
ESD-TR-87-1 !il

.... - = . (1. I., , J .l I ,

"r-- ,Atw i i ineoring Institute

A Survey of Real-Time
Performance Benchmarks for the
Ada Programming Language

Patrick Donohoe

El. E CT L. D December 1987

00 UCT:2 4

C0 IT" p

.Dixtribuhon Uniimited

88 10 21 052.

Technical Report
CMU/SEI-87-TR-28

ESD-TR-87-191

December 1987

A Survey of Real-Time Performance
Benchmarks for the Ada Programming

Language

Patrick Donohoe
Ada Embedded Systems Testbed Project

Acce.iuri For

&NTIS cA&

DTIC TAB Li
Uhan ;o:jtced [_-

i J: stlfc -------

By
.|| Dist" buto;i

AvaikLbiity Codes

Awful and !or
Dist Special

Approved for public release.
Distribution unlimited.

" Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Table of Contents
1. Introduction 1
2. The University of Michigan Ada Benchmarks 1

2.1. Ada Language Features Measured 3
2.1.1. Subprogram Calls 3
2.1.2. Dynamic Storage Allocation 3
2.1.3. Exception Handling 4
2.1.4. Task Elaboration, Activation, and Termination 5
2.1.5. Task Rendezvous

2.1.7. TIME and DURATION Evaluations 6
2.2. Ada Runtime Features Measured 6

2.2.1. Delay and Scheduling Tests 6
2.2.2. Object Deallocation and Garbage Collection 6
2.2.3. Interrupt Response Time

3. The Performance Issues Working Group (PIWG) 7
Ada Benchmarks
3.1. Composite Benchmarks 7

3.1.1. The Whetstone Benchmark 8
3.1.2. The Dhrystone Benchmark 8
3.1.3. The Hennessy Benchmark 9

3.2. Individual Language Feature Benchmarks 9
3.2.1. Task Creation and Termination 9
3.2.2. Dynamic Storage Allocation 9
3.2.3. Exception Handling 9
3.2.4. Coding Style 10
3.2.5. TEXT_10 Procedures 10
3.2.6. Loop Overhead 10
3.2.7. Subprogram Calls 10
3.2.8. Task Rendezvous 10

3.3. Compilation Tests 11
4. The Prototype Ada Compiler Evaluation Capability (ACEC) 11
5. Summary and Conclusions 12

References 15

I

CMU/SEI-67-TR-28

I

I

A Surve, of Real-Time Performance Benchmarks for the
Ada Pro ramming Language

Abstract. survey provides a summary description of some of the major Ada
benchmarks currently available ard an evaluation of their applicability to the Ada Em-
bedded Systems Testbed (AEST) Project at the Software Engineering lnsttuthe
The benchmarks discussed are: the University of Michigan benchmarks, the ACM Per-
formance Issues Working Group (PIWG) benchmarks, and the prototype Ada Compiler
Evaluation Capabilty (ACEC) of the Institute for Defense Analyses (IDA).

1. Introduction
e primary purpose of the Ada Embedded Systems Testbed (AEST) project at the Software

Engineering Institute (SEI) is to develop a sold In-house support base of hardware, software, and
personnel to permit the Investigation of a wide variety of Issues related to software development
for real-time embedded systems. Two of the most crucial Issues to be investigated are the extent
and quality of the facilities provided by Ada run-time support environments. The SEI support
base will make it possible to determine assessments of the readiness of the Ada language and
Ada tools to develop embedded systems.i)

The AEST Project testbed is essentially a host-target environment. It is hoped that some, if not
all, of the benchmarks may be used to determine Ada performance characteristics on the testbed
target: initially a DEC MicroVAX II running the VAXELN real-time executive, and later a Motorola
MC68020 microprocessor. A MIL-STD-1750A processor is also a possible future target. (F_-)

This report covers the Ada benchmarks developed at the University of Michigan [3 and by the
ACM SIGAda Performance Issues Working Group (PIWG). 1 The PIWG benchmarks include Ada
versions of the Whetstone [4) and Dhrystone [7] synthetic benchmarks. The report also dis-
cusses briefly the prototype Ada Compiler Evaluation Capability (ACEC) 16].

2. The University of Michigan Ada Benchmarks
The University of Michigan benchmarks concentrate on techniques for measuring the perfor-
mance of Individual features of the Ada programming language. In addition, the performance of
some run-time system features - scheduling and storage management - is measured. The
development of the real-time performance measurement techniques and the interpretation of the
benchmark results are based on the Ada notion of time. A paper by the Michigan team [3) begins
by reviewing the Ada concept of time and the measurement techniques used in the benchmarks.
The specific features measured are then discussed, followed by a summary and appraisal of the
results obtained.

1The bench nw fe m I *s PIWOG dilbuln tape kown as TAPE_..31_86. The name, address, and
elbspone number of he am4 chairpem of te PIWG can be Sound in Ads Letters, a bimonhly publication of SIGAda,

the ACM Specl Insrest Group on Ads.

CMUISEI-87-TR'28

To isolate a specific feature for execulion-time measurement, a typical benchmark program ex-
ecutes a control loop and a test loop, the loops differing only by the feature to be examined. Time
readings are taken at the beginning and end of both loops. Theoretically, the difference In execu-
tion times of the two loops Is the execution speed of the feature being measured. The two loops
are executed many times In a larger loop, and the desired time measurement is obtained by
averaging. However, care must be taken to prevent compiler optimizations from removing por-
tions of the benchmark code. Such optimizalions include removing constants or constant expres-
sions from loops, eiminating subprogram calls, or removing the feature being measured. The
technkies used by the Michigan team to thwart code optimizers are discussed in [3J. A good
example of language feature measurement techniques and compiler optimization blocking is
given in [2].

Obtaining accuracy in measurements is another important complication discussed in the Michigan
paper. To determine the number of iterations needed to obtain a measurement within a given
tolerance, knowledge of both the resolution of the CLOCK function and the variability of the time
needed to take a time measurement is needed. In the clock calibration program, a call to the
CLOCK function is placed In a loop that Is executed a large number of times, and each time
measurement obtained is placed in an array. A second differencing scheme applied to these
measurements will yield the time resolution [3].

The Michigan paper also explains how problems such as Isolating features to be measured,
ensuring sufficient accuracy of measurements, avoiding operating system distortions, and obtain-
ing repeatable results were handled. The rationale for each benchmark test is also explained in
that paper.

The Ada language features measured by the benchmarks are:

* subprogram calls
* dynamic storage allocation
a exception handling
* task elaboration, activation, and termination
* task rendezvous
* CLOCK function resolution and overhead

time math

The Ada runtime features measured by the benchmarks are:

" scheduling considerations (delay statement)
" object dealocation and garbage collection
" Interrupt response time (outline only - see below)

The Michigan paper presents results for the following compilers:

Verdix Versions 4.06, 5.1, and 5.2 running with UNIx 4.2 BSD'on a VAX 11/780
o DEC VAX Ada Version 1.1 running with MicroVMS 4.1 on a MicroVAX II

2 CMUISEI-87-TR.-28

' : -b-ml
' ,, l'il illlmII I~ B I

Iu

•wDEC VAX Ada Version 1.3 running with VMS 4.4 on a VAX 11/780
i •* Alsys Version 1.0 running with Aegis Version 9.2 on an Apollo DN 66W

The authors of the Michigan paper point out that these versions of the Compilers were Intended
i for time-shared use, not real-time applications; hence, the results should not be Interpreted with

real-time performance In mind. The next two sections describe the various tests used to measure
the language and runtime features.

2.1. Ada Language Features Measured

2.1.1. Subprogram Calls
Modular programming leads to increased use of subprograms and hence to increased call and
return overhead. A way of reducing the overhead is to have the compiler generate an inline
expansion of the subprogram; the tradeoff, however, is a larger object module. Ada has both
subprogram calls and an INLINE pragma (but a compiler Is not required to Implement the latter).
Measuring subprogram overhead versus the execution time of Inline code may provide a basis for
evaluating the tradeoff.

Several kinds of benchmarks are provided. They measure the overhead involved in entering and
exiting a subprogram with no parameters, with various numbers of scalar parameters, and with
various numbers of composite objects (arrays and records) as parameters. Tests are also pro-
vided to measure the overhead associated with passing constraint information to subprograms
whose formal parameters are of an unconstrained composite type. All of the tests include pass-
ing parameters In all three modes: In, out, and In out.

All of the tests also measure the difference in overhead between calling subprograms in different
packages and calling subprograms in the same package. For intra-package calls, there are also
versions of the tests to measure the overhead of using the INLINE pragma it the pragma is
supported. In these tests, the test loop calls an OVERHEAD procedure that has been specified
by the INLINE pragma. The body of the OVERHEAD procedure Is simply a call to a
DONOTHING procedure. The control loop calls the DO_NOTHING procedure directly; the dif-
ference in execution speed between it and the test loop is a measure of the overhead involved in
inline expansion of subprogram calls.

Finally, all the tests for inter- and Intra-package calls are repeated with the subprograms appear-
ing as part of a generic. These tests determine the overhead associated with executing generic
instantlations of the code.

2.1.2. Dynamic Storage Allocation
Objects such as unconstrained arrays provide software flexibility and ease of support as an appli-
cation and Its slorage needs change. However, dynamically allocating storage may be costly for
critical real-time systems. To determine the feasibility of dynamic storage allocation In a real-time
embedded application, the overhead Involved must be measured.

There are three categories of allocation measured by available tests.

CMU/SEI-87-TR-28 3

*> :

* Rxed storaoe alaon. The objects are declared locally In a subprogram or declare
block; the storage required is known at compile time but Is allocated at runtime.

" Vatrable storage aocaon. Same as for fixed allocation, but the storage required
(e.g., in the case of an array with variable bounds) is not known at compile time.

" E)plhcit dynamic a//ocalon. Storage is allocated via the new allocator.

There are about 80 test programs to handle the first two cases, all of them variations on the same
theme: allocating various numbers of Integer, enumeration, string, and record objects, as well as
arrays of various sizes. The naming convention used for these files Is explained in the
README file in the documentation subdirectory. For a typical example of how these tests are
structured, and a sample of the file-naming scheme used, consider the test that allocates 10
INTEGER variables.

The main driver program for the test, the procedure DAD, Is in file dd.nlO.a. This file also
contains the body of the package DAD_TIMERS, which contains the functions
CONTROL_TIMER and DADTIMER. These functions are called from the driver program to
execute the control and test loops. The heart of the test loop is executed by calling a procedure,
DADDECLARE, which declares the 10 integers. The control loop In function CONTROLTIMER
declares the 10 Integers directly, then calls a procedure DAD_NO_DECLARE. These proce-
dures, necessary to defeat compiler optimizations, are contained in the body of package
DADDECLARES in file dd.nl0B.a. The specifications of the packages DADDECLARES and
DADTIMERS are in file dd_lnlOS.a. The control loop in function CONTROLTIMER also calls
the procedure DAD_DOSOMETHING to balance the code of the test loop. This procedure is in
package DADTRIVIAL; the package specification is in file dd_lnl0S.a, and the body is in file
dd_lnlOB2.a.

There are three main driver programs, danld.a, dan_2d.a, and dan_3d.a, to handle the third
category of storage allocation. They allocate one-, two-, and three-dimensional arrays whose
sizes and types are specified in various supporting package specifications. The test loop In each
program allocates an array of objects (integer, enumeration, string, array, record) using the new
allocator.

2.1.3. Exception Handling
Error handling is a very important function of real-time embedded systems. For these systems to
operate property, efficient exception handing must be provided. To estimate the efficiency of
Ada's exception handling, the time to respond to and propagate exceptions must be measured
and examined.

One main program, exmaln.a, performs all the exception tests. It has a control loop that raises
no exceptions, additional control in the form of an exception handler that never executes, and
different versions of handlers for CONSTRAINT_ERROR, NUMERIC_ERROR,
TASKINGERROR, and user-defined exceptions. The times measured are as follows:

" the elapsed time between the raising of an exception and the start of execution of the
exception handler In the same subprogram;

" the elapsed time between the raising of an exception In a subprogram and Its subse-
quent raising In a calling subprogram (exception propagation time).

4 CMUISEI-87-TR-28

I

In these tests, exception handlers are written both as part of the main program and as part of
subroutines called by the main program. The actual exceptions are generated both Implicitly
(e.g., add INTEGER'LAST to Itself, causing a NUMERIC_ERROR) and explicitly (raise
NUMERICERROR;).

2.1.4. Task Elaboration, Activation, and Termination
Tasking is at the heart of the Ada programming language, but, as noted in [31, *... task elabora-
tion, activation, and ternination are almost always suspect operations in real-time programming,
and programmers often allocate tasks statically to reduce runtime execution time." Thus, an
Indication of the time to perform these operations Is of special interest.

The tasking tests measure the total time taken to elaborate a task's specification, activate the
task, and terminate the task. According to the Michigan paper, the coarse resolution of the
CLOCK function prevented the measurement of the individual times. The tests cover the two
cases of task activation:

* Entering the non-declarative part of a parent block There are two versions of this
test. The first, ttype.obj.a, has the task type declared in the declarative region of
the program, and an object of that task type declared and activated within the test
loop of the program. The second, t dec..obj.a, has the task object declared and
activated directly within the test loop (inside a declare block).

* Using the new allocator. This test, t_typenew.a, declares a task type and a pointer
to it In the declarative region of the program. A task object Is then declared and
allocated via the new allocator inside a declare block within the program's test loop.

In each case, the execution time of a control loop subtracted from the the time of the test loop
yields the composite time for task elaboration, activation, and termination.

2.1.5. Task Rendezvous
One main program, rjend.a, measures the time taken to complete a rendezvous between a
procedure (the calling task) and a task. No parameters are passed with the entry call, and the
acceptor task executes a simple accept statement. This test gives a lower bound on rendezvous
time. The timing measurement includes the *cost" of at least two context switches. It is implied in
[3] that other versions of the test exist for a rendezvous involving various numbers, types, and

modes of passed parameters. The code for these versions of the test was not present on the
tape received at the SEI; however, it would be simple to derive from the given main program.
The generalized output routine provided for the tasking test can be used to print the results from
any version of the test.

2.1.6. CLOCK Function Overhead
The CLOCK function provided by the CALENDAR package can be used extensively in applica-
tions where timed loops are required. The overhead associated with calling CLOCK may be a
significant contribution to the total elapsed time of such loops. The benchmark program
coqmalnsa measures the time required to perform a call to the CLOCK function.

CMUlSEl47-T-26 5

2.1.7. TIME and DURATION Evaluations
For real-ime systems coded In Ada, the need frequently arises to compute dynamically the sum
or difference of a TIME value returned by the CLOCK function and a DURATION value; this
computation might be used as the value in a delay statement. The actual delay experienced by
the program may be longer than anticipated, depending upon the overhead Involved in calling the
CALENDAR package functions CLOCK, "+*. and "-".

Fifteen versions of the same basic test program, tml a through tmli 5., provide measurements of
the overhead Involved In using the "+" and "- functions of the CALENDAR package. (The test to
measure CLOCK overhead has been referred to In the preceding subsection.) A simple assign-
ment statement involving the sum or difference of objects of type TIME and/or DURATION is the
essential feature of each test loop. The two versions of *+" contained in CALENDAR (to provide
commutativity with respect to the operand types TIME and DURATION) are tested; although they
are essentially the same, measurement discrepancies will arise If the CALENDAR package imple-
ments one of the functions as a call to the other.

2.2. Ada Runtime Features Measured

2.2.1. Delay and Scheduling Tests
Determining when a task becomes eligible for execution after the expiration of a delay statement
is an important real-time programning issue. The Ada language reference manual states that
order of scheduling for execution among tasks of equal or unstated priority is undefined, and that
fair scheduling is presumed. An implementation may elect to check for the delay expiration
periodically at synchronization points in a program or in a variety of other ways. Thus, a test is
needed that will determine an implementation's scheduling discipline related to delay expiration.

A single test program, dt test.a, measures the time taken to execute a delay statement for a
range of delay values beginning with the value DURATION'SMALL. The Michigan paper 13] gives
a comprehensive treatment of the scheduling considerations that motivated the benchmark (fixed-
interval delay scheduling, time-sling, pre-emptive), a discussion of the measurement techniques
used by the test program, and a discussion of the interpretation of the test results.

2.2.2. Object Deallocation and Garbage Collection
The Reference Manaual for the Ada Programming Language [1] does not require the immediate
return of deallocated storage to the storage pool: thus the implementation of garbage collection
can have important consequences for embedded systems. Embedded systems are often re-
quired to run for lengthy periods of time; while the total amount of memory required at any one
time may not be great, the system will run out of memory if deallocation does not occur. Even if
deallocation does take place, the time taken for the garbage collector to recognize and respond to
the need to release memory may be excessive for the needs of a particular real-time embedded
system. Thus It Is Important to know the memory management characteristics of the runtime
system being used.

There are four memory management test programs. The basic idea behind all four is to use the
new allocator In a loop with various checks to determine whether or not garbage collection is
possible.

6 CMUISEI-87-TR-28

1. mm memulzea allocates up to 10,000,000 Integers in blocks of 1000 in an attempt
to bump into the memory limit (i.e., raise STORAGEERROR). It prints the number
of allocations actually performed, or an appropriate message if it does not hit the
memory Eimit.

2. mm kxpdellocate.a allocates memory exactly Eke the first program; however,
the blocks of integers are explicitly deallocated using
UNCHECKED_DEALLOCATION. This test will raise STORAGEERROR at the
same point as in the first test (assuming it reaches the limit of memory) if
UNCHECKEDDEALLOCATION Is not Implemented.

3. mmjImpdeallocate.a determines If the allocated blocks of integers are implicitly
deallocated if no access variables are set to point to them. If no such automatic
garbage collection is performed, STORAGEERROR will be raised as in the two
previous tests.

4. mmflrstdiff.a is an application of the second difference algorithm discussed in
the Michigan paper [31. it prints the first differences of the allocation times for 1000-
integer blocks (arrays). This program is designed to test runtime effects in virtual
memory systems; in such systems the amount of allocated memory can reach the
point where paging takes place. By forcing memory to remain allocated and loop-
Ing a sufficiently large number of times until STORAGE-ERROR is raised, the pro-
gram can collect figures for memory allocation and paging times.

2.2.3. Interrupt Response Time
No programs were provided to measure interrupt response time; the Michigan paper explains
why. Basically, the reasons are (a) the need (in general) for interrupt-generating hardware exter-
nal to the CPU; and (b) the fact that times to be measured occur at very different points in a test
program, so the use of iteration to improve measurement accuracy cannot be expected to work.
A framework for the solution to the problem is provided in the Michigan paper.

3. The Performance Issues Working Group (PIWG)
Ada Benchmarks

The PIWG benchmarks comprise more than 130 different tests that were either collected or de-
veloped by PIWG under the auspices of the ACM Special Interest Group on Ada (SIGAda). They
can be grouped into three broad categones:

1. composite benchmarks
2. individual timing tests
3. compilation tests

The tests in each category are described below. Many of the individual timing tests are similar to
the University of Michigan tests; in fact, the Michigan benchmarks are being added to the PIWG
collection [31. The PIWG benchmarks also use the same basic control and test loop structure.

3.1. Composite Benchmarks

CMU/SEI-87-TR-28 7

!7
• :i mmm mm, mm ,hm lmm~mmmmmmm mmm•tm

3.1.1. The Whetstone Benchmark
The Whetstone benchmark [4], [51 Is a single-program benchmark that was designed to reflect the
frequency of language constructs used In real programs. The benchmark was originally devel-
oped to test Algol and FORTRAN compilers; the PIWG Ada version appears to be a straight
translation of one of these older versions because it does not have any of the programming
constructs found in newer languages (e.g., case statements). The program contains groups of
statements ("modules") to perform the following:

" evaluation of expressions Involving simple identifiers
" evaluation of expressions Involving array elements
" procedure call with array as passed parameter
* conditional branching
" Integer arithmetic
" use of trigonometric functions ATAN, SIN, and COS
" procedure call with simple Identifiers as passed parameters
" array references and procedure calls without parameters
" more integer arithmetic
" use of standard math functions SORT, EXP, LOG

Two versions of the PIWG Whetstone benchmark are provided. The first uses Ada mathematical
routines coded as part of the benchmark program. The second uses the math library provided by
the compiler vendor (or the host system, if the compiler vendor implements an interface to it).

3.1.2. The Dhrystone Benchmark
The Dhrystone benchmark [7] is a single-program benchmark that reflects the frequency of
source language constructs used in real programs. It was designed as a more modern form of
the Whetstone benchmark, reflecting constructs from newer programming languages. I he Ada
version, however, does not include features unique to Ada such as tasking or exception handling.
Dhrystone contains 100 Ada statements that are balanced in terms of distribution of statement
types, data types, and locality (global, local, parameter, and constant). The distribution of state-
merit types within Dhrystone is based on recent statistics (references given in Weicker's paper)
about the actual use of programming language features. The distribution is as follows:

Assignment statements: 53%

Control statements: 32%

Procedure and function calls: 15%

Weickers paper Ists tables of the frequency distribution data on which Dhrystone is based; it also
discusses Pascal and C versions of the program and ists the complete text of the Ada program.
Summarizing the use of Dhrystone, the paper says:

The Intention of this paper has been to present a better founded benchmark program
for architecture or compiler discussions. The program has been used internally for
comparisons of different rniroprocessors, for comparisons of micros with minicom-

8 CMU/SEI-87-TR-28

jr1

I1

puters, and for evaluation of experimental designs. In our experience, the results
achieved with Dhrystone as a yardstick reflect fairly accurately the effectiveness of a
particular hardware/compiler combination for systems programming applications.

3.1.3. The Hennessy Benchmark
This benchmark - named after the person who collected the programs - is a collection of
well-known programming problems coded In Ada. They are all relatively small, both in terms of
storage and execution speed. They can be used for comparing the Ada language with other
programming languages.

The benchmark consists of a main program that calls the following subprograms:

" Matrix Multiplication
" Puzzle
" Treesort
* Permutations
" Towers of Hanoi
" Eight Queens Problem
" Quicksort
* Bubble Sort
" Fast Fourier Transform
" Ackermann's Function

3.2. Individual Language Feature Benchmarks

3.2.1. Task Creation and Termination
Three tests measure task creation and termination time. In the first test, the task body is
elaborated in a package and activated from within a procedure contained in the same package.
In the second test, the task is elaborated and activated from within a procedure inside a package.
In the third test, the task is elaborated and activated locally within the test loop of the program.

3.2.2. Dynamic Storage Allocation
Four programs measure the allocation times of a 1000-integer array. The first simply allocates
the array; the seo"rd allocates the array and initializes it using the others initialization feature.
The third and fourth tests duplicate the first two, with the array defined as a field in a record.

3.2.3. Exception Handling
One program raises a user-defined exception and measures the time taken to enter the (null-
bodied) exception. The second test has the exception handler in a different procedure from the
one containing the ralse statement; it measures the exception propagation delay. The third and
final test is a version of the second, with the exception raised in a procedure nested four levels
deep.

CMU/SEI7-TR-28 9

, ,.

' m

3.2.4. Coding Style
This test measures the difference in execution speeds between a Boolean condition coded as

FLAG :- A < 3;

versus the same condition coded as

if a < B then
rLG : TRUZ;

else
rLa := rALSZ;

end if;

3.2.5. TEXT_10 Procedures
The GET-LINE, GET, PUT, and PUTLINE procedures of the package TEXT_10 are measured
as they retrieve data from a file. Two additional GET tests retrieve an INTEGER and FLOAT
value from a local string. A final test measures the overhead Involved in opening a file.

3.2.6. Loop Overhead
Three tests measure the overhead associated with the three looping structures of Ada: the for
loop, the while loop, and the infinite loop with an exit statement.

3.2.7. Subprogram Calls
There are 11 benchmarks to measure procedure call overhead. The following kinds of features
are measured:

" procedures with no parameters:

1. simple procedure -compiler may replace with inline code
2. simple procedure -coding makes inline replacement impossible
3. simple procedure in package
4. simple procedure in package -pragma INLINE used

" procedures (in packages) with parameters:

1. one In parameter
2. one out parameter
3. one In out parameter
4. ten In parameters
5. twenty In parameters
6. ten In parameters, composite type (record)
7. twenty In parameters, composite type (record)

3.2.8. Task Rendezvous
Six tests measure the rendezvous times of tasks with various numbers of entry calls, with and
without a select statement. No parameters are passed during the rendezvous. All called tasks
are variations of the following basic task body:

10 CMU/SEI.87-TR-28

, ' ~~;r" :, rm • em . • -ik !l

task body TI is
begin

loop
accept 21 do

<code to defeat optimization>

end Z1;
end loop;

end;

One of the tests activates 10 single-entry tasks and computes an average rendezvous time.

3.3. Compilation Tests
There are over one hundred files In this category, mostly containing package specifications and
bodies used to measure compilation speeds. There are two main groups of files:

Compile-link-execute. There are 24 packages that define Ada types and operators for
physical quantities. For example, the package
PHYSICALUNITSELECTRICAL defines such types as
CURRENT_MILLIAMPERE and RESISTANCE_OHM. There are
packages to convert between systems of measurement (e.g.,
MKS system of units to the English system), packages to define
PUT procedures for the various units, and a package of physical
constants. There is a program included which uses with and use
clauses to pick up the information in all these packages. It solves
a few simple physics problems involving a ball dropped from a
height.

In addition to the physical quantities test, there are two others:
one that is an attempt to create a file with at least one of each
kind of Ada statement; and one containing a generic sort routine
that is called to sort arrays of five different types: integer, float,
string, enumeration, and fixed.

Compile-only tests. This is a collection of 69 null-bodied procedures that declare vary-
ing numbers of objects of just about every Ada type. For ex-
ample, there are procedures to declare 100, 200, and 1000 in-
tegers; 100, 200, and 500 package specs; 100 tasks, and so on.

4. The Prototype Ada Compiler Evaluation Capability (ACEC)

The purpose of the Prototype ACEC is to provide users with an organized suite of compiler
performance tests and support software for executing the tests and collecting performance statis-
tics. The ACEC test suite was constructed by the Institute for Defense Analyses (IDA) for the
Evaluation and Validation (E & V) Team of the Ada Joint Program Office (AJPO). The IDA has
prepared a User's Manual for the Prototype ACEC (6] most of the Information listed here comes
from that manual.

The 286 tests in the ACEC suite are organized Into two major categories, based on the kind of
Information the test provides to the user. The categories are as follows:

CMU/SEI-87-TR-28 11

" Normative tests. These provide information about language features that must be
present in a compiler that claims to be a full implementation of ANSI/MIL-STD
1815A. There are two kinds of tests in this category:

1. Performance tests collect speed and space attributes for various Ada lan-
guage features;

2. Capacity tests indicate limitations Imposed by the compiler and runtime sys-
tem on application developers (e.g., levels of recursion, size of stack).

" Optional tests. These may be selected by a user to represent an applications profile
consisting of most frequently used language features. There are two subcategories:

1. Features tests provide measurement of optional language features (those
that are not a required part of an Ada compiler). They also provide measure-
ments of the effects of certain compiling options.

2. Special algorithm tests are combinations of language constructs that are
characteristic of synthetic benchmark programs. They include such widely
known benchmarks as Whetstone and the Sieve of Eratosthenes.

The User's Manual for the Prototype ACEC provides a more detailed description of the tests, how
they perform data collection and evaluation; the overall software architecture (the database pack-
age, the report writer, the instrumentation package, and the actual benchmark tests); and how to
run the benchmarks. A complete listing of all test file names and a one-line description ot each
test are also given.

Whether or not the Prototype ACEC tests will be useful to the AEST Project remains to be seen.
They have already been used in the SEI Evaluation of Ada Environments Project; Chapter 8 of
the project paper [8] says:

The purpose of the experiment was to provide a method of evaluating Ada compilers,
as a supplement to the main experiments of the project. The decision to make use of
an existing test suite was driven by the desire to expend minimum effort in this supple-
mentary activity. In retrospect, it has taken more effort than expected to employ the
ACEC only to produce quite modest results.

As this survey report neared completion, it was learned that a contract to produce a full set of
ACEC tests has been awarded to Boeing Military Airplane Company by the Evaluation and Vali-
dation team of the Ada Joint-Program Office. The SEI will participate in the evaluation of these
tests.

5. Summary and Conclusions
Of the benchmarks discussed in this report, the two that appear to be most relevant to the AEST
Project are the University of Michigan benchmarks and the PIWG benchmarks. The Michigan
benchmarks, In particular, contain many tests relevant to embedded real-time systems, and the
paper by the Michigan team [3] gives a good description of each test, an exlanation of the
techniques used, guldelines for the Interpretation of results, tables of test results for each
compiler-machine combination, and a summary discussion of each test result. The relevance of
benchmarkng to real-time embedded systems is stated in the concluding paragraph of the
Michigan paper:

12 CMU/SEI-87-TR-28

- - - -I' r~.,a m -m - ,

I
Finally, based on our experience in developing these benchmarks, we argue that since
so many Implementation-dpendent variations are validatable, it Is not safe, in our opin-
ion, to use an Ada compiler for real-time applications without first checking it with per-formane evaluation tools. Time management, scheduling, and memory management
can have validated Implementations that will devastate a real-time application.
Moreover, since real-time performance evaluation is difficult due to the great variety of
Implementation dependences allowed, it typically requires interpretation and bench-
mark changes for each individual compiler tested. And real-time performance evalu-
ation is really only meaningful for dedicated embedded systems.

The PIWG benchmarks are an evolving suite and will eventually incorporate the Michigan tests.
Reports on the status of the benchmarks will be presented at SIGAda meetings and PIWG work-
shops. A newsletter giving benchmark results for various compilers and targets will be distributed
periodically.

CMU/SEI-87-TR-28 13

(v

1 4
C M U -IS E I.. 7 T R 2 8

References
[I] Reference Manual for the Ada Programming Language, ANSIIMIL-STD- 1815A- 1983

Ada Joint Program Office, 1430 Broadway, New York, NY 10018, 1983.

[2) Bassman, M.J., Fisher, G.A. Jr., and Gargaro, A.
An Approach for Evaluating the Performance Efficiency of Ada CompiNlers.
In Ada in Use, Proceedings of the International Ada Conference (Paris, France, May

14-16). 1985.

[31 Clapp, Russell M., et al.
Toward Real-lime Performance Benchmarks for Ada.
Communications of the ACM 29(8):760-778, August, 1986.

[41 Curnow, H. J., and Wichmann, B. A.
A Synthetic Benchmark.
The Computer Journal 19(1):43-49, February, 1976.

15] Harbaugh, S.. and Forakis, J.
iming Studies Using a Synthetic Whetstone Benchmark.

Ada Letters 4(2):23-34, 1984.

(61 Hook, A. A., et al.
User's Manual for the Prototype Ada Compiler Evaluation Capability (A CEC), Version 1.
Technical Report P-1879, Institute for Defense Analyses, October, 1985.

[7] Weicker, Reinhold P.
Dhrystone: A Synthetic Systems Programming Benchmark.
Communications of the ACM 27(10) :1013-1030, October, 1984.

[8] Weiderman, N. H., and Habermann, A. N.
Evaluation of Ada Environments.
Technical Report CMU/SEI-87-TR-1, Software Engineering Institute, January, 1987.

CMU11111.67-TR-28 1

16
CMU/SEI-87.TR-28

IUNLIMITED I1NMARTET~ n
BSCU6ITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
I&. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
21. SECuRITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AV ILASILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
SECLASSIFICATION/OOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED

N/A__ _

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBERIS)

CMU/SEI-87-TR-28 ESD-TR-87-191

NAME OF PERFORMING ORGANIZATION lb. OFFICE SYMBOL 7*. NAME OF MONITORING ORGANIZATION
(If applicable)

SOFTWARE ENGINEERING INSTITUTE SEI SEI JOINT PROGRAM OFFICE
i ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, Slate ed ZIP Code)

CARNEGIE MELLON UNIVERSITY ESD/XRS1
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

41& NAME OF FUNDING/SPONSORING l8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION Iplicable)

SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003

7 9c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
ELEMNT N. NO NO.NO.

SOFTWARE ENGINEERING INSTITUTE JPO ELEMENT NO. NO. NO.

PTTT~R1RCdH. PA 15213 N/A N/A N/A
A bI d I - i° RFORMANCE BENCHMARKS FOR

TIT1 AIA PRA RA 'MMTNr ANGTIArF
12. PERSONAL AUTHOR(S)
PATRICK DONOHOE

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT

FINAL . FROM _ TO DECEMBER 1987 26
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reuerse if neceuary and identify by block number)

FIELD GROUP SUB. GR. ADA, PERFORMANCE, BENCHMARKS

1 9B. ABSTRACT (Continue on reverse it necemary and identify by block number

Abstract. This survey provides a summary description of some of the major Ada
benchmarks currently available and an evaluation of their applicability to the Ada Em-
bedded Systems Testbed (AEST) Project at the Software Engineering Institute (SEI).
The benchmarks discussed are: the University of Michigan benchmarks, the ACM Per-
formance Issues Working Group (PIWG) benchmarks, and the prototype Ada Compiler
Evaluation Capability (ACEC) of the Institute for Defense Analyses (IDA).

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASIPIEOIUNIMITEO n SAME AS RPT. [OTIC USERS U UNCLASSIFIED, UNLIMITED

22a. NAME OF RESPONSIBLE INOIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
(ilnclude Area Code)

KARL SHINGLER (412) 268-7630 SEI JPO

DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNLIMITED. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PACE

).5~. .5

