a closed-form expression, we must have \(P_c(j) \) such that the dependency on \(j \) is exponential; for example, if \(P_c(j) = \sum_{m,l} b_{m,l} a_{m,l}^{j+i} \), this requirement would be satisfied. Having \(P_c(j) \) in such a form, results in the final sum in (A.1) having the form of a binomial expansion. Several coding schemes, including those used here (Reed-Solomon and binary convolutional), result in a \(P_c(j) \) of the required form.

We shall first consider Reed-Solomon coding \(RS(n,k) \) with error-correction decoding. In this case, we have

\[
P_c(j) = \sum_{m=0}^{i} \binom{n}{m} [p_s(j)]^m [1-p_s(j)]^{n-m}.
\]

(A.2)
where \(t = \left\lfloor \frac{n-k}{2} \right\rfloor \) is the error-correction capability of the \(RS(n,k) \) code and \(p_s(j) \) is the probability of a symbol error. Furthermore, \(p_s(j) \) can be bounded/ approximated by

\[
p_s(j) \leq 1 - (1-P_0)(1-P_h)^j \tag{A.3}
\]

for codes over \(GF(M^t) \) [(1-P_0) becomes \((1-P_0)^m\) for codes over \(GF(M^m) \)], where \(P_0 \) is the probability of symbol error (without multi-user interference) and \(P_h \) is the probability of a symbol being hit (interfered with by another user's transmission, given by [8])

\[
P_h = \frac{1}{q} \left(1 + \frac{m_s \log_2 M}{N_h} \right)
\]

for random hopping pattern assignments. Here, \(q \) is the number of available hopping frequencies, \(N_h \) is the number of bits per hop, and \(M^m \) is the order of the field over which the code is defined.

Using (A.3), (A.2) can be written as

\[
P_s(j) = \sum_{m=0}^{i} \binom{n}{m} \left(1 - (1-P_0)(1-P_h)^j \right)^m \left((1-P_0)(1-P_h)^j \right)^{n-m}
\]

\[
= \sum_{m=0}^{i} \sum_{\nu=0}^{m} \binom{n}{m} \binom{m}{\nu} \left(1 - (1-P_0)(1-P_h)^j \right)^\nu \left((1-P_0)(1-P_h)^j \right)^{n-m-
u}
\]

\[
= \sum_{m=0}^{i} \binom{n}{m} \sum_{\nu=0}^{m} \binom{m}{\nu} (-1)\nu \left(1 - P_0 \right)^{n+i-m} \left((1-P_h)^{n+i-m} \right)^j \tag{A.4}
\]

(A.4) has the form discussed above. We now use (A.4) and the aforementioned exponential approximation to \(\frac{1}{i+1} \) in (A.1) to yield

\[
P(X \rightarrow Y) = p \left(1 - e^{-\frac{N}{2}} \right) \left(1 - p \right) \sum_{\nu=1}^{3} \sum_{m=0}^{i} \sum_{\nu=0}^{m} \binom{m}{\nu} \left(-1 \right)\nu \left(1 - P_0 \right)^{n+i-m} \sum_{k=0}^{\infty} \frac{e^{-N} N^k}{k!}
\]

22
This exactly the expression given as eq. (6) in Section II.

The expression for RS(n,k) Reed-Solomon coding with erasure/error-correction decoding can be obtained in a similar fashion. In this case, \(P_c(j) \) is given by (see, for example, [9])
\[P_c(j) = 1 - \sum_{n+k \leq j} \binom{n}{k} \left[p_s(j) \right]^k \left[1 - p_s(j) - \epsilon_s(j) \right]^{n-k}, \quad (A.8) \]

where \(\epsilon = n-k, \ \hat{\epsilon}(j) \) is the symbol erasure probability given by

\[\hat{\epsilon}(j) = 1 - (1 - P_0)^j, \]

and \(p_s(j) \), the symbol error probability, is given by

\[p_s(j) = P_0(1 - P_0)^j \]

for codes over \(GF(M^4) \) [the \(P_0 \) would become \(1 - (1 - P_0)^m \) for codes over \(GF(M^m) \)]. Substituting into (A.1) and proceeding as above, we obtain

\[P(X \rightarrow Y) = p \left[1 - e^{-\frac{N}{2}} \right] \left(1 - p \right) \sum_{s=1}^{3} c_s \left[\exp[p(\delta_0 - 1)] - \sum_{\eta=\max\{0, e+1-2\mu\}}^{\infty} \sum_{\mu=0}^{n-\mu} \sum_{\nu=\eta}^{\infty} \binom{n}{\mu} \binom{\mu}{\nu} (i) \right] \]

\[(-1)^j P_0^\mu (1 - P_0)^{n-\mu-\eta} \exp \left[-pN \left(1 - e^{-\frac{N}{2}} - \left(1 - e^{-\frac{N}{2}} \frac{1}{N} (1 - \delta_0) \right) (1 - P_0)^{n+i-\eta} \right) \right]. \]

(A.7)

For binary convolutional codes with Viterbi decoding and hard decisions, \(P_c(j) \) can be bounded/approximated by (see, for example, [10])

\[P_c(j) \leq 1 - r \sum_{\mu=4}^{\infty} \sum_{n=0}^{\infty} w_\mu P_\mu \]

where

\[P_\mu = \begin{cases} P_\mu(\mu; p(j)), & \text{no side information.} \\ \left[\hat{\epsilon}_s(j) \right]^\mu P_\mu(\mu; \overline{p}) + \sum_{i=0}^{\mu-1} \left[\hat{\epsilon}_s(j) \right]^i \left[1 - \hat{\epsilon}_s(j) \right]^{\mu-i} P_\mu(\mu-i; P_0), & \text{with side information.} \end{cases} \]

(A.8)
where \(r \) is the code rate, \(d_{free} \) is the free distance of the code, \(w_\mu \) is the total information weight of all sequences which produce paths of weight \(\mu \). \(P_0 \) is as described above.

\[
p(j) = 1 - (1 - P_0)(1 - P_\delta)^j, \quad P_0 = \frac{1}{2}, \quad \text{and} \quad \epsilon_j = 1 - (1 - P_\delta)^j.
\]

\(P_d(n; q) \) is defined as

\[
P_d(n; q) = \begin{cases}
\sum_{i=\frac{n}{2}+1}^{n} \binom{n}{i} q^{i}(1-q)^{n-i}, & \text{n odd} \\
\sum_{i=\frac{n}{2}+1}^{n} \binom{n}{i} q^{i}(1-q)^{n-i} + \frac{1}{2} \frac{n}{2} \left[q(1-q) \right]^\frac{n}{2}, & \text{n even}.
\end{cases}
\]

It should be noted that the summation over \(\mu \) in (A.8) generally involves only a few non-zero terms.

Substituting (A.8) into (A.1) and proceeding as above, the following result is obtained:

\[
P(X \rightarrow Y) = p \left(1 - e^{-\frac{N}{2}} \right) \left(1 - p \right) \sum_{i=1}^{\infty} c_\mu \left[\exp \left[-p(1-\delta_i) \right] - r \sum_{\mu=d_{free}}^\infty w_\mu Q_\mu \right].
\]

(A.9)

where for the case in which no side information is available,

\[
Q_\mu = \sum_{\rho=\frac{\mu+1}{2}}^{\mu} \sum_{\nu=0}^{\rho} \binom{\rho}{\nu} (-1)^\nu (1-P_0)^{\mu+\nu-\rho} \exp \left[-p N \left(1 - e^{-\frac{\rho}{2}} \right) \left(1 - e^{-\frac{\nu}{2}} \left(1 - \frac{1}{N} (1-\delta_i) \right) (1-P_\delta)^{\mu+\nu-\rho} \right) \right].
\]

(A.10a)

if \(\mu \) is odd, and

\[
Q_\mu = \frac{1}{2} \left(\frac{\mu}{2} \right) \sum_{\rho=\frac{\mu}{2}+1}^{\mu} \binom{\rho}{\nu} (-1)^\nu (1-P_0)^{\mu+\nu-\rho} \exp \left[-p N \left(1 - e^{-\frac{\rho}{2}} \right) \left(1 - e^{-\frac{\nu}{2}} \left(1 - \frac{1}{N} (1-\delta_i) \right) (1-P_\delta)^{\mu+\nu-\rho} \right) \right]
\]

\[
+ \frac{1}{2} \left(\frac{\mu}{2} \right) \sum_{\rho=0}^{\frac{\mu}{2}} \binom{\rho}{\nu} (-1)^\nu (1-P_0)^{\rho+\nu} \exp \left[-p N \left(1 - e^{-\frac{\rho}{2}} \right) \left(1 - e^{-\frac{\nu}{2}} \left(1 - \frac{1}{N} (1-\delta_i) \right) (1-P_\delta)^{\rho+\nu} \right) \right].
\]

25
if \(\mu \) is even; whereas for the case in which side information is available,

\[
Q_\mu = P_d(\mu; \frac{1}{2}) \sum_{\eta=0}^{\mu} (-1)^\eta \exp \left\{ -pN \left[1 - e^{\frac{N}{2}} - \left(\frac{1}{N} - \frac{1}{2} \right)(1-P_h)^\eta \right] \right\} \\
+ \sum_{\lambda=0}^{\mu} \sum_{\sigma=0}^{\lambda} (-1)^\sigma \exp \left\{ -pN \left[1 - e^{\frac{N}{2}} - \left(\frac{1}{N} - \frac{1}{2} \right)(1-P_h)^{\mu+\sigma-\lambda} \right] \right\}
\]

(A.11)

Note that \(P_d(\mu; \frac{1}{2}) \) and \(P_d(\mu-\lambda; P_0) \) have not been expanded, since each is a constant for a given value of \(\mu \) or \((\mu-\lambda) \), respectively.
Appendix B: Derivation of Expressions for Coded MFR Systems

As in Appendix A, above, we will show, in detail, how closed-form results have been obtained for the same codes treated in Appendix A, but in an MFR system. The expressions for $P_e(j)$ are exactly as stated in Appendix A and will not be repeated here. The result for binary convolutional coding with side information available at the decoder will be derived in detail, and the other results will be stated, for the sake of completeness.

In Section III the following formula is derived:

$$P(X \rightarrow Y) = p \left(1 - e^{-N/2}\right) \left(1-p\right)$$

$$\int_0^R \frac{2^k}{\pi} \sum_{k=0}^\infty e^{-N(r_0 \theta_0)} \frac{[N(r_0 \theta_0)]^k}{k!} \sum_{j=0}^k \left[p \left(1 - e^{-N/2}\right)\right]^j \left[1-p \left(1 - e^{-N/2}\right)\right]^{k-j}$$

$$P_e(j) \sum_{i=0}^{j} \left[\frac{1}{i+1} \left[P_1(R)\right]^i \left[1-P_1(R)\right]^{j-i}\right]$$

$$\int_0^\infty \delta(r_0 \theta_0) d\theta_0 dr_0.$$

As in Appendix A, we will use the three term exponential approximation to $\frac{1}{i+1}, \sum_{i=1}^3 c_i \delta_i.$

For convenience, let us define $I_r(r_0 \theta_0)$ by

$$I_r(r_0 \theta_0) = \sum_{k=0}^\infty e^{-N(r_0 \theta_0)} \frac{[N(r_0 \theta_0)]^k}{k!} \sum_{j=0}^k \left[p \left(1 - e^{-N/2}\right)\right]^j \left[1-p \left(1 - e^{-N/2}\right)\right]^{k-j}$$

$$P_e(j) \sum_{i=0}^{j} \left[\delta_i P_1(R)\right]^i \left[1-P_1(R)\right]^{j-i};$$

It is clear that this includes all that varies from one code to another, and therefore, all of the results will be stated in terms of $I_r(r_0 \theta_0)$. Note that, by definition.
\[
P(X \rightarrow Y) = p \left(1 - e^{-N \frac{r_0^2}{2}} \right) \left(1 - p \right) \sum_{\mu=1}^{\infty} \frac{e^{-\mu}}{\mu!} \left[\sum_{\lambda=0}^{\infty} \frac{1}{\lambda!} \left(\frac{r_0 \cos \theta_0}{2} \right)^{\lambda} \right] \int_{-\pi/2}^{\pi/2} I_{\mu}(r_0, \theta_0) f_{\mu}(r_0, \theta_0) d\theta_0 dr_0,
\]

and, since expected forward process is computed by including \(r_0 \cos \theta_0 \) in the integrand,

\[
Z = p \left(1 - e^{-N \frac{r_0^2}{2}} \right) \left(1 - p \right) \sum_{\mu=1}^{\infty} \frac{e^{-\mu}}{\mu!} \left[\sum_{\lambda=0}^{\infty} \frac{1}{\lambda!} \left(\frac{r_0 \cos \theta_0}{2} \right)^{\lambda} \right] \int_{-\pi/2}^{\pi/2} r_0 \cos \theta_0 I_{\mu}(r_0, \theta_0) f_{\mu}(r_0, \theta_0) d\theta_0 dr_0.
\]

Let us begin with the case of binary convolutional coding with side information available at the decoder. The expression for \(P_c(j) \) is given in eq. (A.8). Before beginning the actual analysis, let us first observe that since \(p = 1/2 \) and \(P_0 \) is a constant, the factors involving \(P_d(\cdot \cdot \cdot) \) are independent of \(j \); thus, it will not be necessary to expand them (as opposed to the case in which no side information is available to the decoder; the expression is of the form \(P_d(\cdot \cdot \cdot p(j)) \) and must be expanded).

To start, let us manipulate \(P_c(j) \) into a desirable form.

\[
P_c(j) = 1 - r_c \sum_{\mu=1}^{\infty} w_\mu \left[\mu \left[1 - e^{-\mu \frac{r_0^2}{2}} \right] P_2 \left[\mu \frac{1}{2} \right] \right] + \sum_{\lambda=0}^{\infty} \frac{1}{\lambda!} \left(\frac{r_0 \cos \theta_0}{2} \right)^{\lambda} \int_{-\pi/2}^{\pi/2} I_{\mu}(r_0, \theta_0) f_{\mu}(r_0, \theta_0) d\theta_0 dr_0.
\]

\[
P_c(j) = 1 - r_c \sum_{\mu=1}^{\infty} w_\mu \left[1 - (1 - P_\lambda)^j \right] \frac{1}{\mu} P_2 \left[\mu \frac{1}{2} \right] \left(\frac{r_0 \cos \theta_0}{2} \right)^{\lambda} \int_{-\pi/2}^{\pi/2} I_{\mu}(r_0, \theta_0) f_{\mu}(r_0, \theta_0) d\theta_0 dr_0.
\]

\[
P_c(j) = 1 - r_c \sum_{\mu=1}^{\infty} w_\mu \left[P_2 \left[\mu \frac{1}{2} \right] \frac{1}{\mu} \sum_{\lambda=0}^{\infty} \left(\frac{(r_0 \cos \theta_0)^{\lambda}}{\lambda!} \right) \left(1 - P_\lambda \right)^j \right] \]

\[
28
\]
We now have $P_e(j)$ depending on j exponentially, as desired.

We can now substitute (B.3) into (B.2) and derive $I_0(r_0, \theta_0)$; however, the expression would be rather long. Instead, we will treat the three terms of (B.3) individually (we consider the leading 1 as a term). Looking at the first term, we have

\[
I_0^{(1)}(r_0, \theta_0) = \sum_{k=0}^{\infty} e^{-N(r_0, \theta_0)} \frac{[N(r_0, \theta_0)]^k}{k!} \sum_{j=0}^{k} \binom{k}{j} \left[\sum_{i=0}^{\infty} \frac{(-1)^i}{i!} \frac{(1-\delta_i) \mathcal{P}_1(R)}{1-e^{-\frac{N}{2}}} \right]^j \left[1-p \left(1-e^{-\frac{N}{2}}\right)\right]^{k-j} \]

\[
= \sum_{k=0}^{\infty} e^{-N(r_0, \theta_0)} \frac{[N(r_0, \theta_0)]^k}{k!} \sum_{j=0}^{k} \binom{k}{j} \left[\sum_{i=0}^{\infty} \frac{(-1)^i}{i!} \frac{(1-\delta_i) \mathcal{P}_1(R)}{1-e^{-\frac{N}{2}}} \right]^j \left[1-p \left(1-e^{-\frac{N}{2}}\right)\right]^{k-j} \]

\[
= \sum_{k=0}^{\infty} e^{-N(r_0, \theta_0)} \frac{[N(r_0, \theta_0)]^k}{k!} \left[\sum_{i=0}^{\infty} \frac{(-1)^i}{i!} \frac{(1-\delta_i) \mathcal{P}_1(R)}{1-e^{-\frac{N}{2}}} \right]^{k-j} \]

\[
= \exp \left\{ -pN(r_0, \theta_0) \left[1-e^{-\frac{N}{2}}(1-\delta) \mathcal{P}_1(R)\right] \right\} \quad \text{(B.4)}
\]

From the second term, we get

\[
I_0^{(2)}(r_0, \theta_0) = r_e \sum_{\mu=4}^{\infty} w_{\mu, P_2} \left(\mu \frac{1}{2} \right) \sum_{\eta=0}^{\mu} \binom{\mu}{\eta} \left[\sum_{k=0}^{\infty} e^{-N(r_0, \theta_0)} \frac{[N(r_0, \theta_0)]^k}{k!} \sum_{j=0}^{k} \binom{k}{j} \left[\sum_{i=0}^{\infty} \frac{(-1)^i}{i!} \frac{(1-\delta_i) \mathcal{P}_1(R)}{1-e^{-\frac{N}{2}}} \right]^j \left[1-p \left(1-e^{-\frac{N}{2}}\right)\right]^{k-j} \right] \]

\[
= \left[1-p \left(1-e^{-\frac{N}{2}}\right)\right] \left[(1-P_k) \sum_{i=0}^{\infty} \frac{(-1)^i}{i!} \frac{(1-\delta_i) \mathcal{P}_1(R)}{1-e^{-\frac{N}{2}}} \left[1-P_1(R)\right]^{i-j} \right] \]

\[
= \sum_{k=0}^{\infty} e^{-N(r_0, \theta_0)} \frac{[N(r_0, \theta_0)]^k}{k!} \left[\sum_{i=0}^{\infty} \frac{(-1)^i}{i!} \frac{(1-\delta_i) \mathcal{P}_1(R)}{1-e^{-\frac{N}{2}}} \right]^{k-j} \]

\[
= \exp \left\{ -pN(r_0, \theta_0) \left[1-e^{-\frac{N}{2}}(1-\delta) \mathcal{P}_1(R)\right] \right\} \quad \text{(B.4)}
\]
\[
= r_c \sum_{\mu, \delta, \rho, \omega} w_{\mu} P_{\mu} \left(\mu \frac{1}{2} \sum_\eta (\mu - \delta)^j \sum_{k=0}^\infty e^{-N(\omega)} \frac{N(\omega)^k}{k!} \right)
\]

\[
\sum_{j=0}^k \left[p \left(1 - e^{-\frac{N}{2}} \right) \left(\delta P_1(R) + [1 - P_1(R)] \right) \left(1 - P_1(R) \right)^\eta \right]^{j} \left[1 - p \left(1 - e^{-\frac{N}{2}} \right) \right]^{k - j}
\]

\[
= r_c \sum_{\mu, \delta, \rho, \omega} w_{\mu} P_{\mu} \left(\mu \frac{1}{2} \sum_\eta (\mu - \delta)^j \sum_{k=0}^\infty e^{-N(\omega)} \frac{N(\omega)^k}{k!} \right)
\]

\[
\left[1 - p \left(1 - e^{-\frac{N}{2}} \right) \left(\delta P_1(R) + [1 - P_1(R)] \right) \left(1 - P_1(R) \right)^\eta \right]^k
\]

\[
= r_c \sum_{\mu, \delta, \rho, \omega} w_{\mu} P_{\mu} \left(\mu \frac{1}{2} \sum_\eta (\mu - \delta)^j \sum_{k=0}^\infty e^{-N(\omega)} \frac{N(\omega)^k}{k!} \right)
\]

\[
\exp \left\{ -p N(\omega) \left[1 - e^{-\frac{N}{2}} \right] \left[1 - (1 - \delta P_1(R) \left(1 - P_1(R) \right)^\eta \right] \right\}
\]

(B.3)

Since the analysis of the third term is nearly exactly the same as that of the second term, the result will simply be stated:

\[
I^{(3)}(\omega, \theta_0) = r_c \sum_{\mu, \delta, \rho, \omega} w_{\mu} \sum_{\lambda=0}^{\mu-1} \sum_{\lambda=0}^{\mu} \left(\mu - \delta \right)^j \sum_\eta \left[1 - e^{-\frac{N}{2}} \right] \left[1 - (1 - \delta P_1(R) \left(1 - P_1(R) \right)^\eta \right] \right\}
\]

(B.6)

\[
I_4(\omega, \theta_0) \text{ is obtained by taking } I_4(\omega, \theta_0) = I^{(1)}(\omega, \theta_0) - I^{(2)}(\omega, \theta_0) - I^{(3)}(\omega, \theta_0).
\]
For the other three coding schemes considered here, the results are as follows:

1. For $RS(n,k)$ Reed-Solomon coding with error-correction decoding,

$$I_v(r_0, \theta_0) = \sum_{i=0}^{m} \sum_{m=0}^{n-i} \binom{n}{i} \binom{m}{i} (-1)^i (1-P_0)^{n-i-m}$$

$$\exp\left\{-pN(r_0, \theta_0) \left[1 - e^{-\frac{N}{2}}\right] \left[1 - (1-(1-\delta_c)P_1(R))(1-P_0)^{n-i-m}\right]\right\}$$

(B.7)

2. For $RS(n,k)$ Reed-Solomon coding with erasure/error-correction decoding, use $I_v^{(1)}(r_0, \theta_0)$ in (B.4) and $I_v(r_0, \theta_0) = I_v^{(1)}(r_0, \theta_0) - I_v^{(2)}(r_0, \theta_0)$, where

$$I_v^{(2)}(r_0, \theta_0) = \sum_{\mu=0}^{\infty} \sum_{n=\max\{0,\mu+1-2\mu\}}^{n-\mu} \sum_{\eta=0}^{\mu} \binom{n}{\mu} \binom{n-\mu}{\eta} (-1)^\eta P_0^n (1-P_0)^{n-\mu-\eta}$$

$$\exp\left\{-pN(r_0, \theta_0) \left[1 - e^{-\frac{N}{2}}\right] \left[1 - (1-(1-\delta_c)P_1(R))(1-P_0)^{n-i-m}\right]\right\}$$

(B.8)

Note that for both $RS(n,k)$ coding cases, the results are shown for codes over $GF(M^1)$. For codes over $GF(M^m)$, replace $(1-P_0)$ in both cases by $(1-P_0)^m$. and, in (B.8), replace the factor of P_0^n by a factor of $[1-(1-P_0)^m]^{\mu}$.

3. For binary convolutional coding with no side information available to the decoder, we have $I_v^{(1)}(r_0, \theta_0)$ as in (B.4),

$$I_v^{(2)}(r_0, \theta_0) = r_c \sum_{\mu=0}^{\infty} w_\mu P_\mu$$

(B.9)

where, if μ is odd,
\[P_\mu = \sum_{\rho = \frac{\mu}{2} + 1}^{\mu} \sum_{\sigma = 0}^{\rho} \left(\begin{array}{c} \mu \\ \rho \end{array} \right) \left(\begin{array}{c} \rho \\ \sigma \end{array} \right) (-1)^\sigma (1-P_0)^{\mu+\sigma-\rho} \]

\[\exp \left\{ -pN(r_0, \theta_0) \left[1 - e^{-\frac{N}{2}} \right] \left[1 - (1-(1-\delta_0)p_1(R))(1-P_\lambda)^{\mu+\sigma-\rho} \right] \right\} \]

and, if \(\mu \) is even,

\[P_\mu = \sum_{\rho = \frac{\mu}{2} + 1}^{\mu} \sum_{\sigma = 0}^{\rho} \left(\begin{array}{c} \mu \\ \rho \end{array} \right) \left(\begin{array}{c} \rho \\ \sigma \end{array} \right) (-1)^\sigma (1-P_0)^{\mu+\sigma-\rho} \]

\[\exp \left\{ -pN(r_0, \theta_0) \left[1 - e^{-\frac{N}{2}} \right] \left[1 - (1-(1-\delta_0)p_1(R))(1-P_\lambda)^{\mu+\sigma-\rho} \right] \right\} \]

\[+ \frac{1}{2} \left(\frac{\mu}{2} \right)^2 \sum_{\rho = 0}^{\rho} \right(\begin{array}{c} \mu \\ \rho \end{array} \right) (-1)^\rho (1-P_0)^{\rho+\frac{\mu}{2}} \]

\[\exp \left\{ -pN(r_0, \theta_0) \left[1 - e^{-\frac{N}{2}} \right] \left[1 - (1-(1-\delta_0)p_1(R))(1-P_\lambda)^{\rho+\frac{\mu}{2}} \right] \right\} \]

and, as before, \(I_\lambda(r_0, \theta_0) = I_{\nu}^{(1)}(r_0, \theta_0) - I_{\nu}^{(2)}(r_0, \theta_0). \)
Figure 1. Interference in Random Forward Routing
Figure 2. Excluded Region in Most Forward Routing with Fixed Transmission Radius
Figure 3. Expected Forward Progress versus Average Number of Neighbors for Various λ (RFR, $p=0.1$, RS(32,16) coding with error-only decoding, $q=100$, $N_b=10$, $SNR=20$ dB, AWGN, 32-ary FSK with non-coherent demodulation, asynchronous).
Figure 4(a). Throughput versus Average Number of Neighbors for Various p (RFR, $\lambda = 0.1$, RS(32,16) coding with error-only correction decoding, $q=100$, $N_b=10$, SNR=20 dB, AWGN, 32-ary FSK with non-coherent demodulation, asynchronous).
Figure 4(b). Expected Forward Progress versus Average Number of Neighbors for Various p (RFR, $\lambda=0.1$, RS(32,16) coding with error-only correction decoding, $q=100$, $N_b=10$, $SNR=-20$ dB, AWGN, 32-ary FSK with non-coherent demodulation, asynchronous).
Figure 5(a). Throughput versus Average Number of Neighbors for Various Reed-Solomon Code Rates and Decoding Schemes (RFR, p=0.3, \(\lambda = 0.1 \), q=100, \(N_{b} = 10 \), SNR=20 dB, AWGN, 32-ary FSK with non-coherent demodulation, asynchronous).
Figure 5(b). Expected Forward Progress versus Average Number of Neighbors for Various Reed-Solomon Code Rates and Decoding Schemes (RFR, p=0.3, λ=0.1, q=100, \(N_b=10\), SNR=20 dB, AWGN, 32-ary FSK with non-coherent demodulation, asynchronous).
Figure 6. Expected Forward Progress versus Average Number of Neighbors for Various λ (RFR, $p=0.1$, CC$(7,1/2)$ coding with no side information available to the decoder, $q=100$, $N_b=10$, SNR=20 dB, AWGN, binary FSK with non-coherent demodulation, asynchronous).
Figure 7(a). Throughput versus Average Number of Neighbors for Various p (RFR, $\lambda=0.1$, CC(7,1/2) coding with no side information available to the decoder, $q=100$, $N_b=10$, SNR=20 dB, AWGN, binary FSK with non-coherent demodulation, asynchronous).
Figure 8(a). Throughput versus Average Number of Neighbors for Various Binary Convolutional Codes ($p=0.3$, $\lambda=0.1$, no side information available to the decoder, $q=100$, $N_b=10$, $\text{SNR}=20$ dB, AWGN, binary FSK with non-coherent demodulation, asynchronous).
Figure 8(b). Expected Forward Progress versus Number of Neighbors for Various Binary Convolutional Codes ($p=0.3$, $\lambda=0.1$, no side information available to the decoder, $q=100$, $N_b=10$, SNR=20 dB, AWGN, binary FSK with non-coherent demodulation, asynchronous).
Figure 9(a). Throughput versus Average Number of Neighbors: Comparison of Binary Coding Schemes (RFR, \(p=0.3, \lambda=0.1 \), no side information available to the decoder (error-only correction in the Reed-Solomon case), \(q=100, N_b=10, SNR=20 \text{ dB}, AWGN, \) binary FSK with non-coherent demodulation, asynchronous).
Figure 9(b). Expected Forward Progress versus Average Number of Neighbors: Comparison of Binary Coding Schemes (RPR, $p=0.3$, $\lambda=0.1$, no side information available to the decoder (error -only correction in the Reed-Solomon case), $q=100$, $N_b=10$, SNR=20 dB, AWGN, binary FSK with non-coherent demodulation, asynchronous).
Figure 10(a). Throughput versus Average Number of Neighbors for Various p (MFR, $\lambda=0.1$, RS (32,16) coding with error-only decoding, $q=100$, $N_b=10$, SNR=20 dB, AWGN, 32-ary FSK with non-coherent demodulation, asynchronous
Figure 10(b). Expected Forward Progress versus Average Number of Neighbors for Various p(MFR, $\lambda=0.1$, RS(32,16) coding with error-only decoding, $q=100$, $N_b=10$, SNR=20 dB, AWGN, 32-ary FSK with non-coherent demodulation, asynchronous).
Figure 11(a). Throughput versus Average Number of Neighbors for Various Reed-Solomon Code Rates (MFR, p=0, λ=0.1, error-only decoding, q=100, N_d=10, SNR=20 dB, AWGN, 32-ary FSK with non-coherent demodulation, asynchronous).
Figure 11(b). Expected Forward Progress versus Average Number of Neighbors for Various Reed-Solomon Code Rates (MFR, p=0.3, λ=0.1, error-only decoding, q=100, N₀=10, SNR=20 dB, AWGN, 32-ary FSK with non-coherent demodulation, asynchronous).
Figure 12(a). Throughput versus Average Number of Neighbors for Comparable RFR and MFR Systems (p=0.5, \(\lambda = 0.1 \), q=100, \(N_b = 10 \), SNR=20 dB, AWGN, 32-ary FSK with non-coherent demodulation, asynchronous).
Figure 12(b). Expected Forward Progress versus Average Number of Neighbors for Comparable RFR and MFR Systems ($p=0.5$, $\lambda=0.1$, $q=100$, $N_B=10$, SNR=20 dB, AWGN, 32-ary FSK with non-coherent demodulation, asynchronous).