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ABSTRACT

Numerical, experimental, and hybrid combinations of these methods,

were used to study plane contact problems.

The experimental program used moire interferometry to determine in-

plane displacement fields near the contact boundaries of pin-loaded
aluminum and graphite-epoxy plates. The experiments closely modeled two
dimensional behavior and introduced zero-thickness gratings (for the
aluminum plate). The experimental data were reduced by means of a
localized hybrid analysis which used the experimental displacement data
as input to a finite element analysis of selected zones of interest.

The stress distributions obtained were generally consistent with
those of published analytical and experimental studies but the detailed
frictional phenomena were found to be very localized and somewhat
irregular.

The composite plate program featured a failure analysis based upon
the experimentally determined stress distributions. These distributions
were combined with a maximum stress failure criterion to predict the
mode and location of the failure. The results of an earlier experiment
were used to assess the accuracy of a general finite element algorithm
for plane elastic problems. On the basis of this comparison refinements
to the solution methodclogy were made. Specifically this involved the
introduction of both static and dynamic co-efficients of friction.
Values for these were deduced from the experiment and closer agreement
between experimental and numerical stress distributions was obtained.

Further program reorganization was performed to improve the
computational efficiency. An algorithm is aiso presented (but not
implemented) to allow for severe deformation and cracking. This is

based upon the Eulerian-lLagrangian description of deformation.
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1 ABSTRACT (CONT'D) _

The composite plate program featured a failure analysis based upon the experimentally
defermined stress distributions. These distributions were combined with a maximum stress
failure criterion to predict the mode and location of the failure. The results of an
earlier experiment were used to assess the accuracy of a general finite element algorithm
for plane elastic problems. On the basis of this comparison refinements to the solution
methodology were made.~ Specifically this involved the introduction of both static and
dynamic co-efficients of friction. Values for these were deduced from the experiment and
closer agreement between experimental and numerical stress distributions was obtained.

Further program reorganization was performed to improve the computational efficiency.
An algorithm is also presented (but not implemented) to allow for severe deformation and
cracking. This is based upon the Eulerian-Lagrangian description of deformation.

A brief comparison of the latest experimental and numerical stress distributions is
presented. The agreement is generally good but dependent upon assumed values of the co-
efficients of friction in the case of shear stresses at the surface of contact.
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A brief comparison of the latest experimental and numerical stress

distributions is presented. The agreement is generally good but

dependent upon assumed values of the co-efficients of friction in the

case of shear stresses at the surface of contact.
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GENERAL INTRODUCTION

Contact stresses in pin-loaded isotropic and composite plates were
determined using experimental and numerical methods. State-of-the-art
moire interferometry techniques were used in the experimental program
which needed much refinement before satisfactory results were obtained.
These refinements or, rather, innovations appear to be, in themselves,
important contributions to the literature. \

The finite element method was used in a numerical analysis of the
problem. Substantial development of modeling techniques was regquired
for the contact problem. New algorithms have been devised. The results
of the first series of experiments on an aluminum specimen were used to
fine tune the numerical analysis and highlight the need for further
refinement. A direct combination of the experimental and numerical
techniques was used in a hybrid study.

In this final report attention will be focused upon the latest
series of experiments and numerical analyses. They fall in two self-
contained sections and will be reported as such.

The experimental program presents two new studies. The earlier
investigation of the aluminum plate has been further developed to
provide & closer approximation to two-dimensional behavior. In
conjunction with this, shear-lag errors associated with a finite
thickness of the specimen grating have been removed by the development
of an etched grating on the specimen surface.

An experiment on a pin-loaded graphite-epoxy plate was also
performed. This specimen was loaded beyond initial failure.

A new method of data reduction - the localized hybrid analysis - is

presented. The method provided a convenient means of reducing the vast




amounts of data provided by the experiments. The stress distributions
so obtained confirmed the general trends expected but also uncovered
unexpected localized phenomena. In the case of the composite plate the
stress distributions allowed a failure analysis which correctly
predicted the location of matrix cracking.

The section on the numerical studies describes refinement to the
algorithm for plane elastic contact problems. These include the
important modification of allowing both static and dynamic coefficients
of friction as opposed to the use of a single coefficient in earlier
studies. This has improved the model behavior and also involved a
substantial reorganization of the program methodology. Details of the
iteration technique needed to establish the contact zone have also been
improved and halting of the program execution has been eliminated. With
these refinements, better correlation with experimental results was
obtained.

The basic scheme used in the numerical study is Lagrangian. A
further development for large deformation and fracture is proposed. A
method based on the Euler-Lagrangian formulation is described.

Given the parallel nature of the experimental and numerical
studies, it has not been possible to perform detailed comparisons of the
latest series of experiments and the refined numerical studies. Some

comments upon the interaction of the two approaches are made.
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EXPERIMENTAL STUDIES OF CONTACT STRESSES WITH FRICTION

D. Post,* R. Czarnek,* J. Morton,* B. Hant and M. Y. Tsait
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

ABSTRACT

The contact stress problem with friction has been studied
experimentally for pin-loaded aluminum and graphite-epoxy composite
plates. High sensitivity moire interferometry was used to provide full-
field displacement data on both sides of the plate in a final series of
experiments which were designed to ensure two-dimensional behavior. A
further innovation was the use of an etched (zero-thickness) grating for
the aluminum specimen.

The experimental data were reduced using a new approach termed the
localized hybrid analysis which emplioyed moire displacement data as
input to a local region of interest which was modeled with finite
elements.

The experiments verified general trends for the contact stresses in’

the literature but, in addition, localized phenomena were discovered.
These included very high gradients in the shear stresses near the
contact boundary and compressive hoop stresses which were strongly
dependent upon the sign of the shear stress.

The composite specimen showed local failures in two modes - bearing
and tension (matrix cracking). The location of the matrix cracking was
well predicted using the calculated stress distributions and a maximum
stress failure criterion.

* Professor of Engineering Science and Mechanics
+ Assistant Professor of Engineering Science and Mechanics

$ Graduate Research Assistant
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N 1. INTRODUCTION

Experimental, and hybrid studies have been conducted for aluminum-
to-aluminum contact and aluminum-to-graphi*e-epoxy.

The sponsored work has progressed to a satisfactory terminus.
Analysis of both experimental load-increasing and load-decreasing phases
of contact have been completed. Dissemination of the results has begun
at the AIAA Conference in April, 1988 [1]. Several technical papers are
planned to present the abundant information from these studies.

The experimental analyses were fraught with unanticipated
difficulties. In the end, they were circumvented by advances in
experimental science that seem, in themselves, to be significant
contributions. These advances include etched aluminum high-frequency
specimen gratings, load balancing using two-sided observation of the
specimen, and a localized hybrid technique that can focus on any zone.

The primary object of the study was to learn the nature of
frictional affects and their role in contact stress problems. A two-
dimensional version of a pin-loaded plate was chosen for the study. A
secondary objective was to extract engineering information on the
behavior of such a joint. Matrix cracking and localized bearing failure
arose as especially significant behavior of the composite plate. This
report provides a description of the final experimental and analytical

studies, including techniques, analyses and results.
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2. DESIGN OF THE EXPERIMENTS

2.1 BACKGROUND AND CURRENT APPROACH

The experimental analysis was that of a thin plate with a circular
hole, with loading along the hole boundary by a disk having an initially
small clearance. Deformations were measured by moire interferometry,
which is a whole-field optical method for measuring in-plane
displacements, U and V, with high sensitivity [2]. Strains were
determined from the displacements, and stresses were calculated using

the specimen material properties.

A. Load Balancing and Two-Sided Observation

While loading conditions for previous experiments in this series
were carefully designed and executed [3,4], surprising deviations from
plane stress conditions were uncovered. Equilibrium of forces was
tested using stresses determined from the experiments. Equilibrium was
satisfied by experimentally determined stresses at a small distance from
the hole boundary -- typically 3 plate thicknesses or 1/4 the hole
diameter from the boundary -- but equilibrium was not verified using
stresses along the hole boundary. This must have been caused by
nonuniform contact loading across the thickness of the plate.

Special provisions were made in the current experiments to adjust
the loading to equalize its effect on the front and back surfaces of the
specimen. The plate and pin geometry is illustrated in Fig. 1. The pin
has the same thickness as the plate near the contact zome, but it is
flared on the non-contact side to accept loads on opposite sides of the
center plane. The loading arrangement, which is illustrated

schematically in Fig. 2, was designed to permit adjustment of the forces
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Py and P, as required to assure symmetrical loading across the thickness
of the plate.

How was symmetry assessed? High-sensitivity moire interferometry
was used to generate contour maps of the U and V displacement fields of
the plate, i.e., displacement components in the x and y directions,
respectively. In this work two moire interferometry systems were used
together, one to display displacement fields of the front side of the
specimen and the other to display displacements of the back side.
Symmetry through the specimen thickness was assessed by the equality of
the V displacement fields on front and back sides. The loading aparatus

was adjusted to give essentially equal front and back patterns.

B. Etched Gratings

Another issue that guided the design of the experiments related to
the specimen grating employed for the moire interferometry measurements.
In earlier experiments of aluminum-to-aluminum contact, the specimen
grating was applied by replication in the normal way [2], using an epoxy
adhesive as the replicating agent. The resulting grating was 25 um
(0.001 in.) thick, and while this is a small thickness, shear lag could
mask the true behavior at the contact interface. Cleanliness of the
contact interface was uncertain, too, inasmuch as excess epoxy could
contaminate the aluminum interface zone. To counter both problems in
the current work, relatively robust specimen gratings were etched into
the aluminum specimen. The shear lag was nullified by virtue of the
zero-thickness grating. Subsequently the hole was bored in the plate,
assuring a fresh, clean hole surface. The issue of contamination seemed

important because contaminants would influence the frictional behavior,
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altering the frictional parameters of the contact and even acting as a

lubricant.

L This etching method could not be extended to the study of the
composite plate. The motivation was less compelling, however, since
contamination of the interface by the epoxy was less serious for the

graphite-epoxy specimen.

o —-

C. Hybrid Method
The method of analyzing the fringe patterns of displacement was
improved, too. Two approaches were employed in previous work:

In one, the displacement gradients were determined from the fringe
patterns using a method in which the fringe order at each point of
interest, plus the slope of the fringe through that point, were
extracted as raw data. Strains were calculated from the displacement
.. gradients and stresses were calculated from strains and material
properties [3].

In the other, a hybrid experimental/numerical method was used.

.I Experimentally determined displacement data along the hole boundary
were used in a mixed load and displacement boundary value formulation
of the finite element method. For each load level, the procedure
required iteration through the full load history from the initial

r zero load condition [5].

These methods had significant disadvantages. For the first, the

measurement of fringe slopes was tedious and subject to large errors; it

r was particularly difficult to extract the slopes with confidence near
the hole boundary, where the strains and fringe slopes changed rapidly.
For the second, the iteration through the load history compounded the

?’ errors or uncertainties encountered at each load level.
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The improvement for the current work was a localized hybrid method.
In it, any localized region could be analyzed using experimentally
determined displacements as boundary conditions for a finite element
analysis. Displacement data were sufficient, eliminating the need for
measured fringe slopes, and eliminating the need for iteration through

the load history.

2.2 EXPERIMENTAL METHOD: MOIRE INTERFEROMETRY

Moire interferometry is a relatively new technique, but it has
already been applied to the solution of several practical problems. An
extensive review is given in Ref. [2].

Moire interferometry responds only to geometric changes of the
specimen, and thus it is effective for diverse engineering materials,
including the currently important anisotropic and nonlinear materials.
It provides whole-field contour maps of in-plane deformation fields --
precisely the experimental counterpart to the primary output of
theoretical studies by finite element methods and related computer
analysis methods. The sensitivity of traditional geometric moire has
been inadequate for most engineering applications, but recent
developments in moire interferometry provide increased sensitivity by
nearly two orders of magnitude. Now, moire interferometry offers the
needed sensitivity and promises to be an important method of
experimental solid mechanics.

Moire interferometry is an optical method using coherent 1ight and
featuring subwavelength sensitivity and high spatial resolution. Its
principle is depicted schematically in Fig. 3. In this method, a

crossed-line diffraction grating is replicated on the specimen and it
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deforms together with the loaded specimen. A virtual reference grating

created by interference of two coherent beams A and B is superimposed on
the specimen grating. The specimen and reference gratings form a fringe
pattern which is a contour map of Nx, or the in-plane specimen
displacement U. Additional input beams C and D in the vertical plane
(not shown) produce the fringe pattern for the V displacement field.

The patterns are photographed with a camera focused on the specimen
surface.

The relevant equations are

f =2 sina (1)
1 -1
U= f Nx . V = £ N'y (2)
N
_aU_lax -
x T T Fax (3) J
aN
e =3V _1_y (4)
y ay T Fay | o
aN aN
Y. = U av_ 1/ x +._A1] (5)

where f is the frequency of the virtual reference grating, » is the |
wavelength of the 1ight employed, a is the angle of incidence (Fig. 3),
N is the fringe order at each point in the moire pattern and ¢ and y are
normal and shear strains, respectively. In this work, f = 2400 Tines/mm _%
(60,960 1ines/in.).

The configuration of the optical system used in this work is
illustrated in Fig. 4. Beams corresponding to A, B, C and D (Fig. 3)

illuminate the front side of the specimen to generate the U and V
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displacement fields present on the front side. At the same time, beams
C' and D' (with central rays in the yz plane) illuminate the back side
to generate its V field. The insert in Fig. 4 shows beams C and C' as
they strike the specimen directly from the co1limafed beam, while
another portion of each collimated beam is reflected by plane mirrors to
form beams D and D'.

The laser employed here was an Argon Ion Laser operated at 150mW
and wavelength 514.5 nm. The plane of polarization was parallel to the
y axis. The polarizer in the camera path passed light with y
polarization. This was needed to filter the elliptical polarizations
created by mirror reflections in the three-dimensional paths. The two
cameras were adjusted for equal magnifications of 2.2. Kodak Technical
Pan sheet film, size 4x5 inches, was used. Exposure times were
approximately 1/8 seconds for the aluminum specimen, and 1/16 seconds
for the graphite-epoxy specimen (with its replicated grating of higher

diffraction efficiency).

2.3 LOADING SYSTEM

The experiment was conducted on a vibration isolating optical
table, with the optical equipment of Fig. 4 and the loading system of
Fig. 5 mounted on the table. The loading system consisted of a sturdy
steel frame, a loading and load measuring device and fixtures to engage
the specimen.

The loading device utilized two lubricated wedges. When one was
displaced laterally by manual operation of the loading screw, it
displaced the surrounding frame upwards. The linkage attached to the

specimen moved upwards, too, exerting a tensile load on the specimen.

15
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The load was measured by means of electric resistance strain gages on
the narrow legs of the loading device. The load was reacted through the
pin and saddle by two cross-bars on the main frame, one behind the
specimen and one in front. The front cross-bar was adjustable as shown.
The main frame was attached to a base plate containing three
adjusting screws. The screws rested on the optical table and allowed
rigid-body in-plane and out-of-plane rotation of the specimen relative

to the optical system.

2.4 SPECIMEN GRATINGS
A. On The Aluminum Plate

For the aluminum plate, the specimen gratings were etched into its
surfaces before the hole was bored. First, the front and back surfaces
of the specimen were polished to a smooth, bright finish by buffing with
rouge. Then a positive photoresist (Shipley S1400-31 Photoresist
diluted with four parts of Type A Thinner) was applied by the drag
method illustrated in Fig. 6. With this method, a lens tissue is wetted
with the dilute photoresist and dragged at a siow uniform velocity
across the specimen. A uniform photoresist film less than a wavelength
thick was achieved; uniformity was essential in order to overcome
deleterious effects caused by light reflected from the bright aluminum
interface.

The photoresist was exposed to a 1200 lines/mm virtual grating.
The virtual grating was produced in a separate optical system that
caused two collimated beams of laser light to intersect in accord with
Eq. 1, where f = 1200 ¢/mm, o is the half-angle of intersection and 1 =

413 nm (using a Krypton Ion Laser). Two exposures were made on each

16
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side, with 90 deg rotation between the exposures to produce crossed-line
gratings.

The photoresist images were developed by immersion in Shipley
Developer 352. The developer is a dilute solution of sodium hydroxide,
which is also an etchant for aluminum. The developer first dissolved
and removed the exposed zones of photoresist (zones of constructive
interference of the virtual grating). Upon peretrating to the
interface, the developer attacked the aluminum and so formed a crossed-
line grating in the aluminum.

The specimen was then clamped between acrylic plates and the hole

was machined in the specimen.

B. On The Graphite-Epoxy Plate

The conventional procedure [2] was used to produce gratings on the
graphite-epoxy specimen. First, a crossed-line grating mold was
prepared by exposing a high-resolution photographic plate to a 1200
g/mm virtual grating., A metallic film of aluminum was formed by vacuum
deposition (evaporation) on the mold. Then the g :ing was replicated
on the specimen, following the steps depicted in Fig. 7. The adhesive
was a room-temperature curing epoxy. After removing the mold, a thin
(approximately 25 um) highly-reflective crossed-line grating was
produced on the specimen.

In this case, the hole was previously machined in the specimen.
During the epoxy curing process, the excess epoxy was repeatedly cleaned
from the hole boundary using a cotton swab dampened with alcohol; at the
gel stage, excess epoxy was removed with a sharp tool. After the epoxy
hardened, the hole boundary was scraped lightly as a final cleaning

step.
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3. EXPERIMENTAL PROCEDURE

3.1 SPECIMEN LOADING

With the specimen installed in the loading fixture (Fig. 5), an
initial load of 25 pounds was applied to stabilize the aluminum specimen
(a 20 pound initial load was used for the composite specimen). The
optical system was adjusted to produce null fields: the U and V fields
on the front side and the V, field on the back side, where the subscript
denotes the back side. Because of the initial load and imperfections of
specimen and reference gratings, they were not true null fields, i.e.,
they were not devoid of fringes, but the number of fringes across each
field was minimized.

The loads were increased in a systematic sequence and the U, V and
Vb moire fringe patterns were photographed for each load step. Prior to
recording the patterns, adjustments were made in an iterative fashion as
follows. The V and Vb patterns were observed on the camera screens.
Any rigid-body rotation of the specimen caused by the loading was
cancelled by rotation of the loading fixture through adjustments of its
base. Then fringes that crossed a line segment along the y axis were
counted and compared for front and back sides of the specimen. If they
were not equal (within about 1/4 fringe), the load was reduced to about
50 pounds (30 pounds for the composite specimen). The lever that
engaged the pin and saddle (Fig. 5) was adjusted and the load was raised
again to the target value. If the fringe counts in V and Vp fields were
not equal, the procedure was repeated until equality was achieved. Then
the moire patterns were photographed.

The load sequence is given in Fig. 8 for both specimens, for the
loading and unloading phases. The large circles denote load levels at

which the patterns were recorded, and the small circles indicate

18
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observations in the iterative process. At higher load levels and in the
unloading phase, equal deformations of the front and back surfaces were

obtained without iteration, as indicated.

3.2 FRINGE PATTERNS AND FRINGE ORDER EXTRACTION

The fringe patterns were enlarged and printed photographically at
magnifications of about 5 times and 10 times. Representative U and V
patterns on the aluminum plate are shown in Figs. 9 and 10 for an
intermediate and high load level, respectively. Figures 11 and 12 give
examples for the composite plate. Fringe orders Nx and Ny were
established, as illustrated in Fig. 9. An extensive set of patterns is
reproduced in Appendix I.

While the fringes on the aluminum specimen are sufficiently well
delineated to extract fringe positions with high accuracy, they
exhibited more optical noise than those on the composite specimen. The
noise was caused by the inferior quality of the etched gratings,
compared to the replicated gratings on the composite. Further
development of the etching process is required to enhance the appearance
of the fringe patterns.

The jagged boundary of the composite plate is caused by local
bearing failure of the composite, with elements of the outer ply
overriding the pin surface. The faiiure process is discussed in
subsequent sections.

Data were extracted from the fringe patterns by means of a
digitizing system. It consisted of a digitizing table, a cursor and a
microcomputer. The coordinates of fringe centers along the hole

boundary and other preselected lines were measured by electromagnetic
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fields built into the digitizing table. Using a magnifying lens for
observation, cross-hairs of the cursor were positioned visually at the
intersection of the fringe center and the preselected line, and the
coordinates of the cursor were tabulated by the micfocomputer, Accuracy
of the digitizer was 0.001 in. on the scale of the photographic print,

or 0.0001 to 0.0002 in. on the scale of the specimen.
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4. HYBRID METHODS OF DATA REDUCTION

4.1 COMBINATIONS OF MOIRE INTERFEROMETRY AND FINITE ELEMENT ANALYSIS

Moire interferometry provides full-field displacement data
corresponding to the in-plane components u(x,y) and v(x,y) on the
specimen surface. [n many cases the strain and stress distributions are
required in the engineering analysis. The former are obtained from the
appropriate derivatives:

€y = %9 v ey T %% and y_ = — + — (6).
Once these are obtained the stress may be determined from knowledge of
the material constitutive law. The differentiation required to
determine the strains at some point may be performed manually (defining
the gradient in a small region) or, indeed, optically [6]. A further
method of reducing the moire data is to use the finite element (or even
the boundary integral evaluation) method. In this section the basic
principles of the finite element method will be reviewed and methods of
combining moire interferometry and finite element analyses will be
introduced.

The finite element method of stress analysis is well established.

It allows the solution of many complex stress analysis problems through
an approximate numerical technigue. Structural components are
discretized into a number of elements. The displacements within each
element are assumed to follow known functional relations (e.g. linear,
quadratic etc). The stiffness of each element is computed in terms of
the co-efficients of the displacement function and the material law for
the element. The stiffness of the structural component is formulated by

requiring equilibrium and compatibility at the nodes of the elements.
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The technique is, of course, a "stand alone" method of stress

analysis. A major problem, however, can occur in the specification of

the boundary conditions (forces and/or displacements). Another problem

which may arise is the requirement of a very large number of elements to
discretize a large body (when the real region of interest may be quite
small).

A hybrid approach to the pin-loaded plate problem has been used by
Heyliger [5]. In this, the moire displacement data were used around the
pin/plate boundary and the uniform remote stress condition applied.
Thus, when symmetry was involved, an entire half of the plate had to be
discretized and analyzed.

In order to propose further hybrid approaches, let us examine some
basic ideas behind the finite element method and highlight possible
combinations of photomechanics data and finite element analysis.
Following the notation of Reddy (7], the displacement within an element

may be written as

n
u= Y u,v

. 7
j=1 J J (7)
and
n
. . 8
' 321 ity (8)

where uj and Vj represent the displacement at each of the n nodes of an
element and wj is one of n interpolation functions for a given element.
The strain within the element is, of course, obtained by

differentiating the displacement components u, v. Thus, for an element

{edrg = [D] [wl, (8}, (9)
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where [D] is the matrix of differential operators

(0] =

w'w o w‘w
< x
|u) ‘:)lu) o

[<%]
>

and (8}g is a column vector ccntaining the nodal displacements,

L T
A —[ulvl...u v_]

e n'n (10)

Thus one apprcach to a hybrid of moire interferometry and finite
element analysis would be to use the fringe pattern data (for‘u and v
fields) to determine the displacements of the ncdes everywhere in some
arbitrary region. The finite element (interpolation) analysis then
gives approximate strains within each element (for chosen orders of
interpolation function). That is, the finite eiement analysis is used
as a convenient tool for differentiating the fringe (displacement)
data. Of course, stresses may then be determirsed from the apprcpriate
material constitutive law.

This approach may have merit in the cases where there is a regional
variation in the material properties, such as plastic deformation or
local failure. However, it may become tedious unless automated.

Another approach is to follow the finite element analysis more
closely. After formulating element strain and stress behavior the

element stiffness is related to the nodal forces and displiacements by
TSURNSIINE O (11)

where [K(8)] = jn(e) (871, (cl, (8], dv (12).
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Here, (Ble = [D] [w]e and [Cle is the element constitutive matrix.
Usually the integration is performed numerically using Gauss-
Legendre quadrature. This consists of sampling values of a function at

special points within any given element, applying weighting functions
and summing over the element. These sampling points within the element
are known as Gauss points. The eight-node quadrilateral element shown
in Fig. 13 employs nine Gauss points. The most accurate results are
those at the Gauss points but usually the nodal values are of greater
interest. In the contact probiem we are interested in the deformation
of the surface of contact so we need the stress components at the
contact boundary.

Following formulation of the element stiffnesses, the overall
stiffness matrix may be assembled by incorporating requirements of nodal

compatibility and equilibrium. A convenient, partitioned form, is

(ki [Klz} h Fly (13)
(k2 (k22 (u2) (F2)
where {Al} and {Fz} represent known displacements and forces
respectively. Terms {AZ} and {Fl} are unknown displacements and forces.

1

Thus a further local hybrid approach suggests itself. Let {a '} be the

displacements of nodes around the boundary of some arbitrary region of a
pair of moire fringe patterns. These displacements are readily

determined at the location of the nodes. Within the region, the

2

resultants nodal forces (F°} are known (to be zero). The internal nodal

displacements (AZ} are then regarded as unknown and may be calculated

from

a?y = k81 f2y L2l @y ol (14).
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The nodal forces along the boundary of the arbitrary region are given by
I (T I ) R [ DR I S I G RN T S ST

These calculations are performed routinely in the finite element
analysis.

The analysis above is presented to highlight an approach which will
be termed "the localized hybrid method," and to emphasize some
advantages and limitations. [n the localized hybrid analysis the
material behavior of all elements within the chosen region must be known

even for the calculation of strains - that is, {A2

} depends upon the
global and, in turn, the element stiffness matrices. This is to be
contrasted with the direct interpolation approach described earlier in
which strains may be calculated in regions of gross material non-
linearity (provided, of course, the appropriate strain-displacement
relationship is included in the formulation) . In the localized hybrid
method, since the moire data are available everywhere within the region,
subsequent comparisons of calculated and actual displacements can be
made. This provides vital checks of the accuracy of the analysis and
allows refinements to be made in the finite element mesh. Similarly the
interpolation approach must satisfy the additional requirement that the
internal interelement nodal forces satisfy equilibrium. The degree to
which this is achieved may be used as a measure of the accuracy of the
discretization or appropriateness of the interpolation functions.

O0f the two approaches described above the localized hybrid method
is the most useful for present purposes.

In the localized hybrid aralysis a further extension is possible.

In addition to specifying only the displacements of thL2 boundary nodes,
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internal nodal displacements may also be included. This is particularly
useful when there are high displacement gradients and good modeling is
desired without additional mesh refinement.

Before describing the application of the localized hybrid method to
the contact problem, it is appropriate to demonstrate the method and
examine the robustness or stability of the approach. To this end a test

case (which is close to the contact problem geometry) will be described.
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4.2 TEST CASE: LOCALIZED HYBRID ANALYSIS

There are two main reasons for performing a test case for the
localized hybrid method for the contact problem. The first is that the
experimental displacements at the pin/plate boundary will be input into
the numerical analysis and the resulting stresses in this same region
are of primary importance. We need to determine the effect of
experimental error upon the accuracy of these stresses. Away from these
boundary nodes, at internal nodes, it would be expected from St.
Venant's Principle that the effects of errors in displacement will be
attenuated. The magnitude of probable errors in displacement are easily
estimated. The second objective is, then, to quantify the effect of
random errors of such a magnitude upon the calculated stresses. In
other words, what is the sensitivity of the technique expressed in terms
of stresses?

A region representative of that used in the experiment is shown in
Fig. 14. The region was first meshed and loaded as shown. The loads
were chosen to produce stresses of similar orders as those in the
aluminum plate experiment. The finite element analysis provided the
nodal displacements, stresses and strains everywhere in the region. It
will be observed that this example contains some distorted elements.
Since this is a self-contained test case and our interest 1lies on the
curved, densely meshed boundary, element distortion is not important.

Next, the calculated displacements of the nodes on the boundary of
the region were input into a second finite element analysis. As
expected the forces from the first analysis were reproduced in the

calculation. However, suppose now that there are some errors in the

input displacements at the boundary nodes. These may be of two classes.
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In the first, there may be one relatively large error while the others
are precisely known. This may correspond to a counting error in the
fringe data reduction. In the second case, there may be random errors
associated with each nodal displacement value. This may correspond to
uncertainty in the estimation of partial fringe orders from the moire
data.

In this test case, separate analyses were performed with both types
of displacement errors. The magnitudes of the displacements and errors
were chosen to be typical of those which might occur in the moire
experiment. It is estimated that the largest interpolation error might
be one quarter of a fringe order (approximately 0.000lmm in
displacement). When values of displacements were modified to contain
random errors in the range -10~% mm to +10~% mm and the calculation
made, there is hardly any discernible effect upon the stresses
calculated at the boundary (Fig. 15). That is, the points from the data
containing the displacement errors are virtually superimposed upon the
line from the force-input calculations.

Coarse or geometrical moire provides a much lower sensitivity than
moire interferometry. To illustrate the effect of a larger random error
of maximum value equivalent to 2.5 fringe orders the test case was run
again. This corresponds to a similar order of interpolation error which
might occur with a virtual reference grating of 240 lines/mm (still very
fine by geometric moire standards). The results indicate that the
general trend is preserved but there is a large f1ﬁctuation in the
stress values (Fig. 16). The errors are much more significant in the
shear stresses which are much lower than the normal stresses in this

calculation.
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Fig. 17 shows that a shear stress of the order of 5 ksi is readily
determined using the localized hybrid approach in conjunction with moire
interferometry with a quarter fringe order maximum error and a virtual
reference grating of 2400 lines per mm. A coarser method of determining
displacements would not, however, be satisfactory in this case. A
further case showing a maximum shear stress of 1 ksi is presented in
Fig. 18. The trend is still apparent but fluctuations are of the order
of 0.25 ksi which are similar in magnitude to these in the 5 ksi example
(but these fluctuations seem smaller because of the larger scale). This
indicates the current 1imit on stresses which may be determined using
the localized hybrid method. Thus, refinement of the moire experiment
would be required for confident measurement of stresses below 1 ksi.
This may be achieved in future experiments using carrier patterns,
enhanced sensitivity, etc.

In the case of the discrete error, (in the example a large value of
5 fringe orders was used) it is seen that the St. Venant Principle
clearly operates and that the resulting error is confined to within a
very local region and this error is likely to be easy to detect when it

occurs (Fig. 19).

4.3 APPLICATION OF THE LOCALIZED HYBRID METHOD TO THE CONTACT PROBLEM
In the pin-loaded plate problem, primary interest was centered on
the stress distribution around the surface of contact. A secondary goal
was the determination of the angular extent of the contact zone as the
applied Toad varied. Finite element meshes were then devised for the
plate in the vicinity of the contact zone only. I[n selecting meshes

several options were available. The first, and most tempting, was to
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fit the boundary nodes to the locations of the fringe centers. However,
the moire experiment produces two distinct fringe patterns so that it is
not possible to define a single mesh in this way. An alternative
compromise is to use the denser (V) fringe pattern.- This method is
attractive in that it would yield the most accurate values of input
nodal displacements. Practically, however, it is tedious for large
numbers of load cases.

A convenient approach is to take advantage of mesh generators in
the finite element programs and define regular meshes. In this case the

fractional fringe orders at the nodes must be estimated. It has been

shown above that even with a one quarter fringe error in interpolation
excellent stress accuracy is obtained for all but the lowest stress
values. Even in the case of low stress there are optical methods of
enhancing the accuracy of the interpolation using carrier patterns.

Some of the meshes used are shown in Figs. 20 and 21. The rules and the
approach used in the selection of the meshes were those of a
conventional finite element analysis. The elements employed in the
analysis were eight-node isoparametric quadrilaterals. The analysis
assumed plane stress conditions and the material properties used were

for the aluminum, E = 10.2x10° psi and v = 0.34 and, for the quasi-

isotropic graphite-epoxy composite, E11 = E22 = 7.72x106 psi, G12 =

2.97x108 psi and v,, = 0.30.

12
» As mentioned above moire interferometry yields separate fringe

patterns for the U and V-fields. In the case of the pin-loaded plate
these have very different fringe densities (Figs. 9-12). The fringe
F! orders for the U and V displacements at the boundary nodes must be ®

determined. Several methods were evaluated. These included estimation
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of the fractional fringe orders at nodes when the mesh was plotted on
transparent film and superimposed upon the fringe patterns. Another
method consisted of determining the order and co-ordinates of the fringe
center intersecting the boundary of the mesh using a digitizing

system. Fringe orders at the boundary nodes were then obtained by
linear interpolation. Both method were used successfully.

Two finite element programs were used in the data reduction. The
first was based on a listing in Hinton and Owen [8]. This program
provided a basic analysis but lacked pre and post-processing
capabilities. The program was run on an IBM 3090 and specific (to the
contact problem) mesh generation and post-processing programs were
written for an IBM Personal System 2 Model 50 with the LOTUS 1-2-3
Software.

The second finite element program used (mainly for the graphite-
epoxy analysis) was FINEL - a comprehensive suite developed by Denis
Hitchings at Imperial College, London. The version used ran on the
Apollo DN 3000 minicomputer. This program has comprehensive mesh
generation capabilities and a wide selection of element types.
Sophisticated post-processing is also allowed.

It should be recalled that the finite element calculations provide
the best estimates of the element stresses at specific internal
locations known as the "Gauss points." Thus the values of stress
components around the pin/plate boundary must be extrapolated from the
Gauss points to the boundary nodes. For the quadratic elements used,
the stress (and strain) variations within an element are linear. Of
course, for very small elements, errors associated with this can be
taken as negligibie. For the coarsest mesh used the distance from the

nearest Gauss point to boundary node was about 0.2 plate thicknesses.
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In the following section the stress distributions at and near the
surface of contact in the pin-loaded plate will be presented for both

the aluminum and composite plates.
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5. STRESS DISTRIBUTIONS
5.1 [NTRODUCTION
The radial, hoop and shear stresses on, and near, the surface of
contact were determined from the moire data using the localized hybrid
approach. The stress distributions will be presented first for the
aluminum plate and then for the composite plate. The angular coordinate

system and convention for a positive shear stress are shown in Fig. 22.

5.2 ALUMINUM PLATE

The variation of the radial stress with angular location and
applied load is shown in Fig. 23. [In most instances the fluctuations in
stress appear to be at the same angular locations for the various load
levels. This suggests that the fluctuations represent real stress
variations and are not artifacts of the computations.

The variation of the hoop stress with angular location and applied
load is shown in Fig. 24. It may be observed that the hoop stresses are
compressive near the zone of first contact (s = 900), the greater the
load the smaller the region in compression, and that the peak
compressive stress is approximately independent of load. It is also
apparent that distribution of stress is not symmetric about 6 = 900. It
might further be noted that the largest hoop stresses are tensile and
occur at or just beyond the end of the contact region.

The shear stress distributions are shown in Fig. 25. It is
immediately apparent that the variation of this stress component along
the contact region is highly irreqular. The variation of shear stress
with applied load is also extremely non-linear. One important comment

to make is that the magnitudes of the shear stresses are an order of
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magnitude lower than the other two stress components. To provide some
perspective on this, the three components of stress are plotted on the
same axes in Figs. 26 and 27 for the 500 and 1250 1b loads,
respectively.

In order to provide some insight into the rate at which the contact

bl

stresses decay with distance away from the contact region the radial,
hoop and shear stresses are plotted for various locations near the
contact zone in Figs. 28-30 respectively for the applied load case P = .*
1250 1b. It will be observed that the variation is very rapid. In the
case of the hoop stress the compressive stress (at 8 = 900) becomes
tensile within less than half a plate thickness from the contact q
point. The effect in the shear stress distribution is most striking.
Within about one plate thickness the shear stresses change sign. Thus
the contribution of the frictional effects to the stress near the _ -
contact zone is very localized. A small distance away the global
effects of loading and geometry dominate, and the shear stress

fluctuations are attenuated and the distributions become symmetric __g#

about 8 = 90°. The stress components become essentiaily independent of
the frictional effects at the pin-plate boundary.

Since some publications provide stress distributions in terms of

Q@

cartesian rather than polar coordinates, the cartesian components of

stress are shown in Figs. 31 and 32 for the 500 and 1250 1b load cases,

respectively., Also, the stress components are normalized with respect %
to the bearing stress p ( = P/Dt) in Fig. 33. |

As noted in the description of the experimental procedure, the ?
moire displacement data were also recorded on the unloading part of the N
load cycle. The stress distributions on this load-decreasing phase may

be compared with those on the load-increasing phase.

.
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The radial stress distributions around the pin-plate boundary are
shown for the load-decreasing phase in Fig. 34. The corresponding hoop
and shear stress distributions are shown in Figs. 35 and 36,
respectively. Comparisons of the loading and unloa&ing stress
distributions are provided in Figs. 37 and 38. It is clear that the
most pronounced difference in the loading and unloading stress
distributions lies in the shear stresses - particularly for the 500 1b
load case in which there has been a complete reversal in the shear
stress direction. This, of course, is to be expected since the
direction of relative slip or tendency to slip is reversed on unioading
and this effect will be greater as the load is reduced and reach a
maximum before falling to zero when the load is removed. This is
apparent in Fig. 36 for the 250 1b load which has a smaller peak shear
stress than the 500 1b case. Also in the 500 1b decreasing load case,
observe that the maximum shear stress occurs at about 45° and that the
change of sign of the shear stress gives rise to an increase in the
radial (compressive) stress, as required from equilibrium
considerations. It should also be remarked that the magnitudes of the
shear stresses are much larger on the load-decreasing phase and, indeed,
the peak values in the 500 1b case approach that of the 1250 1b case.
Note also in Fig. 38 that the region of negative hoop stress has been
almost eliminated on the load decreasing phase.

[t has been observed that during the load increasing phase the
shear stress underwent a rapid transition with radial distance from the
surface of contact into the plate. In the load-decreasing phase,
however, this phenomenon does not occur - see Fig. 39. This is, of
course, to be expected since the shear stress due to friction and that

due to the unfilled hole have the same signs.
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5.3 COMPOSITE PLATE

In the study of the stress distribution in a pin-loaded composite
plate the possibility of failure mechanisms had to be taken into
consideration. Indeed, a major interest in the study was the
identification of the nature and location of various failure
mechanisms. Thus the presentation of results from the program on the
composite plate will differ from that for the aluminum plate.

The fringe patterns obtained for a load of 400 1b applied to the
quasi-isotropic graphite-epoxy plate are shown in Figs. lla-c. It is
apparent that the fringes in the U-field (Fig. 1lb) are much less dense
than those in the V-field (Fig. 1la) and that there is a marked lack of
symmetry in the U-field. There is also a local gradient on the left
side of the picture (indicative of sub-surface ply damage).

The fringe patterns were analyzed using the localized hybrid
approach. The meshes used are shown in Fig. 21. Meshes II and III (Fig.
21) were used to determine the contact angle more precisely and the
overlap between meshes [ and II (or III) provided a useful check of the
sensitivity of the results to the mesh and input data.

The direct applicatieon of the localized hybrid analysis for the
stress components at the surface of contact produced wide variations in
the stress components near the first contact point (8 = 90°) and near
8 = 1500 (which coincided with the local anomaly in the U-field fringe
pattern (Fig. 11b). Attention (as far as the stress analysis was
concerned) was then centered on regions close to but a little removed
from the surface of contact. These new zones of interest were taken as
circular arcs concentric with the center of the hole. On one such arc,

1.55 plate thicknesses from the surface of contact, the stress component
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distributions are much smoother. These stress components are shown in
Figs. 40 and 41 for the polar and cartesian coordinates respectively.
One advantage of the localized hybrid analysis is that meaningful
values of.étress can be obtained in regions near anomalous zones. In
the case of the graphite-epoxy plate, the surface stress distributions
were obtained for angles in the range 0 to 60°. These stress
distributions are shown in Figs. 42-44. It will be observed that the
peak hoop stress occured a little before the 0 and 180" positions.
Owing to the possibility of local bearing failure at & = 900 it is
not possible to compare the peak radial stresses in the composite and
aluminum plates. There are, however, marked differences in the shear
stress distributions. First, it should be remarked that the magnitudes
of the shear stresses are about double (for a given load) in the case of
the composite plate. The shear stress distributions are also much
smoother and regular. A most important difference is, however, the
change of sign of the shear stress at 3 = 300. In the cases for low
values of ¢ the shear stresses are negative. In the case of the
aluminum pin this continues to be the case until the shear stress
approaches zero and then changes sign as 8 approaches 90°. This
difference between the isotropic aluminum and the quasi-isotropic
composite is curious, to say the least. Differences in the sign of
shear stresses in isotropic and quasi-isotropic materials were reported
in an experimental investigation by Hyer and Liu [9] without comment.
This feature is not apparent in the analytical lTaminate studies. This
point will be addressed in more detail below in a discussion of failure

and contact mechanics.
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6. DISCUSSION OF RESULTS
6.1 CONTACT MECHANICS

Significant regions at the pin-plate interface are shown in Fig. 45.
[deally, it would be desired to determine the extent of the contact,
slip and no slip regions. The extent of the contact region is readily
defined. The location around the boundary at which both the radial and
shear stresses first become zero is taken as the end of the contact
zone. Beyond this position the radial and shear stresses remain zero.
In the present study the extent of the contact zone is then determined
from the distributions of I and Trg* Since the shear stresses are
small and approach zero slowly near the end of the contact zone, precise
definition is difficult, so moire confidence is placed upon the radial
stress distributions. Also, it should be noted that with the
experimental and numerical nature of the investigation the stresses are
small and oscillatory but not exactly zero just beyond the end of the
contact zone.

The contact angle increases as the applied load increases and has
the value zero at zero load (representing a line or point contact). The
variation of contact angle with l1oad is shown in Fig. 46 for loading and
unloading of the aluminum plate. It will be observed that for a given
load the contact angle is marginally greater on the unloading phase.
This is, of course, consistent with the reversed direction of the
frictional forces on unloading.

The change of contact angle with load accounts largely for non-
linear geometrical effects in the pin-loaded plate problem. It is
observed that the contact angle increases rapidiy with load at first and

then more slowly as the contact angle approaches 180°. The effects of
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this upon the variation of the peak radial contact stress are shown in
Fig. 47.

For the case of the composite plate, a more approximate
determination of the contact angle had to be made as a result of the
local bearing failure and matrix cracking on one side of the plate. The
variation of contact angle with load is presented in Fig. 48. The
contact angle increases more rapidly at first and then more slowly than
in the aluminum plate. This is consistent with local failure in the
composite plate at very low loads.

Regions of slip are those within which a 1imiting frictional stress
has been exceeded and there is relative displacement tangential to the
surface of contact. Coulomb friction defines static and dynamic
coefficients of friction for the surfaces in contact. Under limiting
conditions the ratio of the shear and normal stress should be constant
for the surfaces and, in the present case, equal to the co-efficient of
friction. This ratio is plotted for two load cases in Fig 49. It is
difficult, from this, to determine the coefficient of friction, whether
slipping has occurred or even if the frictional behavior is Coulomb in
nature. On the unlciding phase at 500 1b it is possible that between
8 = 350 and o = 600 some 1imiting value u =~ 0.2 is obtained. However,
without knowledge of the displacement of the pin relative to the plate,
this becomes a matter of conjecture. [t should be noted that the
extreme parts of the curves (6 = 0 and 6 = 1800) are unreliable since

both the shear and radial stress approach zero in these zones.
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6.2 STRESS DISTRIBUTIONS

There have been many analytic studies of the pin/plate contact

problem. These vary greatly in complexity and often include restrictive

assumptions. Unfortunately an exact comparison of'the current
experimentally determined stress distributions with analytical ones is
difficult, if not impossible, owing to the lack of detailed information
about actual conditions at the pin/plate interface, particularly the
local coefficient of friction and the distribution of contact surface
asperities. The analytical solutions assume Coulomb friction with some
value(s) of the coefficient(s) of friction. Hyer and Klang [10] present
non-dimensional stress distributions for a similar problem. The
sensitivity to load and, therefore, contact angle is not indicated.

Thus the results of Klang and Hyer are compared for two load levels (750
and 1250 1b) from the present study (Figs. 50 and 51). Generally, the
peak stress values compare well for all stress components. The
distributions show general agreement except for the shear stresses. One
peculiarity of the Hyer and Klang solution is, however, the large
compressive hoop stress at the first contact point (8 = 90°). This
phenomenon is not detected in the present study perhaps as a result of
the overestimated coefficient of friction in the analytical study. The
possible existence of some compressive hoop stresses is not questioned.
Indeed such stresses are shown in Fig. 24. In this figure it is shown
that increasing load does not affect the magnitude of this compressive
stress but does reduce its extent (in the hoop direction). The
existence of the compressive hoop stress may be explained by considering
the Poisson expansion (in the hoop direction) of an element at the first

contact point under the large compressive radial stress. This expansion
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is resisted by the tractions between the pin and plate so that the hoop
strains are smaller than in the unrestrained case. Hyer and Klang show
that the effect is strongly dependent upon the magnitude of the co-
efficient of friction assumed in the analysis. In the case that . is
taken as zero the hoop stresses are always positive in the Hyer and
Klang model. Experimental support for the dependence of this effect
upon the sign of the frictional tractions is provided by data from the
unloading phase. The reversed sign of the shear stress tends to promote
positive (tensile) hoop stresses near 8 = 90 in Fig. 38. Another effect
of this is to shift the peak compressive radial stress away from the
first contact point.

A further insight into this phenomenon can be seen by considering
the equilibrium equations in polar coordinates. In the absence of body

forces, these are

3a T g, -0
r 1 "'re r 9 _
ar T r 38 r =0 (16)
and
d0 Tt 2t
1 "o re re _
ras "ar tr 00 (17)

The hoop stress o_ can be written as

9
= + +
o, = ra b + o (18)
30 T
r __.rg
where a = I and b T

The experimentally determined stresses and stress gradients identify the

relative importance of each term in the equilibrium equations. Near
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8 = 900, o. is Targe and compressive (negative) and a (the gradient

of o in the radial direction) is positive. Depending upon the local
direction of relative motion (or impending motion), b (the rate of
change of shear stress along the contact interface) may be positive or
negative. Of course b also depends upon the magnitude of the frictional
forces. In the loading phase b is positive. So o must be negative
enough to yield a compressive o On unloading to 500 1b, o becomes
more negative (than on the loading phase), b = 0 and o is positive from
which it is deduced that a must be more positive. That is, the rate of
increase of the radial stress with distance from the contact boundary
must be greater in the unloading case. This is consistent with the
experimental observation that o. is greater on the unloading phase and
that the frictional effects are highly localized. Thus, depending upon
the sign and magnitude of the contact tractions, negative hoop stress
can occur.

The test case used in validating the localized hybrid analysis
provides a convenient means of illustrating the effect of the magnitude
and sign of the frictional tractions upon the hoop stress distributions.
These numerically obtained results are summarized in Fig. 52. It is
clearly shown that the constraint effect of frictional shear stress is
responsible for the local tensile or compressive hoop stresses
near e = 900, That is, when the applied shear tractions are positive,
compressive hoop stresses are created.

It has been observed above that the extent of the compressive hoop
stress zone decreases as the load increases but the peak magnitude
hardly changes. Qualitatively this may be explained by observing that,

while the radial stress increases relatively rapidly with load, the
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constraints due to the frictional forces increase much less rapidly.
Thus the effect of the increasing radial stress promotes tensile hoop
stresses and the extent of the compressive hoop stress zone is
diminished.

Summarizing the stress distributions obtained in the experimental
stress analysis,

(i) The greatest stresses are tensile and in the hoop direction near

8 =0 and 180 . Depending upon the loading sequence
(1oading/unloading) the smallest hoop stresses occur at or near

8 = 900 and may be compressive. Defining the stress concentration
factor (SCF) as the maximum stress (at e = 0° and 180°) divided by the
average stress on the ligament, it may be seen that, in the case of the
aluminum plate, the SCF depends upon the load and marginally upon the
loading sequence and also approaches the value predicted by Frocht and
Hi1l {11} Fig. 53.

The stress concentration factors for the composite plate show more
fluctuation. Initially these are close to that for the aluminum plate
but, as a result of material failure which leads to a complex load
redistribution, the SCF's are up to 20% higher.

(i1) The radial stresses are large and compressive near the point of
first contact (e = 90°). As pointed out above, the effects of
frictional tractions are so as to produce compressive hoop stresses in
this region and shift the location of the peak radial compressive
stresses away from the point of first contact. This is most clearly
apparent in the 1250 1b load case. In terms of the bearing stress (p),
the peak radial stress is about 0.9 p compared to 1.2 p for the peak

hoop stress.
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(iii) The shear stress distributions at the pin/plate contact surface
are complex. It has already been observed that these are typically an
order of magnitude smaller than the hoop and radial stresses. On an
expanded scale in Fig. 25, fluctuations of up to 0.5 ksi are apparent.
In the case of all but the largest loads these fluctuations tend to mask
the general trends.

It is important to establish whether these fluctuations represent
true frictional phenomena or are artifacts of the method of stress

calculation.

6.3 FRICTIONAL PHENOMENA

The stress components at the contact boundary in the aluminum
specimen contain fluctuatons of as much as 1.5 ksi amplitude. Away from
the contact boundary, these fluctuations are attenuated. In the case of
the composite specimen (away from the failure zones) the distributions
are much smoother than in the aluminum specimen. The possible sources
of these fluctuations are computational and experimental artifacts, and

true localized frictional phenomena.

(i) Computational artifacts

The test case for the localized hybrid analysis provides a good
check of the sensitivity of the numerical method. The fact that the
errors introduced in the displacements caused only small amplitude
fluctuations directly associated with the input data suggests that
differences between Gauss point and nodal point accuracies may be
discounted. Also, the largest error in assigning the input nodal
displacements from the fringe values would give rise to a fluctuation of

no more than 0.5 ksi and probably less.
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The stress distributions were calculated for several load levels.
The fluctuations tended to occur at fixed locations around the contact
interface. This provides further support to the proposition that random
errors in assigning fringe order displacement data £o the boundary nodes
may be discounted. More important, however, it suggests that the
fluctuations are identificed with the contact geometry.

The composite and aluminum specimen data were originally analyzed
with different meshes and finite element programs. When both sets of
data were reduced using identical procedures the results were the same.
That is the fluctuations in the aluminum specimen stresses were still

much greater than in the composite.

(ii) Experimental artifacts

The gratings on the aluminum and composite specimens were

different. Those on the aluminum were etched and thus had zero
thickness while the composite specimen had replicated gratings which had
a thickness of about 0.001 in. The etched grating was used to eliminate
the possibility of shear lag in the epoxy replicating medium. The
presence of shear lag would cause some smoothing of fliuctuations but it
is very unlikely that this effect would be large enough to account for

the much smoother stress distributions in the composite specimen study.

(i1i) Localized frictional effects

The arguments presented above suggest that the experiment on the
aluminum specimens has identified localized frictional effects which
give rise to stress fluctuations of about 1 ksi. The fluctuations are
large enough to mask the general trend in the contact shear stress.

Moving away from the contact interface these fluctuations are rapidly
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attenuated and the stress distributions become independent of the
frictional effects at the interface. Thus the interfacial frictional
effects are very short range and associated with small scale phenomena.

It will be observed that the stress distriputions do not show exact
symmetry about 9 = 90°., The shear stress distributions show the most
pronounced lack of symmetry and the effect of this is to move the peak
radial and minimum hoop stresses away from e = 90°. The fringe patterns
clearly indicate a lack of symmetry in displacements. Thus the
frictional effects are not symmetrical. This is, of course, consistent
with a localized friction model.

The composite specimen did not show such strong localized effects.
Also, the shear stress distributions were very different from those in
the aluminum specimen. From s = 0 to about 8 = 30°, the shear stresses
are negative in both cases. However, beyond 6 = 30° the composite
specimen has positive shear stresses on the contact interface. (It will
be recalled that only a limited range of e-values were available for the
composite due to local failure.) This indicates that the sign of the
direction of slip or tendency to slip in the composite is reversed
beyond 8 = 30°. The photoelastic experiments reported by Hyer and Liu
[9] are much less sensitive than those presented here. The photoelastic
study yielded opposite signs of shear stresses in isotropic and quasi-
isotropic plates. The current investigation suggests this is only
partly true. (It seems likely that the photoelastic experiment might
not have been able to detect the small positive shear stresses.)

This difference between isotropic and quasi-isotropic behavior is
important and has not been included in analytical studies which use

laminated plate theory. One clue to the behavior of the (0/60/-60)
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laminate lies in the observation that there is a plane of symmetry
at o = 30° where the shear stress changes sign. This is illustrated in
Fig. 54. Another factor concerns the detailed frictional behavior of
the composite and the aluminum pin. Frictional effects occur between
the aluminum and the graphite fibers and between the aluminum and the
epoxy matrix. The nominal fiber volume fraction is 60% but
consideration should be given to the variation with 8 of the area of
graphite exposed to the aluminum. It may be shown that this is
minimized at o = 90° and 30° but is largest at ¢ = 60° where some fibers
are tangential to the hole. Thus the frictional tractions in the
composite will vary with angular position in a manner different from
that in an isotropic méterial. Near 6 = 60°, the greatest amount of
graphite will be in contact with the aluminum. Thus any model of the
frictional behavior of a pin-loaded fiber composite plate must include
the variation of the co-efficients of friction with angular position.
That is, the simple application of Coulomb friction will be in error.
The above arguments are specific to the (0/60/-60) lay-up but
similar arguments apply to other stacking sequences. The shear stress
distributions in the composite specimen are further complicated by the

presence of local failure.

6.4 COMPOSITE PLATE, FAILURE ANALYSIS

After loading and unloading the graphite-epoxy plate, non-
destructive damage evaluation techniques were employed. The ultrasonic
C-scan showed no evidence of (delamination) damage. However, the
penetrant enhanced X-ray investigation showed the presence of matrix

cracks in the 60° and -60° plies at 6 ~ 300 and 9 = 1500 respectively.
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Note that the cracks are larger in the -60° plies which are four layers
thick. There was also some evidence of bearing failure (Fig. 55).
Micrographic sections were also prepared from the specimens. These.
failed to show the matrix cracks so clearly defined in the radiographs
but they were successful in depicting the bearing failures of the 0°
plies. Fig. 56 shtows fiber kink in the outer 0° ply and associated
delamination (which is also apparent in the radiograph) near 8 = 90°.
The stress distributions cbtained at the pin-plate boundary were
used in a laminate analysis to determine the variation of the ply
stresses with angle. In order to predict the location of matrix
cracking, stresses normal to the fiber direction are plotted for each
ply orientation in Figs. 57-59. It may be observed that the largest
tensile stresses normal to the fiber direction occur in the 60° plies.
The angular location of the peak stress increases with load and occurs
at about 20° at a load of 900 1b. On the basis of a maximum stress
failure criterion the location of the matrix cracks is well predicted.
At this stage it is not possible to determine the load at which the
matrix cracking first occurs. The inclusion of thermal residual
stresses is a very significant but unquantifiable factor. A further
complication is the fact that the observed damage is that accumulated in
the complete loading cycle. There is experimental evidence that matrix
cracking may have occurred at very low load levels first in the thick (4
layers) -60° plies near 3 = 150°, rather than in the thinner (2 layers)
dispersed 60° plies near & = 300,
Further discussion follows in the section General Summary and

Conclusions.
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Fig. 2. Schematic diagram of the loading system.
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SpecimenN

— g

Ny Fringes

Fig. 3. Schematic diagram of moire interferometry for generating the N,

fringe pattern, which depicts the U-displacement field. Corresponding
beams C and D (not shown) in the yz plane generate the V-displacement
field. Note that A, B, C and D represent broad beams, not merely rays.
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Fig. 4. Moire interferometer for 2-sided viewing of s 2cimen.
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Fig. 6. DOrag method for applying a uniform film of photoresist on the
aluminum specimen.
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Fig. 7. Replication technique used to form gratings on the composite

specimen.
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1300

1200

Loading Sequence

Composite

Fig. 8. Loading and unloading sequence. Small circles represent the
jterative procedure for achieving plane stress conditions; larger
circles indicate photographic records of fringe patterns.
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Fig. 9a. Ny fringe pattern, depicting the V-displacement field at the

front of the aluminum

specimen for the 500 ib. load.
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Fig. 9b. Ny fringe pattern, depicting the U-displacement field at the
front of the aluminum specimen for the 500 1b. load.
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Fig. 10b.
1b. load.

N, pattern at the front of the aluminum specimen for the 1250
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Fig. 1lla. Ny fringe pattern at the front of the composite specimen for
the 400 1b. Toad.
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Fig. l4. Numerical model for testing the localized hybrid analysis. '{
The mesh is taken as representative of the region of interest in the
experiment and the loads were chosen to give typical stresses in the
contact problem.
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plate. ‘
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Fig. 54. Schematic of the fiber directions in the graphite-epoxy plate.
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bearing failure

matrix tension failure

Fig. 55. Radiograph showing matrix crackin i i
_ and some b i
the composite plate after unloading. ? saring fatlure in

I\ J
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delamination

fiber kinking failure

Fig. 56. Micrograph showing fiber kinking (bearing) failure in the
composite plate.
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FURTHER REFINEMENT AND APPLICATIONS OF THE MIXED
COMPUTATIONAL ALGORITHM FOR PLANE ELASTIC CONTACT PROBLEMS

E. Yogeswaren® and J. N. Reddy¥
Department of tngineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

ABSTRACT

The mixed finite element scheme developed earlier has been further
studied in order to improve tne model characteristics and operation as
well as to explore further arpiications with regards to mechanical
joints. One of the imgportant modifications that has been implemented in
the present study is tre utilization of a dynamic as w~ell as a static
coefficient of friction for the evaluation of contacting surface
behavior instead of a sing'e friction coefficient as used in the
previous study. 7his has improved the model behavior and involved a
substantial reorganization of program methodology. Other refinements
include the incorporation of a modified solution technique that allows
the solution of the indefinite stiffness equation system which is formed
in the first iteration of the first load step, and the usage of a finer
mesh. The new solution technia.e also avoids the halt of execution of
the program whenever small elements are introduced in the leading
diagonal due to contact loss.

The case of the pin-loaded aluminum plate r~as been studied again to
obtain better correlation with experimental results; and a pin-ioaded
orthotropic plate behavior as predicted by an :ralytical solution is
compared with the present model predictions. “re hybrid technique has
been used to estimate the static and dynamic c:afficients of friction of
the aluminum pin/plate system,

An elastic-plastic analysis based failure model of pin-loaded
laminates is illustrated by examples which indicate when bearing,
shearout and tensile failure occur in the laminate mechanical joints.
Finally, some improvements that could be carried out on the present
model to predict severe deformation and fracture behavior are discussed.

*Graduate Research Assistant

}C1ifton C. Garvin Professor of Engineering Science and Mechanics
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1. INTRODUCTION

The updated Lagrangian formulation based on a mixed variatonal
statement and the associated finite element model developed earlier (1]
gave results in jood agreement with the analytical solutions for most
contact problems studied there. However, the numerical results obtained
for the pin-loaded aluminum piate showed poor correlation with the
experimental results of Joh ;2]. The poor correlation can be attributed
to both theoretical and experimental models used. [t was also
discovered that the reed for a petter solution technique existed since
the program operation was disrupted whenever certain contact node pairs
were about to lose contact thus creating very small terms in the leading
diagonal. The work reported here is largely based on the subsequent
research carried out to improve the accuracy of the results by modifying
and refining the computational procedure developed earlier.

Applications of the refined model to the pin-l:aded piate problem and
other contact problems such as a mechanical joint in filamentary
composite laminates are presented.

Factors responsible for the discrepancy between the theoretical and
experimental results can be many and may include the non-ideal
conditions under which the experiment was conducted. An attempt is made
in the present study to see if closer agreement between the theoretical
and experimental results can be achieved by refining the computational
model. Indeed, the study showed that it is possible if a dynamic
coefficient of friction (ud) and a static coefficient of friction (LS)
are used in the analysis instead of a single coefficient of friction, as
was done in the earlier work. This approach is more realistic since

this comes closer to the continuously varying friction coefficient
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observed in practice. The basis for the values of “q and i is provided
by the hybrid technigue study conducted with the experimental values of
displacements along the hole boundary.

It was reporteg in {1! that the first node of the finite element
mesh was selected is "3 2 ccnstrained in both directions which enables
the use of a conventiora® barced solver. This is due to the fact that
the leading diagoral terms in {(lll (see [1]) will be zero in the first
iteration of the first "scad ‘r~crement, thus giving an indefinite system
of equatiors. Althougn this simple solution worked for problems with
carefully chosen mesh numbering, it breaks down when leading diagonal
terms become small due to Toss of contact between pairs of nodes.
Hence, the earlier solution scheme was discarded in favor of the
technique suggested by Mirza [3].

In addition to the above modifications, which are mainly remedial
in nature, some applications of the refined mo:21 were also conducted
particularly with respect to failure in mechan’:al joints of composites.
The advantages and pitfalis of the technique are also outlined in the
section on applications.

Finally, an alternative kinematic description is suggested for
severe deformations and cracks encountered in contact systems. This
model when incorporated in the present scheme can lead to economical
analyses of large deformation problems with fracture by avoiding the
remeshing techniques normally used in these cases. No attempt is made

to implement the computational procedure in the present study.
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2. PRESENT STUDY

2.1 Contact Stress Evaluation

Evaluation of the kinematical relations and tractions at the
contacting surface is a significant factor in the analysis of ccntact
problems. One of the main advantages accrued from mixed formulation is
that the normal ard tangential surface tractions can be calculated
directly from the roda'! stress values obtained in the mixed model. A
practical way of treating contact surfaces is to assume that the forces
are transferred only at the nodal points as concentrated forces
resulting from the integrated effect of contact stresses up to and
including the contactor node. In the earlier work (1] a segment of
triplet nodes were considered on the contactor body, with the node in
consideration as the middle node, and by integrating the tractions on
the contactor surface the nodal forces were obtained. In the present
study a more direct and simple algorithm is ad-oted to reduce
calculations involved and by using a finer mesn it is made certain that
the accuracy of the model is not compromised.

In the present analysis the contact status of any contact segment
of the target body containing a node of the contactor is decided by the
normal and tangential nodal forces at the given node. I[f the tangential
force at a node is more than the frictional capacity then the node is
under sliding contact. The limiting frictional resistance that can be
sustained by a stationary node K is given by,

(Fr?égféﬁa]) - (St"‘“c.c°?ff"c"e”t) x (“82233n222°e ) (2.1)

Capacity / of friction g at node K .
However, if there is already slip occurring in the last load increment,

the frictional capacity is given by
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Dynamic . . . Normal Force
( Frictiona]) = (Dg?aglﬁcg?g§f1c1ent) X (} Component ). (2.2)
Capacity / d at Node K

Although the above concept was discussed in {1], it was left to the
current study to implement this into the program. Thus as a first step,
the direct path discussed in this section was chosen to check the
usefulness of this rotion. [t should be noted here that Sections 3.3.4
and 3.3.5 of [1] are made :psciete by the present approach. But,
implementation of e and > ‘n the integration process outlined in these
sections will be carried cut if the present method is found to be
unsatisfactory in later applications.

Sticking contact occurs if the frictional capacity as determined by
Eg. (2.1) or Eq. (2.2) exceeds the tangential force at node K. The
conditions of contact from the last lcad increment determines whether
Eq. (2.1) or Eq. (2.2) is used. Any free target segment that comes in
contact will have a sticking contact since the tangential force is zero
along the free surface. This is also true when a segment re-establishes
contact after a separation. However, when the friction coefficient is
very low the frictional capacity may be so low that sliding may occur at
initial contact itself.

S1iding condition is brought about when the nodal tangential force
exceeds the frictional capacity of the segment given by the appropriate
equation (2.1) or (2.2). The node is constrained to move only in the
tangential direction and the frictional resistance cpposes the relative
motion of the bodies. The dynamic frictional resistance opposing the
motion changes continuously as a function of the relative magnitude of
the tangential and normal forces acting at a given node. As a first-

order approximation, the value of the resistance at the beginning of the
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load increment is assumed to be opposite to the direction of mction. [t
is to be noted that the global nodal forces are the external forces
acting on every element to balance the forces due to the stresses.
Frictional forces are externally applied at the contactor nodes in the

direction of tangential! farce and are given by,

. 1
‘g . tangential norma
F =
(External Frictional orces), S19n{ 1oda force)K X uy X ( nodal

force
(2.3)
if and only if
i Normal Tangential (2.4)
INcdal Force Nodal Force )

The frictional force is determined at all equilibrium configurations and
applied along the target surface.

When the coefficient of friction is very small the frictional
capacity of all the segments under contact is ‘dentically zero at all
times. The contactor nodes follow the fixed target surface and since
the target surface need not be parallel to the global axes, a local
coordinate system is defined with constraint of movement along one axis.

Separation occurs when the reactive contact forces act in the
negative direction of the unit outward normal to the contact surface.
However, if the forces as evaluated at the end of an equilibrium
configuration become positive, then there is no contact force betwen the
contacting bodies, and the segment containing the node his separated.
This node is considered to be free and once again is a potential
contactor node and checked for contact overlap in subsequent load

increments.
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2.2 Modified Solution Technigue

FL The finite element equations resulting from the mixed formulation
can be written as,
<l Y [F:
1o = o = o (2.5)
PEIENNRCS (S {0
where
. Yo, Yoo To. 53X Iy, V. 3P, UL,
K].’]f=_1['_ ‘T—J'*T (_1——'14-—1—’1)'#? \1~—l]dxdy
ij q XX X s SARY Y 3y 53X yy 3y 3y
(2.6)

Thus it can be seen from Eq. (2.6), for the first iteration of the first
load increment, that [Klli = 0 because Tx = Txy T Tyy = 0, thus
resulting in an indefinite system of equations. Although Eq. (2.5) can
be solved for this condition, by first solving “or stress and then for
displacements, a more direct way has been give~ by Mirza [3]. He
suggested that premultiplying both sides of the equation by the
transpose of the global stiffness matrix, one can obtain a positive-
definite system of equations. For example, if Eg. (2.5) can be written
as

(KI{s] = [P] (2.6)
where

o) o F

(8- = x P =

K] = :
(St | s 0y,

then a positive definite system is given by
(KIT(KI s} = (K)iPY, (2.7)

and the solution of Eq. (2.7) gives the results of Eqg. (2.6).
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This technique has been extended in the present study by reforming
Eqgs. (2.5) into the type given by Eq. (2.6) whenever leading diagonal

terms are small and -hen carrying out the operations described above.

3. LITERATURE REVIEW

3.1 Overview

The earlier work 1] Conrains and discusses a number of references
on the finite elemert iralyses 2f contact problems and the present
review is intended to »e ~ithin the scope of the present study. The
major aspects of cartact prcbiems have been discussed in detail in (1]
and it would be appropriate here to concentrate on how the model can be
improved by modifications based on an Eulerian-Lagrangian formulation as
discussed in [4-6], and to examine some of the work that has been
carried out on the failure of mechanical joints in composites.

Mixed formulations of contact problems ca~ be further enhanced by
incorporating a form of kinematic description, iddressed in [4] as an
Eulerian-Lagrangian displacement modei. The ccnventional Lagrangian
description uses a fixed reference material configuration to formulate
equilibrium equations where a certain reference quantity of material is
"followed" throughout its physical behavior. Conversely, the material
can be allowed to "flow" across a fixed spatial reference and physical
measurements can be referred to the fixed frame. The total Lagrangian
description uses initial configuration as the reference whereas the
updated Lagrangian description refers to the current deformed state.
But the General Lagrangian description and Eulerian-Lagrangian
description are more flexible in that the configurations used to measure
spatial variables and to define the strain measure need not be the

same. Thus, this allows material flow across the meshes thus enabling
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large deformations in contact and fracture to be captured within an
jnitial mesh rather than employing mesh redefining techniques. The
application of this technique is illustrated in {5] for contact problems
and in [6] for dynamic fracture problems.

Calculation of ine strargth and failure mode of a composite
laminate containing a pin-lzaded hole requires the knowledge of the load
distribution inside tne surface of the hole. Frequently, a cosinre load
distribution is assumed s‘~ce such a load distribution greatly
simplifies the caiculations. The stresses inside the laminate
calculated by a cosine 12ad distribution may differ significantly from
those which actuaily arise in the structure. As a result, those failure
criteria which require an accurate knowledge of the stress distributions
near the surface of the hale, will predict failure inaccurately when
used in conjunction with cosine load distribution. Work on composite
bolted joints has been extensive with early st.iies concentrating on
empirical design and gradually progressing to inalytical methods for
stress analysis (see {7-14]) and the search for appropriate failure
criteria (see [15-20]). Empirical design methods proved too costly and
time consuming since the large number of variables in joint design
require huge data bases for each material and class of lamirates. Thus
analytical techniques have been attractive, althcugh this requires
vigilance on the part of the designer towards tne pitfalls normally

encountered.
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3.2 Eulerian-lLagrangian Description for Severe Deformation and
Fracture

This section reviews the updated Lagrangian scheme used in the
present study, and out’ines the Eulerian-Lagrangian formulation for an
easier and accurate model’ing <f contact and fracture. However, the
latter scheme is not impizmented on the computer during the present
research.

The modified functiona! ~ith the Lagrange multiplier for the

updated Lagrangian formulation is given by (see [l]),

—

- — 2 1-
= fv 2 1Cigrs 1%es 1858 * T Trygliegg v qnyglav - OF
v
1 1
1 .‘U‘i B1VI
Sl -2 G ) e (3.1
i J !
ince S =+ le 3
Since 1555 1845 = Yo * 7 Cijka 1815 1%k (3.2)
Eq. (3.1) can be expressed as
_ 1 Wy g e 1
m = fv [ri5lei5 * 1mig) * 2 lsij(3§3 tax)  Uplav - TR (3.3)
1
where U; the complementary strain energy density,
vt = Lo S.. S 3.4
o =2 Dijke 1545 13k (3.4)

By imposing stationarity on n in £q. (3.3), we obtain the following two
approximate equilibrium equations which form the basis of the mixed

finite-element model:

) S - . - L
fv rijo(lnij)dv + . lsijéui,jdv = §(F) = . \ijo(leij)dv
1 1 1 (3.5)

Iv ui,ja(lsij)dv = jv Dijkz lskid(lsij)dv =0 . (3.6) !*

{
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Approximating the displacements and stresses by

ui(xl,xz) = ugvj(xl,xz) (3.7)

]
=3

j=1

n ‘ :
£ R
k=1 1513”k(x1'x2)

and substituting £qs. (3.7) ard (3.8) into Eqs. (3.59) and (3.6), we

obtain the mixed finite element model,

1 ] .
{Kl“] [KI?I (u} {F}L iFjNL )
4 » = - N (3.9
12T (22 ('s} 0 0
where the details of the element matrices are given in [1].

A similar approach with the Eulerian-Lagrangian model would give,

=L (L ]
1= Crig * Sy gy + 1nyy)ddvg
v
- 1 aul. ~ a-u_l - ~
- S s -5 (— J J ) .10
“ R 1 13[1813 2 (axR kj * axR <1)]Jd R (3.10)
v k k
where
. gxi - -
.= —— and J = lJ..l
kj 2 j iJ
Similar manipulations as for the updated Lagrangian formulation lead to,
F -——
(ki1 lKizl [Ki3l fu? ARy
! t t " 1 = ]
' t [ Q) |

where {u} is the Lagrangian incremental displacement, (U} is the
Eulerian incremental displacement, and (S} is the incremental stress
vector. The total incremental displacement is given by

= {ub - (U (3.12)

({
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The details of the Eulerian-Lagrangian method and its application in the
present context can be found in [4] for the contact model and in [6] for
the fracture model, although References 4 and 6 consider only the

displacement formulations.

3.3 Failure analysis of Mecnarical Joints in Composites

Stress analysis, a failure criterion and a strength model are the
basic components of a joint failure analysis (or a strength analysis).
The three basic failure modes associated with bolted joints in
composites are the pearing failure, the shearout failure and the net
tensile failure (see [15-23|). It has been found that the shearout and
the net tensile failure can be adequately modelled by a plane elastic
stress analysis, with a point stress failure hypothesis and a
macroscopic failure mode) such as the maximum stress or the maximum
strain criterion.

Recently, there is a trend towards studies incorporating ply-by-ply
failure analysis of bolted joints, in order to assess the damage to
individual plies (see Reddy and Pandey (24]). This requires some form
of macroscopic criterion such as the Tsai-Hill or Hoffman's criterion to
predict failure.

An altogether different approach has been adopted towards failure
by Hyer et al. ((7],(8]), who have used the maximum radial and
circumferential stresses as indicators of the capacity of a bolted joint
in order to study the effects of pin elasticity, pin fit-interference
and friction on the capacity of a joint. They concluded that all three

factors are detrimental to the capacity of the bolted joint.
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4, APPLICATIONS

4,1 A Pin-Loaded Aluminum Plate

Three different meshes were used to model the aluminum plate, A1l
meshes took advantage cf the symmetry of the problem and modelled only
half the plate. Furtrer s‘mplification was carried out on Mesh A (Fig.
1}, where only a guarter of tre pin was modelled as was discussed in the
earlier study [li. Hcwever, 2oth Mesh B and Mesh C did not adopt this
simplification and thsy moceiled half the pin as shown. The contact
nodal Tocations of Mesh A are reiterated here for completeness. These
locations are the following (degrees): 0.0, 1.0, 2.0, 4.0, 6.0, 8.0,
10.0, 12.5, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 54.0, 63.0, 72.0,
90.0, 99.0, 108.0, 117.0, 126.0, 135.0, 144.0, 153.0, 162.0, 171.0 and
180.0. In Mesh B these locations were spaced at 9° intervals and in
Mesh C these were at 2.5° intervals for the first 90° and at 9°
intervals for the second 90° as shown in Fig. 2 and 3 respectively. The
number of elements and the nodes in the meshes are given as follows:

Mesh A: 236 elements, 286 nodes,

Mesh B: 332 elements, 391 nodes,

Mesh C: 452 elements, 540 nodes.

A1l nodes along the line of symmetry were constrained to move only in
the lengthwise direction and the center of the pin (numbered 1) in all
three meshes was constrained in both directions. The load applied was
distributed along the shorter edge away from the pin, in the lengthwise
direction. A dynamic coefficient of friction ug = 0.25 and a static
coefficient of friction ug = 0.35 were used in the analysis with these

numerical values having been estimated from the hybrid technique.
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The load was applied in 14 steps following closely the experimenta)
loading values. [n the load increasing phase the values of load were
20, 23, 520, 1240, 1460, 1670 and 1980 1bs. respectively with the
decreasing phase values being 1800, 1600, 1210, 1070, 535, 210 and 40
respectively giving 14 ‘cad st2ps. The number of iterations required
for each load increment were 8, 8, 3, 3, 3, 1, 2, 2, 2, 3, 2, 3, 3, and
3 for the case illustrated in rig. 6, where Mesh A was used and results
are plotted for load step 4, ~here the total load is at a value of 1240
1bs.

The case shown in Fig. 5 ~as analyzed with the modified
computational procedure discussed in Section 2. The results show a
closer agreement with the experimental results of Joh (2]}, than the
results shown in Fig. 4, which were obtained using the original
procedure of [1]. It is interesting to note that a constant value of
friction coefficient of 0.15 gives a closer agr2ement in Fig. 4 than the
constant friction coefficient of 0.30, these values being chosen
arbitrarily. It is possible here to be misled easily to conclude that a
better choice of value of friction coefficient might be 0.15 than 0.30
unless the full picture is revealed by Fig. 5, which indicates that
better results are given by a dynamic/static friction model. Indeed it
is possible to conclude here that yet better modelling can be achieved
by a continuous friction coefficient variation such as that given by a
power law although the implementation of this may be more cumbersome.

[t can also be seen that the angle of contact is more realistic in Fig.
5 (after the modification) than in Fig. 4 (before the modification).
The load decreasing phase results shown in Fig. 6 compare favorably

with the experimental results, despite some 66% difference in the values
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k of Tro from 40° to 75°. This can be considered fair compared to the

results given by the method before modification, which gave identical

results to the load increasing phase without any negative values

for Ty

4.2 A Pin-Loaded drtrotrcpic rlate

An analytical soluticn (0 the problem of pin-loaded composite
laminate has been :zbtai~ed ny dyer et al. ([7},(8]) based on a complex
Fourier series metncd ird 3 collocation technique which enfgrced
boundary conditions at 2iscrete locations around the hole boundary.
Results were obtained by this aralytical method for infinite orthotropic
plates loaded by pins. These results were chosen to be compared with
the finite element results since both methods capture the idealized
conditions of the model! to the same degree.

The mesh shown in Fig., 7 was selected to ‘dealize the infinite
plate and the pin, with 426 elements and 509 r:ces. The nodes along the
line of symmetry were constrained to move only in the lengthwise
direction in the same way as the nodes along the longer boundary whereas
the nodes along both shorter boundaries were constrained to move along
the y-direction. Normalized circumferential, radial and shear stresses
along the hole boundary were plotted against the radial angle and found

to compare well with the analytical results (Figs. 8 and 9).

4.3 Application of the Hybrid Technique to Estimate Static, and
Dynamic Coefficients of Friction !#

This technique basically consists of applying the loading,

prescribing the displacements from moire analysis to the hole boundary

and prescribing other boundary conditions as before. Thus only the

1®

plate is discretized for this analysis, without the pin, and the mesh
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used is shown in Fig. 10. The stresses along the boundary are obtained
from the analysis and are shown in Figs. 1l and 12 plotted against the
radial angle. Thus the shear stress Tre and the radial stress I show
remarkable resemblence to the stresses given by Joh [2] at a load level
of 1840 1bs.

In order to assess the friction coefficient values, to be used for

the regular finite element analysis, < /.. ratio was plotted against

ra
the radial angie for 7i7ad increasing and decreasing phases and the
result is given in Fig. 13. In the load increasing phase nearly all
contact is associated ~ith slip and the maximum ratio of rre/orr cannot
exceed the dynamic fricticn ccefficient and thus Mg = 0.25 is a rational
choice. The negative ratio is maximum between 55° and 60°, where the
transition from slip to stick occurs and thus ug = 0.35 is chosen to be

the static friction coefficient.

4.4 Analysis of Failure in Mechanical Joints

A composite laminate (0°/+45°/90°)¢ with 'aminae of the following

properties has been used for these studies:

E; = 19.1 x 103 ksi Xp = 229.4 ksi T = 17.3 ksi
E, = 2.0 x 103 ksi Y; = 10.1 ksi
Gyp = 0.9 x 103 ksi X. = 252.1 ksi
vy, = 0.3 Y. = 32.0 ksi

[t has been established that certain configurations favor certain modes
of failure (18]. This fact has been used in determining the plate
configurations for studying bearing failure (Mesh F, Fig. 14), shearout
failure (Mesh G, Fig. 15) and tensile failure (Mesh H, Fig. 16).

The analysis has been carried out and normalized radial and

circumferential strain curves have been produced for each failure
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mode. Failure is indicated by the increased strains given by a
nonlinear model incorporating Tsai-Hill criterion as compared to a
Tinear elastic model. Results are shown in Figure 17 for bearing
failure, Fig. 18 for snearcut failure and Fig. 19 for tensile failure.

The Tsai-Hill criter‘on used ‘n this study is,

a a .
1,2 2,2 3,2 - 1 l 1 1 1
R L s T R T
X Y 7 (2 Y2 ZZ 172 YZ ZZ XZ 273
L, Ly, cae, 52, 62,
= (Z + XZ - ‘(2)3143 + (R ) + (S ) + (T—') > 1

where X, Y are either compressive (XC, Yc) or tensile (Xp, YT) strengths

and T is the shear strength in the xy plane.

5. SUMMARY AND CONCLUSIONS

The mixed finite element model developed in [l] has been modified
by incorporating a realistic interface friction conditions and a
solution procedure. A dynamic as well as a staitic friction coefficient
were used to analyze a pin-loaded plate problem for which experimental
results are available. The new solution algorithm not only provides
flexibility in numbering the nodes but also avoids the halt of
computation due to the appearance of small terms on the leading
diagonal, during the analysis. An accurate contact stress analysis is
essential in some applications such as the study of failure in bolted
joints of laminated composites and some example problems have been
studied in this area.

[t is possible to extend the capabilities of the present model even
further by adopting an Eulerian-Lagrangian formulation. This will
simplify the analysis of problems, such as cracks emanating from bolted

joints by several orders of magnitude.
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Radial and Shear Stresses (ksi)

--<- FZ4 (.=constant, 0.15)
... F2M (.=constant, 0.30) (pre3§:; ;Fs“‘tS)
"0 g - T S T
0 10 20 ao .0 50 80 70 80 %0

Radial Angle (in Caqrees)

Figure 4. Comparison of the experimental ind finite element
results for load-increasing phase at load level 1240 1lbs.
(the FEM scheme used is that originally developed in [1]).
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Shear and Radial stresses (ksi)

--- FEM (Mesh B)
. FE" (Mesh C)

/ = . L, =
: - 0.25; 44 0.35)
~-40 . T T T T
] 10 20 Y 40 80 a0 70 80 20
Radial Angle (in degrees)
Figure 5. Comparison of the experinental and finite element

results (the FEM scheme used is the modified
version of the scheme developed in [1]; Load
increasing phase at load level 1240 1bs.).
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Shear and Radial stresses (ksi)

107 e T

e v
-----

-10 1

Experimental [2]
««. FEM (tesh C)

-40 T ¥ — T T T
o 10 20 36 40 80 80 70 80 90

Radial Angle (in degrees)

Figure 6. Comparison of the experimental aind finite element
results (the FEM scheme is the modified version)
for the load decreasing pnase at load level 1210 lbs.
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£ a -

Normalized stresses

-0.

]
-
.

— Analytical Hyer et al, (7,8]
=== TtM (normalized circumferential stress)
. 7iM {normalized radial stress) e

“tesh O is used. h

.
aaaaa

Figure 8.

v T y T Y

10 20 30 40 80 (1] 70 a0 90 100

Radial Angle (in degrees)

Comparison of the analytical and finite element
results for the pin-loaded orthotropic plate.

The stress is normalized with respect to the average
bearing stress (81.9 ksi).
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Normalized shear stress

— Analytical solution Hyer, et al. [7,8]

-0.1
| FEM (Mesh D)
-0.21
|
|
-O.SL
-0.41 LA A T v T ™ T M M T
0 10 20 30 40 (1] 0 70 { -] 90

Radial Angle (in degrees)

Figure 9. Comparison of the analytical and finite element solutions
for the pin-loaded orthotropic plate (stress is normalized
with respect to the average bearing stress, 81.9 ksi.).
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Shear stress (ksi)

14
131
121
11
10 1

-=-- dyarid (Mesh E)

-
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Zxcerimental [2]

\ S G0 an SRS o ¢
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Figure 11,

T
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30 48

——

Radial Angle (in degrees)

Comparison of the shear stress distributions
obtained in the experiment and hybrid analysis

of the pin-loaded aluminum plate (load increasing
phase at load level 1840 1bs).
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Radial stress (ksi)

)
—- Ixcerimental 2]
- 10 1 . .
---- -yDrig Mesh E)
-20 1
-30 1
-401 e
B TR o e s e o A A A A SR B —
0 18 30 48 a0 78 90

Radial Angle .in deqrees)

Figure 12. Comparison of the radial stress distributions
obtained in the experiment and hybrid analysis
of the pin-loaded aluminum plate (load=1840 1bs).
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Load increasing phase (1040 1bs)

Load decreasing phase (1070 1bs)

Shear-to-radial stress ratio
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Figure 13, Variation of the ratio of shear stress-to-radial
stress for load increasing and load decreasing
phases of the pin-ioaded aluminum plate (results
obtained using the hybrid technique).
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Figure 17. Radial and cicumferential st-ains in an orthotropic
plate (the linear and nonlirear models show separation
indicating bearing failure from 3=0° to 3=35°).
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Normalized strains
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Figqure 18. Radial and circumferential strains in an orthotropic

slate ( bearing failure: :=0° to 35°; shearout failure:

:= 60° to 30°).
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GENERAL SUMMARY AND CONCLUSIONS

The initial experiments on the aluminum plate provided essential
information for the development and refinement of the general numerical
analysis of plane elastic contact problems. Specifica11y, the
experiments provided ccefficizants of friction and stress distributions
for comparative ourposes. Uisolacement data were also combined with the
finite element method to produce a hybrid solution for the pin-loaded
aluminum plate. From these interactions of experimental and numerical
studies a general algoritnhm for plane elastic contact problems has
emerged. This now includes the provision for both static and dynamic
coefficients of friction. The path has also been paved for the analysis
of problems involving severe deformation and fracture in anisotropic
materials.

Two new experiments have been performed on the aluminum plate and a
graphite-epoxy composite. The second aluminun specimen was tested to
provide a closer approximation to the two-dimensional stress state
required in the analysis. A further innovation, which allowed claser
study of the stresses at the contact boundary, was the use of a zero-
thickness gratings. In conjunction with a localized hybrid analysis,
comprehensive stress distributions have been obtained for the loading
and unloading parts of the load cycle. Certain analytically predicted
behavior has been confirmed and some surprisingly large stress gradients
have been discovered.

[deally, a comparison of the new experimertal results and those
predicted from the refined algorithm should be made. Time and resource
limitations prevent a comprehensive comparison. However, the radial and

shear stresses obtained using Mesh B in Fig. 5 for a load of 1240 1b
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(with u, = 0.25 and ny = 0.35) have been compared with those from the
second experiment on the aluminum plate in Fig. A. It may be seen that
the radial stresses are in close agreement near the point of first
contact. The agreement is less good near the end of the contact zone.
The shear stresses appear to be overestimated in the numerical amalysis.
This may be a direct result of assuming values of i and “4 which w~ere
larger than those operating in the second experiment. The lack of
agreement in the peak shear stresses and the departure of the radial
stresses away from the point of first contact is consistent with and a
consequence of the overestimate of the shear stresses in the numerical
analysis.

The experiment on the guasi-isotropic composite plate highlighted
important differences between it and the isotropic aluminum. Most
surprising was the difference in the shear stress distribution at the
surface of contact. Analytical studies do not predict such differences
but other experimental studies of lesser sensitivity than moire
interferometry indicate similar inconsistencies.

The study of the composite plate included a failure analysis which
used the experimentally determined displacement and stress distributions
to identify and locate the failure modes. This experiment provides
potentially ideal data for validation and assescment of the new

Eulerian-Lagrangian algorithm presented in this report.
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APPENDIX A

Fringe patterns for the aluminum specimen
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U-field, load increasing phase, P = 25 1b
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2)

V-field, load increasing phase, P = 25 1b
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3)

U-field, load increasing phase, P = 250 1b
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= 250 1b

V-field, load increasing phase, P
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3)

U-field, load increasing phase, P = 500 1b
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,» load increasing phase, P = 750 1b

U-field
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8) V-field, load increasing phase, P = 750 1b
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10) Vv-field, load increasing phase, P =
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11) U-field, load increasing phase, P
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12) Vv-field, load increasing phase, P = 1250 1b




13) U-field, load decreasing phase, P = 1000 1b !
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14) v-field, load decreasing phase, P = 1000 1b
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15) U-field, load decreasing phase, P = 750 1b
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16) V-field, load decreasing phase, P = 750 1b
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17) U-field, load decreasing phase, P = 500 1b

|9

170 ®







-field, load decreasing phase, P = 250 1b
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20) V-field, load decreasing phase, P = 250 1b
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21) U-field, load decreasing phase, P = 25 1b
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V-field, load decreasing phase, P = 25 1b
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APPENDIX B

Fringe patterns for the graphite-epoxy plate
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1) U-field, load increasing prase, P = 20 1b
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3) U-field, load increasing phase, P = 100 1b
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V-field, load increasing phase, P = 100 1b
180

4)




P = 200 1b

5) U-field, load increasing phase,

e

.







— %////ﬁfﬂ .<







/éﬁw ..




10) V-field, load increasing phase, P = 400 1b
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12) v-field, load increasing phase, P = 500 1b
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14) v-field, load increasing phase. P = 700 b
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16) v-field, load increasi~a phase, P = 900 1b
e
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17} U-field, 'cad inceeas’ng prase, @ = 1200 b
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19) U-field, load increasing phase, » = 1500 1b
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20) V-field, load increasing phase, P = 1500 1b
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22) V-field, load decreasing phase, P = 700 1b




23) U-field, load decreasing phase, P = 20 1b
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