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ADMISSIBLE TRANSLATES OF STABLE PROCESSES:

A SURVEY AND SOME NEW MODELS

Stamatis Cambanis

Department of Statistics
University of North Carolina
Chapel Hill, NC 27599-3260

/

ABSTRACT

Wf" surveyS some recent results on the admissible translates of stable processes and we contrast

them with the analogs for Gaussian processes. Whereas Gaussian moving averages and Fourier

transforms of independent increments processes have rich classes of admissible translates, their stable

counterparts frequently have all translates singular. By removing the requirement of independence of

the increments, we introduce stable processes that are generalized moving averages and harmonizable

which can have rich classes of admissible translates. These are generally nonstationary processes but

we also show a class of stationary generalized moving averages.

Research supported by the Air Force Office of Scientific Research Grant Number F49620 85 C 0144.



1. INTRODUCTION

Throughout X = {X(t,w), -00 < t < oo} is a stochastic process defined on a probability space

(0,5,P), and s = {s(t), -oo < t < oo} is a nonrandom function. The map w -- X(. , w) from the

probability space to the space of all functions on the real line, induces a probability measure Px on the

a-field of cylinder sets, the distribution of the process X. If the distribution of the translate of X by s,

Ps+X, is absolutely continuous with respect to the distribution of X, PX, then s is called an admissible

translate of X, and if Ps+X and PX are singular, then s is called a singular translate. The set of all

admissible translates of X is denoted by AT(X).

In signal detection s is the signal, X is the random noise, and based on a sample observation (a

function on the real line) one decides whether the observation is due to signal plus noise (s+X) or to

noise alone (X). For a singular translate s, in principle, a correct decision can be made with pro-

bability one, i.e. signals that are singular translates of the noise can be perfectly detected. For an

admissible translate s the decision is based on the Radon-Nikodym derivative of Ps+X with respect to

PX (likelihood ratio) according to the Neyman-Pearson rule and the resulting probability of detecting

correctly the presence of the signal is always strictly less than one. Most real life signal detection

problems correspond to admissible translates.

In Section 2 we describe the well-known complete results on the admissible and singular translates

of Gaussian processes. In Section 3 we summarize some recent results for stable processes which are far

from being complete. We refer to (1] and references therein.

It turns out that the widely used moving average and Fourier transform models typically have all

translates singular in the non-Gaussian stable case, and thus do not provide realistic noise models for

signal detection. We thus introduce in Section 3 some generalized moving averages and harmonizable K I
processes which in the non-Gaussian stable case may have rich classes of admissible translates and 0

therefore serve as stable noise models in signal detection. %Al If IQ at. c 
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2. GAUSSIAN PROCESSES

Let X be a Gaussian process with mean zero and covariance function R. The set of admissible

translates of X is precisely the reproducing kernel Hilbert space of its kernel R, and all other translates

are singular. More concrete representations follow.

Every Gaussian process X can be represented in terms of a Gaussian pr .ss with independent

increments as follows:

(1) X(t) = J f(tA) d (A), -0< t < oo,

where f(t, ) L2(p) and p is the control measure of : dp(A) = EIdt(A)12. The integral f g d

is defined for all g c L2(p) and is a normal random variable with characteristic function

exp{ ir J g dt~1 exp{ r2 J 2 dp }

The covariance function of X is represented as R(t,s) =f0 f(t,A) f'(s,A) dp(A). Then

(2) AT(X) = { s(t) = f_0o f(t,A) g(A) dp(A), g c L 2 (p) }.

Stationary Gaussian processes (that are continuous in probability) have a spectral representation:

(3)X(t) = 0-0o e i t A dt(A),(3)J it

where t has independent increments and finite spectral (control) measure p, and their covariance

function is R(t,s) = J0 ei(t - s )A dp(A). Their admissible translates are Fourier transforms of

finite signed measures that are absolutely continuous with respect to p with p-square integrale Radon-

N;kodym derivative:

00i t,\ dv

(4) AT(X) = { s(t) =-o eitA dv(A), v<<p, L(p) }.

When p << Leb with spectral density O(A) = dp(A)/dA then

AT(X) = { s(t) = ei t A S(A) dA, f0  
1dA < oo}- 00 (A)
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and in addition to the spectral representation (3), X also has a moving average representation:

(5) X(t) = fJ00 h(t-s) dc(s),

where in (5), has stationary independent increments (i.e., p = Leb) and h f L2; its covariance

function is R(t,s)= 00 ei( t - S)A Ih(A)12 dA ; and its admissible translates are

(6) AT(X) = { s(t) = J h(t-s) g(s) ds, g c L2 }.

For nonstationary processes representations in terms of processes with dependent increments are

useful. Every Gaussian process X can be represented in terms of a Gaussian process 77 with possibly

dependent increments as follows:

(1') X(t) f f(t,u) dq(u), -oo < t < o.

Here q is an L2(Q,'J,P)-valued Gaussian measure generally not independently scattered, with bimeasure

,3: O(B,C) = E{ q(B) -(C) }, B,C • bounded Borel sets, and each f(t, ) is r7-integrable. The co-

variance of X is R(t,s) = fJ f(t,u) f(s,v) dO(u,v), and its admissible translates are

(2') AT(X) = { s(t) = fJf°00 f(t,u) g(v) d,3(u,v) = f. 0 f(t,u) dI g(u), g : i7-integrable

where #g is the measure 3g(') = J- g(v) 3(. ,dv).

When f(t,u) = eitu in (1') and q has bounded semi-variation, then X is harmonizable:

(3') X(t) = J0 eitu d,7(u),rroc ituuv

with bispectral measure # and covariance R(t,s) = _ e di(tu-sv)d)3(u,v). It is stationary only if

its bispectral measure 1# is concentrated on the diagonal of the plane. Its admissible translates are:

(4) AT(X) = { s(t) = J0 eitu dIg(u), g: v-integrable

When f(t,u) = h(t-u) in (1'), X is a "generalized" moving average (of a dependent increments

3



process):

(5) X(t) = J0 h(t-u) dq(u),
f-00

whose admissible translates are

(6) AT(X) s(t) = Jc h(t-u) dflg(u), g: i7-integrable }.
-00

The representations of the admissible translates of general nonstationary processes, (2'), (4'), and

(6'), are similar to those of stationary processe, (2), (4) and (6), but not as explicit and simple because

generally no explicit description of the Y/-integrable functions is available.

3. STABLE PROCESSES

In this section X is a symmetric a-stable (SaS) process (0 < a < 2), i.e. all linear combinations

c1X(tl)+ ... +cnX(tn) are SaS random variables (with characteristic functions of the form

exp{ - const. I r Ia } ). When a = 2, X is Gaussian. When 0 < a <2, X is non-Gaussian stable

and can be represented as in (1), where has SaS independent increments and control measure A.

Here the integral f g d is defined for all g c La(p) and is a SaS random variable with

characteristic function

E exp{ ir J g d4 } = exp{ -I r aj f I g a* dp 1.

A crucial difference in the representation (1) between the Gaussian (a=2) and non-Gaussian

(0 < a < 2) cases is that whereas in the Gaussian case the linear space of the increments of can

always be taken to be equal to the linear space of the process X, in the non-Gaussian case the former

is generally larger han the latter (and generally infinite dimensional even when the linear space of X is

finite dimensional).

The analog of (2) is no longer valid when 0 < a < 2 and all that can be said in general is that

(7) AT(X) c { s(t) = J f(t,A) g(A) dp(A), g 4 L a*() } F(X),

4
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where 1/a + 1/a* = 1, and that translates outside the set F(X) are singular. AT(X) may be as

large as F(X) (e.g. when X is sub-Gaussian) or as small as {0) (e.g. when X is LUvy motion).

In order to describe better the contrasts and similarities between the Gaussian and other stable

cases we first concentrate on the independently scattered SaS measure = (B), B c SO in (1),

where Sb denotes the bounded Borel sets of the real line. When a = 2, AT(t) consists of all signed

measures which are absolutely continuous with respect to p with Radon-Nikodym derivative in L2(p).

In sharp contrast when 0 < a - 2 and p is nonatomic, then t has no admissible translates and in fact

all translates are singular. On the other hand, when 0 < a < 2 and p is purely atomic with atoms

{an)N1, 1 < N < oo, then AT(t) consists of all measures s concentrated on (an}N with

N 2 2/Q
E Is({an})12 1 p ({an}) < 00

this result is due to Shepp [ 2 ] and is valid for all 0 < a < 2. For a general control measure A, AT(t)
-- 0) when u has no atoms, and when j has atoms n )N then AT(t) is as above.

We now consider a general SaS process with representation (1) and 0 < a < 2. X is called

invertible if its representors {f(t, • ), -oo < t < oo I are complete in La(p), i.e. if the linear spaces

of X and of the increments of are equal. When X is invertible then every translate is either ad-

missible or singular and AT(X) = {0} when p has no atoms and if p has atoms fan )N 1 , 1 < N < oo,

then

N I/oa N
AT(X) -- s(t)= E sn A (fan)f(t,an), E I 1Sn12 ( }.

n=1 n=1

Here AT(X) is a proper subset of F(X) even when p is purely atomic.

When X is stationary and has the spectral representation (3), where has independent SaS

increments and finite spectral (control) measure p, then X is invertible. In the Gaussian case its

admissible translates are described in (4). In the non-Gaussian case 0 < a < 2, if the spectral measure

p has no atoms all translates of X are singular and if p has atoms {an}N 1, I < N < oo, thenn=e

N e/a ita N
AT(X) ={s(t)= E sn Pl(fan}) , I Snl' < 00

n=1 n=l

5



When X is stationary and has a moving average representation (5), where has stationary

independent SaS increments, then all translates of X are singular when 0 < a < 2, provided the

translates of its kernel h are complete in La. In the Gaussian case the admissible translates of X are

described in (6).

The processes with spectral (3) and those with moving average (5) representation are the most

widely studied classes of stationary stable processes, and are actually disjoint when 0 < a < 2, while

in the Gaussian case a = 2 the latter is a subset of the former. Since when 0 < cc < 2 in most cases

they have no admissible translates and all their translates are singular, they do not provide reasonable

models of stable noise in signal detection, as every signal can be detected perfectly in principle in the

presence of such noise. One way to introduce more realistic stable noise models is to allow the

increments of in (3) and (5) to have some dependence, i.e. to consider the stable counterparts of (3r)

and (51).

Thus let X have representation (1'), where 7} has dependent SaS increments with 0 < a < 2.

Here Y7 is a SaS measure which is not independently scattered and can be represented as

7()= v(. ,A) d (A),

where has independent SaS increments and control measure p, and v is an La(A)-valued measure. If

g is v-integrable then f g dv F La(p) and

gdr= { gdv)}d .
-00 -00 -00

Thus with each f(t, • ) being v-integrable we have

(8) X(t) = J0 f(tu) d(u) = 0f '{ f(t,u) v(du,A) } d (A), -oo < t < o.(8) X~t ; f-t u d fu); -0 -00

To ensure that q? is not independently scattered we assume that for some disjoint Borel sets B,

and B2 1, p{ A : v(B1,A) v(B 2,A) 6 0 ) > 0, since ry(BI) and 7(B 2) are independent iff v(B1 ,A) v(B2 1,A)

- 0 a.e. [p]. Note that rQ({a}) = 0 iff Ilv({a},u)12 dp(u) = 0, so that q may have no atoms even

when does, e.g. if v has no atoms: v({a},u) = 0 a.e. [1p]. It is therefore possible for X to have

6
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admissible translates even when P7 has no atoms.

We further require X to be invertible, i.e. I ff(tu) v(du, -oo < t < oo} to be complete

in La(pj), and p to have atoms fan}nl , I < N < oo. It then follows that

N i/a 00 N
AT(X) = { s(t) = E p A {ans) f(t,u) vi(du,an) ,  E 18n1' < 00 1-

n=1 n=1

When N < oo the representation of an admissible translate can be written as in (2'): s(t) = J f(t,u)

dvN(u) where the measure vN is

N i/a
(9) vN( )= E Sn P/(an) (,an).

n--

When N = oo the infinite series in (9) does not generally define a measure and we can only write s(t) =

imk-oo f(t,u) dvk(u). where v k is defined as in (9).

With f(t,u) = eitu in (8) and q7 of bounded semi-variation then X is harmonizable:

X(t) J 0 eitu di7(u) = 00 i,(t,A) d.t(A),

where i/(t,A) = 00 ei tu v(du,A), with admissible translates all functions of the form (as in (4'))

s(t) = e t u dvN(u) if N < o, = lim ei tu dvk(u) if N =oo.
f-00 k 0 -- 00

Harmonizable processes are nonstationary when Yj has dependent increments.

When f(t,u) = h(t-u) in (8), X is a "generalized" moving average (of a dependent increments

process):

(1)X(t) = 00 h(t-u) &i1(u) = J0 1 f' h(t-u) ti(du,A) } d (A)

with admissible translates are all functions of the form (as in (6'))

(11) s(t) = h(t-u) dvN(u) if N < oo, = |ir h(t-u) duk(u) if N = o.
f-00 k ---- fo-oo

It is easy to construct examples of nonstationary generalized moving averages, but there exist sta-

7



tionary ones as well. Indeed, taking

v(B,A) = O(A) fB eixo ( A) dx

for bounded Borel sets B where 0 c Lo(p) we have for g c L1, f g(x) v(dx,,\) = O(A) g[O(A)]

and from (10),

X(t) = 00 ei tO(A) O(A) h[-O(A)I d.(A).

Therefore X is stationary and invertible with admissible translates all functions of the form (as in (6)

and (6'))

s(t) = f-o0 h(t-u) g(u) du,

NNwhere g(u) = sn P/((an) ) 0(an) ei u o (an) and Sn 2 < 00.

n=1 1

Thus harmonizable and generalized moving averaged SaS processes can be constructed with

rich classes of admissible translates which may serve as realistic models of noise in signal detection.
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