Ionospheric Scintillations... (see reverse)

Santimay Basu, Sunanda Basu*, Eileen MacKenzie*, and Dan Weimer

Paper reprinted from AERL Conference Proceedings No. 419, May, 1987. This research was supported in part by Emmanuel College Contract F19628-86-K-003A & the Defense Nuclear Agency.

The orbiting HiLat satellite launched by the Defense Nuclear Agency in 1983 offered a unique opportunity for studying the ionospheric scintillation parameters in relation to the in-situ measurements of ionization density, drift velocity, field-aligned current, and particle precipitation during the sunspot minimum period. This paper discusses the results of such a morphological study, performed by the Air Force Geophysics Laboratory based on their observations at the auroral oval station of Tromso, Norway. The dynamics of the spatial and temporal extent of this region are illustrated in the invariant latitude/magnetic local time grid. The geometrical enhancement of scintillations observed during the alignment of the propagation path with the local magnetic L-shell is shown to be the most consistent and conspicuous feature of scintillations in the nighttime auroral oval. The steepening of phase spectral slope in this region is indicative of the presence of L-shell aligned sheet-like irregularities at long scale lengths. The seasonal... (continued on reverse)
11. Title (continued)
Ionospheric Scintillations and In-Situ Measurements at an Auroral Location in the European Sector

19. Abstract (continued)
Variation of total electron content (TEC) determined from the differential Doppler measurements of HiLat transmissions is discussed in relation to the in-situ density measurements at 830 km. The results are also utilized to illustrate the dependence of ionospheric structure parameters on short-term variability of solar activity during the sunspot minimum period. Special effort is made to illustrate that the joint study of scintillation/TEC and in-situ parameters provides an insight into the nature of magnetospheric coupling with the high latitude ionosphere.
IONOSPHERIC SCINTILLATIONS AND IN-SITU MEASUREMENTS AT AN AURORAL LOCATION IN THE EUROPEAN SECTOR

Santimay Basu
Air Force Geophysics Laboratory
Hanncom AFB MA 01731

Sunanda Basu and Eileen MacKenzie
Emmanuel College
Boston MA 02115

Den Weimer
Regis College
Weston MA 02193

SUMMARY

The orbiting HiLat satellite launched by the Defense Nuclear Agency in 1983 offered a unique opportunity for studying the ionospheric scintillation parameters in relation to the in-situ measurements of ionization density, drift velocity, field-aligned current, and particle precipitation during the sunspot minimum period. This paper discusses the results of such a morphological study performed by the Air Force Geophysics Laboratory based on their observations at the auroral oval station at Tromso, Norway. The dynamics of the spatial and temporal extent of this region are illustrated in the invariant latitude/magnetic local time grid. The geometrical enhancement of scintillations observed during the alignment of the propagation path with the local magnetic L-shell is shown to be the most consistent and conspicuous feature of scintillations in the nighttime auroral oval. The steepening of phase spectral slope in this region is indicative of the presence of L-shell aligned sheet-like irregularities at long scale lengths. The seasonal variation of total electron content (TEC) determined from the differential Doppler measurements of HiLat transmissions is discussed in relation to the in-situ density measurements at 830 km. The results are also utilized to illustrate the dependence of ionospheric structure parameters on short-term variability of solar activity during the sunspot minimum period. Special effort is made to illustrate that the joint study of scintillation/TEC and in-situ parameters provides an insight into the nature of magnetospheric coupling with the high latitude ionosphere.

INTRODUCTION

A wide variety of C+n systems suffer degradation in performance due to phase and intensity scintillations imposed by the ionospheric irregularities of electron density. There is a great deal of interest in understanding the development of such irregularities at high latitudes where the ionosphere is often strongly coupled with the magnetosphere. In such an environment the distant magnetosphere serves to activate different sources of free energy, e.g., electron precipitation, field aligned currents, electric fields, etc., that control the formation of ionospheric irregularities. No longer is it possible to pursue a study of the irregularity development in the local ionospheric environment without considering the coupling between the ionosphere and the magnetosphere. This approach is particularly useful in extrapolating our knowledge of the irregularity structure to problems related to the structuring of artificially injected plasma clouds in the high latitude ionosphere.

In an effort to pursue a study of plasma structuring in the above context, the Defense Nuclear Agency (DNA) launched, on 27 June 1983, the HiLat satellite in a circular 830-km orbit at 82° inclination (Fremou et al., 1983). The satellite transmits coherent signals at 137, 390, 413, and 436 MHz and the phase reference signal at 1239 MHz to measure complex signal scintillation and total electron content (TEC). It also carries a variety of in-situ probes providing measurements of ion density, ion drift, energetic electron precipitation, field aligned currents, and emissions at two visible wavelengths. All instruments except the Langmuir probe, the vacuum-ultraviolet imager and a part of the magnetometer continue to operate reliably. The major objective of the HiLat satellite program is to provide a quantitative specification of high latitude scintillation strength and, in particular, the temporal and spatial spectra of intensity and phase fluctuations and the shape of the irregularity structures. These parameters provided by the radio beacon experiments are supported by the simultaneous in-situ data that define the background ionospheric processes. The morphology of ionospheric structures and magnetospheric control thereof derived primarily from HiLat observations at Sondrestrom, Greenland have been enumerated by Vickrey et al. (1985).

In this paper we shall concentrate on the HiLat satellite observations performed by the Air Force Geophysics Laboratory at Tromso, Norway during the 1984-1985 period. The station is located in the central part of the auroral oval during the nighttime under magnetically quiet conditions as defined by the planetary magnetic index Rp < 3.5. We shall study the strength and the structure specifications of complex signal scintillations in the spatial and temporal frames of invariant latitude and magnetic local time. These distributions will then be examined in the context of in-situ plasma structures observed by the HiLat satellite in this environment and the
RESULTS

In this section we shall first illustrate the space time variations of the statistical parameters that define the complex scintillation amplitudes and their structure. In order to avoid the effects of multipath propagation, the data acquired above a satellite elevation angle of 20° were used in the study. This provided a maximum latitude coverage of about 27° and an ionospheric height of 350 km around the station. Due to precession of the HILat orbit to earlier times each day, a full coverage in local time is also obtained over a season (i.e., 3 months) when the ascending and descending node passes are combined.

The top and bottom panels of Figure 1(a) illustrate the rms phase deviation of 137 MHz scintillation for winter 1983 (start of observations in December 1983 to January 1984) and summer 1984 (May-July, 1984) respectively for Kp < 3.5. The rms phase deviation is computed over a 30-second data interval. Since the projected scan velocity of the satellite is 3 km/sec at 350 km, the data interval covers irregularity scale sizes as large as 90 km. The data are binned in 2.5° latitude and 1 hour time intervals and the median values for each bin are indicated in the diagram. Each bin contains at least ten data points. The tic marks along the noon-midnight and the dawn-dusk meridians indicate 10° intervals between 50°-90° invariant latitudes (to be denoted as L). The sharp increase in rms phase deviation exceeding 5 radians over a narrow latitude swath (65°-67.5°) between the pre-midnight and dawn periods is the most conspicuous feature of both diagrams. Region of enhancement corresponds to the location of the alignment of the magnetic L-shell (Rino et al., 1978). This region also coincides with the location of the diffuse aurora, which is the seat of density irregularities. As we shall show later the region has enhanced total electron content (TEC) on a statistical basis due to the occurrence of plasma density blobs. Thus a combination of high irregularity amplitude, increased TEC and geometrical factors contribute to the pronounced increase of phase scintillations.

Comparing the top and bottom panels of Figure 1(a) the magnitude of phase scintillations during winter is found to be larger than summer. This may appear to be somewhat intriguing because the TEC (to be shown later) was higher in summer. This leads us to conclude that the irregularities are probably less preponderant during summer in the presence of enhanced ionization of the underlying E-region.

The top and bottom panels of Figure 1(b) show the behavior of rms phase deviation at 137 MHz during February-April and August-October, 1984. The nighttime enhancement of phase deviation between 65°-67.5° is again observed. The larger phase deviation observed can be related to increased solar activity during this period as will be shown in a subsequent diagram.

The remaining results will be presented in a different format and will indicate the parameters with invariant latitude in the midnight and noon time periods only. These are basically obtained from a noon-midnight cut through the dial plots shown in Figures 1(a) and 1(b). When the number of data points in a particular bin over the noon-midnight sector fall below ten, the values are extrapolated from an adjacent time sector. Figure 2 shows such a plot for rms phase deviation observed during 1984 and 1985. This figure illustrates an overall decrease of scintillations in 1985 due to decreased solar activity.

The intensity scintillation magnitudes have been expressed in terms of the standard S4 index, defined as the normalized variance of signal intensity, and geometrical factors contribute to the pronounced increase of phase scintillations. Comparing the top and bottom panels of Figure 1(a) the magnitude of phase scintillations during winter is found to be larger than summer. This may appear to be somewhat intriguing because the TEC (to be shown later) was higher in summer. This leads us to conclude that the irregularities are probably less preponderant during summer in the presence of enhanced ionization of the underlying E-region.

In Figure 4, we show the behavior of power law spectral index, p_4, for phase scintillations at 137 MHz during 1984 and 1985. A linear least squares fit to the phase spectrum indicates the variation of the logarithm of power spectral density (psd) with the logarithm of frequency is obtained over the frequency interval of 0.2 Hz to 10 Hz. The best-fit line provides p_4 as it defines the dependence of psd on frequency f as $psd \propto f^{p_4}$. Considering the scan velocity of the ray path through the F-region, the fit range 0.2 Hz to 10 Hz corresponds to the scale size regime of about 15 km to 300 km. This regime encompasses the dominant structures that cause phase and intensity scintillations at VHF and UHF over the observing data interval. From Figure 4, it may be noted that the phase spectral index is least affected by the propagation geometry and does not show significant variations with season and solar activity in contrast to the behavior of S_4 and O_4. There exists, however, a tendency for p_4 to increase around 65°, during the Nighttime. Since this location corresponds to the average location of the E-region conductivity meridians, the associated K-region conduc}
The comb of three UHF transmissions from HiLat is used to derive the total electron content of the ionosphere up to the satellite altitude of 830 km by the differential Doppler technique (Fremouw et al., 1978). Figure 5 shows the latitude variation of median TEC values during the noon and midnight for different seasons. The next diagram, Figure 6, shows the observed variation of noontime TEC in relation to the sunspot number. The effects of the solar activity and season on TEC appear to be coupled. At high latitudes, owing to the near vertical orientation of the earth's magnetic field, the ionospheric irregularities of electron density at F-region height are usually extended in latitude. The integrated effect of the irregularities on radio wave propagation, such as scintillation, is therefore, weighted by the total electron content of the ionosphere. Thus, measurements of irregularity amplitude, DM/N (M being the maximum electron density and N the background density), of total electron content may form the basis for a modeling of scintillation magnitudes.

The comb of three UHF transmissions from HiLat is used to derive the total electron content of the ionosphere up to the satellite altitude of 830 km by the differential Doppler technique (Fremouw et al., 1978). Figure 5 shows the latitude variation of median TEC values during the noon and midnight for different seasons. The next diagram, Figure 6, shows the observed variation of noontime TEC in relation to the sunspot number. The effects of the solar activity and season on TEC appear to be coupled. At high latitudes, owing to the near vertical orientation of the earth's magnetic field, the ionospheric irregularities of electron density at F-region height are usually extended in latitude. The integrated effect of the irregularities on radio wave propagation, such as scintillation, is therefore, weighted by the total electron content of the ionosphere. Thus, measurements of irregularity amplitude, DM/N (M being the maximum electron density and N the background density), of total electron content may form the basis for a modeling of scintillation magnitudes.

Among the various in-situ parameters probed by the satellite borne sensors, the in-situ ion-density is an important parameter. In the F-region due to charge neutrality, the electron and ion densities are equal. Figure 7 shows the variation of this parameter with latitude in the north-midnight time frame as a function of solar activity and season. Although we did not illustrate the variation of scintillation and background ionospheric parameters with magnetic activity, it should be emphasized that the magnetic activity in addition to sunspot number exerts overwhelming control of scintillations at high latitudes (Bau and Aarons, 1980; Bau et al., 1985). Our HiLat observations indicate that during magnetically active conditions scintillation magnitudes are enhanced during the nighttime and the region of enhanced activity extends both in the poleward and the equatorward directions. Irrespective of the level of solar activity, scintillations are enhanced during magnetic disturbances.

DISCUSSIONS

We have shown that the most notable feature in the observed scintillation morphology at the auroral station even under conditions is the enhancement of scintillations over a narrow latitude interval centered at 65°N in the nighttime sector. This narrow band increase of scintillations coincides with the expected region of geometrical enhancement due to the alignment of the ray path with the magnetic L-shell oriented irregularities. It is interesting to note that the boundary blobs which signify plasma density enhancements also occur in this region (Rino et al., 1983). The spatial configuration of the blobs is controlled by the high latitude convection pattern which is mostly E-W in the auroral region (Heelis et al., 1983). Themes of plasma blobs with the help of simulated studies that even a primarily circular patch of ionization being convected in from the polar cap would assume a narrow in latitude and elongated in longitude shape. These blobs can also develop a scale length along their trailing edges through F-region instabilities. In general, the plasma blobs transported from distant regions get continually structured in the convection field and contribute a major source of nighttime auroral scintillations.

The other notable finding related to the scintillation structure is the steep phase spectral slopes observed in the region of geometrical enhancement. This region coincides with the central part of the diffuse aurora under magnetically quiet conditions as has been recently shown by Hardy et al., (1985) from DMSP satellite observations. Unlike the limited HiLat satellite data base of particle precipitation the DMSP satellite data have provided a very large amount of data which have been organized by Hardy et al. to show the characteristic variations of particle precipitation with energy. The average energy of the particle precipitation in the diffuse auroral region is on the order of a few keV which is sufficient to produce a conducting E-region. This could reduce the lifetime of small scale irregularities (~100 m) and contribute to the observed steepening of the phase spectral indices. Bell et al. (1984) have illustrated such steepening of in-situ density spectra in regions of energetic auroral particle precipitation.

The structures present in the in-situ ion density probed by the HiLat satellite have recently been investigated (Weiher, 1987). This study indicates that plasma density blobs at 830 km are concentrated over a fairly narrow latitude interval. This region when mapped down the magnetic field line corresponds approximately with the region of enhanced scintillations. These results indicate that, on a statistical basis, the blobs in addition to their E-W extent are also extended along the magnetic field lines to the topside ionosphere. The altitude profiles of the blobs have been published earlier using incoherent scatter radar measurements (Vickrey et al., 1980).

The extension of blobs to altitudes as high as 830 km indicates that magnetospheric coupling effects need to be included in the analysis of high latitude F-layer instabilities. The inclusion of ion-inertia in the E-region instability theories results in a reduction of growth rates and generation of irregularities with spectral isotropy (Mitchell et al., 1985). In the non-inertial domain the irregularity spectra become anisotropic in the north-south and the east-west directions. Thus, the irregularity spectral indices are expected to be different in the north-south and east-west directions in the non-inertial case and identical for the inertial case. At Tromso, in addition to making HiLat observations that provide a north-south scan through the ionosphere, we have performed scintillation observations with near-stationary polar beacon satellites which provide an east-west scan controlled by ionospheric motion. The spectral indices of both sets of measurements are found to be consistent.
approximately equal indicating that the inertial effects are important in the generation of kilometer scale irregularities at high latitudes which cause VHF scintillations.

Another type of auroral irregularity not associated with large scale organized density gradients (such as to be found on the edges of blobs) but associated with velocity shears with shear gradient scale lengths ~10 km has been identified from HiLat observations (Basu et al., 1986). These irregularities, having considerable pad at the shorter scales, can cause intense VHF scintillations at the edges of auroral arcs in association with upward field aligned currents. In view of the well-known temporal and spatial variability of auroral arcs, the signature of such velocity shears will be difficult to identify in a statistical study of auroral scintillations.

REFERENCES

ACKNOWLEDGMENT

This work was supported by AFGL Contract F19628-86-K-0038 with Emmanuel College and by the Defense Nuclear Agency. The authors thank L. Wittwer, H.C. Carlson, and F.J. Rich for their interest and support.
TROMSO HILAT
137 MHz Kp < 3.5
MEDIAN RMS PHASE DEVIATION σ_{ϕ} (radians)

DEC - JAN 1984

MAY - JUL 1984

Figure 1a. Variations of random phase deviation at 137 MHz with invariant latitude and magnetic local time during winter and summer.
Figure 1b. Equinoctial variations of 137 MHz phase deviation with invariant latitude and magnetic local time.
Figure 2. Seasonal variations of rms phase deviation at 137 MHz with invariant latitude along the noon-midnight meridian in 1984 and 1985.
137MHz MEDIAN S_4 Kp < 3.5

1984
1985

Figure 3. Seasonal variations of intensity scintillation index at 137 MHz along the noon-midnight meridian in 1984 and 1985.
Figure 4. Seasonal variations of the slope of 137 MHz phase scintillation spectra along the interval of 0.2-10 Hz along the noon-midnight meridian in 1984 and 1985.
Figure 5. Seasonal variations of total electron content variation along the noon-midnight meridian in 1984 and 1985.
Figure 6. Illustrates the correspondence between the variations of total electron content and sunspot number.
Figure 7. Seasonal variations of ion density at the satellite altitude of 830 km along the noon-midnight meridian in 1984 and 1985.