\gTie FILE COR @
| “TPROVER FOR PUSL -

DISTRIBUTIOH UL

HE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLS| PUBLICATIONS

| DTIC
VLS! Memo No. 88-468 ELECTE
August 1988 NOV 2 3 1988

%D

MESSAGE-DRIVEN PROCESSOR ARCHITECTURE = -

AD-A200 777

William Dally, Andrew Chien, Stuart Fiske, Waldemar Horwat, John Keen, Peter Nuth,
Jerry Larivee, and Brian Totty

| Abstract
Qe
The Message Driven Processor is a node of a large-scale multiprocessor being
developed by the Concurrent VLSI Architecture Group. It is intended to support fine-
grained, message passing, parallel computation. It contains several novel architectural
features, such as a low-latency network interface, extensive type-checking hardware,
and on-chip memory that can be used as an associative lookup table.

This document is a programmer’s guide to the MDP. It describes the processor’s
register architecture, instruction set, and the data types supported by the processor. It
also details the MDP’s message sending and exception handling facilities.

yar
"‘
A
w
ey

88 1122

T ephone

N crasyete s Massazhusert: Cambr:dae 3
h ceart ; (€ 7) 253-8138

Research Centzr Institute Massachuseits
Roor 38.321 of Technoiogy 0213¢

. 2N

S

71.234SM
aaiivnd

Accesion For
——

NTIS CRA&I
DTIC TAB

DDGTK

J\,Stll‘iCJt:\)'Q terrevmmdiie. i iveitasecenaw

By .
Distiibution)

Avanctloy Coaes

JUSE R ——
L AVA aor

Dist \l'-\" sl

<

Acknowledgements ﬂ ’[

This work was supported in part by the Defense Advance Research Projects Agency
under contracts NOOO14-80-C-0622, NOOO14-87-K-0825 and N00014-85-K-0124, the
National Science Foundation Presidential Young Investigators Award, General Electric
Corporation and IBM Corporation.

Author Information

Dally, Chien, Fiske, Horwat, Keen, Nuth, and Larivee: Department of Electrical
Engineering and Computer Science, Artificial intelligence Laboratory, MIT, Cambridge,
MA 02139. Dally: Room NE43-417, (617) 253-6043; Chien: NE43-411, (617) 253-8572,
Fiske, Horwat and Keen: Room NE43-416, (617) 253-8473; Nuth and Larivee: NE43-
415, (617) 253-6048; Totty: Department of Electrical and Computer Engineering,
University of lllinois, Urbana/Champaign, 1406 West Green Street, Urbana, IL 61801,
(217) 333-2300.

Copyright® 1988 MIT. Memos in this series are for use inside MIT and are not
considered to be published merely by virtue of appearing in this series. This copy is for
private circulation only and may not be further copied or distributed, except for
government purposes, if the paper acknowiedges U. S. Government sponsorship.
References to this work should be either to the published version, if any, or in the form
“private communication.” For information about the ideas expressed herein, contact the
author directly. For information about this series, contact Microsystems Research
Center, Room 39-321, MIT, Cambridge, MA 02139; (617) 253-8138.

VA

MIT Concurrent VLSI Architecture Memo 14

Massachusetts Institute of Technology
Artificial Intelligence Laboratory

A.l. Memo No. 1069 August 18,1988

Message-Driven Processor Architecture:
Version 11

William Dally, Andrew Chien, Stuart Fiske, Waldemar Horwat, John Keen,
Peter Nuth, Jerry Larivee, and Brian Totty?2

Abstract

The Message Driven Processor is a node of a large-scale muitiprocessor being
developed by the Concurrent VLSI Architecture Group. It is intended to support
fine-grained, message passing, parallel computation. It contains several novel
architectural features, such as a low-latency network interface, extensive type-
checking hardware, and on-chip memory that can be used as an associative
lookup table.

This document is a programmer's guide to the MDP. It describes the
processor's register architecture, instruction set, and the data types supported
by the processor. It also details the MDP's message sending and exception
handling facilities.

Keywords: Processor Architecture, VLS|, Parallel Processing, Message Driven
Processor, Fine Grain, Networks, Cache, Concurrent Smalitalk

1This report describes research done at the Artificial intelligence Laboratory of the Massachusetts Institute
of Technology. The research described in this paper was supported in part by the Defense Advance
Research Projects Agency of the Department of Defense under contracts N0O0014-80-C-0622 and NOOO14-
85-K-0124 and in part by a National Science Foundation Presidential Young Investigator Award with
matching funds from General Electric Corporation and IBM Corporation.

2Thanks also to Linda Chao, Soha Hassoun, Paul Song, and Scott Wills.

Message-Driven Processor Architecture Version 11

f
Table of Contents
h Introduction..........c.ccoeenane. 3
Changes since Version 10.................... 4
Processor State...............ccveveenvueenencsareens 6
Register Descriptions..... 8
Data Types.........cccoeveeeeverereceeennas 14
MEMONYcueetinencnrrnscsnnsssetsnssssssssesenseseses .16
Priority-Switchable Memory 16
Network Interface............ccoceeeerureecneraeerurnes - - 18
MBOSSAGO QUBUBS............ccocuiinireesnsnnssnssssaanssssnsssssssssssssesassassssssssssssasssnsssssssnsassass 18
ROCEPUON........covcrnierinnnainsansssesiorensssssasssosssssnssssssssssssessssssssssssssssssssssases 19
SUSPEND.......cccvvcvrravnnnes 19
Message TranSMISSION............ccovervsensserssssssasasasnssasses 20
EXCOPHONS........ccccccemeerecreecrncnrerenereneaene . .21
RESOt ...t reerraseneneeensasassasasstatsssasarenanentasestenantsnass 21
FaUlt PrOCOSSINGcooovvireeecniereeneeessessstaneassssessassssas ssesssssssssssssssssssssssssssssssassosses 21
SYSIBM CAallS........coicieicrcceeceseesesessssstessntsessssssssansnsssnssssssanssssessssssasssassnssssesssns 21
INBITUPLS........c.ooceeinirinneineitssseeessensesssosssesasasassssnssessossmssassassnsstsssasssssasssssssssnrsseassessss 21
INStPUCION ENCOTING......ccoviiricitiranitinistisisinesesisssisnsssssesssssssssssissesessssssssssssssessssenss 23
INSLUCLION SOt SUMMANYcovieeeercetreerenrestnesnesesnssassssnsassesssesssssssnsssasncssassessassasssasses 27
INSTIIUCHON SBL.........cocoiviiecieirreierrncre e esee s e stsssessesesassenssssasassassasssneseansssnrsssasssssossassesses 28

. -

1e

Message-Driven Processor Architectur Version 11

Introduction

The Message-Driven Processor is a processing noda for the J-Machine, a
message-passing concurrent computer. The MDP is a standalone processor
designed to provide support for fine-grained concurrent computation. Towards
this goal the processor includes hardware for message queueing, low-latency
message dispatching, and message sending. The same chip also contains a
network interface and a router to allow the routing of messages throughout the
network without any processor intervention.

The size of the MDP's register set is limited to minimize context-switching time.
The memory is on the chip to improve performance and reduce the chip's pin
count and the chip count of the concurrent computer. Having memory on-chip
allows more flexibility in the use of memory than in designs with off-chip
memory. For example, a portion of memory is designated as a two-way set-
associative cache to be used by the XLATE instruction. Memory bandwidth is
improved by providing row buffers that reduce the number of memory accesses
required to fetch instructions and to enqueue messages, two operations which
require frequent use of memory.

The MDP is also designed to efficiently support object-oriented programming.
Every MDP word consists of 32 data bits and a 4 bit tag that classifies the word
as an integer, boolean, address, instruction, pointer, or other data. In the MDP
objects are described using a base address and a length, and all memory
accesses are bounds checked. Memory addressing is normally done relative to
the beginning or the head of an object. Absoiute addressing is only done by the
operating system. Having tags and no absolute references permits the use of
garbage collection and transparent migration of objects to other MDP nodes on
the network.

The MDP is almost completely message-driven. It is controlled by the
messages arriving from the network that are automatically queued and
processed. There are two priority levels to allow urgent messages to interrupt
normal processing. There is also limited support for a background mode of
execution when no messages are waiting in the queues.

This Architecture document is the assembly language programmer's manual for
the MDP. It describes all of the MDP's features that are relevant to developing
software for the processor. It does not describe the hardware of the chip in
detail, nor does it explain the operating system used on the J-Machine.

Message-Driven Processor Architecture Version 11

Changes since Version 10

The following changes have been made to the architecture since Version 10:

More registers to support fault handiing. Previously, we saved only the instruction
register when a fault occurred. Now, we save: the instruction register (in FIR), the
instruction pointer (in FiP) and the Op0 (in FOP0) andom (in FOP1) operands.

Inclusion of a set of registers for background mode. These include: 4 data registers, 4
address registers, an IP, and an FIP. There is no separate Q bit in the status register for
background mode. There are separate U and F bits since they are part of the IP.

The NNR (node number register) now has 3 fieids instead of 2. This reflects the change
in machine topology from 2D to 3D. Also, the NNR is no longer set 10 zero on a reset; it is
left 1o software to initialize.

Dont-care bits instead of 0's in unused positions in registers. For example, bits 0 to 7 of
the IP register should now be considered 1o be dont-cares. No guarantees are made
about their value.

The WRITE instruction no longer supports the A addressing mode for Dst (0p0).

The RES (resume), MAX, and MIN instructions are no longer supported.

The PUSH and POP instructions are no longer supported. Hence, stacks are no longer
supported. LDIP and LDIPR are now available to accomplish reloading of the IP register
when returning from a fault handler.

The PURGE instruction is no longer supported. Instead, a NIL data value should be
ENTERed for any key that you want to delete from the table.

The PROBE instruction's operand format has been changed 1o resemble that of XLATE.
That is, op0 specifies the Dst for the lookup, while op1 specifies the key for the search.
The PROBE instruction now retumns the data value associated with a key , rather than
merely TRUE when a successtul inquiry is made about a key's presence in the XLATE
cache. If a key is not found in the cache, NIL is returned. The main difference between
XLATE and PROBE is that XLATE faults if a key is not found or if a data value of NIL is
associated with the key, whereas PROBE simply retums NIL. Note that PROBE now
retums NIL rather than FALSE (as was the case for version 10) ¥ the key is not found.

Thle FFB (Find First Bit) instruction has been added. It is used 1o normalize floating point
values.

The branch instructions no longer support the A addressing mode for Src (op0). Src
should be an integer, but the A registers cannot contain INT-tagged values.

All 2-operand instructions that use the normal addressing mode for op0 have a 2 bit
extension to the imm field in op0. Note that this applies to all 2-operand instructions,
irraspactive of which of op2 or op1 is unused. The 2 bit extension to imm comes trom
whichever of the fields op2 or op1 is unused. These 2 bits are the high order bits of the
extended imm value. Also note that there are 2 types of imm that can be extended.
We may use op0 10 specify simply an immediate value, in which case this value is now 7
bits instead of 5. We may also use op0 10 specity an offset into an object, in which case
the offset is now a 6 bit immediate instead of 4.

A similar extension to the op0 imm fiekd is provided for 1-operand instructions that use
the normal addressing mode. In such cases, the op2 field is always used for the 2 bit
extension.

A NOP instruction has been added. (opcode = 0)

The ACCESS and RANGE faults have been eliminated, and the ILGADRMD fault has
been merged into ILGINST.

The size of Priority Switchable Memory has been increased from 16 words to 64 words.
The fault vector tabie and call vector table have been separated, and two fault vector
tables are now supported, one for each priority level. Also, with the removail of the
RANGE fault, the call vector table is now of software definable length.

An External interrupt has been added. The interrupt is handled as a fault.
CATASTROPHE faults are now signaled if any fault occurs when the F bit is set. Also, the
F bit now disables queue overflow and external interrupts when set.

4

Message-Driven Processor Architecture Version 11

The | or the F bit disabies queue overfiow interrupts and external interrupts.

A Memory Address Register, MAR, has been added for debugging purposes.
m.nmmmmmmmnmnmmmumwmamm
The SEND instructions set the ! bit, and the SENDE instructions clear the | bit. Also, all
ssuommuumommnmmmnmmmm
mmmmmmmhmmwmmwlpwam
The RTAG insiruction now faults on CFUT's.

Message-Driven Processor Architecture Version 11

Processor State

F PtioﬂtyLeveHh ult
_ ‘ t
, pr]

10 8
3532 31 0 ult P Ip
tag RO ’ r .
tag R1
19 R2 20 0. 8
f
= = -G :
T P
" 4
]
b o 2
31 29 10 9 0 3532 31 0
rli| base AO length tag FOPO
rli| base Al length tag FOP1 :l
rli base A2 length L
rli] base A3 length 3029 10 9)
o —— r base QBM | mask

3532 3% 0
. 100 29 10 9 0
- D1 base TBM mask
tag iD2 -~
tag ID * I 0. s 0
= Mt MAR NNR

bt o
Mavxa .

Massage-Driven Processor Architecture Version 11

The processor state of the MDP is kept in a set of registers. There are two
independent copies of most registers. One for each of the two priorities of the
MDP, allowing easy priority switches while keeping the integrity of the registers.
There is also a smaller, separate set of registers for background mode. There
are no ID registers, no trap registers (FIR, FOPO, FOP1) except for an FIP
register, and no queue registers (QBM, QHL) in the set of registers used in
background mode. The registers are symbolically represented as foliows:

+R0-R3 general-purpose dala registers
« A0O-A3 address registers
«1D0-ID3 1D registers

*SR status register
*|P instruction pointer register
*FIR faulted instruction register

*FiIP faulted instruction pointer register
* FOPO faulted OPO register

* FOP1 faulted OP1 register

« QBM queue base/Emit register

* QHL queue headAail register

- TBM transiation base/mask register
*NNR node number register

* MAR memory address register

e

Message-Driven Processor Architecture Version 11

Register Descriptions

3 33
5 21

RO-R3
a9 | data

Four 36-bit general-purpose data registers, RO-R3, are capable of storing any
word and tag. They are used for all data manipulation operations; as such, they
are the most accessible registers in the programming model.

3 3332 1

5 2109 09 0
AO-A3

011 base | engmh

The address registers, A0-A3, are used for memory references, both data and
instruction fetch. Each address register consists of a pair of intagers and two
bits. The integers represent the base and the /ength of an object in memory.
The base points to the first memory location occupied by the object, while the
length specifies the length of the object. The length field is used to support limit
checking to insure that a reference lies within the bounds of the address
register. A zarg length specifies that no limit checking should be performed on
accesses through the register, effectively making the object infinitely long.

Setting the invalid bit causes all memory references using the address register
to fault INVADR. This fault is ditferent from the one caused by referencing data
of an object past its length limit.

The relocatable bit indicates that the address refers to an object that may be
moved. This bit allows a post-heap-compaction invalidation of only the
relocatable addresses, leaving the locked-down physical addresses intact.

Address register 0 is used as the base register for instruction fetching; thus, it
should point to the method cumrently executing. If, however, the A0 absolute bit
in the IP is set, all reads, instruction fetches, and writes through register A0
ignore the value of register AQ and instead access absolute memory with an
implicit base of 0 and unlimited length. This mode only affects memory
accesses through register AQ; the value of A0 can still be read and. written
normally.

Address register 3 is used as the pointer to the current message. When a
message is dispatched the base and length of the message are written into A3.
If the message has been copied into the heap, then A3 points into the heap;
otherwise it points into the queue.

Address registers are read and written as ADDR-tagged values.

Message-Driven Processor Architecture Version 11

The following algorithm describes in detail the handling of a memory access
through an address register:

To access offset D from address register An:
¥ na0 and the A bit of IP is set (AO absoiute mode is active), access memoty iocation D.

Eise
z&.mumum(mmm).mlmvm
lé hb:gth(An)-o and Dlength(An), fault LIMIT
¥ the Q flag of SR is set and ne3
¥ D2length(QHL), fauk EARLY
Else access memory location base(QBM) v ((base{A3)+ D) A mask(QBM))
Else access memory location base{An)+D
3 33
——l.
1D0-ID3 1
J iD dsta

The four ID registers, 1D0-1D3, exist to hold the IDs of relocatable objects in
memory. In normal practice 1D register n should hold the ID of the object
pointed to by address register n. The ID is usually stored there by the XLATE
instruction. When a fault occurs, the address register may be invalidated. Later,
after the fault handier returns, an access through the address register causes an
INVADR fault. The fault handler can then use the ID in ID register n to
determine the new location of the object and the new value to be stored in the

@ address register. The ID registers are shadowed by the address registers; this
means that when XLATE'ing into an address register the corresponding 1D
register is written with the key that was XLATE'd.

332 1

109 0987 0

P

L100lu|1| offset blaf x ..

The instruction pointer register, IP, contains the offset within the object pointed
to by AO (or the absolute offset from the base of memory it A0 absolute mode is
active) to the instruction following the instruction currently executing. Bit 9, the
phase bit, specifies whether the low or the high instruction in the word pointed
to by IP will be executed (high=0, low=1). That is, offset and phase together
point to the next instruction to be executed. The A0 absolute bit, bit 8, when set,
causes all memory references (read and write, data and instruction fetches)
through register A0 to ignore the vaiue of A0. This effectively aliows absoiute
addressing of memory with an implicit base of 0 and an unbounded length. The
value of A0 may still be read and written normally. Bit 31, the unchecked mode
bit, is a copy of the unchecked mode flag in the status register. Changing it by
changing the IP register changes it in the status register also and vice versa.
Likewise, bit 30, the fault bit, is a copy of the fault flag in the status register.

. J

Message-Driven Processor Architecture Version 11
333 11
543 76 0
t 0 FIR
or
1Ix x instruction

The fauited instruction register, FIR, contains the instruction that caused a fauit
while the fault handler is executing or NIL if the fault was not related to the
execution of a specific instruction (i.e. an instruction fetch faulted, a bad
message header arrived, a queue overfiowed, etc.). It reads as either an INST-
tagged value or NiL. Note that when FIR is non-NIL, the instruction is always
given in the low 17 bits of FIR, even if it was fetched from the high 17 bits of a
word in the execution stream.

B W""T"".’f.‘]

3 3332 1
5 2109 0987 0
FIP
100 uhl offset Ha X .. x
‘% The faulted instruction pointer, FIP, is loaded with the current IP when a fauit
occurs. Since the IP is pre-incremented, the FIP contains the IP to the
instruction immediately following the faulting instruction.
3 33
5 21 0
FOPO
tag I data
‘ FOP1
tag I data

The faulted operand registers, FOPO and FOP1, are loaded with the values of
the Op0 and Op1 operands whenever an instruction-specific fauit occurs. If a
fault occurs that was not caused by a specific instruction, then the value written
into these registers is indeterminate. If a faulting instruction has no Op0 or Op1
operand, then the value of FOPO and/or FOP1 is indeterminate.

3 3332 1

5 2109 09 0
QBM

L011xd base J mask
QHL '

L011xx head I length

The queue base/mask register, QBM, contains the base and mask of the input

message queue. The base is the first memory location used by the queus. The

mask must be of the form 2n-1, with n22. The size allocated to the queue is

equal to the mask plus 1. There is one more restriction: baseamask=0 must
10

— e o e

Message-Driven Processor Architecture Version 11

hold. This effectively means that the base must be a multiple of the size of the
queue, and this size must be a power of 2. These conditions allow queue
access and wraparound to work by simply ANDing the offset within the queue
with the mask and then ORing with the base. The disable bit, bit 30, should
normally be zero. Setting it disables message reception at the priority level of
the QBM register, which may cause messages to be backed up in the network.
This should be done only under very special circumstances, such as when the
queues are being moved. The QBM register is read and written as an ADDR-
tagged value.

The queue head/length register, QHL, contains two fields, head and Jength that
describe the current dynamic state of the queue. Head is an absolute pointer
(i.e. relative to the beginning of memory, not the beginning of the queus) to the
first word that contains valid data in the queue, while length contains the
number of valid data words in the queue. The length is zero when the queue is
empty, and 1 greater than the mask when the queue is full. QHL is read and
written as an ADDR-tagged value.

3 3332 1

5 2109 09 0

TBM
011)xx base I mask

The translation base/mask register, TBM, is used to specify the location of the
two-way set-associative lookup table used by the XLATE and ENTER
instructions. The format of the TBM register is similar to that of the QBM register.
Again, base is the first memory focation used by the table. The mask must be of
the form 27-1, with n22. The number of words occupied by the table is equal to

the mask plus 1. As in QBM, baseamask=0 must hold. TBM is read and written
as an ADDR-tagged value.

SR
OJUJFJ I!BIP

The status register is a collection of flags that may be accessed individually
using READR, WRITER, or the alias MOVE. The status register cannot be
accessed as a unit. It contains these flags:

P current priority level (set: level 1, clear: level 0)

*B background execution status (set: background, clear: normal (message))
.l interrupt mask (set: no interrupts allowed, clear: interrupts allowed)

*F fault (set: fault mode, clear: normal mode)

U unchecked mode (set: unchecked; clear.checked)

*Q A3 queue wrap flag (set: A3 wraps around queue, clear: A3 normal)

The priority and background flags specify the current priority leve! of execution.
The highest level is priority 1, with the settings P=1, B=0. Below that is priority O,
with P=0, B=0. The lowest priority level is background, with B=1. When B=1,

. 11

Message-Driven Processor Architecture Version 11

the P flag is ignored and the background register set is selected. An attempt to
access a register that is not in the background set of registers produces
undefined resuits.

The interrupt mask flag, in conjunction with the fault flag, determines whether
the current process may be interrupted. Setting this flag disables all interrupts.
Clearing this flag allows interrupts. There are three types of interrupts that may
occur: priority switches, queue overflow interrupts, and external interrupts.
Setting the interrupt mask flag disables all interrupts, clearing this flag allows
priority witch interrupts and, if the fault bit is not set, alsc allows queue overflow
and external interrupts. Allowing priority switches means that background
processes may be interrupted by incoming messages at priority level 0 or 1 and
level O processes may be interrupted by incoming messages at priority level 1.
Queue overflow interrupts occur when the message queue for the current
priority is full. External interrupts are explained in detall later.

The fault flag, determines whether the occurrence of a fault would be lethal to
the system and whether the process may be interrupted by a queue overflow or
external interrupt. If a fault occurs while this flag is set, the processor faults
CATASTROPHE, which should point to a special fault routine whose purpose is
to clean up, if possible, and gracefully shut down the processor or the system.
Queue overflow and external interrupts are disabled when this flag is set. This
flag is loaded (with the new IP) when a fault occurs and cleared when the fau't
handler returns to the faulted program; it may, however, be altered by software
as well. There is a copy of this flag in the IP register. Changing this flag
changes it in the IP register and vice versa. There are three copies of the fault
flag, one for each priority level and one for background mode. However, the
background mode copy should never be needed in practice. No faults should
occur in background mode. The flag exist simply because it is part of the IP
format as well as being in the status register.

The unchacked mode flag determines whether TYPE, CFUT, FUT, TAGS, TAGS,
TAGA, TAGB, and OVERFLOW faults are taken; when this flag is set, these
faults are ignored, which allows more freedom in manipulation of data but
provides less type checking. There is also a copy of this flag in the IP register.
Changing this flag changes it in the IP register and vice versa. As with the F
flag, there are three copies of the U flag, one for each priority level and one for
background mode.

The A3-Queue bit, when set, causes A3 to "wrap around” the appropriate
priority queue. This is included to allow A3 to act transparently as a pointer to a
message, whether it is still in the queue, or copied into the heap. If the message
is still in the queue, then setting the Q bit allows references through A3 to read
the message sequentially, even if it wraps around the queue. If the message is
copied into an object, then leaving the Q bit clear allows normal access of the
message in the object. The Q bit is set on message dispatch, but it is left to the
software to clear the Q bit when a message is copied into the heap. Either way,
the access of the message pointed to by A3 looks like any other reference
through an address register. Bounds checking is still performed using the
length of A3 when A3 is referenced and the Q bit is set. Note that when the Q bit

12

Message-Driven Processor Architecture Version 11

is set, the head of QHL should point to the same place as the base of A3 (since
the start of the queue is also the start of the next message to be processed).
There is a Q bit for each priority level, but no Q bit for background mode
(because there is no queue for background mode).

1 1

o_9 54
r NNR 4|
2 position I y position | X position

The node number register, NNR, contains the network node number of this
node. It consists of an X field, a Y field and a Z field indicating the position of the
node in the 3D network grid. Its value identifies the processor on the network
and is used for routing. The NNR should be initialized by software after a reset
and left in that state. The NNR is read and written as an INT-tagged value.

3 33

1
21 9
MAR
0001]|x X | Memory Address

lon

The Memory Address Register , MAR, is provided for debugging purposes and
should therefore be of little use to the applications programmer. This register
contains the value of the most recent memory address generated by an op0
read or write; this is an absolute value from the base of memory. Note that this
register is only written by op0 memory references and not instruction fetches or
any other implicit memory references. The MAR is read only and cannot be
written using the WRITER instruction.

13

T

e

R Message-Driven Processor Architecture Version 11

|

- Data Types

, The following data types may be used in a word:
3 3332 11 1
5 2109 76 09 (]
oooo value (O=NLL) SYM
oo two's complement value INT
Jo 0 1 0fo o] BOOL
foo11r]i base length ADDR
|o 10 ofu|t offset pJ;F x] P

h fo 1 01)uft offset length MSG

E 0110 user-defined CFUT
o111 user-defined FUT
1000 user-defined TAGS

L_ 1001 user-defined TAG9

: 101 o} user-defined TAGA
1011 user-defined TAGB
11j00 first instruction second instruction INSTO
11j01 first instruction second instruction INST1
1110 first instruction second instruction INST2
1119 first instruction second instruction INST3

* SYM contains an atomic symbol. EQUAL and NEQUAL are aliowed on SYMbols. If the
data portion of a symbol contains all zeroes, the word takes on the value of NIL.

« INT contains a two's complement integer between -231 and 231.1, inclusive. All
arithmetic, logical, and comparison operations are allowed on INTs.

+ BOOL contains a boolean value, which is either true (b=1) or false (b=0). All logical, and
comparison operations are aliowed on BOOLs. For purposes of the comparisons, faise is
considered as less than true.

* ADDR contains a base/length pair that may be loaded into either one of the address
registers or QBM, QHL, or TBM. The uses of bits 30 and 31 vary among these registers.

* IP contains a value appropriate for loading into the IP. See the IP register section for a
description of the fields.

+ MSG is the header of a message. It is similar to an IP except that it has no phase bit or
:‘bssgme bit and the ow order 10 bits contain the length of the message (including the

word).

* CFUT contains a context future. Almost all operations fault on context futures. They are
not meant o be MOVEable. CFUTs are used as placeholders for values 10 be computed
in paraliel by other processes; an attempt to read a8 CFUT before its value is available will
fault, and the operating system suspends the current process until the value is available.

* FUTis a standard future. FUTs may be moved, and their tags may be read and written, but
they may not participate in any primitive operations such as addition or checking for
equality. As with CFUTSs, an attempt to use a FUT in a primitive operation causes a fault,
and the operating system will have to provide the appropriate vaiue for the FUT.

14

Message-Driven Processor Architecture Version 11

TAGS through TAGB are tags for software-defined words. They cause fauks on ail
primitive operations except EQ, NEQ, BNIL, and BNNIL.

« INSTO through INST3 are tags for instructions. The two instructions in & word occupy 8
total of 34 bits, 80 two tag bits are aiso used 10 encode them.

15

Al

e

T

Message-Driven Processor Architecture Version 11

Memory

The prototype MDP contains 4096 words of RAM; there are 4096 words
reserved for ROM, aithough not all of this reserved ROM space is actually used.
if the MDP has external memory available, it is placed above the ROM. Future
MDPs may have more memory and different address maps, SO USer progra:.:s
should not rely on absolute memory locations other than the fault vectors.

Certain memory locations have special purposes assigned to them by the
hardware. These are outlined in the table below.

From To

$00000 | $0001F | Priority Switchable Memory 0
$00020 | $O0003F | Priority Switchable Memory 1
$00040 | $O005F | Priority O Fault Vectors

$00060 | $0007F | Priority 1 Fault Vectors

$00080 | $OOFFF | Uncommitied RAM

$01000 | $O1FFF | ROM

$02000 | SFFFFF | External Memory address space

Within the uncommitted internal RAM, the operating system usually allocates

the first few hundred words to the call vector table, the message queues, and

the XLATE cache and leaves the rest of RAM for user programs. The call vector

tsableslgngth is operating system definable, but its base must be location
00080.

The External Memory Controller for the MDP supports dynamic memory
refreshing and error checking / correction (ECC). The memory signals a
DRAMERR fault when a double-bit error occurs; single-bit errors are corrected.
Access to the Refresh Timer Counter, RTC, and the Error Counter, ERC, is
provided through memory locations $2000 and $2001 respectively. The RTC is
a 7 bit register. Writing the RTC sets the interval between refresh operations.
Reading the RTC returns the current count. The Error Counter is an 8 bit
register that is incremented every time a single bit error is detected. Only the
bottom seven bits of the ERC are used as a counter; the 8th bit disables ECC
when set.

Priority-Switchable Memory

In order to allow each priority level to have 32 private temporaries, the first 64
words of memory are decoded specially. When accessing one of these 64
words, the current state of the P flag is XORed with bit 5 of the address; hence,
referencing location 1 accesses physical location 1 when running in priority
level 0 (P fiag clear) or location 33 when running in priority level 1 (P flag set).
This scheme lets the operating system and user programs use memory

16

| wOuiniset
Message-Driven Processor Aichitecture Version 11

locations 0 through 31 as temporaries private to the current priority level. The
other priority level's temporaries can be accessed as locations 32 through 63.

17

Message-Driven Processor Architecture Version 11

Network Interface

Message Queues

Incoming messages are queued in message queues before being dispatched
and processed. There are two message queues, one for each priority level.
Each message queue is defined by two registers—QBM, the queue base/mask
register, and QHL, the queue head/llength register. The queue base/mask
register defines the absoiute position and length of the queue in memory. In
order to simplify the hardware, the length must be a power of 2, and the queue
must start at an address that is a multipie of the length. The queue head/Aength
register specifies which portion of the queue contains messages that have been
queued but not processed yet (including the message not yet dequeued by
SUSPEND). To avoid having to copy memory, the queue wraps around; if a
twenty-word message has arrived and only eight words are left until the end of
the queue, the first eight words of the message are stored until the end of the
queue, and the next twelve are stored at the beginning. The queue headlength
register contains the head and length of the queue instead of the head and tail
to simplify the bounds-checking hardware involved in checking user program
references to the queue. Below is a diagram of a queue with one message
being processed, two more waiting, and a third one amiving.

::::,h 7 QBM Base
o N

Due to the presence of row buffers in the hardware, messages are always
stored at multiples of four words in memory, sometimes causing there to be one,
two, or three words of wasted space between messages in the queue. This
alignment is transparent to the software; the length and head in QHL are
automatically aligned to multiples of four words by the hardware. The length
field of the message header specifies the exact length of the message.

When messages are dispatched, the A3 register is written with the base field
from the QHL and the length field from the bottom 10 bits of the message
header. The Q bit in the status register allows accesses to messages that are
"wrapped around,” such as the twenty-word message in the axample above.

18

Message-Driven Processor Architecture . Version. 11

A message may interrupt lower priority processes and be dispatched as soon
as the first queue row buffer is written into the queue; the processor does not
wait until the entire message is present before dispatching it. Read accesses to
words through A3 with the Q bit set are also checked against the length of the
current message and the length of the queue; if the latter test fails, an EARLY
fault is generated to indicate an access to data in the message that has not yet
arrived. Writes through A3 are never checked for EARLY faults. Note that if the
check against length of the current message fails, a LIMIT fault is generated
instead. The EARLY fault is necessary because the length of the current
message may be longer than the current length of the queue. When a message
comes in, the header tells what the length of the complete message is; this is
the current message length. The length of the queue indicates how much of the
message has actually arrived.

Message Reception

There are two stages in processing of messages: queueing and execution. In
general, incoming messages from the network are first queued in the priority 0
or 1 queue. When a message begins arriving in a queue, execution begins. If
the message starts executing and references an item that is not yet in the
queue, an EARLY fault occurs. There are a few places where delays could
occur in the above procedure. These are outlined below.

« It the D bit of a QBM is set, the corresponding queue is disabled. Messages are not
aliowed into the Qqueue until that bit is cleared. This may cause backups in the network.

+ If a queue is full, the effect is the same as in the above situation. It the processor is
executing at the same level of priority as the message and the F and | flags are clear, a fault
is generated to wam the processor about the condition.

* The | flag in the status register prevents messages from interrupting lower priority
processes when it is set. They may, however, be queued.

* An arriving message may interrupt a process running at a lower priority level but not one
running at the same priority level. That is, priority level 1 messages may interrupt level 0
message handiers and background processes, while priority leve! 0 messages may only
interrupt background processes.

When the processor begins executing a message, the B flag is cleared, P is set
to the priority at which the message arrived on the network, and the IP offset is
loaded from the first word of the message, which must be tagged MSG; if it isn't,
a MSG fault is taken. The F and U flags are all loaded from the message
header. A3 is set up to point to the message in the queue; the Q flag of the SR
is always set. The AO Absolute bit and Phase bit of the IP are setto 1 and 0
respectively.

SUSPEND

The SUSPEND instruction terminates the processing of the message. First it
flushes one message from the proper input queue. Then, if another message
(of either priority) is ready, it is executed as described in the Message
Reception section. Otherwise, the IP is fetched from the background IP and
execution resumes with the next instruction of background code. A SUSPEND
executed in background mode produces indeterminate results.

19

Message-Driven Processor Architecture Version 11

Note that every message arrival corresponds to exactly one SUSPEND. This
SUSPEND terminates the processing of the message and also flushes the
message. Therefore, every MDP routine that gets executed by a message must
terminate with a SUSPEND at some point.

Message Transmission

The SEND, SEND2, SENDE, and SEND2E instructions are used to send
messages. The first word sent specifies the absolute node number of the
destination node (i.e. the destination node's NNR value) in the low 16 bits. The
SEND instruction uses the current node's NNR and the destination node
number to find the relative offsets in the X, Y, and Z dimensions that the network
controllers use in routing the messages through the network. The tag of the first
word is currently ignored, although it is recommended that the tag be INT. The
op2 field of each SEND instruction determines the priority at which the
message is to be sent over the network: 0 means priority level 0 and 1 means
level 1. The priority of the message is independent of the priority of the process
that is sending it.

The initial routing word is followed by a number of words which the network
delivers verbatim to the destination node. The network does not examine the
contents of these words. The message is terminated by a SENDE or SEND2E
instruction, which sends the last one or two words, and tells the network to
actually transmit the message. The first word that arrives at the destination node
(the second word actually sent, since the routing word is only used by the
network and doesn't arrive at the destination node) must be tagged MSG. It
contains the length of that message including the message header but not
including the routing word preceding it. It also contains the initial vaiue of the IP
at which execution is supposed to start. The destination node faults MSG if this
word is not tagged MSG.

The total time between the first SEND and the SENDE shouid be as short as
possible to avoid blocking the network. To accomplish this the SEND and
SEND2 instructions set the | flag and the SENDE and SEND2E instructions
clear the | flag, thus disabling interrupts during message transmission. For the
same reason, faults should be avoided while sending.

20

Message-Driven Processor Architecture Version 11

Exceptions

Reset

When the processor is reset, the status register flags are set as follows:
Q=Q'=0, U=U'=1, F=F'=0, I=1, B=1, P=0. The A bit in the IP and D bits in both
QBM registers are set. The background IP offset is set to the first location in
ROM. The program that gets executed (starting at the first location in ROM) on a
reset should set up the queues, NNR, and at least some of the fault vectors and
then clear the | flag and the D bits in the QBM registers to allow message
reception.

Fault Processing

When a fault occurs, the instruction that caused the fault is saved in the FIR
register, the current IP (which points one instruction beyond the fauiting
instruction) is saved in the FIP register, and the values of the Op0 and Op1
operands (if any) are saved in the FOPO and FOP1 registers; the IP is then
fetched from the memory location whose address is equal to the fault number
plus the base of the fault vector table of the current priority (when in Background
mode the fault vector table for whichever priority is selected by the Priority flag is
used). If the F bit is set and a fault occurs then the IP is loaded from the
CATASTROPHE fault vector. The U, A, and F bits of the IP that gets loaded may
change the processor state. U determines if this priority is in unchecked
mode, A determines if AQ absolute mode is in effect, and the F bit determines
whether the fault is non-reentrant and interruptible.

System Calis

A system call (via the CALL instruction) mimics some of the behavior of a fault to
provide convenient access to system routines. When a CALL occurs, the base
of the system CALL vector table is added to the CALL operand, and the
contents of this location are fetched, yielding a call handler IP. The current |P
(which points to the next instruction) is saved in the current priority's FiP
register. Execution then begins by lcading the call handler IP (which sets the F,
A, and U bits in the status register to the values in the call handier IP).

Interrupts

There are three types of interrupts supported on the MDP: priority switches,
queue overflow interrupts, and external interrupts. Priority switches may occur
at any time, provided that the | flag is clear; queue overflow and external
interrupts may only occur when both the | and F flags are clear. Priority
switches should be the most common interrupts; these occur when a message
arrives in the queue of a priority higher than the current priority. Thus, priority 1
messages can interrupt priority O or background mode, and priority 0 messages

21

e

e . &

e

. .

Message-Driven Processor Architecture Version 11

can interrupt background mode. The handler for a priority switch is the
interrupting message itself.

Queue overflow interrupts are signalled when the last empty word of the queue
is written, but may cause an interrupt only when running at the same priority as
the queue which overflowed. in other words, if the priority 0 queue overfiows
and a priority 1 process is currently running then the handler for the queue
overflow must wait until all pending priority 1 processes have suspended before
it can start execution. Likewise, if the priority 0 queue overfiows and a
background mode process is curremly running and either the F or | flag is set
then the handier must wait until both flags are cleared before execution can
begin. When a queue overflow interrupt is taken, a fault is signalled and the I\P
is loaded from the QUEUE fault vector.

External interrupts are similar to queue overflow interrupts except that whenever
the | and F flags are clear and an external interrupt is signalled, a fault is
signalled at the current priority and the IP is loaded from the INTERRUPT fauit
vector. The interrupt is handled as a process of the same priority as the priority
which it interrupted. An external interrupt is signalied by an external interrupt
pin on the MDP package.

Interrupts may occur only between instructions. After an interrupt the FIP points
to the next instruction of the interrupted sequence.

The following faults are defined:

Name Fault Number Description

CATASTROPHE $0 Doubile fault,bad vector, or other catastrophe.

INTERRUPT $1 Interrupt pin has gone active.

QUEUE $2 Message queue about to overflow.

SEND $3 Send butfer full.

ILGINST $4 llegal instruction.

DRAMERR $5 Doubie bit error in the external RAM.

INVADR $6 Attempt to access data through address register with | bit sef.
LMIT $7 Attempt 10 access object data past imit.

EARLY $8 Attemnt {0 access data in message queue before it amived.
MSG $9 Bad message header.

XLATE $A XLATE missed.

OVERFLOW $B Integer arithmetic overflow.

CFUT $C Attempted operation on a word tagged CFUT.

FUT $D Attempted operation on a word tagged FUT.

TAGS $E Attempted operation on a word tagged TAGS.

TAGY $F Attempted operation on a word tagged TAGS.

TAGA $10 Attempted operation on a word tagged TAGA.

TAGB $11 Attempted operation on a word tagged TAGB.

TYPE $12 An operand or a combination of operands with a bad tag type

used in an instruction.
$13-1F Reserved for future faults.

Note: if multiple faults occur simultaneously the fault vector chosen is the one that has the

highest precedence. Each fault is assigned a precedence by its fault number; lower fault
numbers correspond to higher precedence.

22

Message-Driven Processor Architecture Version 11

Instruction Encoding

The program executed by the MDP consists of instructions and constants. A
constant is any word not tagged INSTO through INST3 that is encountered in
the instruction stream. When a constant word is encountered, that word is
loaded into RO and execution proceeds with the next word.

Every instruction is 17 bits long. Two 17-bit instructions are packed into a word.
Since a word has only 32 data bits, two tag bits are also used to specify the
instructions. The instruction in the high part of the word is executed first,
followed by the instruction in the low part of the word. As a matter of convention,
if only one instruction is present in a word, it should be placed in the high par,
and the low part of the word set to all zeros.

The format of an instruction is as follows:

16 11 10 9 8 7 8 0
2nd 1st)
Opcode reg reg Addressing mode
#
op2 opl opo

The opcode field specifies one of 64 possible instructions. The other fields
specify three operands; instructions that don't require three operands may
ignore some of the operand fields. Operands 1 and 2 must be data registers;
their numbers (0 through 3) are encoded in the 1st reg # and 2nd reg # fields.
Operand 2, it used, is always the destination of an operation and operand 1, it
used, is always a source.

in the case of 1-operand and 2-operand instructions that use opO in the normal
addressing mode, one of op2 or op1 is used to provide a 2 bit extension to an
imm value specified in op0 (if an imm value is specified in op0). In the case of
2-operand instructions, the 2 bit extension is found in whichever of op2 or op1 is
not used. The 2 bit extension is always in the op2 field for 1-operand
instructions.

23

1

Tl T

Message-Driven Processor Architecture Version 11

Operand 0 can be used as a source or a destination in an instruction. It can
hold two possible encodings. A normal instruction has op0 address mode
encodings as follows:

6 0o
Normal

| Addressiog Mode Syntax Addressing Mode
0 00 0 Of Rn Rn Data register Rn
0 00 0 1] An An Address register An
0 00 1}0 00 NIL Immediate constant NIL (SYM:0)
0 00 1}l0 0 1 FALSE Immediate constant FALSE (BOOL:0)
000 11010 TRUE Immediate constant TRUE (BOOL:1)
0 00 10 11 $80000000 Immediate constant INT:$80000000
0 00 1]2 0 o0 SFF Immediate constant INT:$000000FF
0 00 1|1 01 S3FF immediate constant INT:$000003FF
0 00 1]1 1 0 $FFFF Immediate constant INT:$0000FFFF
0 0 0 1|1 11 $FFFFF Immediate constant INT:$000FFFFF
0 0 1{ Rx | An (Rx,An] Offset Rx in object An
01 imm imm Immediate imm (signed)
1 imm An (imm, An) Oftset imm (unsigned) in object An

The immediate constants are eight immediate values outside the range
INT:-16..INT:15. They are provided for convenience and code density
improvement. The $FF and $FFFF constants are useful for masking bytes and
words, while the $3FF and $FFFFF constants may be used for masking lengths
and addresses.

The imm field is extended by 2 bits for all 2-operand operations that use this
normal addressing mode for op0. These extra 2 bits are obtained from either
the op2 field or the op1 field (whichever one happens to be unused). The 2 bits
serve as the high order bits of the extended imm value. If simply an immediate
value is being specified by op0, then this value is now 7 bits instead of 5. In the
case of an offset into an object, the offset is now a 6 bit immediate value instead
of only 4. This extension allows much longer branch distances.

24

Message-Driven Processor Architecture Version 11

The register-oriented op0 mode is used instead of normal op0 ‘mode by the
READR, WRITER, and LDIPR instructions. The register-oriented op0 mode
encodings are as follows:

6 0

Rogistor:Oriontod

Addressing Mode Syntax Addressing Mode
‘Isfplo 0 of Rrn Rn Data register Rn
BI{P|O O 1| An An Address register An
-]JPJO0O 1 O] IDn IDn ID register IDn
BIP|O 1 1}0 0 FIP Trapped Instruction pointer
-{p|0 1 101 FIR Trapped Instruction register
-lelo 1 111 o FOPD Trapped OPO register
~1Plo 1 1]1 1 FOP1 Trapped OP1 register
-|Pf1 0{0 0 O QBM Queue Base/Mask register
-|Pj1 00 0 1 QHL Queue Head/Length register
Bip|1 0|0 1 O 1P Instruction Pointer register
-!1-11 0}j0 1 1 TBM Translation Base/Mask register
-{~-{1 0|1 0 O NNR Node Number register
-{-f1 01 0 1 MAR Memory Address Bus register
-]-]1 0J1 1 0 Unused (ILGINST fault)
-1-11 0]2 1 1 Unused (ILGINST fault)
-{-{1 1}0 0 © P Priority Leve! flag
-i-11 10 0 1 B Background Execution flag
-]-]1 1]0 1 0 I Interrupt flag
BlP}|1 1]0 1 1 F Fault flag
BIP|1 1|1 0 O U Unchecked flag
-lPpfj1 111 0 1 Q A3 Queus flag
-j-J1 1J1 10 Unused (ILGINST fault)
-|-j1 1111 1 Unused (ILGINST fault)

B represents the use of the Background register set or one of the two priority
register sets. The B bit is XORed with the Background Flag and a register set
chosen according to the result; 1 indicates the background registers, while 0
indicates the register set chosen by the P bit relative to the present priority.The
assembler syntax for specifying a register belonging to the background is the
register name followed by a "B".

25

Message-Driven Processor Architecture Version 11

P represents the priority of the register being accessed, and is relative to the
current priority. O indicates the current priority, while 1 indicates the other
priority. The assembler syntax for specifying a register belonging to the other
priority is the register name followed by a backquote ().

Centain registers are typed—their values always read as a given type, but
attempts to write values of a different type do not fault. The address and IP
registers however are checked on writes and writing a value of any value other
type than that specified does fault TYPE, CFUT, FUT, TAG8, TAGY, TAGA, or
TAGB except in unchecked mode, depending on the value that is attempted to
be written. Below is a tabie of the types of the registers.

Reglister Type

Rn Any
An ADDR
iDn Any
oBM ADDR
QHL ADDR
P P
FIR Any
FIP P
FOPO Any
FOP1 Any
BM ADDR
NNR INT
MAR INT

P BOOL
8 800L
| BOOL
F BOOL
U BOOL
Q BOOL

26

8

Message-Driven Processor Architecture

Instruction Set Summary

Mnemonic Operands Name Op
General Movement and Type Instructions

READ Src,Rd Move Word $01
WRITE Rs,Dst Move Word $02
READR Sre,Rd Read Register $03
WRITER Rs,Dst Write Register $04
RTAG Sre,Rd Read Tag $05
WTAG Rs,Src,Rd Write Tag $08
LOw Sre Load P $o7
LDIPR Src Load IP from Register $08
CHECK Rs,Src,Rd Check Tag $09
Arithmetic and Logic instructions

CARRY Rs,Src,Rd Carry from Add $OA
ADD Rs Src,Rd Add $08
sus Rs,Src,ARd Subtract $0C
MULH Rs.Src,Rd Multiply High $OE
MUL Rs,Src,Rd Multiply $OF
ASH Rs,Src,Rd Arithmetic Shift $10
LSH Rs,Src,ARd Logical Shift $11
ROT Rs,Src,Rd Rotate $12
AND Rs,Src,Rd And $18
OR Rs. Src,Rd Or $19
XOR Rs,Src,Rd Xor $1A
FFB Src.Rd Find First Bit $18
NOT Sre,Rd Not $1C
NEG Sre,Rd Negate $1D
LT Rs,Src,Rd Less Than $20
LE Rs,Src,Rd Less Than or Equal $21
GE Rs,Src,Rd Greater Than or Equal $22
GT Rs,Src,Rd Greater Than $23
EQUAL Rs,Src,Rd Equal $24
NEQUAL Rs,Src.Rd Not Equal $25
EQ Rs.Src,Rd Pointer Equal $26
NEQ Rs,Src,Rd Pointer not Equal $27
Network Instructions

SEND Sre,P Send $34
SENDE Src,P Send and End $35
SEND2 Src,LRs,P Send2 $38
SEND2E Src,Rs,P Send 2and End $37
Associative Lookup Table Instructions

XLATE Rs,Dst,C Associative Lookup $28
ENTER Src.Rs Associative Enter $29
PROBE Rs,Dst Probe Associstive Cache $2D
Special Instructions

NOP NOP $00
INVAL invalidate $2A
SUSPEND Suspend $30
CALL Src System Call $31
Branches

BR Stc Branch $38
BNIL Rs,Src Branch if NIL $3A
BNNIL Rs,Src Branch # Non-NIL $38
BF Rs,Stc Branch if False $3C
8T Rs,Src Branch i True $3D
8z Rs,Src Branch it Zero $3E
BNZ Rs,Src Branch # NonZero $3F

N
~

RAm,ic
m
Register

Register

RAm,(lc
RAm,c
RAm,ic

Register
RAm,ic

RAm,ic
RAm,ic
RAm,ic
RAm,ic
RAm.i.c
RAm,ic
RA.m,ic
RAm,ic
RAm,ic
RAmic
RAmic
RAm,ic
RAm,ic
RAm,ic
RAm,ic
RAm,ic
RAm,i.c
RAm,ic
RAm,ic
RAm.ic
R.Am,ic
RAm,ic

RAm,ic
RAm,ic
R.Am,ic
RAm,ic

RA
R
R

RAm,i

Ri
Ri
Ri
Ri
Rii
R.i
R.i

Version 11

Types

Al but CFUT
Al
Al but CFUT

A

Al but CFUT
All,int

Ip

lp
Al Int

int,Int

int,int

int,Int

int,Int

Int,Int

int,int

Int,int

int,int

int,Int or Bool,Bool
int,Int or Bool,Bool
int,int or Bool,Bool
int

Int or Bool

int

int,int or Bool,Bool
int,Int or Bool,Bool
int,Im or Bool,Bool
int,Int or Bool,Bool
int,Int or Bool,Bool or Sym,Sym
int,Int or Bool,Bool or Sym,Sym
Al but CFut or Fut
Al but CFut or Fut

Al but CFut
A but CFut
Al but CFut
Al but CFut

A but CFut
Al but CFut, Al but CFut
Al but CFut

Int

iInt

All but CFut,Int
All but CFut,int
Bool, Int
Bool,int

Int,Int

int,int

.

Message-Driven Processor Architecture Version 11

Ingstruction Set

Below is a table of the instructions available on the MDP listed in numerical
opcode order. The instructions are specified as follows:

((Opcode) ((Operands) (_ Name) (instruction Encoding)
Y »

WRITE Rs,Dst
Rs,Dst

Modes: Types: Fauls: TYPE
CFUT FUT TAGS
TAGS TAGA TAGB

C.sgal Addressmg) (Legal Operand (' Possible Faults)

Modes Types

The Legal Addressing Modes field specifies which addressing modes are legal
with this instruction. Any illegal addressing modes are crossed out. R specifies
data registers, A address registers, m memory (either [Rx,An] or [imm,An}), i
immediate (a signed imm value), and ¢ constant (one of the 8 immediate
constants). If the register-oriented mode is used instead, the Modes field
contains a single box with the words Register Mode in it.

Move Word 000001 | i [Rs| DOst

The Legal Operand Types field specifies which combinations of types of
operands are legal. Each row in the table indicates a legal combination of
types. Some instructions have more than one combination of legal types. For
these instructions a TYPE fault occurs if both types are legal but their
combination is not. For example, the AND instruction faults TYPE if one of its
operands is a BOOL and the other one is INT, even though it does accept two
BOOLs or two INTs. lilegal types cause either a TYPE fault or CFUT, FUT, or
one of the TAG faults. When two different words with bad types are used as
arguments, the fault corresponding to one of them is signalled; it is not specified
which has precedence.

The Possible Faults field specifies the faults that are possible with this
instruction. The common faults (CATASTROPHE, ILGINST, ACCESS, EARLY,
LIMIT, INVADR, and MSG) are not listed, as they may occur for almost all
instructions and behave in the same way for all instructions.

28

Message-Driven Processor Architecture

Version 11

NOP NOP 000000 0o |oo | ooooooo
READ Src,Rd
Move Word 000001 JRd| i Src
MOVE Src,Rd
Modes: [RiAImii ¢ Types: | Src Fsults: cror
All but
CFUT
Rd « Src
WRITE Rs,Dst
Move Word 0000010 | i [Rs| Dst
MOVE Rs,Dst
vocen: SR~ X Fouts:

Types: Rs
A

Dst «— Rs

All types (including cFUT) may be moved into memory.

READR Src,Rd

Read Register 000011 |Rdfoo| Sre
MOVE Src,Rd
Modes: Register Mode Types: Src Faulls: CFrut
Al but
CFUT
Rd « Src
WRITER Rs,Dst . .
' Write Register 000100 |00 [Rs| Dst
MOVE Rs,Dst
Modes: Register Mode Types: Rs Faults: TYPE
A CFUT FUT TAGS

TAG9 TAGA TAGB

Dst « Rs

*Rs should have the propet type for the register described by Dat. Typa checking is gone only for

the address and IP registers, when the unchecked flag is off.

All types (including cFuT) may be moved 10 cther locations.

29

L‘
f
!
g
r
v
i
k

e 3

Message-Driven Processor Architecture Version 11

RTAG Src,Rd Read Tag 000101 [Rd}i| src
Modes: {f R{A[m|i]c Types: | Src Faults: cFuT
All but
CRUT
Rd « INT:1ag(Src)

Note that access is aliowed to the address register, inmediate, and constant modes, but these
operations are not very useful since address registers aiways have an ADDR tag, while immediates
siways have an INT tag and constants also have fixed tags.

WTAG Rs, Src,Rd Write Tag 000110 |Rd|Rs| Src
Modes: f RIAIm|i]ec Types: Rs Src Faults: TYPE
CFUT FUT TAGS
Al INT TAGY TAGA TAGB
RANGE
Rd « SrcRs

Src should be an integer batween 0 and 15, inclusive. Src must be an integer uniess the U flag is
set. Rs can be any type.

1DIP src Load IP 000111 | i foo| Src L
Modes: | RIAIm]|ifc Types: Src Faults: CATASTROPHE
P TYPE CFUT FUT
TAGS TAGY TAGA TAGB
IP « Src.

Src should be an IP-tagged value.

Load IP from
LDIPR Src Register 001000 (00 |00 Src
Modes: Register Mode Types: Src Faults: CATASTROPHE
P TYPE CFUT FUT
TAGS TAG9 TAGA TAGB

IP « Src.
Src should be an 1Ptagged vaiue.

30

Message-Driven Processor Architecture Version 11

CEECK Rs,Src,Rd Check Tag 001001 |Rd|Rs] Src

_ Modes: | RIAIm}i]ec Types: Rs Src Faults: TYPE
_; CFUT FUT TAGS
Al INT TAGS TAGA TAGB

Rd « BooLtag(Rs)=Src. Src must be an integer uniess the U flag is set.

CARRY Rs,Src,Rd | Carry from Add 001010 |Rd|Rs| Src
ADD Rs, Src,Rd Add 001011 |Rd|Rs] src
SUB Rs, Src, Rd Subtract 001100 |RdjRs| src
Modes: | RIAm]ilec Types: Rs Src Faults: TYPE
CFUT FUT TAGS
INT INT TAGY TAGA TAGB
OVERFLOW

Add: Rd « Re+Src

Sub: Rd « Rs-Src

An overflow occurs in checked mode when the signed resul isnt the sum/difference of the signed
parameters.

Carry returns 1 if adding the two numbers would generate an unsigned carry and 0 otherwise. It
shoukd not be used in checked mode, as it causes an overfiow under the same conditions that add
overfiows. Add and sub produce results modulo 232 i, unchecked mode. In unchecked mode the
type of Rd is the same as the type of Rs.

31

Message-Driven Processor Architecture Version 11
MULE Rs, Src,Rd Multiply High 001110 |Rd[Rs] src
MUL Rs, Src,Rd Multiply 001111 |RdjRs| sre
Modes: |RJAfm]i]c Types: Rs Src Faults: TYPE

CFOT FUT TAGS
INT | INT TAGS TAGA TAGB
OVERFLOW

Mul: Rd « Rs*Src

An overfiow occurs in checked mode when the signed result isn1 the product of the signed
parameters.

MulH retums the high 32 bits of a 84-bit product. R shouid not be used in checked mode, as it
causes an overflow under the same conditions as mu/ overflows (i.e. when the signed 32°32

product doesn't fit in 32 bits). In unchecked mode Mul retums the lower 32 bits of the 84-bit
product, while MulH retumns the upper 32 bits of that product. in unchecked mode the type of Rd is

the same as the type of Rs.

ASH Rs,Src,Rd | Arithmetic Shift 010000 |RdJRs| Src
LSHE Rs, Src,Rd Logical Shift 010001 |Rd|Rs] Src
Modes: I RIAIm]ijec Types: Rs Src Faults: TYPE

CFUT FUT TAGS

INT INT TAG9 TAGA TAGB

OVERF LOW

Ash: Rd « Rs«<<Src

Lsh: Rd « Rs«<<Src

Src may be negative and may be very large. It is not treated modulo 32; instead, Rs is shifted by
Src bits to the left or right if Src is negative, whatever Src happens to be. For example, ¥ Srce-50,
Rd is set 10 0 by LSH and by ASH when Rs20 and ©0 -1 by ASH when Rs<0. ASH treats Rs as a
signed quantity, while LSH treats it as unsigned. An overflow occurs when Src>0 and significant
bits are shifted from the number; bits shifted to the right from the number are ignored. In
unchecked mode the type of Rd is the same as the type of Rs, and Src is treated as if it were a
signed integer.

32

l.

e e

e

| SN - - - —

Message-Driven Processor Architecture Version 11 -4
ROT Rs, Src,Rd Rotate 010010 |Rd[Rs| src
-
Modes: [RIAIm]ilc]l] Types:] Rs | sre Faults: TYPE |
CFUT FUT TAGS
INT | INT TAG9 TAGA TAGB

Rd « Rs rotated left Src bits

This is a rotate instead of a shift, 30 bits shifted out of the left side of Rs are shifted back at the
right side. Src is an integer treated modulo 32 (since a rotate of 32 bits is the identity
transformation). In unchecked mode the type of Rd is the same as the type of Rs.

AND Rs, Src,Rd AND 011000 |Rd|Rs| src
OR Rs, Src,Rd OR 011001 [Rd[Rs| src
XOR Rs, Src,Rd XOR 011010 |Rd|Rs| src
Modes: | RJAIm]i]c Types: | Src Rs Faults: TYPE
CFUT FUT TAGS
INT | INT TAG9 TAGA TAGB
“. BOOL BOOL

And: Rd « Rs&Src
Or: Rd « Rs|Src
Xor: Rd « Rs*Src

The operations are bitwise in unchecked mode and in checked mode when performed on integers.
A TYPE tault occurs in checked mode if Rs and Src have differont types. The type of Rd is the

same as the type of Rs.
FFB Src,Rd Find First Bit o011 |Rd] i Src
Modes: | R[Am]i|e Types: Src Fauls: TYee
CFUT FUT TAGB
INT TAG9 TAGA TAGB
Rd « FFB(Src)

Rd is loaded with an integer vaiue between 0 and 31, inclusive. This indicates how many bits must
be traversed, going from left to right starting from bit 30, in order to find the first bit not equal to the
sign bit (bit 31). (for example, FFB($80000000)=0, FFB($E0000000)=2, and FFB($20000000)=1)
This is useful for normalizing floating point values.

33

Message-Driven Processor Architecture

Version 11

NOT Src,Rd NOT o11100 |Rd] i Src
h Modes: | RIAIm]ile¢ Types: | Src Fauls: TYPE
CFUT FUT TAGS
INT TAGS TAGA TAGB
BOOL
h Rd « ~Src

This is a bitwise operation on integers. In unchecked mode all 32 bits are complemented for all
input types except booleans, in which only the least aignificant bit is complemented.

34

these instructions ignore tags and compare only the data fields.

h NZG Src,Rd Negate oo |Rd|i| Sr
Modes: { RIAIm|i]ec Types Src Faults: TYPE
CFUT FUT TAGS
INT TAG9 TAGA TAGB
OVERFLOW
Rd « -Src
Note that this operation can overfiow i Src=$80000000.
LT Rs, Src,Rd Less than 100000 |Ad|Rs| Src
Less than or
LE Rs, Src,Rd Equa| 100001 {Rd [Rs Src
Greater than or
GE Rs, Src,Rd Equal 100010 |(Rd |Rs Sre
GT Rs, Src,Rd Greater than 100011 |Rd[Rs| Src
Modes: | RIA|m]i}e Types: Rs Src Fauks: TYPE
CFUT FUT TAGS
INT | INT TAG9 TAGA TAGB
BOOL | BOOL
F Lt Rd « BooL:Rs < Src
Le: Rd « BooL:Rs € Src
Ge: Rd « BOOL:Rs 2 Src
Gt Rd « BoOL:RS » Src
' A TYPE tault occurs in checked mode K Rs and Src have different types. In unchecked mode

el

Message-Driven Processor Architecture

Version 11

EQUAL Rs,Src,Rd Equal 100100 |Rd|Rs| Src
NEQUAL Rs,Src,Rd Not Equal 100101 |Rd|Re[src
Modes: | R|A|m]i]c Types: Re Src Faults: TYPE
CFUT FOT TAGS
INT | INT TAGS TAGA TAGB
BoOL | ®ooL
stv | s

Equal: Rd e« BooL:Rs = Src
NEqual: Rd « BoOL:Rs » Src

A TYPE fault occurs in checked mode ¥ Rs and Src have different types. In unchecked mode
these instructions ignore tags and compare only the data fields.

EQ Rs, Src,Rd Pointer Equal 100110 |Rd[Rs| src
NEQ Rs, Src,Rd | Pointer not Equal 100111 [Rd|Rs| src
Modes: f RIAImiifc Types: Faults: cFoT FOT

Eq: Rd « BooL:Rs = Src

NEq: Rd « BoOL:Rs # Src

Both the data and tag have to match for Rs to be considered equal 10 Src (in either checked or
unchecked mode; this is ditferent from the behavior of Equa/ and NEqua/ in unchecked mode).

35

Message-Driven Processor Architecture Version 11

XLATE Rs,Dst,c |Associative Lookup| | 101000 |c|rs| st

e [A[TXIRIN

Faults: CFUT XLATE

P Dst « associative_lookup{Rs); fauk XLATE i no entry in table was found or I the associaled data
: value for Rs is NIL.
The constant field C provides a way for the XLATE exception code 10 know what circumstances
‘ surrounded the failed transiation 30 it can behave appropriately.
L gmxun‘:ﬁngmmmmmu«mmmxum'dhmmmmwm
register,
ENTER src,Rs Associative Enter 101001 [oo{Rs| Src
.
F Modes: n’:"x‘yx{}:’ Faults: croT
)
Enter Rs and Src into the assaciative table so that associative_lookup(Src)=Rs. That is, Src is the
key and Rs is the data. The siot used is picked at random except when associative_lookup(Src)
already existed, in which case the old value is overwritten.

INVAL I invalidate 101010 {0 {00 | 0000000

invalidate all relocatable address registers (ones with the R bit set) on both priority levels by
copying the R bit into the | bit.

Tw

Probe Associative
s PROBE Rs,Dst Cache 101101 (00 |Rs Dst
' Modes Z{b:()‘;{):’ Types: | Src Fauks: cruT
Al bt
CFUT
o Attempt 10 find Rs in the XLATE cache. ¥ Rs is thers, D8t «1ookup (Rs), else Dst «NIL.
36

Message-Driven Processor Architecture Version 11

SUSPEND Suspend 110000 |o0ofoo| onocooo

Cease processing of the method and dequeue the message uniess the B flag was set. Set SP t0 0.
:aun‘EARLYhMominmmhanuydbnnnd. See the SUSPEND section for more
otails.

CALL Src System Call 110001 [i Joo| src

Modes: | R|A M iE Types: Src Faulls: TYPE
T CFUT FUT TAGS

TAG9 TAGA TAGB
RANGE

Fault using the vector at Src+128. Src must be an integer uniess the U flag is set.

SEND src Send 110100 | P | Src
SENDE Src Send and End mow0r |Pli] s
SEND2 src,Rs Send 2 110110 [P [Rs| s
SEND2E Src,Rs Send 2 and End 1o111 [P [Rs| sk

Modes: { RIAIm]il]c Fauks: CFOUT SEND

Send one or two words onto the network. When two words are sent, the one from Src is sent before
the word in Rs; hence, please note the unusual assembler syntax order of Src and Rs. SENDE and
SENDZE indicate the end of the message to the network hardware after the words they send.
SEND and SEND2 set the | Flag, while SENDE and SEND2E clear the | Flag. The op2 fieid is used
fo encode which message priority 10 send the message on.

Al

Aot imts

37

o 'l

Message-Driven Processor Architecture

BR Src

Branch

Version 11

111000 i {00 Src

Modes: | R XTI i [X

Types: Src
INT

Faulls: TYPE
CFUT FUT TAGS
TAGY TAGA TAGB

Branch forward Src words from the next word (i.e., when Srow0, the branch is 1o the next word) and

clear the IP phase bit. Src must be a signed integer in checked mode.

BNIL Rs, Src Branch if NIL 111010 | i |Rs] Src
BNNIL Rs, Src Branch if Non-NIL 111011 | i [Rs] sre
Fauls: TYPE

Modes: | R XD i X

CFUT FUT TAGS
TAG9 TAGA TAGB

BNIL: N Rs=N1L (both tag and data equal to 0), branch forward Src words (see BR).
BNNIL: W Rsen1L (either tag or data not equal 10 0), branch forward Src words (see BR).

Note that unlike the other conditional branches, Rs may be any type except CFUT or FUT without

causing a fauk in checked mode.

BF Rs, Src Branch if False 111100 | i |Rsj Src
BT Rs, Src Branch if True 111101 | i |Rs| sre
Types: Rs Src Faults: TYPE

Modes: n’:":‘n’:‘

CFUT FUT TAGS

BOOL | INT TAG9 TAGA TAGB
BF: ¥ Rs=FALSE (bit 0 of data = 0), branch forward Src words (see BR).
BT: ¥ Rs=TRUE (bit O of data = 1), branch forward Src words (see BA).

Rs must be a boolean in checked mode. In checked mode the branches branch on the state of bit 0

of Rs.

38

I.

B

-l

19 i

A

Message-Driven Processor Architecture

Version 11

BZ Rs, Src Branch if Zero 11110 [i [Rs] sre
BNZ Rs, Src Branch if Nonzero 11111 i |Rs] e
Faults: TYPE

Modes: | R XD 1 [X]

Types: Rs Src
INT INT

CFUT FUT TAGS
TAGS TAGA TAGB

8z: ¥ data parn of Rs=0, branch forward Src words (see BR).
BNZ: i data part of Rex0, branch forward Src words (see BR).
Rs must be an integer in checked mode.

39

